
Imperial College London

Department of Computing

Bridging the Gap between Serving and

Analytics in Scalable Web Applications

by

Panagiotis Garefalakis

Supervised by Peter Pietzuch

Submitted in partial fulfilment of the requirements for the MRes Degree in High Performance

Embedded and Distributed Systems (HiPEDS) of Imperial College London

September 2015

Abstract

Nowadays, web applications that include personalised recommendations, targeted advertising and

other analytics functions must maintain complex prediction models that are trained over large

datasets. Such applications typically separate tasks into o✏ine and online based on the latency,

computation and data freshness requirements. To serve requests robustly and with low latency,

applications cache data from the analytics layer. To train models and o↵er analytics, they use

asynchronous o✏ine computation, which leads to stale data being served to clients. While web

application services are deployed in large clusters, collocation of di↵erent tasks is rarely done

in production mode in order to minimize task interference and avoid unpredictable latency spikes.

The service-level objectives (SLOs) of latency-sensitive, online tasks can be violated by these spikes.

Although this model of decoupling tasks with di↵erent objectives in web applications works, it lacks

data freshness guarantees and su↵ers from poor resource e�ciency.

In this thesis, we introduce In-memory Web Objects (IWOs). In-memory Web Objects o↵er a

unified model to developers when writing web applications that have the ability to serve data while

using big data analytics. The key idea is to express both online and o✏ine logic of a web application

as a single stateful distributed dataflow graph (SDG). The state of the dataflow computation is,

then, expressed as In-memory Web Objects, which are directly accessible as persistent objects by

the application. The main feature of the unified IWOs model is finer-grained resource management

with low latency impact. Tasks can be cooperatively scheduled, allowing to move resources between

tasks of the dataflow e�ciently according to the web application needs. As a result, the application

can exploit data-parallel processing for compute-intensive requests and also maintain high resource

utilisation, e.g. when training complex models, leading to fresher data while serving results with

low latency from IWOs. The experimental results on real-world data sets, presented in this thesis,

show that we can serve client requests with 99th percentile latency below 1 second while maintaining

freshness.

3

Bridging the Gap between Serving and Analytics in Scalable Web Applications

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Peter Pietzuch, for his

continuous support, inspiring counsel and guidance during the course of this work.

Next I would like to thank Imperial College London and more specifically High-Performance and

Embedded Distributed Systems Centre for Doctoral Training (CDT) HiPEDS programme for the

support during my studies.

I would also like to thank the members of Large-Scale Distributed Systems (LSDS) group for all

the fun conversations, the technical discussions, the group meetings and every other moment that

we shared together.

My best thanks to my friends and colleagues Ira Ktena, John Assael, Salvatore DiPietro, Nadesh

Ramanathan, Nicolas Miscourides, Emanuele Vespa, Christian Priebe, Antoine Toisoul, Eric Seck-

ler, Konstantinos Boikos, James Targett, Nicolas Moser and Julian Sutherland for making the CDT

lab a fun and interesting place.

Finally, I would like to thank my wonderful parents Georgia and Giannis and my sister Eirini

for their endless love, unconditional support, and for encouraging me to pursue my dreams.

5

To my parents,

6

Contents

1. Introduction 13

1.1. Thesis Contributions . 15

1.2. Thesis Organization . 15

2. Background 17

2.1. Scalable Web Applications . 17

2.2. Cluster Computing . 18

2.3. Cluster Resources . 19

2.3.1. Interference . 19

2.3.2. Isolation . 20

2.3.3. Management . 23

2.4. Cluster Resource Scheduling . 23

2.4.1. Centralised . 23

2.4.2. Distributed . 24

2.4.3. Executor Model . 24

2.4.4. Hybrid . 24

2.4.5. Two Level . 24

2.5. The Big Data ecosystem . 25

2.6. Data-Parallel processing Frameworks . 27

2.7. Dataflow Model . 28

2.7.1. Stateless . 28

2.7.2. Stateful . 29

2.7.3. Dataflow scheduling . 30

3. System Design 33

3.1. In-memory Web Objects Model . 34

3.2. Unifying Serving and Analytics using IWOs . 34

3.3. Towards e�cient Dataflow Scheduling with IWOs . 34

4. Resource Isolation 37

4.1. Linux Containers . 37

4.2. Mesos Framework . 38

5. Case Study: Exploiting IWOs in a Music Web Application 41

5.1. Play2SDG Web Application . 41

5.1.1. Application Controller . 42

5.1.2. View . 43

5.1.3. Data Model . 45

7

Contents

5.1.4. Analytics Back-End . 46

5.2. Experimental Results . 47

6. Conclusions 53

6.1. Future Work . 53

Appendices 55

A. Column Data Model 57

B. Algorithms 59

C. Web Interface 63

8

List of Tables

2.1. Major resources prone to interference in a datacenter environment and

available SW and HW isolation mechanisms. 20

2.2. Long jobs in heterogeneous workloads form a small fraction of the total

number of jobs, but use a large amount of resources. [22] 23

2.3. Design space of data-parallel processing frameworks [27] 29

5.1. Play2SDG route table. 43

9

List of Figures

2.1. Typical web application architecture today. 18

2.2. Impact of interference on shared resources on 3 di↵erent workloads. Each

row is an antagonist and each column is a load point for the workload.

The latency values are normalised to the SLO latency [52]. 20

2.3. A standard non-shared JVM [19]. 22

2.4. Multitenant JVM using a lightweight ’proxy’ JVM [19]. 22

2.5. Mesos architecture including the main components [35] 25

2.6. Big Data ecosystem containing systems for data storing, processing and

management. 27

2.7. Types of distributed state in SDGs [27] . 30

3.1. Web application architecture using In-memory Web Objects (IWOs). . . . 33

3.2. In-memory Web Objects scheduler for serving and analytics dataflows. . . 35

4.1. Web application deployment duration using Linux Containers. 37

4.2. Web application deployment duration using Apache Mesos. 38

5.1. Dataflow-based web application implementation using In-memory Web

Objects. 42

5.2. Typical web application implementation using Play framework and Cas-

sandra. 42

5.3. Play2SDG User data model. 45

5.4. Play2SDG Track data model. 46

5.5. Play2SDG Statistics data model. 46

5.6. Stateful dataflow graph for CF algorithm. 47

5.7. Average response time and throughput using Play-Spark Isolated, Play-

Spark Colocated and In-Memory-Web-Objects. 48

5.8. Response time percentiles using Play-Spark Isolated, Play-Spark Colo-

cated and In-Memory-Web-Objects. 49

5.9. Serving Response latency using Scheduled IWOs. 50

5.10.Workload distribution produced by a sin equation. 50

5.11. Spark Distributed/Clustered mode overview. 51

A.1. Column data model used in systems such as BigtTable, and Cassandra. . 57

C.1. Play2SDG Login page View. 63

C.2. Play2SDG Home page View. 63

C.3. Play2SDG Recommendations page View. 64

C.4. Play2SDG Statistics page View. 64

11

1. Introduction

The rise of large-scale, commodity cluster, compute frameworks such as MapReduce [20], Spark [88]

and Naiad [62], has enabled the increased use of complex data analytics tasks at unprecedented

scale. A large subset of these complex tasks facilitates the production of statistical models that

can be used to make predictions in applications such as personalised recommendations, targeted

advertising, and intelligent services. Distributed model training previously assigned to proprietary

data-parallel warehouse engines using MPI [69] is now part of the so-called “BigData” ecosystem,

described in more detail in Section 2.5. Platforms like Hadoop [5], Spark [88] and the more recently

developed Stratosphere/Flink [3] are part of this ecosystem and o↵er scalable high-volume data

analysis. These platforms have a significant impact in the systems research community and a

considerable amount of time is spent designing, implementing and optimising them both at an

academic and industrial level.

Several modern social networking and e-commerce websites, o↵ering insight to the user, are en-

abled by the above mentioned, distributed platforms. These websites implement a variety of data

mining applications, providing derived data features. A typical example of this kind of feature

is collaborative filtering [76] which showcases relationships between pairs of items based on peo-

ple’s ratings of those items. Organisations such as Amazon [50], YouTube [92], Spotify [90] and

LinkedIn [76] take advantage of these models to provide a better service to the users. Petabytes of

data from millions of users on thousands of commodity machines need to be processed by these ap-

plications. Consequently, they heavily depend on the “BigData” ecosystem to provide horizontal

scalability, fault tolerance and multi-tenancy.

Another interesting aspect of “BigData”, besides the aforementioned volume, their ubiquitous

character. Data is received from servers, sensors, mobile phones, appliances, wearable devices, even

toothbrushes. If technology predictions are right [60], all that ubiquitous data will be more valuable

than ever. It is the key to change how business decisions are made and how consumers interact

with brands and products. However, web applications today, whether ordering a taxi, or looking

for a restaurant, have to know everything about the consumer at that specific moment, to deliver

the best possible service. In order for this to happen they have to know what kinds of restaurants

a consumer likes, what restaurants are available at that time, and finally deliver a recommendation

based on the street corner just walked by. That requires real-time data processing across millions

of devices which can be extremely challenging as the volumes of data increase in an unpredictable

scale.

The main reason real-time processing for modern web applications is challenging is their strict

response time SLOs. It is mandatory to o↵er low-latency responses to the end users, as the response

time is a↵ecting revenue. A slowdown experiment at Bing [42] showed that every 100-millisecond

speedup could potentially improve revenue by 0.6%. The most common technique for achieving

low latency in web applications is decoupling computationally-expensive analytics tasks such as

model training or personalised recommendations from the critical path of serving web requests.

13

Introduction

The tasks that are important for serving client requests are usually named latency-critical (LC)

or online while the computation intensive tasks are often called best-e↵ort (BE) or o✏ine. The

non-critical o✏ine tasks are computed asynchronously using back-end systems. The developers,

then, load pre-computed results into scalable stores such as distributed key/value stores to make

data available for serving. The pre-computation part can be performed in a data-parallel fashion

by frameworks such as Hadoop [5] or Spark [88] which is rather best e↵ort than real-time, failing

to comply with the ubiquitous character of “BigData”.

Despite achieving low latency, the aforementioned approach has a number of limitations: First,

decoupling data analytics (BE) from serving (LC) means that results can be stale, which has a

negative impact on time-critical data such as user behaviour analysis or personalised services. An

increasing number of companies is now trying to adapt, and compute that kind of critical data in

real-time [7, 60]. Second, using key/value stores for storing data, while reducing the read latency,

requires the construction of complex queries, involving multiple back-end stores; more than 70% of

all Hadoop jobs running at LinkedIn [76] are reported to use key-value stores as egress mechanism

confirming the scale of the problem. This is also part of the data integration problem that is

frequently cited as one of the most di�cult issues facing data practitioners [40]. Third, this variety

of stores and back-end systems that must be managed and scaled out independently has proven to

be hard, error-prone and ine�cient. Last but not least, decoupling and hosting BE and LC tasks on

di↵erent servers, while minimising the interference between colocated workloads or shared resources,

leads to low machine utilisation negatively impacting datacenter cost e↵ectiveness [52, 24, 75].

The low utilisation issue in web applications is part of a wider proneness to low resource e�ciency

at large, shared, private and public datacenters. Several research papers have reported that the

average server utilization in most datacenters is low, ranging between 10% and 50% [24, 13, 73].

A primary reason for the low utilization is the popularity of latency-critical (LC) web services

mentioned above, ranging from social media, search engines and online maps to webmail, online

shopping and advertising. These user-facing services are typically scaled across thousands of servers.

While their load varies significantly due to daily patterns and unpredictable bursts in user accesses,

it is di�cult to unify and consolidate load on a subset of highly utilized servers. This is due to

the fact that the application state does not fit in a small number of servers and moving state is

expensive. The cost of such underutilization can be significant. Even in companies using state of

the art scheduling mechanisms like Google [52, 81] and Microsoft [41, 37], servers often have an

average idleness of 30% over a 24 hour period [51] which could easily translate to a wasted capacity

of thousands of servers [52].

A promising and convenient way to improve e�ciency is by launching best-e↵ort (BE) batch

tasks on the same servers and exploiting any resources underutilized by LC workloads, as described

in the literature [54, 55, 23]. Batch analytics frameworks like Spark [88] and MapReduce [20]

can generate numerous BE tasks and derive significant value, even if these tasks are occasionally

deferred or restarted [11, 13, 17, 24]. The main challenge of this approach is interference between

colocated workloads on shared resources such as CPU, memory, disk, and network. LC tasks, like

serving web requests, operate with strict service level objectives (SLOs) on tail latency, and even

small amounts of interference can cause significant SLO violations [54, 49, 56]. Hence, some of the

past work on workload colocation focused only on workloads aiming for a higher throughput [63, 16].

More recent systems predict, or detect when an LC task su↵ers significant interference from the

colocated tasks and avoid or terminate the colocation [24, 54, 66, 79]. These systems protect LC

14

Bridging the Gap between Serving and Analytics in Scalable Web Applications

workloads, but reduce the opportunities for higher utilization through colocation.

In this thesis, we present In-memory Web Objects (IWOs), a unified model for web applications.

The goal of IWOs is twofold: First, to expose a common object-based interface to the developers for

handling both o✏ine, best e↵ort and online, latency critical tasks. Second, to schedule resources

e�ciently between BE and LC tasks in a real-time and coordinated fashion, while maintaining

the strict SLOs of request serving in web applications. This is achieved by fine-grained resource

management inside the Java Virtual Machine and by being reactive to bursty workloads. Compared

to other existing systems such as CPI [91], Quasar [24], and Bubble-Up [54] that prevent colocation

of interfering workloads, we enable an LC task like serving to be colocated with any BE job like

user recommendations. We guarantee that the LC job will get enough shared resources to achieve

its SLO, maximizing the utility from the BE task which is now producing fresher results. Using

real-time latency monitoring for serving (LC) tasks we can identify when shared resources become

a bottleneck and are likely to cause SLO violations. Then we are using reactive thread scheduling

to shift resources from the BE to the LC tasks in order to increase the isolation and prevent that

from happening.

1.1. Thesis Contributions

This thesis, makes the following main contributions:

• Introduces In-memory Web Objects (IWOs), o↵ering a unified model to developers when

writing web applications that have the ability to serve data while using big data analytics.

• The design of IWOs isolation mechanism that is based on cooperative task scheduling. Co-

operative task scheduling reduces the scheduling decisions and allocates resources in a fine-

grained way, leading to improved resource utilisation.

