
mWuDI?D(SD&D:, 

Logic 
for Problem 

Solving 
Robert Kowalski 

Imperial College of Science and Technology 
University of London 

NORTH-HOLLAND 
NEW YORK· AMSTERDAM • OXFORD 

7 



Elsevier Science Publishing Co., Inc 
52 Vanderbilt Avenue, New York, New York 10017 

Sole Dlstnbutors Outside USA and Canada 
Elsevler SCience Publishers B.V 
P.O Box 211, 1000 AE Amsterdam, The Netherlands 

© 1979 by Elsevler SCience Publishing Co., Inc. 

Library of Congress Cotologmg m Publication Data 

Kowolskl, Robert 
Logic for problem solvmg 
(Artificial intelligence series) (The Computer sCience library) 

Bibliography p 
Includes Index 
1. Problem solving. 2. Electronic digital computers-Programming 
3 Logic, Symbolic and mathematical Title 

QA63. K68 5197 79-22659 
ISBN 0-444-00365-7 (hbk) 
ISBN 0-444-00368-1 (pbk) 

Current printing (lost digit) 
10 9 8 

Manufactured In the United States of America 



To 
my parents 



Table of Contents 

1 Introduction •.••..•••..•••..•••..••••..••..•••.•••.••••••••.•••••••••• l 

The family relationships example and clausal form •••••••••••••••••• 2 
A more precise definition of clausal form •.•••.•••.••••.••••••••••• 5 
Top-down and bottom-up presentation of definitions ••••••••••••••••• 7 
Semantics of clausal form ••••••.••••••••••••••.•••.••••••••••••..•• 8 
The fallible Greek example .••••••••••••••.••••••••••••.••••••••••• 10 
The factorial example .••••••••••••••.••••.•••.•••.•••••••••••••.•• 10 
The universe of discourse and interpretations •••••.••••••••••••••• 12 
A more precise definition of inconsistency •••••••.••••••••.••••••• 14 
The semantics of alternative conclusions ••••.••••••••••••••••••••• 16 
Horn clauses .•.••••.•.•••.••••.•••..•••.••••••••.••••••••••••••••• 16 
Mushrooms and toadstools .••••.••••••••..•••••••••••••••••.•••••••• 17 
Exercises •.••..•••..••••..••..••••••••..•••.•••.•••••••••••••••••• 18 

2 Representation in Clausal Form ••••..••••.•••••••••••••••••••••••••••• 22 

Infix notation •••.•••••.•••..•••..•••.•••••••••••••••••.••••••••.• 22 
Variables and types of individuals ••..•••.•••••••••••••••••••••••• 23 
Ex istence ••••••••••••.•••••••••••••••.•••.••••••••.••••••••••••••• 25 
Neg at ion •.••.•••..••••.••••.••••.••••••••..••••••••••••••••••••••• 28 
Denial of conclusions which are implications ••.••••••••••••••••••• 2B 
Conditions which are implications •••.••••••••••••.••••.•••.••••••• 29 
Definitions and "if-and-only-if" •.••.••••.••••••••••••.••••••••••• 31 
Semantic networks .•••••••••••••.••••••••.••••.•••.•••••••••••••••• 31 
Extended semantic networks ••••••••••••••••••.••••••••••••••••••••• 33 
The representation of information by binary predicate symbols ••••• 33 
Advantages of the binary representation ••••.•••••••••••••••••••••• 36 
Databases •.••.••••.••••.•••••.••••••••••••.••••••••••••••••••••••• 37 
Data query languages •••.••••.•••.••••..••••••••.•••.•••••••••••••• 39 
Data description •••••••.••••••••.••••.••••••••.••••••••••••••••••• 39 
Integrity constraints •••••••..••..••••••••••••••••••••••••••.••••• 40 
A departmental database ••••.••••••••••••••••••.••••••••••••••••••• 41 
Equality •••..•••..•••.•••••••••.••••.••••.•••.••••••••••••.••••••• 42 
Exercises ••.•••..•••••.••...••.••••..••••••••••••.••••.••••••••••• 44 

3 Top-down and Bottom-up Horn Clause Proof Procedures •.•••••••••••••••• 49 

Introduction •••.•••••••••.•••••.•••.••••.•••.••••••••.•••••••••••• 49 
The parsing problem ••••••••••••••••.••••••••••••.••••••••.•••••••• 49 
A predicate logic representation of the parSing problem ••••••••••• 52 
Bottom-up inference •••••.•••••••••••••.••••••••.•••••••••••••••••• 53 
Top-down inference .••••.••••••••••••••.••••••••••••••••••••••••••• 55 
The family relationships example ••••••.•••••••••••••••••••••.••••• 57 
Inference rules and search strategies •.•••.••••••••••••••••••••••• 60 
Infinite search spaces: natural numbers •••••••..••.••••••••••••••• 64 
Definitions ••.••.••••.•••..•••.•••••••••.•••.••••.••••••••••••••• 67 
Substitution and matching •••••••••••.•••.•••.••••.•••••••••••••••• 70 
Correctness and completeness of inference systems ••••.•••.•••••••• 7l 
Exercises ...•••.•••••••••.••••..•••.•••••••••••••••••••••••••••••• 71 

4 Horn Clause Problem-Solving •.•..••••••••.•••••••••••••••••.•••••••••• 75 

Path-finding .•.•.•••••••••••••••••••.••••.•••••••••••••••••••••••• 75 
The water containers problem •.•.••••..••..•••••••.•••••••••••••••• 75 
A simplified path-finding problem •.•••••.•••••••.••••••••.•••••••• 77 
Graph-representation of search spaces •••••••••••.•••.•••.••••••••. 79 



Table of Contents 

The Search Spaces for the Water Containers Problem .........•..••.• 81 
Search strategies for path-finding •••.••••.•••..••..•••.••••.••... 83 
The and-or tree representation of problem-reduction ..........••••• B5 
The problem-solving interpretation of Horn clauses .....•.••••••••• B8 
Splitting and independent subgoals .•............••..•.•••••••..... B9 
Dependent subgoals ....................................•••••••••••. 91 
Finding versus showing ...........•.••.•••...•••.•••.•..•.......... 92 
Lemmas, duplicate subgoals and 10ops ..................••••••.•••.. 94 
Search strategies for problem-reduction spaces ...................• 95 
Si-directional problem-solving ..........................•••.•••.•• 99 
A notation for describing bi-directional problem-solving •••.•••.. l0l 
Another formulation of the path-finding problem •••••••••......... l02 
Other aspects of problem-solving .......................•••.•••••• 103 
Exercises .......................................•..•••.•••..•••.. 104 

5 The Procedural Interpretation of Horn Clauses .............•..••••••• l07 

Terms as data structures ......................••.••••.•••.•••.... 107 
Computation by successive approximation to output ................ 109 
The variation of input-output parameters .......••.•••..•......... l10 
Non-determinisml: several procedures match a procedure call •..... lll 
Sequential search regarded as iteration ............••..•••.••••.. lI2 
"Don't know" versus "don't care" non-determinism ................. l13 
Non-determinism2: The scheduling of procedure calls .......•••.•• ll4 
Bottom-up execution of programs ••••..•••...•..................... llB 
The pragmatic content of logic programs ...........•••.•••.•••.... 120 
Separation of data structures ...............................••... 121 
Terms versus relations as data structures •••.•••.••.•..•.......•• 122 
Database formal isms and programming languages ...................• l24 
Algorithm; Logic + Control •••••••.••••.•••.••............••..••• l25 
Specification of the control component ........................... 127 
Natural Language Logic + Control •...••................•.••••• 129 
Exercises ..........................•............................. 129 

6 Plan-Formation and the Frame Problem .....................••......... l33 

Plan-formation and the blocks world .............................. l33 
A clausal representation of the blocks world problem •••.••....... 134 
Bottom-up execution of the state space axiom {12) •.•••••........• l38 
Bottom-up execution of the frame axiom (15) •..•••.•••••••.••••..• 139 
Mixed top-down and bottom-up execution of the frame axiom .......• 140 
Top-down execution of the state space and frame axioms ••••....... 143 
Applications of plan-formation ...................•••...•......... l44 
Limitations .........................................•.••......... 145 
Exercises ..........................•••.•••...••.•••...........••• 146 

7 Resolution •..•••.••.......•••..•••.••••.•••••••......••••••••••••..• 147 

Negative goals and assertions ••.................•.•••...........• 147 
Resolution .............•....•.....................•••............ 149 
Middle out reasoning with Horn clauses ..•••.•••.•.........••.•••• 150 
Propositional logic example ..•.••••••.................••.••...... l51 
Arrow notation for non-Horn clauses ..........••.•.............••• l56 
Disjunctive solutions to non-Horn clause problems ...••••••••..... l57 
Factoring ....................................•.............•.•••. 159 
Exercises .......••..•.................•••.••.•.........•••••••... 160 



Table of Contents 

8 The Connection Graph Proof Procedure .••••••••.••.•••.•••.••••••••••• 163 

The initial connection graph •••.••..•••.••.•••.•••••••••••.••.••• 163 
The Resolution of links in connection graphs ••••••.•••••••.•••••• 165 
Mixed top-down and bottom-up search - the parsing problem •••••••• 168 
Macro-processing and middle-out reasoning •••.••••••.•••••••.••••• 169 
Arrow notation for controlling selection of links •••.•••.•••••••• l70 
Self-resolving clauses •.••.••..•••.••..••.•••.••••••.•••••••••••• 173 
Deletion of links whose resolvents are tautologies ••••••••••••••• 174 
The connection graph proof procedure •••••..••.•••••••••••.••••••• 175 
Exercises ...••..•••.••..••..••.•••..••.•••••••.•• , •••.•••. ••••••• 177 

9 Global Problem-Solving Strategies •.••.•••.•••.••..•..•••.•••.••••••• 179 

Deletion of redundant subgoals •.••..••.•••.••..••.•••.••••••••••• l80 
Addition of surrogate subgoals .••••.••••••.•••.••••••.••••••••••• 181 
Rejection of inconsistent goal statements .•.•••.••.••.••••.•••••• l82 
Generalising the use of diagrams in geometry •••.••.•••.•••••••••• 183 
Goals as generalised solutions ••.•••.•••.••••••.••.•••.•••.•••••• 184 
Goal transformation and the information explosion ••.••••••••••.•• 185 
Loop detection by analysis of differences •.••.••••••••••.•••.•••• 185 
The factorial example ...•..••.•••.•••.•••.••.••••••••••.••••.••. • 187 
Invariant properties of procedures •.•.•••.•••.••.•••.•••••••••••• 188 
Exercises ...••.•••.••..•••..•.•••.•••.•••.••••••.•••.••.••••••••• 190 

10 Comparison of Clausal Form with Standard Form ••.••••••.•••.•••.••.• 193 

Introduction to the standard form of logic ..••.••••••.•••••••.••• 193 
Conversion to clausal form ••••••.•••••••.••.•••.••.•••.•••.•••••• 197 
Comparison of clausal form with standard form •••••••••••••.•••••• 200 
Conjunctive conclusions and disjunctive conditions .•••••••••••••• 200 
Disjunctive conclusions ••.•••.•••.•••.••••••.•••.•••••••••••.•••• 202 
Only-if halves of definitions ..•••.••..••.•••.••••••.•••••••.•••• 202 
Implications as conditions of implications ••••.••.•••.••••••••••. 202 
Derivation of programs from specifications •.•••.•••••••••••••.••• 204 
Exercises •••..•......••..••......••..••.•...•••.••.•••.••..•••••• 206 

11 If-and-only-if ••.•..••...••.••..••.•••.•••.•••.••.•••.•••.•••.••••• 210 

The need for the only-if halves of definitions ••••••••••••••••••• 211 
Terms versus relations as data structures ••••.••.•••.•••••••.•••• 2l2 
The unstated only-if-assumption •••..••.•••.••..••.•••••••.•••.••. 213 
Ambigui ty of only-if .••..••.•••.•••.•••.••••••.••••••.•••.••••••• 215 
Object language and meta-language solutions ••••.••••••••••••••••• 215 
Object language and meta-language interpretations of negation •••• 217 
Horn clauses augmented with negation interpreted as failure •••••• 219 
Proof of program properties •.••••••.•••.••••••••••.•••••••••••••• 221 
The monotonicity criticism of logical consequence ••.•••.••..••.•• 222 
Exercises •••.••...••.•••..••.•••.•••.••..••..•••••••••••••••••••• 223 

12 formalisation of Provability ••.•••..••.••••••..••.•••.••••••••••••• 225 

Correct representabil i ty •.•••.•••.••.••••.••.•••.• , .••••.•••.••.• 226 
A simple definition of a provability relation •.••..••.••••••••••• 227 
Direct execution versus simulation ••••.•••.••••••••••.••••••••••• 228 
Addition and suppression of assumptions •••.•••.•••.•••.•••••••••• 230 
Bootstrapping •••.•..••..••.••••••••.•••.••..•••••••••••••••• , •••• 231 



Table of Contents 

Combining the object language and meta-language •.•••.•••••••.•••• 232 
Incompleteness of the combined object and meta-language •.•••.•••• 233 
More comprehensive form of the Demonstrate relation •.•••••••.•••• 234 
Exercises ••••..••..••..•••••••.•••••••..•••••••••••.••••••••••••• 235 

13 Logic, Change and Contradiction •.•.••••.•••••••••••.•••..•••.••••.• 239 

Information systems •••..•••.•••.•••.•••.•••.•••.••••••••.•••.•••• 239 
Dynamics of information system change •••.•••.•••••••.•••••••••••• 240 
Restoration of consistency ..•••••••••••.•••••••••••.••••••••.•••• 242 
A logic program for natural language ••..•••.•••.••••••••••••••••• 244 
Conclus ion .••..•••••.•. '" .••..•••. '" .•••.•••. '" .•••.•••••••••. 246 

References ...•...••..••.•••..••..••.••••.•••••••••••••••••••..••••• 247 

Index ..•••..•..••..••..•••.••..••.••••.•••••••••••••••••••.•••••••• 261 



Preface 

This book investigates the application of logic to problem-solving and 
computer programming. It assumes no previous knowledge of these fields, 
and may be appropriate therefore as an introduction to 

Logic 

logic, 
the theory of problem-solving, and 
computer programming. 

Logic is an important tool in the analysis and presentation of 
arguments. It investigates whether assumptions imply conclusions, 
independently of their truth or falsity and independently of their 
subject matter. This book aims to apply the traditional methods of logic 
to contemporary theories of problem-solving and computer programming. 

As an introduction to logic, the book differs from others in its use 
of the clausal form of logic. This has several advantages. Clausal form 
is simpler than the standard form of logic but is just as powerful. It is 
simple enough to be introduced directly, without the usual preliminary 
study of propositional logic, and it bears greater resemblance than 
standard form to other formal isms used in data processing and computer 
programming. 

This book is not concerned with the mathematics of 
applications. For an interesting and more thorough 
relationships between logic and language the reader is 
the books by Quine [1941] and Hodges [1977]. 

Problem-solving 

logic but with its 
discussion of the 
advised to consult 

The clausal form of logic can be used to elucidate and compare models 
of problem-solving developed in cognitive psychology and artificial 
intelligence. This book investigates the heuristic search, problem-
reduction and program execution models of problem-solving and argues that 
logical inference provides a model which is both simpler and more 
powerful. 

The interpretation of logical inference as problem-solving builds upon 
the distinction between reasoning, forward from assumptions to 
conclusions, and 1QE-down reasoninq, backwards from goals to subgoals. 



problem-solving 

The problem-solving interpretation of inference is primarily the top-down 
interpretation. Bottom-up inference is the manner in which solutions are 
generally presented and justified, whereas top-down inference is the 
manner in which solutions are most often discovered. Bottom-up inference 
is the synthesis of new information from old; top-down inference is the 
analysis of goals into subgoals. 

This book covers similar ground to the problem-solving sections of the 
books by Nilsson [1971], Winston [1977] and Bundy et al [1978]. Where 
those books use production systems, LISP or LOGO as the unifying 
formalism, ours uses the clausal form of logic. 

Computer programming 

Employed as a language for communicating with computers, logic is 
higher-level and more human-oriented than other formal isms specifically 
developed for computers. In contrast with conventional computing 
methodology, which employs different formal isms for expressing programs, 
specifications, databases, queries and integrity constraints, logic 
provides a single uniform language for all of these tasks. We shall 
investigate the use of logic for databases, but concentrate on its use as 
a programming language. 

The meaning of programs expressed in conventional languages is defined 
in terms of the behaviour they invoke within the computer. The meaning 
of programs expressed in logic, on the other hand, can be defined in 
machine-independent, human-oriented terms. As a consequence, logic 
programs are easier to construct, easier to understand, easier to 
improve, and easier to adapt to other purposes. 

The same methods of top-down inference which give logic a problem-
solving interpretation can be used to execute logic programs efficiently 
by means of computers. Top-down inference unifies problem-solving and 
computer programming. Moreover, it provides many of the facilities for 
intelligent program execution, such as non-determinism, parallelism, and 
procedure call by pattern-matching, which are under development for more 
conventional programming languages today. An efficient programming 
language, called PROLOG [Colmerauer et al 1972], [Roussel 1975], 
[Bruynooghe 19761. [Warren, Pereira and Pereira 1977] and [Clack and 
McCabe 1979], based on the clausal form of logic, has been used for 
applications in artificial intelligence, databases and engineering. 

Mechanical theorem-proving 

The use of the clausal form of logic and its associated systems of 
inference is based upon investigations into the mechanical proof of 
theorems by means of computers. The resolution rule of Robinson [1965a] 
and the model-elimination proof procedure of Loveland [1968, 1969] have 
been the main antecedents of the inference systems investigated in this 
book. Their inference methods in turn are based upon earlier researches 
by Herbrand [1930J and Prawitz [1960]. 



Organisation of the book 

direction of change. This combines the problem-solving interpretation of 
logic with the classical use of logic in the analysis of human knowledge 
and belief. 

Level of the book ----- -- --- ----
This book is an extension of lecture notes prepared in March 1974 

[Kowalski 1974b] for an advanced course on the Foundations of Computer 
Science held at the Mathematics Centre in Amsterdam. Short courses on the 
same material were given by the author in Edinburgh, Milan, Rome and 
Stockholm, between 1973 and 1975. Since 1975, parts of the book have been 
used for introductory courses in logic and in problem-solving given to 
computing students at Imperial COllege. A complete course covering all 
the material in the book was given at the University of Syracuse in 
1978. 

The book is written at an informal level and contains almost no 
proofs. It assumes no previous background in logic, problem-solving or 
computer science, and may be suitable, therefore, for students at the 
first year undergraduate level. Many of the exercises, however, are of a 
more advanced level. Moreover, some of the discussion in Chapter 5, 
comparing logic with conventional programming languages, may not be 
completely intelliigible to readers without previous programming 
experience. 

Acknowledgements 

Much of the material in this book has been influenced by the work of 
my colleagues Keith Clark, Alain Colmerauer, Pat Hayes, Maarten van Eroden 
and David Warren. I am grateful to them and to Frank Brown, Alan Bundy, 
Tony Hoare, Wilfred Hodges, Chris Hogger, Jan Nilsson, George pollard, 
Ray Reiter, Richard Waldinger and George winterstein, for the valuable 
comments they have made on earlier drafts of the book, and to Karen King, 
Frank McCabe, Kevin Mitchell and Chris MoSS, for helping to produced the 
camera-ready copy. I am also happy to acknowledge the support of the 
Science Reseach Council. 

I am especially indebted to my wife, Danusia, and children, Dania, 
Tania and Janina, for their patience and encouragement. 



Preface 

Although the inference methods in this book were originally designed 
for use by computers, they can also be used by human beings. The problem-
solving strategies developed for efficient mechanical theorem-proving are 
similar to those investigated by researchers concerned with computer 
simulation of human problem-solving. In particular we have attempted to 
present a view of logic which reconciles the machine-oriented view of 
resolution with the heuristic proof-procedures of Bledsoe 11971, 1977J 
and his colleagues. 

This book can be regarded as a text in the 
theorem-proving, similar to those by Chang and 
[1978] and Robinson [1979]. It is less formal, 
attempt to give a broad coverage of the field. 

Organisation of the book 

field of mechanical 
Lee 11973J, Loveland 

however, and makes no 

The book is organised into three parts. The first part, Chapters I and 
2, deals with the machine-independent semantics of the clausal form of 
logic and the use of clausal form for representing information; the 
second part, Chapters 3 to 8, deals with inference systems for clausal 
formi and the third , Chapters 9 to 13, investigates extensions of 
clausal form as well as more powerful problem-solving methods. 

The first part of the book emphasises that logic, unlike most other 
formal isms, can be understood without understanding its behaviour. 
Examples are given of the use of logic for describing programs and 
databases, and clausal form is compared with semantic networks for 
representing the meanings of natural language sentences. 

The second part of the book introduces inference methods for clausal 
form in stages of increasing complexity. Chapters 3 to 6 deal with 
inference methods for Horn clauses, which are simplified sentences, 
mainly of the form 

A if Bl and B2 and ... and Bm' 

Top-down and bottom-up inference are introduced in Chapter 3 as 
generalisations of top-down and bottom-up parsing procedures for context-
free grammars. Chapter 4 deals with the problem-solving interpretation of 
top-down inference, whereas Chapter 5 deals with its programming language 
interpretation. Chapter 6 describes the application of Horn clause logic 
to plan-formation problems. Inference methods for non-Horn clause 
problems and their problem-solving interpretation are investigated in 
Chapters 7 and 8. 

Chapter 9 deals with global problem-solving methods for clausal form, 
whereas the remaining chapters investigate various extensions of clausal 
form. Although clausal form is as powerful as the standard form of 
logic, it is sometimes less natural. The standard form of logic and its 
relationship to clausal form are investigated in Chapter 10. Definitions 
using "if-and-only-if" are treated separately in Chapter 11. In Chapter 
12 we consider an extension of logic which combines the use and mention 
of sentences in a manner similar to that of natural language. The final 
chapter deals with the dynamics of changing information systems, paying 
special attention to the role of contradiction in determining the 
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CHAPTER 1 

Introduction 

Logic studies the relationship of implication between assumptions and 
conclusions. It tells us, for example, that the assumptions 

Bob likes logic. and 
Bob likes anyone who likes logic. 

imply the conclusion 

Bob likes himself. 

but not the conclusion 

Bob only likes people who like logic. 

Logic is concerned not with the truth, falsity or acceptability of 
individual sentences, but with the relationships between them. If a 
conclusion is implied by true or otherwise acceptable assumptions, then 
logic leads us to accept the conclusion. But if an unacceptable or false 
conclusion is implied by given assumptions, then logic advises us to 
reject at least one of the assumptions. Thus, if I reject the conclusion 
that Bob likes himself then I am logically compelled to abandon either 
the assumption that Bob likes logic or the assumption that Bob likes 
anyone who likes logic. 

To demonstrate that assumptions imply a conclusion, it is helpful to 
construct a proof consisting of inference steps. For the proof to be 
convincing, the individual inference steps need to be direct and obvious 
and should fit together correctly. For this purpose, it is necessary that 
the sentences be unambiguous and it is useful if the grammar of the 
sentences is as simple as possible. The requirement that the language of 
proofs be both unambiguous and grammatically simple motivates the use of 
a symbolic language rather than a natural language such as English. 

The symbolic language of the clausal form of logic, used in the first 
nine chapters of this book, is exceedingly simple. The simplest sentences 
are atomic sentences which name relationships between individuals: 

Bob likes logic. 

John likes Mary. 

John is 2 years older than Mary. 

(The underlined words are part of the names of relationships. Those not 
underlined are names of individuals.) More complex sentences express that 
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atomic conditions imply atomic conclusions: 

Mary likes John if John likes Mary. 

Bob likes x if x likes logic. 

Here x is a variable which names any individual. Sentences can have 
several joint conditions or several alternative conclusions: 

Mary likes John or Mary likes Bob if Mary likes x. 
(Mary likes John or Bob if she likes anything at all). 

x likes Bob if x is a student of Bob and x likes logic. 

Sentences are also called clauses. In general, every 
that a number (possibly zero) of joint conditions 
(possibly zero) of alternative conclusions. Conditions 
express relationships among individuals. The individuals 
named by words such as 

Bob, John, logic or 2 

clause expresses 
imply a number 
and conclusions 

may be fixed and 

called (somewhat confusingly, perhaps) constant symbols, or they may be 
arbitrary and named by variables such as 

u, v, w, x, y, z. 

The use of function symbols to construct more complex names such as 

dad (John) (i.e. John's dad) 

fraction(3,4) (i.e. the fraction 3/4) 

will be considered later. 

This informal outline of the clausal form of logic will be elaborated 
and slightly modified in the next section of this chapter. But the great 
simplicity of clausal form compared with natural languages should already 
be apparent. It is surprising therefore that clausal form has much of 
the expressive power of natural language. In the last four chapters of 
the book we shall investigate some of the shortcomings of clausal form 
and propose ways of overcoming them. 

The family relationships example and clausal form 

It is convenient to express the atomic formulae which serve as the 
conditions and conclusions of clauses-rn-a simplified, if somewhat less 
natural, form. The name of the relation is written in front of the atomic 
formula, followed by the sequence of names of individuals to which the 
relation applies. Thus we write Father (Zeus,Ares) instead of Zeus is 
father of Ares and Fairy-Princess (Harmonia) instead of Harmonia is 
fairy prIncess. Here, str ictly speaking, "Fairy-pr incess" names a 
property of individuals rather than a relation among individuals. 
However, in order to simplify the terminology, we shall include 
properties (also called predicates) when we speak of relations. 
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Moreover,to mix terminology thoroughly we shall refer to names of 
relations as predicate symbols. 

We use the arrow read "if", to indicate implication, writing, for 
example, 

Female(x) (- Mother(x,y) 

to express that 

x is female if x is mother of y. 

To simplify notation and the inference rules later on, it is 
convenient to regard all clauses as implications, even if they have no 
conditions or conclusions. Thus we write 

Father (Zeus,Ares) (-

instead of 

Father (Zeus,Ares). 

Implications without conclusions are denials. The clause 

(- Female (Zeus) 

expresses that Zeus is not female. 

The following clauses describe some of the properties and family 
relationships of the Greek gods. 

Fl Father (Zeus,Ares) <-

F2 Mother (Hera,Ares) <-

F3 Father (Ares,Harmonia) <-

F4 Mother (Aphrodite,Harmonia) <-

FS Father (Cadmus,Semelel <-

F6 Mother (Harmonia,Semele) <-

F7 Father (Zeus,Dionysus) <-

F8 Mother (Semele,Dionyslls) <-

F9 God (Zeus) <-

F10 God (Hera) <-

F11 God (Ares) <-

F12 God (Aphrodite) <-

F13 Fairy-Princess(Harmonia) <-
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The intended meaning of the clauses should be obvious. The following 
clauses constrain, and therefore help to clarify, their meaning. 

F14 Female(x) (- Mother(x,y) 

FlS Male(x) (- Father (x,y) 

F16 Parent(x,y) (- Mother (x,y) 

F17 Parent(x,y) (- Father (x,y) 

These clauses state that, for all x and y, 

x is female if x is mother of y, 

x is male if x is father of y, 

x is parent of y if x is mother of y, and 

x is parent of y if x is father of y. 

Variables in different clauses are distinct even if they have the same 
name. Thus the variable x in clause F14 has no connection with the 
variable x in PIS. The name of a variable has significance only within 
the context of the clause in which it occurs. Two clauses which differ 
only in the names of the variables they contain are equivalent and are 
said to be variants of one another. 

In the clausal form, all the conditions of a clause are conjoined 
together (i.e. connected by "and"), whereas all the conclusions are 
disjoined (Le. connected by "or"). Hence the connectives "and" and "or" 
can safely be replaced by commas. Commas between conditions, therefore, 
are read as "and" and between conclusions are read as "or". Thus 

FIB Grandparent(x,y) (- Parent(x,z), Parent(z,y) 

F19 Male(x), Female (x) (- Human(x) 

where x, y and z are variables, state that for all x, y and z 

x is grandparent of y if x is parent of z and 
z is parent of y, 

x is male or x is female if x is human. 

If several conclusions are implied by the same conditions then 
separate clauses are needed for each conclusion. Similarly if the same 
conclusion is implied by alternative conditions then separate clauses are 
needed for each condition. For example, the sentence 

Female (x) and Parent(x,y) (- Mother (x,y) 

which can be expressed directly in the standard form of logic (defined in 
Chapter 10) can be expressed equivalently by the clauses 
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Female (x) (- Mother (x,y) 

Parent(x,y) (- Mother (x,y) • 

The two clauses are implicitly connected 
is the mother of y and x is the parent 
Similarly, the sentence 

by "and": i.e. x is female if x 
of y if x is the mother of y. 

Parent(x,y) (- Mother (x,y) or Father(x,y) 

can be expressed by the clauses 

Predicate 
individuals. 

Parent(x,y) (- Mother (x,y) 

Parent(x,y) (- Father (x,y) 

x is parent of y if x is mother of y and 
x is parent of y if x is father y. 

symbols can name relationships 
For example, the atomic formula 

Parents(x,y,z) 

among more 

could be used to express that 

x is the father of z and y is the mother of z 

i.e. Parents(x,y,z) (- Father(x,z), Mother (y,z) • 

more precise definition of clausal form 

than two 

We shall define the syntax (grammar) of clausal form more precisely 
and at the same time indicate its correspondence with English. 

A clause is an expression of the form 

where Bl, .•• ,Brn,Al, •.• ,An are atomic formulae, n 0 and m 0. The 
atomic formulae AI, ..• ,An are the joint conditions of the clause and 
Bl, ..• ,Bm are the conclusions. If clause contains 
the variables xI, ... ,xk then It as statlng that 

for all 
Blor •.• or Bm Al and .•. and An' 

If n 0 then interpret it as stating unconditionally that 

for all xl, •.• ,xk 
Blor ... or Bm. 



6 

Ifm 

Chapter 1: Introduction 

o then interpret it as stating that 

for all xl"",xk 
it is not the case that 
Al and ..• and An' 

If 1 = n = 0 then write it as 0 and interpret it as a sentence which 
is always false. 

An atom (or atomic formula) is an expression of the form 

where P is an m-place predicate symbol, tl, ..• ,tm are terms and 
ID > 1. Interpret the atom as asserting that the relation called P 
hoTds among the individuals called tI,o.o,tm, 

A term is a variable, a constant symbol or an expression of the 
form 

where f is an m-place function symbol, tl, ..• ,tm are terms and ID 1. 

The sets of predicate symbols, 
and variables are any mutually 
reserve the lower case letters 

u,v,w,x,y,z, 

function symbols, constant symbols 
disjoint sets. By convention, we 

with or without adornments, for variables. The types of other kinds 
of symbols can be identified by the positions they occupy in clauses. 

The arrow of clausal form (- is written in the opposite direction to 
that normally used in the standard form of logic. Where we write 

B (- A (B if AI 

it is more usual to write 

A -) B (if A then B). 

The difference, however, is only superficial. We use the notation B (- A 
in order to draw attention to the conclusion of the clause. 

The various places 
called its arguments. 
and the last argument 

of a predicate symbol or function symbol are also 
In the atom P (tl"" ,tm), the first argument is tl 

is t m. 

Composite terms are needed in order to refer to infinitely many 
individualS using only finitely many clauses. For example, the non-
negative integers can be represented by the terms 

0, s(0), 5(5(0)), s (s ( ••• 5 (0) ••• ») , 

n times 
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where 0 is a constant symbol and s is a I-place function symbol (s stands 
for "successor"). The term s(t) names the number which is one larger then 
the number named by the term t. It is the successor of t in the 
succession of integers. The clauses 

Numl Numb(0) (-

Num2 Numb{s(x)) (- Numb{x) 

state that 

o is a number and 

s(x) is a number if x is. 

and presentation of definitions 

The definition of clausal form has been presented in a top-down 
manner. The first definition explains the goal concept of clause in terms 
of the concept of atomic formula, (which has not yet been defined). It 
becomes the new goal concept, which in the next definition is reduced to 
the two subgoal concepts of predicate symbol and term. The concept of 
term is defined recursively and reduces eventually to the concepts of 
constant symbol, variable and function symbol. Thus the original concept 
finally reduces to the four concepts of predicate symbol, constant 
symbol, variable and function symbol. It does not matter what objects 
these symbols are, provided they can be distinguished from one anotheE 
and do not get confused with the "reserved" symbols: 

<- and 

We assume therefore that the reserved symbols are not contained within 
the other symbols. 

The top-down presentation of definitions has the advantage of always 
being well-motivated. Its disadvantage is that, since goal concepts are 
defined in terms of subgoal concepts which are not yet defined, 
definitions cannot be completely understood as they are presented. 

The bottom-up presentation of definitions is the opposite. It begins 
with concepts which are undefined, either because they are "primitive" 
and undefinable or else because they are already well understood. Then it 
defines new concepts in terms of ones already given. The definitions 
terminate when the goal concept has been defined. Definitions can be 
understood as soon as they are given, but the motivation cannot be 
appreciated until all the definitions have been completed. 

The distinction between top-down and bottom-up applies not only to the 
presentation of definitions, but also to the presentation and discovery 
of proofs and to the writing of computer programs. Proofs can be 
presented in the traditional, bottom-up, mathematical reasoning 
forward from what is given, deriving new conclusions from previous ones 
and terminating when the goal has been derived. Alternatively, proofs can 
be presented in a top-down manner which reflects the process of their 
discovery; reasoning backward from the goal, by reducing goals to 
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subgoals and terminating when all the subgoals are recognised as 
solvable. 

computer programs also can be written bottom-up, starting with 
primitive programs already understood by the computer and writing new 
programs in terms of old ones. At each stage the programs can be executed 
by the computer and can be tested. If the low-level programs already 
written cannot be put together into suitable higher-level programs, then 
they have to be rewritten. Experience teaches that it is better to write 
programs top-down, writing the highest-level programs first in terms of 
unwritten lower-level ones. The lower-level programs are written later 
and are guaranteed to fit together properly. Moreover, the lower-level 
programs later can be changed and improved without affecting the rest of 
the program. 

Together with the utility of using symbolic logic to represent 
information, the distinction between top-down and bottom-up reasoning is 
one of the major themes of this book. It is the distinction between 
analysis (top-down) and synthesis (bottom-up), between teleology (top-
down) and determinism (bottom-up). Moreover, the use of top-down 
inference in preference to bottom-up inference reconciles the classical, 
logical view of reasoning as it to be performed with the 
psychological view of reasoning as it performed by human beings in 
practice. 

Top-down reasoning relates the human problem-solving strategy of 
reducing goals to subgoals to the method of executing computer programs 
by replacing procedure calls with procedure bodies. It unifies the study 
of logic with both the study of human problem-solving and the study of 
computer programming. 

Semantics of clausal form 

Syntax deals with the grammar of sentences. Historically, it also 
deals with inference rules and proofs. Semantics, on the other hand, 
deals with meaning. The translation of clauses into English gives only an 
informal guide to their semantics. 

In natural languages we speak casually of words and sentences as 
having meanings. In symbolic logic we are more careful. Any meaning that 
might be associated with a predicate symbol, constant symbol, function 
symbol or sentence is relative to the collection of sentences whiCh 
express all the relevant assumptions. In the family relationships 
example, for instance, if Fl-19 express all the assumptions, then there 
is nothing to rule out an interpretation in which the assertion 

F 

holds. Such 
Fl-19, which 
the symbols 

Mother (Zeus,Ares) (-

a possibility is consistent 
alone determine any meaning 

with the stated assumptions 
that might be associated with 

"Mother", "Father", "Zeus", etc. 
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To rule out the possibility F we need some additional assumption such as 

F2" (- Male(x), Female (x) . 

F is consistent with Fl-19 but inconsistent with Fl-20. 

Given a set of clauses which express all the assumptions concerning a 
problem-domain, to understand any individual symbol or clause it is 
necessary to determine what is logically implied by the assumptions. The 
meaning of a predicate symbol, such as "Mother", might be identified with 
the collection of all sentences which contain the predicate symbol and 
are logically implied by the assumptions. Thus the meaning of "Mother" in 
Fl-20 includes the denial 

F* (- Mother (Zeus,Ares) 

but the meaning of "Mother" in Fl-19 does not. 

It follows that it is unnecessary to talk about meaning at all. All 
talk about meaning can be reexpressed in terms of logical implication. 
To define the semantics of the clausal form of logic, therefore, it 
suffices to define the notion of logical implication. 

In the clausal form of logic, to determine that a set of assumptions 
imply a conclusion we deny that the conclusion holds and show that the 
denial of the conclusion is inconsistent with the assumptions. The 
semantics of clausal form, therefore, reduces to the notion of 
inconsistency. To determine, for example, that the consequence F* is part 
of the meaning of motherhood as determined by the clauses Fl-20, we show 
that the denial of F*, namely the assertion F, is inconsistent with 
Fl-20. The reduction of semantics to the notion of inconsistency may 
seem unnatural, but it has significant computational advantages. 

The inconsistency of a set of clauses can be demonstrated 
"semantically" by showing that no interpretation of the set of clauses 
makes them all true, or it can be demonstrated "syntactically" by 
constructing a proof consisting of inference steps. This book is about 
the syntactic, proof-theoretic method of demonstrating inconsistency. 
But, because clauses can be understood informally by translating them 
into English or more formally by considering the interpretations in which 
they are true, we shall delay the investigation of inference rules and 
proofs until Chapter 3. 

The semantics of symbolic logic, based upon the notion of 
interpretation, is independent of the inference rules used to manipulate 
expressions in the language. This distinguishes logic from the vast 
majority of formal isms employed in computing and artificial intelligence. 
Programs expressed in normal programming languages need to be understood 
in terms of the behaviour they evoke inside a computer. The burden of 
communication falls upon the programmer, who needs to express information 
in machine-oriented terms. However, when programs are expressed in 
symboJic logic, they can be understood in terms of their human-oriented, 
natural language equivalents. The burden of communication then falls upon 
the machine, which needs to perform mechanical operations (equivalent to 
inference steps) to determine whether the information expressed in a 
program logically implies the existence of a solution to a given problem. 
The machine needs to be a problem-solver. The tasks of constructing 
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proofs, executing programs and solving problems become identical. 
Moreover, similar problem-solving strategies apply, whether they are 
applied by human-beings to problems posed in natural language or by 
machines to problems posed in symbolic logic. 

Before presenting the precise, semantic definitions of inconsistency 
and interpretation, we shall illustrate by examples some of the 
expressive capabilities of clausal form and some of the characteristics 
of its semantics. 

The fallible Greek example 

To show that the assumptions 

G1 Human (Turing) (-

G2 Human (Socrates) (-

G3 Greek (Socrates) (-

G4 Fallible(x) (- Human (x) 

imply the conclusion that there is a fallible Greek, we deny the 
conclusion 

G5 Fa11ible(u), Greek(u) 

and show that the resulting set of clauses is inconsistent. Moreover, the 
demonstration of inconsistency can be analysed to determine the reason 
for the inconsistency of G5 with Gl-4, namely the substitution 

u = Socrates 

which identifies an individual that is both fallible and Greek. In this 
way the clause GS can be regarded as expressing the problem of finding an 
individual u which is a fallible Greek. The substitution, u = Socrates, 
which can be extracted from the proof, can be regarded as a solution to 
the problem. 

The example of the fallible Greek was first introduced to explain the 
behaviour of programs written in the programming language PLANNER [Hewitt 
19691. Our intention here is just the opposite: to show that information 
expressed in logic can be understood without understanding the behaviour 
it evokes inside a machine. 

The factorial example 

The fallible Greek example is not typical of programs written in 
conventional programming languages. However, the factorial example is. 

The factorial of 0 is 1. 
The factorial of x+l is x+l times the factorial of x. 



The factorial example 

The simplest formulation of the definition uses function symbols: 

fact (x) names 
times(x,y) 
s (x) 

the factorial of x, 
the product of x and y, 
x+1. 

11 

A 2-place predicate symbol expresses equality. Equal (x,y) holds when x 
"is" y. 

Equal(fact(0), 1) (-

Equal (fact (s (x», times (s (x), fact (x») (-

To complete the definition, additional definitions are 
characterise "times" and "Equal". The following clauses are 
the ones which are necessary for equality. 

(l) 

(2) 

(3) 

Equal (x,x) (-

Egual(x,y) (- Equal(x,z), Equal(z,y) 

Equal (fact (x), fact (y» (- Equal (x,y) 

needed to 
typical of 

To find the factorial of 2, for example, we deny that it exists: 

(4) (- Equal{fact(s(s(0»), w) 

But (I) and (4) alone are inconsistent and the substitution 

w = fact(s(s(0)} 

can be identified as the reason for inconsistency. Unfortunately, the 
substitution is not very informative. 

The problem is that the function symbols "fact", "times" and "s" allow 
numbers to be referred to by many different names. The variable-free 
terms 

s(s(0}), sell, s{fact(0)}, s(fact(times(0, s(0»» 

all name the same number 2 and are equal to one another. The problem can 
be solved if individuals are given unique names. In this example it 
suffices to employ only the constant symbol 0 and the function symbol s. 
The factorial and multiplication functions can be treated as relations. 

Fact(x,y) holds when the factorial of x is y. 
Times(x,y,z) holds when x times y is z. 

Then the clauses 

Fact! Fact(0, s{0}} (-

Fact2 Fact(s(x), u) (- Fact(x,v), Times(s(x), v, u) 

completely define the factorial relationship relative to an appropriate 
definition of mUltiplication. The equality relation does not appear and 
its definition is unnecessary. Assume that a definition of 
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multiplication, including such clauses as 

Times(0,x,0) (-

Times(s{0), y, y) (-

etc. 

is provided. To solve the problem of finding the factorial of 2, we deny 
that it exists. 

Fact3 (- Fact(s(s(0», w) 

The resulting set of clauses Factl-3 is inconsistent with any definition 
of Times which implies the assertions 

5(0), 5(s(0») (-

Times(s(0), s(0), s(0» (-

Given a demonstration of inconsistency it is possible to extract the only 
substitution 

w = s{s(0» 

which solves the problem. In this way the definition of Fact supplemented 
by a definition of Times serves as a program which can be used by a 
computer to calculate factorials. The program can be understood without 
understanding how the computer works. 

The universe of discourse and interpretations 

In this section and the next we define the semantics of clausal form. 
These sections are more rigorous than the rest of the chapter and may be 
safely skimmed through on a first reading. 

The two formulations of the factorial definition illustrate a general 
principle of clausal writing style. To avoid problems associated with 
individuals having more than one name, constant symbols and function 
symbols should be used sparingly. If individuals are named by unique 
variable-free terms, then the universe of discourse of a set of clauses, 
which intuitively represents the collection of all individuals described 
by the clauses, can be identified with the collection of all variable-
free terms which can be constructed from the constant symbols and 
function symbols occurring in the set of clauses. A candidate 
interpretation for a set of clauses can then be regarded as any 
assignment to each n-place predicate symbol occurring in the set of 
clauses of an n-place relation over the universe of discourse. 

The assumptions Gl-4 of 
example. They have a small, 
the two constant symbols 

the fallible Greek problem are a simple 
finite universe of discourse, consisting of 

"Turing" and "Socrates". 
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To specify a candidate interpretation 
universe of discourse for each of the 
of clauses. Each predicate symbol 
interpretations and therefore the set 
of 

is to specify a relation over the 
three predicate symbols in the set 
can be assigned four different 
of clauses as a whole has a total 

4*4*4 = 64 

different candidate interpretations.* But only two of them make all of 
the clauses Gl-4 true. One of them makes all of the variable-free atoms 

Human (Socrates) , Human (Turing) , 
Fallible (Socrates) , Fallible (Turing) , 
Greek (Socrates) , Greek (Turing) 

true. The other makes the atoms 

true but 

false. 

Human (Socrates) , Human(Turing), 
Fallible (Socrates) , Fallible(Turing), 
Greek (Socrates) 

Greek(Turing) 

The larger set of clauses Gl-S has the same universe of discourse and 
the same collection of 64 candidate interpretations. However, none of the 
64 interpretations make all five clauses Gl-S simultaneously true. The 
two interpretations which make Gl-4 all true make G5 false. In particular 
the instance 

G'5 (- Fallible (Socrates) , Greek(Socrates) 

of GS, in which u = Socrates, is false in both interpretations, because 
the two conditions 

Fallible (Socrates) and Greek (Socrates) 

denied by G'S are true in both interpretations. Since G1S is false in 
both interpretations, GS is false also (because a clause containing 
variables is true in an interpretation if and only if all its instances 
are true and is false if one of its instances is false). Therefore Gl-5 
is inconsistent because there is no interpretation which makes all of its 
clauses true. By analysing the proof of inconsistency it is possible to 
identify the individual 

u = Socrates 

whose existence is inconsistently denied by the clause GS. 

The semantic method of showing the inconsistency of a set of clauses, 
by demonstrating that no interpretation makes all of its clauses true, 
is a general method which can be used for any set of clauses. Moreover, 

* The symbol "*" is used throughout this book for multiplication. 
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the interpretations which need to be considered can always be restricted 
to those whose domain of individuals consists of the universe of 
discourse. If the set of clauses contains no constant symbols, then it 
is necessary to include in the universe of discourse a single, arbitrary 
constant symbol. In this case the universe of discourse consists of all 
variable-free terms which constructed from the given constant 
symbol symbol and any function symbols which might occur in the set of 
clauses. 

The inclusion of an arbitrary constant symbol in the universe of 
discourse, if there is none in the set of clauses, formalises the 
assumption that at least one individual exists. Because of this 
assumption, the clause 

(1) Good (x) (-

which expresses that everything is good, implies that at least one thing 
is good. It is inconsistent with the assumption that nothing is good 

(2) (- Good{y) . 

The universe of 
symbol, say 4. 
which 

discourse consists of some single, arbitrary constant 
There are only two candidate interpretations - one in 

Good (4) is true 

the other in which 

Good(..q..) is false. 

The first interpretation falsifies (2). The second interpretation 
falsifies (1). So (1) and (2) are, therefore, simultaneously true in no 
interpretation and are inconsistent. Notice that the demonstration of 
inconsistency does not depend on the name of the arbitrary member of the 
universe of discourse. The argument is the same no matter what constant 
symbol is used. 

The notion of interpretation itself can be simplified. To specify an 
interpretation it suffices to specify its effect on the truth or falsity 
of variable-free atomic formulae. An interpretation of a set of clauses, 
therefore, can be regarded as any aSSignment of either one of the two 
truth values 

to every every variable-free atom which can be constructed from the 
universe of discourse and the predicate symbols occurring in the set of 
clauses. 

A more precise definition of inconSistency 

We are now in a position to present a more precise definition of 
inconsistency. 



A more precise definition of inconsistency 

A set of clauses S is inconsistent 
consistent. It is consistent if and only 
in some interpretation of S. 

if and only if it is not 
if all its clauses are true 

A clause is true in an interpretation of a set of clauses S if and 
only if every instance of the clause, obtained by 
replacing variables by terms from the universe of discourse of S, is 
true in the interpretation. Otherwise the clause is false in the 
interpretation. 

A variable-free clause is true in an interpretation I if and only 
if whenever all of its conditions are true in I, at least one of its 
conclusions is true in I. Equivalently, the clause is true in I if 
and only if at least one of its conditions is false in I or at least 
one of its conclusions is true in I. Otherwise, the clause is false 
in I. 
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The precise definition of inconsistency clarifies the semantics of the 
empty clause, D. Since the empty clause has neither conditions nor 
conclusions it cannot possibly be true in any interpretation. It is the 
only clause which is self-inconsistent. To demonstrate the inconsistency 
of a set of clauses it suffices to demonstrate that it logically implies 
the obviously inconsistent empty clause. The empty set of clauses, 
however, is consistent. All clauses which belong to it are true in all 
interpretations, since it contains no clauses which can be false. 

The notions of instantiation and substitution are important not only 
for defining the semantics of clausal form but also for defining the 
inference rules later on. An instance of a clause is obtained by applying 
a substitution to the clause. A substitution is an assignment of terms to 
variables. Only one term is assigned to any given variable. It is 
convenient to represent a substitution as a collection of independent 
substitution components: 

.... , Xm = t"l 
Each component Xl = tl of the substitution assigns a term ti a 
varlable Xl' The result of applying substitution rr to an expreSSIon E 
IS a new expression Err which is just like E except that, wherever rr 
contains a substitution component Xi = ti and E contains an occurrence of 
the variable Xi' the new expression contains an occurrence of ti' The 
application of cr to E replaces all occurrences of the same variable by 
the same term. The expression E can be any term, atom, clause or set of 
clauses. Different variables may be replaced by the same term. 

It follows that 
distinct individuals. 

distinct variables do 
The assumptions 

Ll Likes (Bob,logic) (-

L2 Likes(Bob,x) (- Likes(x,logic) 

L3 (- Likes(x,y), Likes(y,y) 

not neCeSSar ily 

No one likes anyone who likes himself. 

refer to 
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for example, are inconsistent because L1 and L2 are inconsistent with thE 
instance 

(- Likes(Bob,Bob), Likes (Bob,Bob) 

of L3 in which both x : Bob and y : Bob. 

The semantics of alternative conclusions 

The precise definition of inconsistency clarifies the semantics of 
alternative conclusions. If a clause has several conclusions, then it 
should be interpreted as stating that if all its conditions hold then at 
least one (but possibly more) of its conclusions hold. 'I'his inclusive 
interpretation of "or" contrasts with the exclusive interpretation in 
which "A or BOI is interpreted as expressing that either one or other of A 
and B holds, but not both. 