• The implementation of In-memory Web Objects (IWOs) based on SEEP [26], an open-source,

data-parallel processing platform that supports stateful dataflow graphs.

• The evaluation of IWOs by implementing a real web application similar to Spotify [45], with

both online/LC and o✏ine/BE tasks. The web application was implemented as an extension

of Play [78], a popular web application framework for Java and the evaluation was conducted

using real-world data [9].

1.2. Thesis Organization

This thesis is organized as follows: Chapter 2 provides background and relates In-memory Web

Objects to other work in the field. The overall design is described in Chapter 3 while Chapter 5

provides details of the implementation. Motivation and the results of the case study evaluation are

presented in Chaprter 4 and Chapter 5 respectively. Finally, we conclude and discuss the directions

of future work in Chapter 6.

15

2. Background

In-memory Web Objects (IWOs) model lays in the intersection of several areas including web

applications dealing with “BigData”, cluster computing, scalable data-parallel processing, stream

processing, e�cient resource scheduling/management and scalable systems in general. This chapter

is aiming to provide a deeper background in parts of these areas but also relate IWOs with already

existing solutions. While important for understanding the technologies behind IWOs, this is not

prerequisite reading, and the reader can skip to Section 3.

2.1. Scalable Web Applications

The popularity of modern latency critical (LC) web applications that must o↵er user-centric services

led to the expansion of datacenter-scale computing, on clusters with thousands of machines [41,

24]. A broad class of data analytics tasks is now routinely carried out on such large clusters

over large heterogeneous datasets. This is often referred to as “Big Data” computing, and the

diversity of applications sharing a single cluster is growing dramatically. The reasons vary from

the consolidation of clusters to increase e�ciency, to data diversity and the increasing variety of

techniques ranging from query processing to machine learning being used to understand that data.

Of course, the ease of use of cloud-based services, and the expanding adoption of “Big Data”

technologies have also a↵ected cluster growth among traditional organizations.

In a typical web application as depicted in Figure 2.1, clients send HTTP requests that are

handled by a load-balancer. The load-balancer can be in a form of a web proxy like nginx [72]. The

proxy handles the distribution of requests in a number of web servers, increasing dynamically the

number of users the application can handle. The web server itself is just responsible for the user

interface and page rendering. The web application business logic is implemented using a framework

chosen by the developer, usually in an Object-Oriented Programming (OOP) language exposing an

API. This type of separation between the logic and the representation is dictated by the popular

Model-View-Controller (MVC) web application paradigm [44].

In the Model-View-Controller pattern, models represent knowledge. A model can be a single

object or a structure of objects, and there is a one to one mapping between the model and its

representation. A view is a visual representation of its model. It can highlight certain attributes

of the model and suppress others. It is thus acting as a presentation filter. A view is attached

to a particular model and gets the data necessary for the presentation by querying the model. A

controller is the link between a user and the system. More specifically in a web app its functionality

is twofold. The first part is the web server, mapping incoming HTTP URL requests to a particular

handler for that request. The second part is those handlers themselves, which are also called

controllers. Thus, a web app MVC includes both the web server routing requests to handlers and

the logic of those handlers, which pull the data from the database and push it into the template.

The controller also receives and processes HTTP POST requests, sometimes updating the database.

In a typical implementation of the design as depicted in Figure 2.1, both the web server and the

17

Background

Database ServerLoad Balancer

Database

Web Server

Presentation

Web Application

Business

Data Model

HTTP Request HTTP Response

Data Intensive Batch
Processing

Data

Trained Models
Dashed Line: Offline Task

Cluster A

Cl
us

te
r B

Figure 2.1.: Typical web application architecture today.

web application logic would be part of a typical framework code like Play [78]. The business logic

including the data models is implemented by the application framework as well.

All the data defined by the data model, are stored in external databases, that can also be

scalable using for instance distributed key/value stores [6, 47]. For the online client serving task,

the application has to run complex queries on these databases to fetch the needed data. For

the o✏ine/analytics task like collaborative filtering and online regression, the web application

asynchronously sends new user data to the distributed batch processing framework that runs on a

separate cluster for isolation. The batch framework periodically processes the newly created data

and pushes the changes in the database [76]. Consequently, clients and developers observe analytics

data that are as fresh as the processing task completion time, which is in the best case hundreds of

seconds. Moreover, strictly decoupling online from o✏ine tasks increases drastically the machine

demands for each web application with a negative impact on the cluster cost e↵ectiveness.

2.2. Cluster Computing

Cluster Computing is tightly coupled with the web applications and “Big Data” trend, and has

emerged as a significant evolution in the way that businesses and individuals consume and operate

computing resources. Cloud computing paradigm that evolved from cluster computing made cheap

infrastructure accessible to everyone, and this infrastructure can be used to analyse huge volumes

of data. The main goal of cloud computing is to reduce the cost by sharing resources. Increase reli-

ability, and flexibility by transforming computers from a device that we buy and operate ourselves

to something that is managed by a third party. However, most of the challenges in distributed

systems, arise from this fundamental need for cheap shared computing power. Moreover, since we

are using commodity hardware, it is highly likely for this hardware to fail, quite often. As a result

cloud providers often rely on redundancy to achieve continuous operation.

18

Bridging the Gap between Serving and Analytics in Scalable Web Applications

2.3. Cluster Resources

2.3.1. Interference

One of the main challenges cloud computing and shared cluster environments in general introduced

is resource interference. When a number of workloads execute concurrently on a server, they com-

pete for shared resources. The main resources that are a↵ected are CPU, caches (LLC), memory

(DRAM), and network. There are also non-obvious interactions between resources, known as cross-

resource interactions. For instance, a BE task can cause interference in all the shared resources

mentioned. Therefore, it is not su�cient to manage a single source of interference. To maintain

strict service SLOs, recent resource managers [52], monitor and isolate all potential sources. For

example cache contention causes both types of tasks (BE and LC) to require more DRAM band-

width, creating a DRAM bandwidth bottleneck. Likewise, a task that notices network congestion

may attempt to use compression, causing more CPU contention.

The Operating System (OS) by default enables tasks isolation through scheduling. While there

are more mechanisms that can be used for isolation described in Section 2.3.2, it is interesting to

evaluate the overall impact of running a BE task along with a LC task using only the mechanisms

provided by the OS. The evaluation, provided by the Heracles [52] system was conducted with real

services workloads from a Google cluster. In more detail, there were two workloads running (one

BE and one LC), executed in two separate Linux containers with the BE priority set to low. This

scheduling policy was enforced by the Completely Fair Scheduler (CFS) using the shares parameter,

where the BE task receives few shares compared to the LC workload. The BE task was the Google

brain workload [48] while the LC tasks were websearch, ml cluster, and memkeyval described below.

websearch: is the query serving portion of a production Google web search service. It is a scale-out

workload where each query spawns thousands of leaf processing nodes. The SLO for every single

leaf node is tens of milliseconds for the 99%-ile latency. This workload has high DRAM memory

footprint and moderate bandwidth requirements. It is mostly computational intensive and does

not consume network bandwidth.

ml cluster: is a standalone service performing real-time text clustering using machine learning.

The SLO is tens of milliseconds for the 95%-ile latency, and it is mostly memory bandwidth intensive

with medium CPU and low bandwidth requirements.

memkeyval: is an in memory key-value store similar to memcached [29], but with really strict

SLOs in terms of few hundreds of microseconds for the 99%-ile latency. Unlike the other two

workloads, memkeyval is network bandwidth limited and CPU intensive while the DRAM usage is

limited.

For the evaluation, these 3 LC workloads were running on a single node, along with resource

greedy BE tasks. Figure 2.2 presents the impact of the interference of the BE task on the tail

latency of the LC workloads. Each row depicts the tail latency at a certain load. The interference

is acceptable only if the tail latency is below 100% of the target SLO. By observing the rows in

all three systems, we immediately notice that the current OS isolation mechanisms are inadequate

for colocated tasks (LC and BE). Even at low load, BE tasks create su�cient pressure on the

shared resources to lead to SLO violations. There are di↵erences depending on the LC sensitivity

on shared resources. For example, memkeyval is sensitive to network usage while the other two are

not a↵ected. Websearch is a↵ected by cache interference but not the other two. It is also interesting

that the impact of interference changes depending on the load of the workload.

19

Background

Figure 2.2.: Impact of interference on shared resources on 3 di↵erent workloads.
Each row is an antagonist and each column is a load point for the workload. The

latency values are normalised to the SLO latency [52].

2.3.2. Isolation

The observations from Figure 2.2 clearly state that the default OS scheduler is inadequate, and

motivate the need for better resource isolation mechanisms, especially for LC applications. This

section describes the major sources of interference and summarises the available isolation mecha-

nisms.

Resource Interference
Proneness

SW Isolation HW Isolation

CPU 3 cgroups, cpuset [58] 7
Cache (LLC) 3 Q-Clouds [63] Cache Partitioning [71]
Memory (DRAM) 3 Fair queuing [64], QoS contr. [38] 7
Network 3 DC-TCP [4] DC frabric topologies [2]

Table 2.1.: Major resources prone to interference in a datacenter environment
and available SW and HW isolation mechanisms.

CPU

The primary shared resource in a server is CPU cores on one or more sockets. We can statically

partition cores between the LC and BE tasks using software mechanisms such as cgroups and

cpuset [58]. This is though ine�cient, because when user-centric web services face a load spike, they

need all available cores to meet throughput demands to avoid latency SLO violations. Similarly, we

can not simply assign high priority to LC tasks and rely on OS-level scheduling of cores between

tasks as experimentally demonstrated in Figure 2.2. Common OS scheduling algorithms such as

Linux’s completely fair scheduler (CFS) reported having vulnerabilities that lead to frequent SLO

violations when LC tasks are colocated with BE tasks [49]. Real-time scheduling algorithms like

SCHED FIFO are not work-preserving and result in low utilisation. It is clear that we need a way

to assign e�ciently and dynamically cores to LC tasks based on demand.

20

Bridging the Gap between Serving and Analytics in Scalable Web Applications

Cache

Several studies have shown that uncontrolled interference on the shared cache (LLC) can be

harmful to colocated tasks [24, 31, 74]. To address this issue, Intel has recently introduced LLC

cache partitioning in server chips enabling way-partitioning of highly-associativity. Cores are as-

signed to one cache subset and can only allocate cache lines in that subset. They are however

allowed to hit any part of the LLC. Even when colocation is between throughput tasks (BE), it is

best to dynamically manage cache partitioning using either hardware such as Utility-Based Cache

Partitioning [71] or software techniques such as Q-Clouds [63]. In the presence of LC workloads,

dynamic management is more critical as interference translates to large latency spikes [49] that

could hurt the service response time and, as a result, the revenue [42].

Memory

Most of the latency critical (LC) services operate on huge datasets that do fit in caches (LLC).

Therefore, they a↵ect DRAM as they consume more bandwidth at high loads, and they are sensitive

to DRAM bandwidth interference. Despite numerous studies being published in memory bandwidth

isolation [64, 38], there are no hardware isolation mechanisms in commercially available chips. In

multi-socket servers on can isolate workloads across NUMA channels but this approach constrains

DRAM capacity allocation and could cause interleaving. The lack as mentioned earlier of hardware

support for memory bandwidth isolation complicates and constrains the e�ciency of any system

that dynamically manages workload colocation.

Network

Private or public datacenters contain applications that scale-out and generate network tra�c.

Many datacenters use rich topologies with su�cient bisection bandwidth to avoid routing congestion

in the fabric [2]. There is also a number of networking protocols that prioritize short messages for

LC tasks over large messages for BE tasks [4]. Within a server, interference can occur both in

the incoming and the outgoing direction of the network link. If a BE task causes incoming tra�c

interference, we can throttle its core allocation until networking flow control mechanisms trigger.

In the outgoing direction, we can use tra�c control mechanisms in operating systems like Linux

to provide bandwidth guarantees to LC tasks and to prioritize their messages ahead of those from

BE tasks.

Containers

Instead of isolating a single resource at a time using one of the mechanisms above, Linux contain-

ers provide a unified solution. Linux Containers (LXC) is an operating-system-level virtualization

environment for running multiple isolated systems containers on a single control host [1]. The

Linux kernel provides the cgroups [58] functionality allowing limitation and prioritization of re-

sources such as CPU, memory and network, without the performance and resource penalty of a

virtual machine. Namespace isolation functionality allows complete isolation of an applications’

view of the operating environment, including process trees, networking, user IDs and mounted file

systems. LXC combines kernel’s cgroups and support for isolated namespaces to provide an iso-

lated environment for applications. Other alternatives like Docker containers [59] which started as

a wrapper of LXC, now provide similar isolation mechanisms using di↵erent tools. However, as we

experimentally demonstrate in Chapter 4, these solutions lack distributed design, and they su↵er

from slow startup times making them inadequate for dynamic resource management.

Application Level

Other approaches towards e�cient resource management and isolation include application-level

21

Background

techniques such as IBM’s multitenant virtual machine (VM) [19] and Oracle’s Barcelona project [18].

The goals of these projects are identical, consolidate applications in the same Java Virtual Machine

(JVM) and benefit from sharing common resources such as caches, and heap memory. Sharing the

JVM saves both memory and processor time. When applications share the same VM, it is easier to

apply SLOs and resource isolation mechanisms defining how many resources each tenant is going

to use. Figures 2.3 and 2.4 depict the di↵erences in the deployment between a standard dedicated

VM and a multitenant VM. The multitenant feature is promising to enable deployments gain the

advantages of sharing the JVM while maintaining better isolation. For unknown reasons, though,

the research and development of both these projects [18, 19] is paused.

Figure 2.3.: A standard java invocation
creates a dedicated (non-shared) JVM in

each process [19].

Figure 2.4.: Multitenant JVM uses a
lightweight ’proxy’ JVM in each java
invocation. The ’proxy’ knows how to

communicate with a shared JVM daemon
called javad [19].

In more detail, the main benefit of using a multitenant JVM is that deployments avoid the

memory consumption that is typically associated with multiple identical mechanisms of standard

JVMs. The main overhead is introduced by the Java heap, consuming hundreds of megabytes

of memory. Heap objects cannot be shared between JVMs, even when the objects are identical.