The inclusive interpretation of "or" implies, for example, that the 
set of assumptions 

B1 Animal (x), Mineral (x), Vegetable (x) (-

B2 Animal (x) (- Oyster (x) 

B3 Mineral(x) (- Brick(x) 

B4 Vegetable (x) (- Cabbage (x) 

is consistent with the possibility that something is both an animal and a 
vegetable: 

B5 Animal (x) (- Bacterium (x) 

B6 Vegetable (x) (- Bacterium (x) 

B7 Bacterium( BV) (-

The exclusive sense of "or" can be captured by means of inclusive "or" 
and denial. To express. for example, that every human is either male or 
female but not both, requires two clauses: 

Female (x) , Male(x) (- Human{x) 

(- Female (x) , Male(x), Human (x) 

Horn clauses 

For many applications of logic, it is sufficient to restrict the form 
of clauses to those containing at most one conclusion. Clauses containing 
at most one conclusion are called Horn clauses, because they were first 
investigated by the logician Alfred Horn [1951]. It can be shown, in 
fact. (exercise 5 in Chapter 12) that any problem which can be expressed 
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in logic can be reexpressed by means of Horn clauses. 

The majority of formal isms for computer programming bear greater 
resemblence to Horn clauses than they do to "non-Horn" clauses. In 
addition, most of the models of problem-solving which have been developed 
in artificial intelligence can be regarded as models for problems 
expressed by means of Horn clauses. 

Because Horn clauses are such an important subset of clausal form, 
and because inference methods for Horn clauses have a simple problem-
solving and computer programming interpretation, we shall investigate 
them in detail (in Chapters 3-6) before investigating the full clausal 
form in general (in Chapters 7-8). It is important to appreciate, 
however, that although non-Horn clauses might be dispensible in theory 
they are indispensible in practice. Moreover, the extension of Horn 
clause problem-solving methods to clausal form in general is a 
significant extension of the simpler models of problem-solving which are 
more popular tOday. 

Mushrooms and toadstools 

A simple example which can be expressed 
non-Horn clauses is one which expresses some 
mushrooms and toadstools. Suppose I believe 

naturally only by means of 
typical beliefs concerning 

(1) Every fungus is a mushroom or a toadstool. 

(2) Every boletus is a fungus. 

(J) All toadstools are poisonous. and 

(4 ) No boletus is a mushroom. 

Symbolically, 

FungI Mushroom(x). Toadstool (x) (- Fungus(x) 

Fung2 Fungus(x) <- Boletus(x) 

Fung3 Poisonous (x) <- Toadstool (x) 

Fung4 (- Boletus(x), Mushroom(x) 

then I should also believe at least the more obvious of the logical 
consequences of my beliefs. In particular I should believe that 

All boleti are poisonous. 

FungS Poisonous(x) <- Boletus (x) 

But every collector of edible fungi knows that few boleti are 
poisonous and most are quite tasty. If I reject the conclusion FungS and 
maintain my belief in logic then I must reject at least one of my initial 
assumptions Fungl-4. It is surprising how many people abandon logic 
instead. 
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Exercises 

1) using the same vocabulary (i.e. predicate symbols, constants and 
function symbols) as in Fl-19, express the following sentences in clausal 
form: 

a) x is a mother of y if 
x is a female and x is a parent of y. 

b) x is a father of y if 
x is a male parent of y. 

c) x is human if 
y is a parent of x and y is human. 

d) An individual is human if 
his (or her) mother is human and 
his (or her) father is human. 

e) If a person is human 
then his (or her) mother is human or 
his (or her) fether is human. 

f) No one is his (or her) own parent. 

2) Given clauses which define the relationships 

Father(x,y) (x is father of y) 
Mother(x,y) (x is mother of y) 
Male (xl (x is male) 
Female(x) (x is female) 
Parent(x,y) (x is parent of y) 
Diff (xrY) (x is different from y) 

define the following additional relationships! 

M(x) (x is a mother) 
F(x) (x is a father) 
S (x,yl (x is a son of y) 
D(x,y) (x is a daughter of y) 
Gf(x,y) (x is a grandfather of y) 
Sib{x,y) (x is a sibling of y) 

For example the clause 

Aunt(x,y) (- Female{x), Sib(x,z), Parent{z,y) 

defines the relationship Aunt(x,y) (x is an aunt of y) 
the Female, Sib and Parent relations. 

3) Let the intended interpretation of 

in terms of 



Hc (xl 
Wd(x) 
Star (xl 
Comet (x) 
planet (x) 
Near(x,y) 
Ht (x) 

be 

Exercises 

x is a heavenly creature 
x is worth discussing 
x is a star 
x is " comet 
x is a planet 
x is near y 
x has a tail. 

a) Express in clausal form the assumptions: 
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Every heavenly creature worth discussing is a star, planet 
or comet. 
Venus is a heavenly creature, which is not a star. 
Comets near the sun have tails. 
Venus is near the sun but does not have a tail. 

b) What "obvious" missing assumption needs to be added to the 
clauses above for them to imply the conclusion 

Venus is a planet ? 

4) Using only the predicate symbols, Numb, Odd and Even, the function 
symbol s, and the constant 0, express in clausal form 

al the conditions under which a number is even, 

bl the conditions under which a number is odd, 

cl that no number is both odd and even, 

dl that a number is odd if its successor is even, 

el thet a number is even if its successor is odd, 

f) that the successor of a number is odd if the 
even and that the successor is even 

5) Let the intended interpretation of 

Parity(x,odd) 
Par ity (x,even) 

be x is odd 
be x is even. 

if the number 
number is 
is odo.. 

Let the notion of opposite parities be expressed by the two clauses 

Opp(odd,even) <-
Opp(even,odd) <-

Define the notion of Cl number being odd or even using only three 
additional clauses, two of them variable-free assertions. 

6) Inventing your 
2ssumptions in clausal 
the other to name me. 

own 
form. 

predicate symbols, express the following 
Use only two constants, one to name my cat, 
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Birds like worms. 
Cats like fish. 
Friends like each other. 
My cat is my friend. 
My eats everything it likes. 

What do these assumptions imply that my cat eats? 

7) Assume that arcs in a directed graph, e.g. 

B 2 

1 
C 

are described by assertions of the form 

Distance(r,s,t) (-
(the length of the arch from r to 5 is t). 

Thus the assertion 

Distance(A,B,3) <-

describes the arc from A to B. Assume also that the relationship 

Plus(x,y,z) , 

which holds when x+y = z, is already given. 
extend the definition of the relationship 
expresses that there is a path of length z from 

8) Assume that the relationships 

Using only 
Dist(x,y,z) 
x to y. 

(the list x is empty) 

one 
so 

clause, 
that it 

Empty (x) 
First(x,u) 
Rest(x,v) 

(the first element of list x is u) 
(the rest of the list x following 
the first element, is the list v) 

are already given. Pictorially, the relationship 

u v 

x 

holds when both of the conditions First(x.u) and Rest{x,v) hold. 

a) Define the new relationship 

Memb(z,x) (element z is a member of list x) 

in terms of the First and Rest relations. Two clauses are 
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necessary. 

b) Define the relationship 

Sub(x,yl (all elements of list x 
are elements of list y) 

in terms of the Empty, First, Rest and Memb relations. 

c) Assume 

Plus(x,y,z) (x + y = z) 

is given. Define the relationship 

Sum(x,w) (the sum of all elements in 
the list of numbers x is w) 

in terms of the Empty, First, Rest and Plus relations. 
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9) Using predicate symbols of your Own invention, but no function 
symbols or constants, express the following sentences in clausal form: 

No dragon who lives in a zoo is happy. 
Any animal who meets kind people is happy. 
People who visit zoos are kind. 
Animals who live in zoos meet the people who visit zoos. 

What two missing additional assumptions are needed to justify the 
conclusion 

No dragon lives in a zoo. ? 

10) There are four different variable-free atoms which can be 
constructed from the vocabulary of clauses LI-3. Consequently there are 
16 different interpretations of Ll-3. How many of these interpretations 
make both Ll and L2 true? How many make L3 true? How many make all of 
Ll-3 true? 
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CHAPTER 1 

Representation in Clausal Form 

In order to construct a mechanical problem-solving system, it is 
necessary to express information in an unambiguous language. Moreover, 
for the system also to serve as a model of human problem-solving, the 
language needs to resemble the natural languages used by human beings. 
The language of symbolic logic is both precise enough to be understood 
and manipulated by computers and natural enough to be regarded as a 
simplified form of natural language. 

In this chapter, we shall compare the clausal form of logic with 
of the features of natural language. We shall also compare it 
semantic networks for representing natural language meanings and 
relational databases for representing information in computers. In 
to make the relationship between logic and natural language 
apparent, we introduce the infix notation for predicate symbols. 

Infix notation 

some 
with 
with 

order 
more 

The informal notation used to introduce clausal form at the beginning 
of the first chapter can be given formal status. 

Binary (two-place) predicate symbols can be written between their 
arguments. Instead of writing atoms in prefix form 

= (x,y), (x,y), Father (x,y) 

we can write them in infix form 

x = y, x ..:. y, x is the father of y 

respectively. The expression "is the father of" is regarded as a single 
predicate symbol. 

Unary (one-place) predicate symbols can be written after their 
arguments, without the attendant parentheses. Thus we can write 

x is 900d (- x accomplishes y, y is good 

instead of 

Good (x) (- Accomplishes (x,y) , Good(y). 

Unary predicate symbols written after their arguments are also regarded 
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as infix notation. 

For predicate symbols having more than two arguments, infix notation 
distributes parts of a predicate symbol between its arguments. Thus we 
can write 

John gave book to Mary <-

instead of 

Gave (John, book, Mary) <-

where "gave" and "to" are regarded as the first and second parts of the 
single predicate symbol "Gave". 

Infix notation, though easier to read, increases the possibility of 
ambiguity. The expression 

John is a student (-

in infix notation can be interpreted as either one of the two clauses 

Student (John) <-

Isa(John,student) <-

in prefix notation. To eliminate ambiguity, we underline infix predicate 
symbols and their parts. Thus the atom in the clause 

John is a student <-

has one argument, whereas the atom in 

John is a student (-

has two arguments. Underlining may be omitted, as in the case of the two 
binary predicate symbols" = " and " ", when there is no ambiguity. 

Infix notation can also be employed for function symbols. We can write 

x + y, x * y, x!, x + 1, x's dad 

for example, instead of 

+(x,y), times(x,y), fact(x), s(x), dad(x). 

Infix notation for function symbols and associated conventions for 
reducing parentheses will be discussed again in Chapter 5. 

Variables and of individuals 

The analogue of variables in logic are such words in English as 

"something", "anything", "everything", 
"nothing", "a thing", "things". 
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For example, 
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(- x is good, x is bad 
Nothing is both good and bad. 

x is bad (- x accomplishes y, y is bad 
Anything which accomplishes something bad is bad itself. 

There are many occasions, however, in which logic uses 
English uses a word which refers to a specific (or 
of individual. It is usual in logic to name types by 
argument predicate symbols. Thus, the English sentence 

All men are animals. 

would be expressed by the clause 

x is an animal (- x is a man 

a variable, but 
classification) 
means of one-

The variable x in the clause is avoided in the English by referring to 
the type "men". This is even more obvious if the English sentence is 
paraphrased 

Men are animals. 

The English words "anyone", "everyone", "anywhere", "somewhere", 
"any time" , "sometime" refer to individuals of type "human", "place", and 
"time". 

Relative pronouns in English, such as "who", "which" and "where" refer 
to individuals already mentioned in the same sentence. For example 

Anyone who eats animals is a carnivore. 
x is a carnivore (- x is human, 

x eats y, 
y "I"S"an animal 

The restrictive relative clause 

who eats animals 

adds two extra conditions concerning the individual x mentioned in the 
main sentence 

Anyone is a carnivore. 
x is a carnivore (- x is human 

The non-restrictive relative clause, however, in the sentence 

John, who eats animals, is a carnivore. 
John is a carnivore (-
John eats y < y is an animal 

adds an extra sentence to the main sentence. 

The words "is a" occur so frequently in English that it is natural to 
treat them as a single unit and to symbolize them by a binary predicate 
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symbol. Thus we write 

x is a animal <- x is a human 

treuting types 
The treatment 
allows us to 
for example 

as individuals rather than as properties of individuals. 
of types as individuals increases expressive power. It 

write clauses which refer to types by means of variables, 

x is a y <- x is a z, z is a y 

which expresses the transitivity of "is a". Transitivity cannot be 
expressed in clausal form if types are treated as properties. 

Existence 

The English word "some" expresses existence. In the standard form of 
logic the existence of individuals can be expressed without giving them a 
name. But in the clausal form of logic, existence is expressed by naming 
individuals, using constant symbols and function symbols. The sentence 

Some men are animals. 

for example, can be expressed by means of the clauses 

© is a man (-

© is a animal (-

where the constant symbol is not used elsewhere to name a different 
individual. Notice, however, that the same clauses can also be regarded 
as expressing the English sentence 

Some animals are men. 

The English words "has" and "have" often express existence. The 
sentence 

Zeus has a parent who loves him. 

for example, can be reexpressed as 

Some parent of Zeus loves him. 

In clausal form, a constant symbol 
parent. The name doesn't matter provided 
different individual. If the constant 
condition, then the sentence is symbolized 

is a parent of Zeus <-

Q loves Zeus <-

is needed 
it is not 

symbol 
by means 

to name the loving 
used elsewhere for a 

@ satisfies this 
of the clauses 



26 Chapter 2: Representation in Clausal Form 

To express that 

everyone has a parent who loves him 

the loving parent needs to be named by a function symbol. The simpler 
clauses 

a parent of x <- x is a human 

J:iJ).loves x (- x is a human 

express the stronger assumption that a single individual, who is a parent 
of everyone, loves everyone. We need to express the more modest 
assumption that for every human x there is an individual which is a 
loving parent of x. Different individuals might have different loving 
parents. The loving parent of x is a function of x and its name needs to 
be constructed by a function symbol applied to x. Any function symbol can 
be used, provided it is different from any used elsewhere. If the 
function symbol "par" satisfies this condition, then the term par (x) 
names the loving parent of x and the sentence can be expressed by the 
clauses 

par (x) is a parent of x (- x is a human 

par(x) loves x (- x is a human. 

In a similar manner, the assumptions 

Everyone has a mother. 

Offices have desks. 

Birds have wings. 

can be symbolized, using function symbols, by such clauses as 

mum (x) is a mother of x (- x is a human 

a(x) is a aesk (- x is a office 
d(x) is in x (- x is a office 

w(x) is a wing (- x is a bird 

w(x) is part of x (- x is a bird. 

Individuals can be named by function symbols having several arguments. 
The "English" sentence 

For every individual x and every list y 
there exists a list whose first element 
is x and rest is y. 

for example, can be expressed by the clauses 
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cons(x,y) is a list (- y is a list 

x is the first of cons(x,y) (- y is a list 

y is the rest of cons(x,y) (- y is a list 

where the term cons(x,y) names the list 

x y 

constructed by putting 
the infix notation for 
is more compact: 

the element x in front of the list y. Although 
the clauses is easy to read, the prefix notation 

L(cons(x,y» (- L(y) 

First(x, cons(x,y» (- L(y) 

Rest(y, cons(x,y» (- L(y). 

The existence of an individual which is referred to in the conclusions 
of a statement needs to be expressed by a constant symbol or function 
symbol. However, it needs to be expressed by a variable if the individual 
is referred to in the conditions of the statement but not in the 
conclusionS. For example 

One person is a grandparent of another if 
he has a child who is parent of the other. 

x is grandI2arent of y (- x is human, 
y is human, 
x is I2aren t of z, 
z is Earent of y 

It is often easier to understand a 
conditions but not in conclusions are 
example, the clause 

clause if variables which occur in 
read as expressing existence. For 

Mary likes John (- Mary likes x 

can be read as stating that 

The clause 

if there is anything that Mary likes at all, 
then Mary likes John. 

x has y (- z gives y to x 

expresses that x has y if someone gives y to x. 
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Negation 

Negation can be expressed directly in the standard form of logic. In 
the clausal form it can only be expressed indirectly. The conclusion-
less clauses 

(- Mother (Zeus,x) 

<- Mother(x,y), Father(x,z) 

for example, state that 

Zeus is not the mother of anyone and 
no one is both a father and a mother. 

It is a feature of clausal form semantics that a negated condition 
can be reexpressed as an unnegated conclusion. The sentence 

Rohert is at work if he is not at home. 

which can be expressed directly with a negative condition 

At(Robert,work) (- not-At (Rohert,home) 

in standard form can be expressed without negation in clausal form by 
means of a non-Horn clause 

At(Robert,work), At (Robert,home) (- • 

The sentence 

not-Happy (John) (- not-Likes(Mary,John) 

in standard form can be reexpressed in clausal form 

Likes(Mary,John) (- Happy (John) • 

Notice that the different English sentences 

Every fungus which is not a toadstool is a mushroom. 
Every fungus which is not a mushroom is a toadstool. 
Everything which is neither a mushroom nor a 
toadstool is not a fungus. 

all have the Same clausal form 

Toadstool (x) , Mushroom(x) (- Fungus (x) • 

Denial of conclusions which are implications 

In clausal 
necessary to 

form, to show that assumptions imply a conclusion, it is 
deny that the conclusion holds and to demonstrate 
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inconsistency. A typical conclusion often has the form of an implication: 

All boleti are poisonous. 

Poisonous (x) (- Boletus (x) 

for example. In general, an implication is a Horn clause with a single 
conclusion and One or more COnditions. A Horn clause with a conclusion, 
but no condition, is called an assertion. It is often convenient, 
however, to use the terminlogy "implication" in the wider sense which 
includes assertions. 

To deny 
individuals 
satisfy the 
individual, 

an implication it is necessary to assert the existence of 
satisfying all of the conditions and to deny that they 
conclusions. In this case, we assert the existence of an 

say , which is a boletus and deny that it is poisonous. 

Boletus( 1? ) (-
(- Poisonous ( 

In Chapter 10, when we investigate the standard form of logic, we 
shall formulate a systematic procedure for transforming denials of 
sentences into clausal form. Meanwhile, it suffices to use the rule above 
for denying conclusions which have the form of implications. 

Conditions which are implications 

In natural language and in the standard form of logic it is common for 
a condition to have the form of an implication. For example, the 
implication 

All Bob's students like logic. 

which has the structure of a Horn clause 

x likes logic (- x is a student of Bob 

is the condition of the sentence 

(1) Bob is happy if all his students like logic. 

Although the sentence can be expressed directly in the standard form 
of logic, it needs to be paraphrased before it can be expressed in 
clausal form. In Chapter 10 we shall present a systematic method for 
transforming such sentences from standard form into clausal form. Here we 
can illustrate the method by successively transforming the original 
sentence (1) in English: 

(2) Not all of Bob's students like logic if Bob is unhappy. 

(The unnegated condition and conclusion of (I) become the negated 
conclusion and negated condition of (2).) 
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(3) 
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There is a student of Bob, who doesn't like 
logic, if Bob is unhappy. 

(The conclusion of (2), which is the denial of an implication, is 
reexpressed by asserting the existence of an individual which satisfies 
the condition of being a student of Bob but not the conclusion of liking 
logic. ) 

(4) There is a student of Bob, say , 
and 0 doesn't like logic, if Bob is unhappy. 

(The culprit is given a name.) 

(5) is a student of Bob if Bob is unhappy. 
doesn't like logic if Bob is unhappy. 

(The two conclusions are expressed by two sentences having the same 
condition.) 

(6) GY is a student of Bob or Bob is happy. 
Bob is happy if @ likes logic. 

(The negated condition is reexpressed as an unnegated conclusion ana the 
negated conclusion as an unnegated condition.) 

(7) G9 is a student of Bob, Bob is happy <-
Bob is happy < Q likes logic 

The transformation from English to clausal form can be compressed. In 
the simple case where the English sentence has the form 

Le. 

A if B is implied by C. 

A (- [8 (- Cl 

in the standard form of logiC, the corresponding clauses have the form 

A, C (-

A (- B. 

Complications arise when, as in the preceding example, the condition 
B <- C 

contains variables which need to be replaced by constant symbols or terms 
involving function symbols. 

Although sentences having conditions which are implications may appear 
unnatural in clausal form, they have a natural problem-solving 
interpretation, discussed in Chapters 7 and 8. In Chapter 10 we shall 
investigate such sentences in greater detail. Until then we shall 
concentrate on examples which can be expressed by Horn clauses, whose 
conditions are simple atomic formulae. 
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Definitions and "if-and-only-if" 

It is normal in mathematics and logic to express definitions by means 
of "if-and-only-if": 

x is grandparent of y if-and-only-if 
there is a z which is child of x and parent of y. 

The expression 

A if-and-only-if B 

is interpreted as meaning 

A if B and A only-if B. 

"A only-if B" is normally interpreted as 

B if A. 

This interpretation of "only-if", however, is not the only one. In 
Chapter 11 we shall discuss an alternative interpretation. 

The expression "if-and-only-if" can be expressed directly in the 
standard form of logic. In the clausal form, however, the two halves need 
to be expressed independently. Moreover, the only-if half is often 
unnatural. In the case of the only-if half of the grandparent definition 

x is parent of rel(x,y) (- x is grandparent of y 

rel(x,y) is parent of y (- x is grandparent of y 

a function symbol is necessary to name the relative of x and y who is a 
child of x and a parent of y. 

If-and-only-if definitions and sentences having conditions which are 
implications are the two main cases in which clausal form is more awkward 
than both natural language and the standard form of logic. Until Chapters 
10 and 11 we shall avoid complications by using only the if-halves of 
definitions, which is adequate for most purposes. 

Semantic networks 

Many researchers in the field of artificial intelligence use semantic 
networks, as an alternative to symbolic logic, to represent information 
in computers. Semantic networks are used both as models of human memory 
organisation and as representation schemes for the meanings of natural 
language sentences. 
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A semantic 
whose directed 
represented by 
Chapter 1, for 
network. 
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network is a graph whose nodes represent individuals and 
arcs represent binary relationships. Each individual is 
only one node. The information in the clauses Fl-6 of 

example, can be represented by means of the semantic 

Hera 

Aphrodite Semele 

In general, a semantic network can be regarded as equivalent to the 
set of variable-free assertions represented by its arcs. An arc labelled 
R directed from node 5 to node t 

R 

s 

represents the assertion 

R{s,t) (-

Simple semantic networks have no provision for representing variables, 
function symbols, n-ary predicate symbols or clauses having conditions or 
alternative conclusions. As we shall see later, the restriction to binary 
relations is not an important limitation, because every n-ary 
relationship can be reexpressed as the of n+l binary 
relationships. Other restrictions, however, are more serious and have 
motivated several investigators to propose extensions [Shapiro 1971, 
1972], [Hendrix 1975], [Schubert 1977], all of which treat semantic 
networks as an alternative syntax for symbolic logic. The one described 
below treats extended semantic networks as a pictorial syntax for clausal 
form [Deliyanni and Kowalski 1979}. 
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Extended semantic networks 

As in simple semantic networks, nodes represent individuals and arcs 
represent binary relationships. However, nodes can be constants, 
variables or terms constructed using function symbols. Arcs can 
represent conditions as well as conclusions and are grouped into clauses. 
Conditions are drawn with two lines and conclusions with one heavy line 
as before. Clauses containing more than one atom are delimited by 
enclosing them within subnetworks. The extended semantic network 

likes 

ohn 

is a 

uman y 

corresponds to the set of clauses 

John likes Mary <-

John human <-

Mary likes John, Mary likes Bob <- Mary likes x 

Bob likes y <- Y likes logic. 

Apart from their pictorial aspect, semantic networks have two other 
attractions: They provide a useful scheme for storing information, and 
they enforce the discipline of using binary rather than more general n-
ary predicate symbols. The fact that every individual is represented by 
a single node means that all information about the individual is directly 
accessible from the node. This feature has been exploited in the design 
of path-finding problem-solving strategies. In the next two sections, 
however, we shall compare the use of binary predicate symbols with that 
of more general n-ary predicate symbols. 

The representation of information EY binary predicate symbols 

Every n-ary relationship can be reexpressed as a conjunction of 0+1 
binary relationships. For example, the assertion 

John gave book to Mary <-

can be reexpressed in English: 
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There is an event e 
which is an act of giving 
by an actor John 
of an book 
to a reClplent Mary. 

In clausal form, ignoring the assertion which describes that e is of 
type "event", the single 3-place relationship can be reformulated as 4 
binary relationships. 

e is an act of giving (-

e has actor John <-

e has object book <-

e has recipient Mary (-

The semantic network representation 

giving 

book 

Mary 

of the clauses is similar to the case structure analysis of natural 
language employed in linguistics [Fillmore 1968] and artificial 
intelligence [Quillian 1968], [Schank 1973, 1975J, [Simmons 1973]. 

In general, to replace an n-aey relationship by binary relationships 
it 15 necessary to treat the n-ary relationship and its relation as 
individuals (giving them names such as "e" and "giving" in the preceding 
example). It is necessary to introduce a binary relationship which 
expresses that the n-ary relationship belongs to the n-ary relation: in 
this example, the binary relationship 

e is an act of giving (-

For every argument of the n-ary relationship, a binary relationship is 
needed to express that the argument belongs to the n-ary relationship. 

We shall refer to the representation of information by general n-ary 
relationships as the representation and the corresponding 
representation by means of binary relations as the binary representation. 

Binary relationships can replace n-ary relationships in both 
conditions and conclusions of clauses. For example, the English sentence 

A person possesses an object 
after it is given to him. 

can be expressed in the form 
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For every event u in which x gives y to z, 
there exists a situation, say result(u), 
immediately after u, which is a 
state of possession by the subject z of the 
object y. 

The 
binary 
having 

systematic formulation of 
predicate symbols ignoring 
the same conditions. 

the sentence in clausal form using 
types, produces four Horn clauses all 

result(u) is immediately after u (- u is an act of giving, 
u has actor x, 
u has obJect y, 
u has reclplent z 

result(u) is a state of possession (-

u ""''---=-''''-''''-''''''''' 

giving, 

z 

result(u) has subject z (- u is an act of giving, 
u has actor x, 
u has object y, 
u has recipient z 

result(u) has object y (- u is an act of giving, 
u has actor x, 
u has object y, 
u has recipient z 

In this example, the binary representation is less 
ary representation which includes explicit arguments 
the state result(u). 

compact than an n-
for the act u and 

result(u) is immediately after u (-
U is an act of giving x of Y to z 

result(u) is a state of possession £y z of Y (-
U is an act of giving x of Y to z 

However, if we assume that every act of giving has 
recipient then the original binary representation 
more compactly. 

resul t (u) is immediately after u (- u 

resul t (u) is a state of possession (- u 

an actor, object and 
can be reformulated 

is an act of giving 

is an act of giving 

result(u) has subject z (- u has reCipient z 

resul t (u) has object y (- u has object y 
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Advantages of the binary representation 

The binary representation is generally more expressive than the n-ary 
representation. It makes it easier to add new information and to ignore 
information that is unknown. 

In the binary representation, relations and relationships are treated 
as individuals. Consequently it is possible to talk about them in such 
sentences as 

Mary wants John to give her the book. 

Mary wants e <-

The corresponding expression in the n-ary representation 

Mary wants (John gave book to Mary) <-

is not a legal sentence of clausal form. 

The ability to talk about relationships in 
also makes it easier to add new information 
example, having expressed that 

the binary representation 
about a relationship. For 

John gave the book to Mary 

to add the new information that he did so in Hyde park requires only the 
addition of a new assertion 

in the 
requires 
symbol 

Hyde park is the location of e <-

binary representation. But, in 
replacing the original assertion 

John gave book to Mary <-

the n-ary representation, it 
which used a 3-place predicate 

by a new one with a 4-place predicate symbol. 

John gave book to Mary in Hyde park <-

Notice, however, that it is really the treatment of relationships as 
individuals which is responsible for the advantages of the binary 
representation in the preceding two examples. Both of the sentences 

Mary wants e <-

Hyde park is the location of e <-

can be expressed in an n-ary 
which names the relationship 

representation with an an explicit argument 
e. 

e is an act of giving BY John of book to Mary <-

The binary representation is also more convenient than the n-ary 
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representations when components of a relationship are unknown. For 
example, to express that 

the book was given to John 

it suffices in the binary representation simply to state what is known 
and to ignore what is unknown. 

e' is an act of giving (-
e' has object book (-
e' has recipient John (-

In the two n-ary representations, on the other hand, it is necessary to 
give the unknown actor a name. 

or 
gave book to John (-

e' is an act of book to John (-

The argument in favour of binary relations is not conclusive. There 
are many relationships, such as 

x times y is z, 
x recerved-grade y for course z, 
x is the y th element of seguence z, and 
v that the assumptions x 

imply the conclusion y 
obtained by the proof procedure u, 

for which an n-ary representation is more convenient 
representation. The use of general n-ary relations 
common than the use of binary relations in the field of 

Databases 

than the binary 
moreover is more 
databases. 

A database is a collection of information to be used for a variety of 
purposes. A typical database might contain a firm's personnel records, 
details of bank transactions or the police files of convicted criminals. 
Increasingly. such databases are represented in a form which can be 
processed by computers. These are used to update the databases, to check 
the consistency of data, and to answer requests for information. 

A single database might be used to obtain information by many users 
with little computer training. In this case the data need to be 
represented in a simple form which is independent of its representation 
inside the computer. Consequently, the database query language must be 
both simple to learn and easy to use. It is now widely accepted that 
these requirements can best be satisfied if data are viewed as relations 
[Codd 197BJ. 

The relational view of data is equivalent to the representation of 
data by tables: The argument positions of a relation can be regarded as 
the columns of a table and the relationships which make up the relation 
are its rows. Thus the 5-column, 3-row table 
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Birthday club Name Office Dues Birthdate Date joined 

Mary president 19p 4.Mar.77 4.Mar.77 
John secretary lep 2.Mar.78 2.Mar.7B 
Bob treasurer 19p l.Jan.89 l.Jan.80 

represents the 5-argument relation which is described by the 3 
assertions: 

Club (Mary, president, 18p, 4.Mar.77, 4.Mar.77) (-

Club{John, secretary, lOp, 2.Mar.78, 2.Mar.78) (-
Club(Bob, treasurer, lOp, 1.Jan.80. l.Jan.80) (-

The same information can be described by using binary predicate 
symbols. In this example the binary representation can be simplified 
because each row of the table can be uniquely identified by the value in 
its first column. Accordingly, the value in that column is said to be a 

of the table. In the binary representation of the table, the key can 
function as the name of the relationship which it identifies. 

Bl Member (Mary, birthday club) (-

B2 Member (John, birthday club) (-

B3 Member (Bob, birthday club) (-

84 Office (Mary, preSident) (-

B5 Office(John, secretary) (-

B6 Office (Bob, treasurer) (-

87 Dues(Mary, 19p) (-

B8 Dues (John, 10p) (_. 

B9 Dues (Bob, lep) (-

Ble Birthdate(Mary, 4 .Mar. 77) (-

B11 Birthdate(John, 2.Mar.78) (-

B12 Birthdate(Bob, l.Jan.80) (-

BB Datejoined(Mary, 4.Mar.77) (-

B14 Datejoined(John, 2.Mar.78) (-

B15 Datejoined(Bob, l.Jan.8B) (-

Notice that the binary representation of the table, though mOre 
longwinded, is easier to read than the n-ary representation. The names of 
the columns, which are necessary for understanding the table, are not 
represented in the n-ary representation, but are represented by binary 
predicate symbols in the binary representation. 

More importantly from a computational 
representation can often expresS general 
expressed at all in the n-ary representation. 
laws 

point of view, the 
laws which could 

In particular, the 

Dues(x,10p) <- Member (x, birthday club) 
Datejoined(x,y) <- Member (x, birthday club), 

Birthdate(x,y) 

binary 
not be 
general 

can replace the specific 
representation, but cannot 
all. 

assertions B7-9 and 
be formulated in the 

813-15 in the binary 
n-ary representation at 
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Data languages 

The relational view of data has been used more for data queries than 
for data description. 

Most relational query languages use the symbolism of symbolic logic or 
relational algebra. Relational calculus query languages [Codd 1972] can 
be regarded as using a binary representation of relations. Given, for 
example, the data contained in the Birthday club and the Address tables 

Birthday club Name Office Dues Birthdate 

Address 

the query 

Name Street number 

What Birthday club members live 
on Euclid Avenue? 

Street 

can be formulated in the binary representation 

<- Answer (x) 
Answer (x) <- Member (x, birthday club), 

Street(x, Euclid Ave) 

Date joined 

Town 

[ I 

in a manner similar to that of the relational calculus. It can also be 
formulated in the n-ary representation 

<- Answer (x) 
Answer (x) <- Club(x,y,z,u,v), 

Address(x, y', Euclid Ave, Zl) 

similar to that of the tabular query-by-example language [Zloof 1975]. 

The relationship between queries expressed in the clausal form of 
logic and ones expressed in query-by-example has been investigated by van 
Emden (1979J. A classification of relational query languages, all based 
on the standard form of logic, has been made by Pirotte [1978). 

Data description 

The relational model of data is not concerned with the formalism used 
to represent data within the computer. It is compatible with any 
formalism which can be viewed abstractly in terms of relations. 
Nevertheless, the use of symbolic logic is especially attractive. It has 
the advantage that the same formalism can be used both for expressing 
queries and for defining data. Moreover, when the data can be defined by 
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means of general laws, the data definitions are indistinguishable from 
programs. The sentence 

Dues(x, 10p) (- Mernber{x, birthday club) 

for example, can be regarded both as a general law and as a program which 
computes the dues paid by members of the birthday club. 

Symbolic logic was used before the relational model of databases to 
describe both data and queries in question-answering systems. Among the 
first systems were those described by Darlington [1969] and Green [1969a, 
1969b]. The use of the "Answer" predicate symbol, in particular, waS 
introduced by Green. More recent systems have been developed in 
Marseille [Colmerauer et al 1972], [Dahl and Sambuc 1976] and Maryland 
[Minker et al 19731, [McSkimin and Minker 1977J, and by Nicolas and Syre 
[1974J and Kellogg, Klahr and Travis [1978]. 

Integrity constraints 

since 
describe 
correct. 

data often 
properties 

The clause 

contain errors, 
which the data-

Y is before z (- Today(z) , 

constraints are used to 
satisfy in order to be 

Member(x, birthday club), 
Birthdate(x,y) 

for example, expresses that all members of the birthday club were born 
before today. If today were 1.Apr.79 

Today(1.Apr.79) (-

then given an appropriate definition of the is before relation, the data 

Member (Bob, birthday club) (-
Birthdate(Bob, (-

would be inconsistent with the integrity constraint and should be 
rejected by an intelligent database management system. 

Using symbolic logic as a 
the conventional distinction 
constraints for databases are 
The clause 

formalism for describing information blurs 
between databases and programs. Integrity 

indistinguishable from program properties. 

x y (- Fact{x,y) 

for example, describes a property which needs to be satisfied by a 
correct definition of the factorial relation. Like an integrity 
constraint, its purpose is not to contribute to the definition of the ( 
and Fact relations but rather to constrain the definitions from having 
unacceptable properties. 

Integrity constraints can be used for other purposes. They can be used 
to reject inconsistent queries 
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What number is less than 1,300 
and is the factorial of 5,200 ? 
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and to transform difficult goals into easier ones. The use of integrity 
constraints to aid problem-solving is investigated in Chapter 9. 

departmental database 

The PROLOG [Roussel 19751 Horn clause problem-solving system developed 
in Marseille has been used for a variety of tasks which combine features 
of both databases and programs. It has been USed in Marseille for natural 
language question answering [Colmerauer et al 1972], [Dahl and Sambuc 
1976] and symbolic integration [Bergman and Kanoui 1973], in Edinburgh 
for plan-formation [Warren 1974, 1976], geometry theorem-proving [Welharn 
1976], [Coelho and Pereira 1975], the solution of mechanics problems 
expressed in English [Bundy et al 1979] and compiler-writing [Warren, 
Pereira and Pereira 1977] and in Budapest for computer-aided design 
[Markusz 19771 and drug analysis [Futo, Darvds and Szeredi 1978]. In 
London we have implemented part of a database which describes the 
activities of our department. The following clauses are typical of those 
used to describe the data. 

(- x 
(- x 

X is occupied with 
x is occupied with 
x is occupied with 
9:30 is the hour of 

y 
y 
y (- x 

teaches y 
attends y 
is member of committee y 

Fri 
3 
145 
AAK 
145 
65 

304 
304 

(-

(-is the day of 
is the level of 
is the room of 
teaches 304 
has capacity 

304 (-
x 

80 
3"4 

(- 3 is the level of x 
(-
(-

(-people attend 
attends y (- x is a student 

z is the level 
problem-solving is the name of 304 < 

x in year z, 
of y 

Here it is assumed that course 304 meets only once a week. If it meets 
more often, then composite terms, part(304,1), part(304,2), for example, 
might be used to name diferent parts of the course. 

Various integrity constraints, such as 

<- X is the room of y, x has capacity u, 
v people attend y, u ( v 

can be expressed and tested for consistency with the data. Queries can be 
answered by denying that they have an answer, proving inconsistency and 
extracting from the proof the information needed to construct the answer. 
Thus, to determine the activity with which RAK is occupied at 9:30 on 
Fridays it suffices to deny that there is such an activity: 

<- Answer (x) 
Answer (x) (- RAK is occupied with x, 

9:30 is the hour of x, 
is the day of x Fri 
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The substitution x = 304 

which can be extracted from the proof answers the query. The answer 
extraction can be done automatically by the problem-solving system. 

Equality 

Mathematical notation normally uses function symbols and the binary 
predicate symbol = (equality) where we have used other predicate symbolS. 
It is usual to write 

x*y 
xl 
x 

z 
y 
father (y) 

instead of 
instead of 
instead of 

Times(x,y,z) 
Fact(x,y) 
Father (x,y). 

Similarly, the relational calculus query language uses function 
symbols and equality, writing 

office(x) 
dues(x) 
birthdate (x) 
datejoined (x) 

y 
y 
y 
y 

instead of 
instead of 
instead of 
instead of 

Office(x,y) 
Dues(x,y) 
Birthdate(x,y) 
Datejoined(x,y) . 

Functional notation is often more compact than relational notation. It 
is simpler, for example, to express 

The date on which a member of the 
birthday club joins the club is the 
same as his birth date. 

in the functional notation 

birthdate(x) = datejoined(x) (- Member (x, birthday club) 

than in the relational notation 

Birthdate(x,y) (- Member (x, birthday club), Datejoined(x,y) 
Datejoined(x,y) (- Member (x, birthday club), Birthdate(x,y). 

Equality is necessary whenever an individual has moce than one name. 
For example: 

Jove = Jupiter (- . 

It is also necessary, even in the relational notation, to express that 
one argument of a relation is a function of the others. For example: 

x = y (- Father{x,z), Father(y,z) 

To show that a set of clauses S containing the equality symbol is 
inconsistent, the set of clauses needs to contain the following axioms 
characterising the equality relation, for every function symbol f and 
every predicate symbol P occurring in s, (including the equality symbol) . 



El 
E2 
E3 

Jl 
J2 
J3 

Equality 

x = x <-
P(xl"'''xm) P{Yl""'YIJl )' xl:Yl' ••. , xm=Ym 
f{xl""'xm) - f(Yl,··o,Yml <- xl-Yl' "0, xm=Ym 

For example, to demonstrate that the assumptions 

Jekyl = Hyde <-
father (John) = Hyde <-
Member {father (John) , birthday club) <-

imply the conclusion 

Member(Jekyl, birthday club) <-

it is necessary to deny the conclusion 

J4 <- Member (Jekyl, birthday club) 

and add the appropriate axioms for the equality relation: 

J5 
J6 
J7 
J8 

x = x <-
Member(xl,x2) <- Member (Yl'Y2) , Xl = Yl' x2 
Xl = x2 <- Yl = Y2' Xl = Yl' x2 = Y2 
father{x) = father(y) <- x = Y 
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The resulting set of clauses Jl-8 is inconsistent because Jl-3 are 
"obviously" inconsistent with the instances 

Hyde = Hyde <-
birthday club = birthday club <-

Member(Jekyl, birthday club) (- Member (father (John) , birthday club), 
Jekyl = father (John) , 
birthday club = birthday club 

Jekyl = father(John) <- Hyde Hyde, Jekyl = Hyde, father (John) Hyde 

of J5-7. Clause J8 in this 
inconsistency. 

example does not contribute to the 

Problem-solving is considerably simplified if individuals have only 
one name (distinct variable-free terms naming distinct individuals). Then 
the single axiom 

El x = x <-

expresses the only situation in which two individuals are the same (if 
they have the same names). The infinitely-many axioms 

D oiff (s,t) <-

for every pair of distinct variable-free terms sand t, express the only 
situations in which individuals are different (if they have different 
names). Given a finite set of clauses S the infinitely-many axioms 0 can 
be replaced by finitely many clauses 
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01 

02 
03 

04 

05 
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Diff (a,b) (-
for every pair of distinct constants a and b in S 

Diff(a, f(xl""'xm» (-
Diff(f(xl""'xm), a) (-
for every constant a and function symbol f in S. 

Diff(f(Xl""'Xm), g(Y1""'Yn» <-
for every pair of distinct function symbols f and 9 in s. 

Diff(f(Xl""'Xm), f(Yl""'Ym» (- oiff(xi'Yi) 
for every function symbol f in S and argument i of f. 

Diff(x,y) is the same as not-ex = y). This can be expressed 

0*1 
0*2 

Diff(x,y) if-and-only-if not-ex = y), i.e. 
Diff(x,y) (- not-ex = y) 
not-ex = y) (- Diff(x,y) 

in the "standard form" of logic or 

Diff{x,y), x = y (-
(- Diff(x,y), x = y 

in the clausal form. However, there is another interpretation of 

Diff(x,y) only-if not-ex = y) 

which is different from 0*2, namely 

0* 0*1 describes the only condition for which the conclusion 
Oiff(x,y) holds. 

0* talks about the sentence 0*1. It is a sentence of the meta-lanquaqe, 
talking about individuals which are sentences of the object language. 
The relationship between the object language, in which one useS 
sentences, and the meta-language, in which one talks about sentences, is 
investigated in Chapters 11 and 12. 

To simplify matters for the 
possible, refer to individuals 
Diff predicate symbols only in 
"definitions": 

remainder 
by unique 
conditions 

El 
o 

x '" x (- and 
Diff (s,t) (-

of the book we shall, whenever 
names, using the equality and 
of clauses, except for their 

for all pairs of distinct variable-free terms sand t. 

In practice the Diff relation is defined by more efficient means. 

Exercises 

1) Express the following sentences in clausal form. Some of them are 
ambiguous. 
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a) Everyone likes someone. 

b) Everyone likes everyone. 

c) Someone likes everyone. 

d) No one likes anyone. 

e) No one likes someone. 

f) Someone likes no one. 

g) John and Mary like themselves. 

h) A teacher is happy if he belongs to no committees. 
(Paraphrase the sentence first: It is not the case that a 
teacher is happy and belongs to some committee.) 

i) Anyone who knows anything about logic likes logic. 

2) In each of the following arguments the assumptions imply the 
conclusion. Express the assumptions and the denial of the conclusion in 
clausal form, so that the resulting set of clauses is inconsistent. 
Demonstrate inconsistency by showing that the set of claUSes is true in 
no interpretation. 

a) Assumption There is a single individual who is a loving parent of 
everyone. 

Conclusion Everyone has a parent who loves him. 

b) Assumptions All easterners like all westerners. 
All westerners like all easterners who 
westerner. 

like some 

Conclusion All westerners like all easterners without exception. 

c) Assumptions Canaries are birds. 
All birds have wings. 

Conclusion Canaries have wings. 

cl) Assumptions Anything which accomplishes something good is good itself. 
Anything which accomplishes something bad is bad itself. 
War accomplishes both peace and suffering. 
Peace is good and suffering is bad. 

Conclusion Some things are both good and bad. 

e) Assumptions x is a member of cons(x,y). 
x is a member of cons(u,y) if x is a member of y. 

Conclusion A is a member of cons(C, cons(A, cons(C, nil»). 

f) Assumption Bob is happy if all his students like logic. 
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Conclusion Bob is happy if he has no students. 

3) The word "like" in exercise (6) of Chapter 1 disguises two 
different meanings. Redo exercise (6) distinguishing between the notions 

x likes to eat y and 
x likes to be with y. 

You can do so either by using 
Likel and Like2' or by using 
one of which is the name of an 

two completely distinct predicate symbols, 
a single three argument predicate symbol, 
event (eating) or of a state (being with). 

4) Express in clausal form the information represented in the 
following semantic network and English sentences: 

Subject-of 

fire Prometheus 

e 

The object of e' is any act 
If a ruler forbids an act which 
subjects then there is another 
punishes the subject. 

e' 

of giving fire to humans. 
is performed by one of his 
event in which the ruler 

5) This exercise is based on Schank's [1973, 1975) conceptual analysis 
of actions. Let the intended interpretation of 

Let the terms 

Act(x,y) be 
Possess(x,y,u) 
Actor(x,y) 
Object(x,y) 
Donor(x,y) 
Recipient (x,y) 

ATRANS name 

GIVE 
TAKE 
resul t (u) 
prior (u) 

x is an act of type y, 
x possesses y in state u, 
the actor of act x is y, 
the object of act x is y, 
the donor of act x is y, 
the recipient of act x is y. 

the type of all acts of abstract 
transactions, 
the type of all acts of giving, 
the type of all acts of taking, 
the state immediately after the act u, 
the state immediately prior to the act 

Express the following sentences in clausal form: 

u. 
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a) In the state immediately after any act of type ATRANS, the 
recipient of the act possesses the object of the act. 

b) In the state immediately prior to any act of the type 
ATRANS, the donor possesses the object of the act. 

c) An act of type ATRANS is an act of giving if the actor is 
the donor. 

d) An act of type ATRANS is an act of taking if the actor is 
the recipient. 

6) Redo exercise (5) using equality and function symbols. Let 

act (xl 
actor (x) 
object(x) 
donor (x) 
recipient (xl 

name the type of act x, 
the actor of x, 
the object of x, 
the donor of x, 
the recipient of x. 

7) Let Parents(x,y,zl hold when x is the father and 
Formulate a set of clauses whose only variable-free 
the Parents relation but which imply the variable-free 
Chapter 1. 

y the mother of z. 
assertions concern 
assertions Fl-8 of 

8) Assume that data is given in the Supplier, Part and Supply tables: 

Supplier Supplier-Number Name Status City 

Part Part-Number Name Colour Weight 

Supply supplier-Number Part-Number Quantity 

Formulate the following queries in clausal form. Use both the binary and 
the n-ary representations, taking advantage of the fact that Supplier-
Number is a key of the Supplier table and Part-Number is a key of the 
Part table. Assume that the relationship 

x < y (x is less than y) 
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is already given. 

al What are the numbers of suppliers of nuts? 

bl What are the names of suppliers of bolts? 

cl What are the locations of suppliers of nuts and bolts? 

dl What are the names of parts supplied by the supplier named 
John? 

el What are the names of suppliers located in London who 
supply nuts weighing more than one ounce? 

f) What are the names of suppliers of both nuts and bolts? 

gl What are the names of suppliers of nuts or bolts? 
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CHAPl'ER 3 

.'!:..2.E-down and Horn Clause Proof Procedures 

Introduction 

The parsing problem - to show that a string of words forms a sentence 
according to given rules of grammar - can be represented in logic as a 
problem of demonstrating the inconsistency of a set of Horn clauses. 

Different parsing procedures for determining that a string is a 
sentence correspond to different proof procedures for demonstrating 
inconsistency. Top-down parsing procedures correspond to goal-directed 
proof procedures which work backwards from the conclusion by using 
implications to reduce problems to subproblems. The aim is to reduce the 
original problem to a set of subproblems each of which has been solved. 
Bottom-up parsing procedures correspond to proof procedures which work 
forward from the initial set of assumptions, by using implications to 
derive conclusions from assumptions. The aim is to derive assertions 
which directly solve each of the initially given problems. 

Top-down and bottom-up proof procedures apply to the solution of any 
problem. Top-down inference is the analysis of goals into subgoals; 
bottom-up inference is the synthesis of new information from old. In 
this chapter we define top-down and bottom-up inference for Horn clauses 
only. Later we shall extend their definition to non-Horn clauses and 
investigate systems which combine both directions of inference. 

The parsing problem 

The following description of the parsing problem is based on Foster's 
description [Foster 1970] of a formulation by Amarel. 

Given a grammar and a string of words such as 

"The slithy toves did gyre" 

the problem is to demonstrate that the string is a sentence. This can be 
done by filling in the triangle 
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sentence 

The slithy toves did gyre 

with a parse tree: 

sentence 

nOun phrase verb phrase 

determiner noun aux verb 

The slithy toves did gyre 

The parse tree is constructed in accordance with a grammar. In this 
example, the following rules of grammar have been used. 

(1) 
(2) 

A noun phrase followed by a 
A determiner followed by an 
is a noun phrase. 

verb phrase is a sentence. 
adjective followed by a noun 

(3) 
(4) 
(5) 
(6 ) 
(7) 
(8) 

An auxiliary followed by a 
"The" is a determiner. 
"slithy" is an adjective. 
"toves" is a noun. 
"did" is an auxiliary. 
"gyre" is a verb. 

verb is a verb phrase. 

Different ways of filling in the triangle determine different parsing 
procedures. procedures are determined by filling in the 
triangle from the top downwards. procedures are obtained by 
filling in the triangle from the bottom upwards. 

A top-down procedure might generate all branches in parallel: 

sentence 

noun phrase verb phrase 

The sli thy toves did gyre 
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or it might generate one branch at a time, say from left to right. 

sentence 

noun phrase verb phrase 

determiner noun 

Similarly, a bottom-up procedure might work on all words in the input 
string in parallel: 

sentence 

determiner 

The slithy toves did gyre 

or it might work on one word at a time. 

sentence 

determiner 

The slithy toves did gyre 

The triangle can be 
top-down and bottom-up, 
method of filling in the 
point, it is important 
bottom-up procedures. 

filled in from right to left, bi-directionally 
and even from the middle out. Every systematic 
triangle determines a parsing procedure. At this 
to distinguish mainly between the top-down and 
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A predicate logic representatIon of the parsing problem 

There are many ways to represent the parsing problem in logic. The One 
we describe here has the property that different parsing procedures 
correspond to different proof procedures for the same representation. 

We regard the initial string of words as a graph. A node of the graph 
occurs between adjacent words of the initial string and also at the 
beginning and end of the string. We regard words in the string as labels 
on the arcs connecting adjacent nodes: 

1 

the 

2 

slithy toves 

4 ... 
did 

5 
;)a 

gyre 

6 ... 
The nodes are arbitrarily named 1-6. No ordering is implied by the 
numbers used to name the nodes. 

The rules of grammar can be regarded as statements concerning labelled 
graphs: 

If there is a path from node x to y labelled "the" then 
the path from x to y is also labelled "determiner", Le. 

Det(x,y) <- the(x,y). 

If there is a path from x to u labelled "determiner" and a 
path from u to v labelled "adjective" and a path from v to 
y labelled "noun" then there is a path from x to y 
labelled "noun phrase", i.e. 

Np(x,y) <- Det(x,u), Adj (u,v), Noun(v,y). 

A parse of the initial string of words can be regarded as a graph 
which is labelled according to rules of grammar and has a path, from the 
beginning of the string to the end, labelled "sentence": 

sentence 

noun phrase verb phrase 

the slithy toves did gyre 

The initial graph is represented by a set of assertions: 
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Parse 1 the(1,2) (-

Parse 2 slithy(2,3) (-
Parse 3 toves(3,4) (-

Parse 4 did(4,S) (-

Parse 5 gyre(S,6) (-

The rules of grammar are represented by clauses containing variables: 

Parse 6 Sent(x,y) (- Np{x,z), Vp(z,y) 
Parse 7 Np(x,Y) (- Det(x,u), Adj (u,v), Noun(v,y) 
Parse 8 Vp(x,y) (- Aux(x,z), Verb(z,y) 
Parse 9 Det (x,y) (- the(x,y) 
Parse 10 Adj (x,y) <- slithy(x,y) 
Parse 11 Noun(x,y) (- toves(x,y) 
Parse 12 Aux(x,y) (- did(x,y) 
Parse 13 Verb(x,y) (- gyre(x,y) 

These are the only ruleS of grammar needed to parse the original string 
of words. In a more realistic formulation of the problem, we have to 
consider the use of other rules of grammar as well. For 

Parse 14 Np(x,yl (- Det(x,z), Noun(z,y) 
Parse 15 Np(x,y) (- Noun (x,y) 
Parse 16 Vp(x,y) (- Verb(x,y) 
Parse 17 Det(x,y) (- a(x,y) 
Parse 18 Adj (x,y) (- brillig (x,y) 
Parse 19 Noun(x,y) <- wabe(x,y) 
Parse 20 Verb(x,y) (- gimble(x,y) 

To show that the string of words from 1 to 6 is a sentence we show 
that the denial of the goal 

Parse 21 (- Sent (1,6) 

is inconsistent with Parse 1-20. 

inference 

A bottom-up refutation begins with assertions in the input set of 
clauses. It uses implications to derive new assertions from old ones, 
and ends with the derivation of assertions which explictly contradict the 
denial of the goal. 

A graphical representation of the bottom-up refutation of Parse 1-21 
is shown below. It resembles the parse tree turned upside-down. Nodes 
are labelled by assertions. The implication used to derive a new 
assertion labels the bundle of arcs leading from the old assertions to 
the new one. 
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the(1,2)<-
.H,", ", "'-I toves(3,4)<- did(4,S)<-

Parse 9 Parse le Parse 11 Parse 12 Parse 13 

Det(1,2)<- Adj(2,3)<- Noun(3,4)<- Aux(4,S)<- Verb(5,6)<-

Parse 7 Parse 

Np(1,4) (- Vp(4,6) (-

Parse 6 

Sent(1,6) <-

Parse 21 

o 
The assertion 

Np(1,4) (-

for example, is obtained from the three assertions 

Det(1,2) (-
Adj(2,3) (-
Noun(3,4) <-

by matching them with the three conditions of the clause 

Np(x,y) (- Det(x,u), Adj(u,v), Noun(v,y). 

Matching is accomplished by finding a most general substitution, in this 
case 

u:2, v:3, y=4}, 

which makes the assertions identical to the conditions. 

In general, one step of bottom-up inference matches (in the most 
general possible manner) a number of assertions with the conditions of a 
clause and derives a new assertion. The new assertion consists of the 
conclusion of the clause instantiated by the matching substitution. If 
the clause is a denial (which has no conclusion) then the derived clause 
is the empty clause. A more precise definition is given at the end of the 
chapter. 

Bottom-up inference is a generalisation of instantiation combined with 
the classical rule of modus ponens: 

From A <- and B <- A derive B (- . 

Instantiation is restricted to the minimum needed to match assertions 
with conditions, so that modus ponens can be applied. 
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!2E-down inference 

A top-down refutation begins with a denial in the input set of 
clauses. It uses implications and assertions to derive new denials from 
old ones and ends with the derivation of the empty clause. 

A graphical representation of a top-down refutation of Parse 1-21 is 
given below. Nodes are labelled by denials. An arc is labelled by the 
input clause which is used to derive the denial at the bottom of the arc. 
Selected atoms are underlined. 

(-
Parse 6 

(- NJ2(lfz), Vp(z,6) 
Parse 7 

(- Det(llu), Adj (u,v) , Noun (v,z), Vp(z,6) 
Parse 9 

(- the!llu), Adj(u,v), Noun(v,z) , Vp(z,6) 
Parse 1 

(- Adj(2lVl, Noun(v,z) , Vp(z,6) 
Parse le 

(- slithy(2[v) , Noun (v,z), vp(z,6) 
Parse 2 

<- Noun(3[z), vp(z,6) 
Parse 11 

<- toves{3lZ)' vp(z,6) 
Parse 3 

(- YE (4 ,61 
Parse 8 

(- Aux(4 l w), Verb(w,6) 
Parse 12 

(- Verb(w,6) 
Parse 4 

(- Verb{St 6) 
Parse 13 

(- 2x.re (5(6) 
Parse 5 

0 

Beginning with the initial denial 

(- Sent(1,6) 

top-down inference matches the condition 
conclusion of the implication 

of the denial with the 

Sent(x,y) (- Np(x,z), Vp(z,y) 

deriving the new denial 

(- Np{l,z), Vp{z,6) 

which consists of the conditions of the input clause instantiated by the 
matching substitution 

{x=l, y=6J. 
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The inference step formalises the reasoning that 

if there is no sentence from I to 6 then there is no z 
such that there is a noun phrase from I to z followed by a 
verb phrase from z to 6. 

The same inference step can also be interpreted from a problem-solving 
point of view: 

The goal of showing that there is a sentence 
can be solved if a z can be found such that 
of showing there is a noun phrase from I to 
phrase from z to 6 can be solved. 

from 1 to 6 
the subgoals 
z and a verb 

In the problem-solving interpretation, the original goal is reduced to 
two new subgoals. 

In general, top-down inference involves matching a selected condition 
of a denial with the conclusion of an implication and deriving a new 
denial by replacing the selected condition by the conditions of the 
implication and applying the matching substitution. If the implication 
is an assertion, which has no conditions, then the selected condition is 
simply deleted and the matching substitution is applied. If, in addition, 
the selected condition is the only condition in the denial then the 
derived clause is the empty clause. In the problem-solving 
interpretation, a denial is interpreted as a collection of goals. Top-
down inference replaces a selected goal (in the context of a collection 
of goals) by a set of subgoals. A precise definition of top-down 
inference is given at the end of the chapter, while the problem-solving 
interpretation is investigated in the next chapter. 

Top-down inference is a generalisation of instantiation combined with 
modus toll ens : 

From not-A and A (- B derive not-B. 

Instantiation is restricted to the minimum needed to apply the modus 
tollens rule. 

Different top-down refutations are determined by selecting different 
atoms in denials for the application of top-down inference. For example, 
clause Parse 8 could be applied to the denial 

(- Np(l,z), Vp(z,6) 

to derive the new denial 

(- Np(l,z), Aux(z,u), Verb(u,6) 

If there is a refutation for one selection of atoms then there is a 
refutation for any other selection. 

It is also possible (as in bottom-up inference) to select all 
conditions in a denial simultaneously. The figure below illustrates such 
a top-down parallel refutation. Below each selected condition is the name 
of the clause used in the derivation of the next denial. 
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(- Sent(1,6) 

Parse 6 

(- Np (l,z) , Vp(z,6) 
---
Parse 7 Parse 8 

<- Det(l,u), Adj (u,v) , Noun (v,z), Aux(z,w), Verb (w, 6) 

Parse 9 Parse "" Parse 11 Parse 12 Parse 13 

<- the (l,u), slithy(u,v), toves(v,z), did (z,w), gyre (w,6) 

Parse 1 Parse 2 Parse 3 Parse 4 Parse 5 

o 

This formulation of the parsing problem was obtained by Alain 
Colmerauer with the author by expressing his Q-system [Colmerauer 1973] 
in logic. It is significant that, whereas the Q-system is a bottom-up 
parsing procedure, the Horn clause formulation is more abstract and can 
be used either top-down or bottom-up. 

Although the example uses only context-free rules of grammar, it is 
easy to extend the representation to express context-sensitive grammars 
and arbitrary rewriting systems [Chomsky 1957J. 

The family relationships example 

The concepts of 
Horn clauses. The 
Chapter 1, provide 

top-down and bottom-up inference apply to any set of 
clauses which define family relationships, Fl-19 of 
another example. 

Given clauses Fl-19, the problem of showing that Zeus is a grandparent 
of Harmonia can be represented as the problem of filling in the triangle 

2S 
Father (Z;uS,Ares) Father (Ares, Harmonia) 
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with a derivation tree: 

Grandparent (Zeus,Harmonia) 

Parent(Zeus,Ares) Parent (Ares,Harmonia) 

Father (Zeus,Ares) Father (Ares,Harmonia) 

In the clausal form of logic, the problem is to show that the denial 

F* (- Grandparent (Zeus,Harmonia) 

is inconsistent with the clauses Fl-l9. The figures below illustrate 
bottom-up, top-down, and parallel top-down refutations. 

Father (Zeus,Ares) (- Father (Ares,Harmonia) (-
F17 F17 

Parent(Zeus,Ares) (- Parent (Ares, Harmonia) 

FIB 
Grandparent (Zeus,Harmonia) (-

F* o 
)I, refutation of f* and Fl-.!1 

(- Grandearent(Zeus,Harmonia) 
FIB 

(- Parent(Zeus,z) , Parent (z,Harrnonia) 
F17 

(- Father (Zeus,z), Parent (z,Harmonia) 
F17 

(- Father (Zeus f z) , Father (z,Harmonia) 
Fl 

(- Father (AreslHarmonia) 
F3 

0 

Y2E-down refutation of and Fl-.!2. 
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(- Grandparent (Zeus,Harmonia) 
FIB 

(- Parent(Zeus,z), Parent(z,Harmonia) 
Fl7 Fl7 

(- Father (Zeus,z) , Father(z,Harmonia) 
FI F3 

o 
parallel !QE-down refutation of f* and Kl-19. 
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Because the operation of matching atomic formulae is so general, top-
down and bottom-up inference can be used not only to show that Zeus is a 
grandparent of Harmonia but also to find a grandparent of Harmonia or to 
find a grandchild of Zeus. This is illustrated in the top-down refutation 
which shows the inconsistency of FI-19 with F**. 

F** (- Grandparent{u,Harmonia) 

The grandparent of Harmonia whose existence contradicts F** can be 
determined by analysing the matching substitutions uSed in the 
refutation. The last step of the refutation matches the variable u from 
the initial denial with the constant symbol "Zeus", determining that 
u = Zeus is a grandparent of Harmonia. 

Notice that the first step of the refutation matches the condition 

Grandparent (u,Harmonia) 

with the conclusion 

Grandparent (x,y) • 

Top-down inference uses a most general substitution which makes the two 
atoms identical, in this case 

{x = u, y = Harmonia}. 

Any less general substitutions, such as 
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or 
{x 
{x 

Ares, u 
Zeus, u 

Ares, y 
Zeus, y 

Harmonia} 
Harmonia} 

which also makes the two atoms identical, need not be considered. 

Given any two atoms, all (most general) matching substitutions differ 
only in the names they give to variables and are otherwise equivalent. 
Consequently, it is necessary to use only one of them in any inference 
step. The matching substitution 

{u : X, y: Harmonia} 

for example, is equivalent to the one used in the first step of the 
refutation above. It gives rise to the equivalent denial 

(- Parent(x,z), Parent(z,Harmonia) 

which is a variant of the other. 

The possibility of restricting instantiation to the generation of most 
general matching substitutions was observed by Prawitz [1960] and 
elaborated by Robinson [l965a] who incorporated it into the resolution 
rule (Chapter 8), which generalises the top-down and bottom-up inference 
rules investigated in this chapter. Unification algorithms for matching 
atomic formulae have been the subject of much investigation [Robinson 
1971J, [Paterson and wegman 1976j, [Martelli and Montanari 1977]. 

Inference rules and search strategies 

Inference rules are the building blocks of proof procedures. A proof 
procedure is a systematic method for showing that a set of assumptions 
imply a conclusion. Proof procedures for the clausal form of logic are 
refutation procedures, which show that assumptions imply a conclusion by 
demonstrating that the assumptions are inconsistent with the denial of 
the conclusion. 

Inference rules specify the form of the individual steps which make up 
a proof. All possible ways of applying the inference rules, both to an 
initially given set of clauses and to the clauses derived from them, 
determine the search space for the set of clauses. Specifying a 
systematic search strategy for investigating clauses in the search space 
determines a proof procedure. 

Top-down inference determines search spaces which have the form of a 
tree. Individual nodes of the search space are labelled by denials which 
contain a selected condition. For each input clause whose conclusion 
matches the selected condition there is an arc, labelled by the input 
clause, which leads to the denial obtained by applying top-down 
inference. A refutation is a path in the search space leading from the 
initial denial to the empty claUSe D. 

A top-down search space for the problem of finding a grandparent of 
Harmonia is illustrated in the figure below. To save space, abbreviations 
such as 
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Ha for Harmonia 
He for Hera 
P for Parent etc. 
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have been used for constant symbols and predicate symbols, and the input 
clauses labelling arcs have been omitted. Darkened nodes at the tips of 
the search tree contain selected conditions which match the conclusion of 
no input clause. 

(- G(u,Ha) 

(- p (u,z), p{z,Ha) 

<- P(u,z), F(z,Ha) <- p (u,z), M(z,Ha) 

<- P (u,Ar) <- P(u,Aph) 

(- F (u,Ar) <- M(u,Ar) <- F(u,Aph) <- M(u,Aph) 

u "" Ze u = He 

o o 
The search space is finite and can be searched completely in a finite 

amount of time. The two main kinds of search strategy are breadth-first 
and depth-first search. Breadth-first search explores all branches of 
the search tree to the same away from the root of the 
tree, before exploring them to the next depth, n+l steps away from the 
root. Pictorially, breadth-first search explores the search space above 
in the following sequence: 

• 

Depth 3 
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a a 

Depth-first search explores one branch of the 
When it reaches a tip of the tree it backtracks 
branch as close to the tip as possible. 

1 

2 

3 

5 

o 
Branch 3 Branch 4 ---- ----1 

8 

9 

18 

search space at a time. 
and tries an alternative 

1 

3 

7 

o 

1 

8 

9 

11 

The numbers next to arcs indicate the sequence in which the arcs are 
generated. Here the first branch already contains a solution of the 
problem. If only one solution is required, then the rest of the search 
space need not be generated. The whole search space has to be generated, 
however, if all solutions are desired. In this case there are two 
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refutations, each of which determines a different answer to the question 

Who is a grandparent u of Harmonia? 
u = Zeus, u = Hera. 

The search space for top-down inference is affected by the selection 
of conditions in denials. In the search space above, conditions were 
deliberately chosen with the intention of minimising the size of the 
search space. In the search space below, the selection of conditions 
maximises its size. 

<- G (u,Ha) 

(-

<- F(u,z), P(z,Ha) P(z,Ha) 

<-P (Ar ,Ha) <-P(Ha,Ha) <-P (Ha,Ha) 

<-P(D,Ha) <-P(D,Ha) 

o 0 

Both top-down search spaceo are complete in the sense that they 
contain a refutation if the set of clauses is inconsistent. It suffices, 
therefore, to search either one search space or the other. In general, 
other things being equal, the larger the search space the more difficult 
it is for the search strategy to find a refutation. 

In the problem-solving interpretation of top-down inference, the 
selection of a condition in a denial is the selection for solution of a 
subgoal from a set of subgoals. It is one of the most important 
considerations of problem-solving strategy and a major topic of the next 
two chapters. 

The structure of bottom-up search spaces is more complex than that of 
top-down search spaces. Consequently, they are more difficult to search. 
The figure below illustrates the bottom-up search space for the family 
relationships example. Nodes are labelled by assertions. A bundle of arcs 
connects the assertions which match the conditions of an input clause 
with the new assertion derived by bottom-up inference. The input clause 
which ought to label the bundle is omitted to save space. Darkened nodes 
indicate assertions to which no bottom-up inference step applies. The 
same abbreviations are used as before. In addition, we use 

MI for Male and 
FI for Female. 
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F(Ze,Ar) (- F(Ar,Ha) <- M(He,Ar) <- F (Ze,D) <-

P{Ze,Ar)<- Ml(Ar)<- P{Ar,Ha)(- Fl (He) <- P{He,Ar)< Ml(Ze)(-

MI (Ze) <- P(Ze,D)(-

G(Ze,Ha)<- G(He,Ha)<-

o o 

M(Aph,Ha) <- M(Ha,5) <- M(5,D) <- F (C,5) <-

P(Aph,Ha)<- FI(Ha)<- P(S,D)<-

Fl (Aph) (-

G{Aph,5)<- G (Ar ,5) <- G(C,D)<-

Not included in the figure are the input assertions, such as 

God (Zeus) <- and Fairy-Princess (Harmonia) <-

which match no conditions. Notice that the assertion 

Male (Zeus) <-

is derived in two different ways, giving 
the same assertion. In the next chapter, 
search spaces in which different nodes are 

rise to two 
we consider 

labelled by 

nodes labelled by 
representations of 
different clauses. 

In practice, few strategies other than breadth-first search have been 
appl ied 
breadth 
any of 
maximum 

to bottom-up search Spaces. As in 
first search explores all assertions of 
depth The depth of an assertion 
of the depths of its parent assertions. 

top-down search spaces, 
depth n before generating 
is one greater than the 

Search strategies are an important part of all problem-solving systems 
and are investigated in greater detail in the next chapter. 

Infinite search spaces: natural numbers 

The search spaces for the parSing problem and the family relationships 
problems are both finite. Infinite search spaces are normally associated 
with clauses containing function symbols. The definition of natural 
number using the successor function symbol is a simple example. 
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Numb(0) (-

Numb(s(x» (- Numb(x) 

Suppose the problem is to show that three is a number. 

(- Numb(s(s(s(0»» 

The top-down search space is finite 

(- Numb(s(s(s(0)))) 

(- Numb(s(s(0») 

(- Numb{s(0» 

(- Numb(0) 

o 

and contains only the solution of the problem. The bottom-up search 
space, however, is infinite. 

Numb (0) (-

Numb(s(0» (-

Numb(s(s(0))) (-

Numb(s(s(s(0)))) (-

o Numb(s(s(s{s(0»») (-

Numb(s(s(s(s(s(0)))))) (-

For the problem of finding a number, however, both search spaces are 
infinite. Moreover, both spaces contain an infinite number of solutions. 
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(- Numb(u) 

u = 0 u = s (u') 

0 (- Numb(u') 

u' 0 u'= S (u") 

0 (- Numb(u") 

u' '= 0 u' '::;: S (u' ") 

0 (- Numb (u' , ') 

Here each arc of the top-down search space 
the matching substitution which is needed 
existence is denied in the initial statement 

Numb (0) (-

o Numb(s(0)) (-

o Numb(s(s(0») (-

o Numb(s(s(s(0)))) (-

is labelled by that 
to find the number 
of the problem. 

part of 
u whose 

When search spaces are infinite, depth-first search strategies are 
subject to the possibility of following the wrong branch of the search 
space and thus failing to find a refutation. In the present example, this 
happens in the top-down search space if the clause 

Numb(s(x» (- Numb (x) 

is always used before the assertion 

NUmb(0) (-

and in the bottom-up search space if 

Numb(s(x» (- Numb(x) 

is always used before the denial 

(- Numb(u). 

To guarantee the completeness of a proof procedure, not only must the 
search space be complete, but the search strategy must be exhaustive: 
eventually investigating every node of the search space. 
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Definitions 

Some of the concepts introduced in this chapter are defined more 
precisely below: 

Let S be a set of Horn clauses and let there be given a selection 
strategy which picks a condition from any denial. A sequence of denials 

is a !QE-down derivation of Cn from S if 

1) the first clause Cl belongs to Sand 
2) every denial in the sequence, other than the first, is 
obtained from the preceding denial by an application of 
top-down inference, using a clause in S. 

A derivation of the empty clause from S is a refutation of S. 

Given a denial 

m 2. I 

with selected atom Ai and an implication 

n ) 0 

which shares no variables with the denial, a new denial can be obtained 
by !QE-down inference if the selected atom A· matches the conclusion B of 
the implication. The new denial consists ot all the conditions of the 
original denial the selected condition) together with all the 
conditions of the implication, with the matching substitution e applied: 

If the denial and the implication contain variables in common, then 
they have to be renamed, glvlng equivalent clauses which share no 
variables, before top-down inference is attempted. Thus to apply top-down 
inference to the denial 

(- Np(y,u), Vp(u,z) 

using the clause 

Np(x,y) (- Det(x,u), Noun(u,y) 

it is necessary to rename variables first, using, for example, the 
variant implication 

Np(x',y') (- Det(x',u'), Noun(u',y') 

to obtain the new denial 

<- Det(y,u'), Noun(u' ,u), Vp(u,z) 



68 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures 

where the matching substitution is 

{x' = y, y' = u}. 

In general, any condition can be selected in a denial. The selection 
strategy is of the last-in-first-out kind if the selected condition is 
always one of the conditions most recently introduced into the denial, in 
particular one of the conditions 

8 l 8, ... ,8n8 

in the new denial 

(- AI 8, ••. ,Ai_1S,B1S, ..• ,BnS,Ai+18 , ••• ,AmS. 

A top-down derivation can be represented as a graph by associating a 
node with every denlal C] in the derivation and by inserting an arc, 
from it to the next denlal Cj+l' labelled by the implication used in the 
inference step. 

The definition of matching sUbstitution is needed to define both top-
down and bottom-up inference and will be presented after the top-level of 
the definition of bottom-up inference. 

It is convenient to define a graph-representation of bottom-up 
inference from the outset. Let S be a set of Horn clauses. A graph 0 with 
nodes labelled by assertions is a derivation of a clause C from 
S if 

1) 0 consists of a single node labelled by C, belonging to 
Sand C is either an assertion or the empty clause, or 

2) 0 consists of subderivations, 

0 1 of Al <- from S, 
°2 of A2 <- from S, 

Dm of <- from S, 

whose root nodes are connected by arcs to a new node 
labelled by C and C is obtained from Al <-, A2 <-, ... , Am (- by bottom-up inference using a clause C' in S. 

c' 
c 
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The clause C' labels the bundle of arcs associated with 
the inference step. 
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It is convenient to define the inference of clause C from m 
assertions 

Al (-, A2 (- , ••• , Am (-
using clause C' by decomposing the inference into a sequence of m simpler 
inference steps. Suppose that C' has the form 

B (- Bl' B2 , 
(- BI' B2 , 

... , Bm 
Bm· 

or 

The clause C is obtained by inference using C' from 

1) by selecting a condition, say 
with an assertion, say Al (-
intermediate clause C" 

(B (- B 2 , ••• , Bm)e or 
( (- B 2 , ••• , Bm)e 

Bl' of C', matching it 
and deriving the 

where e is the matching substitution and 

2) deriving C by bottom-up inference from 
A2 (-, ... , Am (- using e". 

3) If m=l then C = C". 

4) In step (1) the variables in Al (- need to be distinct 
from those in C'. If necessary, variables need to be 
renamed to make them distinct. 

It can be shown that the conditions in C' can be selected in any order 
without affecting the clause C which is finally derived. 

The assertions Al (-, A2 (-, •.. , Am (- to which bottom-up 
inference is applied need not all be distinct. For example, the assertion 

Friends(Narcissus, Narcissus) (-

can be derived in one step of bottom-up inference from two copies of the 
assertion 

Likes{Narcissus, Narcissus) (-

using the clause 

Friends(x,y) (- Likes(x,y), Likes(y,x). 
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Substitution and matching 

It remains to define the notions of substitution and matching. 

A substitution 

is a set of substitution components of the form 

Xi = ti 

where xi is a variable and ti is a term. Distinct substitution components 
of a substitution 

and 

have distinct variables xi and Xj. Thus a substitution can be regarded as 
a function which maps varlables Onto terms. If E is an expression (term, 
atom, or clause) then the result of applying the substitution 

e:z::: {xl=tl' ••. , 

to E is a new expression 

which is identical to E 
belongs to e, wherever E 
occurrence of ti. The new 

except that for every 
contains an occurrence 

expression Ee is said to 

component xi=ti which 
of Xi' Ea contains an 
be an instance of E. 

A substitution a unifies the two expressions El and E2 if it makes 
them identical, i.e. 

Ela is the common instance of El and E2 determined A substitution 
8 matches El and E2 (is a most general unifier of El and EZ) if 

1) 8 unifies El and E2 and 

2) the common instance 
E/;" determined y any other unifier a of El and EZ is an 

instance of the common instance 
E19 

determined by 8. Thus 
E10" = (E19 ) >-

for some substitution A. 

Every pair of expressions which can be unified can also 
Moreover, all matching substitutions are equivalent, in the 
the common instances they determine are variants. 

be matched. 
sense that 
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Correctness and completeness of inference systems 

A system of inference rules is correct (or sound) if every set of 
clauses which has a refutation constructed in accordance with the 
inference rules is inconsistent. The system is complete if every 
inconsistent set has a refutation. The notions of correctness and 
completeness connect semantics with the part of syntax concerned with 
proof theory. An inference system which is both correct and complete is 
one for which the semantic notion of inconsistency coincides with the 
proof theoretic notion of refutability. The correctness of top-down and 
bottom-up inference is easy to verify. 

Bottom-up inference is a special case of the hyper-resolution rule 
defined and proved complete by Robinson [1965b]. Top-down inference is a 
form of the model elimination rule introduced and proved by Loveland 
[1968, 1969]. Like hyper-resolution, model elimination applies to 
arbitrary sets of clauses. In both cases for non-Horn clauses, however, 
an additional rule of inference, the factoring rule, discussed in Chapter 
7, is needed for completeness. 

Many forms of top-down inference have been developed, notably linear 
resolution [Loveland 1970], [Luckham 1970], ordered linear resolution 
[Reiter 1971], SL-resolution [Kowalski and Kuehner 1971], G-deduction 
[Michie et al 1972), inter-connectivity graph resolution [Sickel 1976] 
and analytic resolution [Brand 1976]. Linear resolution employs no 
restriction on the selection of atoms for top-down inference. Given a 
denial containing n atoms it potentially investigates the nl redundant 
sequences in which the atoms can be selected. The other systems, 
including model elimination, employ last-in-first-out selection 
procedures. The importance of selecting atoms in a more flexible manner 
will be studied in the next two chapters. Completeness for top-down 
inference systems employing arbitrary selection procedures has been 
proved by several authors including Brown [1973] and Hill [1974]. 

Top-down and bottom-up inference are special cases of the resolution 
rule [Robinson 1965a). A system which mixes top-down and bottom-up 
inference for Horn clauses has been described by Kuehner [1972J. The 
connection graph proof procedure [Kowalski 1974a] investigated in Chapter 
8 combines both directions of inference for non-Horn clauses as well. A 
non-resolution system which uses the standard form of logic rather than 
clausal form has been developed for applications in mathematical theorem-
proving by Bledsoe and his colleaguEs [1971, 1977]. His system also 
combines bottom-up reasoning forwards from assumptions together with 
top-down reasoning backwards from conclusions. 

Exercises 

1) A string of items can be regarded as a directed graph whose nodes 
are spaces and whose arcs are labelled by items connecting one space to 
the next. An arc labelled by an item connecting space x to space y 

w 

x y 
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can be represented by means of a three place relationship 

Conn(x,w,y) . 

Thus the assertions 

Conn (4,D,2) (-
Conn(2,A,3) (-
Conn (3 ,D,f) <-

represent the string 

DAD 

whose spaces are arbitrarily named 

4, 2, 3, f . 

A string is a palindrome if it reads the same backwards as it does 
forwards. Express the following more precise definition by means of Horn 
clauses. 

a) A string from space x to space y is a palindrome if the 
item from x to x' is the same as the item from y' to y and 
the string from x' to y' is a palindrome. 

b) A string from x to y is a palindrome if there is an item 
from x to y. 

c) A string from x to x is a palindrome. 

Construct both top-down and bottom-up solutions for the problem of 
showing that the string DAD is a palindrome. 

2) Let strings be 
relation as in exercise 

represented 
(1) • 

by means of the three place Conn 

a) Define by means of Horn clauses the relationships 

Identical(w,x,u,v) 

Admissible(u,v) 

which holds 
consists of 
i.e. 

x x 

when the string from 
w copies of the same 

x 

u v 

w times 

u to v 
item x, 

which holds when, for some i, the string 
from u to v consists of i copies of item a 
followed by i copies of item b followed by 
i copies of c, i.e. has the form 



b} 

Exercises 

a a b 

i times 

Exhibit the entire top-down 
for the problem of showing 
admissible. In the case of 
select conditions in a manner 
the search space. 

3) Using the clause 
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b c c ... ------
i times i times 

and bottom-up search spaces 
that the string a b c is 
the top-down search space 
which minimises the size of 

Distance(x,y,w) (- Distance(x,z,u), Distance{z,y,v), Plus(u,v,w) 

and any assertions such as 

Plus(3,2,5) (-
Plus(5,4,9) (-

which ere necessary for the Plus relation, construct top-down and bottom-
up solutions to the problem 

(- Distance(A,M,w) 

for the graph shown in exercise (7) of Chapter 
solutions does the top-down search space contain? 

(- Distance(x,x,w) 

solvable? 

1. How many distinct 
Is the problem 

4) The relation x y can be defined by the Horn clauses 

o ( x (-
sex) sty) (- x y. 

Generate the top-down and bottom-up search spaces (where they are finite) 
for the following problems. 

a} (- s(s(0)} ::. s(s(s(0}}} 

b} (- s(s(0)}} ( w 

c) <- W ( s(s(0)} 

d} <- s(s(w)) < sew) 

e} (- s (6 (w» ( s (0) 

5) Define the relation Plus(x,y,z) which holds when x+y = z. You can 
use two clauses, one for the case x is 0, the other for the case x is 
s (x') • 



74 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures 

6) Assume that the relations 

Plus(x,y,z) and Times(u,v,w) 

are defined by variable-free assertions and hold whenever x+y 
u*v : W respectively. 

z and 

a) Let Exp(x,y,z) stand for the relation x to the exponent y 
is z, written xTy : z. Express the following sentences in 
clausal form, without using function symbols. 

b) 

for all x. 
y*z if xlu = y and xlv = z. 

xlI = x 
xl (u+v) 
xlu = z if xl(u+v) = wand xlv = y and y*z = w. 

Using the clauses 
problems by means 
refutations. 

If 2fa = 10 and a+a 
If 3lc = 12 and b+l 

= 
= 

Show that for every 

You may need to 

from part 
of both 

(a) solve 
top-down 

b, then find w such 
c then find w such 
x there is a z such 

the 
and 

that 
that 
that 

following 
bottom-up 

2lb w. 
3lb w. 
xl0 z. 

assume such obvious facts about 
multiplication as Times(l,x,x) (- . 
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CHAPTER 4 

Horn Clause Problem-Solving 

When logic is 
proof procedures 
clause inference 
solving developed 

used to express problems and problem-solving methods, 
behave as problem-solvers. We shall argue that Horn 
subsumes many of the alternative models of problem-
in artificial intelligence. 

In this chapter we compare Horn clause inference both with the path-
finding model of the Graph Traverser [Daean and Michie 1966] and the 
General Problem Solver [Newell and Simon 1963] and with the and-or tree 
model of problem-reduction (Gelernter 1963), [Nilsson 1971]. In the next 
chapter we compare Horn clause inference with problem-solving regarded as 
execution of programs. In subsequent chapters we investigate both the use 
of non-Horn clauses in problem-solving (Chapters 7 and B) as well as more 
global problem-solving strategies (Chapter 9). 

The close relationship between problem-reduction and top-down 
inference has been observed by several authors, including [Kowalski and 
Kuehner 1971], [Loveland and Stickel 1973], [Pop1e 1973], [Van der Brug 
and Minker 1975]. Moreover it is already implicit in the Logic Theorist 
[1963], The General Problem-Solver and the Geometry Theorem Proving 
Machine [Gelernter 1963]. 

Path-finding 

It is possible to express any problem as a path-finding problem. 

Given an initial state A, a goal state Z, and operators 
which transform one state into another, the problem is to 
find a path from A to Z. 

The water containers problem 

The water-containers problem can be formulated naturally as a path-
finding problem. GiVenn 

l:d Cit;es] 
both empty 

don't 
care 
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Given both a seven and a five litre container, initially empty, the goal 
is to find a sequence of actions which leaves four litres of liquid in 
the seven litre container. There are three kinds of actions which can 
alter the state of the containers: 

(1) A container can be filled. 

(2) A container can be emptied. 

(3) Liquid can be poured from one container into the other, 
until the first is empty or the second is full. 

The water-containers problem has a simple Horn clause formulation. 
Interpret 

State(u,v) as expressing that there is a state in which 
the 7 litre container contains u litres of liquid and the 
5 litre container contains v litres. 

Assume that the relations 

x + y = z and x y 

are already defined (by infinitely many variable-free assertions, for 
example) . 

wel State("',"') (-

we2 (- State (4,y) 
WC) State (7 ,y) (- State(x,y) 
WC4 State(x,S) (- State(x,y) 
WC5 State{"',y) (- State(x,y) 
WC6 State(x,"') (- State(x,y) 
we7 State ('" ,y) (- State (u,v) , u+v y, y ( 5 
weB State(x,0) (- State (u,v) , u+v X, X ( 7 
We9 State(7,y) (- State(u,v) , u+v W, 7+y • W 
WCl'" State(x,S) (- State (u,v), u+v W, 5+x • W 

Clauses WCl and WC2 express the given and the goal states respectively. 
WC3 and WC4 define the action of filling a container. WCS and WC6 define 
emptying a container. WC7 and we8 define pouring from one container into 
another until the first is empty. WC9 and WCl'" pouring from one 
into another until the second is full. 

Before investigating the top-down and bottom-up search spaces, it is 
useful to define the graph-representation of search spaces. First we 
shall consider a simplified version of the path-finding problem and its 
Horn clause formulation. 
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simplified path-finding problem 

Suppose the problem is to find a path from node A to node Z in the 
following graph. 

D 

B 

A E Z 

C Y 

F 

The problem can be formulated with a one-place predicate 

Go(x) 

which expresses that it is possible to go to node x. 
chapter we shall compare this formulation with the one 
semantic networks) which employs a two-place predicate 

Go* (x,y) 

expressing that it is possible to go from node x to node y. 

GO(A) (- <- Go(Z) 
Go{BI (- Go{AI Go{CI <- Go(A) 
Go(D) (- Go(S) Go(F) <- Go(e) 
Go{EI (- Go{BI Go{XI (- Go{DI 
Go {ZI (- Go(X) Go{XI <- Go (E) 
Go {ZI (- Go{YI 

Later in the 
(suggested by 

In this formulation the clauses which describe the graph behave as path-
finding procedures which connect adjacent nodes. The top-down and bottom-
up search spaces are both trees. 
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Go(A) (-

Go(B) (- Go(e) (-

Go(D) (- Go (E) (- Go(F) (-

Go (X) (- Go(X) (-

Go(Z) (- Go(Z) (-

o o 

(- Go (Z) 

(- Go (X) (- Go(Y) 

(- GO(D) (- Go(E) 

(- Go(B) (- Go(B) 

(- Go(A) (- Go (A) 

o o 

In both search spaces there is a one-ta-one correspondence between 
refutations and solution paths. Both search spaces, however, contain 
undesirable redundancies. The bottom-up search space derives the 
assertion Go(X) (- in two different ways and then redundantly uses it 
twice in the same way to obtain two refutations. The top-down search 
space derives the goal statement (- Ga(s) in two different ways and then 
redundantly solves it twice in the same way. These redundancies can be 
eliminated by representing the search spaces as graphs rather than as 
trees. 
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Graph-representation of search spaces 

The of a search space is obtained from the tree-
representation by identifying nodes which have the same label. Thus no 
clause occurs in the graph-representation more than once. 

GO(A) (-

Go(B) (- GO(e) (-

Go (D) <- Go (E) <- GO(F) <-

Go(X) (-

Go(Z) (-

o 
Graph-representation of the bottorn-.!!E. search space 

(- Go (Z) 

(- Go(Y) 

(- GO(D) (- Go (E) 

(- Go (B) 

(- Go(A) 

o 
Graph-representation of the search space 

Use of the graph-representation suggests that whenever a search 
strategy generates a clause in the search space, it checks whether the 
cl;mse has been generated before. If it has, then only one occurrence of 
the clause is retained. Generally, the new occurrence is deleted. 

The graph-representation can turn an infinite search 
finite one. The top-down search space for the problem of 
from A to Z in the following graph is a simple example. 

space into a 
finding a path 
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D 

S x 

A z 

c y 

F 

<-Go(Z) 

<- GoIX) (- Go(Y) 

<- GolD) 

Go(B) 

(- Go(A) (- Go {Xl 

o (- Go(D) 

(- GalS) 

o 

<- Go(B) 

o 

(- Go(B) 

Infinite !£E-down search space in the tree representation 
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(- Go(,) 

<- Go(Y) 

(- Go(A) 

o 

The Search Spaces for the Water Containers Problem 

We can now exhibit the graph representations of the search spaces for 
the water containers problem. In order to avoid complicating the 
appearance of the search spaces, arcs which lead to nodes labelled by 
clauses which already occur elsewhere in the search space are not always 
shown. 

The top-down search space is more complicated than the bottom-up 
search space. Notice, however, that the matching substitutions which are 
generated in the first step of both branches of the top-down search space 
determine that if the goal 

(- State(4,x) 

has a solution, then x must be either 0 or 5. 

Generally speaking, the conclusions of clauses WC3-l0 
any goal state which cannot have at least one container 
empty. For this reason, in the clause 

(- State(u,v), u+v 9 

will not match 
either full or 

it is easier to select the second goal which generates pairs of integers 
adding up to 9, and to reject those yielding impossible goal states than 
it is to solve the subgoals in the other sequence. 
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State(",0) (-

wcs WC3 WC6 

__ ___ ______ State(0,S) (-

WC4 

State(7,5) <- (-

WCB 

State(5,0) (-

WC4 

State(5,S) <-

WC9 

WC2 

o 

(-

(-

(-

(-

(-

State(6,e) (-

(-

(-

(-

WC10 

WCB 

State (7,3) (-

WC5 

State(£I,3) (-

WeB 

State(3,0) (-

WC4 

State(3,S) (-

WC9 

State(7,l) (-

wcs 
State(0,1) (-

WCB 

State(l,0) (-

we4 

State(l,S) (-

Bottom-,!:!E search space for the containers problem 
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(- State(4,x) 

x = 0 WCB WC10 x = 5 

State(u,v) , u+v 4 (- State (u,v) , u+v 9 

(- State(0,4) (- State(7,2) 
1<X:5 WC3 

(- State(y,4) (- State(y,2) 
WC9 y = 7 WC7 Y • 8 

(- State (u,v), u+v 11 <- State (u,v), u+v 2 

(- State(6,5) (- State(2,0l 
1<X:4 WC6 

(- State(6,y) (- State(2,y) 
WCB y • 8 WCl8 Y • 5 

(- State(u,v), u+v 6 (- State(u,v), u+v 7 

<- State(l,S) (- State(7,0) 
WC4 WC3 

(- State(l,y) (- State(y,0) 
y • 8 WCl Y 8 

(- State(0,l) 0 
WC5 

<- State(y,l) 
WC9 y • 7 

(- State(3,5) 
1<X:4 

(- State(3,y) 
WCB y = 0 

<- State(0,3) 
WC5 

(- State (y, 3) 
y = 7 

'!'.£E.-down search space for the containers problem 

Search strategies for path-finding 

The path-finding model of problem-solving is concerned more with the 
development of search strategies than it is with the structure of search 
spaces and the representation of information. Given the task of finding a 
path in a graph, the search problem becomes one of devising intelligent 
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strategies for searching the graph. 

Most search strategies for path-finding employ some form of guidance 
by evaluation functions. Given a search space, an evaluation function 

f applied to nodes in the space produces real numbers as values. The 
value f{N) of a node N is intended to measure the usefulness of 
continuing the search from that node. The greater the value of the node 
the mOre promising it is to apply operators to it. heuristic search 
strategy, guided by the evaluation function, always searches from the 
node of currently greatest value. 

Breadth-first and depth-first search can be regarded as special cases 
of heuristic search. In depth-first search, the value of a node is its 
distance from the start node. In breadth-first search, it is the inverse 
of its distance from the start node. In both cases, the distance between 
two nodes is measured simply by the number of arcs contained in the 
currently shortest path connecting the nodes. 

In a typical path-finding problem, a node in the search space 
represents a state of some collection of objects. If there are n objects, 
a state can be represented by the n-tuple consisting of the individual 
states of the objects. In the water containers problem, for example, 
there are two objects which can be in one of the eight states 0-7. Such 
state-space path-finding problems can easily be represented with Horn 
clauses by using a predicate 

which expresses that the state in which 

is possible. 

the 1st individual is in state Xl 
the 2nd individual is in state x2 

the mth individual is in state xm 

Special evaluation functions are useful for such state-space problems. 
In the simplest caSe, given a node 

N State (sl,s2, ... ,srn) 

(which is either an assertion or a goal, depending on the direction of 
the search space) and searching for a node 

T State(t l ,t2, ... ,tm) 

the distance between Nand T might be estimated by the sum of the 
distances between the individual states. 

The value of a node is greater the smaller its estimated distance to T. 
More sophisticated evaluation functions might estimate overall distance 
by a weighted sum of individual distances or by a more complex function 
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of individual distances (such as the square root of the weighted sum of 
the squares of the distances) . 

In many path-finding problems, costs are associated with nodes or arcs 
of the graph and the problem is to find the least costly path connecting 
the given and goal nodes. In the water-containers problem, for example, 
it might be required to find the shortest solution. In such cases, the 
greater the cost of reaching a node the smaller is its value. Both 
evaluation function guided search strategies [Nilsson 1971] and branch-
and-bound [Lawler and wood 1966] are useful for such problems. 

It is not always possible or desirable to use a numerical-valued 
evaluation function to guide the search strategy. It may be possible, 
none the less, to define a merit ordering among nodes in the search 
space. The search strategy, guided by the merit ordering, always 
searches from a node having the greatest merit. 

Since a top-down refutation can be regarded as a path from an initial 
set of goals to the empty clause, the problem of finding a refutation in 
a top-down Horn clause search space can be regarded as a path-finding 
problem and the theory of heurlstic search can be applied. However, it 
must be modified when applied to bottom-up search spaces where solutions 
are more naturally as trees or graphs [Kowalski 1972]. Even in 
the case of top-down search spaces the heuristic search path-finding 
model of problem-solving does not address the important problem of 
selecting subgoals. These deficiencies are remedied by the problem-
reduction model of problem-solving and its associated and-or tree 
representation. 

The and-or tree representation of problem-reduction 

In the problem-reduction model of problem-solving the task is to find 
a solution to an initially given problem, using a given collection of 
assertions and procedures to reduce problems to subproblems. The task is 
accomplished by repeatedly applying procedures to unsolved problems, 
replacing them by subproblems, until the initial problem has eventually 
been replaced by the empty set of subproblems. 

In the and-or tree representation of problem-reduction, nodes of the 
tree are labelled by problems: 

(1) The root node is labelled by the initial problem. 

(2) If a problem A labels a node and a procedure reduces A to 
the subproblems Al,A2, ••• ,Aw then the node is connected by a 
bundle of directed arcs to nodes labelled by the individual 
subproblems. The bundle itself may be labelled by the 
procedure. 
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If the problem A 
it is connected 
empty collection 

A 

I o 

labell ing a node 
by a single arc 
of subproblems. 

matches an assertion, then 
to a node labelled by the 

The figure below illustrates both the and-or tree representation and 
the Horn clause representation for a simple problem-reduction task. 

Likes(John,Mary) 

Pretty (Mary) 1 
o 

Initial Problem 

Procedures 

Assertions 

Happy (John) 

I Kind (John) 

o 

Handsome (John) 

o 

(- Happy{John) 

Happy (John) (- Rich (John) 
Happy (John) (- Likes(Mary,John) 

Rich (John) 

Strong (John) 

o 

Likes (Mary,John) (- Likes(John,Mary), Kind(John) 
Likes (Mary,John) (- Handsome (John) , Strong(John) 
Likes (John,Mary) (- Pretty(Mary) 

Pretty(Mary) (-
Kind (John) <-
Handsome (John) <-
Strong (John) <-

The problem has two solutions which can be represented as subtrees of 
the and-or tree: 
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Happy (John) Happy (John) 

Likes (Mary,John) Likes (Mary,John) 

Likes{John,Mary) Kind (John) Handsome (John) Strong (John) 

Pretty(Mary) o o o 

o 

one solution the other solution -----
The and-or representation is obtained from the and-or tree 

representation by identifying all nodes which are labelled by the same 
subproblero. In the example below, the and-or graph representation turns 
an infinite and-or tree search space into a finite one. The problem has 
no solution. 

Happy (John) Happy (John) 

Likes(Mary,John) Likes (Mary,John) 

Likes(John,Mary) Kind (John) Kind (John) 

o o 
Likes (Mary,John) Pretty(Mary) Pretty (Mary) 

o 

o 

and-or tree representation and-or representation 

Initial Problem 

Procedures 

Assertions 

(- Happy(John) 

Happy (John) (- Likes(Mary,John) 
Likes (Mary,John) (- Likes(John,Mary), Kind(John) 
Likes (John,Mary) (- Likes(Mary,John), Pretty(Mary) 

Pretty(Mary)(-
Kind (John) (-

Both the and-or tree and and-or graph representations of problem-
reduction focus attention on the structure of the search space and on 
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search strategies. However, they ignore both the structure of the 
problems which label the nodes of the search space ana the connection 
between problems in the form of shared variables. The Horn clause model 
of problem-reduction represents problems by atomic formulae and makes 
explicit (in the form of matching substitutions) the information which is 
generated when a procedure or assertion is applied to a problem. 

The problem-solving interpretation of Horn clauses 

The problem-solving interpretation of Horn clauses is basically the 
top-down interpretation. 

The atoms in a denial (- AI, ••• ,Am are 
or 90als, to be solved. If the denial contains 
then it is interpreted as stating the goal: 

Find xI, ••. ,xk 

interpreted as problems, 
the variables xI"",xk 

which solve the problems AI, ••• ,Am. 
and is called a goal statement. 

An implication A (- AI, ... ,Am 
method, or procedure: 

is interpreted as a problem-solving 

To solve a problem of the form A, 
solve the subproblems AI, •.• ,Am. 

Given a problem B which matches A, the procedure reduces the solution of 
B to the solution of the subproblems 

where e is the matching substitution. We say both that the procedure 
matches A and that it applies to A. 

An assertion A <- is interpreted as a procedure which solves 
problems directly without reducing them to further subproblems. 

The empty clause 0 is interpreted as the goal statement. 

The and-or tree and and-or graph representations can be extended to 
Horn clause problem-reduction in general. It is necessary to represent 
the contribution of a procedure to the values of the variables in the 
problem to which the procedure is applied. In the extended and-or tree 
representation, each bundle of arcs is labelled by that part of the 
matching SUbstitution (called the output component) which affects 
variables in the problem under consideration. The figure below 
illustrates the extended and-or tree representation for the fallible 
Greek problem of Chapter 1. 



The problem-solving interpretation of Horn clauses 

Fall ible (x) Greek (x) 

x = Socrates 

Human (x) o 
x = Turing x = Socrates 

o o 

In general, the substitution S which matches a problem 
procedure A (- can be decomposed into two parts 8 = 

89 

(1) One part 8 i affects variables in the procedure. It passes 
input from the problem to be solved to the procedure which 
tries to solve it. Si is called the input component of the 
matching substitution. 

(2) The other part 80 affects variables in the problem to be 
solved. It passes output from the procedure to the problem 
whose solution is being attempted. 80 is called the output 
component of the matching substitution. 

Thus the procedure reduces the problem B to the collection of subproblems 

whereas the output component 8 is the procedure's contribution to 
finding the values of the in B. 

When the matching substitution makes a variable, say x, in the problem 
identical to a variable, say y, in the procedure, then it is useful to 
treat the substitution as transmitting input and to include y = x in 
the input component of the matching substitution. 

Splitting and independent subgoals 

An important characteristic of the and-or tree representation is that 
it explicitly exhibits the splitting of a goal statement into separate 
subgoals. Splitting is especially useful when the subgoals share no 
variables. Subgoals which share no variables are independent and can be 
solved by different problem-solvers working independently. 