Furthermore, JVMs tend to use all of the heap that’s allocated to them even if they need the peak

amount for a short period. Another cause is the just-in-time (JIT) compiler that consumes tens of

megabytes of memory. The JIT generated code is private, consumes memory and also significant

processor cycles, stealing time from other running applications. Internal artefacts for classes, such

as String and Hashtable, which exist for all applications, also consume memory. One instance of

each of these artefacts exists for each JVM. Each JVM has a GC helper thread per core by default

and also multiple compilation threads. Compilation or GC activity can occur simultaneously in

one or more of the JVMs, which can hurt the performance as the JVMs will compete for limited

processor time.

In-memory Web Objects (IWOs) share some concepts with multitenant VMs as both target

fine-grained application resource management written in the same programming language, in both

cases Java. They are di↵erent though in the sense that IWOs are targeting a specific class of

web applications unifying serving and analytics. We believe that the main reason projects like

multitenant JVM [19] did not proceed is that they tried to support a broad range of applications

with di↵erent needs and challenges. IWOs also have a distributed character that was not intended

in any of the multitenant implementations. Furthermore, IWOs do not make use of any static

policy described by the isolation mechanisms above that would be either too conservative or overly

22

Bridging the Gap between Serving and Analytics in Scalable Web Applications

Workload % Long Jobs % Task-Seconds
Google 2011 10.00% 83.65%
Cloudera-b 2011 7.67% 99.65%
Cloudera-c 2011 5.02% 92.79%
Cloudera-d 2011 4.12% 89.72%
Facebook 2010 2.01% 99.79%
Yahoo 2011 9.41% 98.31%

Table 2.2.: Long jobs in heterogeneous workloads form a small fraction of the total
number of jobs, but use a large amount of resources. [22]

optimistic ending up either wasting resources or leading to SLO violations.

2.3.3. Management

The popularity of modern web applications and the strict decoupling of latency critical (LC) tasks

from the best e↵ort (BE) analytics tasks is also a↵ecting the workload heterogeneity in current

datacenters [73]. Short BE analytics tasks usually dominate typical workloads. Long running LC

jobs are considerably fewer but dominate in terms of resource usage. Previous work [22], analysed

the degree of the aforementioned heterogeneity in real workloads, from publicly available Google

traces [83, 73]. Table 2.2 summarises the jobs ordered by average task duration. The top 10% jobs

account for 83.65% of the task-seconds. Moreover, they are responsible for 28% of the total number

of tasks and their average task duration is 7.34 times larger than the average task duration of the

remaining 90% of jobs.

Running highly utilized datacenters introduces several orthogonal challenges beyond a single

server and can be considered a sophisticated cluster management task. The problem consists of

scheduling jobs to servers in a scalable fashion such that all resources in the cluster are e�ciently

used and also taking into account strict SLOs of long running tasks and interference issues. Some of

these issues (interference and SLOs) along with the workload diversity is addressed by a variety of

modern frameworks such as YARN [80], Mesos [35], and Omega [75] described in the next Section.

2.4. Cluster Resource Scheduling

Resource scheduling frameworks like Mesos [35] and YARN [80], expose cluster resources via a well-

defined set of APIs. This enables concurrent sharing between applications with a variety of di↵ering

characteristics, ranging from BE batch jobs to LC long running web services. These frameworks,

while di↵ering on the exact solution monolithic, two level (explained in more detail in Section 2.4.5)

or shared-state, are built around the same notion of centralized coordination to schedule cluster

resources and they are considered centralized scheduler solutions.

2.4.1. Centralised

In these centralised solutions, individual per-job or per-application framework managers request

resources from the centralized scheduler via the resource management APIs. Then they coordinate

application execution by launching tasks within such resources. Apparently, these centralized de-

signs simplify cluster management in that it is a single place where scheduling invariants such as ca-

pacity and fairness) are specified and enforced. Furthermore, the central scheduler has cluster-wide

23

Background

visibility and can optimize task placement along multiple dimensions like locality [86], packing [32],

and more. However, the centralized scheduler is, by design, in the critical path of all allocation

decisions. This poses scalability and latency concerns. Centralized designs rely on heartbeats that

are used for both liveness and for triggering allocation decisions. As the cluster size scales, to

minimize heartbeat processing overheads, operators are forced to lower the heartbeat rate. In turn,

this increases the schedulers allocation latency. This compromise becomes problematic if typical

tasks are short as described in the Sparrow [68] paper.

2.4.2. Distributed

Fully distributed scheduling is the leading alternative to obtaining high scheduling throughput. A

practical system leveraging this design is Apollo [11]. Apollo allows each running job to perform

independent scheduling choices and to queue its tasks directly at worker nodes. Unfortunately,

this approach relies on a uniform application type workload, as all job managers need to run the

same scheduling algorithm. In this context, allowing arbitrary applications while preventing SLO

abuses and strictly enforcing capacity and fairness guarantees is non-trivial. Furthermore, due to

lack of global view of the cluster state, distributed schedulers make local scheduling decisions that

are often not globally optimal. Other approaches try to compensate these non-optimal decisions

using global reservations and work stealing [22].

2.4.3. Executor Model

To amortize the high scheduling cost of centralized approaches, the executor model has been pro-

posed [57, 43, 15]. This hierarchical approach focuses in reusing containers assigned by the central

scheduler to an application framework that multiplexes them across di↵erent tasks. Reusing con-

tainers, though, assumes that submitted tasks have similar characteristics and can fit in existing

containers. Moreover, since the same system-level process is shared across tasks, the executor model

has limited applicability within a single application type.

2.4.4. Hybrid

More recently some hybrid schedulers were proposed such as Mercury [41], and Hawk [22]. In

these approaches long LC jobs are scheduled using a centralized scheduler while short BE ones are

scheduled in a fully distributed way. For example in Hawk [22], a small portion of the cluster is

reserved for the use of short jobs. To compensate for the occasional poor decisions made by the

distributed scheduler, the authors propose a randomized work-stealing algorithm.

2.4.5. Two Level

In this section, we further explain Apache Mesos [35], a distributed scheduler, also used for our

case-study of Section 5.2. Mesos is a popular open source project mainly due to the out-of-the-

box compatibility with a Spark [88], a data parallel processing framework. A key design point

that allows Mesos to scale is its use of a two-level scheduler architecture. By delegating the actual

scheduling of tasks to frameworks, the master can be very light-weight and easier to scale as the size

of the cluster grows. This is because the master does not need to know the scheduling intricacies of

every type of application that it supports. Also, since the master does not handle the scheduling of

24

Bridging the Gap between Serving and Analytics in Scalable Web Applications

every task, it does not become a performance bottleneck which is the case when using a monolithic

scheduler to schedule every task or VM.

Figure 2.5.: Mesos architecture including the main components [35]

Figure 2.5 depicts the main components of Mesos. Mesos consists of a master daemon that man-

ages slave daemons running on each cluster node, and Mesos applications also termed frameworks,

that run tasks on these slaves. The master enables fine-grained resource sharing, such as CPU and

memory, across applications by sending them resource o↵ers. Each resource o↵er contains a list of

demands. The master decides how many resources to o↵er to each application framework according

to a given organizational policy, such as fair sharing, or strict priority. To support a diverse set

of policies, the master employs a modular architecture that makes it easy to add new allocation

modules via a plugin mechanism.

An application framework running on top of Mesos consists of two components. The first one

is a scheduler that registers with the master to be o↵ered resources, and the other one is an

executor process that is launched on slave nodes to run the frameworks tasks [35]. While the

master determines how many resources are o↵ered to each framework, the frameworks’ schedulers

select which of the o↵ered resources to accept. When a framework accepts o↵ered resources, it

then sends to Mesos master a description of the tasks to be executed. In turn, Mesos launches

the tasks on the corresponding slaves and enforces resource isolation using existing techniques like

cgroups [58] and containters [1].

2.5. The Big Data ecosystem

E�cient resource management gained increasing popularity with the explosion of di↵erent data

parallel processing frameworks. Processing frameworks greedily consume cluster resources, with

the goal of simplifying cluster programming and providing data analytics. The ability to perform

25

Background

large-scale data analytics over huge data sets has proved to be a competitive advantage in a wide

range of industries (retail, telecom, defence, etc.) in the past decade. In response to this trend,

the research community and the IT industry have proposed a number of platforms to facilitate

large-scale data analytics. Such platforms include a new class of databases, often referred to as

NoSQL data stores [21, 6, 30], as well as a new set of the aforementioned frameworks that can

achieve parallel data processing [20, 36, 88].

Storing huge amount of data can be challenging, but it is not the biggest issue anymore. Com-

panies already store a significant amount of information on a daily basis. For example, Facebook

was able to store data from its user on-line activity directly to its backend in 2005 [82]. LinkedIn

more recently developed Kafka [46], a scalable publish/subscribe system based on an optimised

distributed write ahead log (WAL), to store the user feed of millions of users e�ciently. In the data

analytics part, MapReduce [20] that was first developed at Google for indexing web pages back in

2004, now is a popular programming model that triggered scientists to rethink how large-scale data

operations should be handled. Hadoop [5], which is the open source implementation of MapRe-

duce, Spark [88], Dryad [36] and Flink [3], are other examples of powerful processing tools that

contributed to the “Big Data” era. These platforms spread data across a number of commodity

servers, and use the processing power of those machines to produce useful results. This scheme

is highly attractive because commodity servers are cheap, and as data grow, one can increase the

performance by adding more servers, a process known as “scaling out”.

Every “Big Data” system, in general, is build to allow storing, processing, analysing and visu-

alising data. In such environment, there is a typical hierarchy starting with the infrastructure,

and selecting the appropriate tools for storing, processing and analysing data. Then there are

specialised analytics tools with the ability to expose trends and give insight within these data.

Finally, there are applications running on top of the processed, analysed data. There is a variety of

di↵erent components implemented with similar goals across the hierarchy, some of which depicted

in Figure 2.6, forming the so-called “Big Data ecosystem”.

Infrastructure

Infrastructural technologies are the core of the ecosystem. They process, store and also have the

ability to analyse data. The rise of unstructured data created the need for storing data beyond rows

and tables. As a result new infrastructural technologies emerged, capable of capturing a plethora

of data, and making it possible to run applications on systems with thousands of nodes, potentially

involving petabytes of data. Some of the key infrastructural systems include Hadoop [5], Spark [88]

and NoSQL databases like HBase [6] and Cassandra [47].

Analytics

Although infrastructural technologies sometimes involve data analysis, there are specific tech-

nologies that are designed specifically with analytical capabilities in mind. Some of the key data

processing systems include scalable batch processing systems like MapReduce [20], Spark [88] and

Naiad [62] while more recently the need for more real-time or near real-time analytics created a

shift for scalable stream processing systems like Apache Storm [77], Flink [3] SEEP [26], Yahoo’s

S4 [65] and others. These systems are key to achieve scalable, low latency processing and they are

further explained in Section 2.7.

Applications

Applications on top of these systems lie in the broad area of security, e-commerce, trading,

health and more. Popular examples include modern social networking platforms like Facebook [82],

26

Bridging the Gap between Serving and Analytics in Scalable Web Applications

and digital music services like Spotify [90], o↵ering personalised services and insight to the user

behaviour. These web services attract millions of users across the world creating the need for

increasing scalability. In order to improve their service, these platforms implement a variety of

machine learning algorithms used to train di↵erent models over large datasets. They also need

e�cient, fast and timely data processing, as close to the user activity as possible. The scalability and

large, real-time data processing demands well define the profile of data intensive web applications

IWOs model is targeting.

Mesos
(Cluster mgmt)

HDFS
(Distributed Storage)

Data Storage

Resource Management

Zookeeper
(Distributed Directory)

Data Management

Cassandra
(column oriented k-v store)

HBase
(key-value store)

YARN
(Cluster resource mgmt)

SEEP
(dataflow)

Spark
(in-memory)

Hive
(sql)

Pig
(dataflow)

Naiad
(dataflow)

Storm
(stream)

Kafka
(pub-sub)

Data Processing

MapReduce HaLoop

Figure 2.6.: Big Data ecosystem containing systems for data storing, processing and
management.

2.6. Data-Parallel processing Frameworks

The “Big Data” ecosystem is tightly coupled with the analytics part which is responsible for pro-

ducing valuable insight from huge unstructured and ubiquitous datasets. Data parallel frameworks

27

Background

can scale computation to a large number of machines but require developers to adopt a specific

functional, declarative or dataflow programming model. While the first generation of data parallel

frameworks like MapReduce [20] followed a more restricted functional programming model, latest

implementations like Spark [88] and Flink [3] expose a more expressive and complex programming

model in order to implement a richer set of high level functions.

2.7. Dataflow Model

Depending on the analytics algorithm, the latency requirements and the input data, some of these

parallel frameworks might be more suitable than others. More precisely, for machine learning algo-

rithms like k-means, logistic regression and recommendation systems it is mandatory to maintain

large state when need to compute with low latency [27]. A suitable, high-level abstraction for these

algorithms could be an executable distributed dataflow representation. Depending on the nature

of the algorithm, the dataflow representation can be either stateful or stateless. In every dataflow,

though, as in every data stream system, there is a stream of data elements flowing between the

source and the operators, ending up to a sink as described below.

Data Stream. A Data Stream is a continuous partitioned and partially ordered stream of data

elements, which can be potentially infinite. Each data element of the stream follows a predefined

schema [8].

Data Element. A Data Element is the smallest unit of data which can be processed by a data

streaming application, as well as the smallest unit that can be sent over the network. A Data

Element can be any object of a given expected schema.

Data Stream Source. A source that produces a possibly infinite amount of data elements,

which can not be placed into the memory, thus making batch processing infeasible.

Data Stream Sink. A Data Stream Sink is an operator representing the end of a stream.

Data Stream Sinks have only an input data stream and no output data stream. In MapReduce

programming model, an operator writing to a file or database can be considered as a Sink operator.

Data Stream Operator. A Data Stream Operator is a function that applies a user-defined

transformation in the incoming stream of data elements and emits the transformed data to the

outgoing streams.

2.7.1. Stateless

Stateless dataflows, fist made popular by MapReduce [20]. They define a functional dataflow graph

in which vertices are stateless data-parallel tasks. There is no distinction between state and data. In

Spark [88], dataflows are represented as RDDs, which are immutable. The immutability simplifies

the failure recovery but requires a new RDD for every new state update [87]. This is extremely

ine�cient for online algorithms like collaborative filtering (CF) where only a part of a matrix is

updated every time.

In the stateless model, data is also unified with the state, so a system cannot treat them di↵er-

ently. For example, they cannot use custom index data structures for state access or cache only

state in memory. Shark [84], which supports caching needs hints for which explicit dataflows to

cache. Part of this problem was solved with incremental dataflows which is a stateful scenario as

explained below.

28

Bridging the Gap between Serving and Analytics in Scalable Web Applications

2.7.2. Stateful

Stateful dataflow models that represent state explicitly include systems like SEEP [26] and Na-

iad [62]. These systems permit tasks to gain access to in-memory data structures but have to deal

with challenges like large state management. One assumption usually made is that state is often

small compared to the data. In the case of large state though requiring distributed processing

through partitioning or replication they do not provide abstractions for that.

Incremental dataflows are also fundamentally stateful since they maintain results from previous

computations. They avoid rerunning entire jobs after updates occur to the input data, but they

cannot avoid caching all data since they cannot infer which data will be reused in the future. Sys-

tems like Incoop [10] and Nectar [33] use this caching technique and systems like CBP automatically

transform batch jobs for incremental computation [53]. Piccolo’s [70] runtime supports distributed

state as it provides a key/value abstraction, but it is not compatible with the dataflow model.

Table 2.3 classifies existing data-parallel processing models according to their programming

model. The table also includes features that a model should support to enable the translation

of a modern machine learning algorithm from an imperative programming language like Java, as

described by Fernandez et al [27]. The required features of a dataflow model to support the algo-

rithms with large size of mutable state like online recommendations or machine learning algorithms

include:

• large state size (in the order of GBs)

• state fine-grained updates

• process data in low latency

• iteration support

• fast failure recovery

State Handling Dataflow

Computational
Model

Systems
Program.
Model

Large
state size

Fine-grained
updates

Execution
Low
Latency

Iteration
Failure
Recovery

Stateless
dataflow

Pig [67] functional n/a 7 scheduled 7 7 recompute
MapReduce [20] map/reduce n/a 7 scheduled 7 7 recompute
DryadLINQ [85] functional n/a 7 scheduled 7 3 recompute

Spark[88] functional n/a 7 hybrid 7 3 recompute
CIEL[61] imperative n/a 7 scheduled 7 3 recompute

HaLoop[12] map/reduce 3 7 scheduled 7 3 recompute

Incremental
dataflow

Incoop [10] map/reduce 3 7 scheduled 7 7 recompute
Nectar [33] functional 3 7 scheduled 7 7 recompute
CBP [53] dataflow 3 3 scheduled 7 7 recompute

Batched
dataflow

Comet [34] functional n/a 7 scheduled 3 7 recompute
D-Streams [89] functional n/a 7 hybrid 3 3 recompute

Naiad [62] dataflow 7 3 hybrid 3 3 sync. global c/p

Continuous
dataflow

Storm [77] dataflow n/a 7 pipelined 3 7 recompute
SEEP [26] dataflow 7 3 pipelined 3 7 sync. local c/p

Parallel
in-memory

Piccolo [70] imperative 3 3 n/a 3 3 async. global c/p

Stateful
dataflow

SDG [27] imperative 3 3 pipelined 3 3 async. local c/p

Table 2.3.: Design space of data-parallel processing frameworks [27]

While most of the current data-parallel frameworks do not handle large state e�ciently it is

clear that in order to enable IWOs we need stateful tasks. These tasks should be able to expose

29

Background

state

(a) SE (b) Partitioned

merge

(c) Partial

Figure 2.7.: Types of distributed state in SDGs [27]

and manipulate their state in an e�cient way. In stateless frameworks, computation is defined

through functional tasks. Any modification to state must be implemented as the creation of a

new immutable data which is prone and ine�cient. While most recent frameworks like Naiad [62]

and SEEP [26] report the need for per-task state, they lack abstractions for distributed state.

IWOs are building on top of SEEP [26], a data-parallel stream processing system to provide extra

abstractions.

IWOs state abstractions are identical to then ones exposed by SGDs [27], but they are imple-

mented as part of a web application framework. In more detail as depicted in Figure 2.7, a state

element can be distributed in di↵erent ways. A partitioned state element splits its internal data

structure into disjoint partitions. Access to that kind of state instances occurs in parallel. If this

is not possible, a partial state element duplicates its data structure, creating multiple copies that

are updated independently. When a task accesses a partial state, there are two possible types

of accesses based on the semantics of the algorithm: a task instance may access the local state

instance on the same node or the global state by accessing all of the partial state instances, which

introduces a synchronisation point.

2.7.3. Dataflow scheduling

Tasks in a dataflow graph can be either scheduled for execution or materialised in a pipeline. Each

of these methods has di↵erent performance implications. Thus, some frameworks follow a more

hybrid approach choosing one of the methods mentioned depending on the task placement (local

or remote). For example tasks on the same node could be pipelined and tasks between nodes could

be scheduled for execution.

Since tasks in stateless dataflows are scheduled to process coarse-grained batched data, such

systems can exploit the full parallelism of a cluster but they cannot achieve low processing latency.

For lower latency, batched dataflows divide data into small batches for processing, also known as

microbatches, and use e�cient, yet complex task schedulers to resolve data dependencies. There

is a fundamental trade-o↵ between the lower latency of small batches and the higher throughput

of larger ones. Typically developers , that are bounded by that trade-o↵ [89], pick the framework

that matches each application needs.

To improve performance, continuous dataflows do not materialise intermediate data between

nodes and adopt a streaming model with a pipeline of tasks. Thus achieving lower latency without

the extra overhead of scheduling. In iterative computation, a way to improve performance is caching

the results of the former iteration as input to the latter, as implemented by early systems such as

HaLoop [12]. More recent frameworks [25, 36, 61, 87] generalise this concept by permitting iteration

over arbitrary parts of loops. Similarly, IWOs inherit from stateful dataflow graphs (SDGs) the

30

Bridging the Gap between Serving and Analytics in Scalable Web Applications

support for iteration explicitly by permitting cycles in the dataflow graph but use a scheduler

instead of a pipeline. A key point here is because the scheduler is running in a di↵erent thread

within the same JVM as the dataflow it introduces minimum impact while managing to achieve

low latency and ensuring the strict SLOs of the LC dataflow tasks.

To sum up, the problem of high cluster utilisation and management and resource isolation is not

new. Though, the enormous growth of cluster and cloud computing and the increased popularity

of the modern latency critical web applications that combine big data analytics made it more

important than ever. We propose In-memory Web Objects (IWOs), a unified model to developers

for writing web applications that have the ability to serve data while using big data analytics. IWOs

expose a common interface without a↵ecting the programming model and developers could benefit

from writing domain logic using already existing popular web frameworks. IWOs are extending

stateful dataflow graphs that are expressive enough to model scalable web applications today. The

state is exposed through a low latency, generic interface, in order to support both serving requests

and data-analytics. IWOs further improve cluster resource utilisation and isolation by fine-grained

dataflow scheduling. Scheduling resources e�ciently between BE and LC tasks in a real-time and

coordinated fashion is the key to maintaining the strict SLOs of serving requests in web applications

while keeping the cluster resource utilisation high.

31

3. System Design

Cluster A

Load Balancer Web Server

Presentation

Web Application

Data Model

IWOs API

HTTP Request

Stateful Stream Processing (SDGs)

serving dataflow

o1 o2src snk

IWO

o2

o3

o4 snk

analytics dataflow

o1src

HTTP Response

state

Figure 3.1.: Web application architecture using In-memory Web Objects (IWOs).

In-memory Web Objects model is targeting scalable web applications that provide low latency

services to the clients and also support data-intensive analytics tasks. IWOs propose a unified

model to developers for writing web applications that have the ability to combine both, in a finer

and more resource e�cient way, protecting the strict SLOs of request serving. In Section 3.1 we

describe the IWOs model in more detail extending stateful dataflow graphs, while in Section 3.2

we show how we integrate the analytics and serving components as part of a dataflow. Finally,

in Section 3.3 we describe the IWOs scheduling approach for e�cient resource management and

isolation.

The IWOs model is depicted in figure 3.1 as part of a web application architecture. Similar to a

typical web application, client requests follow the load balancer and then the web server path until

they reach the application specific logic. In the IWOs design, the web application is using the IWOs

API to send the requests directly to the stateful stream processing engine in a pipelined fashion

achieving low latency. The stateful stream processing framework implements the business logic of

the application using the dataflow abstraction. In more detail, the online and o✏ine logic of the web

application is implemented as separate dataflows. The online request serving part is implemented

by the serving dataflow graph which is responsible for processing the client requests and sending

HTTP responses back with the minimum latency. The o✏ine analytics task is implemented by

the analytics dataflow graph which is implementing data-intensive algorithms such as collaborative

filtering aiming high throughput. The analytics dataflow can be more complex than the serving,

and its goal is to produce fresh results without a↵ecting the SLO of the serving dataflow as we

will explain later in Section 3.3. To achieve that, the analytics dataflow is computing new results

continuously and updates the IWO, which is a form of state. The key observation here is that

the serving dataflow can access the shared IWO and return responses to the clients without being

a↵ected by the analytics dataflow. Obviously the IWOs state will be as stale as the last analytics

job which is in the order of seconds.

Comparing IWOs with the typical web application architecture, as depicted in Figure 2.1, besides

33

System Design

the clean-slate design, IWOs benefit from the fact that both serving and analytics tasks are handled

by a scalable stateful stream processing engine [26] and state can represent anything. Instead of

running o✏ine batch processing jobs in an isolated cluster, and store data asynchronously back to

a data store we exploit the flexibility of IWOs model to handle the client requests in a pipelined

fashion while generating fresh analytics data with a lower priority. The IWOs design is simpler,

more flexible, and can handle the cluster resources in a more e�cient and fine-grained way.

3.1. In-memory Web Objects Model

In-memory Web Objects use stateful dataflow graphs [28] (SDGs), which is a fault-tolerant data-

parallel processing model, explicitly distinguishing data from state, built on top of SEEP [26]. It

is a cyclic graph of pipelined data-parallel tasks, which execute on di↵erent nodes or threads and

access local in-memory state. SDGs include abstractions for maintaining large state e�ciently in a

distributed fashion. When tasks can process state entirely in parallel, the state is partitioned across

nodes. When this is not possible, tasks are given local instances of partial state for independent

computation as explained in Section 2.7.2. Computation can include synchronisation points to

access all partial state instances, and instances can be reconciled according to application semantics.

Data flows between tasks in an SDG and cycles specify iterative computation. When tasks are

pipelined, we can achieve lower latency, less intermediate data during failure recovery and simplified

scheduling by not having to compute data dependencies. Tasks can be also replicated at runtime

to overcome processing bottlenecks and stragglers, mostly for data-intensive workloads.

3.2. Unifying Serving and Analytics using IWOs

IWOs are also extending stateful dataflow graphs to provide distributed state abstractions that

can now be accessible from the web application through IWO API. The goal of IWOs API is to

simplify the translation of web application with analytics tasks to a number of dataflow repre-

sentations (serving dataflow and analytics dataflow) that perform in parallel, with low latency.

A web application can directly manipulate persistent dataflow state, which we extend to become

In-memory Web Objects (IWOs). IWOs are computed in data-parallel fashion, either on-demand

when a web request is handled, or asynchronously when representing previously computed, stored

IWO data. They are implemented as in-memory state in a stateful distributed dataflow model [26].

Since IWOs are maintained in-memory but manipulated in a data-parallel fashion, they can satisfy

the requirements of both o✏ine and online data processing in web applications.

3.3. Towards e�cient Dataflow Scheduling with IWOs

By default, the operators of an SDG are not scheduled for execution but the entire SDG is materi-

alised, i.e. each task is assigned to a number of physical nodes. For IWOs though, it is important

to prioritise the serving dataflow and protect its strict SLOs, while maximizing overall utilization of

the cluster. High utilisation can be achieved by task colocation and as explained in Section 2.3.1,

it can lead to serious interference. To avoid that, dataflow tasks in IWOs are using a custom

scheduler.

In more detail, IWOs rely on a centralised scheduler, depicted in Figure 3.2, to allocate CPU

34

Bridging the Gap between Serving and Analytics in Scalable Web Applications

Stateful Stream Processing (SDGs)

serving dataflow

o1 o2src snk

IWO

o2

o3

o4 snk

analytics dataflow

o1src

HTTP Response

state

Scheduler

State

SLO
SLO
SLO
SLO

Queues

Worker
Threads

Cluster A

Figure 3.2.: In-memory Web Objects (IWOs) scheduler for serving and analytics
dataflows.

time for both the LC and BE tasks. The allocation is achieved by ‘feeding’ a number of queues

with di↵erent individual priorities. For example, if we have two cores we could set up two queues,

and each queue would then have 50% of the total capacity for processing tasks. Then we define

one queue for the serving dataflow and the other one for the analytics dataflow. A number of

worker threads handle reading and running the next task from these queues. Usually, the number

of threads responsible for the dataflow tasks is proportional to the number of physical cores for

better isolation, but it can vary depending on the number of multiplexing we want to achieve.

IWOs scheduler, which is running in a separate thread, is also supporting the notion of LC

applications like serving that can ask for multiple-slots in bursty periods. This is a very useful

feature for latency critical applications in order to avoid SLO violations. The scheduler is aware of

the application SLO goals and by monitoring the runtime performance of the dataflows sets future

goals and takes appropriate action with low latency impact since it resides in the same JVM. When

SLOs are close to being violated the scheduler is reactively scheduling more LC tasks in all queues

slowing down the analytics tasks e↵ectively increasing the resources the LC dataflow can use. The

resources consumed by the LC tasks are naturally accounted for against the queue capacity. When

the serving part is not highly utilised, the scheduler has mechanisms to rebalance BE and LC tasks

in the queues, increasing the resource e�ciency.

35

4. Resource Isolation

Maximising cluster resource e�ciency is one of the primary goals of IWOs and task colocation

is usually the only way to achieve that in a cluster. In this Chapter, we justify our decision to

implement a custom task scheduler described above instead of using an already existing solution.