In the family relationships example the two subgoals in the initial 
goal statement 

(- Parent(x,Ares), Parent(Ares,z) 

share no variables and are independent. 
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Parent (Ares,z) 
Parent (x,Ares) 

Mother (Ares,z) Father (Ares,z) 

Mother (x,Ares) Father (x,Ares) 

x = Hera x = Zeus z Harmonia 

o o o 

Any solution to the problem of finding an x which is a parent of Ares is 
compatible with any solution to the problem of finding a z which is a 
child of Ares. Problem-solvers could work on the separate problems 
simultaneously without danger of interfering with one another. 

Top-down search spaces whose nodes are labelled by goal statements 
contain redundancies when subgoals are independent. This is illustrated 
by the goal statement search space for the previous problem. The same 
abbreviations are used as in the previous chapter. 

(- P(x,Ar), P(Ar,z) 

(- M(x,Ar), P(Ar,z) (- F(x,Ar), P(Ar,z) 

(- F(x,Ar) ,M(Ar,z) (- F(x,Ar) ,F(Ar,z) 

(- M(x,Ar) ,M(Ar,z) (- M(x,Ar) ,F(Ar,z) 

z = Harmonia Z "" Harmonia 

(- M(x,Ar) (- F (x,Ar) 

x = Hera x "" Zeus 

o o 

Here the subgoal of finding a child of Ares is redundantly considered 
twice, once in the context of the goal statement (- M(x,Ar), P(Ar,z) 
and again in the context of the goal statement (- F(x,Ar), P(Ar,z). In 
the and-or tree search space the subgoal is represented only once. 

More generally, given an initial 
solving A and m ways of solving B, 
space contains n*m branches, whereas 

goal statement (- A, B, n ways of 
the goal statement top-down search 

the and-or tree contains only n+m. 
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Dependent subgoals 

The extended and-or tree representation does not specify the 
relationship between the solution of a goal statement and the solution of 
its separate subgoals. In particular, the problem-solving interpretation 
leaves open the possibility that a goal statement 

<- Al,···,Am 

might be solved by 

(1) independently solving the separate subgoals, obtaining 
associated substitutions Sl"",Sm which solve the subgoals 
and then 

(2) combining the separate substitutions to obtain a solution of 
the goal statement itself. 

If the subgoals are independent then it suffices to combine the separate 
substitutions by taking their union. If they are dependent then it is 
necessary to combine them by finding a most general common instance of 
the substitutions. For example, the combined substitution for the 
independent subgoals in the goal statement 

<- Parent(x,Ares), Parent{Ares,z} 

is simply the union 

{x = Hera, z = Harmonia} 

of the individual substitutions. But the combined substitution for the 
dependent subgoals 

<- 0 < y, Even{y) 

given the separate substitutions 

{y = s (y')} and {y = s(s{"))}, 

is obtained by matching the two values for y giving 

iy = s(s(0))). 

Top-down goal-statement search spaces make explicit both the 
dependencies among sub-goals and the effect on the size of the search 
space of solving different subgoals in different sequences. The and-or 
tree search space for the problem of the fallible Greek, for example, is 
independent of the order in which the top level goals are solved. The 
goal statement search spaces, however, are quite different. Solving goals 
in one sequence we obtain a search space containing alternative branches, 
whereas solving them in a different sequence generates a search space 
consisting only of the solution itself. Notice that, as in the extended 
and-or tree representation, it is useful to label arcs by the output 
component of the matching substitution. 
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(- Fallible (x) , Greek(x) 

(- Human (x) , Greek(x) 

x = Turing x = Socrates 

(- Greek (Turing) (- Greek (Socrates) 

o 

(- Fallible(x), Greek(x) 

(- Human (x) , Greek (x) 

x = Socrates 

(- Hurnan(Socrates) 

o 

Another search space 

For the remainder of the book we shall use goal statement search 
spaces (in preference to extended and-or tree spaces), because they make 
it easier to show the effect of the subgoal selection strategy on the 
size of the search space. In practice, computer implementations of Horn 
clause problem-solving systems use a representation which combines 
features of both and-or tree and goal-statement spaCes. 

The goal statement search spaces for the fallible Greek problem 
illustrate a general principle. When subgoals are dependent, select one 
to which the fewest The aim is to minimise the overall 
size of the search space by locally minimising the number of alternative 
branches which emanate from any node. 

Finding versus showing 

Logic does not distinguish between procedures which show that a given 
relationship holds and procedures which find individuals for which it 
holds. Thus the grandparent procedure, for-eiample, is able not only to 
show that one individual is grandparent of another but also to find both 
grandparents and grandchildren. 
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The difference between showing and finding 
presence or absence of variables. In general, 
problem contains, the more finding there is to be 

is 
the 

done. 

indicated by the 
more variables a 

Any procedure which applies to a showing problem P(t) also applies to 
the corresponding finding problem P(x). Thus the search space for a 
finding problem is generally larger than it is for a showing problem. 
This suggests the principle of selecting sUbqoal which involves least 
finding and most showing. This principle is subsumed by the one which 
selects the subgoal to which fewest procedures apply, but it is easier to 
apply. It requires only an analysis of the subgoals under consideration 
rather than an analysis of all the matching procedures as well. 

Applying these principles to the grandparent procedure 

Grandparent (x,y) (- Parent(x,z), Parent(z,y) 

results in the selection of different subgoals depending on the form of 
the problem to be solved: 

(1) Given x, to find grandchildren y of x, first find children z 
of x, then find children y of z. 

(2) Given y, to find grandparents x of y, first find parents z 
of y, then find parents x of z. 

(3) 

(4) 

Given both x and y, to show x is grandparent of y, compare 
the number n of children of x with the number m (two) of 
parents of y. 
If n < m, first find children z of x then show they are 
parents of y. 
If n > m, first find parents 
children of x. 
Ifn '" rn, it doesn't matter 
selected first. 

Given neither x nor y, 
grandparent relationship, it 
selected first. 

z of y and then show they are 

which of the two subgoals is 

to find individuals in the 
doesn't matter which subgoal is 

The principle of preference for subgoals to which fewest procedures 
apply has two aspects. On one hand, it is a principle of procrastination, 
which delays as long as possible the selection of explosive subgoals that 
can be solved in many ways. On the other hand, it is a principle ,of eager 
consideration of subgoals which can be solved in few ways. 

The principle of procrastination can lead to smaller searches in two 
ways. When subgoals share variables, delaying the selection of a finding 
problem (which can be solved 1n many ways) can turn it into a more 
manageable showing problem which can be solved in fewer ways. Finding the 
values of variables may be done more efficiently by selecting other, less 
explosive, dependent subgoals. Whether subgoals are dependent or not, it 
may be possible to postpone the consideration of explosive subproblems 
until after the initial problem has been solved by alternative methods. 
By then, whether or not the explosive 5ubproblem has been instantiated it 
can be ignored. 
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The principle of eager consideration is of particular utility when a 
subgoal can be solved in at most one way. To solve a goal statement, all 
its subgoals have to be solved. Therefore, if a goal statement contains 
an unsolvable subgoal, which matches no procedure, then the selection and 
recognition of the unsolvable subgoal demonstrates the unsolvability of 
the goal statement as a whole; hence we avoid the unnecessary 
consideration of other subgoals in the same goal statement. When only a 
single procedure matches a given subgoal, then it must be applied sooner 
or later, if the goal statement has a solution. Early consideration has 
the advantage that any information in the form of values for variables 
can be obtained as soon as possible and communicated to other dependent 
subgoals. Moreover, if the procedure eventually fails to solve the 
subgoal, then consideration of other more explosive subgoals in the same 
goal statement may be avoided. 

The number of procedures (including assertions) which apply to a given 
subgoal is only a local approximation to the total number of ways the 
subgoal can be solved. It can be misleading in some cases. Better 
approximations can be obtained by employing look-ahead techniques similar 
to the mini-max methods discussed later in this chapter. 

The effect of different strategies for selecting subgoals on the size 
of the search space is more pronounced when composite terms, constructed 
by means of function symbols, are involved. The effect of composite terms 
on the selection of subgoals will be investigated in the next chapter. 

Lemmas, duplicate subgoals and loops 

Many features of the extended and-or graph representation can be 
incorporated into the top-down goal statement representation by 
generating lemmas which record the solution of solved subgoals. When a 
subgoal is solved, an assertion can be generated which solves the subgoal 
directly in one step. Such assertions are lemmas, which are found by top-
down deduction but could have been generated bottom-up. Thus a lemma 
which has been generated when a subgoal is solved in the context of one 
goal statement can be used to solve the same subgoal directly when it 
arises again in the context of another goal statement. 

To achieve the power of and-or graphs, negative lemmas 
also need to be generated when a subgoal is recognised as unsolvable. 
Negative lemmas can be used to recognise that the same subgoal is 
unsolvable when it arises again in another context. 

The generation of positive lemmas was first described by Loveland 
[19691 for the top-down model-elimination proof procedure. Both positive 
and negative lemma generation are incorporated into the top-down parsing 
procedure for context-free grammars devised by Earley [1970]. An 
equivalent of lemma generation in Horn clause problem-solving has been 
proposed by Warren [unpublished] as an extension of the Earley parsing 
procedure. 

The simple case, where duplicate subgoals occur in the same goal 
statement, can be dealt with directly - simply by deleting all but one 
of the duplicate occurrences. Such merging of duplicate atoms in the same 
clause is a special case of the factoring rule described in Chapter 7. 
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It is also a special case of the rule for deleting redundant subgoals, 
described in Chapter 9. 

Perhaps the most important case of duplicate subgoals arises when a 
goal occurs as its own subgoal. This is one of the situations that leads 
to loops and to infinite search spaces. Given a goal B and a matching 
procedure 

each of the goals A18,A28" .. ,Aro8 where 8 is the matching substitution 
is a subqoal of B. Moreover, any subgoal of a subgoal of B is also a 
sUbgoal of B. Thus one goal is subgoal of another if they both occur on 
the same branch of the and-or tree search space. 

Loop detection procedures, which test whether a goal occurs as its own 
subgoal, are a feature of Loveland's model elimination procedure and of 
SI-resolution. More general loop detection strategies, which test 
whether a goal subsumes a subgoal, have been investigated by Derek Brough 
[19791 and have been incorporated into a Horn clause problem-solving 
system implemented at Imperial College. 

Search strategies for problem-reduction spaces 

Search strategies for 
for path-finding. They 
evaluation of procedures 

and-or trees and graphs are extensions of those 
differ primarily because they combine the 

with the selection of subgoals. 

The mini-max and alpha-beta strategies [see Nilsson 711 are commonly 
employed when and-or trees represent game playing problems. Individual 
subgoals represent states of the game. Alternative procedures which apply 
to a given subgoal represent the problem-solver's alternative moves for 
the state represented by the subgoal. The bundle of subqoals wnich 
results from the application of a procedure represents the states 
associated with all the opponent's alternative responses to the problem 
solver's move. 

The value of a move (represented by a procedure) for the problem-
solver is only as great as the opponent's strongest response. Thus the 
value of applying a procedure is the minimum of the values of the 
subgoals in the bundle associated with the procedure. The value of an 
individual state of the game (represented by a subgoall on the other 
hand, is as great as the problem-solver's best move. Hence the value of a 
subgoal is the maximum of the values of the procedures which apply to the 
subgoal. 

Given an initial evaluation of subgoals, mini-max evaluation looks 
ahead into the search space and provides a revised, more accurate 
evaluation of subgoals. It can be used not only for game playing but for 
problem-reduction in general. An appropriately modified version of mini-
max evaluation can be used specifically to improve the criterion for 
selecting subgoals. A general method for using 'look-ahead' to improve 
evaluation functions for clausal theorem-proving has been developed for 
the connection graph proof procedure [Kowalski 1974a] presented in 
Chapter 8. 
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For many problem-reduction applications it is more appropriate to use 
some form of depth-first search. This is efficient to implement because 
only one branch of the top-down search space is considered at any time. 
When no untried procedure applies to the selected subgoal in the goal 
statement at the end of the branch, the search strategy backtracks to the 
next-ta-last node of the branch and tries to solve the selected subgoal 
there in an alternative way. For this reason depth-first search is also 
called backtracking. 

Although backtracking is effective in many cases 
distressingly unintelligent in others. Both successful and 
applications of backtracking are illustrated by the arch 
problem. 

it can be 
unsuccessful 
recognition 

Consider, for example, the problem of recognising an arch in the 
following scene: 

It is convenient to name an arch by means of a function symbol which 
collects together the immediate constituents of the arch. We let the term 

a (y, x,z) 

name the arch 

x 

Y[ } 
which consists of block x on top of left tower y and right tower z. A 
tower can be named by using a function symbol which combines the block on 
top of the tower with the subtower beneath it. We let the term 

t (u,v) 

name the tower 
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which consists of block u on top of tower v. Thus t(B,A) names the tower 
comprising block B on top of block A; a(t(B,A) ,D,C) names the arch in the 
scene above. The scene and the definitions of arch and tower are 
represented by clauses Al-l2. 

Al Arch{a{y,x,z) ) (- Block (x) , Tower (y) , 
Tower{z) , On(x,y) , On{x,z) 

A2 Tower (x) (- Block (x) 
A3 Tower (t{x,y» (- Block (x) , Tower{y),On(x,y) 

A4 On{x, t (y,z» (- On{x,y) 

AS Block{A) (-
A6 Block (B) (-
A7 Block{C) (-
A8 Block(D) (-
A9 Block (El (-

Ala On(B,Al (-
All On(D,B) (-
Al2 On(D,C) (-

Clause A4 reduces the problem of determining 
tower to that of determining whether the block 
on top of the tower. 

whether a block is on a 
is on the block which is 

The definition of arch Al is unsatisfactory for several reasons (see 
exercise 5). The problems which arise with backtracking, however, are 
independent of them. 

Consider the problem 

(- Arch(a(t(B,A), 0, C» 

of recognising the arch in which block 0 is both on the tower B on A and 
on the tower C. Using Al and solving subproblems in any sequence, the 
top-down search space consists of just the single path which solves the 
problem. No search strategy, including backtracking, behaves unintelli-
gently. 

Suppose, however, that the problem is to find an arch in the scene 

(- Arch (w) . 

Assume that subproblems are selected and procedures are applied in the 
order in which they are written. Because such strategies are especially 
easy to implement, they are incorporated in many computer-based problem-
solving systems. The initial problem quickly reduces to an un solvable 
goal statement. 



98 

Al 
w = a(y,x,z) 

x = A 
AS 

A2 

AS 
Y = A 

A2 

AS 
z = A 
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(- Arch{w) 

(- Block(x), TOwer(y), Tower(z), On(x,y), On(x,z) 

(- Tower(yl, TOwer(z), On(A,y), On(A,z) 

(- Block(y), Tower(z), On(A,y), On(A,z) 

(- Tower{z), On(A,A), On(A,z) 

(- Block(z), On(A,A), On(A,z) 

(- On(A,A), On(A,A) 

unsolvable 

The simple depth-first strategy backtracks to the previous node and 
searches for another block z. But changing z does not affect the 
unsolvability of On(x,y) 50 long as x and yare both A. The backtracker 
goes into an infinite loop, trying a potentially infinite sequence of 
towers z which do not affect the unsolvability of the subproblem On(x,y), 
where x and y are A. 

Backtracking can be made more intelligent if, when generating an 
unsolvable subgoal, it analyses the substitutions which cause the failure 
(in this case x:A and y:A), and backtracks to a node where it can undo 
them (in this case to the goal statement containing the selected subgoal 
Block(y)). Efficiency can be improved by preserving intermediate solved 
subgoals. The backtracker can be made more intelligent still by analysing 
the failure, not only to identify the subgoal whose solution should be 
undone, but also to determine how it should be done [Schmidt et al 1978]. 
In this example, when the subgoal On(x,y) with x:A and y:A is recognised 
as unsolvable, the assertion On{B,A) <- can be identified as the 
nearest match. The search strategy can then backtrack to the goal 
statement containing the selected subgoal Block{x) with substitution x:A 
and test whether Block(x) with x:B can be solved. Such goal-directed 
intelligent backtracking has the spirit of Sussman's [1975] model of 
problem-solving. Instead of carefully evaluating subgoals and alternative 
procedures, the problem-solver picks them arbitrarily. If they fail, he 
analyses the mistake in order to find a better method of solution. 

Notice, however, that the effect of solving subgoals in an arbitrary 
sequence and backtracking intelligently when things go wrong can be 
achieved more directly by selecting the correct subgoals in the first 
place. In this example, it suffices to select the subgoals 

On(x,y) and On{x,z) 

before the others in the definition Al of the arch. Similarly, the 
subgoal 
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On(x,y) 

should be selected first in the definition A3 of tower. It is necessary, 
moreover, to try the assertions AI0-12, which define the location of 
blocks resting on blocks, before the procedure A4, which defines the 
location of blocks on towers. 

w = a(y,x,z) 

x = B 
Y A 

z = A 

<- Arch(w) 

<- Block(x) , Tower(y), Tower(z), On(x,y), On(x,z) 

<- Block(B), Tower (A) , Tower{z), On(B,z) 

<- Block (B) , Tower (A) , Tower (A) 

<- Tower (A) 

<- Block (A) 

o 
Here the duplicate subgoal Tower (A) has been deleted to avoid redundancy. 
Notice that the first solution finds the pathological arch: 

a (A, B, A) 

Backtracking is employed in both the PLANNER [Hewitt 1969] programming 
language and the PROLOG [Co1merauer et al 1972] [Roussel 1975] top-down, 
Horn clause programming system. The inefficiencies of backtracking in 
PLANNER led to the development of CONNIVER [Sussman and McDermott 1972a, 
1972b], a PLANNER-like programming language in which the programmer 
writes both problem-solving procedures and search strategies. In PROLOG, 
the problem-solver provides the backtracking search strategy but the 
programmer can control the extent of backtracking. 

Various problem-solvers incorporating intelligent backtracking have 
been designed and implemented by Sussman and his colleagues [Sussman 
19751, [Stallman and Sussman 1977], [Doyle 19781. Intelligent Horn 
clause backtracking problem-solvers have also been investigated by Cox 
and Pietrzykowski [19761, [Cox 1978] and by Bruynooghe [1978]. Limited 
intelligent backtracking strategies have also been implemented in various 
Horn clause systems at Imperial College. 

Bi-directional problem-solving 

The Horn clauses which describe a typical problem-solving task can be 
classified into three kinds: 
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(1) general-purpose procedures (including assertions), which 
describe the problem-domain, 

(2) problem-specific assertions, which express the hypotheses of 
the problem to be solved, and 

(3) a goal statement, which expresses the problem itself. 

Problem-specific assertions can be absent from a given task 
description. But when they are present, it may be useful to combine top-
down reasoning (from the problem to be solved) with bottom-up reasoning 
(from the hypotheses of the problem). However, it is important in this 
case to avoid bottom-up reasoning from assertions which are part of the 
general description of the problem-domain. This restricted use of 
bottom-up reasoning combined with top-down reasoning is a characteristic 
feature of Bledsoe's theorem-proving system [1971]. 

The majority of bottom-up proof procedures, however, do not 
distinguish betwen different types of assertions. As a result, they 
generally lead to combinatorially explosive behaviour, generating 
assertions which follow from the general description of the problem-
domain, in addition to assertions which follow from the assumptions of 
the particular problem at hand. 

A useful criterion for 
with top-down reasoning is 
for path-finding problems: 

combining problem-specific bottom-up reasoning 
a variation of the one proposed by Pohl [1972] 

At every step choose the direction of inference which 
gives rise to the least number of alternatives. 

In the top-dawn direction, the number of 
number of procedures which match the 
statement. In the bottom-up direction, 
assertions which can be derived from any 
is illustrated for a path-finding problem 

2 

2 

3 

3 

alternatives is the smallest 
selected subgoal in a goal 

it is the smallest number of 
assertion. The Pohl criterion 
below. 

2 

4 

2 

1 N 

The search space generated 
in one direction 

The search space generated 
in the other direction 

The number next to each node indicates the number of successor nodes. 
The Pohl criterion selects the direction associated with generating the 
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successor of N. Given the previous formulation of the path-finding 
problem, bi-directional path-finding is accomplished by combining top-
down and bottom-up reasoning. 

notation for describing bi-directional problem-solving 

The distinction between top-down and bottom-up inference can be 
pictured using arrows to indicate the direction of reasoning. For every 
pair of matching atoms in the initial set of clauses (of which one is a 
condition and the other a conclusion) an arrow is directed from one atom 
to the other. 

For top-down inference, arrows are directed from conditions to 
conclusions. For the grandparent problem, we obtain the following graph. 

Grandparent(x,y) (- Parent(x,z), Parent(z,y) 

Parent(x,y) (- Father (x,y) Parent(x,y) (- Mother (x,y) 

... 
Father (Zeus,Ares) (- Father (Ares,Harmonia) (- Mother (Hera,Ares) (-

Reasoning is guided by the direction of the arrows. It starts with the 
initial goal statement, is transferred within procedures from conclusions 
to conditions and ends with the assertions. 

For bottom-up inference, arrows are directed from conclUSions to 
conditions. 

parent(x?er(, 

Father (Zeus,Ares) (- Father (Ares,Harmonia) (- Mother (Hera,Ares) (-

Reasoning begins with the assertions, is transferred within procedures 
from conditions to conclusions, and ends with the goal statement. 
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The grandparent definition can also be used in a combined top-down, 
bottom-up manner. Different combinations can be represented by using 
numbers to indicate sequencing. For simplicity, we show only the notation 
associated with the grandparent definition. The combination of directions 

3 

t 
Grandparent(x,y) (- Parent(x,z), 

t 
Parent(z,y) 

J 
1 2 

represents the algorithm which 

I} waits until x is asserted to be parent of z, then 
2) finds a child y of z, and finally 
3) asserts that x is grandparent of y. 

The combination indicated by 

1 

$ 
Grandparent(x,y) (- Parent{x,z), Parent(z,y) 

tr 
2 3 

1) responds to the problem of showing that 
x is grandparent of y, 

2) by waiting until x is asserted to be parent of z, 
and then 

3) attempting to show that z is parent of y. 

The arrow notation can also be used for non-Horn clauses. In Chapter 8 
it is used to control the behaviour of the connection graph proof 
procedure. 

Another formulation of the path-finding problem 

The effectiveness of a problem-solving strategy (such as bi-
directional reasoning) depends on the problem-formulation rather than on 
the problem itself. This is shown by comparing the previous formulation 
of the path-finding problem with the one suggested by the representation 
of semantic networks. 

In this representation we employ a predicate Go*(x,y) which expresses 
that it is possible to go from node x to node y. Assertions describe the 
arcs in the initial graph. The following assertions describe the graph at 
the beginning of the chapter. 
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GO*(A,B) <- Go*(D,X) <-
Go*(A,C) <- Go*(E,X) <-
Go*(B,D) <- Go*(X,Z) (-
Go*(B,E) <- Go*(Y,Z) <-
GO*{C,F) <-

In addition to the assertions, a single procedure is necessary for path-
finding 

Go*(x,y) (- Go*(x,z), Go*{z,y). 

The problem of finding a path from A to Z is described by a single goal 
statement 

(- Go*(A,Z). 

Here the assertions are specific to the graph, whereas the path-
finding procedure is general-purpose. However, only the goal statement is 
specific to the particular path in the graph. Bottom-up inference 
generates assertions about paths which are unmotivated by the particular 
path to be found. Both forward and backward search, as well as bi-
directional search, can be accomplished by top-down inference alone. The 
direction of search depends on the choice of subgoal in the path-finding 
procedure. Selecting Go* (x,z) before Go* (z,y) is forward search. 
Selecting the two subgoals in parallel or timesharing between them gives 
rise to bi-directional search. 

The path-finding problem can be formulated in different ways; the same 
problem-solving behaviour can be obtained from different formulations by 
applying different problem-solving strategies. Even the specific 
behaviour determined by the bi-directional path-finding strategy which at 
every step chooses the direction which grows least rapidly can be 
accomplished with both formulations. In the first formulation it is 
obtained by applying the Pohl criterion for combining top-down and 
bottom-up infeYence. In the second formulation it is accomplished by top-
down inference alone, applying the strategy of selecting the subgoal to 
which fewest procedures (including assertions) apply. 

Other aspects of problem-solving 

Problem-solving can be classified into three main stages. 

1) The first stage identifies the problem-domain and formulates 
problem-solving procedures. 

2) The second stage applies the procedures to the solution of 
problems. 

3) The third stage improves the 
strategies and procedures. 

problem problem-solving 

This chapter has been restricted to a discussion of the second stage. It 
has not considered the other stages which are concerned with learning. 
In this respect we have followed the advice of McCarthy [1968] and Minsky 
[1968] to explore the adequacy of the representation language before 
dealing with the problems of formulating and improving the representation 
of the problem domain. 
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In the next chapter we the interpretation of the Horn 
clause subset of logic as a programmlng language. This unifies problern-
solving with programming. The first stage of problem-solving is the 
initial stage of problem formulation and specification. The second stage 
runs the specification as a program, and the third identifies 
inefficiencies and remedies them by improving the procedures and 
tailoring the problem-solving strategies to the problems to be solved. 

In subsequent chapters we investigate the role of non-Horn clauses in 
problem-solving and the use of global problem-solving strategies. In the 
last chapter we compare the interpretation of logic as a model for 
problem-solving with the role of logic in philosophy as a model for 
representing beliefs and formalising arguments. 

However, nowhere in this book do 
learning. Nor do we investigate such 
solving by example and by analogy. 

we investigate the problems of 
important strategies as problem-

Exercises 

1) a) Express the arrow-inversion problem by means of Horn clauses 
without function symbols: 

Given three arrows in a row DUD, pointed down, up, 
down respectively, the goal is to reach the state D D D in 
which all arrows point down. The only action possible is 
to invert a pair of adjacent arrows, changing both their 
directions simultaneously. 

Hint: Let State(x,y,z) 
the first, second and 
respectively. 

express that there is a possible state in which 
third arrows point in directions x, y and z 

bl Show that the problem is unsolvable 
graph representation of the top-down 
showing that it contains no solutions. 

by generating 
search space 

the 
and 

c) Describe how the clausal formulation of the problem can be 
modified in order to 

iJ invert adjacent arrows only when they have opposite 
directions, 

ii) add an action which interchanges adjacent arrows, 
iii) deal with a row of four arrows instead of three. 

2) a) Express the farmer, wolf, goat and cabbage problem by means 
of Horn clauses: 

The farmer, wolf, goat and cabbage are all on the north 
bank of a river and the problem is to transfer them to the 
south bank. The farmer has a boat which he can row taking 
at most one passenger at a time. The goat cannot be left 
with the wolf unless the farmer is present. The cabbage, 
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which counts as a passenger, cannot be left with the goat 
unless the farmer is present. 

b) Compare the graph representations of both the top-down and 
bottom-up search spaces. 

c) Can you find useful evaluation functions to guide the 
search for a solution? 

3) Given the two different representations of the path-finding 
problem, compare the problem-solving strategies needed 

a) to recognise that there is no path from A to B if there is 
no arc leading from A or no arc leading to Band 

b) to show that it is possible to go from A to A. 

4) Let sequences be characterised by means of two relations 

Item{i,j,k) which holds when ij = k i.e. 
the j-th element in the sequence i is k and 
Length(i,u) which holds when the length of sequence i is u. 

Thus the sequence 

can be characterised by means of the assertions: 

Item(A,l,all (-
Itern(A,2,a2 1 (-

Item (A, n, an) (-
Length (A,n) (-

Assume that Plus(x,y,z) holds when x+y = z. 

a) Define 
which 

by means 
holds when 

sequence x. 

of Horn clauses the relation Sum(x,v) 
v is the sum of the numbers in the 

b) Use the clauses of part (a) to find top-down the sum of 
the numbers in the sequence B: 3,4,10. 

cl Can Sum(x,v} be defined in such a manner that, given x to 
find v, the search space contains only the solution? 

5) a) List all the solutions to the problem 

(- Arch(w) 

implied by the definition of arch and the description of the scene given 
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by clauses Al-12. 

b) Reformulate the definition of arch and tower by means of 
Horn clauses in order to eliminate as many pathological 
arches and towers as possible. (This problem can be 
solved more easily later using negation as failure, 
investigated in Chapter 11.) 

6) Consider the problem 

(- Numb(u), Numb{v), u > v 

given the clauses 

Numb(0) (-
Numb(s(x» (- Numb(x) 
s(x) > 1:1 (-
s(x) > sty) (- x> y. 

Analyse the behaviour of the backtracking search strategy for solving the 
problem. Assume that the solution of subgoals is attempted in the order 
in which they are written and that alternative clauses also are tried in 
the order given. 
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CHAPTER 5 

The Procedural Interpretation of Horn Clauses 

A Horn clause 

is interpreted as a procedure whose 
procedure calls Al' Top-down derIvations 
a new goal statement from an old one by 
call with the name B of a procedure 

B <- A1, .•• ,Aw 
is procedure invocation. 

body {Alt ... ,Arn} is a set of 
are computations. Generation of 
matching the selected procedure 

A logic program consists of a set of Horn clause procedures and is 
activated by an initial goal statement. 

Conventional programs mix the logic of the information used in solving 
problems together with the control over the manner in which the 
information is used. Logic programs are more abstract. They control 
neither the order in which different procedures are invoked when several 
match a given procedure call, nor the order in which procedure calls are 
executed when several belong to the same goal statement. 

Logic programs express only the logic of prOblem-solving methods. They 
are easier to understand, easier to verify and easier to change. 
are especially congenial to inexperienced programmers and database users 
who do not want to become involved with the details of controlling the 
prograrn1s behaviour. 

The first logic programming system, called PROLOG [Colmerauer et al 
1973], [Roussel1975] based on the procedural interpretation of Horn 
clauses [Kowalski 1974) was designed and implemented in 1972. A PROLOG 
compiler written in PROLOG for the PDP10 was implemented at the 
University of Edinburgh by Warren, Pereira and Pereira [1977]. They 
showed that the PROLQG compiler executes LISP-like logic programs as 
efficiently as compiled LISP [McCarthy et al 19621. 

Terms as data structures 

Data in logic programs 
relations. The use of terms 
many of the characteristics 
generally, they function 

can be represented by means of terms or 
as data structures gives Horn clause programs 
of a list-processing language like LISP. MOre 
as recursive data structures of the kind 
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advocated by Hoare [1972J. The use of relations in logic programs, on 
the other hand, is like the representation of data by relations in 
database formalisms [Codd 1970]. Relations are also like tables and 
arrays in conventional programming languages. They will be discussed in 
more detail later in the chapter. 

As in LISP, binary 
function symbol: 

cons(x,y) 

trees can be represented by means 

names the tree 

of a binary 

which has the subtree x immediately to the left of the root node and the 
subtree y immediately to the right. Thus the term 

cons(A,cons(B,C)) names the tree 

and the program 

Tips(x,l) (- Label (x) 
Tips(cons(x,y), w) (- Tips(x,u), Tips(y,v), u+v = w 

defines the relationship Tips(x,y) which holds when y is the number of 
tips in the binary tree x. Label (x) holds when x is a label: 

Label (A) (-
Label (B) (-
Label (C) (-

for example. The goal statement 

(- Tips(cons(A,cons(B,C)), y) 

expresses the goal of computing the number of tips in the tree pictured 
above. The term cons(A,cons(B,C)) names the input and the variable y 
names the output. The top-down solution 

<- Tips (cons (A,cons (B,C)) , y} 

(- Tips (Alu), Tips (cons (B,C) , v) , u+v y 

(- Label {Alu), Tips(cons(B,C) , v} , u+v y 
u=l 

<- TiEs (cons (B,C) l v} , 1+v = y 

<- TiEs(Bru') , TiEs(Clv') , u'+v' = v, 1+v y 
u'=l 
v'=l (- Label (B) , Label (C) , 1+1 = v, l+v = y 
v =2 

(- 1+2 = Y 
Y =3 

0 
is a computation of the output y 
computation. 

3. The search space contains only the 
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Lists can be regarded, as in LISP, as a special kind of binary tree. 
The term cons(x,y) names the list 

x y 

which has first element x followed by 
nil empty list. Thus the 
names the list A,B,e and the program 

Item (cons(x,y) , 1, x) (-

the list y. The constant symbol 
term--COns(A,cons(B,cons(C,nil») 

Item(cons(x,y), u, z) (- Item(y,v,z), v+l = u 

defines the relationship Item(x,y,z) which holds when the y-th element of 
the list x is z. Notice that the term cons(A,B) does not name the list 
A,B because B is not a list. The list consisting of B alone is named by 
cons(B,nil) and therefore the list A,B is named by cons(A,cons(B,nil». 

Programs may be easier to read if infix notation is used for function 
symbols and conventions are uSed for--sllppressing parentheses. It is 
especially convenient to use an infix function symbol "." for lists 

x.y stands for cons(x,y) 

and to reduce parentheses by letting 

x.y.z stand for cons(x,cons(y,z». 

Thus the list A,B,C can be represented by the term 

A.B.C.ni! . 

Facilities for defining infix function symbols and for reducing 
parentheses are provided in PROLOG. The programmer can further reduce 
parentheses by declaring precedence relations among function symbols. 
Thus by declaring that the infix function symbol & binds more closely 
than the infix function symbol:>, the term 

p&q:>r&s 

can be written instead of 

(p & q) :> (r & s). 

computation by successive approximation to output 

Horn clause procedures transmit output throughout computation. 
Partial outputs accumulate and determine successive approximations to the 
final output. The approximations are generated whether or not the 
computation eventually succeeds. 
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The figure below illustrates the computation by successive 
approximation of the list which results from appending 3.nil to 2.1.nil • 

(1) 
(2) 

x 

u 

u' 

(- Append{2.1.nil, 3.nil, xl 

2.u (2) 

(- Append (l.nil, 3.nil, u) 

l.u' (2) 

(- Append (nil, 3.nil, u'l 

3.nil j 
Append(nil,x,x) (-
Append (x.y, z, x.u) (- Append(y,z,ul 

Clause (1) states that appending any list x to the empty list produces 
the list x. Clause (2) states that appending a list z to a non-empty list 
x.y produces a list x.u with the same first element and with a remainder 
u which is the result of appending z to y. 

The successive steps of 
approximations to the output 

x 2.u 
x 2.1.u' 
x = 2.1.3.nil 

the computation determine succeSSLve 

In general, the output of a computation can be regarded as the collection 
of all output components of matching substitutions performed in the 
computation. The output can be compactified, as in the example above, by 
applying output components lower in the refutation to the terms of output 
components higher in the refutation. 

The variation of input-output parameters 

The distinction between the input and output parameters of a procedure 
depends upon the context in which the procedure is invoked. Any subset of 
the procedure's parameters can be given as input. The remaining 
parameters are then computed as output. 

The following computation illustrates the use of Append to compute the 
list x which produces 2.1.3.nil when 3.nil is appended to it. The search 
space contains, in addition to the successfully terminating computation, 
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only one other step, which fails because no procedure matches its 
procedure call. 

(- Append (x, 3.nil, 2.1.3.nil) , = 2.xl 
(- Append (xl' 3.nil, 1.3.nil) 

xl= 1.x2 
3.nil, 3.ni11 (- Append (x2' 

'2 nil '2 = 3.x3 

0 <- Append (x3' 3.nil, nil) 

The ability to execute the same procedure with various patterns of 
input and output is an important featUre of logic programs. It implies, 
for example, that the same procedures which compute derivatives of 
functions can also be used to compute integrals [Bergman and Kanoui 
19731. Procedures which verify that a given program meets given 
specifications can also be used to generate programs from specifications 
[Moss 1977J. 

Non-determinisml : several procedures match £ procedure call 

compared with normal programs, Horn clause programs executed top-down 
are non-deterministic in two main senses: When several procedures match a 
given procedure call, the search strategy by means of which the 
alternative procedures ate tried is not determinedl . When several 
procedure calls need to be executed in a single goal statement, the order 
of execution is not determined2 . 

In the first 
outputs. If only 
will be found. 
which order they 

case, alternative procedures may compute alternative 
one output is needed, it is not determined l which output 
If all outputs are required, it is not determinedl 1n 
will be generated. 

A procedure, which is deterministicl for one pattern of input and 
output parameters may be non-deterministicl for a different pattern. The 
Append procedure, for example, is non-deterministicl when it is used to 
partition a given list into two parts as in the problem 

(- Append (x, y, 2.l.3.nil). 

The search space of all computations 
economy which is obtained by structuring 
two different partitions 

x = 2.l.nil, y 
x = 2.1.3.nil, y 

3.nil 
nil 

is illustrated below. Notice the 
the search space as a tree. The 

and 

for example, ate both obtained from the single initial approximation 

x = 2.1.x2 . 
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Append(x, y, 2.1.3.nil) 

x = nil x = 2.xl 
y 2.1.3.nil o (- Append (xl' y, 1.3.nil) 

Xl = l,x2 

(- Append (x2' y, 3.ni1) 

x2 
y 

nil 
3.nil o 

nil 
nil 

Sequential search regarded iteration 

x2 = 3.x3 

(- Append (x3f y, nil) 

o 

The ability to specify repeated execution of the same command is an 
essential feature of all programming languages. Such repetition, also 
called iteration* can be accomplished by executing recursive Horn 
clause procedures. It can also be achieved by using backtracking to 
search a space of alternativs. The definition of grandparent is a simple 
example. Suppose that we are given data about individuals in the 
parenthood relationship 

Parent(Zeus,Ares) <-
Parent{Hera,Ares) (-
Parent (Ares,Harmonia) <-
Parent (Semele,Dionysus) (-
Parent (Zeus,Dionyslls) <-

etc. 

and the problem is to show that Zeus is a grandparent of Harmonia 

(- Grandparent{Zeus,Harmonia) 

using the definition of grandparent 

Grandparent(x,y) (- Parent(x,z), Parent(z,yl. 

In a conventional programming language, the programmer would have to 
specify both how the data in the parenthood relationship is stored and 
how it is retrieved. In a logic program, the same decisions are taken by 
the program executor instead. In either case, the simplest strategy is to 
store and retrieve the data sequentially. The parenthood relationship 
might be stored seguentially, either in a two-dimensional array or in a 

*Some of the discussion in the next few sections refers to features of 
conventional programming languages. The reader who is not familiar with 
such languages can ignore these sections without disadvantage. 
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linked list. The sequential retrieval strategy is an iteration, 
consisting of a double loop, one nested inside the other. To show Zeus is 
a grandparent of Harmonia, the outer loop searches for a child z of Zeus 
and the inner loop tests whether z is a parent of Harmonia. The iterative 
algorithm which has to be specified by the programmer in a conventional 
programming language is identical in this case to the behaviour 
determinedl by the backtracking strategy for executing non-deterministicl 
programs. 

In other cases, as when the Append procedure is used to partition 
lists, backtracking is mOre general than iteration. In general, whereas 
iteration searches a tree whose depth is determined by the number of 
loops which are nested, backtracking searches an arbitrarily deep tree of 
alternatives, 

The suitability of a search strategy depends upon the structure in 
which the data is stored. Iteration, regarded as sequential search, is 
suitable for data stored seguentially. Other search strategies are 
appropriate for such data structures as hash tables, binary treeS or 
semantic networks. Fishman and Minker [1975] for example, store data in 
a manner which facilitates parallel search, whereas Deliyanni and 
Kowalski [1979J propose a path-following strategy for retrieving data 
stored in semantic networks. 

"Don'! know" versus "don'! care" non-determinisml 

Non-determinisml does not always entail the need to search for a 
solution. The deflnition of Max(x,y,z) (the maximum of x and y is z) is 
an example. 

Max(x,y,x) (- x> y 
Max{x,y,y) (- y > x 

Both procedures apply when x and y are identical, as in the case 

(- Max(3,3,z). 

Searching for a solution, which is unavoidable in the general case, 
creates redundancy when it is unnecessary. Backtracking is redundant, for 
example, when it is applied to the goal statement 

(- Max(3,3,zl, Even(z) 

and the procedure calls are executed in the order in which they are 
written. The second procedure call Even(z}, which succeeds when z is 
even, fails no matter how the first procedure call is executed. 
Backtracking after the first failure, to try a different way of executing 
the first procedure call, is both unnecessary and redundant. 

Searching can be restricted in general whenever the output variables 
of a procedure call are a function of the input - for example, when the 
variable y is a function of x in the relation F(x,yl and x is given as 
input. Backtracking can be suppressed if the first solution of the goal 
F{A,yl fails to solve the second goal G(yl in the goal statement 
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(- F(A,y), G(y). 

When searching for a solution is unnecessary, then the program 
executor "doesn't care" which solution is generated nor how it is 
obtained. Otherwise, searching is unavoidable when the executor "doesn't 
know". Don't care non-determinisml is a dominant feature of Dijkstra's 
language of guarded commands [1976]. The use of don't care non-
determinisml to restrict search is a form of intelligent backtracking. 

Non-determinisml can have both don't 
characteristics. The path-finding problem is 
problem of finding a path from A to N 

know and don't care 
an example. Given the 

(- Go(A,N) 

for example, the program eXecutor doesn't care which path is 
normally doesn't know which procedures to apply in order to 
Searching is necessary to find one path but is unnecessary and 
thereafter. 

found but 
find it. 

redundant 

The path-finding problem is a special case of the general situation in 
which a procedure call shares nO variables with other calls in the same 
goal statement. Any non-determinism! involved in executing the procedure 
call matters only until the first solution is found. The second 
procedure call in the body of the procedure 

Happy (Bob) (- Teaches (Bob,x) , Attends(y,x) 

Bob is happy if he teaches a course 
which someone attends. 

is an example. If it is executed 
its only variable y occurs in no 
find only a single solution. 

after the other procedure call, then 
other procedure call and it suffices to 

The property that a procedure call contains no variables or that all 
its variables occur in no other procedure call is a syntactic property 
which the program executor can easily recognise without the aid of the 
programmer. The situation, however, in which search can be restricted 
because a procedure call computes the value of a function is undecidable 
in principle. It is easier for the programmer to convey such information 
to the program executor as a comment about the program, than it is for 
the executor to discover the fact for itself. 

Don't care non-determinisml provides a way of adding extra information 
to a program without enlarging the search space and even reducing its 
size. The new information may solve a problem more directly than the 
original procedures, and if the non-determinisml doesn't matter then the 
original procedures can be ignored. 

Non-determinism2: The scheduling of procedure calls 

In conventional programming languages the program controls the 
scheduling of procedure calls - usually in some fixed sequence, but 
sometimes timesharing among them or executing them in parallel. In logic, 
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however, the body of a procedure specifies only the collection of 
procedure calls. The manner in which they are executed is determined 2 not 
by the program but by the execution mechanism. Different strategies for 
scheduling procedure calls affect the efficiency of execution but do not 
affect the meaning as determined by the relations which are computed. 

The definition of sorted lists is a simple example. 
definition of the ( relation is already given. 

Assume that the 

Sl 
s2 
S3 
S4 
S5 
s6 
S7 
S8 

Sort(x,y) 
Perm (x,y) 
Delete(x,y,z) 

holds when y is a sorted version of list x, 
y is a permutation of x, 
z results from deleting anyone 

occurrence of x from y. 

Sort(x,y) (- Perm(x,y), Ord(yl 
Perm(nil,nil) (-
Perm(z, x.y) (- Delete(x,z,z'), Perm(z',y) 
Delete(x, x.y, y) (-
Delete(x, y.z, y.u) (- Delete(x,z,u) 
Ord (nil) (-
Ord{x.nil) (-
Ord(x.y.z) (- x y, Ord(y.z) 

In principle, the procedure calls in the body of procedure SI can be 
executed in any sequence. Given a list 1, to generate a sorted version y 
of 1, it is possible firstly to execute the procedure call Ord(y), 
generating an ordered list y, and then to execute Perm(l,y), testing 
whether y is a permutation of 1. If the test fails, other ordered lists 
can be generated until the test succeeds. It is more effective, of 
course, to execute procedure calls in the opposite sequence - first 
generating permutations of x and then testing whether they are ordered. 
But no matter in which sequence procedure calls are executed and no 
matter what the cost in terms of efficiency, the result in terms of the 
input-output relation computed is the same. 

Effective scheduling of procedure calls depends upon the pattern of 
input and output. Generally it is more efficient to execute a procedure 
call which contains the input in preference to one which does not. Thus, 
given the problem 

1
<- Sort (1 ,y) 

(- Perm(l,y), Ord(yl 

of finding a sorted version y of an input list 1 it is better to select 
for execution the procedure call Perrn(l,y) which contains the input than 
it is to select Ord(yl which does not. If both 11 and 12 are given 
and the problem 

Sort(11,l2) 

Perm(11,l2)' Ord(12) 

is to test that 12 is a sorted version of 11' then both procedure calls 
contain the input and it does not affect efficiency which procedure call 
is executed first. Moreover, since the two procedure calls do not share 
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variables and since they are equally good candidates for execution, they 
can be executed together - either timesharing between them if only one 
processor is available or executing them in parallel if several can be 
used. 

In general, it is advantageous to execute procedure calls as soon as 
sufficient input is available. Given procedures (51-8) and the goal of 
sorting the list 2.1.3.nil, generating permutations before testing them 
for orderedness, the test for orderedness can be initiated just as 
effectively when the first two elements of the permutation have been 
determined as it can when the entire permutation has been generated. 
Executing procedure calls as soon as possible has the advantage that 
failure can be detected as soon as possible. The figure below illustrates 
the effectiveness of eagerly executing the orderedness test to reject in 
one step all permutations which have first element 2 and second element 
1. 

(- Sort(2.1.3.nil, y) 

<- Perm(2.1.3.nil l y) , Ord(y) 
y x.y' 

<- Delete(x l 2.1.3.nil l z') , Perm (z' , y') , Ord(x.y') 
x 2 
z' 1. 3.nil 

(- Perm(1.3.nil, y') , Ord(2.y' ) 
y' x' .y" 

<- Delete (x' , 1.3.nil, z") , Perm (z", y") , Ord(2.x'.y") 
x' 1 
z" 3. nil 

(- Perm(3.nil, y") , Ord(2.l.y") 

(- Perm(3.nil, y") , 2<1, Ord(l.y") 

The behaviour of the admissible pairs problem is a more dramatic 
example, which is intolerably non-deterministicl if procedure calls are 
executed last-in-first-out. A pair (a,b) of lists of numbers is 
admissible if the two lists have the same length and for every i 

if ai is the i-th element of a and 
b i is the i-th element of b, then 
bi 2*ai and 
ai+l = 3*b i · 

Pictor ially: 

The following clauses, in which lists are represented by means of terms, 
define the desired relationship: 
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Adm(x,y) <- Double(x,y), Triple(x,y) 
Double (nil ,nil) <-
Double(x.y, u.v) <- Times(Z,x,u), Double(y,v) 
Triple(x.nil, u.nil) <-
Triple(x.y.z, u.v) <- Times(3,u,y), Triple(y.z, v) 
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Consider the problem of generating an admissible pair of lists whose 
first list begins with with the number 1: 

<-Adm(l.y, w) 

The program is intolerably non-deterministicl if procedure calls are 
executed last-in-first-out, completing the execution of one call before 
initiating another. It becomes virtually deterministicl' however, if 
procedure calls are executed as soon as sufficient input is available. 
The two procedure calls behave as co-operating sequential processes. As 
soon as either one of the two processes, Double or Triple, has enough 
information about its input it runs until it needs more. By that time it 
has produced enough output for the other process to resume execution. 

y nil 
v = nil 

o 

z = nil 
v ' = nil 

o 

<- Adm (l.y, u) 

<- Double(l.y, u), Triple(l.y, u) 

u = U I.V 

<- Times(2.I.u ' ),Double(y,v), Triple(l.y, u'.v) 

u' '" 2 

<- Double(y,v), Triple(l.y, 2.v) 

y '" y'.z 

<- Double(y'.z, v), Times(3,2,y'), Triple(y' .z, v) 

y' = 6 

<- Double(6.z, v), Triple(6.z, v) 

v = u".v' 

<- Times (2,6,u"), Double(z,v ' ), Triple(6.z, u" .v ' ) 

u" = 12 

<- Double(z,v'), Triple(6.z, 12.v') 

Coroutines, which cooperatively produce and consume data, can be 
written in programming languages such as SIMULA. Such coroutines, 
however, are syntactically and semantically different from normal 
procedures. However, more recent schemes, in which procedures are called 
by need (Henderson and Morris 1976] and the activation of processes is 
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controlled by the flow of data [Kahn 1974J [Friedman and Wise 1978J, 
resemble the execution of procedures in logic programs. The strategy for 
executing procedure calls is not determined by the program but by the 
program executor. 

execution of programs 

The procedural interpretation of Horn clauses is primarily the top-
down interpretation. It is sometimes possible, however, to give a 
procedural interpretation to bottom-up inference. Although it is 
generally more efficient for computers to interpret Horn clauses top-
down, it is often more natural for people to understand them bottom-up. 
Moreover, it is sometimes more efficient to execute programs bottom-up 
rather than top-down. 

A student of mathematics, for example, 
the recursive definition of factorial 

is more likely to understand 

bottom-up, as 

than he is to 
this example, 
flavour. It 
factorials of 
is desired. 

The factorial of 0 is 1 (-

The factorial of x is u (- y+l = x, 
the factorial of y is v, 
x*v = u 

determining the sequence of assertions 

The factorial of 0 is 1 (-

The factorial of 1 is 1 (-

The factorial of 2 is 2 <-
The factorial of 3 is 6 (-

etc. 

understand it top-down, as reducing goals to subgoals. In 
bottom-up derivation of factorials has a computational 

behaves as an iterative computation which accumulates 
successively larger numbers until it derives the one which 

The definition of Fibonacci number can be executed more efficiently 
bottom-up than top-down. 

The 0-th Fibonacci number is 1 (-
The I-th Fibonacci number is 1 (-
The u+2-th Fibonacci number is x <-

the u+l-th Fibonacci number is y, 
the u-th Fibonacci number is z, 
y+z = x 

Here the terms u+2 and u+l are expressions to be evaluated rather than 
terms representing data structures. This notation is an abbreviation for 
the one which has explicit procedure calls in the body to evaluate u+2 
and u+l. 

Interpreted top-down, finding the u+l-th Fibonacci number 
reintroduces the subproblem of finding the u-th Fibonacci number. The 
top-down computation is an and-tree whose nodes are procedure calls, the 
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number of which is an exponential function 
computing the Fibonacci of 4, for example, 
ignoring additions contains a total of 9 goals 

Fib(4,x) 

of u. The 
determines a 

and subgoals. 
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problem of 
tree, which 

Fib(2,x'} Fib(l,z') Fib(0,z") 

Fib{l,y') Fib(0,y") 

Here Fib(u,x) means the u-th Fibonacci number is x. Executing the same 
definition bottom-up generates the sequence of assertions 

The 0-th Fibonacci number is 1 (-

The I-th Fibonacci number is 1 (-

The 2-th Fibonacci number is 2 (-

The 3-th Fibonacci number is 3 (-
etc. 

The number of computation steps for the Fibonacci of u executed bottom-up 
is a linear function of ll. 

In this example, bottom-up execution is also potentially less space-
consuming than top-down execution. Top-down execution uses space which is 
proportional to u, whereas bottom-up execution needs to store only two 
assertions and therefore can use a small constant amount of storage. That 
only two assertions need to be stored during bottom-up execution is a 
consequence of the deletion rules for the connection graph proof 
procedure (Chapter 8). 

Notice that the efficiency of top-down execution approaches that of 
bottom-up execution if similar procedure calls (i.e. the u-th Fibonacci 
number is z and the u-th Fibonacci number is z') are executed only once. 
Such top-down execution is an extension of Earley's parsing algorithm 
[Earley 1970] as described by Warren [unpublished]. 

Iteration in conventional programming languages has three different 
interpretations in logic programs. The classical interpretation regards 
iteration as a special case of top-down execution of recursive 
definitions. The iteration 

To do P, repeat Q until R 

for example, can be expressed in the form 

P{x) <- R{x) 
P(x) <- Q{x,x'), P(x') 

where x is an input parameter which 
through the loop and R(x) and Q(x,x') 
is a form of iteration if Q(x,x') is 

controls the number of iterations 
hold for distinct x. The recursion 
executed before P(x'). Consequently 
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each new subgoal P(x') can replace the previous subgoal P(x). Execution, 
therefore, requires only a constant amount of storage for the current 
subgoal. 

The interpretation of iteration as top-down execution of certain forms 
of recursive definitions is the only interpretation of iteration possible 
in the conventional model of computation by recursion. In logic programs, 
however, it is also possible to regard iteration either as sequential 
search through a space of alternative responses to a procedure call or as 
bottom-up execution of recursive definitions. 

The pragmatic content of logic programs 

It is a common mistake to treat logic simply as a specification 
language whose statements have semantic content without pragmatic value. 
Such an attitude is self-fulfilling. To use logic while ignoring its 
pragmatic aspects is to make information potentially unusable. 

Two different statements can express 
therefore have the same meaning. B'lt one 
problems and the other one useless. 

the 
might 

same information and 
be useful for solving 

The sorting problem, studied by van Emden [1977], is a good example 
of the pragmatics of logic. The simple program (51-8) for sorting lists 

Sort(x,y) (- Perm{x,y), Ord{y) 

is a good specification, but a useless program. Even the scheduling of 
procedure calls which uses Ord(y) to monitor the partial output of 
Perm(x,y) is hopelessly inefficient (taking time 2tn in order to sort a 
list of length n). In contrast, even simple sequential execution of 
procedure calls produces an efficient algorithm, Quicksort [Hoare 1961], 
taking time n*log(n), from the program: 

Here it is 
of all members 
of all members 

Sort*(nil,nil) (-
Sort*{x.y, z) (- Partition(x,y,u,v), Sort*(u,u'), 

Sort*(v,v'), Append(u', x.v', z). 

intended that Partition(x,y,u,v) holds when u is the list 
of y which are less than or equal to x and v is the list 
of y which are greater than x. 

Sort and Sort* are equivalent in the sense that 
Sort*(s,t) hold for the same pairs of terms s, t. Sort 
specification of sortedness but useless for efficiently 
Sort* is efficient but less obviously correct. 

Sort(s,t) and 
is useful as a 
sorting lists. 

In general, a given problem can be expressed in many different ways. 
The two representations of the path-finding problem (one using the 
predicate Go(x), the other using the predicate Go*(x,y» can be 
generalised to other problems. Even the definition of factorial can be 
represented in two ways. The previous definition corresponds to the one-
place-predicate formulation of path-finding. The definition below 
corresponds to the two-place-predicate formulation. 
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Fact*(x,y,u,v) 

expresses that the factorial of x is y if the factorial of u is v. 

Fact*(u,v,u,v) (-

Fact*(x,y,u,v) (- u+l = u', u'*v = v', Fact*(x,y,u',v') 

To find the factorial of an integer represented by a term t, a single 
goal statement incorporates not only the goal but also the information 
that the factorial of ° is 1. 

(- Fact*(t,y,0,1) 

The new formulation of factorial executed top-down behaves in the same 
iterative manner as the original formulation executed in a mixed top-
down, bottom-up fashion. The old formulation is more obviously correct, 
whereas the new formulation is easier to execute efficiently with more 
limited problem-solving facilities. 

Separation of data structures 

For a well-structured program, it is desirable that the data 
structures be separated from the procedures which interrogate and 
manipulate them. Separation of data structures from procedures means 
that the representation of the data can be altered without altering the 
higher-level procedures. It is easier to improve efficiency, therefore, 
by replacing an inefficient data structure with a more efficient one. In 
a large complex program the information which needs to be supplied by the 
data structures is often completely identified only in the final stages 
of the program design. By separating data structures from procedures, it 
is possible to write the higher levels of the program before the data 
structures have been determined. 

Data storage and retrieval are automatically separated from procedures 
when data is represented by relations, as in the family relationships 
example. When data is represented instead by terms it is the 
programmer's responsibility to separate them in the program. 

The arch recognition problem is a simple example. The previous 
formulation which mixes procedures and data structures can be replaced by 
one which separates them. Mention of the data structures in the top-level 
procedures can be replaced by procedure calls which access, compute or 
construct the data. 

Arch(x) (- Block (v), Tower (u) , Tower(w), On(v,ul, 
On(v,w) , Left(x,u) , Right (x,wl, TOp(x,v) 

Tower (x) <- Block (x) 

Tower (x) (- Block(u) , Tower (v) , On(u,v), 
Top(x,u) , Bottom(x,v) 

On(x,y) <- Top(y,ul, On(x,u) 
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Here the Top, Left, Right and Bottom relations define the interface 
between the procedures and the data structures. It is intended that 

Top(x,y) 
Left (x,y) 
Right (x,y) 
Bottom(x,y) 

holds when the top of x is y, 
the left subtower of arch x is y, 
the right subtower of arch x is y, 
the bottom of tower x is y. 

The data structures can be defined separately by defining their 
interface with the top-level procedures: 

Top(a(u,v,w), v) (-
Top(t(u,v), u) (-
Left(a(u,v,w), u) (-
Right (a (u,v ,w) , w) (-
Bottom(t(u,v), v) (-

In this caSe the interfacing procedures are defined simply by means of 
assertions. But in other cases they might be defined by more general 
kinds of procedures. 

Comparing the two formulations of the arches program, we notice 
another advantage of separating procedures and data structures: with 
infix notation for predicate symbols and with well chosen names for the 
interfacing procedures, data-structure-independent programs are 
virtually self-documenting. For conventional programs which mix data 
structures and procedures, the programmer needs to provide documentation 
which explains the data structures and is external to the program. For 
well-structured programs which separate procedures and data structures, 
such documentation is provided by the interfacing procedures and is part 
of the program. 

Despite the arguments for separating procedures and data structures, 
programmers mix them for the sake of run time efficiency. One way of 
reconciling efficiency with good program structure is to make use of the 
macro-processing facilities provided in some programming languages. 
Macro-processing flattens the hierarchy of non-recursive procedure calls 
by executing them at compile time before a problem is given. It is also a 
feature of the program improving transformations developed by Burstall 
and Darlington [1977]. 

The analogue of macro-processing in logic is bottom-up or middle-out 
reasoning combined with deletion of clauses. Such macro-processing is a 
special case of more general facilities provided by connection graph 
proof procedure (Chapter 8). In the case of the arches program, the 
original formulation can be derived from the new one simply by bottom-up 
execution of the interfacing procedure calls. 

Terms relations as data structures 

Data in logic programs can be represented either by means of terms, 
as in the Append and Arches examples, or by means of relations, as in 

Parsing and Family Relationships examples. 
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When data is represented by terms, the input to a program is normally 
represented by a term in the initial goal statement. Top-down execution 
is problem-dependent and behaves like recursive evaluation in 
conventional programming languages. Bottom-up execution, although it 
sometimes behaves like iteration, as in the Factorial and Fibonacci 
examples, is more often problem-independent and computationally 
explosive, unless it can somehow be guided by a global consideration of 
the problem to be solved. Global strategies for problem-solving are 
investigated in Chapter 9. 

When data is represented by means of relations (defined by assertions 
and procedures) the input is normally expressed by assertions. Both top-
down and bottom-up execution are problem-dependent. Top-down execution 
interrogates the input and bottom-up execution manipulates it, deriving 
new data from that which is initially given. 

It is always possible to represent data by means of terms. LISP for 
example, represents all data by means of constant symbols and a single 
binary function symbol "cons". Recursion theory represents all data by 
means of natural numbers using a single constant symbol 0 and a unary 
function symbol "s". It is instructive to compare the previous 
formulation of the parsing problem with a formulation which represents 
data by means of terms. 

Sent(x) (- Np(y), Vp(z), Append(y,z,x) 
Np(x) (- Det(y), Adj (z), Noun (v) , 

Append (y,z,u) , Append(u,v,x) 
Vp(x) (- Aux(y), Verb(z), Append(y,z,x) 
Oet (the.nil) (-
Adj (slithy.nil) (-
Noun(toves.nil) (-
Aux(did.nil) (-
Verb (gyre .nil) (-

Both the input string of words and the problem of showing that it is a 
sentence are incorporated in the initial goal statement: 

(- Sent(the.slithy.toves.did.gyre.nil) 

Notice the procedure calls Append, which have no analogue in the 
earlier formulation of the parsing problem. When the data is represented 
by means of assertions, the program has direct access to the data, 
similar to that given by arrays in conventional programming languages. 
When the data is represented by terms, then special procedures like 
Append are needed to provide access to the contents of the data 
structures. 

It is possible to represent data entirely by means of relations as in 
relational databases [Codd 1970J. Instead of representing the list 

a, c, b, a 

by the term 

cons(a, cons{c, cons{b, cons(a, nil»» 
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or a.c.b.a.nil 

we can give it a name, say A, and represent it by the assertions 

Item(A,l,a) (-

Item(A,2,c) (-

Item(A,3,b) (-

Item(A,4,a) (-

Length (A, 4) <-

where Item(x,y,z) means that 

z is the y-th item of x 

and Length{x,y) means that 

y is the length of x. 

Instead of writing an explicitly recursive program for reversing 
lists, either 

Reverse(nil,nil) <-
Reverse(x.y, z) <- Reverse(y,u), Append(u, x.nil, z) 

or more efficiently 

Reverse(x,y) <- Rev(x,nil,y) 
Rev(nil,y,y) <-
Rev{x.y, z, uJ <- Rev(y, x.z, uJ 

we can write a non-recursive program: 

Item(rev(x), u, y) <- Item(x,v,y), Length (x,w) , 
u+v = w', w+l =w' 

Length(rev(x), y) (- Length(x,y) 

Here the term rev(x) names the list which is the reverse of x. 

When data is represented by means of terms, the program needs to 
specify how data is stored and retrieved and it needs to take 
responsibility for the separation of the data from the higher levels of 
the program. Data located closer to the surface of a term can be accessed 
more directly than data located deeper inside. When data is represented 
by relations, the program defines the data at an abstract level which is 
independent of the storage and retrieval scheme adopted by the 
programming system. When a relation is defined by means of assertions, 
the program has direct access to the information. 

Database formal isms and programming languages 

Conventional database formal isms are different from the formal isms 
used for programming languages. Logic, in contrast, is the same whether 
it is used for databases, database queries and programs or for database 
integrity constraints and program specifications. Indeed, especially 
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when relations are used as data structures, the use of logic blurs the 
normal distinction between databases and programs. General laws for data 
description are indistinguishable from procedures in programs, and 
database integrity constraints are the same as program properties. 

The conventional distinction between databases and programs is not 
reflected by the nature of computational problems. A representation in 
logic of the symbolic integration problem, for example, like the one 
written in PRO LOG by Bergman and Kanoui [1973] can be regarded as both a 
database and a program. The relationship of a function to its integral is 
defined by means of assertions such as 

sin (x) is the integral of cos (x) with respect to x 

and by general rules, such as 

u + v is the integral of u' + Vi with respect to x 
if u is the integral of u' with respect to x 
and v is the integral of v' with respect to x. 

The definition of the relation can be viewed both as the definition of a 
recursive procedure and as the description of a database by a combination 
of explicit assertions and implicit rules. 

The desirability of combining databases and programs more intimately 
than is possible with conventional formal isms is beginning to be 
appreciated by the database community. The design of a programming 
language [Zloof and deLong 19771 based on query-by-example is a 
significant development of this kind. 

Algorithm = Logic + Control 

Conventional algorithms and programs expressed in conventional 
programming languages combine the logic of the information to be used in 
solving problems with the control over the manner in which the 
information is put to use. This relationship can be expressed 
symbolically by the equation 

Algorithm = Logic + Control (A L + C). 

Logic programs express only the logic component L of algorithms. The 
control component C is exercised by the program executor, either 
following its owri autonomously determined control decisions or else 
following control instructions provided by the programmer. 

The conceptual 
advantages: 

separation of logic from control has several 

(1) Algorithms can be constructed by successive refinement, 
designing the logic component before the control component. 

(2) Algorithms can be improved by improving their control 
component without changing the logic component at all. 
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(3) Algorithms can be generated from specifications, can be 
verified and can be transformed into more efficient ones, 
without considering the control component, by applying 
deductive inference rules to the logic component alone. 

(4) Inexperienced programmers and database users can restrict 
their interaction with the computing system to the 
definition of the logic component, leaving the determination 
of the control component to the computer. 

In the systematic development of well-structured algorithms it is 
appropriate for the logic component to be specified before the control 
component. The logic component expresses the domain-specific part of an 
algorithm. It both determines the meaning of the algorithm and influences 
the way it behaves. The control component, on the other hand, 
determines the general-purpose problem-solving strategy. It affects only 
the efficiency of the algorithm without affecting its meaning. 

Thus different algorithms Al and A2' obtained by applying different 
control Cl and C2 to the same logic L, are equivalent in the sense that 
they solve the same problems with the same results. Symbolically 

Al and A2 are equivalent if Al = L + Cl and 
A2 = L + C2' 

The equivalence of different algorithms having the same logic can be 
used to improve the efficiency of an algorithm by improving its control 
without changing its logic. In particular, replacing bottom-up by top-
down control often, though not always, improves efficiency, whereas 
replacing top-down sequential execution of procedure calls by top-down 
consumer-producer and parallel execution almost always improves 
efficiency, and never harms it. 

The arguments for separating logic from control are like the arguments 
for separating procedures from data structures. When procedures are 
separated from data structures, it is possible to distinguiSh what 
functions the data structures perform from the manner in which they 
perform them. An algorithm can be improved by replacing an inefficient 
data structure by a more efficient one, provided that the new data 
structure performs the same functions as the old one. Similarly, when 
logic is separated from control, it is possible to distinguish what the 
algorithm does, as determined by the logic component, from the manner 
in which it is done, as determined by the control component. An 
algorithm can be improved by replacing an inefficient control strategy by 
a more efficient one, provided that the logic component is unaltered. In 
both cases, it is easier to determine the meaning of the algorithm and 
to improve efficiency without affecting meaning. 

The separation of logic from control simplifies the problem of 
relating programs to specifications. By ignoring the control component 
entirely, it is possible to use rules of deduction to show, for 
example, that the logic component of an algorithm is correct, because 
it is implied by its specification. The same techniques of deduction can 
also be used to generate a logic program from its specification or to 
transform an inefficient program into a more efficient one. These 
techniques have been developed by Bibel [1976a, 1976b, 1978], Clark and 
Tarnlund [1977] Clark and Sickel [1978], Clark and Darlington [1978] and 
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Hogger [1979J for logic programs and are similar to ones developed for 
recursion equations by Burstall and Darlington [1977] and for LISP by 
Manna and Waldinger [1978]. A brief introduction to these methods is 
presented in Chapter 10, which deals with the standard form of logic and 
its relationship to clausal form. 

The analysis of algorithms into logic and control components provides 
two distinct methods for improving the efficiency of an algorithm. Given 
a fixed control component, incorporated in a program executor with 
limited problem-solving capabilities, efficiency can be improved by 
changing the representation of the problem in the logic component; or, 
given a fixed logic component, it can be improved by improving the 
problem-solving capabilities of the program executor. Changing the logic 
component is a useful short-term strategy, since the representation of 
the problem is generally easier to change than the problem-solver. 
Changing the control component, on the other hand, is a better long-term 
solution, since improving the problem-solver improves its performance 
for many different problems. 

Specification of the control component 

The control component can be expressed by the programmer in a separate 
control language: or it can be determined by the program executor itself. 
The provision of a separate control language allows the programmer to 
advise the problem-solver about program execution and is suitable for the 
more experienced programmer. The determination of control by the program 
executor, on the other hand, relieves the programmer of the need to 
specify control altogether and is more useful for the inexperienced 
programmer, the casual database user, and even the expert programmer 
during the early stages of program development. 

A completely satisfactory, autonomous control strategy, however, 
has not yet been designed. The problem of designing an efficient 
algorithm for scheduling procedure calls, in particular, has still to be 
solved. The principle of procrastination, which delays execution when a 
procedure call can be executed in many ways, and the complementary 
principle, which initiates execution as soon as a procedure call can be 
executed in no more than one way, work efficiently in a large number of 
cases. But they are inadequate when all procedure calls are non-
deterministicl' Annotations for controlling the execution of procedure 
calls as coroutines have been provided in the PROLOG system [Clark and 
McCabe 1979] at Imperial College. They are similar to the annotations for 
recursion equations proposed by Schwarz [1977]. 

Autonomous search strategies have been designed for both top-down and 
bottom-up search spaces in theorem-proving. These strategies use merit 
orderings or evaluation functions to guide the generation of clauses in 
the search space. Arguments against such search strategies have been 
advanced by Hayes [1973]. He argues that the kind of information they 
provide is not adequate for effective problem-solving and proposes that 
more suitable information can be supplied by the programmer in an 
auxiliary control language. That a given relation is a function of 
certain arguments is an example of such information. 
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Control primitives for guiding search strategies have been provided in 
programming languages like PLANNER [Hewitt 1969], MICROPLANNER [Sussman, 
winograd and Charniak 1971], CONNIVER {Sussman and McDermott 1972], 
POPLER [Davies 1973J, SAIL [Feldman et al1972J, QA4 [Rulifson et al 
1973] and QLISP [Reboh and Sacerdoti 19731. The recommendation lists of 
PLANNER and MICROPLANNER in particular enable the programmer to specify 
the order in which procedures should be tried in order to execute a given 
procedure call. Such information might be useful in fault diagnosis 
programs, for example, when the programmer knows that a symptom P is 
more likely to be caused by Q than by R. This might be indicated to the 
problem-solver by the recommendation that the procedure 

P <- Q 

be tr ied before P <- R 

Both autonomous and user-specified control over the direction of 
execution have been provided in theorem-proving and in artificial 
intelligence programming languages. In programming languages of the 
PLANNER family, the direction in which procedures are executed is 
specified in advance by the types associated with procedure declarations 
(consequent theorem type if the direction is top-down, antecedent 
theorem type if it is bottom-up). Moreover each procedure call is 
assigned the type of the procedures which it is allowed to invoke. 
Autonomous, system-determined strategies for controlling direction of 
execution are more common in operational research and theorem-proving. 
Few strategies have been investigated, however, other than the one 
which chooses the direction having the current least branching rate. 
Both system-determined and user-specified control over direction are 
investigated in Chapter 8, which describes the connection graph proof 
procedure. 

Despite the difficulties involved, the desirability of separating 
logic from control and of allocating responsibility for exercising 
control to the problem-solver is generally accepted in the field of 
databases. Given, for example, a data base which defines the relations 

the query 

Supplier(x,y,z) 
Part(x,y,z) 
Supply(x,y,z) 

supplier number x has name y and status z, 
part number x has name y and unit cost z, 
supplier number x supplies part number y 
in quantity z. 

Who supplies books? 

<- Answer (y) 
Answer(y) <- Supplies(x,y,z), Supply(x,u,v), Part(u,book,w) 

specifies only the logic component of the problem. The data retrieval 
system needs to determine that, for the sake of efficiency, the 
procedure call Part(u,book,w) (containing the input) should be executed 
first. Given the structurally similar query 

What parts are supplied by John? 

<- Answer (y) 
Answer(y) <- Supplier (x,John,z) , Supply(x,u,v), Part(u,y,w) 
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however, it needs to recognise that Supplier(x,John,z) should be executed 
first. 

For inexperienced database users it is desirable that queries be 
expressed in a formalism as close to natural language as possible. Since 
logic originates from the analysis of natural it is not 
surprising that database query languages express only the logic component 
of algorithms. Restricting query languages to the logic component has 
other advantages. It has the consequence that storage and retrieval 
schemes can be changed and improved in the control component without 
affecting the user's view of the data as defined by the logic component. 
In general, the higher the level of the programming language and the 
less advanced the level of the programmer, the more the system needs to 
assume responsibility for efficiency and to exercise control over the use 
of the information it is given. 

The notion that 

computation controlled deduction 

was first proposed by Hayes [1973] and more recently by Bibel [1978], 
Kowalski [1976J, Pratt [1977] and Schwarz [1977J. The similar thesis 
that database systems be decomposed into a relational component which 
defines the logic of the data, and a control component which manages data 
storage and retrieval, has been advocated by Codd [1970]. Hewitt's 
argument [1969] for the programming language PLANNER, though generally 
regarded as an argument against logic, can be regarded more positively 
as an argument for the thesis that algorithms consist of both logic and 
control components. 

Natural Language Logic + Control 

The procedural interpretation of Horn clauses reconciles the classical 
role of logic in the analysis of language with the interpretation of 
natural language statements as programs [Winograd 1972]. Like 
algorithms, natural language combines logic with control. The sentence 

If you want Mary to like you then give her presents and 
be kind to animals. 

combines the declarative information 

Mary likes you if you give her presents and 
are kind to animals. 

with the advice that it be used top-down to solve problems of being liked 
by Mary to subproblems of giving her presents and being kind to animals. 

Exercises 

1) Let the Delete relation be defined by the procedures 
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01 Delete(x, x.y, y) (-
01 Oelete(x, z.y, w) (- Oelete(x,y,w) 

a) Use 01-2 top-down to delete 1 from the list 2.1.nil. 
Exhibit the entire top-down search space. 

b) Use Dl-2 top-down to add 1 to the list 2.nil. Exhibit 
the entire search space. 

c) Assume that Diff(x,y} holds when x and y are not 
identical. Define the relation Delallocc(x,y,w) which 
holds when w is the list which results from deleting all 
occurrences of x from the list y. 

2) Describe a representation of the path-finding problem which makes 
it possible to find the list of all nodes in a path from one node to 
another. 

3) Reformulate the water containers problem of Chapter 4 to 
incorporate loop checking into the program, so that it can be executed 
efficiently even if the problem-solver does not recognise and delete 
loops. 

4) Let Partition(x,y,u,v) be defined by 

Partition(x,y,u,v) (- Shuffle(u,v,y), Small(x,u), Big(x,v) 
Shuffle(nil, v, vI (-
Shuffle(v, nil, vI (-
Shuffle(x.y, z, x.u) (- Shuffle(y,z,u) 
Shuffle(y, x.z, x.u) (- Shuffle(y,z,u) 

where Small(x,u) holds 
Big (x,u) 
Shuffle(u,v,y) 

when x ( all members of u, 
x > all members of u, 
the lists u and v can 
be shuffled together 
to obtain the list y. 

Consider the problem (- Partition(s,t,u,v) where sand t are given as 
input and u and v are desired as output. 

a) Define Small{x,u) and Big(x,u) recursively in terms of the 
relations ( and > - -

b) Describe the behaviour of the procedures given above and 
in part a) when backtracking is used to solve the problem 
top-down, executing procedure calls sequentially, left-to-
right. 

cl Describe a more deterministic way of executing procedure 
calls for the same problem. 
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d) Redefine Partition(x,y,u,v) so that behaviour similar to 
that of part c) is achieved by simple left-to-right 
execution of procedure calls. 

5) Let the relation Is(x,y) which holds when x is an initial sublist 
of y 

x 

........... 
y 

be defined by 

Is(x,yl (- Append {x,z,yl 

al Define Is(x,y) recursively without using Append. 

b) The relation Sl(x,y) which holds when x is a sublist of y 

u x v 
r-----l r-----l 

y 

can be specified by 

Sl(x,y) (- Append (u,x,w) , Append (w,v,y) 

Define Sl(x,y) recursively in terms of Is without using 
Append. 

cl Describe an execution strategy for the two procedure calls 
in the specification of SI above which behaves in the same 
way as top-down sequential execution of the recursive 
definition of SI. 

7) a) Express the 8-queens problem by means of Horn clauses: 

Given an 8 by 8 checker board, find a list of eight 
queen positions such that no queen can take another. One 
queen can take another if both are located on the same 
row, same column or same diagonal of the checker board. 
Assume that the Plus relation 

Plus(x,y,z) (x+y = z) 

is already defined by variable free assertions. 

b) Modify the 8-queens problem and show that the 2-queens 
problem (placing 2 queens on a 2 by 2 checker board) is 
unsolvable by generating the entire top-down search space. 
Execute procedure calls in a manner which minimises the 
size of the search space. 
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8) Any binary 
example, the tree 

tree can be regarded as representing a list. For 

/'A 
A B c o 

named by the term 
cons(cons(tip(A), tip(B», cons(tip(C), tip(D») 
represents the list A.B.C.D.nil 

In general the relationship Represents(x,y) which holds when the tree x 
represents list y can be defined by the clauses: 

RI 
R2 
R3 
R4 

a) 

bl 

cl 

Represents(nil,nil) (-
Represents (tip(x) , x.nil) (-
Represents (cons(tip(x) , y), x.z) (- Represents(y,z) 
Represents (cons(cons(x,y) , z), w) (-

Represents (cons (x, cons(y,z», w) 

Define the relationship Samelists(x,y) which holds when 
the trees x and y represent the same lists. 

Use procedures Rl-4 and (a) to reduce the problem of 
showing the two trees 

and 

represent the same lists to the problem of showing that 
the subtrees named by sand t represent the same lists. 

Use procedures Rl-4 and (a) to show that the problem of 
showing the two trees 

and M 
represent the same lists, where t and s name any subtrees, 
is not solvable. 

d) Generalise the execution strategies employed in (b) and 
(cl and describe an efficient general strategy for 
executing the procedure calls in Rl-4 and (a) 
cooperatively rather than sequentially. 



133 

CHAPl'ER 6 

Plan-Formation and the Frame Problem 

In the plan-formation problem we are given an initial state, a goal 
state, and a set of actions which transform one state into another. The 
problem is to construct a plan, consisting of an appropriate sequence of 
actions, transforms the initial state into the goal state. 

The plan-formation problem is identical, therefore, to the state-space 
problem. The n-tuple representation of state-space problems is not 
feasible, however, when the number n of individuals is large or unknown. 
In this chapter, we investigate a version of the binary representation of 
state space problems. 

The use of logic, in both the n-ary and binary representations, runs 
into the frame problem: how to deal with the fact that almost all 
statements which hold true of a given state continue to hold after an 
action has been performed. It has often been assumed that such facts 
cannot be expressed naturally in logic and cannot be used efficiently. 

The supposed inadequacies of logic have led to the development of 
special systems, such as STRIPS [Pikes and Nilsson 1971] and PLANNER 
[Hewitt 1969J, specifically intended to deal with the frame problem. We 
shall argue that an equally satisfactory treatment of the frame problem 
can be obtained in logic: by using terms to name statements and by using 
the frame axiom, which describes the statements which continue to hold 
after an action has been performed, top-down rather than bottom-up. 

Plan-formation and the blocks world 

We shall consider the simple blocks world plan-formation problem 
[Sacerdoti 1977] in detail. There are three manipulatable blocks A, B 
and C and three unmanipulatable places p, g and r. The location of 
objects in the initial and goal states is illustrated below: 

p q r p q r 

Initial state Goal state 



134 Chapter 6: Plan-Formation and the Frame Problem 

There is a single action 

which transfers x from y to z. The action can be performed in a given 
state if 

x is manipulatable, 
x and z are clear, 
x is on y, and 
x is different from z. 

The new statement that 

x is on z and 
y is clear 

holds true of the new state which results when the action has been 
performed. All statements which held in the previous state, except that 

x is on y and 
z is clear, 

continue to hold in the new state. 

In general, an action is defined by specifying its preconditions and 
postconditions. Preconditions are statements which must hold in a state 
before an action can be performed; whereas postconditions are statements 
which hold in the new state after the action has been performed. 
Postconditions are of two kinds: new statements which are added to the 
description of the new state and old statements which continue to hold 
from the previous state. The old statements are described by means of a 
frame axiom which expresses that all statements which held in the old 
state, except for those explicitly stated as exceptions to be deleted, 
continue to hold in the new state. The explicit specification for every 
action of preconditions, added statements and deleted statements is due 
to STRIPS. 

clausal representation of the blocks world problem 

In this formulation, both states and statements are regarded as 
individuals and are represented by means of terms. That a statement x 
holds true in a state y is represented by a binary relationship 

Holds(x,y) . 

States are named by constant symbols or by composite terms. It is 
convenient to let the constant symbol 0 name the initial state and to let 
the term 

result(u,v) 

name the state which results from applying the action u to the state v. 
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The representation of statements 
Chapter 12 concerned with formalising 
is sufficient to let the term 

by means of terms is discussed in 
part of the meta-language. Here it 

on(x,y) 

name the statement that x is on y and 

clear (x) 

that x is clear. An alternative representation, in which the term 

atom (x,y) 

names the atomic formula with predicate symbol x and list of arguments y, 
is more flexible but not necessary here. 

In the following clauses 

Initial state 0 

Pass (x) 
Manip(x) 
Diff (x,y) 

expresses that state x is possible, 
object x is manipulatable, 
x is different from y. 

(1) Poss(0) <-
(2) Holds (on (A,B) , 0) <-
(3) Holds (on (B,p) , 0) <-
(4 ) Holds(on(C,r) , 0) <-
(5) Holds (clear (A) , 0) <-
(6) Holds (clear (g) , 0) <-
(7) Holds(clear{C) , 0) <-

State-independent 
assertlons (8) 

(9) 
(10) 

Manip(A) <-
Manip(B) (-
Manip(C) (-

Goal state (11) (- Holds(on(A,B) ,w), Holds(on(B,C) ,w), 
Holds(on(C,r) ,w), Poss(w) 

State space and 
preconditions (12) Poss{result(trans(x,y,z) ,w» (- Poss(w), 

Added statements (13) 
(14) 

Frame axiom and deleted 

Manip{x), Diff(x,z), Holds {clear (x) ,w), 
Holds(clear(z) ,w), Holds(on(x,y) ,w) 

Holds(on(x,z), result(trans(x,y,z), w» (-
Holds(clear(y), result{trans(x,y,z), w» (-

statements (15) Holds(u, result(trans(x,y,z), w» <-
Holds(u,w), Diff(u, on(x,y», 
Diff(u, clear{z» 

Clauses (1)-(6) describe the initial state, whereas clauses (7)-(10) 
describe the state independent facts about the manipulatability of blocks 
and clause (11) describes the goal state. The remaining clauses describe 
the action of transferring an object from one location to another. Clause 
(12) defines the structure of the state-space search space. It expresses 
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the preconditions which need to hold before an action can be applied to a 
possible state in order to produce a new one. Clauses (13) and (14) 
express the postconditions which are added by the action, whereas (15) 
expresses those which hold in the new state because they held in the 
previous state and were not destroyed by the action. 

The relationship Oiff(s,t) holds, for variable-free terms sand t, 
when sand t are syntactically distinct. It is useful to imagine that 
clauses (1)-{15) are supplemented by infinitely many clauses of the form 

Diff (s,t) <-

for every pair of terms sand t which do not match. Equivalently, the 
same relation can be defined by the axioms 

Diff(f(xl,···,xm), g(Yl'···'Yn» (-

for every pair of distinct function symbols f and g, including the cases 
m = 0 and n = 0 when f and g are constant symbols, and 

Diff(f(xl""'xm), f(YI""'Ym» (- Diff(xi'Yi) 

for every function symbol f and for every argument i of f, excluding the 
case m = 0 when f is a constant symbol. In practice, it is more efficient 
to define Diff as the negation of identity 

Diff(x,y) (- not-ex = y) 
x = x (-

and to determine that not-ex y) holds 
hold. Such an interpretation of negation 
to the normal interpretation of negation 
and is discussed in Chapter 11 which 
expressed in terms of "if-and-only-if". 

by showing that x = y fails to 
as failure and its relationship 

has been studied by Clark (1978) 
is concerned with definitions 

This formulation of the plan-formation problem is similar to the one 
employed by Green [1969b], based upon proposals of McCarthy and Hayes 
[McCarthy and Hayes 1969J. It differs from their formulations, however, 
in its use of the Holds relation. They add an extra state parameter to 
relations instead, writing, for example, On(x,y,w) to express that x is 
on y in state wand Clear(x,w) that x is clear in w. The treatment of 
statements as individuals, which is implied by the use of the Holds 
relation, can be regarded as a formalisation of part of the meta-
language. The advantages of using logic as its own meta-language are 
discussed later in Chapter 12. Here it suffices to note that treating 
sentences as individuals avoids that part of the frame problem which is 
concerned with expressing the frame axiom. Instead of employing a 
separate frame axiom for every relation, writing, for example, 

On(u, v, result(trans(x,y,z), w» (-On(u,v,w), Diff(u,x) 
Clear(u, result(trans(x,y,z), w» (- Clear(u,w), Diff(u,z) 

it suffices to employ a single frame axiom 

Holds{u, result(v,w» (- Holds(u,w), Preserves(v,u) 

where Preserves(v,u) expresses that the action v preserves the truth of 
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statement u. The use of the Preserves relation separates the frame axiom 
from the specification of the statements which are deleted by individual 
actions. In the case of the trans-action: 

Preserves (trans (x,y ,z), u) (- Diff (u, on (x,y» , 
Diff(u, clear(z» 

As we shall see in the next chapter, clause (15), which combines the 
frame axiom and the specification of the deleted statements, can be 
obtained by macro-processing the procedure call to the relation 
Preserves. Macro-processing executes procedure calls at compile time 
before problems are given, rather than at run time during the course of 
trying to solve them. It can be regarded as a form of middle-out 
reasoning, which in turn is a special case of the resolution rule 
[Robinson 1965al. Resolution also generalises top-down and bottom-up 
inference and applies to non-Horn clauses as well. 

It is useful to classify relations into two kinds: primitive 
relations, which are independent of other relations, and defined 
relations, which can be defined in terms of the primitives. In the blocks 
world, the relationship which holds when one object is above another can 
be defined in terms of the primitive relationship which holds when one 
object is located directly on another. 

Holds(above(x,y), w) (- Holds(on(x,y), w) 
Holds(above(x,y), wj (- Holds(above(x,z), w), 

Holds(above(z,y), w) 

It suffices to specify added and deleted statements only for primitive 
relations. The effect of actions on defined relationships is determined 
by their effect on primitive relationships and by the definition of the 
defined relations in terms of the primitives. The classification of 
relations and its use in plan-formation was introduced with STRIPS. 

We have treated the 
more natural, however, 
relation: 

On and Clear relations as primitive. It would be 
to define the Clear relation in terms of the On 

Holds(clear(y), w) (- for all x not-Holds(on(x,y), w) 

We shall discuss this possibility in Chapter 11, which investigates if-
and-only-if definitions and the interpretation of negation as failure. 

The logic of the blocks world problem is separate from its use. 
Clauses can be used either top-down or bottom-up. They can also be used 
in a mixture of directions. If the state space axiom (12) is used bottom-
up, then the problem-solver reasons forward from the initial state, 
deriving new states from old ones, until the goal state is generated. If 
the axiom is used top-down, then the problem-solver reasons backward from 
the goal-state, until the initial state is generated. 

The second part of the frame problem arises when the frame axiom (15) 
is used bottom-up to derive, from an assertion that a given statement 
holds in a given state, a new assertion that the same statement holds in 
a following state. For more realistic plan-formation tasks than the 
blocks world problem, a typical state needs to be described by a large 
number of assertions, many of which are unrelated to the problem at hand. 
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In such situations it is not computationally feasible to use the frame 
axiom bottom-up to copy preserved facts from state to state. 

Both PLANNER 
frame axiom and 
can be obtained 
down: 

and STRIPS deal with the frame problem by abandoning the 
using special-purpose procedures instead. Similar results 
by retaining the frame axiom hut interpreting it top-

To determine whether a statement u holds in a state result(v,w) 

(i) show u is added by v, 
(ii) alternatively, if u is not deleted by V, 

determine whether u holds in the previous state w. 

Changing the direction of execution of the frame axiom exemplifies the 
general strategy of improving an algorithm by improving its control 
without changing its logic. 

We shall illustrate the different 
world problem by using the state 
directions. 

solutions determined for the blocks 
space and frame axioms in different 

Bottom-.!:!E execution of the state space axiom <1.1.) 
The following illustration displays part or the search space of states 

determined by executing (12) bottom-up. 

ill ..ill. Initial State 0 
p 

/ 
El .ill 

State 1 State 2 State 4 

o 2_ ffi ill 
---- ----

o 1 o 4 o 3 

1 lIi Goal State 6 
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Distinct nodes 
I abe lled by the 
this case, the 
the same object 

represent distinct states. However, distinct states 
same number are characterised by the same statements. In 
redundancy arises because it is never useful to pick up 
twice in a row. 

The assertions which are generated by bottom-up execution of the state 
space axiom describe the search space of states illustrated above and are 
independent of the direction of execution of the frame axiom. 

execution of the frame axiom 

The following assertions, concerning states which belong to the 
solution path, are generated by bottom-up execution of the frame axiom. 

Holds(on(B,p) , 1) 
Holds (on (A,g) , 5) 
Holds(on(B,C) , 6) 
Holds (clear (A) , 1) 
Holds (clear (13) , 5) 
Holds (clear (Al , 6) 

The additional assertions 

Holds (on (A,g) , 1) 
Holds(on(B,C) , 5) 
Holds(on(A,B) , 6) 

<-
<-
<-
<-
<-
<-

<-
<-
<-

Holds{on(C,r) , 1) <-
Holds{on(C,r) , 5) <-
Holds{on{C,r) , 6) <-
Holds (clear (C) , 1) <-
Holds {clear (A) , 5) <-
Holds (clear (p) , 6) <-

Holds (clear (B) , 1) (-
Holds(clear(p), 5) (-
Holds(clear(g), 6) (-

which are needed for a complete description of the same states are 
instances of the clauses (13) and (14) which specify the statements added 
by the trans-action. As in the previous illustration, 

1 abbreviates result(trans{A,B,q), 0), 
5 result(trans(B,p,C), I}, 
6 result(trans(A,g,B), 5). 

In the general case, a search strategy 
assertions concerning states which are not 
well as assertions such as 

might need to generate many 
relevant to the solution as 

Holds (on (B,p), result (trans (A,C ,B), 0» (-
Holds(on(B,p), result(trans(B,g,C), 0» (-
Holds{on(B,p), result(trans(B,B,B), 0» <-

which describe impossible states. The generation of such undesirable 
assertions is avoided if the frame axiom is used top-down. It can also be 
avoided when the frame axiom is used bottom-up by adding the extra 
condition 

Poss(result(trans{x,y,z), w) 

to the frame axiom. 
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Top-down execution of 
execution of the state 
notation: 

the frame axiom may be 
space exiorn. This can 

combined with bottom-up 
be pictured in arrow 

3 1 2 2 

t 11' 11' 
Poss(result(trans(x,y,z), w» (- poss(w), Manip(x), Holds{clear(x), w), 

Holds(clear(z}, w), Holds{on(x,y), w), Diff(x,z) n n 
2 2 2 

It can be simulated by top-down execution alone. It suffices to rewrite 
clauses (1), (11) and (12) using a predicate symbol Nposs which is the 
negation of Poss. Clauses Ill, (11) and (12) become (1'), (11') and 
(12') respectively. 

(1' ) 
(11' ) 

(12' ) 

(- Nposs(0) 
NpoSs(w) (- Holds(on(A,B), w), Holds (on(B,C) , w), 

Holds(on(C,r}, w) 
Nposs(w) (- Nposs(result(trans(x,y,z), w», Manip(x), 

Holds(clear(x), w), Holds(clear(z), w), 
Holds(on(x,y), w), Diff(x,z) 

The renaming of predicate symbols, of the kind involved in rewriting 
clauses (1), (11) and (12), has been investigated by Meltzer [1966] and 
will be considered again in the next chapter. 

A small part of the search space is illustrated below. The mixed top-
down, bottom-up execution strategy is equivalent to pure top-down 
execution using clauses (1 1), (111) and (121) instead of (1), (11) and 
(12). All arcs which diverge from the solution path are illustrated. 
Nodes which are labelled by clauses containing unsolvable subgoals are 
darkened to indicate that they are terminal failure nodes. 'I'he circled 
numbers preceding underlined atoms indicate the order in which they or 
their descendants are selected. Unlabelled arcs indicate execution of 
procedure calls containing the predicate symbol Diff. Some nodes are left 
unlabelled in order to suppress distracting details. t(x,y,z) abbreviates 
trans(x,y,z) . 

Notice that many alternatives to the solution path fail after only a 
few steps. The alternatives which do not fail correspond to genuine 
alternative actions in the search space of states. 
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(5) 

(6) 
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Poss (0) <-
(12) 
Poss(result(t(x,y,z) ,0» 
(5) 

(8) 

<-(2)Manip (x},(1') Holds (clear (x) (0) , 
,0), G Holds (on(x,y) ,0), Diff(x,z} 

(2) 
Poss (result{t (A,B,z) ,0» <-Q)Holds (clear (z) ,0) ,@Oiff(A,Z} 
(6) 
Poss(result(t(A,B,g} ,0}} (-
(12) 
Poss(result{t(x,y,z) ,I)} 
(14) 

(9) 

(15) 

(3) 

<-0 Manip (x) , CD Holds (clear (x) ,1) , 
Holds (clear (z) ,1), 

Q)Ho1ds(on(x,y) ,1), OHf(x,z) 

Poss (resul t (t (B,p, z) ,1» <-CD Holds (clear (z) ,1) ,@Oiff (B ,z) 
(15) 

(7) 

Poss{result(t(B,p,C) ,1» <-
(12) 
Poss(result(t(x,y,z) ,5» 
(15) 

(15) 

(5) 

(8) 
Poss(result(t(A,y,z) (5» 
(15) 

<--(2)Manip (x), CDHOlds (clear (xl,S) , 
,5), 

Holds(on(x,y) ,5), Diff(x,z) 

<- Holds(clear(z) (5), 
Holds (on (A,y) ,5) ,Diff (A, z) 

(15) (13) 
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(15) 

(15) 
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Poss (resul t (t (A,q,z) ,5» <-Q)Holds (clear (2) ,5) ,(3) Diff tA, z) 
(15) 

(14) 

Poss{result(t(A,g,B) ,5» (-
(11) 
(- Q)Holds(on(A,B) ,6) ,(])Holds(on(B,C) ,6), Holds(on(C,r) ,6) 
(13) 

(15) 

(13) 

(- Holds(on{C,r) ,6) 
(15) 

(15) 

(15) 

(4 ) 

o 
The eventual failure of the alternative attempts to solve the subgoals 

Holds(on(A,y) ,5) 
Holds(on(A,B) ,6) and 
Holds(on(B,C) ,6) 

can be hastened by strengthening the restrictions on the frame axiom. The 
more restrictive version of the frame axiom 

Holds{u, result(trans(x,y,z), w» (- Holds(u,wl, 
Diff{u, on(x,v», 
Diff (u, clear (z» , 
Diff{u, clear(y» 
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in particular, fails immediately whenever one of the clauses (13) or (14) 
succeeds. 

execution of the state space and frame axioms 

Part of the search space of states determined by executing the state 
space axiom top-down is illustrated below. As in the case where the state 
space axiom is executed bottom-up, redundancy arises when the same object 
is picked up twice in succession. The variables y and y' name locations 
which have not yet been determined. 

goal state 

initial state 
y' p 

In the following solution all clauses are executed top-down. Subgoals 
are considered breadth-first and left to right in the order in which they 
are written. Duplicate subgoals are deleted. To save space, steps 
involving the solution of subgoals containing the predicate symbol Diff 
are not illustrated. 
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(- Holds(on{A,B) ,wl, Holds(on(B,C) ,w), 
Holds(on(C,r) ,w), Poss(w) 

w = result(trans(A,y,B) ,wl) 

<- Holds (on (B ,C) ,wl)' Holds {on (C, r) ,wl)' POSS (wl) , 
Manip(A), Holds(c!ear(A) ,wl)' Holds (clear (B) ,wl)' 
Holds(on(A,y) ,wl)' Diff(A,B) 

Wl = result(trans(B,y' ,C) ,w2) 

(- Holds(on(C,r) ,w2)' Pass (WZ) , Manip(B), 
Holds(clear(B) ,w2)' Holds(clear(C) ,w2)' 
Holds(on(B,y'),w2)' Diff(B,C), Holds(clear(A),w2)' 
HO] ds (cl ear (8) Holds (on (A,yl ,w2) 

W2 = result(trans(A,B,y) ,w3) 

(- Holds(on(C,r) ,w3)' Pass(w3)' Manip(A), 
Holds (clear (A) ,w3)' Holds (clear (y) ,w3)' 
Holds (on (A,B) ,w3)' Dift (A,yl, Holds (clear (Cl ,w3)' 
Holds (on (8,y') ,w3)' Holgs (eleac (Ao,w3' 

o y q y' p 

o 

Applications of plan-formation 

The principal application of plan-formation has been the construction 
of plans for robot-like machinery. Plan-formation has also been applied 
to the automatic construction of programs from specifications. The 
description of the input and the output states constitutes a 
specification of a program. The definition of the preconditions and of 
the statements added and deleted by actions expresses the semantics of 
the machine operations. A plan consists of a sequence of machine 
operations and represents a program. More elaborate systems of plan-
formation include procedures for constructing plans with conditional 
statements, loops and other operations. Horn clause plan-formation 
programs written by Warren [1974, 1976J and Moss [1977] have been applied 
to program construction. 

An application of plan-formation to the synthesis of organic compounds 
was developed by Fogel, while a high school student, at Imperial College 
during the summer of 1977. Chemical compounds, like states in plan-
formation, can be described by assertions concerning the objects (atoms 
and bonds) which belong to them. The statement that 
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bond b of strength s holds between the 
atoms al and a2 in the compound c 

can be expressed by a single n-ary relationship 

Bond(b,s,al,a2'c) (-

or by several binary relationships: 

b has strength s (-
b bonds al (-
b bonds a2 (-
b belongs to c (-
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An initial compound functions as an initial state and a goal compound as 
a goal state. Chemical reactions are actions which transform one compound 
into another. They are defined by specifying (1) the preconditions which 
must hold before a reaction can take place, (2) the new bonds which the 
reaction introduces and (3) the old bonds which the reaction destroys. A 
frame axiom states that bonds which are not destroyed by a reaction are 
preserved by it. Both the program written by Moss and the one written by 
Fogel were implemented as Horn clause programs and run on a PROLOG-like 
system developed at Imperial College. 

Programs for drug analysis have been written in PRO LOG at the Ministry 
of Heavy Industry in Budapest [Futo, Darvas and Szeredi 1978]. These use 
relational data structures similar to those in the organic synthesis 
program. Because many of the properties of a given drug may be unknown, 
the drug analysis programs employ binary rather than n-ary relations. The 
programs have led to useful discoveries concerning previously unknown 
drug interactions and concerning inconsistencies in descriptions of drugs 
in the pharmaceutical literature. 

Limitations 

The approach taken in this chapter stores information about the 
initial state explicitly and uses the frame axiom to compute information 
about later states. It can be argued that this is unnatural and 
potentially inefficient. The alternative, when using depth-first search 
and reasoning forward from the initial state, is to store the current 
state explicitly and to compute information about earlier states. The two 
approaches are intuitively equivalent. The problem of formally explaining 
and justifying the equivalence, however, has still to be solved. 

The treatment of plans as sequences of actions is another limitation, 
which creates redundancies when actions do not interact and can be 
performed in parallel. Performing the actions in sequence produces the 
same results redundantly in any sequence. Systems for generating plans 
which are partially ordered collections of actions have been described by 
Sacerdoti [1975] and Tate [1974]. A HOrn clause program which generates 
partially ordered plans has also been written in PROLOG by Warren. A 
survey of plan-formation systems and a comparison with the one presented 
in this chapter has been made by Waldinger [1977]. 
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Exercises 

1) Formulate an n-tuple representation of the blocks world problem. 
Let State(x,y,z) hold when it is possible for block A to be on x, B on y 
and C on z simultaneously. Compare problem-solving strategies for the n-
tuple representation with those for the binary representation of the 
problem. 

2} Reformulate the water container problem investigated 
as a plan-formation problem using the binary representation 
in this chapter. Compare the problem-solving strategies 
efficient solution of the problem in both the n-ary 
representations. 