LC tasks with their strict SLOs often underutilise resources in the machines they reside, and

launching multiple BE tasks in the same machines is a promising way to improve utilisation. The

main challenge in this approach is resource interference on shared resources. Mechanisms like

cgroups [58] can be used to isolate a particular resource but due to cross-resource interference

solutions like Linux containers [1] that can isolate multiple resources, are more adequate. While

other studies [52] mostly focused on the poor e�ciency of the isolation mechanisms in this section

we focus on the flexibility. In a dynamic environment, isolating resources is important but the

ability to shift them from one service to another in a robust way at runtime is more challenging.

For example, in a web application deployment, when the serving part is idle, the resources could

be shifted to the analytics part to compute fresher results.

4.1. Linux Containers

The first mechanism we evaluate is Linux Containers (LXC), providing a variety of isolation mecha-

nisms for the application running in them. LXC implement kernel abstractions and also provide an

API to restrict the container specific resources. To make the experiment more realistic, we created

a container running a real web application similar to Spotify, further explained in Chapter 5, using

up to 2 cores and 2 Gigabytes of RAM. Every time the container starts, an initialization script

starts the web application which is listening to a preconfigured HTTP port to serve clients. In order

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9

Ti
m

e
in

 s
ec

on
ds

Number of instances

LXC container snapshot time
LXC container clone time

Figure 4.1.: Web application deployment duration using Linux Containers.

37

Resource Isolation

to shift resources using containers, we have to make a copy of the running instance to maintain the

state and start the new one with updated resource scheduling policies. We measure the duration of

the copy process, evaluating both container clone and snapshot techniques. A clone copies the root

filesytem from the original container to the new one. A snapshot uses the backing store’s snapshot

functionality to create a subtle copy-on-write snapshot of the original container. Snapshot clones

require the new container backing store to support snapshotting which in our case was ext4.

In Figure 4.1 we observe that starting a new web container using cloning takes 7.8 seconds while

using snapshotting takes 1.7 seconds. If we want to multiplex instances, the amount of time needed

to make multiple copies using cloning increases linearly, with four copies taking 36 seconds and

eight copies taking 95 seconds. While snapshotting is faster, requiring 11 seconds for four instances

and 22 seconds for eight instances, we are still orders of magnitude away from the SLOs we want

to provide. Usually, web applications provide SLOs in the order or tens of milliseconds [42].

4.2. Mesos Framework

The second mechanism we evaluate is Apache Mesos [35]. Mesos is a two level scheduling framework

with a plethora of extensions like Marathon. Marathon runs alongside Mesos and provides a REST

API for starting, stopping, and scaling applications. The developer provides the application archive

path, resource demands, and the startup command. Then Marathon invokes an executor to launch

the task in a machine in the cluster. The executor in a Linux platform is using cgroups to provide

CPU and memory isolation.

For the evaluation, we implemented a Java REST client. The client makes Marathons REST API

calls for di↵erent instance numbers and measures the time until the application becomes available

by sending an HTTP request to the new application instance. We deploy the same web application

as the experiment above requesting 2 CPU cores and 2 Gigabytes of RAM. Figure 4.2 depicts how

long deployment takes for our web application in red, and how long application launch takes in

green. Since Mesos is not using by default containers, we can not use an initialization script, and

this is the reason why there are two separate bars that could be summed instead. The time spent

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9

Ti
m

e
in

 s
ec

on
ds

Number of instances

Mesos deployment time
Application ramp up time

Figure 4.2.: Web application deployment duration using Apache Mesos.

38

Bridging the Gap between Serving and Analytics in Scalable Web Applications

deploying one instance is 2.8 seconds and 3 seconds for the application initialisation need to be

added to this number. This time increases to 8.9 plus 3.5 seconds for four instances and to 16

seconds plus 6 for eight instances. We make two observations here: First, while the deployment

time increases linearly, the ramp up period is almost stable, and that has to do with the deployment

type of Mesos. Mesos is using a cluster of machines and most of the time is spent transferring the

application archive to these machines. The service instantiation itself is usually stable and, in

fact, is the one in the machine with the slowest deployment time. The second observation is that

the deployment time is much faster than container cloning. This is due to the fact that Mesos is

distributing these tasks in multiple machines compared to one machine in Linux Containers and

is by default using executors and cgroups to achieve application-level isolation that introduces less

overhead. Even with the Mesos executor model, though, we achieve deployment latency in the

order of seconds which is not suitable for dynamic, fine-grained resource management.

39

5. Case Study: Exploiting IWOs in a Music

Web Application

The IWOs implementation uses Stateful Dataflow Graphs [27] and SEEP [26] as a baseline. It

preserves the SDG model abstractions for distributed state and mechanisms for e�cient failure

recovery, state management and scaling. IWOs provide an API that can be used by web frameworks

like Play for Java [78] to manage dataflows using imperative code. Online LC tasks like serving and

o✏ine BE tasks like machine learning algorithms can be implemented as dataflows in Java code

and attached to web application logic exploiting IWOs API.

As a case study, we used Play Framework to implement Play2SDG. Play2SDG is a web applica-

tion implementing business logic similar to Spotify [90], where users login to their accounts, listen

to songs, rate songs and group them into playlists. Then, the service itself handles new songs rec-

ommendations for the users according to other user preferences using algorithms like collaborative

filtering [76]. Play2SDG was implemented in approximately 5k lines of code, mainly written in Java,

Scala and Javascript while the collaborative filtering implementations and the IWOs abstraction

were implemented as a separate pure Java module in approximately 8k lines of code. Section 5.1

describes the internals of Play2SDG implementation using Play MVC model for the web applica-

tion and Apache Cassandra [47] as a storage back-end. Sections 5.1.1, 5.1.2 and 5.1.4 describe the

application implementation in more detail and the modifications we made to the application code

in order to support IWOs. Finally, in Section 5.2 we compare the two di↵erent approaches using

Apache JMeter as load generator [39] and demonstrate the e�ciency of our scheduling approach.

A general overview of Play2SDG web application components and interactions is shown in Fig-

ure 5.1, while an overview of a typical web application’s components without IWOs is depicted in

Figure 5.2.

5.1. Play2SDG Web Application

Play is considered a fully stateless and request-oriented framework. In other words, all HTTP

requests sent by the clients follow the same path. First, an HTTP request is typically received by

a load balancer that forwards the request to the framework. The router component is responsible

for finding the most appropriate route able to accept this request. Router component implements

the mapping between the request path and the application controller actions. After the mapping

succeeds, the corresponding action method is invoked. The action method contains most of the

application code with the business logic. When a complex view needs to be generated, a template

file is rendered. The result of the action method including HTTP response code and the content is

finally written as an HTTP response.

41

Case Study: Exploiting IWOs in a Music Web Application

Front-End (Web)

view(user){
 //Access Dataflow live state
 DataSource ds = DB.getDatasource()
 userRow = db.get(userItem).getRow(user)
 coOcc.multiply(userRow)
}
rate(user, item, rating){
 //Write directly to dataflow state
 DataSource ds = DB.getDatasource()
 ds.updateUserItem(user, item, rating)
 ds.updateCoOc(UserItem)
 return OK;
}

index(user, password){
 if(! User.authenticate(user, pass))
 return "Invalid credentials”
}

Back-End

Play Framework

SDG Distributed Processing System

write datasource

read datasource

Data Store

Cassandra

userItem
CoOccurrence

Transparent State

low latency interface

In-Memory
Web Object

(IWO)

analytics dataflow

serving dataflow

authenticate user

JPA interface

IWO interface

fetch data

Figure 5.1.: Dataflow-based web application implementation using In-memory Web
Objects.

5.1.1. Application Controller

Play2SDG router component is summarised in table 5.1 below. The main functionality we want

to support is similar to a typical web music service. A user should be able to login, logout and

authenticate. Login action for instance is an HTTP GET method, which returns the rendered page

to the user, while authenticate is a POST method pushing the user credentials to the server for

validation. Each user can manage their own playlists meaning they can create, delete and rename

playlists. As is usually the case, they can also add songs in their playlists as well as rate them

based on their experience. The rate action is a POST method, since there is no need to render

a new page for every new rating. Javascript functions are responsible for updating the user page

after the new rating without extra server-side overhead.

Front-End (Web)

4.

5.

7.

8.

Data Transport Layer Back-End

Relational Data

Cassandra

Non Relational Data

userItem

Cooccurrence

Cassandra
Scheduler

Java App

Batch Proccesing
High-Latency
High-Throughput

6.

Mesos/Spark Cluster

index(user, password){
 if(! User.authenticate(user, pass))
 return "Invalid credentials”
}

view(user){
 //Constructing Recommendation
 userRow = userItem.getRow(user)
 coOcc.multiply(userRow)
}

rate(user, item, rating){
 //Pushing new rating in the queue
 Queue.publish(user, item, rating)
}

Play Framework async fetch ratings

synch authenticate

1.

get recommendations

2.

3.

async add new rating

read userItem data

write CoOccurence data

update data

4.
async fetch data

sync

ORM interface

Queue interface

Key-value interface

#

#

Synchronous Task

Asynchronous Task

batch processing for analytics data

Figure 5.2.: Typical web application implementation using Play framework and
Cassandra.

42

Bridging the Gap between Serving and Analytics in Scalable Web Applications

Page Controller Action
GET / controllers.App.index()
GET /login controllers.Login.index()
POST /login controllers.Login.authenticate()
GET /logout controllers.App.logout()
POST /rate/:playlistid/:sid controllers.App.rate(playlistid: UUID, sid: String)
DELETE /playlist/delete/:pid/:sid controllers.App.deletePLSong(pid: UUID, sid :String)
GET /recommend controllers.App.getUserRecommendations()
POST /playlist/:playlistid controllers.PLController.add(playlistid: String)
DELETE /playlist/:playlistid controllers.PLController.delete(playlistid: java.util.UUID)
PUT /playlist/:playlistid controllers.PLController.rename(playlistid: java.util.UUID)

Table 5.1.: Play2SDG route table.

For every successful page request the router component is invoking a controller action, listed in

the right column of table 5.1. Algorithm 1 describes part of the Play2SDG application controller

implementing these actions. The first action that is typically called is the index. The index method

is using the Play authentication API to make sure a user is logged in, subsequently queries the

database back-end to get user playlists and songs and, finally, calls the appropriate view renderer to

return the home page to the user. The view rendering is explained in more detail in Section 5.1.2.

From the rendered home page a user can rate new songs. The rate action method receives playlist

and track IDs as arguments and asynchronously stores them in the database. All the rating data

will be periodically fetched by a batch processing analytics job that is generating useful user data

like song recommendations. The analytics jobs are usually part of a separate cluster to achieve

isolation as we discussed in Section 2.3.2. We implemented our recommendation task using the

Spark [88] data parallel framework. The analytics data are stored in a scalable key/value store and

a user can access them trough the recommendation page. The recommendation page invokes the

getUserRecommendations method, which is fetching the latest results and some job statistics.

Algorithm 2 describes the modifications we made to our application controller in order to support

IWOs. In more detail, the rate method is now pushing the new ratings to an analytics dataflow that

is computing user recommendations, also depicted in Figure 5.6. The dataflow source is reading

the new rate requests and a custom serializer is implemented to ensure that data are encoded and

decoded correctly. The GET recommendations method is invoking the serving dataflow requesting

the latest recommendations for the user who triggered the request. The rest of the controllers

functionality remains the same. The IWOs API was mainly used in parts that are coupled with the

computationally intensive recommendations task. Moreover, we maintain the Cassandra backend

for data storage durability.

5.1.2. View

From the application controller the responses containing the data are handled by the renderers.

The view renderers are responsible for transforming the model into a form suitable for interactions,

typically a user interface. Multiple views can exist for a single model, each serving a di↵erent

purpose. In a web application, the view is usually rendered in a web format like HTML. For

simplicity we implemented the view renderers using Play Scala template engine which is more

expressive and compact than pure HTML code. Algorithm 3 shows a Scala implementation of

Play2SDG user home page. The template parameters are the user object, the number of total

43

Case Study: Exploiting IWOs in a Music Web Application

Algorithm 1: Play2SDG Application Controller implementation without IWOs.
1

2 public class App extends Controller {
3

4 private static EchoNestAPI en;
5

6 @Security.Authenticated(Secured.class)
7 public static Result index() {
8 User.find.byId(request().username())));
9 return ok(views.html.index.render(PlayListController.findExisting(request().username()),

PlayListController.getTracksPage(0), Login.findUser(request().username()),
CassandraController.getCounterValue(”tracks”)));

10 }
11

12 @Security.Authenticated(Secured.class)
13 public static Result getNextPage(String lastcurrentPageTrack){
14 return ok(views.html.index.render(PlayListController.findExisting(request().username()),

PlayListController.getnextTracksPage(lastcurrentPageTrack), Login.findUser(request().
username()), CassandraController.getCounterValue(”tracks”)));

15 }
16

17

18 @Security.Authenticated(Secured.class)
19 public static Result getUserRecommendations(){
20 Recommendation userRec = CassandraController.getUserRecc(request().username());
21 Stats jobStats = CassandraController.getSparkJobStats();
22 return ok(views.html.ratings.cf.render(userRec, jobStats,controllers.CassandraController.

findbyEmail(request().username())));
23 }
24

25 @Security.Authenticated(Secured.class)
26 public static Result rate(UUID playlistid, String track_id){
27 Track found = PlayListController.findByTrackID(track_id);
28 PlayListController.addSong(playlistid, found);
29 return ok(views.html.index.render(PlayListController.findExisting(request().username()),

PlayListController.findAllSongs(), Login.findUser(request().username()),
CassandraController.getCounterValue(”tracks”)));

30 }
31

32 public static Result logout() {
33 session().clear();
34 flash(”success”, ”You’ve been logged out”);
35 return redirect(routes.Login.index());
36 }
37 }

Algorithm 2: Play2SDG Application Controller implementation with IWOs.
1

2 public class App extends Controller {
3

4 @Security.Authenticated(Secured.class)
5 public static Result getUserRecommendations(){
6 Stats jobStats = CassandraController.getSdgJobStats();
7 Recommendation userRec = Dataflow.getDataServingInstance().getRec(request().username());

8 return ok(views.html.ratings.cf.render(userRec, jobStats,controllers.CassandraController.
findbyEmail(request().username())));

9 }
10

11 @Security.Authenticated(Secured.class)
12 public static Result rate(UUID playlistid, String track_id){
13 DataSource ds = Dataflow.getDataSourceInstance();
14 ds.sendData(request());
15 return ok(views.html.index.render(PlayListController.findExisting(request().username()),

PlayListController.findAllSongs(), Login.findUser(request().username()),
CassandraController.getCounterValue(”tracks”)));

16 }
17

18 }

tracks and a list of user-specific playlists and tracks. Template is like a function and the function

parameters are declared at the top of the file. HTML code inside the template defines the object

44

Bridging the Gap between Serving and Analytics in Scalable Web Applications

classes and layout and the ’@’ character represents a dynamic statement that can invoke application

methods, that are accessible through the router table.

Algorithm 3: Web Application home page Front-End using Play framework and Scala.
1 @(ratings: List[PlayList], songs: List[Track], user: User, totalTracks : Integer)
2

3 @main(ratings, user) {
4

5 <header>
6 <hgroup>
7 <h1>Dashboard</h1>
8 <h2>Songs</h2>
9 </hgroup>

10 </header>
11

12 <article class=”tasks”>
13

14 <div class=”folder” data-folder-id=”Songs List”>
15 <header>
16 <h3>Most Recent Tracks List - Total Tracks (@totalTracks) </h3>
17 </header>
18 <ul class=”list”>
19 @songs.map { song =>
20 @views.html.elements.song(song)
21 }
22
23 </div>
24

25 <div>

26 Next Page
27 </div>
28

29 </article>
30

31 }

5.1.3. Data Model

Play2SDG defines some main entities for its data models such as Users, Playlists, Tracks, Ratings,

Recommendations and Statistics. We are exploiting Java application programming (JPA) interface

to persist relational data in the database. Play2SDG is using Apache Cassandra as a data store.

Cassandra is exposing a column-oriented, schema-optional data model explained in Appendix A in

more detail.

Users: In the User column family, each row represents a user as depicted in Figure 5.3. Each user

has a unique email that is the row key and the rest of the columns store information such as first

name, last name, registration date, username and password.

Date

2

3

DateTime

Fname

Lname

email

1 Lname

DateTime

DateTime

Lname

Lname

Fname

Fname

Fname

Static Column FamiliesRow Key

username

userX

userZ

userY

password

Figure 5.3.: Play2SDG User data model.

Tracks: In the Tracks column family each row represents a track, and there is a distinction between

45

Case Study: Exploiting IWOs in a Music Web Application

static columns and dynamic columns. Static track fields are the ones that we know their size while

dynamic are the ones that we don’t. We want our data to be as close to reality as possible, so

we used the million songs dataset [9] which is a collection of tracks from real music providers and

associated with Spotify IDs. The dataset contains 943,347 unique tracks all of which have title

artist and releaseDate. 505,216 of them have at least one tag, and all of them create 8,598,630

track-tag pairs. Cassandra has the notion of dynamic wide rows as depicted in Figure 5.4, which

is a perfect match for non-static track tags.

releaseDate

0axfdsa

0axfdsb

DateTime

TitleZ

name

id

0axfdsg name

DateTime

DateTime

name

Artist

TitleX

Title

TitleY

Static Column FamiliesRow Key

Tag

tag1

tag1

tag2

Tag

…

…

…

Dynamic Column Family

Figure 5.4.: Play2SDG Track data model.

Playlists: Playlists column family is practically a list of Tracks with the only di↵erence that each

row has two identifiers: user-id and playlist-id.

Recommendations: Recommendations column family is similar to the Playlist described above.

The main di↵erence is each recommendation has one row-key which is the user-id.

Statistics: The statistics column family handles storing analytic jobs statistics. Each row repre-

sents a specific job, and the row key is the job name. These jobs are usually reoccurring, so the

statistics are in a form of time series as depicted in Figures 5.5. The dynamic column family feature

is used to cluster the wide, growing rows by their timestamp.

Description

playServ

playCF

Stat Desc.

TitleZ

Map<k,v>

id

sparkCF Map<k,v>

Stat Desc.

Stat Desc.

Map<k,v>

StatsMap

timeX

TimeSt.

timeY

Cluster KeyRow Key Column Family

Description

Stat Desc.

TitleZ

Map<k,v>

Map<k,v>

Stat Desc.

Stat Desc.

Map<k,v>

StatsMap

timeX

TimeSt.

timeY

Cluster Key Column Family

Figure 5.5.: Play2SDG Statistics data model.

5.1.4. Analytics Back-End

To provide user song recommendations for Play2SDG web application we implemented two di↵erent

version of collaborative filtering (CF) algorithm. The first implementation is using Spark as a

typical parallel processing framework and the second one is a dataflow implementation using SEEP

that is part of the IWOs integration with Play framework. Collaborative filtering is a machine

learning algorithm that outputs up-to-date recommendations of items to users based on previous

46

Bridging the Gap between Serving and Analytics in Scalable Web Applications

item ratings.

Spark Collaborative Filtering

For the Spark CF implementation, we used MLlib library that implements a number of machine

learning algorithms. It supports model-based collaborative filtering, in which users and products

are described by a small set of latent factors that can be used to predict missing entries. MLlib

uses the alternating least squares (ALS) algorithm to learn these latent factors, and it is configured

to run 10 iterations. The full algorithm implementation can be found in Appendix 5 and 6.

SDG Collaborative Filtering

For the dataflow implementation of CF we used an algorithm similar to the one described by

Fernandez et al. [28] (more details can be found at Appendix B). Figure 5.6 describes the interac-

tions between the dataflow tasks, state elements and the data streams. The algorithm maintains

state in two data structures. The matrix userItem stores the ratings of items made by users, and

the co-occurrence matrix coOcc records correlations between items that were rated together by

multiple users. The new rating function first adds a new rating to userItem and then incrementally

updates coOcc by increasing the co-occurrence counts for the newly-rated item and existing items

with non-zero ratings. The function rec request takes the rating vector of a user, userRow, and

multiplies it by the cooccurrence matrix to obtain and return a recommendation vector result.

We have to note here that new rating and rec request have di↵erent performance goals. The

former is part of the analytics dataflow in our web application and must achieve high through-

put while the later is part of the serving dataflow and must serve requests in low latency. In

Play2SDG implementation, the analytics dataflow is continuously fetching ratings data from the

Cassandra backend to produce fresh recommendations while the serving dataflow handles client

requests directly from the Play web server.

updateUserItemnew
rating

rec
request

coOcc

rec
result

State
Element

(SE)

dataflow

Task
Element

(TE)
getUserVec

updateCoOcc

user
Item

getRecVec

Figure 5.6.: Stateful dataflow graph for CF algorithm.

5.2. Experimental Results

As a case study, we evaluate Play2SDG in a private cluster consisting of 5 machines running Ubuntu

12.04.5 LTS 64 bit. The machines have 8 core CPUs, 8 GB memory, and a 1TB locally mounted

disk. The Apache Spark version used is 1.1.0, Apache Mesos is 0.22.1, Nginx is 1.1.19 and the

Cassandra database is 2.0.1.

Our load generator is Apache JMeter 2.13, which can be configured to produce a specific user

access pattern in web applications and measure performance [39]. For our experiments the specific

functional behaviour pattern is: (i) user login, (ii) navigate through the home page displaying the

47

Case Study: Exploiting IWOs in a Music Web Application

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300

Av
g

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

g
(m

s) Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

 0
 20
 40
 60
 80

 100
CP

U
Ut

il (
%

)

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 99th percentile
Colocated 99th percentile

IWOs 99th percentile

Figure 5.7.: Average response time and throughput using Play-Spark Isolated,
Play-Spark Colocated and In-Memory-Web-Objects.

top 100 tracks, (iii) visit the page with the latest recommendations and (iv) user logout. In all our

experiments, JMeter is running in a dedicated machine inside the local network.

We deploy Play2SDG with Cassandra and Spark using Mesos cluster manager. Mesos is running

1 master instance and 3 slave instances, managing 4 nodes in total. Nginx proxy is configured as

proxy to redirect requests to Play framework e�ciently. Play framework, Cassandra and Spark are

configured to use up to 2 cores and 2GB of memory each through the Mesos API. Spark is set up

in cluster mode. In cluster mode, the application is coordinated by the SparkContext object (also

called driver program) depicted in Figure 5.11. SparkContext is configured to use Mesos cluster

manager that handles allocating resources for the executors on nodes in the cluster. Executors

receive the recommendation application packaged as a JAR file and coordinated by the driver and

run tasks in a best e↵ort (BE) fashion. The best e↵ort tasks consume as many resources as they

can on the available hosts and can usually cause interference when colocated with latency critical

tasks.

We first quantify the performance impact of colocating Spark executors on a single machine

running Play2SDG web application and its proxy with and without IWOs. Figure 5.7 depicts the

average throughput and the average response time in milliseconds of the typical JMeter workload

described above, over an increasing number of clients. We compare the Play application when iso-

lated, meaning that no Spark tasks are allowed running on the same machine, with Play application

when colocated with Spark tasks. In both cases, the resources given by Mesos that were dedicated

to Play application remained the same. We observe that for a number of clients smaller than 120

the performance of both isolated and colocated applications is identical. When the number of client

increases above that point, resources are closer to saturation, and the colocated application perfor-

mance drops dramatically. The main reason is resource interference, since the isolation mechanisms

provided by the OS and Mesos are inadequate. As a result, for 300 clients the isolated application

can achieve 79% better throughput (1300 TPS over 730 TPS) and 82% lower response time (227ms

over 412ms) compared to the colocated one.

We next evaluate the performance of Play2SDG web application using IWOs with pipelined

48

Bridging the Gap between Serving and Analytics in Scalable Web Applications

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)

Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 99th percentile
Colocated 99th percentile

IWOs 99th percentile

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)

Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 90th percentile
Colocated 90th percentile

IWOs 90th percentile

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)
Isolated Play component with Cassandra

Collocated Spark-Play components with Cassandra
IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 75th percentile
Colocated 75th percentile

IWOs 75th percentile

Figure 5.8.: Response time percentiles using Play-Spark Isolated, Play-Spark
Colocated and In-Memory-Web-Objects.

tasks. To make the results comparable we configure the application JVM to use the same resources

as above and the dataflow to reside in a di↵erent JVM in the same machine. We observe that

increasing the workload above 140 clients can hurt performance again due to increased resource

demands and interference, but the drop is much smaller. For instance, with 300 clients the average

throughput decreased by 19% and the average latency increased by 25%. The results clearly show

that we can achieve low serving latency using stateful dataflow graphs, which e↵ectively means that

when the serving part is under-utilised we could use the resources to run more analytics. Moreover,

even though the pipelined dataflows do not introduce too much resource interference since they are

isolated in their JVM, and they are not as greedy as batch BE tasks, we firmly believe that we can

achieve even better performance using a scheduled version of the dataflow tasks inside the same

JVM.

It is worth mentioning here that in order to achieve the maximum throughput we applied several

optimisations both in the operating system and the application level. Nginx was further optimised

by disabling logging to reduce I/O contention and by increasing the number of workers to 1k per

core we made sure it is not the bottleneck. Play framework by default is using small thread pool

to handle clients that fast became a bottleneck. It was configured to use 50 threads which seemed

to be su�cient for our experiments. JMeter logging was disabled and was run by command line to

reduce the extra user interface overhead. At operating system level, we had to increase the open

files limit which was a limit for the database. Another interesting issue we faced is running out of

HTTP addresses in the JMeter side. By default, the operating system was creating a new one for

every client page visit which soon reached a limit. We addressed this issue by enabling fast HTTP

address recycling.

To get a deeper understanding of the real response times users observe in one of these applica-

tion deployments, we also calculate the 99th, 90th and 75th response time percentiles depicted in

Figure 5.8. Usually, modern web applications target 99th percentile below 1-second meaning that

out of 100 clients 99 should experience latency lower than 1 second. As users tend to visit more

than one page in a web application and as web applications tend to add more features increasing

49

Case Study: Exploiting IWOs in a Music Web Application

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

Re
sp

on
se

 la
te

nc
y

in
 m

s

Time in seconds

Scheduled serving IWOs

Figure 5.9.: Serving Response latency using Scheduled IWOs.

the number of requests on each page, one user experiencing latency higher than the 99th percentile

is not uncommon. Figure 5.8 shows that collocating Play with Spark seriously a↵ects the 99th per-

centile which is more than double for any client size. 90th and 75th percentiles are mostly a↵ected

when the client size is above 120, which is close to the resource saturation point. IWOs implemen-

tation remains close to the isolated case with latency close to 1 second even for a 300 client load.

The results mostly suggest that we can indeed achieve low serving latency using dataflows while

running analytics tasks in web applications and that resource interference inside the JVM is less

aggressive. Scheduling these tasks and prioritising the LC serving dataflow, as described below,

would further optimise these results that could be (in some cases) even faster than the baseline.

Figure 5.10.: Workload distribution produced by the equation:

y = |sin(pi ⇤ t/2500)|

To evaluate our scheduler approach we implemented a simplified version according to the design

in Figure 3.2. The scheduler was running in a single machine in the cluster with two separate queues,

one for analytics tasks and the other one for serving tasks. One consumer thread was devoted to

the analytics dataflow, which consisted of single operator calculating 20 pi digits. Another thread

was devoted to the serving dataflow, which was again a single operator deserialising the request

and returning a response. The scheduler was running in its own thread and was continuously

monitoring the latency of the serving response latency. As a load generator we implemented a

synthetic workload according to the sin equation depicted in Figure 5.10. The scheduler was

50

Bridging the Gap between Serving and Analytics in Scalable Web Applications

continuously sampling from the equation to decide how many tasks are going to be produced.

Since the sampling rate depends on the processing power there is no one-to-one mapping in the

time axis between Figures 5.10 and 5.8. The result of the equation was multiplied with 100k

tasks to produce enough stress load and these tasks were queued for processing. The response

time SLO was set to 30ms in the scheduler state. When the serving response time went above

30ms the scheduler slowed down the analytics dataflow by pre-emptying. On the other hand, when

the latency was below 21 ms the scheduler added more analytics tasks to the dataflow to produce

more results. Figure 5.8 shows the latency in the LC serving part over a period of 120 seconds.

We observe that during the whole period of the experiment the scheduler manages to maintain

the strict SLO and can easily re-adapt to the dynamicly changing request number. When a single

request is facing high tail latency the fine-grained scheduler reactively slows down the serving part,

shifting more resources to the LC part, and reactivates the analytics when the response latency is

low enough. IWOs can, therefore, e�ciently protect strict SLOs and manage resource isolation in a

finer and more robust way than existing solutions, while achieving high resource utilisation which

was not a requirement in already existing solutions.