3) The assigrnent statement of conventional programming 
be regarded as an action which transforms one state of a 
another. The new state 

assign(u,v,w) 

in Chapter 4 
investigated 
needed for 
and binary 

languages can 
computer into 

differs from the preceding state w in that the location u contains v. 

Assume that A, 
they contain a, b 
which the initial 

Band C are locations and that in 
and c respectively. The problem is 
values of A and B are interchanged. 

the initial state 0 
to find a state in 

Formulate and solve the problem as a plan-formation task. 
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CHAPTER 7 

Resolution 

We shall extend the Horn clause model of problem-solving to non-Horn 
clauses. With non-Horn clauses 

(1) goals and assertions can be negative as well as positive, 

(2) the application of procedures to goals can generate 
assertions as well as subgoals, 

(3) the solution of subgoals can require the analysis of 
several alternative cases and 

(4) solutions can be disjunctions: x = tl or t2 or ••. or 

Top-down and bottom-up inference can be extended to non-Horn clauses. 
The new rules, as well as the old ones, are all special cases of the 
general resolution rule introduced by Robinson [1965a]. 

Negative goals and assertions 

In many 
clauses by 
clause 

cases a set of non-Horn clauses can be reexpressed as Horn 
renaming predicate symbols [Meltzer 19661. The non-Horn 

Pleasant{x), Nightmare{x) (- Dream{x) 

for example, can be rewritten as the Horn clause 

Nightmare (x) (- Dream (x), Unpleasant (x) 

by reexpressing the negative atom not-Pleasant (x) as the positive atom 
Unpleasant (x) . 

Similarly the non-Horn clause problem of showing that every boletus is 
poisonous can be transformed into a Horn clause problem by eliminating 
the predicate symbol "Mushroom" and using the new predicate symbol 
"Nonmushroom" instead. The unnegated atom, Nonmushroom(x), means the same 
as the negated atom, not-Mushroom (x) • The new Horn clause problem 
Fung'l-6 can be solved top-down or bottom-up. 
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Fung'l 
Fung' 2 
Fung' 3 
Fung I 4 
Fung'S 
Fung '6 

Chapter 7: Resolution 

ToaastooI(x) (- Fungus (x) , Nonmushroom(x) 
Poisonous (x) (- ToaastooI(x) 
Fungus(x) (- Boletus(x) 
Nonmushroom(x) (- Boletus(x) 
Boletus ('lr) (-
<- Poisonous (,,? ) 

bottom-up solution: 

Boletus ( 'ii') <- Boletus ( 'ii') <-

Fung' 3 Fung'4 

Fungus (- Nonrnushroom ('1r) (-

Fung'! 

('1r) (-

Fung'2 

Poisonous ( 'lr) (-
Fung '6 

o 

!QE-down solution: 

(- Poisonous (9' ) 
Fung'2 

(- Toadstool ( '1r ) 
Fung'l 

(- Fungus ( "iT' ) I Nonmushroom ('1? ) 
Fung'3 

(- Boletus ('l? ), Nonmushroom ("i? ) 
Fung'S 

(- Nonmushroom (9' ) 
Fung'4 

(- Boletus ("iT ) 
Fung'S 

o 
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The bottom-up derivation of the assertion 

Nonmushroom (-

from the Horn clauses Fung'4 and Fung'S is equivalent to the derivation 
of the negative "assertion" 

(- Mushroom ( 'l? ) 
directly from the original clauses Fung 4-5, 

(- Boletus (x) , Mushroom (x) 

Boletus (-

Similarly the top-down derivation of the positive subgoals 

(- Fungus ( ), Nonmushroom ( "ir ) 
from the goal statement 

(- Toadstool (9 ) 
by means of the Horn clause Fung'l is equivalent to the direct derivation 
of the clause 

Mushroom (x) (- Fungus{x) 

from the same goal statement 

(- Toadstool ( ) 

by means of the non-Horn clause 

FungI Toadstool (x) , Mushroom (- Fungus{x). 

Resolution 

In general, top-down and bottom-up inference for both Horn clauses and 
non-Horn clauses are special cases of the resolution rule: To create a 
resolvent of two clauses it is necessary first to rename variables so 
that different clauses contain different variables. 

Given a condition in one clause and a conclusion in the 
other, the resolvent exists if the condition and the 
conclusion match. The two clauses are said to be the 
parents of the resolvent clause. An atom IS a condition of 
the resolvent if it is obtained by applying the matching 
substitution to a condition, different from the matched 
condition, of one of the parents. Similarly, an atom is a 
conclusion of the resolvent if it is obtained by applying 
the matching substitution to a conclusion, different from 
the matched conclusion, of one of the parent clauses. 

The definition can be expressed by means of Horn clauses. Let 
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res(x,u,y,v) 

cond (xl 
conel (xl 
union (x,y) 

Apply(x,w,x') 

Rename(x,y,w) 

Chapter 7: Resolution 

name the resolvent which exists when, after 
appropriate renaming of variables, the condition u 
in x matches the conclusion v in y, 
the collection of conditions of clause X, 
the collection of conclusions of clause x, 
the union of x and y, 

express that the result of applying to x the 
substitution w is x', 
the substitution w applied to clauses x and y 
results in clauses which contain no variables in 
common, 

Match(u,v,w) substitution w matches the atoms u and v, 
Member (u,x) u is a member of x, 
Combine (wl,w2'w) the substitution w has the combined 

first applying substitution wl and then 
substitution w2' 

effect of 
applying 

Resolves(x,u,y,v,w) the resolvent of x and y on atoms u 
exists and w is the combined substitution 
both renames variables and matches atoms. 

and v 
which 

Resolves (x ,u,y,v ,w) (- Rename (x,y ,wl) ,Member (u,cond (x) ) ,Apply (u,wl'u') , 
Member (v, concl (y) ) ,Apply (v ,wl'v') ,Match (u' ,v' ,w2) , 
Combine (wl ,w2 ,w) 

Member(z, cond(res(x,u,y,v») (- Resolves(x,u,y,v,w), 
Member(z', union (cond (x) ,cond(y»), 
Diff(z' ,u), Apply(z' ,w,z) 

Member(z, concl(res(x,u,y,v») (- Resolves(x,u,y,v,w), 
Member (z I, union (conel (x) ,concl (y») , 
Diff (z' ,v), Apply{z' ,w,z) 

Member{z, union(x,y» (- Member(z,x) 

Member(z, union(x,y)} (- Member (z,y) 

Notice that the definition can be used either top-down or bottom-up. The 
Boyer-Moore structure-sharing implementation of resolution [1972] can be 
regarded as using the definition top-down but saving solved subgoals of 
the form Resolves(x,u,y,v,w) as lemmas. 

The definition given here is less general than Robinson's which also 
incorporates the factoring rule described later in the chapter. 

Middle out reasoning with Horn clauses 

In addition to top-down and bottom-out inference, resolution includes 
middle-out reasoning with Horn clauses. The resolvent of the two clauses 

Fallible(x) (- Human(x) 
Mortal(x} ( Fallible(x) 

for example, is the clause Mortal(x} (- Human(x). 
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Middle-out can also be applied to different copies of the 
same clause. From two copies of the definition of ancestor, for example 

Ancestor (x,y) (- Ancestor (x,z) , Ancestor (z,y) 
Ancestor (u,v) (- Ancestor (u,w) , Ancestor (w,v) 

we can derive the resolvent 

Ancestor (x,y) (- Ancestor(x,w) ,Ancestor(w,z),Ancestor(z,y). 

Propositional example 

The clauses which define the semantics of propositional logic provide 
instructive examples of the resolution rule. Here if x and y name 
propositions x* and y* respectively then 

x & Y names the proposition x* and y* 
x V y x* DC y* 
X :> y if x* then y* 
x<->y x* if and only if y* 

x it is not the case that x*. 

where &, V ,:>, «-> and ..., 
stating that x is true. 
reexpressed as Horn clauses 

are infix function symbols. Read 
The following set of clauses 

by renaming predicate symbols. 

T1 
T2 
T3 
T4 
T5 
T6 
T7 
TB 
T9 
T10 
Tll 
T12 
Tl3 
T14 

True (X&y) (- True (x), True (y) 
True{x) (- True (X&y) 
True (y) (- True (X&y) 
True (XVy) (- True(x) 
True (xVy) (- True (y) 
True(x), True(y) (- True(xVy) 

,True(x) (-
(- True(y) 

True{y) (- True(x), 
(- True(x y), 

True (x::JY) (- True 
True (Y::Jx) (-
True('x), True(x) (-
(- True ('x) , True (x) 

Clauses Tl-3 state that 

x & Y is true if and only if 
x is true and y is true. 

True(x) as 
cannot be 

Clause Tl is the if-half of the statement and clauses T2-3 are the only-
if-half. Similarly the remaining clauses state that 

T4-6 x V y is true if and only if 
x is true or y is true; 
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T7-9 

T10-12 

Tl3-14 

Chapter 7: Resolution 

x Y is true if and only if 
if x is true then y is true; 
x y is true if and only if 
x y is true and y x is true; 

, x is true if and only if 
x is not true. 

This set of clauses is based upon a more general definition of "truth" 
for sentences in the standard form of logic formulated by Colrnerauer 
[unpublishedl. 

The if-halves of the statements are useful top-down to reduce problems 
concerning the truth of a complex proposition to subproblems concerning 
the truth of simpler propositions. The only-if halves, on the other hand, 
are useful bottom-up to derive conclusions concerning the truth of simple 
propositions from assumptions concerning the truth of more complicated 
ones. 

For example, to show that 

P & is true if p is true and q is not true 

it is natural to reason top-down from the goal 

(- True (p & .... q) 

using the assumptions 

Al 
A2 

True(p) (-
(- True (q) 

and regarding the second assumption A2 as a negative assertion. 

(- True (p & -oq) 

Tl 

(- True(E) , 

Al 

(- True { .... g) 

Tl3 

True(q) (-

A2 

o 
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Here the clause T13 can be regarded as reducing the problem of showing 
that -q is true to the problem of showing that q is not true, which is 
solved directly by assumption A2.* 

On the bther hand. to show that 

p is true and q is not true if p & "g is true 

it is more natural to reason bottom-up from the assumption 

, True (p & "'lg) (- • 

The clause 

G True(q) (- True(p) 

can be interpreted as expressing the goal of showing that p is true and q 
not true. 

True(p & 'q) (-

T2 T3 

True(p) <- True ("1q) (-

T14 

(- True(q) 

G 

0 

Clause T14 can be regarded as deriving the negative assertion that q is 
not true, which solves the negative goal in G. Notice that the bundle of 
arcs labelled G represents two successive resolution steps. The order in 
which the steps are performed is not significant. 

The problem of showing that 

p V "p is true 

illustrates another characteristic feature of top-down problem-solving 
with non-Horn clauses: No method adequately solves the problem, but 
several alternative methods exhaust all the cases. 

*Throughout this chapter only resolution refutations are exhibited. 
Search spaces will be investigated in the next chapter. 
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(- True (p V 'p) 

(- True (p) 

o 
Methods T4 and T5 reduce the original problem to subproblems which 
exhaust the two cases asserted by the non-Horn clause Tl3. 

A bottom-up solution 
cases. Case analysis by 
however, for the problem 

of the same problem 
bottom-up reasoning 

of showing that 

r is true if p V q is true, 

assuming that 

would involve 
can be seen 

reasoning by 
more clearly, 

r is true if p is true, and r is true if q is true. 

(1) 
(2) 
(3) 
(4) 

T6 

(3) 

(1) 

(4) 

(1) 

(- True (r) 
True (p V q) (-
True{r) (- True(p) 
True(r) (- True(q) 

True (p V g) (-

True(p), True(q) <-

True{r), True(q) (-

True (g) (-

True{r) (-

Clause T6 derives a non-Horn clause which expresses that there are two 
cases. The solution reasons bottom-up, first solving the goal in the 
case that p is true and then solving it in the case that q is true. It 
"remembers" the second case while it is working on the first one. 
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Given a goal 
non-Horn clauses 
of the subgoals. 
sentences of the 

and a Horn clause which reduces 
can be used to derive assumptions 

Such non-Horn clauses typically 
form 

the goal to subgoals, 
to assist the solution 
arise from non-clausal 

A (- (B (- Cl, D 

in which a condition is an implication. In the problem-solving 
interpretation, the clausal form of such a sentence 

A, C (- D 
A (- B, D 

can be regarded as stating that 

in order to solve A, solve D, and solve B assuming C. 

The clauses T7-8 arise from such a non-clausal sentence: 

True(x y) (- [True{y) (- True(x)] 

To show that x y is true, 
show that y is true assuming that x is true. 

In some cases only one of the clauses T7-8 is needed to solve the 
problem. If x is not true as in the case 

(- True «p & .... p) J q) 

then only the nOn-Horn clause T7 which derives the assertion 

True (p & .... p) (-

is needed. But if y is true as in the case 

( True (q J (p V ""p)) 

then only the Horn clause TB which derives the subgoal 

(- True (p V ""p) 

is needed. 

In most cases, however, both clauses need to be used. The simplest 
problem which requires the cooperation of clauses T7-B is that of showing 
that p p is true. 

(- True (p p) 

T7 T8 

True (p) (- (- True (p) 

o 
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The derived subgoal of showing that p is true is solved by the derived 
assertion that p is true. The bundle of arcs associated with the 
resolution step is unlabelled, because only derived clauses are involved 
in the inference. 

The problem of showing that 

p q is true if p j r is true and r q is true 

is more interesting. Here it is natural to reason bi-directionally, both 
forward from the two assumptions and backward from the conclusion. 
Moreover, when reasoning backward from the conclusion 

<- True(p j q) 

it is natural to reason forward from the derived assertion 

True(p) <-

and backward from the derived subgoal 

(- True{g) 

The following resolution proof formalises the argument. 

True(p j rl (- <- True(p g) True(r g) <-

T9 T7 TB T9 

True(r) (- True(p) True(p) (- (- True(g) True(q) <- True(r) 

<- True(r) 

o 

Arrow notation for non-Horn clauses ----- --- --- ----
The arrow notation used earlier for Horn clauses, to indicate the 

combination of top-down and bottom-up inference, can also be used for 
non-Horn clauses. The problem-solving interpretation, in particular, of 
sentences of the form 

A (- IB (- Cl 

can be indicated by arrows associated with the corresponding clauses 
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1 2 1 

,/], 'fl' .JJ, 
A, c (- A (- 8 

,/], 
2 

The notation associated with the first clause indicates that it should 
wait for a subgoal of the form A and then derive the assertion C (- . The 
notation associated with the second clause indicates that it should wait 
for a subgoal of the form A and then derive the subgoal B. 

The use of arrow notation to control the behaviour of a problem-solver 
will be investigated in the next chapter. 

Disjunctive solutions to non-Horn clause problems 

Plan-formation tasks, described by means of non-Horn clauses, may 
require the construction of conditional plans from disjunctive solutions. 

Consider, for example, the problem of putting the maximum of two 
numbers A and B in a location L: 

MI 
M2 
M3 
M4 
MS 
M6 
M7 

(- Holds(val(L,x), w), Max(A,B,x) 
Numb{A) (-
Numb (B) (-
Location (L) (-
u v, v u (- Numb(u), Numb (v) 
Max(u,v,u) (- v ( u 
Max(u,v,v) (- u < v 

Suppose that the only action available is the assignment operation. Given 
a state w, it generates the new state 

assign(u,v,w) 

which results from w by putting v in location u. The "semantics" of the 
action are described by specifying its preconditions and the statements 
which are added and deleted when the action is performed. To simplify 
matters, the single precondition, that u be a location, can be 
incorporated into the clauses which specify the added (MS) and deleted 
(M9) statements: 

MS 
M9 

Holds (val (u,v), assign (u,v ,w» (- Location (u) 
Holds(x, assign(u,v,w)) (- Holds(x,w), Diff(x, val(u,y», 

Location (u) 

Before solving the problem top-down it is convenient to reason one 
step bottom-up: 
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M2,_/M3 

M10 A i B, B i A (-

The top-down solution using the derived lemma M10 requires that the two 
procedures M6 and M7 cooperate to solve the single subgoal Max(A,B,x). 

(- Holds (val (L,x),w) , Max(A,B,x) 

w=assign(L,x,w') MS 

<- Location(L), Max(A,B,x) 

M4 

<- Max(A,B,x) 

(- 8 < A (- A < B 

o 
The solution is a disjunction of two possibilities 

w = assign(L,A,w') or assign(L,B,w'), for any w'. 

A solution exists, but it is 
possibilities it is. 

not determined3 which of the two 

Non-determinism3 contrasts with non-determinisml" A problem is non-
deterministic3 If Its solution 

is underspecified. 
overspecified 

or 

It is non-deterministicl 

x = tl and t2 and ... and 

if its solution is 

The treatment of program construction as an application of plan-
formation was first proposed by Green [1969b] and Lee and Waldinger 
[1969J. Lee ana Walainger, in particular, present an algorithm for 
extracting conditional programs, such as 

If A < B then w assign(C,B,w ' ) 
else w ; assign(C,A,w ' ) 

from disjunctive solutions. The relationship between plan-formation and 
axiomatic sem2ntics of programming languages has been investigated by 
Moss [1977]. 
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Factoring 

The resolution rule alone is complete for demonstrating the 
inconsistency of Horn clauses. Moreover, it is also adequate for many, 
but not all, non-Horn clause problems. The combination of factoring and 
resolution, first described in Robinson's original, unpublished paper is 
equivalent to the published version of the resolution rule [Robinson 
1965a]. Consequently, the completeness proof in the published paper 
establishes completeness of resolution and factoring combined. 

The barber paradox is a simple example which requires the use of 
factoring. 

Suppose that all barbers shave all people who do not shave 
themselves and no barber shaves anyone who shaves himself. 
Then there are no barbers. 

To establish the conclusion we assert that there is a barber and 
attempt to derive a contradiction. 

Bl 
B2 
B3 

Shave{x,y), Shave(y,y) (- Barber (xl 
(- Shave(x,yl, Shave(y,y), Barher{x) 
Barber <Q) (-

That the three clauses are inconsistent can be demonstrated by 
instantiating the first two clauses 

(-
<-

deleting duplicate atoms 

<-
<-

and applying resolution. 

(- Barber(©) (- <-

Shave (Q ,Q) (- (- Shave <Q,g) 

o 
That resolution alone is inadequate for demonstrating inconsistency 

can be seen more clearly by considering a simpler example: 

51 
52 

5 (xl, 5 (yl <-
(- S(u), S{v) 

The two clauses are inconsistent because they have instances 

S{x), S(x) (-
(- S(u), S(u) 
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which, after removal of duplicate atoms, are directly contradictory: 

SIx) <-
<- s (u) 

However, no matter how many times resolution is applied to clauses 81-2 
and their descendants, every resolvent contains exactly two atoms, and 
consequently no resolvent is the empty clause (which contains no atoms). 

The factoring rule, which needs to supplement resolution in these 
examples, generates instances of clauses in order to delete duplicate 
atoms. The instantiating substitution can be restricted so that it 
matches the two atoms which become duplicates. Applied to the two 
clauses B1 and 82, factoring generates instances which are more general 
than the two instances considered before. 

Bl 

B'l 

Shave{x,yl, Shave(y,yl (- Barber (x) 
(match underlined atoms) 

Shave(x,x), Sbaue(x,Xj (- Barber (x) 
(delete duplicates) 

Shave(x,x) (- Barber(x) 

Bll is the only factor of Bl. Similarly BI2 is the only factor of B2: 

B'2 (- Shave(x,x), Barber (x) 

Application of factoring and the combined resolution and factoring 
refutation can be exhibited in a graph. 

Shave(x,y) ,Shave{y,y) (- Barber (x) (- Shave{x,y) ,Shave(y,y) ,Barber (x) 

facto ring facto ring 

Shave{x,x) (- Barber (x) Barber (0) (- (- Shave(x,x), Barber (x) 

Shave (Q,Q) 

o 
Factoring is only necessary infrequently and it creates redundancy if 

it is applied too often. Perhaps the most restrictive constraint on the 
use of factoring, without affecting completeness, is the one incorporated 
in the model elimination proof procedure [Loveland 1968, 1969, 19781. 

Exercises 

1) Use resolution and factoring to show that the assumptions 

John likes anyone who doesnlt like himself. 
John likes no one who likes himself. 
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are inconsistent. 

Use 

2) Suppose I believe: 

resolution 

(a) There exists a dragon. 
(b) The dragon either sleeps iJ. its cave or hunts in 

the forest. 
(c) If the dragon is hungry then it cannot sleep. 
(d) If the dragon is tired then it cannot hunt. 

to answer the following questions: 

What does the dragon do when it is hungry? 
What does the dragon do when it is tired? 
What does the dragon do when it is hungry and tired? 

To answer the questions it is necessary to make explicit the assumption: 

If x cannot do y then x does not do y. 

3) Express the following assumptions in clausal form: 

Everyone admires a hero. 
A failure admires everyone. 
Anyone who is not a hero is a failure. 

Use resolution and factoring to find a pair of individuals (not 
necessarily distinct) who admire one another. 

4) This problem is discussed by Moore [1975J. Suppose there are three 
blocks A, Band C. 

A is on B which is on C. 
A is green, C is blue and 
the colour of B is unknown. 

A green 
B 
C blue 

Use resolution (and factoring if necessary) to find a green block on a 
block which is not green. You must assume that blue is not green. What 
block does the proof find? 

5) Using resolution and factoring, show that the following conclusions 
follow from assumptions Tl-14. 

(a) If P o(r & g) is true 
then (p :::) r) & (p g) is true. 

(b) If P :::) g is true 
then there is an r such that (p:> r) & (r :::) q). 
What r does the proof find? 
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6) The relation Plus(x,y,z) which holds when x+y 
using non-Horn clauses 

Plus(x,y,z), Add(0,y) (-
Plus(x,y,z) (- Add(x,z) 
Add (s (x) ,5 (z» (- Add (x,z) 

z can be defined 

where sex) names the successor of x. 
solve the problem 

Use resolution and factoring to 

(- Plus (X,y,5 (y», Plus (x,x,y) • 
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CHAPrER JI. 

The Connection Graph Proof Procedure 

The search space determined by unrestricted application of the 
resolution rule is highly redundant. Redundancy can be avoided, at the 
expense of flexibility, by restricting resolution to top-down or bottorn-
up inference. It can also be avoided, however, without the loss of 
flexibility by employing the connection graph proof procedure. 

Clauses are stored in a graph and occurrences of matching atoms on 
opposite sides of the arrow are connected by arcs. Associated with each 
arc in the graph is the resolvent obtained by resolving the clauses 
connected by the arc. The main operation of the connection graph proof 
procedure is the selection of an arbitrary arc and the incorporation of 
the associated resolvent into the connection graph. Top-down inference is 
performed by selecting an arc connected to a goal statement; bottom-up 
inference, by selecting an arc connected to a clause which contains no 
conditions. Redundancy is avoided by deleting the selected arc and by 
restricting the number of new arcs which are added when the resolvent is 
incorporated into the graph. 

The initial connection 

The first step of the connection graph proof procedure is the 
construction of the initial connection graph. In addition to the initial 
set of clauses, the initial connection contains an arc for every 
pair of matching atoms on opposite sides of the arrow in different 
clauses. The arc connects the atoms and is labelled by the matching 
substitution. Later in the chapter we consider the case in which an arc 
links atoms in the same clause. 

The initial connection graph for a simple non-Horn clause problem is 
illustrated below. 

Happy(x) <- Playing(x) Happy (x) (- Working(y), x employs y 

x = Bob Y:;7 
Playing(Bob), Working(Bob) (-

x = John 
y Bob 

John employs Bob (-
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Associated with each arc in the graph is the resolvent obtained by 
matching the atoms linked by the arc. Conversely, for every resolvent 
which can be generated from different parent clauses there is an 
associated arc in the graph. 

According to Robinson's purity principle fRobinson 1965a], a clause 
which contains an unlinked atom can be deleted from a set of clauses 
without affecting its consistency (or inconsistency). Such a clause can 
not contribute to a resolution refutation because the unlinked atom can 
not be resolved upon. 

Deletion of clauses containing unlinked atoms is an important feature 
of the connection graph proof procedure. In addition to the clause 
itself, all links connected to its atoms must also be deleted from the 
graph. Deletion of such links, however, may cause atoms in other clauses 
to become unlinked. Thus deletion of clauses can create a chain reaction 
in which a succession of clauses is deleted from the graph. Deletion of 
clauses simplifies the connection graph, reduces the search space, and 
makes it easier to find a solution. 

The effect of deleting clauses can be illustrated by assuming that Bob 
is unemployed and modifying the preceding example. 

Happy (x) (- Playing (x) Happy(x) (- Working(y) 

x • BObi y • , 
x employs y 

Playing (Bob) , Working(Bob) (-

We delete the clause which contains the unlinked atom. 

u 
Happy(x) (- :l:y:::rX) 

Playing (8ob) , Working (Bob) (-

The new graph contains a new unlinked atom. Deletion of clauses 
continues until we are left with the empty set of clauses. The empty set 
of clauses is trivially consistent, because it contains no clauses which 
can be false in an interpretation. Therefore the original set of clauses 
is consistent as well. 
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The Resolution of links in connection 

The basic operation of the proof procedure is the selection of a link 
ana the generation of the associated resolvent. The link is deletea and 
the resolvent is aaaea to the graph. New links are aaaea connecting atoms 
in the resolvent to atoms in the rest of the graph. The new links can be 
constructea, without searching the graph, from the links which are 
alreaay connectea to the atoms in the parent clauses. 

For example, in the initial connection graph at the beginning of the 
chapter, we can reason bottom-up by selecting the link which matches the 
two atoms containing the preaicate symbol Playing. In the resolvent, 
the atom Happy (Bob) aescends from the atom Happy (x) in the parent 
clause. All new links connect ea to the new atom descena from the links 
connectea to the parent atom. In this caSe the new link connecting 
Happy (Bob) to Happy(u) is aerivea from the 010 link connecting 
aappy(x) to Happy(u). The new connection graph, which results from 
selecting the link, generating the resolvent, aaaing new links and 
deleting both parent clauses (which now contain unlinkea atoms) is 
illustratea below. 

Happy (Bob) , Working (Bob) (- Happy{x) (- Working(y), x employs y 

y Bob x 
y 

John 
Bob 

John employs Bob (-

The substitution u = Bob which labels the new link can be computed from 
the substitution x = Bob which label lea the selected link and the 
substitution u = x which labelled the "parent" link from which the new 
link descends. 

Before continuing with the example we outline the definition of the 
proof procedure in general. 

The connection proof proceaure begins with an initial connection 
graph and processes it repeatedly until the empty clause is generated. It 
processes £ connection Qy 

(1) repeatedly deleting clauses containing unlinked atoms 
and deleting their associated links until all such 
clauses have been deleted and then 

(2) selecting a link, deleting it and adding the resolVent 
and its associated new links to the graph. 

This definition of the top-most level of the connection graph proof 
procedure is given in the "repeat-until" iterative style of algorithm 
description associated with Algol-like programming languages. At the end 
of the chapter, we shall reexpress the definition in the Horn clause 
logic programming style. 
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We return to the example. Any link may be selected from the graph. we 
shall continue, however, with the bottom-up analysis of the case 
Playing (Bob) by selecting the link labelled u =Boh. Deletion of the 
selected link leaves one of the parents with an unlinked atom. The parent 
is deleted. 

(- x 

Working(Bob) (- Happy (x) (- Working(y), x employs y 

y = Bob x 
y 

John 
Bob 

John employs Bob (-

The goal has now been solved in the first case Playing(Bob). Next we 
investigate the remaInlng case Working(Bob), also reasoning bottom-up_ 
When the selected link is deleted, both parent clauses contain unlinked 
atoms and are deleted as well. 

(- Happy!u) 

Happy (x) (- x employs Bob 

x = JOhni 

John employs Bob (-

We continue to reason bottom-up and delete both parents because they 
contain unlinked atoms. 

(- Happy(u) 

Happy (John) (-

The resolvent associated with the remaining link is the empty clause and 
both parents are deleted. 

o 
Notice that the proof gives a disjunctive answer to the question: 

Is anyone happy? 

Yes, Bob or John. 

The sequence of successive connection graphs generated by the proof 
procedure constitutes both a proof of inconsistency as well as a search 
for the proof. In this example, every step in the search contributes to 
the proof itself. In the general case, however, according to a theorem of 
Ehrenfeucht and Rabin [Bundy 19711 [Meltzer 19721, it is not always 
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possible to avoid steps which are not relevant to the proof. 

At every stage during the course of searching for a proof, any link 
can be selected to generate a resolvent. The selection of different links 
leads to the generation of different search spaces, some of which may be 
easier to search than others. In the following sequence of connection 
graphs we illustrate a top-down search for a solution to the previous 
problem. Selected links are indicated by bold lines. Several links may be 
marked for selection in the same graph when the order of selection does 
not matter, in order to reduce the number of separate graphs displayed. 
Deletion of clauses containing unlinked atoms is not exhibited 
explicitly. 

Happy(x) (- Playing (x) Happy(x) (- Working(y), x employs y 

x = Bob Y7 x 
Y 

John 
Bob 

Playing (Bob) , Working(Bob) (- John employs Bob (-

(- Playing(u) 

u = Bob 

(- Worklng(y), u employs y 

John 
Bob 7 

Playing(Bob), Working (Bob) (- John employs Bob <-

:,./ingIBOb) 

Working (Bob) (-

o 

As in the bottom-up search for a solution, every step contributes to the 
proof. 

Notice that unrestricted application of the resolution rule is 
redundant in the sense that it determines a search space which contains 
many unnecessary clauses including, in particular, all those which belong 
to both the top-down and the bottom-up search spaces exhibited above. 
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Mixed !QE-down and bottom-gE search - the parsing problem 

Top-down and bottom-up inference can be mixed, simply by mixing the 
selection of links connected to atoms in goal statements with the 
selection of links connected to atoms in clauses which contain no 
conditions. In general it is useful always to select a link which results 
in the least complicated new graph. This strategy applied to a version 
of the parsing problem of Chapter 3 results in a mixed top-down, bottom-
up search. As in the preceding example, selected links are indicated by 
bold lines. substitutions, which label links, are omitted from the 
graph. 

(- Sent{1,6) 
I 

__ ------se-n-t-(x-'-Y-I-<--lVP(Z'Y), 

Vp{x,y)-<- Aux(x,z), Verb(z,y) Vp(x,y) (- Verb(x,y) 

Np(x,y) <- Noun(x,yl 

gyre(S,6) <- Np(x,yl <- Oet(x,u), Adj (u,vl, 

Aux(x,yl <- did(X'Y)/ I Noun(x,y) <-toves(x,y) loet (x,y) <- ther'Y' Adj (x,y) <- S(ithY(X'Y) 

did(4,5) (- the(1,2) (- slithy(2,3) (- toves(3,4)<-

__ -------<--iP (Z,6), NP(l'Z)l 

Vp{x,y)-(- Aux(x,z) ,Verb(z,y) Vp{x,y) (-...,Yerb(x,y) 

/ L-----
Aux(4,5) (- Verb(5,6) (- Np(x,y) (- Noun(x,y) 

Np(x,y) (- Det{x,u), Adj (u,v), 

/ / 
Det(1,2) (- Adj (2,3) <-

Noue:! 

Noun(3,4) (-
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(- Vp(z,6), Np(l,z) 

<-Verb(x,y) 

Verb(5,6) <- Np(l,y) <-

Noun(3,4) (-

(- Vp(z,6), Np(l,z) " Vp(4,6) (- Vp(5,6) (- Np(1,4) (- Np(3,4) (-

(- Vp(4,6) 

/ 
Vp(4,6) <- Vp(5,6) <-

o 

Macro-processing and middle-out reasoning 

In conventional programming languages, macro-processing transforms a 
program by eliminating all calls to a given procedure, executing them in 
advance of the particular problems to be solved. The original procedures 
are replaced by the new ones. The analogue of macro-processing in logic 
is middle-out reasoning combined with deletion of the parent clauses 
because they contain unlinked atoms. 

Macro-processing has the advantage that procedure calls are executed 
once and for all before the problems are given, rather than repeatedly 
during the course of trying to solve them. 

Macro-processing can be illustrated by eliminating all calls to the Np 
and Vp procedures in the parsing problem. 
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__ -< .... -liP I z, y), Np lx, z) 

VP(x,y)-<- ux(x,z), Verb(z,y) Vp(x,y) (- Verb(x,y) / .. 
Verb(x,y) (- gyre(x,y) Np(x,y <- Noun(x,y) 

Adjlu,v), 

Noun(x,y) (- toves(x,y) 

Adj (x,y) (- slithy(x,y) 

Sent (x,y) (- Noun (x,z), 
Verb(z,y) 

Sent(x,y) (- Noun(V,Wl\ 
Adj(u,v), 

Det(x,y) (- the(x,y) Det(x,u), 

Ad] (x,y) (- slithy{x,y) Verb(x,y) (- gyre(x,y) 

<-'Det(X,U),/ 

Noun(x,y) (- toves(x,y) Noun(v,w), 

=:verbIZ,Y), 

Aux(x,y) (- did(x,y) 

Sent(x,y) (-
Aux{u,v), 
Verb (v ,y)I ______ ---

Arrow notation for controlling selection of links 

The arrow notation, introduced informally earlier in the book, can be 
used to control the selection of links in the connection graph proof 
procedure. The links of a connection graph can be turned into arrows by 
giving them a direction. A clause is regarded as active if all links 
connected to its atoms are outgoing. A link may be selected if it is 
connected to an atom in an active clause. The new links connected to 
atoms in a resolvent inherit their direction from the parent links from 
which they descend. 

The connection graph proof procedure can be restricted to top-down 
inference, by directing all arrows from conditions to conclusions. Then a 
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clause is active if and only if it is a goal statement. The following 
sequence of graphs illustrates the use of arrow notation to impose a top-
down problem-solving interpretation on the problem of the fallible Greek. 
Despite notational similarities, there is no connection between arrow 
notation in connection graphs and arcs in semantic networks. 

(- Fallible(x), Greek(x) 

/ 
Fallible(x) (- Human(x) ! Greek (Socrates) (-

Human (Turing) (- Human (Socrates) (-

(- Fallible(Socrates) 

/ 
Fallible(x) (- Human(x) 

Human (Turing) (- Human (Socrates) (-

(- Human (Socrates) 

Human(Turing) (- Human (Socrates) (-

o 

The proof procedure can be restricted to bottom-up inference, by 
directing all arrows from conclusions to conditions. Then a clause is 
active if and only if it has no conditions. The use of arrow notation for 
bottom-up inference is illustrated below. 

(- Fallible(x), 

/ 
Fallible(x) (- Human (x) /, 

Human (Turing) (- Human (Socrates) (-

Greek(x) 

i Greek (Socrates) (-
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(- Fallible{Socrates) , 
Fallible(Turing) (- Fallible (Socrates) (-

o 

The arrow notation can be used with non-Horn clauses to control the 
generation of assertions for use in the solution of subgoals. The oon-
Horn clause in the connection graph below, for example, generates the 
assertion 

(-

to assist the solution of the subgoal 

(-

The two clauses from which the assertion and subgoal are derived, 
together with the associated arrow notation, attempt to show that Bob is 
happy by asserting that is a student of Bob and showing that 
even likes logic. Since nothing else is said about the individual 
if it can be shown that likes logic, then anyone who is a student of 
Bob likes logic. The two clauses, therefore, state in effect that 

Bob is happy if all his students like logic. 

The arrows in the following connection 
solution top-down from the top-level goal 
bottom-up from the assertion to be used in 

graph direct the search for a 
and the derived subgoal, but 

solving the subgoal. 

<- Happy (Bob) 

(-

(-

Likes{x,loglc)<-Studentof{x,Bob), Studies(x,loglC) <-Studentof(x,Bob) 
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(- (-

o 
Notice that Bob would also be happy if he had no students 

(- Studentof(x,Bob) 

or if liked logic unconditionally 

Likes(x,logic) (- . 

There is no guarantee that every assignment of direction preserves the 
solvability of a connection graph. It seems sensible, moreover, to 
restrict the direction of arrows so that all links connected to the same 
atom have the same direction. 

Self-resolving clauses 

A self-resolving clause is one which resolves with a copy of itself. 
For example, the clause 

Append (x.y, z, x.y') <- Append(y,z,y') 

resolves with the copy 

Append(u.v, w, u.v') (- Append (v,w,v') • 

For the sake of completeness, it is necessary to connect resolving 
atoms in a self-resolving clause by means of a link. 

Append (x.y, z, x.y') (- Append(y,z,y') 

Such a link is a pseudo-link in the sense that is stands for a link 
between atoms in different copies of the same clause. 

Pseudo-links can be selected for processing, but it is simpler for the 
purposes of exposition to restrict their use to the derivation of new 
links. This is illustrated in the following example. 

Append(x.y, 

(- Append(A.C.nil, B.nil, w) 

(-

The single atom in the resolvent descends from an atom having two links, 
one of which is a pseudo-link. The pseudo-link gives rise to a descendant 
which is a normal link. The other link connected to the assertion has no 
descendant. The original goal statement contains an unlinked atom and 
therefore is discarded when the resolvent is added to the graph. 
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<- Append (C.nil, 8.nl1, w'} 

Append (x.y, z, x.y') <- Append(y,z,y') Append (nll,x,x) (-

The new graph 
time, when the 
descendant and 

is similar to the initial connection graph. However, this 
resolvent is generated, it is the pseudo-link which has no 
the link to the assertion which has. 

(- Append (nil, B.nil, w") 

(-Append (x.y, 

The resolvent of the new link is the empty clause. Independently, the 
recursive clause can be deleted because its conclusion has only a pseudo-
link. Once the recursive clause has been deleted, the assertion can be 
deleted as well. The resulting connection graph consists of the empty 
clause alone. 

o 
In general, a self-resolving clause can be deleted if one of its atoms 
has no normal (non-pseudo-) links. The inheritance of links and pseudo-
links in connection graphs has been studied by Bruynooghe [1977]. Note 
that, although in all of the preceeding examples the final connection 
graph contains only the empty clause, in the general case it may contain 
other clauses as well. 

Deletion of links whose resolvents are tautologies 

A clause is a tautology if it contains the same atom both as a 
condition and as a conclusion. The use of tautologies in top-down 
problem-solving leads to loops in which a goal reoccurs as its own 
subgoal. For that reason, because they do not positively contribute to 
the solution of problems, tautologies can be deleted from a set of 
clauses without affecting inconsistency [Robinson 1965a]. In the 
connection graph proof procedure, the effect of deleting tautologies can 
be obtained by deleting links whose resolvents are tautologies. 

The set of clauses describing the concept of even number is an 
example. 

Even(0) (-

Even(x) (- Even(s(s(x))) 

The two links connecting the two recursive clauses have resolvents which 
are tautologies. The links are deleted from the graph: 
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.------........ Even (s (5 (x))) (- Even (x) Even (0) (-

---------Even(x) (- Even(s(s(x))) 

The collection of three clauses is consistent because it contains no 
goal statement. The two recursive clauses can be deleted because they 
contain atoms with only pseudo-links. The basis assertion can then be 
deleted as well. Given the goal statement 

(- Even(s(s(s(s(0))))) 

moreover, the 
pseudo-link. 
simpler graph: 

condition of the second recursive clause still has no non-
Consequently, the clause can be deleted, leaving the 

(- Even(s(s(s(s(0))) 

Even(s(s(x))) (- Even(x) Even(0) (-

In more complex examples it is not so easy to recognise that a clause 
cannot contribute to a solution. In such cases a more global analysis may 
be useful. Global problem-solving strategies are investigated in the next 
chapter. 

The connection proof procedure 

We summarise here 
procedure in a style 
interpretation of Horn 

the definition of the connection graph proof 
of English which corresponds to the procedural 
clauses. 

To demonstrate the 
connection proof 
connection graph. 

inconsistency of a 
procedure, generate 

set 
and 

of clauses by the 
solve its initial 

The initial connection for a set of clauses contains all 
clauses in the set, a (non-pseudo-) link connecting each pair of 
matching atoms on opposite sides of the arrow in different clauses, 
and a pseudo-link connecting atoms on opposite sides of the arrow in 
the same clause if the atoms match in different copies of the clause. 

A connection graph is solved if it contains the empty clause. 

To solve a connection graph which does not contain the empty 
clause, 
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either delete a link whose resolvent is a tautology, and 
solve the resulting connection graph, 
or delete a clause containing an unlinked 
with its associated links, and solve 
connection graph, 

atom, together 
the resulting 

or select a link which is not a pseudo-link, delete it, 
add the resolvent together with its new links to the 
graph, and solve the resulting connection graph. 

A (non-pseudo-) link connects an occurrence L of an atom in a 
resolvent to an occurrence K of an atom in another clause if Land K 
match, L descends from an occurrence L' of an atom in a parent 
clause, and there is a link (possibly a pseudo-link) between L' and 
K. 

parent C' L' K D 

CL/ 
parent 

0< 
resolvent resolvent 

A pseudo-link connects Land K in a resolvent if Land K match, L 
and K descend from L' and K' in the (same or different) parent 
clauses, and there is a link between L' and K'. 

parent 

resolvent 

L' C' K' 
0< 

parents 

resolvent 

e'L' K' D 
,--... 
L C K 

The four different ways of solving a connection graph correspond to 
four clauses having the same conclusion. Ignoring the deletion of links 
whose resolvents are tautologies, the resulting three procedures express 
the logic and top-down control of the iterative algorithm described at 
the beginning of the chapter. The earlier algorithm can be obtained from 
the new one by further specifying the control over the use of the 
procedures given here. In particular, 

(1) the alternative ways of solving a connection graph 
should be tried one at a time in the order in which they 
are written above and 

(2) backtracking should not be employed, as the non-
determinisml of the procedures doesn't matter. 

The proof procedure which has been described is incomplete as it 
stands, because the factoring operation haS been omitted. In order to 
avoid redundancy, severe restrictions need to be imposed on its use. 
Since adequate restrictions have not yet been devised, and since it 
simplifies the description of the proof procedure, we have decided to 
ignore the factoring operation altogether. A definition of the proof 
procedure including factoring can be found in the original publication 
[Kowalski 1974aj. 

The completeness of the connection graph proof procedure cannot be 
assured if the selection of links which are needed for a proof is 
postponed indefinitely. Such indefinite postponement might arise, for 
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example, when the selection strategy carries out a depth-first search 
along a non-terminating path of a top-down search space. The requirement 
that every link eventually be scheduled for selection is the analogue of 
the exhaustiveness of search strategies for more conventional proof 
procedures. 

A completeness proof for a variant of the connection graph proof 
procedure has been constructed by Brown [unpublished]. In the case of 
Horn clauses, his proof applies also to the proof procedure which has 
been described here. Other completeness proofs for the general case have 
been announced by Siekmann and Stephan [1976J and by Bibel [1979]. 

A number of proof procedures employ connection graphs but process them 
in a manner different from the one described here. Noteworthy among 
these are those of Sickel [1976] and Kellogg, Klahr and Travis [1978]. 
Closer to the connection graph procedure, however, is the unpublished 
cancellation system of Colmerauer. 

Exercises 

1) Express the top-level of the definition of the connection graph 
proof procedure by means of Horn clauses. 

2) Using the methods described later in Chapter 10 for transforming 
sentences from the standard form of logic into clausal form, the 
definition of subset can be expressed by means of the following two 
clauses: 

x !& y, arb(x,y) e: x <-
x " Y <- orb(x,y) E y 

Used top-down these clauses behave as procedures which given a subgoal of 
the form x S y, 

assert that some arbitry individual, say arb(x,y), belongs 
to x and try to show that it belongs to y. 

Use the connection graph proof procedure to prove the following theorems. 

a) The empty set defined by 

<- X £ I/> 
is a subset of any set S. 

b) Every set S is a subset of the universal set defined by 

x £ U <-

cl Every set is a subset of itself. 

d) The set A such that 
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a{x), b(x) (- x EA 

is a subset of the set B such that 

x€B<-a(x) 
x E B (- b (x) 
x € B (- c (x) • 

This is a formulation without equality of the problem of 
showing that 

{arb}!; {a,b,c,}. 

3) Verify the claim made in Chapter 5 that, using the connection graph 
proof procedure, bottom-up execution of the definition 

Fib(0, 5(0)) <-
Fib(s(s(x)), w) (- Fib(s(x), u), Fib(x,v), Plus(u,v,W) 

of Fibonacci number requires only 
that the Plus relation is defined 
and ignore the space that would be 

a constant amount of storage. Assume 
by means of variable-free assertions 

needed to store them. 
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CHAPTER 9 

Global Problem-Solving Strategies 

In this chapter we investigate problem-solving strategies which deal 
with problems as a whole rather than with subproblems individually. Goal 
transformation deals with the combination of goals in goal statements, 
whereas analysis of differences deals with the effect of procedures on 
the difference between goals and assertions. 

Goal transformation consists of a number of related strategies which 
are concerned with the logical relationships among subgoals. It includes 
deletion of redundant 5ub90aIs, which are implied by other subgoals, 
addition of implicit subgoals which are easier and more useful to solve 
than those which are explicitly given, relectlon of inconsistent 
subgoals, which are mutually incompatible, and rejectIOn of subgoals 
which are contradicted an example. 

The techniques of goal transformation are similar to those of program 
transformation developed for recursion equations by Burstall and 
Darlington [1977]. Program transformation transforms programs before 
problems are given, whereas goal transformation transforms goals during 
the course of attempting to solve them. Goal transformation techniques 
have also been used in robot plan-formation, mathematical programming and 
geometry theorem-proving. 

Analysis of the differences between goals and assertions involves an 
even more global approach to problem-solving. It attempts to identify 
both procedures which reduce differences as well as those which increase 
them or leave them invarIant. Preference can be given to procedures 
which reduce differences over those which do not. Goals can be rejected 
as unsolvable if it can be demonstrated that no procedure reduces 
differences at all. 

The techniques of difference analysis are similar to ones used in 
program-proving. Demonstrating that programs reduce differences is 
involved in proving program termination, whereas demonstrating that 
programs leave properties invariant is used for proving program 
properties. The strategy of selecting procedures for their effectiveness 
at reducing differences is the basis, moreover, of the General Problem 
Solver developed by Newell, Shaw and simon [1963]. 

Although the methods we describe can also be applied to non-Horn 
clauses, we shall simplify matters by limiting attention to top-down 
problem-solving by Horn clauses alone. Moreover, we shall not concern 
ourselves with the heuristics which would be needed for the effective 
utilisation of these methods. 
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Deletion of redundant subgoals 

A subgoal can be deleted from a goal statement, if the assumption that 
the other subgoals have a solution implies that the redundant subgoal has 
a compatible solution as well. According to this criterion, assuming the 
transitivity of the relation, 

x < y <- x < z, z y 

the goal statement 

(- r S s, s S t, r < t 

contains the redundant subgoal r < t. For, assuming that the other 
subgoals have a solution, it follows-that the assertions 

r' < 5' (-
s' < t' (-

hold for appropriate instances ri,s' and t' of the terms r, s 
respectively. But those assertions together with the transitivity 
imply the assertion 

r' < t I (-

and t 
of .s. 

which expresses that the third subgoal is compatibly solvable also. It is 
unnecessary to solve the redundant subgoal explicitly. It suffices to 
know that any solution of the other subgoals guarantees the existence of 
a compatible solution of the third subgoal as well. 

The transitivity clause does not need to be part of the program or 
even a logical consequence of it. To justify deletion of the redundant 
subgoal, it suffices that transitivity be a property of the program. This 
is the case, for example, if the < relation is defined by the clauses 

o < Y <-
s(x) < sty) (- x i y. 

A statement is a property of a Horn clause program P, if it is consistent 
with P and together with P implies no variable-free assertions not 
already implied by P. A program property, therefore, adds no solutions to 
those which can be obtained by the program itself. 

Deleting a duplicate occurrence of a subgoal is a special case of 
deleting a redundant subgoal, since anyone occurrence of a subgoal 
implies any other Occurrence. Thus the goal statement 

(- Pr Q, P 

for example, can be replaced by 

(- P, Q. 
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Addition of surrogate subgoals 

Although it is often useful to delete redundant subgoals, it is 
sometimes beneficial to add them instead. 

The strategy of deriving additional subgoals is common in mathematical 
programming, where subgoals are regarded as constraints to be satisfied. 
A surrogate constraint, whose solution is implied by the solution of the 
orlginal constralnts. can be added and then solved before the others. 
This is useful if the surrogate constraint is easier to solve and aids 
the solution of the original constraints by determining the values of 
some of their variables. 

Consider, for example, the initial collection of two constraints 
involving the variables x and y: 

<- x+y = 2, x-y = 0 

A sequential, top-down problem-solver would generate pairs of numbers 
satisfying one of the constraints and then test whether they solve the 
other. A more intelligent problem-solver, programmed by Warren in PROLOG, 
coroutines between the two subgoals solving them simultaneously by 
successive approximation. The program, a general-purpose, Horn clause 
problem-solver, always selects a subgoal which contains fewest variables 
at the top-most level. 

The normal, mathematical problem-solving method, however, derives and 
solves a surrogate constraint instead. It assumes that the original 
constraints have a solution and concludes (by adding the two equations 
together) that the additional constraint 

<- 2*x = 2 

must also be satisfied by the same solution. The new constraint is 
redundant in the new goal statement 

<- x+y = 2, x-y = 0, 2*x = 2 

but it can be solved without any search. Moreover, once it has been 
solved, the remaining instantiated original constraints 

<- l+y = 2, l-y = 0 

caD then be solved without search as well. In fact, it suffices to solve 
just one of the remaining constraints, because the other constraint is 
now redundant. 

The strategy of surrogate subgoals is useful for 
problems. Consider, for example, the problem of finding 
which the robot is in the room and next to the box 

<- In (Rob,room.w), NexttO{Rob,box,w). 

plan-formation 
a state w in 

Assuming that the box is not in the room initially and that the robot is 
more mobile than the box, it is useful to derive the surrogate subgoal 

(- In{box,room,w) 
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from the original subgoals using the program properties 

In{x,y,w) (- In(z,y,w), Nextto(x,z,w) 
Nextto(x,z,w) (- Nextto{z,x,w). 