Figure 5.11.: Spark Distributed/Clustered mode overview.

51

6. Conclusions

In this thesis we described In-memory Web Objects (IWOs), a unified model for developers to write

web applications that have the ability to serve data while using big data analytics. IWOs expose

a common interface without a↵ecting the programming model and developers could benefit from

writing domain logic using already existing popular web frameworks. We are extending stateful

dataflow graphs (SDGs), which are expressive enough to model scalable web applications today.

The state is exposed through a low latency, generic interface, in order to support both serving

requests and data-analytics. IWOs further aim to improve cluster resource utilisation and isolation

by fine-grained scheduling. Scheduling resources between BE and LC tasks e�ciently, in a real-time

and coordinated fashion, is the key to maintaining the strict SLOs of serving in web applications.

Experimental results using our case study application, implemented using Play framework [78],

indicate that using IWOs we can achieve serving latency lower than 1sec at the 99th percentile

while also running data analytics. Furthermore, our scheduling approach evaluation suggests that

by fine-grained task management we could safeguard serving from SLOs violations with extremely

low latency impact.

6.1. Future Work

E�cient distributed scheduling of BE analytics and LC serving tasks is an important research area

that we plan to focus on next. While the approach we presented performs well on a single machine,

scheduling dataflow tasks in a distributed dataflow is more demanding introducing orthogonal

challenges such as optimal placement, low latency decision making and reactive scheduling in SLO

violations.

Additionally, we plan on further investigating the automatic conversion of a web application

in an SDG. We are considering extracting information about the data model and the processing

associated with it in an extra o✏ine step. An approach towards this direction would be extending

our framework to extract all the code connected with back-end data from the Model component

and use it to model state. The application’s Controller code will then be converted into in an

statefull dataflow graph using a special purpose compiler and will be deployed in a distributed

data-parallel framework like Seep [26]. The SDG could then be deployed and automatically scale,

providing fault tolerance without requiring further input from the user.

Finally, since IWOs provide just an abstract programming model they should not be restricted

to a single dataflow processing framework. IWOs abstractions can be implemented for other state-

ful stream processing frameworks, like Flink [3], as well and investigate how they integrate and

potentially solve other types of challenges in areas such as intrusion detection, graph processing

etc.

53

Appendices

55

A. Column Data Model

A18-v1

XYZ18-v2

cf2:col2-XYZ

B18-v3 foobar18-v1

 row-6

cf1:col-B cf2:foobar

row-5

Foo18-v1

cf2:col-Foo

row-2

row-7

row-1

cf1:col-A

 row-10

row-18 A18 - v1

Column Family 1 Column Family 2

Coordinates for a Cell: Row Key Column Family Name Column Qualifier Version

B18 - v3

Peter - v2

Bob - v1

Foo18 - v1

XYZ18 - v2

Mary - v1

foobar18 - v1

CF Prefix

Figure A.1.: Column data model used in systems such as BigtTable, and Cassandra.

The case study web application described in in Chapter 5, uses Apache Cassandra as a data

store. Inspired by BigTable [14] Cassandra’s data model is a schema-optional, column-oriented

data model. This means that, unlike a relational database, you do not need to model all of the

columns required by an application up front, as each row is not required to have the same set

of columns. Columns can be added by an application at runtime. In Cassandra, the keyspace

is the container for application’s data, similar to a database or schema in a relational database.

Inside the keyspace there are one or more column family objects, which are analogous to tables.

Column families contain columns and a set of related columns is identified by a row key. In each

row data are stored in the basic storage unit which is a cell. Cassandra similar to Bigtable allows

multiple timestamp versions of data within a cell. A cell can be addressed by its’ row-key, column

familyname, Column qualifier and the version as shown in Figure A.1. At the physical level, data

are stored per column family contiguously on disk sorted by row-key, column name and version

(column oriented data model).

57

B. Algorithms

Algorithm 4 shows a Java implementation of collaborative filtering, an online machine learning

algorithm. It outputs up-to-date recommendations of items to users (function getRec) based on

previous item ratings (function addRating). This imperative code contains annotations, further

explained in the literature [28], that make possible to translate it directly to a stateful dataflow

graph using a custom compiler.

Algorithm 4: SDGs Online collaborative filtering implementation.
1 @Partitioned Matrix userItem = new Matrix();
2 @Partial Matrix coOcc = new Matrix();
3

4 void addRating(int user, int item, int rating) {

5 userItem.setElement(user, item, rating);
6 Vector userRow = userItem.getRow(user);
7 for (int i = 0; i < userRow.size(); i++)
8 if (userRow.get(i) > 0) {
9 int count = coOcc.getElement(item, i);

10 coOcc.setElement(item, i, count + 1);
11 coOcc.setElement(i, item, count + 1);
12 }
13 }
14 Vector getRec(int user) {

15 Vector userRow = userItem.getRow(user);
16 @Partial Vector userRec = @Global coOcc.multiply(userRow);
17 Vector rec = merge(@Global userRec);
18 return rec;
19 }
20 Vector merge(@Collection Vector[] allUserRec) {
21 Vector rec = new Vector(allUserRec[0].size());
22 for (Vector cur : allUserRec)
23 for (int i = 0; i < allUserRec[0].size(); i++)
24 rec.set(i, cur.get(i) + rec.get(i));
25 return rec;
26 }

Algorithm 5 below, shows another implementation of collaborative filtering using Apache Spark [88].

This approach is using MLlib to deal with Implicit Feedback Datasets, meaning that instead of

trying to model the matrix of ratings directly, it treats the data as a combination of binary prefer-

ences and confidence values. The algorithm is reading the rating from a Cassandra database and

writing the intermediate data to an HDFS filesystem.

59

Algorithms

Algorithm 5: Spark collaborative filtering implementation (1/2).
1

2 public class SparkCollaborativeFiltering {

3 private static final String dataset_path = ”hdfs://wombat30.doc.res.ic.ac.uk:8020/user/pg1712/
lastfm train”;

4

5 private static List<PlayList> allplaylists;
6 private static Map<String, Integer> usersMap;
7 private static List<User> allusers;
8 private static Map<String, Integer> tracksMap;
9 private static List<Track> tracksList;

10

11 public static void main(String[] args) {
12

13 long jobStarted = System.currentTimeMillis();
14 SparkConf conf = new SparkConf()
15 .set(”spark.executor.memory”,”1g”)
16 .set(”spark.driver.maxResultSize”,”1g”)
17 .setMaster(”mesos://wombat30.doc.res.ic.ac.uk:5050”)
18 .setAppName(”play2sdg Collaborative Filtering Job”);
19 JavaSparkContext sc = new JavaSparkContext(conf);

20 /⇤
21 ⇤ Fetch the Track List
22 ⇤/
23 tracksList = CassandraQueryController.listAllTracksWithPagination();
24 tracksMap = generateTrackMap(tracksList);
25 logger.info(”## Fetched # ”+ tracksMap.size() +” Tracks ##”);
26 /⇤
27 ⇤ Fetch PlayLists From Cassandra � aka Ratings
28 ⇤/
29

30 allplaylists = CassandraQueryController.listAllPlaylists();
31 allusers = CassandraQueryController.listAllUsers();
32 usersMap = generateUserMap(allusers);
33 List<String> ratingList = new ArrayList<String>();

34 /⇤
35 ⇤ Convert IDS and save to HDFS File
36 ⇤/
37 for(PlayList playList : allplaylists){
38 for(String track : playList.getTracks()){
39 StringBuilder sb = new StringBuilder();
40 sb.append(usersMap.get(playList.getUsermail()) + ”,”);
41 sb.append(tracksMap.get(track) + ”,”);
42 sb.append(”5.0”);
43 ratingList.add(sb.toString());
44 }
45 }
46 logger.info(”## Converted ratings from: ”+allplaylists.size() + ” playlists##”);
47 /⇤
48 ⇤ Persist To FS
49 ⇤/
50 RatingsFileWriter rw = new RatingsFileWriter(”hdfs://wombat30.doc.res.ic.ac.uk:8020/user/pg1712/

lastfm subset”);
51 rw.persistRatingsFile(ratingList);

52 // Load and parse the data
53 String path = ”hdfs://wombat30.doc.res.ic.ac.uk:8020/user/pg1712/lastfm subset/ratings.data”;
54 logger.info(”## Persisting to HDFS �> Done ##”);
55 JavaRDD<String> data = sc.textFile(path);
56 JavaRDD<Rating> ratings = data.map(new Function<String, Rating>() {
57 public Rating call(String s) {
58 String[] sarray = s.split(”,”);
59 return new Rating(Integer.parseInt(sarray[0]), Integer
60 .parseInt(sarray[1]), Double.parseDouble(sarray[2]));
61 }
62 });

60

Bridging the Gap between Serving and Analytics in Scalable Web Applications

Algorithm 6: Spark collaborative filtering implementation (2/2).
1 // Build the recommendation model using ALS
2 int rank = 10;
3 int numIterations = 20;
4 MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings),
5 rank, numIterations, 0.01);

6 // Evaluate the model on rating data
7 JavaRDD<Tuple2<Object, Object>> userProducts = ratings
8 .map(new Function<Rating, Tuple2<Object, Object>>() {
9 public Tuple2<Object, Object> call(Rating r) {

10 return new Tuple2<Object, Object>(r.user(), r.product());
11 }
12 });
13 JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD
14 .fromJavaRDD(model
15 .predict(JavaRDD.toRDD(userProducts))
16 .toJavaRDD()
17 .map(new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
18 public Tuple2<Tuple2<Integer, Integer>, Double> call(
19 Rating r) {
20 return new Tuple2<Tuple2<Integer, Integer>, Double>(
21 new Tuple2<Integer, Integer>(r.user(),
22 r.product()), r.rating());}
23 }));
24 JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD
25 .fromJavaRDD(
26 ratings.map(new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
27 public Tuple2<Tuple2<Integer, Integer>, Double> call(
28 Rating r) {
29 return new Tuple2<Tuple2<Integer, Integer>, Double>(
30 new Tuple2<Integer, Integer>(r.user(),
31 r.product()), r.rating());
32 }
33 })).join(predictions).values();
34

35 double MSE = JavaDoubleRDD.fromRDD(
36 ratesAndPreds.map(
37 new Function<Tuple2<Double, Double>, Object>() {
38 public Object call(Tuple2<Double, Double> pair) {
39 Double err = pair._1() - pair._2();
40 return err * err;
41 }
42 }).rdd()).mean();

43 /⇤⇤
44 ⇤ Create recommendations based on stored Track and User id
45 ⇤/
46 List<Recommendation> newUserSongRec = new ArrayList<Recommendation>();
47 for(Tuple2 <Tuple2<Integer, Integer>,Double> pred: predictions.toArray()){

48 logger.debug(”Creating Recommendation�> user: ”+pred._1()._1 + ”\t track: ” + pred._1()._2 +

”\t score: ”+pred._2());
49 Recommendation newRec = new Recommendation(allusers.get(pred._1()._1).getEmail());
50 newRec.getRecList().put(tracksList.get(pred._1()._2).getTitle(), pred._2());
51 newUserSongRec.add(newRec);
52 }

53 /⇤⇤
54 ⇤ Create an RDD from recommendations and Save it in parallel fashion
55 ⇤/
56 JavaRDD<Recommendation> rdd = sc.parallelize(newUserSongRec);
57 rdd.persist(StorageLevel.MEMORY_AND_DISK_SER());
58 rdd.foreach(new VoidFunction<Recommendation>() {
59 @Override
60 public void call(Recommendation t) throws Exception {
61 CassandraQueryController.persist(t);
62 }
63 });
64 }

65 /⇤⇤
66 ⇤ Method Mapping generated Recommendations to Tracks and Users
67 ⇤/
68 public static void MapPredictions2Tracks(JavaPairRDD<Tuple2<Integer, Integer>, Double>

predictions){
69 for(Tuple2 <Tuple2<Integer, Integer>,Double> pred: predictions.toArray()){

70 logger.debug(”Creating Recommendation�> user: ”+pred._1()._1 + ”\t track: ” + pred._1()._2 +

”\t score: ”+pred._2());
71 Recommendation newRec = new Recommendation(allusers.get(pred._1()._1).getEmail());
72 newRec.getRecList().put(tracksList.get(pred._1()._2).getTitle(), pred._2());
73 CassandraQueryController.persist(newRec);
74 }
75 }
76 }

61

C. Web Interface

This Chapter contains a number Play2SDG user interface screen captures. Figure C.1 depicts the

Login page, and Figure C.2 the main user home page with tracks, preview and rating. Figure C.3

and Figure C.4 depict the user recommendation page and the coloborative filtering job statistics

respectively.

Figure C.1.: Play2SDG Login page View.

Figure C.2.: Play2SDG Home page View.

63

Web Interface

Figure C.3.: Play2SDG Recommendations page View.

Figure C.4.: Play2SDG Statistics page View.

64

Bibliography

[1] Linux containers [online]. http://lxc.sourceforge.net, 2012.

[2] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center network

architecture. SIGCOMM 38, 4 (2008), 63–74.

[3] Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A.,

Kao, O., Leich, M., Leser, U., Markl, V., et al. The stratosphere platform for big

data analytics. In VLDB (2014).

[4] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prabhakar,

B., Sengupta, S., and Sridharan, M. Data center tcp (dctcp). SIGCOMM 41, 4 (2011),

63–74.

[5] Apache. Hadoop. http://hadoop.apache.org, 2013.

[6] Apache. Hbase. http://hbase.apache.org/, 2013.

[7] Arpteg, A. Big data at spotify. http://ictlabs-summer-school.sics.se/slides/

company_presentation_spotify.pdf, 2015.

[8] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. Models and issues

in data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems (2002), ACM, pp. 1–16.

[9] Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. The million song

dataset. In Proceedings of the 12th International Conference on Music Information Retrieval

(ISMIR 2011) (2011).

[10] Bhatotia, P., Wieder, A., et al. Incoop: MapReduce for Incremental Computations. In

SOCC (2011).

[11] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu, M., and Zhou,

L. Apollo: scalable and coordinated scheduling for cloud-scale computing. In USENIX OSDI

(2014).

[12] Bu, Y., Howe, B., et al. HaLoop: E�cient Iterative Data Processing on Large Clusters.