If the surrogate subgoal is added to the original goal statement 

(- In(Rob,room,w), Nextto(Rob,box,w), In (box,room,w) 

and is selected for solution before the others, then the 
solution (where the robot pushes the box into the room) finds 
which directly solves the remaining subgoals. 

Rejection of inconsistent goal statements 

simplest 
a state w 

An entire goal statement can be rejected as unsolvable, if the 
assumption that it can be solved leads to contradiction. 

A simple case is the one in which a goal statement is subsumed by a 
program property or an integrity constraint. The goal statement 

G (- On(A,B,w), Clear(B,w), On(B,C,w) 

for example, is subsumed by the clause 

c (- On(x,y,z), Clear(y,z) 

which expresses that nothing is clear and has something on it at the same 
time. In general, one clause Cl subsumes another C2 if all the 
conditions and conclusions of some instance of Cl are contained among the 
conditions and conclusions of C2 . The subsuming clause is more general 
than the subsumed clause and possibly has fewer conditions or fewer 
conclusions. In the example above, the instance of the subsuming clause C 
(in which x = A, Y = 8 and z = w) contains one fewer condition than the 
subsumed clause G. 

A clause can be deleted from a set of clauses if it is subsumed by 
another clause in the same set. Deletion of the subsumed clause does not 
affect the consistency (or inconsistency) of the set of clauses as a 
whole. A thorough discussion of the completeness of deleting subsumed 
clauses is contained in the book by Loveland [1978]. 

The strategy of deleting a subsumed goal statement can be regarded as 
a special case of deleting an inconsistent one. In the preceding example, 
the assumption 

On(A,B,s) (-
Clear(B,s) (-
On(8,C,s) (-

that there exists a solution w = s 
inconsistent with C. 

of the goal statement G is 

Rejection of an inconsistent goal 
than deletion of a subsumed one. It 

statement, however, is more general 
can involve an arbitrary amount of 
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deduction. The database query 

<- Teaches (John,y) 

for example, is not subsumed by any of the clauses 

Tl 
T2 
T3 

Teacher (x) <- Teaches(x,y) 
<- Teacher(x), Student(x) 
Student (John) (-

but is unsolvable because the assumption that it is solvable, namely 

Teaches (John,A) <-

say, is inconsistent with Tl-3. 
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Similar strategies for rejecting queries which are inconsistent with 
type information have been developed by McSkimin and Minker [1977] who 
augment a resolution theorem-pr over with a semantic network which stores 
and processes type information. Subsumption of unsolvable goal statements 
is also a feature of plan-formation systems developed by Dawson and 
Siklossy [1977], Hewitt [1975] and, more generally, of the logic 
programming system developed by Robinson and Sibert [1978]. 

Generalising the use of diagrams in geometry 

In order to justify the addition or deletion of a redundant subgoal, 
it is necessary that the assumptions used to derive the subgoal be 
properties of the procedures which can be used to solve it. In order to 
justify rejection of an inconsistent goal statement, however, a weaker 
condition suffices: The assumptions A used to derive inconsistency need 
only be consistent with the procedures P. 

For, suppose that 

(il 
(ii) 
(iii) 
(iv) 

P is consistent with A, 
G* expresses that the goal statement G is solvable, 
G* is inconsistent with P and A, but 
P solves G. 

Then, since P solves G, P implies G* and therefore P together with A 
implies G*. But then, since P is consistent with A, G* is consistent with 
P and A , contradicting (iii). It follows that 

if P is consistent with A, but 
G* is inconsistent with P and A, then 
P does not solve G. 

The use of diagrams to reject un solvable subgoals in Gelernter's 
Geometry Theorem Proving Machine [1963] can be regarded as a case of 
using assumptions which are consistent with the problem-solving 
procedures to reject inconsistent goal statements. The axioms of 
geometry function as procedures and the description of the diagram 
functions as the additional assumptions. The use of a diagram is 
justified, provided its description is consistent with the general axioms 
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of geometry and with the particular hypotheses of the theorem to be 
proved. Gelernter estimated that the use of diagrams reduced the size of 
search spaces on the average to 1/200 their original size. The argument 
above shows that the use of examples to recognise the unso!vability of 
problems need not be restricted to geometry. Examples can be used to 
recognise and reject unsolvable subgoals in any problem-domain. 

Goals as generalised solutions 

It is sometimes useful not to solve subgoals explicitly but to regard 
them instead as standing for the general class of all their solutions. 

ConSider, for example, an initial goal statement 

<- G(x) 

which eventually reduces to the subgoal 

(- x > 0. 

Instead of generating an arbitrary positive number x as an explicit 
solution, it is more informative to report that positive number is a 
solution. This can be effected by regarding the subgoal x > 0 as a 
generalised solution which stands for the class of all its individual 
solutions. 

Solving subgoals by generalised solutions is a feature of Bledsoe's 
approach to theorem-proving [1971, 19771. To be effective, it needs to 
be combined with goal transformation. Given a goal statement 

(- x > 0, x > 1, G(x) 

for example, deletion of the redundant subgoa1 is necessary to transform 
the goal statement to the new one: 

(- x > 1, G (x) 

Given 
(- x ( 0, x > 1, G(x) 

on the other hand, rejection of inconsistent subgoals is necessary to 
recognise that the goal statement is unsolvable. 

Treating certain kinds of goals as generalised solutions is also 
useful for database queries, and is a feature both of Darlington's [1969] 
resolution information retrieval system and of McSkimin and Minker's 
[1977] semantic network theorem-prover. Given the query 

Who teaches programming? 
(- Teaches (x,programming) 

and the general rule 

All professors teach programming. 
Teaches (x,programming) (- Professor (x) 
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it is better to regard the resulting subgoal as a generalised solution 

(- Professor (x) 

than it is to report one or more of the answers which qualify as 
solutions as a result of the assertions 

Professor (Mary) 
Professor (John) (-
Professor (Bob) (- . 

Goal transformation and the information explosion 

It is a characteristic of human problem-solving that the assimilation 
of additional information generally improves problem-solving efficiency. 
This contrasts with the simple model of problem-solving in which all 
knowledge is used as problem-solving procedures. Additional information 
only increases the size of the search space and makes problems harder to 
solve (except in those cases where only one solution is required and the 
non-determinisml doesn't matter). In the goal transformation model, 
however, additional information can be used to transform goal statements 
and to reduce the size of the search space. 

Loop detection EY analysis of differences 

Like goal transformation, analysis of differences adds to the 
possib1ities of recognising that a procedure goes into a loop. 

Consider, for example, the procedure 

Numb(x) (- Numb(s(x» 

given the goal 

(- Numb(s(s(0») 

and the assertion 

Numb(0) (- . 

Repeated top-down execution of the procedure gives rise to the non-
terminating, infinite sequence of subgoals: 

f 
(- Numb{s{s(0») 

(- Numb{s{s{s(0»») 

In this case the connection graph proof procedure avoids the loop, 
because the procedure call Numb(s{x» has only a pseudo-link to the head 
of the procedure. It follows that the procedure is unusable and can be 
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deleted from the graph. If the assertion Numb(0) (- is replaced by the 
assertion 

Numb(s(0» <-

however, application of the procedure gives rise to the same infinite 
loop, but the procedure can no longer be deleted, because its procedure 
call has an additional non-pseuDo-link to the new assertion. The loop can 
be avoided in all these cases, though, if it can be recognised that 
application of the procedure cannot reduce the difference between the 
goal and the assertion. The goal differs from the assertion in that it 
contains a greater number of occurrences of the function symbol s. 
Application of the procedure only increases the difference by generating 
subgoals which contain even more occurrences of s. 

The global nature of difference analysis becomes apparent if the 
assertion is replaced by the new assertion 

Numb(s(s(s(s(0»» (- . 

Now, application of the procedure reduces the difference between the goal 
and the assertion and eventually solves the problem. 

(- Numb(s(s(0») 

(- Numb(s(s(s(0»» 

(- Numb(s(s(s(s(0»») 

o 

A procedure might be needed for a solution even if it increases the 
difference between the goal and the assertions. Given, for example, the 
goal 

(- Numb(s(s(s(0»» 

and the assertion 

Numb(0) (-

the procedure 

Numb(s(s(x») (- Numb(x) 

decreases the difference, whereas the procedure 

Numb(x) (- Numb(s(x» 

increases it. But both procedures are necessary to solve the problem. 
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(- Numb(s(s(s(B»» 

(- Numb(s(0» 

(- Numb(s(s(B») 

(- Numb(0) 

o 
In the preceding examples the application of a procedure which 

increases differences either generates a loop or else is essential for a 
solution. More often, increasing differences neither contributes to a 
solution nOr prevents its being found. Such is the case with the pair of 
procedures 

Numb(s(x» <- Numb(x) 
Numb(x) <- Numb(s(x». 

If one of them unnecessarily increases differences, the other can be used 
to restore them to their previous state. Indeed using one procedure after 
the other simply generates the kind of loop which can be avoided in the 
connection graph proof procedure by deleting links whose resolvents are 
tautologies. 

In all of these examples, 
assertions can be measured simply 
function symbol s. In other cases 
more complicated. 

the 
by 

the 

difference between subgoals and 
the number of occurrences of the 
characterisation of differences is 

The factorial example 

The definition of factorial is a more realistic example. 
clausal sentence 

Times(s{x) ,u,v) -) [Fact(x,u) <-) Fact(s(x) ,v)] 

gives rise to two Horn clause procedures: 

(1) 
(2) 

Fact(s(x) ,v) (- Fact(x,u), Times{s{x) ,u,v) 
Fact(x,u) (- Fact{s(x) ,v), Times{s{x) ,u,v) 

Given the assertion 

Fact(0,s(0» (-

The non-

there is no goal for which the second procedure is necessary. However, 
given the assertion 

Fact(10,3628800) (-

instead, the second procedure is necessary for solving the problem 

(- Fact(s(0) ,x) 
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and the first procedure is unnecessary. Here the natural number n is 
used as an abbreviation for the term 

s (s (s ( ••• (") ••• ))) 

n tlmes 

containing n occurrences of the function symbol s. 

More generally, it may be useful to have several assertions, e.g. 

Fact(0,l) <-
Fact(10,3628800) 

and, using analysis of differences, to apply 
quickly narrows the gap between the problem 
(I), for example, for the problem 

<- Fact(3,x) 

and using (2) for 

<- Fact{8,x). 

the procedure which most 
and the assertions, using 

Notice that the last example is a case of "don't care" non-
determinisml" There are several ways of finding the factorial, all of 
which lead to the same result. It doesn't matter which method is chosen. 
But, if backtracking is used, then it does matter (for the sake of 
efficiency) that only one method is tried. 

Invariant properties of procedures 

The unsolvability of a problem can be detected not only by analysing 
the effect of procedures on differences but also by analysing the 
properties which procedures leave invariant. A problem can be recognised 
as unsolvable if it can be shown that it differs from the assertions in a 
property which is not affected by the procedures. A typical property of 
this kind is parity. 

Suppose we are given the clauses 

Even (8) <-
Even(s(s(x)}} <- Even{x) 
Even(x) <- Even(s(s(x))} 
<- Even(17) 

By analysis of differences, the second procedure can be rejected as 
useless. Used alone it only increases differences. Used together with 
the other procedure it only generates loops. By analysis of invariants 
the first procedure can also be rejected. It reduces a problem of a given 
parity to a subproblem of the same parity. No matter hQWfmany times the 
procedure is used it cannot change the parity of the or1g1nal problem. 
Since the original problem has an odd number of occurrences of "s" and 
the assertion has an even number, the procedure cannot be used to solve 
the problem. Here parity can be determined by counting occurrences of the 
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function symbol "s". In more realistic cases the invariant property is 
more complex. 

Such the case in the following example, where the invariant 
property is another form of parity. Given a sequence of six arrows (or 
coins) each of which can face up or down, the problem is to transform 
them from one state to another - for example, from 

is 

U U U D D D to U U D D U U 

There is only one action available: it is possible simultaneously to 
change the direction of two adjacent arrows. 

A simple n-tuple representation in which 

expresses that 

the first arrow can have direction d1 , 
the second arrow can have direction d2' 
and in general 
the i-th arrow can have direction di 

simultaneously, is the following. 

State(U,U,U,D,D,D) (-

(- State(U,U,D,D,U,U) 

State(x,y,z,u,v,w) (- State(x' ,y' ,z,u,v,w), Opp(x,x'), Opp(y,y') 

State(x,y,z,u,v,w) (- State(x,y' ,z' ,u,v,w), Opp(y,y') , OPP(z,z') 

State(x,y,z,u,v,w) <- State(x,y,z' ,u' ,v,w), Opp(z,z') , Dpp (u,u') 

State(x,y,z,u,v,w) (- State(x,y,z,u' ,v' ,w), Opp(u,u') , Opp(v,v') 

State(x,y,z,u,v,w) (- State(x,y,z,u,v' ,w'), Opp(v,v') , Opp(w,w') 

Opp(U,D) (-

Opp(D,U) (-

The problem is unsolvable, because, whereas the procedures leave 
invariant the parity of the number of arrows in either direction, in the 
assertion there is an odd number of arrows in both directions and in the 
goal there is an even number. To show that the procedures leave parity 
invariant it is necessary to consider the two cases: Either the two 
inverted arrows have the same direction before inversion or they have 
different directions. If they have the same direction, then inversion 
increases the number of arrows in one direction by two and decreases the 
number in the other by two, but leaves the parity the same. If they have 
different directions, then inversion leaves the number of arrows in both 
directions unchanged and therefore does not affect the parity. In both 
cases parity is an invariant property of the procedures. 
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The mutilated checker board problem is similar. Given a checker-board 
with two opposite corners removed, 

the problem is to cover it with dominoes, each one of which covers two 
adjacent squares. Since adjacent squares have different colours, the 
procedures leave invariant the difference between the number of uncovered 
squares of different colours. The problem is unsolvable, therefore, 
because in the goal state the difference is zero, but in the initial 
state it is two. 

There is an obvious relationship between proving that logic procedures 
leave a property invariant and proving a property of a flowchart program 
using invariants. In both cases the objective is to show that if a 
property holds at the beginning of a repetitive process then it holds at 
the end. This is done by showing that if it holds at the beginning of one 
step of the process then it holds at the end of the step. The desired 
result then holds by induction. 

Exercises 

1) Suppose y is a function of x in the relation F(x,y), i.e. 

y = z <- F(x,y), F(x,z) 

where the only clause defining equality is 

x = X (- • 

Show how goal transformation can be used to eliminate redundancy when a 
goal statement contains a pair of subgoals of the form 

F(r,s) and F(r,t) 

where r, sand t are terms. 

2) Show that "goal transformation" can be used to justify transforming 
the clause 

Tower(t(x,y» (- Block(x), Tower(y), On(x,y) 
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into the clause 

Tower(t(x,y» (- Tower(y), On(x,y). 

What property of the On relation is needed for the transformation? 

3) In Chapter 6, the precondition Diff(x,z) can be eliminated from 
the definition of the action trans(x,y,z) and its use can be replaced by 
that of the integrity constraint 

(- Holds(on(x,x), w) 

instead. Compare the problem-solving behaviour needed for these two 
alternative formulations of the plan-formation task. 

SI 

4) Analyse the English sentence 

Reject stealing as a way of having something if you also 
want to be virtuous. 

as a recommendation concerning the use of the procedure 

Have(u,x) (- Steal(u,x) 

applied to goal statements containing two subgoals of the form 

Have(r,s) and Virtuous(r). 

Can the notions of goal transformation be used to establish a logical 
relationship between the sentences SI, S2 and s3? 

82 
83 

Do not steal if you want to be virtuous. 
Anyone who steals is not virtuous. 

5) Discuss the formalisation of the following problems and the 
problem-solving strategies needed to solve them intelligently. 

a) Find an assignment of digits 1,2,3, ••• ,9 to the cells of a 
3 by 3 matrix such that: 

row 1 

row 2 

row 3 

(i) Exactly one digit is assigned to each cell. 

(ii) No digit is assigned to more than one cell. 

(ii) The three digit number in row 3 is the sum of the three 
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digit numbers in rows 1 and 2. 

(iv) If the digit i is assigned to a cell then the digit i+l is 
assigned to a cell which is horizontally or vertically 
adjacent. 

b) Find an assignment of digits 1,2,3, ••• ,9 to letters in the 
names such that: 

DONALD 
+GERALD 

ROBERT 

(i) Exactly one digit is assigned to each letter. 

(ii) No digit is assigned to more than one letter. 

(iii)The 6 digit number assigned to 
sum of the 6 digit numbers 
"GERALD". 

(iv) 5 is assigned to "0". 

the word "ROBERT" is the 
assigned to "DONALD" and 
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CHAPTER 10 

Comparison of Clausal Form with Standard Form 

Clausal form is simpler than the standard form of logic and bears 
greater resemblance to other formalisrns used for databases and 
programming. Moreover, the resolution rule resembles conventional rules 
for information processing and problem-solving more closely than does 
standard form. 

Although any problem can be converted from standard form to clausal 
form, the standard form is often more economical and more natural than 
the resulting collection of clauses. The specification of programs, in 
particular, is an area in which the standard form of logic (or some 
appropriate extension of Horn clause form) is more suitable than simple 
clausal form. Moreover, the derivation of programs from specifications 
can be achieved more naturally by reasoning with the standard form of 
logic directly. Useful inference systems for the standard form of logic, 
however, may be obtained by combining inference rules for clausal form 
with rules for converting from standard form to clausal form. 

Introduction to the standard form of logic 

We shall present only the informal semantics of the standard form of 
logic, by associating expressions of English with expressions of the 
symbolic language. Such notions as "consistency" for expressions in 
standard form can be understood informally in terms of their English 
language counterparts. 

The standard form of logic provides explicit symbolism for the 
propositional connectives "and", "or", "not", "if" and "if and only if" 
and for the quantiflers "for all" and "there exists". The propositional 
connectives construct more complex propositions from simpler ones. 'I'he 
symbol 

& stands for "and" 
V stands for "or" 

stands for "not" 
-) stands for "if .•. then ... " or "implies" 
<-) stands for "if and only if". 

A clause 

not containing variables, is written 
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in standard form. If n=0, the standard form omits the arrow 

If m=0, the arrow becomes a negation symbol. 

In standard form the direction of the implication sign -) is opposite to 
the one we have been using in clausal form. But like the inequality sign 

( or ) of arithmetic the direction of the implication sign is not 
significant. Thus the expressions 

A -) Band B (- A 

are equivalent. But notice that 

A -) B and A (- B 

are not. 

Sentences in standard form can also be constructed by means of the two 
quantifiers. 

The universal quantifier 

Yx stands for "for all x". 

The existential quantifier 

3x stands for "there exists an xtl. 

Example Some oysters can be crossed in love. 

Clausal Form (-
(-

Standard form 3x [Oyster (x) & Crossed-in-Love(x)] 

In the clausal formulation, in order to refer to an 
necessary to give it a name. The existential 
individuals to be referred to without being named. 

individual, it is 
quantifier allows 

In clausal form 
sentences are implicitly connected by "and". In standard form the 
conjunction & can be written explicitly. 

Example Every human has a mother. 

Standard Form \lx3y [Human (x) -) Mother (y,x) 1 

Clausal Form Mother (mum(x) ,x) <- Human (x) 
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In the clausal form it is necessary to use a function symbol to name the 
individual y which exists as a function of x. 

Changing the order of the quantifiers changes the meaning. The 
sentence 

30ix[Human(x) -) Mother(y,x)] 

states there is a single individual who is the mother of us all. The 
clausal form uses a constant symbol to name the individual. 

<- Human(x) 

For the precise definition of sentence, it is necessary to define the 
more general notion of formula. Formulae may contain free (unquantified) 
variables, whereas sentences do not. Thus the formula 

\ix3yLoves(x,y) 

is a sentence, but the formula 

\ixLoves(x,y) 

is not. It contains the bound (quantified) variable x and the free 
variable y. 

Terms and atomic formulae are defined just as for clausal form. 

An expression Z is a formula if and only if it is an atomic formula 
or an expression of the form 

IX & Y] 
IX V Y] 
IX -) Y] or IY (- X] 
[X (-) Y] 

X 
\Iv X or 
3v X 

where X and Y are formulae and v is any variable. 

Any formula Z is a subformula of itself. In the first 
above, any subformula of X or Y is a subformula of Z; and 
three cases, any subformula of X is a subformula of Z. 

four cases 
in the last 

An occurrence of a variable v in a formula Z is free (or unbound) if 
it belongs to no subformula of Z of the form \Iv X or 3v X. If an 
occurrence of v is free in X then it is bound in '7v X and 3v X by the 
quantifiers \Iv or 3v respectively. 

A formula is a sentence if and only if it contains no free occurrence 
of a variable. 

The definitions above permit sentences such as 
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3x [Oyster(x) & 3x Tasty(x)) 

in which the same variable x is bound by different 
quantifier. Such sentences create complications 
avoided. Consequently we shall restrict formulae 
satisfy the condition that 

occurrences of a 
which are better 
z to those which 

for every variable v which occurs in Z, either all 
occurrences of v in Z are free in Z or all occurrences of 
v in Z are bound by the same quantifier occurrence. 

Any formula Z which violates the restriction can be transformed into an 
equivalent one which satisfies it by renaming variables. This can be 
done by applying the equiva1ences 

Yu X <-) \Iv X I 

3u X (-> 3v X' 
where X' is obtained from 
occurrences of u by v and v 

X by replacing all 
does not occur in X. 

to subformulae of Z. Any subformula can be replaced by an equivalent one 
without affecting the meaning of the formula in which it occurs. 

Notice also that the definitions permit quantification Yv X or :3v X of 
a variable v which does not occur in the formula X. Such quantification 
is vacuous in the sense that the resulting formula is equivalent to the 
unquantified formula X. Deletion of vacuous quantifiers is justified by 
the equivalences: 

r-----------------------, 
\Iv X (-> X 
3v X <-) X 
where the variable v does not occur in X. 

Several conventions can be employed to improve the readability of 
formulae by reducing the number of brackets. Outermost brackets can 
always be omitted, writing A -) B, for example, rather than [A -) B1. 

The associativity of conjunction justifies omitting brackets when 
several formulae are conjoined together. Since the formulae 

A & [B & Cl and 
[A & 81 & C 

are equivalent, it is permissible to ignore brackets altogether, writing 

A & B & C. 

Similarly, the associativity of disjunction justifies writing 

instead of 
A V B V C 
A V [B V C[ 
[A V Bl V C. 

or 

Brackets can be 
the quantifiers and 
conventions that 

reduced further by establishing 
the propositional connectives. 

precedence rules for 
We shall follow the 
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The negation symbol I and the quantifiers 3, \1 bind more 
closely than the other symbols and conjunction & and 
disiunction V bind more closely than implication -> and 
eguivalence <->. 
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Thus we may safely write 

A V B V C <- D & E & F 

instead of [[A V [B Veil (- [[0 & El & F 11 

for example. 

Readability can be improved further by omitting universal quantifiers 
at the beginning of sentences, writing, for example, 

Grandparent{x,y) <- Parent(x,z) & Parent(z,y) 

instead of [Grandparent (x,y) <- Parent (x,z) & Parent (z,y)] 

as in clausal form. Such omission of universal quantifiers can be 
performed safely only when the context makes it clear that the expression 
is a sentence rather than a formula containing occurrences of free 
variables. 

Conversion to clausal form - --
Any sentence in standard form can be converted to clausal form. The 

resulting set of clauses is consistent if and only if the sentence in 
standard form is consistent. Thus conversion to clausal form can be used 
to demonstrate the inconsistency of a set of sentences in standard form: 

A set of sentences in standard form is inconsistent 
if and only if the corresponding set of clauses 
is inconsistent. 

The rules for converting to clausal form can be expressed more simply, 
to begin with, if implications and equivalences are reexpressed in terms 
of negation, conjunction and disjunction by using the equivalences: 

[X -) Y] <->"X V Y 
[X <-) YJ <-) [X -) Y] & [Y -) X] i.e. 
[X <-> Y] <-) V Y] & V Xl 
where X and Y are any formulae. 

Once implications and equivalences have been rewritten, the rest of the 
conversion consists of 

(1) moving negations inside the sentence past 
conjunctions, disjunctions and quantifiers, until they 
stand only in front of atomic formulae, 
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(2) moving disjunctions inside the 
conjunctions and quantifiers, until 
atoms or negated atoms, 

sentence past 
they connect only 

(3) eliminating existential quantifiers and 

(4) reexpressing disjunctions 

of atoms and their negations as clauses 

AI,···,Am (- BI,···,Bn • 

Negations can be moved in front of atoms by repeatedly applying the 
following equivalences: 

Yj (-> ,x V 'Y 
YJ (-) 'X & ,y 

(-) \Iv 'X 
(-) 3v 'X 
(-) X 

where X and Y are any formulae 
and v is any variable. 

Disjunctions can be moved inside a sentence until they connect only 
atoms and their negations by using the equivalences: 

x V IY & ZI 
X V 3v Y 

(-> IX V Y I & IX V Z I 
(-> 3v (X V YI 

X V Yv Y 
where the 

(-> Yv IX V YI 
variable v does not occur in x. 

The commutativity of disjunction 

x V y (-) y V X 

is needed to justify the similar equivalences 

(Y & ZI V X (-> (Y V XI & (Z V XI 
3v Y V X (-> 3v (Y V XI 
\:Iv Y V X <-) \:IV [y v xl 
where v does not occur in X. 

The preceding equivalences are sufficient to transform any sentence 
without quantifiers in standard form into an equivalent one in clausal 
form. The elimination of an existential quantifier, however, produces a 
sentence which is not equivalent. It introduces a constant or function 
symbol in order to name an individual which is referred to only 
implicitly in the original sentence. The new sentence implies, but is 
not implied by, the original sentence. Nevertheless, the elimination of 
the existential quantifier does not affect the consistency of the set of 
sentences as a whole. 

Given a conjunction (or set) 
existential quantifiers from S 
sentences of the form 

of sentences S, in order to eliminate 
it is necessary to eliminate them from 
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belonging to S. Such a sentence can be replaced by the new sentence 

Vv1'<1v2 .•• Vvn X' 
where Xl is obtained from X replacing 
all free occurrences of u in X by the term 
f(vl""'vn) where f is a function symbol 
which does not occur in S. 
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If n=0 the term f(vl' •.. 'vQ) reduces to a constant symbol. Note that the 
replacement is not an equlvalence and it only applies to sentences, not 
to formulae. The new conjunction (or set of sentences) is consistent (or 
inconsistent) if and only if S is. 

In order to transform sentences belonging to S into the correct form, 
it is useful to move universal quantifiers inside conjunctions. 

'<Iv [X • Yl (-> Vv X • Vv Y 

Repeated application of the preceding 
conjunction (or set) of sentences in standard 
set) of sentences, each of which has a form 

rules will convert any 
form into a conjunction (or 

which is equivalent to a clause 

Al,···,Am (- 8l,···,8n • 

The preceding rules express the logic of a family of algorithms for 
converting from standard form to clausal form. All non-determinisml is 
of the don't care variety. An efficient algorithm is obtained by always 
applying the rules to an outermost propositional connective or 
quantifier, replacing the formula on the left hand side of an equivalence 
by the formula on the right hand side. Moreover, it is more convenient 
in practice to leave the implication sign intact and to apply derived 
equivalences. The following derived equivalences (see exercise 2) are 
the most useful. 

[X -) Y & Z] 
[X V Y -> Zl 
[X & .,y -) Z] 
[X-),YVZj 
[X -> [Y -> Z l l 
[[x->Yl->Zl 
X -) Vv Y 
X -) 3v y 
Vv Y -) X 
3v y -) X 

(-) [X -) Y] & [X -) Z] 
(-> [X -> Zl • [Y -> Zl 
(-) [X -) Y V Z l 
(-) [X & Y -) Z] 
(-) [X & Y -> Z l 
(-> [X V zl • [y -> Zl 
(-> Vv [X -) Yl 
(-) 3v [X -) YJ 
(-) 3v [Y -> Xl 
(-> Vv [Y -> Xl 

where v does not occur in X. 

In addition, generalisations of the equivalences: 

[0 • [X V Yl -> Zl (-> [0 • X -> Zl & [0 • Y -> Zl 
[0 • [X -> Yl -> Zl (-) [0 -) X V Zl • [0 • Y -> Zl 
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for example, are often useful as well. In order to apply them may 
require application of the commutativity of conjunction: 

X & y (-) y & X 

Comparison of clausal form with standard form 

Clausal form is a restricted subset of standard form. It has the 
advantage that simple, efficient, and reasonably natural resolution 
theorem provers have been developed for it. Standard form, however, 
allows more liberal means of expression. Some kinds of sentences can be 
expressed more economically and others more naturally than in clausal 
form. The analysis in the next few sections, of the cases in which 
standard form provides greater expressive power than clausal form, 
suggests that what is needed is not full unrestricted standard form but a 
limited extension of clausal form. In most cases it suffices to allow 
non-atomic formulae as conditions and conclusions of implications. 

Al,···,Am (- 8 1 ,···,8n 

It is useful, in particular, to allow conclusions Ai which are 
conjunctions of atoms and conditions Bj which are implications. In 
addition it is useful to employ equivalences (-) for definitions instead 
of writing the two halves separately. 

The ideal system of logic would combine the advantages of clausal form 
with those of standard form. In order to do so, it would need both to 
reduce to resolution for sentences already in clausal form and to 
resemble the natural deduction systems of Bledsoe [1971], Brown [1977], 
Bibel and Schreiber (1975), and Nevins [1974]. Such a system might 
result from combining the resolution rule with the rules which convert 
sentences from standard form to clausal form. 

The satisfactory solution of the problem of deriving Horn clause 
programs from program specifications in standard form requires such a 
proof procedure. The problem has been investigated by Bibe1 [19/6a, 
1976b, 1978], Clark and Sickel [1977], and Bagger [1978a, 1978b, 1979]. 
Their derivation rules resemble both the rules for converting to clausal 
form as well as the resolution rule which behaves as procedure 
invocation. Proof procedures for the standard form of logic, which have 
some of the necessary properties, have been developed by Murray [19781 
and by Manna and Wa1dinger [1978]. 

In the following sections we investigate a number of examples which 
illustrate the limitations of clausal form and the inadequacy of dealing 
with standard form simply by converting to clausal form and applying 
resolution. At the end of the chapter we shall consider the problem of 
deriving Horn clause programs from non-clausal specifications. 

Conjunctive conclusions and disjunctive conditions 

Standard 
conditions 

form is more economical 
imply several conclusions 

than clausal form when the same 
or when the same conclusion is 
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implied by alternative conditions. 

Example Everyone makes mistakes. 

Standard form Yx3y [Human(x) -) Does(x,y) & Mistake(y)] 

Conversion 

Clausal form 

(a) Human{x) Does(x, m(x» & Mistake(m(x» 

(b) 'Human(x) V [Does(x, m(x» & Mistake(m(x»] 

(c) [,Human(x) V Does(x, m(x»] & 
[,Human (xl V Mistake (m (x»] 

(d) Does(x, m(x» (- Human (x) 
Mistake (m (x» (x) 
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In the clausal form, the same condition Human(x) needs to be repeated for 
each separate conclusion. Notice that using the derived conversion rules 
for implication, the conversion from (a) to (d) can be done in one step. 

Example One person is an ancestor of another if he is a parent of 
the other or he is an ancestor of an ancestor of the 
other. 

Standard Form Anc{x,y) (- Par(x,y) V 3z [Anc(x,z) & Anc(z,y)] 

Conversion (a) Anc(x,y) V '[Par(x,y) V 3z [Anc(x,z) & Anc(z,y)]] 

(b) Anc(x,y) V [-'Par(x,y) & '3z [Anc(x,z) & Anc(z,y)]] 

(c) [Anc (x,y) V "'1par (x,y) 1 & 
[Anc(x,y) v'3z [Anc(x,z) & Anc(z,y)]l 

(d) [Anc (x,y) V 'Par (x,y) 1 & 
[Anc(x,y) V Yz ['Anc(x,Z) V'Anc(z,y)]] 

(e) [Anc(x,y) V "'1Par(x,y)] & 
\:Iz [Anc(x,y) V 'Anc(x,z) V'Anc{z,y)] 

Clausal form (f) Anc(x,y) (- Par(x,y) 
AnC(x,y) Anc(z,y) 

In the clausal form, the same conclusion needs to be repeated for each 
alternative condition. The conversion from standard form is simplified 
if the derived eguvalences are used: 

(a') [Anc(x,y) (- Par{x,y)] & 
[Anc{x,y) (- 3z [Anc(x,z) & Anc(z,y)]] 

(b') [Anc(x,y) (- Par(x,y)] & 
Yz [Anc(x,y) & Anc(z,y)] 

(c') Anc(x,y) 
Anc(x,y) (- Anc(x,z), Anc(z,y) 

For the sake of simplicity we shall use the derived equivalences in the 
rest of the chapter. 
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Disjunctive conclusions 

Standard form is both more economical and more intelligible when the 
alternatives in a conclusion are conjunctions. 

Example The earth is round and finite or flat and infinite. 

Standard form [Round (El & Finite(El] V [Flat (E) & Infinite (El] 

Conversion (a) [[Round(E) & Finite (E)] V Flat lE)] & 
[[Round (E) & Finite(E)] V Infinite (E)] 

(b) [Round (E) V Flat (E)] & 
(Finite(E) V Flat (E)] & 
[Round (E) V Infinite (E) J & 
[Finite(E) V Infinite(E)] 

Clausal form Round (El, Flat (E) (-

Finite(E) , Flat(El (-

Round (El, Infinite(E) (-

Finite(E), Infinite(E) (-

We shall argue in the next chapter that Horn clauses often express 
only the if-half of an if-and-only-if definition. The full if-and-only-
if definition can be expressed compactly in the standard form by using 
the sign of equivalence (->. In the clausal form, the if-half and the 
only-if half need to be expressed separately. The only-if half generally 
expresses alternative conclusions and can be both uneconomical and 
unnatural. 

Example The only-if half of the if-and-only-if definition of 
ancestor. 

Standard form Anc(x,y) -) Par(x,y) V 3z[Anc(x,z) & Anc(z,yl] 

Conversion (a) 3z [Anc(x,y) -) Par (x,y) V [Anc(x,z) & Anc(z,y) 1] 

Clausal form 

(b) Anc(x,y) -) Par(x,y) V 
[Anelx, flx,y)) & Ane(f(x,y), y)] 

(c) Anc{x,y) -) [par{x,y) V Anc(x, f(x,y»] & 
[Par (x,y) V Anc (f (x,y), y)] 

Par(x,y), Anc(x, f(x,y» (- Anc(x,y) 
Par(x,y), Anc(f(x,y), y) (- Anc(x,y) 

Implications as conditions of implications 

It is common for sentences of natural language to have conditions 
which are themselves implications rather than simple atoms. Such 
sentences can be expressed directly and naturally in standard form, but 
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may be difficult to understand in clausal form. 

Example is true if y is true whenever x is true. 

Standard form <- [True(y) <- True(x)] 

Clausal form True(x) <-
<- True(y) 

Example Bob is happy if all his students like logic. 

Standard form Happy (Bob) <- \:Ix [Studentof(Bob,x) -) Likes(x,logic) 1 

Conversion (a) 3x [Happy (Bob) <- [Studentof(Bob,x) -) 

Clausal form 

Example 

Standard form 

Clausal form 

Standard form 

Clausal form 

Likes (x,logic) 1 

(b) Happy (Bob) <- -) 

Happy(Bob), <-
Happy (Bob) <-

A supplier is preferred if all the parts he supplies 
arrive on time. 

Preferred (x) <- Supplier (x) & 
\ro [Supplies(x,u) -) Arriveontime(u») 

Preferred (x) <- Supplier (x) , Arriveontime(p(x» 
Preferred (x) , Supplies(x, p(x» <- Supplier (x) 

A set is well-ordered if and only if every non-empty 
subset has a least element. A set is non-empty if and 
only if it has at least one element. An element of a set 
1S a least element if and only if it is less than or equal 
to every element of the set. 

Wellordered (x) <-) Vz [Hasleastelmt(z) <- & 
Nonempty (z) 1 

Nonempty(z) (-) 3u u€z 

Hasleastelmt (z) (-) 3u (u€z & \:Iv [vE;z -) u.svll 

Wellordered (x), arb (x) £; x <-
Wellordered(x), Nonempty(arb(x» <-
Wellordered(x) (- Hasleastelmt(arb{x» 
Hasleastelmt(z) <- Wellordered(x), 2&x, Nonempty(z) 
Nonempty(z) & <- u&z 
select (z) E z <- Nonempty (z) 
Hasleastelmt (z), el (z,u) E z (- u&z 
Hasleastelmt(z) (- u < el(z,u), u€z 
smallest (z) e z (- Hasleastelmt (z) 
smallest(z) < u (- Hasleastelmt(z), u&z 
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Derivation of programs from specifications 

Programs can be expressed more naturally in logic if implications are 
allowed as conditions. The definition of subset is a simple example: 

<- \/z [2€x -> z£y] 

The condition that "every element of x is an element of y" is neutral 
a00ut the manner in which the elements of x are investigated and shown to 
be elements of y. In particular, it is consistent with the possibility 
that all elements of x are investigated simultaneously, in parallel. 
Such high-level specification is not possible in normal programming 
languages. It is not even possible with Horn clauses. 

Suppose that sets are represented by finite lists. Then the notions 
of both membership and subset can be defined recursively by means of Horn 
clauses: 

z € z.v (-
z € u.v <- z£v 
nil Y (-

Y <- u£y, VSOY 

The Horn clause program is less natural and closer to the level of the 
computer than the specification in standard form. It expresses details 
which are left to the initiative of the theorem pr over in the standard 
form specification. It works, moreover, only for finite sets represented 
by means of lists. The standard form specification, on the other hand, 
works for both finite and infinite lists. Exercise (6b) demonstrates 
this for the notion of ordered list. 

The use of logic is more widely accepted as a specification language 
than it is as a programming language. Methods for verifying conventional 
programs relative to logic specifications are complicated therefore by 
the need to relate two different languages. The methods of Floyd [1967], 
Manna [1969], Hoare [1969] and Dijkstra [1976] express specifications in 
logic and relate them to programs by defining the semantics of programs 
in logic. 

Verification af programs is significantly easier when programs and 
specifications are expressed in the same language. This is confirmed by 
the results of Boyer and Maare [19751 who use LISP for both programs and 
specifications, Manna and Waldinger (1977], who use LISP for programs and 
LISP augmented with universally quantified implications for 
specifications, and Burstall and Darlington [19771, who use recursion 
equations for both programs and specifications. More recently, using the 
procedural interpretation of Horn clauses, deduction strategies for 
deriving logic programs from logic specifications have been developed by 
Clark and Tarnlund [1977], Bibel [1976a, 1976b, 19781, Clark and Sickel 
[1977], Bogger [1978a, 1978b, 1979] and Clark and Darlington [1978]. In 
addition, Manna and Waldinger [19781 have developed an extension of 
resolution for deriving LISP programs from logic specifications. 

The derivation of logic programs from logic specifications has the 
special characteristic that deduction is used both to run programs and to 
derive programs from specifications. Programs can be regarded as 
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computationally useful logical consequences of the specifications. 

We shall illustrate the general method by deriving the Horn clause 
program for subset from the standard form specification The inference 
steps can be thought of as combining resolution with conversion to 
clausal form. We start with the if-and-only-if specifications of the 
subset and membership relations. 

81 
82 
83 

:lq;Y (-) \/z [ze;x -) zty] 
\/z -'[Z6nil] - (Le. (- Z£nil) 
z E u.v (-) z=u V zEv 

The basis of the recursive Horn clause program 

Y (-

can be obtained directly by resolving the clausal form of 52 with the 
first of the two clauses 

arb(x,yl €. x (-
(- arb(x,y) £ y 

obtained by converting 51 into clausal form. 

The recursive clause of the program 
reasoning with the specifications in 
underlined atoms in 51 and 53 we obtain 

can be derived 
standard form. 

more naturally by 
By matching the 

84 u.v S; y (- \/z [[z=u V ze;v] -) zty]. 

It suffices, in this case, to use only the if-half 
subset. We can think of 54 as obtained by letting 
then using the equivalence 53 to replace z e: u.v by 
begin to convert 54 to clausal form. 

85 u.v y (- \/z [z=u -) zEy] & 
\/z [z€V -) zty] 

of the definition of 
x be u.v in 51 and 

z=u V z£v. Next, we 

Any further conversion would result in non-Horn clauses. Fortunately the 
two non-atomic conditions in SS can be replaced by equivalent atomic 
ones. 

86 
87 

Vz [z=u -) z£y] (-) uEy 
\/z [ze;v -) ze;y] (-) vfiiY 

Applying the two equivalences to SS we obtain the rest of the program 

u.v5i Y (- U€y, vs;-y 

It remains to demonstrate the equivalences 56 and 57. The second one 
57 is easy; it is an instance of 51. The first equivalence is a special 
case of a more general equivalence 

\/z [z=u -) X] 
where X' is 
replacing all 

(-) X' 
obtained from X by 

occurrences of z by u. 



206 Chapter 10: Comparison of Clausal Form with Standard Form 

which is useful in general. 

The derivation of the subset program illustrates the use of inference 
rules which apply directly to the standard form and which resemble both 
resolution and the rules for converting from standard to clausal form. 

Exercises 

1) Express the following sentences in standard form and transform them 
into clausal form. 

a) A number is the maximum of a set of numbers if it belongs 
to the set and is ) all numbers which belong to the set. 
(Hint: Define an-auxiliary relationship Dominates (x,y) 
which holds when x) all numbers which belong to the set 
of numbers y.) -

bl A list of numbers is ordered if 
number is < all numbers in the 
rest of the list is ordered. 

it is empty or its first 
rest of the list and the 

c) A number is the greatest common divisor of numbers x and y 
if it divides x and y and is all numbers which divide x 
and y. 

2) The derived equivalences on page 199 can be justified by converting 
each half of an equivalence to the same formula, by replacing subformulae 
by equivalent subformulae. For example, both halves of the equivalence 

X -) [Y & Z] (-) [X -) YJ & [X -) Z] 

convert to the same formula 

[-, X V YJ & [, X V Z 1. 

Derive the remaining eguivalences on page 199. 

3) a) Express the following assumptions in standard form and 
transform them into clausal form. 

A dragon is happy if all its children can fly. 
Green dragons can fly. 
A dragon is green if at least one of its parents is green 
and is pink otherwise. 

b) Use resolution (and factoring if necessary) to show: 

(i) Green dragons are happy. 
(ii) Childless dragons are happy. 

You will need to supply 
assumptions. 

some "obvious" missing 
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c) What should a pink dragon do to be happy? 

4) This exercise is an extension of exercise 8 of Chapter 2. Given 
data in the Supplier, Part and Supply tables, express the following 
queries in standard form. Use both the binary and n-ary representations. 

a) What are the numbers of suppliers who supply all parts? 

b) What are the names of suppliers who do not supply books? 

c) What are the numbers of those suppliers who supply at 
least all parts supplied by John? 

5) a) Express the following assumption in standard form and 
transform it into clausal form. 

A logician is happy if all his arguments are sound. 

b) Use resolution to show that the following conclusions are 
implied by the assumption. 

(i) A Logician is happy if everyone's arguments are sound. 
(ii) A logician is happy if he doesn't argue. 

6) a) Express the following assumptions in standard form and 
transform them into clausal form. 

(il A sequence z is ordered if for every x, y, i and j, 
x is the i-th element of z, 
y is the j-th element of z and 
i i j imply x y. 

(ii) If i j then u*i u*j, for all i, j and u. 

(iii)The i-th element of sequence S is 3*i for all i. 

b) Use resolution to show that the sequence S is ordered. 
Notice that S might have infinitely many elements. 

7) Assume that the following relations are already defined: 

x y 
x > y 
Empty (xl 
Split(x,y,u,v) 

the tree x contains no nodes. 
the tree x has root node labelled by item y, 
left subtree u and right subtree v. 
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a) Express the following definition of the relation Ord(x) in 
standard form: 

The tree x is ordered if for every non-empty subtree z of 
x 

i) all items which belong to the left subtree of z are the 
item at the root of z and 

ii) all items which belong to the right subtree of z are) the 
item at the root of z. 

You should define the 
purpose. 

following relations for this 

Subtree(z,x) 
Belongs(y,x) 

z is a subtree of x 
the item y belongs to tree x. 

b) Transform the definition of Grd(x) into clausal form. 

8) The relationship Sl{x,y), i.e. x is a sublist of y, can be 
specified by: 

Sl(x,y) (-) 3u3v3w[Append(u,x,v) & Append(v,w,y)] 
Append(x,y,z) (-) [x=nil & y=z] V 

3u3v3w[x=u.v & z=u.w & Append(v,y,w)] 

Derive a recursive program for Sl(x,y), not involving Append, using the 
following assumptions about equality if necessary: 

x.y = U.v (-) x=u & y=v 
, 3u3v U.v = nil 
x = x 

9) The relationship Fact*{x,y,u,v) can be specified by 

a) 

Fact* Ix,y,u,v) (-) [Factlx,y) -) Factlu,v) I 
Fact(x,y) (-) [zero(x) & Succ(x,y) 1 V 

3u3v[succ(u,x) & Fact' (u,v) 
& Times (x,v ,y)] 

Zero(0) (-
Succ(x, (-

Derive a recursive program for 
involving Fact. 

Fact*{x,y,u,v), not 

b) Show that Fact{u,v) (-) Fact*{0,s(0),u,v). 

10) Given the specification 

Ord(x) (-) VtW'v[Consec{u,v,x) -) 
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derive a Horn clause program for Ord(x), using the following assumptions: 

Consec(u, v, nil) 
Consec(u, v, x.nil) 
Consec(u, v, x.y) (-) Consec(u,v,y) V 3z[u=x & y=v.zl 
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CHAPI'ER 11 

In classical logic, definitions are expressed by means of "if-and-
only-if" (abbreviated "iff"). For example: 

G* Grandparent (x,y) (-) 3z [Parent(x,z) & Parent(z,y)} 

Horn clause programs and databases, however, express only the "if-halves" 
of iff-definitions: 

G Grandparent(x,y) (- Parent(x,z), Parent(z,y) 

We have managed to avoid the full iff-form of definitions because the if-
halves alone are adequate for deriving all positive instances of the 
relations. All variable-free assertions of the form 

Grandparent(s,t) (-

which are implied by G* are already implied by G. It is not possible to 
compute more factorials with the iff-definition 

F* Factlx,y) <-) Ix=0 • y=11 V 
3x'3Y' [x=x'+l & Fact{x' ,y') & y=x*y'] 

than with the if-half alone: 

Fl 
F2 

Fact(x,y) (- x=0, y=l 
Fact(x,y) <- x=x'+l, Fact(x' ,y'), y=x*y' 

However, as we shall see in the next section, the full 
definitions is needed for proving properties of programs. 
needed in databases for answering queries involving universal 
and negation. 

iff-form of 
It is also 
quantifiers 

In the informal use of natural language, 
often employed even when the iff-definition 
to the problem of distinguishing when the 
definition is intended and when it is not. 

the if-form of definitions is 
is intended. This gives rise 
missing only-if half of the 

We shall argue that the problem is complicated by the fact that the 
only-if halves of definitions are ambiguous. 

A only if B 

can be interpreted in the object language 

B (- A 
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or in the met a-language 

"A (- B" expresses the only condition under which A holds. 

Consequently, proofs which need to appeal to the only-if 
carried out either in the object language or in the 
Despite this difference, however, the structure of 
remarkably similar in both cases. 

halves can be 
meta-language. 

the proofs is 

The only-if halves of definitions are needed for proving program 
properties and for verifying database integrity constraints. ConSider, 
for example, the Horn clause program Fl-2 for computing factorials. It is 
a property of the program that 

The only factorial of 0 is 1, 
i,e, y=l (- Fact(0,y). 

To prove the property, however, requires the only-if half of the 
definition of factorial as well as the property of equality that 

(- 0 = u+1. 

The only-if halves of definitions are also needed for answering 
queries in logic databases. Consider, for example, the iff-definitions of 
the Teaches and Professor relations: 

T* Teaches(x,y) (-) [x=A & y=U4] V 
(x=A & y=301] V 
[x=B & y=2211 V 
(x=C & y=105] V 
[x=C & y=201] V 

p* Professor (x) (-) x=A V x=B 

Given, in addition, the clauses 

the query 

Isa(l04,programming) (-
Isa(22l,programming) (-

Do all professors teach programming? 

\ix3y[Professor(x) -) Teaches(x,y) & Isa(y,programrning)]? 

can be answered positively. To answer the query, 
only-if half of the definition of the Professor 
language and meta-language proofs of the query are 
later in the chapter. 

however, requires the 
relation. The Object 

presented and compared 



212 Chapter 11: If-ano-only-if 

Terms relations as data structures 

The relationship between iff-definitions and their if-halves bears 
upon the relationship between the use of terms and the use of relations 
as data structures in logic programs. The use of terms in Horn clause 
programs gives some of the power of the use of relations defined by means 
of ifL 

Consider, for example, the data depicted in the following scene: 

Restricted to the use of Horn clauses, the On and Clear relations have to 
be defined independently: 

On (A,B) (-
On(D,A) (-
On(D,C) (-

Clear (D) (-
Clear(E) (-

The connection between the two relations can be expressed only by means 
of an integrity constraint. 

(- On{x,y), Clear(y) 

By using iff-definitions, however, the Clear relation can be defined 
in terms of the On relation. 