In VLDB (2010).

[13] Carvalho, M., Cirne, W., Brasileiro, F., and Wilkes, J. Long-term slos for reclaimed

cloud computing resources. In SOCC (2014), ACM, pp. 1–13.

[14] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,

Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer Systems (TOCS) 26, 2 (2008), 4.

65

Bibliography

[15] Chun, B.-G., Condie, T., Curino, C., Douglas, C., Matusevych, S., Myers, B.,

Narayanamurthy, S., Ramakrishnan, R., Rao, S., Rosen, J., et al. Reef: Retainable

evaluator execution framework. In VLDB (2013).

[16] Cook, H., Moreto, M., Bird, S., Dao, K., Patterson, D. A., and Asanovic, K. A

hardware evaluation of cache partitioning to improve utilization and energy-e�ciency while

preserving responsiveness. In SIGARCH (2013), vol. 41, ACM, pp. 308–319.

[17] Curino, C., Difallah, D. E., Douglas, C., Krishnan, S., Ramakrishnan, R., and

Rao, S. Reservation-based scheduling: If you’re late don’t blame us! In SOCC (2014), ACM,

pp. 1–14.

[18] Czajkowski, G. The multi-tasking virtual machine: Building a highly scalable jvm. http:

//www.oracle.com/technetwork/articles/java/mvm-141094.html, 2005.

[19] Dawson, M. Introduction to java multitenancy. http://www.ibm.com/developerworks/

java/library/j-multitenant-java/index.html, 2013.

[20] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large clusters. In

OSDI (2004).

[21] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,

A., Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo: amazon’s highly

available key-value store. In SIGOPS (2007), vol. 41, ACM, pp. 205–220.

[22] Delgado, P., Dinu, F., Kermarrec, A.-M., and Zwaenepoel, W. Hawk: hybrid

datacenter scheduling. In USENIX ATC (2015), USENIX Association, pp. 499–510.

[23] Delimitrou, C., and Kozyrakis, C. Paragon: Qos-aware scheduling for heterogeneous

datacenters. SIGARCH 41, 1 (2013), 77–88.

[24] Delimitrou, C., and Kozyrakis, C. Quasar: Resource-e�cient and qos-aware cluster

management. In ASPLOS (2014).

[25] Ewen, S., Tzoumas, K., Kaufmann, M., and Markl, V. Spinning fast iterative data

flows. Proceedings of the VLDB Endowment 5, 11 (2012), 1268–1279.

[26] Fernandez, R. C., Migliavacca, M., et al. Integrating Scale Out and Fault Tolerance

in Stream Processing using Operator State Management. In SIGMOD (2013).

[27] Fernandez, R. C., Migliavacca, M., Kalyvianaki, E., and Pietzuch, P. Making state

explicit for imperative big data processing. In USENIX ATC (2014).

[28] Fernandez, R. C., Migliavacca, M., Kalyvianaki, E., and Pietzuch, P. Making state

explicit for imperative big data processing. In USENIX ATC (2014).

[29] Fitzpatrick, B., and Vorobey, A. Memcached: a distributed memory object caching

system, 2011.

[30] Garefalakis, P., Papadopoulos, P., and Magoutis, K. Acazoo: A distributed key-value

store based on replicated lsm-trees. In SRDS (2014), IEEE, pp. 211–220.

66

Bridging the Gap between Serving and Analytics in Scalable Web Applications

[31] Govindan, S., Liu, J., Kansal, A., and Sivasubramaniam, A. Cuanta: quantifying

e↵ects of shared on-chip resource interference for consolidated virtual machines. In SOCC

(2011), ACM, p. 22.

[32] Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., and Akella, A. Multi-

resource packing for cluster schedulers. In SIGCOMM (2014), ACM.

[33] Gunda, P. K., Ravindranath, L., et al. Nectar: Automatic Management of Data and

Comp. in Datacenters. In OSDI (2010).

[34] He, B., Yang, M., et al. Comet: Batched Stream Processing for Data Intensive Distributed

Computing. In SOCC (2010).

[35] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H.,

Shenker, S., and Stoica, I. Mesos: A platform for fine-grained resource sharing in the

data center. In NSDI (2011).

[36] Isard, M., Budiu, M., et al. Dryad: Dist. Data-Parallel Programs from Sequential Building

Blocks. In EuroSys (2007).

[37] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and Goldberg,

A. Quincy: fair scheduling for distributed computing clusters. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles (2009), ACM, pp. 261–276.

[38] Jeong, M. K., Erez, M., Sudanthi, C., and Paver, N. A qos-aware memory controller

for dynamically balancing gpu and cpu bandwidth use in an mpsoc. In Proceedings of the 49th

Annual Design Automation Conference (2012), ACM, pp. 850–855.

[39] JMeter, A. Apache software foundation, 2010.

[40] Kandel, S., Paepcke, A., Hellerstein, J. M., and Heer, J. Enterprise data analysis

and visualization: An interview study. IEEE Transactions (2012), 2917–2926.

[41] Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K., Fumarola,

G., Heddaya, S., Ramakrishnan, R., and Sakalanaga, S. Mercury: Hybrid centralized

and distributed scheduling in large shared clusters.

[42] Kohavi, R., Deng, A., Longbotham, R., and Xu, Y. Seven rules of thumb for web site

experimenters. In SIGKDD (2014), ACM.

[43] Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C., Choi, A.,

Erickson, J., Grund, M., Hecht, D., Jacobs, M., et al. Impala: A modern, open-

source sql engine for hadoop. In CIDR (2015).

[44] Krasner, G. E., Pope, S. T., et al. A description of the model-view-controller user

interface paradigm in the smalltalk-80 system. Journal of object oriented programming 1, 3

(1988), 26–49.

[45] Kreitz, G., and Niemelä, F. Spotify–large scale, low latency, p2p music-on-demand stream-

ing. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International Conference on (2010),

IEEE, pp. 1–10.

67

Bibliography

[46] Kreps, J., Narkhede, N., Rao, J., et al. Kafka: A distributed messaging system for log

processing. In NetDB (2011), pp. 1–7.

[47] Lakshman, A., and Malik, P. Cassandra: a decentralized structured storage system.

SIGOPS 44, 2 (2010), 35–40.

[48] Le, Q. V. Building high-level features using large scale unsupervised learning. In Acous-

tics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (2013),

IEEE, pp. 8595–8598.

[49] Leverich, J., and Kozyrakis, C. Reconciling high server utilization and sub-millisecond

quality-of-service. In Proceedings of the Ninth European Conference on Computer Systems

(2014), ACM, p. 4.

[50] Linden, G., Smith, B., and York, J. Amazon. com recommendations: Item-to-item

collaborative filtering. Internet Computing, IEEE (2003).

[51] Lo, D., Cheng, L., Govindaraju, R., Barroso, L. A., and Kozyrakis, C. Towards

energy proportionality for large-scale latency-critical workloads. In Proceeding of the 41st

annual international symposium on Computer architecuture (2014), IEEE Press, pp. 301–312.

[52] Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., and Kozyrakis, C. Heracles:

Improving resource e�ciency at scale. In ISCA (New York, NY, USA, 2015), ISCA ’15, ACM,

pp. 450–462.

[53] Logothethis, D., Olson, C., et al. Stateful Bulk Processing for Incremental Analytics.

In SOCC (2010).

[54] Mars, J., Tang, L., Hundt, R., Skadron, K., and Soffa, M. L. Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations. In MICRO (2011),

ACM.

[55] Marshall, P., Keahey, K., and Freeman, T. Improving utilization of infrastructure

clouds. In CCGrid (2011), IEEE, pp. 205–214.

[56] Meisner, D., Sadler, C. M., Barroso, L. A., Weber, W.-D., and Wenisch, T. F.

Power management of online data-intensive services. In ISCA (2011), IEEE, pp. 319–330.

[57] Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., and

Vassilakis, T. Dremel: interactive analysis of web-scale datasets. In VLDB (2010).

[58] Menage, P., Jackson, P., and Lameter, C. Cgroups. Available on-line at: http://www.

mjmwired. net/kernel/Documentation/cgroups. txt (2008).

[59] Merkel, D. Docker: lightweight linux containers for consistent development and deployment.

Linux Journal 2014, 239 (2014), 2.

[60] Mesosphere. Mesosphere infinity: Youre 4 words away from a com-

plete big data system. https://mesosphere.com/blog/2015/08/20/

mesosphere-infinity-youre-4-words-away-from-a-complete-big-data-system/.

68

Bridging the Gap between Serving and Analytics in Scalable Web Applications

[61] Murray, D., Schwarzkopf, M., et al. CIEL: A Universal Exec. Engine for Distributed

Data-Flow Comp. In NSDI (2011).

[62] Murray, D. G., McSherry, F., et al. Naiad: A Timely Dataflow System. In SOSP

(2013).

[63] Nathuji, R., Kansal, A., and Ghaffarkhah, A. Q-clouds: managing performance inter-

ference e↵ects for qos-aware clouds. In EuroSys (2010), ACM, pp. 237–250.

[64] Nesbit, K. J., Aggarwal, N., Laudon, J., and Smith, J. E. Fair queuing memory

systems. In MICRO (2006), IEEE, pp. 208–222.

[65] Neumeyer, L., Robbing, B., et al. S4: Distributed Stream Computing Platform. In

ICDMW (2010).

[66] Novakovic, D., Vasic, N., Novakovic, S., Kostic, D., and Bianchini, R. Deepdive:

Transparently identifying and managing performance interference in virtualized environments.

In USENIX ATC (2013).

[67] Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. Pig latin: a

not-so-foreign language for data processing. In SIGMOD (2008), ACM, pp. 1099–1110.

[68] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. Sparrow: distributed, low

latency scheduling. In SOSP (2013), ACM, pp. 69–84.

[69] Pacheco, P. S. Parallel programming with MPI. Morgan Kaufmann, 1997.

[70] Power, R., and Li, J. Piccolo: Building Fast, Distributed Programs with Partitioned Tables.

In OSDI (2010).

[71] Qureshi, M. K., and Patt, Y. N. Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (2006), IEEE Computer Society,

pp. 423–432.

[72] Reese, W. Nginx: the high-performance web server and reverse proxy. Linux Journal 2008,

173 (2008), 2.

[73] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch, M. A. Hetero-

geneity and dynamicity of clouds at scale: Google trace analysis. In SoCC (2012), ACM,

p. 7.

[74] Sanchez, D., and Kozyrakis, C. Vantage: scalable and e�cient fine-grain cache partition-

ing. In ACM SIGARCH Computer Architecture News (2011), vol. 39, ACM, pp. 57–68.

[75] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and Wilkes, J. Omega: flexi-

ble, scalable schedulers for large compute clusters. In EuroSys (2013), ACM.

[76] Sumbaly, R., Kreps, J., and Shah, S. The big data ecosystem at linkedin. In SIGMOD

(2013).

69

Bibliography

[77] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S.,

Jackson, J., Gade, K., Fu, M., Donham, J., et al. Storm@ twitter. In SIGMOD (2014),

ACM.

[78] Typesafe. Play framework. http://www.playframework.com/.

[79] Vasić, N., Novaković, D., Miučin, S., Kostić, D., and Bianchini, R. Dejavu: accel-

erating resource allocation in virtualized environments. In SIGARCH (2012), vol. 40, ACM,

pp. 423–436.

[80] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans,

R., Graves, T., Lowe, J., Shah, H., Seth, S., et al. Apache hadoop yarn: Yet another

resource negotiator. In SOCC (2013), ACM.

[81] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes,

J. Large-scale cluster management at google with borg. In EuroSys (2015), ACM.

[82] W, R. Facebook doesnt have big data. it has ginor-

mous data. http://www.xconomy.com/san-francisco/2013/02/14/

how-facebook-uses-ginormous-data-to-grow-its-business/2/, 2013.

[83] Wilkes, J. More google cluster data. http://googleresearch.blogspot.ch/2011/11/

more-google-clusterdata.html.

[84] Xin, R. S., Rosen, J., et al. Shark: SQL and Rich Analytics at Scale. In SIGMOD (2013).

[85] Yu, Y., Isard, M., et al. DryadLINQ: a System for General-Purpose Distributed Data-

Parallel Computing using a High-Level Language. In OSDI (2008).

[86] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and

Stoica, I. Delay scheduling: a simple technique for achieving locality and fairness in cluster

scheduling. In EuroSys (2010), ACM.

[87] Zaharia, M., Chowdhury, M., et al. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing. In NSDI (2012).

[88] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. Spark:

Cluster Computing with Working Sets. In HotCloud (2010), pp. 10–10.

[89] Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. Discretized streams: an

e�cient and fault-tolerant model for stream processing on large clusters. In Proceedings of the

4th USENIX conference on Hot Topics in Cloud Ccomputing (2012), USENIX Association,

pp. 10–10.

[90] Zhang, B., Kreitz, G., Isaksson, M., Ubillos, J., Urdaneta, G., Pouwelse, J.,

Epema, D., et al. Understanding user behavior in spotify. In INFOCOM (2013), IEEE.

[91] Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., and Wilkes, J. Cpi

2: Cpu performance isolation for shared compute clusters. In EuroSys (2013), ACM.

[92] Zhou, R., Khemmarat, S., and Gao, L. The impact of youtube recommendation system

on video views. In SIGCOMM (2010), ACM.

70

List of Acronyms and Abbreviations

ALS Alternating Least Squares

API Application Program Interface

BE Best E↵ort

CF Collaborative Filtering

CFS Completely Fair Scheduler

DRAM Dynamic Random-Access Memory

GC Garbage Collector

HTTP Hypertext Transfer Protocol

HW Hardware

I/O Input-Output

IT Information Technology

IWO In-memory Web Object

IWOs In-memory Web Objects

JIT Just In Time

JPA Java Persistence API

JVM Java Virtual Machine

LC Latency Critical

LLC Last Level Cache

LXC Linux Containers

MVC Model View Controller

NUMA Non-Uniform Memory Access

OOP Object Oriented Programming

OS Operating System

RDD Resilient Distributed Dataset

RDDs Resilient Distributed Datasets

71

Bibliography

REST Representational State Transfer

SDG Stateful Dataflow Graph

SLA Service Level Agreement

SLO Service Level Objective

SW Software

TPS Transaction per Second

URL Uniform Resource Locator

UUID Universally Unique Identifier

VM Virtual Machine

WAL Write Ahead Log

72