Clear (y) 
On (x,y) <-) 

,:!x On(x,y) 
[x=A & y=B) V 
[x=D & y=A] V 
[x=D & y=C) V 

Notice, however, that in this formulation and the next everything is 
clear except A, Band C. The Clear relation can be restricted, if 
necessary, by adding an extra condition to the definition 

Clear (y) Block (y) & ,:!x On (x,y) 

and appropriately defining the new predicate Block. 

lff-definitions cannot usually be expressed by means of Horn clauses. 
However, some of the power of iff-definitions can be captured with Horn 
clauses by using terms instead of relations as data structures. If the 
data concerning the position of objects in the scene is collected in a 
single term, then the Clear relation can be defined in terms of the data 
about the scene. Here "On" is a predicate symbol, but "on" is a function 
symbol. 

Scene(on(A,B) .on(D,A).on(D,C) .nil) 
On(x,y) Scene(z), Member (on(x,y) ,z,T) 

Scene(z), Member (on(x,y) ,z,F) 
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Member(x, x.y, T) (-
Member(x, nil, F) (-
Member(x, u.v, w) <- Diff(x,u), Member (x,v,w) 
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The term representation of the data is significantly less natural than 
the relational representation. However, both the iff-definition and its 
simulation by means of terms have several advantages over the simple, 
Horn clause if-half of the definition. Many properties of the scene, such 
as the number of objects it contains, can be determined from both the 
iff-definition and the term representation but cannot be determined from 
the simple if-half of the definition. Moreover, any change in the 
position of objects (either by altering the iff-definition of the On 
relation or by altering the assertion which describes the scene) 
automatically implies the appropriate modification of the Clear relation. 
However, if the two relations are defined independently, then alteration 
of the Scene is more difficult. Both the On and Clear relations have to 
be changed explicitly and the new relationship between them needs to be 
checked against the integrity constraint. 

The unstated only-if-assumption 

The statement of only the if-halves of definitions is common in 
natural language, even when the full iff-definition is intended. Even 
logicians, who normally insist on the explicit statement of all 
assumptions, tolerate the unstated only-if assumption in the case of 
recursive definitions. It is common for a logician to state only the if-
half of the definition of natural number, for example: 

NI 
N2 

o is a natural number. 
If x is a natural number then x+l is a natural number. 

even when he intends the only-if half 

N3 

as well. 

The only natural numbers are 
those defined by statements NI-2. 

Natural language, however, carries the un stated only-if assumption to 
the extreme. The classical fallacy of logic is probably an example of 
this. Suppose, for instance, 

Ml Mortal(x) (- Human(x). 

If we now assert 

M2 Mortal (Bob) (-

then we may be tempted to conclude 

M3 Human (Bob) (-

But M3, although it may well be true, is not a logical consequence of the 
explicitly stated assumptions MI-2. The fallacy would disappear, however, 
if we could to unstated assumptions - if we could assume, in 
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particular, that the full iff-definition 

M* Mortal(x) <-) Human(x) 

was intended when only the if-half was stated explicitly. 

Comparing the two examples, the if-half of the definition of number 
and the incomplete characterisation MI of mortality, we are faced with 
the dilemma of distinguishing when the unstated only-if assumption is 
justified and when it is not. The same dilemma arises in the field of 
databases where the problem is to decide whether the definition of the 
data has already been closed or whether it is The problem 
has been investigated by Reiter [1978] who calls the assumption that the 
database contains all the information there is to know the closed world 
assumption and the assumption that it may not, the open world-a5SUmptIQD7 
Our proposal is to identify the closed world assumptlon with the 
assumption that the missing only-if halves of definitions are intended 
and to identify the open world assumption with the assumption that they 
are not. 

The problem of distinguishing between intended and unintended 
assumptions disappears, of course, if all intentions are made explicit. 
Explicit statement of intentions, moreover, makes it easy to mix closed 
and open world assumptions in the same database, applying different 
assumptions to different relations or even to different instances of the 
same relation. We might decide, for example, to close the instances of 
the Teaches relation which describe the courses taught by Bob, but to 
leave open the ones taught by John. 

T1 
T2 
T3 

Teaches (Bob,x) (-) x=304 V x=323 V x=I.4 
Teaches (John,2l2) (-
Teaches(John,l.l3) <-

It is curious that natural language should be so careless about 
specifying whether or not only-if assumptions are intended. This may be a 
consequence, in part, of the awkwardness of the iff syntax. In order to 
close the definition of the courses taught by John, after adding the 
assertion 

T4 Teaches(John,103) <-

for example, it is necessary either to replace T2-4 by 

T* Teaches (John,x) <-) x=2l2 V x=l.l3 V x=l03 

or to add to T2-4 the explicit only-if half of the definition 

TS Teaches(John,x) -) x=2l2 V x=l.13 V x=103. 

A more convenient syntax might be one which leaves T2-4 alone and states 
that 

TS* all instances of Teaches(John,x) are defined by T2-4. 
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Ambiguity of only-if 

Our discussion of the relationship between iff-definitions and their 
if-halves has been simplified by ignoring the ambiguity of the expression 

A only if B. 

In some cases we have interpreted it as a statement in the object 
language 

B <- A. 

In other cases we have interpreted it in the meta-language 

nA <- B" expresses the only condition under which A holds. 

The only-if half of 
previously expressed in 
object language. 

the definition of natural number, which was 
the meta-language, can also be expressed in the 

Numb (x) -) x = 0 V 3x' [x: x'+l & Numb(x')] 

Whether the expression "A only if B" is interpreted in the object 
language or the meta-Ianguage, it has similar properties. For example, 
in both cases the conclusion 

B (-

is a consequence of the assumptions 

A only if B 
A (- • 

If "only-if" 
follows by one 
met a-language , 

is interpreted in the object language, the conclusion 
step of bottom-up reasoning. If it is interpreted in the 
it follows by reasoning about proofs: 

If the only way of proving A is by proving B, and 
A <- can be proved, 
then B <- can be proved as well. 

This example illustrates a general phenomenon: The two interpretations 
of "only-if" justify similar conclusions in different, but structurally 
similar, ways. 

Object language and meta-Ianguage solutions 

The problem of showing that all professors teach programming 

Q \tx3y[Professor(x) -) Teaches(x,y) & Isa(y,programming)] 

can be solved whether the only-if half of 
Professor relation is expressed in the object 
language. 

the definition 
language or in 

P* of the 
the meta-
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Suppose the only-if half of p* is expressed as a non-Horn clause 

X : A, x = B (- Professor (x) 

in the object language. The query itself reduces to two clauses: 

01 
02 

(-
<- Isa(y,programming) 

Bottom-up reasoning from the assertion 01 derives the non-Horn clause 

= A, = B (- • 

The two goals in 02 can now be solved by case analysis. In the case = 
A, the first goal in Q2 is solved by 

Teaches (x,y) (- x = A, Y 104 
x = x <-

and the secona goal by 

Isa(104,programming) (-

In the second case = B, the first goal is solved by 

Teaches(x,y) (- x = B, Y = 221 
x = x (-

and the second goal by 

Isa(221,programming) <- • 

Suppose, on the other hand, that the only-if half of P* is expressed 
in the meta-language: 

PI 
P2 
P3 

Professor (x) <- X = A 
Professor (x) <- x = B 
PI and p2 express the only conditions under which 
an individual is a member of the Professor relation. 

To solve the problem, the query Q needs to be expressed in the meta-
language as well. 

01* 

02* 

Show that for every x which solves the goal 
(- Professor (x) 
there is a y which solves the goals 
<- Teaches(x,y), Isa(y,programming). 

Top-down reasoning from the goal 01* derives only two solutions 

x = A and x = B. 

In the case x 
clauses 

A, the two goals in Q2* are solved by y using the 
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Teaches (x,y) (- x = A, Y = 104 
x = x (-
Isa(104,programming) (- . 

In the case x = B, they are solved by y = 221 using the clauses 

Teaches(x,y) (- x = B, Y 221 
x = x (-
Isa(22l,progr amming) (- • 

217 

Notice that the object language and meta-language proofs have similar 
structure. In the meta-language proof, however, equality relates 
variables to the terms to which they are bound in the components of 
matching substitutions. In the Object language proof, equality relates 
different names for the same individual. Thus the equality symbol used 
for expressing the only-if halves of definitions satisfies the axioms 
EI-3 of Chapter 2, page 43. In the general case, these axioms are 
extremely redundant. In this case, however, they are not even necessary. 

Object language and meta-Ianquage interpretations of negation 

The only-if halves of definitions are necessary to show that a 
negative condition 

(- not-P 

holds. Depending on the interpretation of "only-if", the proof can be 
carried out either at the object level or at the meta-level. Clark [19781 
has shown that for every meta-Ianguage proof of not-P obtained by a Horn 
clause theorem-pr over augmented with negation proved by failure, there 
exists a structurally similar object language proof of not-Po 

Consider the problem of showing that D is clear 

<- CleareD) 

given the if-halves of the definitions of the On and Clear relations: 

Onl 
On2 
On3 
On4 

On{A,B) <-
On(D,A) (-
On(D,C) <-
Clear(y) <- not,3x On(x,y) 

In addition, the only-if half of the definition of the On relation is 
necessary for a solution. However, the if-half of the definition of the 
Clear relation is sufficient. 

Suppose first that the only-if half of the definition is expressed in 
the object language: 

On5 On(x,y) -> Ix A & Y BI V 
Ix D & Y AI V 
Ix D & Y Cl V 

The sentence is more natural in the standard form than in the clausal 
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form. It is also more natural to carry out the proof using standard 
form. Moreover, the standard form proof is structurally similar to the 
meta-Ianguage proof, whereas the clausal form proof is not. It will be 
useful to reexpress the only-if half of the definition in the equivalent 
form 

not-On (x,y) (- [x • A V Y Bl & 
Ix • D V Y • Al & 
Ix • D V Y • Cl 

where 5 '" t is just an abbreviation for -[5 : t]. 

(- CleareD) 

(- not-3x On(x,D) 

(- Yx not-On (x,D) 

(-Yxllx'AVD'Bl & 
Ix • D V [)TAl & 
Ix • D V D + Cll 

o 

The last step of the proof verifies the three conditions by using the 
"negative assertions": 

On6 
On7 
On8 

D • B (-
o '" A (-
D * C (-

The clausal form, resolution proof is left to exercise (2). 

Suppose now that the only-if half of the definition is expressed in 
the met a-language: 

Clauses Onl-3 express the only conditions 
under which the On relation holds. 

The meta-1eve1 proof shows that every way of trying to solve the goal 
(-0n(x,D) fails. The structure of the proof, however, is similar to that 
of the object level argument. 

(- Clear (D) 

(- not-3x On(x,D) 

(- Every way of trying to solve (- On(x,D) fails 

(- Onl-3 fail to solve (- On(x,D) 

o 
The last step of the proof shows that Onl-3 fail to match On(x,D), 
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because D is different from (does not match) A, Band C. The object-level 
proof, however, needs to reason about equality explicitly. Clark [1978] 
shows that in general explicit axioms of equality are necessary at the 
object level in order to simUlate failure of the matching algorithm at 
the meta-level. 

Horn clauses augmented with negation interpreted as failure 

The meta-Ianguage interpretation 
interpretation of negation failure: 

not-P holds 

of nonly-if" entails 

if the if-halves of definitions fail to establish P. 

the 

The language of Horn clauses augmented with negation as failure provides 
a powerful extension of the language of Horn clauses alone. It is easy to 
implement, efficient to use and has much of the expressive power of the 
full standard form of logic. It is an important feature of all PROLQG 
implementations that either they provide the negation operator explicitly 
or else they provide means for defining it. 

The expressive power of Horn clauses with negation is illustrated by 
the definition of subset 

x y (- Vz [z E x -> z E y], 

which can be reexpressed 

x y (- not-3z [z Ex, not- [z £ y]] 
x is a subset of y if no z in x fails to belong to y. 

The explicit existential quantifier 3z can be eliminated and the negation 
sign can be moved in front of atomic formulae if an auxiliary predicate 
Nosub(x,y), which holds when x is not a subset of y, is employed. The 
definition of subset becomes 

x 5ii Y (- not-Nosub(x,y) 
Nosub(x,yl (- z E x, not- [Z E y1. 

x is a subset of y if it cannot be shown 
that it is not a subset of y. 
x is not a subset of y if there is a z in x 
which fails to belong to y. 

A similar transformation can be applied to the definition of Clear block: 

Clear(y) (- not-Covered(y) 
Covered(y) (- On(x,y) 

Clark's analysis of negation interpreted as failure assumes that 
negations are so transformed that they stand only in front of atomic 
formulae. 
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Clark has 
do not have 
The simplest 

which implies 
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shown that Horn clauses with negation interpreted as failure 
the full power of negation in the standard form of logic. 
example of this is the sentence 

P (- not-P 

p (-

in the standard form of logic, since 

P (- not-P 
P, P (-
p (-

But the attempt to solve 

<- P given 

is equivalent to 
is equivalent to 

P (- not-P 

does not succeed because it goes into a loop when negation is interpreted 
as failure. 

A more complicated infinite loop arises during the attempt to solve 
the goal 

(- A using i) 
2) 
3) 

A (- P (x) 
A (- not-P (x) 
P(x) (- P(f(x» 

with negation interpreted as failure. Both procedures (1) and (2) 
introduce the procedure call 

<- p (x) 

which neither succeeds nor fails in finite time. But in the standard form 
of logic, A <- is a resolvent of (1) and (2). 

These examples suggest that the deductive power of negation as failure 
can be increased by adding loop detection to the resources of the Horn 
clause problem-solver. Because of the undecidability of logic [Church 
1936) however, no problem-solver can recognise all situations in which a 
goal is unsolvable. There is no best theorem-pr over and no limit to the 
extent to which a problem-solver can improve its ability to detect loops 
and to establish negation by failure. 

The recognition of failure by detecting loops in the meta-Ianguage is 
equivalent to using proof by induction in the object language. by adding 
proof by induction to the reSOurces of the problem-solver. Proof by 
induction is needed, moreover, in many cases when the only-if halves of 
definitions are used to prove program properties. 
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Proof of program properties 

Consider the Horn clause if-half of the definition of the Append-
relation 

Al 
A2 

Append (nil,x,x) (-
Append(x.y, z, X.yl) (- Append (y,z,yl) • 

It has the property that 

Append(x,nil,x) holds for all lists x. 

Proof of the property requires induction on the structure of lists. We 
shall present both the object level and met a-level proofs. Both proofs 
have similar structure. But the meta-Ievel proof, because it is informal, 
is easier to present first. 

Suppose that A is any list. We need to show that 

A3 Append (A,nil,A) (-

can be proved using (AI) and (A2). The proof is by induction on the 
structure of A. If A is nil, then there is a one-step proof of (A3) using 
(AI) alone. If A is B.A I , then by the induction hypothesis there is some 
n-step proof of 

Append(AI,nil,A I) (- . 

By adding an extra step to the proof, using (A2), we obtain an n+l step 
proof of 

Append(x.A ' , nil, x.A ' ) (-

for any x and therefore a proof of (A3) in particular. 

For the object level proof, it is necessary to express an induction 
schema for lists in the object language. 

A4 F{x) (- List(x) & F(nil) & [F(z) -) F(y.z)] 

where F(x) is any formula containing free occurrences of only the 
variable x, and F(t), for any term t, is obtained by replacing all free 
occurrences of x in F by t. The object level proof can be carried out in 
clausal formi but a non-clausal proof is more natural. We negate the 
theorem to be proved and reason backward from the goal: 

AS List(A) (-
(- Append (A,nil,A) 

By A4, letting F(x) be Append(x,nil,x): 

By AS and AI: 

(- List(A), Append(nil,nil,nil), 
) Append (y.z, nil, y.z)] 

-) Append(y.z, nil, y.z)] 
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This reduces to an assertion and a subgoal: 

A6 Append (A' ,nil,A') <-

<- Append(B.A', nil, B.A') 

A2 f 
A6 

<- Append (A' ,nil,A') 

o 
The method of proving 

induction axioms expressed 
Clark and Tarnlund [1977}. 

properties of logic programs by means of 
in the object language has been developed by 

The monotonicity criticism of logical conseguence 

Logic has often been the subject of criticism. One of the most recent 
and influential of these criticisms is that formulated by Minsky [19751 
concerning the monotonicity of logical consequence. 

Onl 
On2 
On3 

Consider again the blocks world example 

On (A,B) <-
On(D,A) (-
On(O,e) (-
Clear(y) (- not-3x On(x,y) 

supplemented by the unstated only-if half of the definition of the On 
relation. These assumptions imply the conclusion 

Clear (D) <- • 

The monotonicity of logical consequence entails that the same conclusion 
continues to hold no matter what new assumptions are added. In 
particular, if we add the new assumption 

On4 On (E,D) (-

the previous conclusion that D is clear still holds, even though it is 
obviously inconsistent with the new information. 

The critics argue that the monotonicity of logical consequence 
contradicts common sense. Given the new assumption On(E,D) (- common 
sense abandons the previous conclusion Clear (D) <- . Logic, because it 
requires that the conclusion continues to hold, is unacceptable as a 
model of human reasoning. 

The argument is mistaken, in our opinion, because it oversimplifies 
what is involved when a new assumption is added to a logic database. We 
shall argue in the last chapter that, when a database becomes 
inconsistent, consistency needs to be restored by rejecting or suitably 
modifying an assumption in the database. In this example, either we 
reject the new information or we reject or modify the only-if half of the 
definition of the On relation. It is probably most natural either to 
replace the original only-if assumption by the new assumption that only 
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Onl-4 define the On relation or else to abandon the only-if assumption 
altogether. In either case the previous conclusion Clear (D) <- no longer 
holds in the new database. 

Logic avoids the monotonicity criticism of logical consequence, if 
proper account is taken of only-if assumptions and a realistic view is 
taken of the way in which databases change in time. 

Exercises 

1) Use the only-if half of the definition of factorial together with 
the assumption 

(- 0 ; u+l 

to show that the only factorial of 0 is 1. 

2) Show that 

not-Append (nil, a.nil, nil) 

is a consequence of the iff-definition of the Append relation. Compare 
the object language and meta-language proofs and identify the axioms of 
equality needed for the object language proof. 

3) Transform assumptions On4-8 into clausal form and use resolution to 
show that 

CleareD) 

is a consequence. 

4) Show by means of resolution and factoring that 

Append(A,nil,A) 

is implied by the iff definition of Append together with the appropriate 
induction and equality axioms expresed in clausal form. 

5) Using negation as failure, reformulate the definions of arch and 
tower given in Chapter 4 so that the problem 

(- Arch(w) 

has only two solutions 

w a(t(B,A), D, C) and 
w aCe, D, t(B,A») 
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for the scene described by A4-12. 

6) Given the Horn clauses 

Append (nil,x,x) (-
Appned(x.y, z, x.u) (- Append (y,z,u) 
Memher(x, x.y) (-
Memher(x, y.z) (- Member (x,z) 

show by means of induction in the meta-language that 

Ni 
N2 

7) 

show that 

for all x, u, v and w, 
if Append(u,v,w) and Memher(x,w) 
then Member (x,u) or Member (x,vl • 

a) Given the assumptions 

x y (- not-Nosub(x,y) 
Nosub(x,y) (- z £ x, not-[z £ y] 

a £ A (-
a £: B (-
b € B <-

A B 

interpreting negation as failure. 

b) Let membership in 
of Horn clauses. 
can be shown that 

i) A c,; B 

the sets A and B be expressed by means 
Discuss the circumstances under which it 

ii) rp S B 
where there is no clause expressing membership 

iii)A!;U 
given x E U (-

iv) AS A. 
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CHAPTER 12 

Formalisation of Provability 

The meta-language interpretation of "only-if" and its combination with 
the object language can be achieved by formalising the meta-language and 
amalgamating it with the object language. Such a combination of object 
language and meta-Ianguage prOduces a system of logic which is closer to 
natural language than the conventional systems which keep the two 
languages distinct. In natural language, however, the combination of 
object language and met a-language leads to such paradoxes as the self-
referential sentence: 

This sentence is false. 

We shall see that 
amalgamated formal 
sentence: 

the attempt to 
language leads 

reconstruct the paradoxes in the 
instead to a true but unprovable 

This sentence is unprovable. 

'I'he construction and proof of unprovability are based on those in 
proof of the incompleteness of formal arithmetic [Godel 1931]. Instead 
of the incompleteness of arithmetic, however, we have the impossibility 
of any attempt to completely formalise the notion of provability. The 
proof of incompleteness, moreover, is simpler for provability than it is 
for arithmetic. 

Our purpose in combining the object language and meta-Ianguage, 
however, is primarily a practical one. The amalgamated language is more 
expressive and has greater problem-solving power than the object language 
alone. It provides essential facilities for such applications of logic 
programming as natural language understanding, database management, job 
control and editing of programs. 

The amalgamated language combines object language and meta-language 
while preserving the normal semantics of logic. Thus all of the theory of 
problem-solving, formulated in the previous chapters for the object 
language alone, applies without change to the more powerful combination 
of object language and meta-language. 

The combination of object language and meta-language is a special case 
of a more general construction. Given any two languages (i.e. systems of 
logic with their associated proof procedures) it may be possible to 
simulate the proof procedure of one language Ll within the other The 
simulation is accomplished by defining in L2 the binary relatlonship 
which holds when a conclusion can be derived from assumptions in Ll' 
Sentences in Ll need to be named by terms in L2 and the provability 
relation needs to be named by a binary predicate symbol, say 
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"Demonstrate", and defined by means of sentences Pr in L2" Provided the 
definition El correctly represents the provability relatlon of Ll' 
simulation by means of Pr in L2 is equivalent to direct execution of 
the proof procedure of L1 " LZ' the language in which---pr- simulates Ll1 
is a meta-lan9Uag€ for the obJect language L10 To serve as meta-Ianguage, 
L2 needs to possess sufficient expressive power. For any object language, 
tfie language of Horn clauses is already adequate. 

There are a number of cases of special interest. In the case in which 
the meta-language is restricted to the Horn clause subset of logic, but 
the object language encompasses the whole standard form, the meta-
language improves its own problem-solving abilities by simulating the 
more powerful object language. In general, a simple unsophisticated 
problem-solver can improve itself by using simulation to behave like a 
more sophisticated one. 

In the case in 
identical the single 
provability relation 
met a-language. 

which the object language and meta-language 
language augmented by the definition Pr of its 
is an amalgamation of an object language with 

Correct representability 

are 
own 
its 

The condition of correct representability is the same in principle for 
the definition ef the provability relation as it is for the definition of 
the addition of natural numbers. 

In order to define addition in logic, it is necessary to name numbers 
by means of terms. The easiest way to name the non-negative integers, for 
example, lS by means of a constant symbol 0 for zero and a one-place 
function symbol s for the successor function. 

If t names the integer n 
then set) names the integer n+l. 

The following Horn clause definition correctly represents the addition 
relation, named by the predicate symbol "Plus". 

Plusl 
Plus2 

Plus (0,x,x) (-
Plus(s(x) ,y,s(z» (- Plus(x,y,z) 

Plusl-2 correctly represents the addition relation in the sense that 

whenever 1, m and n are non-negative integers 
sand t respectively, the relationship l+m 
and-only-if Plusl-2 implies Plus(r,s,t) (-

named by r, 
n holds if-

Notice that correct representability does not require that 

Plusl-2 implies ,Plus(r,s,t) (- when l+m = n does not 
hold. 

In order to define 
other expressions by 
variety of ways and we 

provability it is 
means of terms. 
shall not concern 

necessary 
This can 
ourselves 

to name sentences and 
be accomplished in a 
with the details here. 
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Given a representation of sentences by means of terms, 
in a language L2 correctly represents the provability 
"Demonstrate", of a language LI if-and-only-if 

a definition Pr 
relation, named 

whenever X and Y are sentences of Ll named by terms Xl and 
y' of L2 respectively, conclusion Y can be derived from 
assumptions X in LI if-and-only-if conclusion 
Demonstrate(XI,Y') can be derived from assumptions Pr in 
L2 0 

Correct representability, 
,Demonstrate(X' ,Y') in L2 

however, does not require that 
when X does not imply Y in Ll. 

implies 

Given a language LI , the construction of a definition which correctly 
represents its proof procedure is not a particularly difficult matter. 
Since proof procedures can be implemented by means of computer programs, 
they can be implemented by means of Horn clause programs in particular. 
Moreover, any Horn clause program which correctly implements a proof 
procedure correctly represents its provability relation. 

A simple definition of provability relation 

We shall present the top-level of 
provability relation for a Horn clause 
regarded as programs and conclusions as 
increase readability, we use lower case 

a Horn clause definition of the 
language in which assumptions are 
collections of goals. In order to 
character strings, such as 

prog, goals, sub, 

as variables and ones beginning with an upper case character, such as 

NIL, Zeus, A, 

as constants. 

The first clause of the program states that 

any program demonstrates the solvability of an 
empty collection of goals. 

The second clause, interpreted top-down, says that 

to demonstrate the solvability of a collection of goals: 
select a goal; 
find an appropriate procedure in the program; 
rename the variables in the procedure so that they are 
distinct from the variables in the collection of goals; 
match the selected goal with the head of the procedure; 
add the body of the procedure to the rest of the goals; 
apply the matching substitution to obtain a new collection 
of goals; and 
demonstrate that the program solves the new collection of 
goals. 
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Demonstrate (prog,goals) (- Empty (goals) 
Demonstrate (prog,goaIs) (- Select(goals,goal,rest), 

Member (procedure,prog) , 
Renamevars(procedure,goals, 

procedure') , 
Parts(procedure',head,body) , 
Match (goal,head,sub) , 
Add (body,rest,intergoals) , 
Apply (intergoals,sub,newgoals) , 
Demonstrate (prog,newgoaIs) 

To complete the definition it is necessary to define the lower-level 
relations and to settle upon data structures for naming programs, goals, 
collections of goals and substitutions. Rather than define these in 
general, we shall present only an interface for the top-level with a 
simple data structure for the problem of the fallible Greek. 

We shall name an atomic formula whose predicate symbol is named P and 
list of arguments is named t by the term 

atom(p,t) . 

Bodies of procedures and collections of goals are named by lists of the 
names of the atomic formulae they contain. Programs and procedures are 
named by constants. The following clauses define the interface between 
the top-level of the definition of Demonstrate and the data structures 
for the problem of the fallible Greek. 

Member (Fl, F) (-
Member (F2, F) (-
Member (F3, F) (-
Member (F4, F) (-
Parts(Fl, atom(Fallible,X.NIL), atom (Human,X.NIL) .NIL) (-
Parts(F2, atom (Human,Turing.NIL) , NIL) (-
Parts{F3, atom (Human,Socrates.NIL) , NIL) (-
Parts(F4, atom{Greek,Socrates.NIL), NIL) (-

The top-level goal is described by the clause 

(- Demonstrate(F, atom(Fallible,X.NIL).atom(Greek,X.NIL) .NIL). 

The constant symbol X names the variable x. 

Direct execution versus simulation 

Let Pr consist of the clauses Dl-2 together with whatever lower-
level clauses are needed to complete the definition of Demonstrate. 
Suppose that Pr correctly represents the provability relation of a 
language Ll and lS expressed ln a language L2 (which may be identical to 
L1)' Correct representabllity guarantees that direct execution in Ll and 
Slmulation in L2 are equivalent and interchangable: 
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Given sentences X and Y of Ll named by terms X' and yl 
respectively of L2 , direct execution of the proof 
procedure of Ll to determine whether Y can be derived from 
X in Ll is equIvalent to simulation of Ll by showing that 
Demonstrate (X' ,y') can be derived from Pr in L2' 
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The equivalence of direct execution and simulation is identical to the 
reflection principles investigated by Weyhrauch [1978]. 

Correct representability of the provability relation means that the 
object language and meta-language can cooperate to solve problems. A 
problem in the object language can be solved by simulation in the meta-
language. Conversely, a problem of the form 

Demonstrate (X' ,Y') 

in the meta-language can be solved by showing that 

Y can be derived from X 

in the object language. This has the advantage that direct execution is 
generally more efficient than simulation in the meta-language. 

Simulation in the meta-language, however, can be more powerful than 
direct execution. It may be possible, in particular, to replace several 
proofs of different, but similar, theorems in the object language by a 
single proof in the meta-!anguage. As a trivial example, all of the 
problems below need to be solved separately in the object language, but 
can be solved once and for all in the meta-language. 

Mortal (Socrates) <-
Human (Socrates) <-
Mortal(x) <- Human(x) 

can be derived from 
and 

Poisonous ("iT') <- can be derived from 
Boletus ('iT ) <- and 
Poisonous (x) <- Boletus(x) 

Animal (Puff) <- can be derived from 
Dragon(Puff) <- and 
Animal (x) (- Dragon{x) 

In the meta-language it is possible with a single proof to show that 

for any variable x, predicate symbols P and Q, 
and term t of the object language, 

Q(t) (-
Pit) (-
Q(xl (-

can 
and 

P (xl. 

be derived from 

The meta-language is more powerful than the object language in another 
sense. The object-level proof procedure can only show that 

X can be derived from Y 

when both X and Y are given as input. The meta-level proof procedure, 
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however, can solve Demonstrate goals of any pattern of input ana output. 

Given, for example, an appropriate definition of what constitutes an 
interesting sentence, the meta-level goal statement 

(- Demonstrate(X',y), Interesting(y) 

can be used, in theory at least, to generate interesting consequences of 
a given set of assumptions X. Moreover, by solving the two problems 
cooperatively rather than sequentially, it is possible for the criteria 
characterising interesting sentences to guide the generation of 
consequences of X. 

The goal statement 

(- Demonstrate(t,Y'), 

where Y' names a given consequence and t is a partially instantiated term 
which names a given collection of assumptions X together with unknown 
additional assumptions x, can be used to find the missing assumptions x. 
The goal statement 

<- Demonstrate (t'YI ') ,Demonstrate(t'Y2') , ... ,Demonstrate(t,Ym') 

moreover, can be used to find missing assumptions which together with the 
given assumptions X imply all of the conclusions In the 
simplest case, if the conclusions are sufficiently simllar, the missing 
assumptions may be an inductive generalisation of the conclusions. 
Provided the proof procedure is sufficiently constrained it will avoid 
generating useless assumptions such as Yl&Y2&"'&Ym' which trivially 
imply the conclusions. 

Addition and suppression of assumptions 

Languages in the PLANNER family and most versions of PROLOG achieve 
some of the power of the Demonstrate relation by providing facilities for 
adding and suppressing statements during the course of a demonstration. 
Instead of explicitly trying to solve a goal of the form 

Demonstrate(X',Y') 

in these languages it is necessary to 

add the statements X to the program, 
try to show Y, and then 
suppresS-X-afterwards. 

Since assumptions change dynamically during the course of a single 
demonstration, such programs can be exceedingly dangerous. 

Addition and suppression of assumptions can be accomplished more 
safely by means of the Demonstrate relation. Moreover, efficiency can be 
achieved by directly executing the proof procedure recursively on the 
same machine or cooperatively on another machine instead of simulating it 
with the definition. On the other hand, Demonstrate goals of other 
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input-output patterns, which can not be solved by addition and 
suppression of assumptions, can be solved by using the definition. 
Addition and suppression of assumptions can only be used when the object 
language and meta-!anguage are the same. But, provided the 
is sufficiently powerful, the Demonstrate relation can be used to connect 
any two languages. 

Bootstrapping 

The meta-language L2 may differ in sophistication from the object 
language Ll • If it is less sophisticated to start with, then it can use 
its definition Pr of provability in Ll to simulate Ll and to increase 
its own sophistication. This is bootstrapping: the language L2 pulling 
itself up by its own bootstraps, using the definition Pr to solve 
problems more intelligently than it would otherwise, acting the way it 
thinks a more intelligent proof procedure would behave. 

Bootstrapping can be effective even if the more sophisticated language 
L"l does not have an independent existence of its own. The definition, if 

t is consistent, can serve as a construction which causes the language 
LI to come into existence. 

Bootstrapping, and more generally, defining an implementation of one 
language within another is a common technique in computing. An 
implementation of a language is created by writing a program which 
functions as a translator or interpreter for it in another existing 
language. 

The clauses 01-2, which define the top-level of a Horn clause proof 
procedure Ll can be used to boots trap a simple top-down Horn clause proof 
procedure L2 which executes procedure calls sequentially in the order in 
which they are are written. By means of appropriate definitions of the 
rest of the program and of the procedure Select in particular, it is 
possible to define a proof procedure which executes procedure calls 
cooperatively. Although L2 executes procedure calls sequentially, the new 
proof procedure Ll executes procedure calls as coroutines according to 
the criteria specified in the procedure Select. By appropriate 
modification of the definition, other improvements, such as loop 
detection, intelligent backtracking and goal transformation, can also be 
incorporated in the new proof procedure Ll • More modestly, the definition 
of Demonstrate might only enhance the input syntax of L2' defining infix 
notation for predicate symbols and function symbols, for example. More 
ambitiously, it might define a proof procedure for a richer version of 
logic, full clausal form or standard form, for example. 

PROLOG systems and programs have used the bootstrapping technique 
since their first implementation in 1972 in Marseille. They have been 
used primarily for improving the input syntax and for coroutining. A 
variety of Horn clause programs defining Horn clause provability have 
also been written at Imperial College. Simple Horn clause programs 
typically run about times slower when simulated by using such 
definitions than they do when executed directly. PROLOG programs have 
also been written for non-Horn clause provability and by Broda for the 
standard form of logic. The PROLOG compiler written in PROLOG by 
Warren, Pereira, and Pereira [1977) and Colmerauer's [1977) interpreter 
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for a restricted subset of natural language can also be regarded as 
applications of bootstrapping. 

Combining the object language and meta-language 

So far we have assumed an asymmetric relationship between the two 
languages Ll and L20 There is no reason in principle, however, why one 
language should know more about its companion than the other. Both 
languages might possess a definition of the other's proof procedure. 
Each language could serve as the other's and could simulate 
its proof procedure. 

There is no reason either why the two languages should not be 
identical in all respects. It is possible therefore to have a single 
language equipped with a definition Pr which is a correct 
representation of its own proof procedure. Given a problem of the form 

Demonstrate (X I, Y ') 

it can use the definition to simulate itself or equivalently it can show 
that 

Y can be demonstrated from X 

directly. Solving the problem by direct execution is equivalent to the 
proof procedure calling itself recursively. 

Such a relationship between object language and meta-language is 
already familiar in the programming language LISP [McCarthy et al 1962]. 
The function of a LISP interpreter or compiler is 

to evaluate an expression y in an environment x, which 
defines the values of the symbols occurring in y, 
producing a result z which is the value of y in the 
environment x. 

In functional notation this can be expressed 

eval (x,y) = z, 

which is like Demonstrate, except that the additional parameter z nameS 
the output. We shall argue later that it is useful to extend Demonstrate 
to a four argument relation 

Demonstrate(x,y,u,z) 

which holds when 

given the assumptions named x, 
the conclusion named y and 
the control named u, 
the proof procedure generates the output named z. 

The function eval can be defined in LISP, like Demonstrate can be 
defined in logic. In the same way that Demonstrate-goals with appropriate 
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input can be solved either by using the definition or by direct 
execution, eval-function calls can be evaluated in LISP either by using 
the definition of eval or by recursive invocation of the LISP evaluation 
mechanism. Since LISP functions have fixed input parameters, explicit use 
of the definition of eval can always be relaced by recursive invocation. 
Indeed, it was a study of the analogue in logic of eval in LISP which led 
the author and Ken Bowen to propose the amalgamation of object language 
and meta-language presented in this chapter. 

Incompleteness of the combined object and meta-lanquaqe 

The combination of object language and meta-language 
paradoxes of self-reference in natural language. The 
reconstruct them leads instead to the construction of 
unprovable sentence: 

avoids 
attempt 

a true 

the 
to 

but 

o Demonstrate(Pr' ,D) 

which mentions its own name D. The term Pr' nameS the definition Pr of 
Demonstrate. 

It is easy to show that, if Pr is consistent and correctly 
represents the provability relatIOn, then -neither the sentence named Q 
nor its denial be derived from Pr. 

Proof: 
Consider the two cases: 

(1) The sentence named D can be derived from Pr. 
(2) Its denial Demonstrate(Pr' ,D) can be derived from Pr. 

Case (1) By the assumption of correct representability, (1) 
impl ies that 

Demonstrate(Pr',D) 
both the sentence 
Pr, contradicting 
consistent. 

can be 
and its 

the 

derived from Pr. But then 
denial can be derived from 

assumption that Pr is 

Case(2) By the assumption of correct representability (2) 
implies that 

the sentence named D can be derived from Pr. 

Again, both the sentence and its denial can be derived from Pr, 
contradicting the assumption that Pr is consistent. 

Since both cases lead to contradiction, neither the sentence 
named D nor its denial can be derived from Pr. 

But the proposition 

The sentence named D can be derived from Pr. 
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or equivalently (by correct representability) 

Demonstrate{Pr' ,D) 

is either true or false of the provability relation. We have just shown 
(Case 1) it is not true. Therefore its denial 

D , Demonstrate(Pr',D) 

is true, though unprovable. 

The sentence named 0 is related to negation interpreted as failure. 
Given the problem 

Dernonstrate(Pr' ,D) 

the proof procedure neither succeeds nor fails in finite time. (Finite 
failure would imply that 

D , Demonstrate (Pr , ,0) 

could be proved from the iff-definition of pr.) Thus the proof procedure 
does not terminate in its attempt to solve the problem, and therefore its 
denial 

D , Demonstrate (Pr , ,D) 

truly states that the problem cannot be solved. 

The sentence named 0 can be constructed in a variety of ways including 
the one used in Gadel's original incompleteness proof. 

More comprehensive form of the Demonstrate relation 

To simplify the discussion we have assumed that a proof procedure 
determines a two-place relation between assumptions and conclusions. In 
reality proof procedures are more complicated. They also accept control 
specifications which guide the proof strategy and they return output. It 
is more realistic, therefore, to regard a proof procedure as determining 
a four-place relation 

Demonstrate(x,y,u,z) 

which holds when 

given the assumptions named x, 
the conclusion named y and 
control named u, 
the proof procedure generates the output named z. 

The control parameter u might specify, for example, 

(1) whether one proof method or another should be applied, 
(2) whether one, all or "best" solutions are required, and 
(3) whether a proof, trace of the search, 
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substitution for variables in the conclusion, or 
simple Yes-No answer is required for the output z. 
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The trace of a proof procedure consists of the sequence of sentences 
and other expressions generated by the proof procedure during the course 
of searching for a solution. Thus the proof procedure may successfully 
return as output the trace of an unsuccessful search for a solution. It 
may also return a simple No-answer if it can determine that the search 
space contains no solutions. 

The more comprehensive form of the Demonstrate relation is useful for 
obtaining and processing lists of all solutions. This is especially 
useful in database applications to count all answers to a query or to 
print the list of all answers as a table. Given a Horn clause database S 
of suppliers and parts, for example, the Demonstrate relation can be used 
both to formulate and answer the question 

How many suppliers of stationery are located in London? 

(- Demonstrate(s, atom(Supplies,X.Stationery.NIL). 
atom(Location,X.London.NIL).NIL, all(X),z), 

Count(z,w) . 

Here all(X) specifies that a list 
substitutions for the variable 
Count(z,w) can be defined by 

of all distinct answers, consisting of 
X, is required for the output z. 

Count(NIL, 0) (-
Count(u.v, w) (- Count(v,w'), Plus(w' ,l,w). 

Instead of counting the list of all answers, a procedure 

Format (z,w) 

could rearrange the 
characters, so that 
appearance of a table. 

list 
the 

z, inserting new page, new line and space 
resulting list w, when printed, has the 

Exercises 

1) The top-level Dl-2 of the definition of the Horn clause provability 
relation can be tested for the problem of the Fallible Greek without 
defining the lOWer-level procedures in full. It suffices to supply 
assertions which solve the sub-problems which arise during the course of 
trying to solve the top-level problem. The following assertions are 
sufficient for renaming the procedures Fl-4 and for finding the parts of 
the resulting procedures. 

Renamevars(FI, goals, Fll) (-
Renamevars(F2, goals, F2 ) (-
Renamevars(F3, goals, F3 ) (-
Renamevars(F4, goals, F4 ) (-
Parts(Fl l , atom(Fallible,Y), atom(Human,Y).NIL) (-
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a) Supply assertions or simple procedures for the remaining 
conditions in D1-2. 

b) Using the assertions and simple procedures from (a), test 
01-2 for the problem of the Fallible Greek by using top-
down inference and backtracking to find a solution. 

2) Complete the definition 01-2 of the 
defining the lower-level procedures in full. 
useful to employ a different data structure for 
object language: 

Demonstrate relation 
For this purpose it 

naming expressions of 

by 
is 

the 

a) Predicate symbols and function symbols can be named by 
constant symbols. 

bl Constant symbols can be named 
names a number, e.g. 0, s(0), 

by terms const(t) 
etc. 

where t 

cl Variables can be named by terms var(t) where t names a 
number. 

dl Composite terms 
term(s,t) where 
list of terms. 

can be named by 
s names a function 

terms of the form 
symbol and t names a 

e) Atoms and lists of atoms in goal statements and procedure 
bodies can be named as before. 

f) Procedures can be named by terms proc(s,t) where s names 
the head and t the body of the procedure. 

g) Programs can be named by lists of the procedures they 
contain. 

hi Substitutions can be named by lists 
components of the form sub(s,t) where s 
and t names a term. 

of substitution 
names a variable 

Notice that a simple way to rename the variables in a procedure is to 

i) find T the maximum t such that var(t) occurs in the goals 
and 

ii) replace every occurrence of a variable var(s) in the 
procedure by an occurrence of the variable var(r) where 
r = s+T. 

The simple definition of the Match relation 

Match (exprl,expr2,sub) <- Apply(exprl,sub,expr3), 
Apply (expr2,sub,expr3) 

is liable to go into a loop when the two expressions do not match. A 
safer definition is the one which employs two substitution parameters, 
one for the current substitution which matches the parts of the two 
expressions which have been examined so far and another for the final 
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matching substitution. 

3) Modify the definition of the Demonstrate relation, defining the 
relationship 

Demonstrate (prog,goals,sub) 

which holds 
substitution 
solution. 

when the 
of terms 

program solves 
for the variables 

the goals and generates 
occurring in the goal as 

a 
a 

This can be done at the top-level simply by adding extra conditions to 
02. The substitution required in the head of the clause can be obtained 
by appropriately combining the substitution obtained by the recursive 
call to the Demonstrate procedure in the body of the clause together with 
the output component the substitution which matches the selected goal 
with the head of the procedure. 

4) Define the top-level of a deterministicl Horn clause interpreter 
for Horn clause programs. The interpreter can be made deterministic by 
explicitly managing the search through the top-down search space one 
branch at a time. 

Branches of a search space can be represented by lists of nodes. Each 
node consists of 

i) the list of goals at the node, 

ii) the selected goal, and 

iii) the list of untried procedures which have not yet been 
applied to the goal. 

To solve the initial collect of goals, process the branch whose only 
node consists of the initial goal statement, selected goal and the 
appropriate list of untried procedures. 

Any program successfully processes a branch whose tip contains the 
empty list of goals. 

To process a branch whose tip 
untried procedures for the selected 
head of the first untried procedure. 

node contains a non-empty list of 
goal try to match the goal with the 

i) If the match fails, remove the procedure from the list of 
untried procedures and process the new branch. 

i i) If the match succeeds, remove 
of untried procedures, add a 
goal statement obtained by 
procedure, and process the new 

the procedure from the list 
new tip containing the new 
applying the successful 

branch. 

To process a branch whose tip node has an empty list of untried 
procedures for its selected goal, backtrack by deleting the tip from the 
branch and processing the new branch. 
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5) Show that for any set of clauses S there exists a corresponding set 
of Horn clauses S* such that S is consistent (or inconsistent) if and 
only if S· is. Thus any problem which can be expressed in clausal form 
can be expressed by means of Horn clauses using the correspondence *. 

The correspondence can be established by showing that the provability 
relation for clauses in general can be defined by means of Horn clauses. 
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CHAPTER 13 

Logic, Change and Contradiction 

Logic can be used to represent information and to solve problems. But 
information changes and its representation needs to change accordingly. 
In this chapter we consider the processes by means of whiCh an 
information system needs to change in time. The information systems 
considered include not only programs and datahases but also more complex 
systems of the kind involved in scientific theories and computer-based 
natural language understanding. We shall consider in detail the role 
that contradiction plays in guiding the direction of change. 

Information systems 

Throughout this chapter the terminology information system, and 
sometimes belief system, is used to refer to any collection of 

(or beliefs) expressed in logic together with a proof 
maintenance procedures, which manage the way the 

system deals with change. 

Information systems include both assumptions which are explicit as 
well as consequences which are implicit. In practice whether a sentence 
is an implicit consequence is a matter of degree. The accessibility of a 
consequence depends upon the complexity of finding a derivation. The more 
complex the derivation, the more inaccessible its consequence. If a 
oerivation is too complex. its consequence is as inaccessible as if it 
were not implied at all. Thus different information systems may entail 
the same logical consequences but differ significantly in their pragmatic 
value. Useful consequences may be efficiently accessible in one system 
but practically inaccessible in another. 

Databases can be regarded as simple information systems. A database 
might change as the result of internal reorganisation or in response to 
incoming data and queries. The proof procedure is used not only to answer 
queries but also to assimilate new data into the database. There are 
four possibilities: 

The new data might already be implied by the database, 
imply existing data, 
be independent from it, or 
inconsistent with it. 

It is the last case which is most important. It includes both the case in 
which new data violates integrity constraints as well as the one in which 
it is an exception to a general rule. 



240 Chapter 13: Logic, Change and Contradiction 

Programs together with their specifications can also be regarded as 
information systems. A program which is inconsistent with its 
specification can be made consistent by modifying either the program or 
the specification. A program which is consistent with its specification 
can be changed by replacing an inefficient procedure with a more 
efficient one. It can also be changed by adapting it to a different 
purpose. 

In text comprehension, the information system consists of the reader's 
understanding of the text which has been read so far. It needs to change 
when new information needs to be assimilated. The new information might 
be the reader's interpretation of the next sentence in the text or it 
might be an hypothesis needed to explain information previously obtained 
from the text. In both cases the new information might be one among 
several alternatives. The new sentence might be ambiguous and admit 
alternative interpretations or the previous information might be 
explained by alternative hypotheses. If the new information is 
inconsistent with the current information system an alternative to the 
new information or to previously assimilated information may need to be 
considered. 

scientific theories can be interpreted as information systems which 
organise past experience and predict future ones. A theory may need to 
change in the light of new experience or as the result of a new 
hypothesis. An ambiguous experience can be reported in alternative ways, 
and alternative hypotheses might explain the same phenomena. The 
alternatives need to be compared by evaluating their effect on the state 
of the scientific theory as a whole. If an alternative renders the theory 
inconsistent then consistency can be restored by restricting or suitably 
modifying any of the premises which contribute to the contradiction. This 
includes both the case in which the new sentence is rejected and replaced 
by an alternative as well as the one in which the new sentence is 
accepted and an old one is rejected instead. 

Dynamics of information system change 

Both the situation in which an information system records its 
interaction with the environment and the situation in which it generates 
its own hypotheses result in the need to assimilate new information. 
There are four possible deductive relationships between the new 
information and the current information system. Each possibility suggests 
different candidates for the new system. 

(1) The new information already be derived the current 
informatIOn system. The information system successfully anticipates the 
new information and the new system is the same as the old one. 
Assumptions which participate in the derivation can be identified and 
their utility can be evaluated. More generally, assumptions can be 
evaluated by assessing the extent to which they contribute to the 
derivation of useful consequences. The evaluation of assumptions 
according to utility can be used later to help determine which 
assumptions should be abandoned or modified when a contradiction occurs. 

(2) Part of the information in the current system can be derived from 
the new--rnformatlon together with the information in the rest of the 
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system. The explicit assumptions of the new system consist of the new 
information together with the explicit assumptions of the old system 
without the part that can be derived. The new system subsumes the old 
one. It implies the same consequences and possibly new ones as well. The 
assessed utility of the assumptions which participate in the derivations 
can be increased by an amount which takes into consideration the number 
of derived consequences, the complexity of the derivations and the 
utility of the derived consequences themselves. 

The simplest example is the one in which the new information is an 
inductive generalisation of existing information. The situation in which 
it is an abductive assumption [Peirce 1931] is more complicated. Suppose, 
for example, that the current system already contains the information 

(1) 
(2) 

A & B & C (- D 
A 

Then the new information 

D 

is an abductive hypothesis. Together with (I) it implies (2). Moreover, 
it also implies Band C. In order to justify its incorporation into the 
information system, the hypothesis D may need to prove its utility. It 
can do so, for example, by showing that B or C is already redundantly 
contained in the existing database or by predicting them when they are 
introduced as new information later on. Generation of abductive 
hypotheses is similar to reasoning by means of defaults [Minsky 1975], 
[Reiter 1978b]. If A is given, then D is assumed by default unless it 
leads to contradiction or does not lead to sufficiently many useful 
consequences. 

Notice that cases (I) and (2) might 
better than the other depends upon the 
information system. 

both apply. whether one case is 
overall utility of the resulting 

(3) The new information is consistent with the information system but 
is independent of it. The new information can neither be derived from 
the current system nor be used to derive existing information. This is 
potentially an undesirable situation which may lead the system to seek an 
explanatory hypothesis, which together with the information in the rest 
of the system implies the new information. Of course, the hypothesis 
itself would also be independent and to justify its acceptance would have 
to imply other useful consequences in addition to the one which motivated 
its generation. The preceding example illustrates the situation. Suppose 
the information system contains the assumption 

A & 8 & C (- 0 

and the new information A is independent. If this leads the system to 
generate the hypothesis D, then D itself is independent and there is no 
net gain unless at least one of the additional consequences B or C can be 
independently confirmed. 

It is not always possible to determine in a reasonable time whether 
one or other of the four deductive relationships apply. In such cases, 
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whether the new 
information system 
added to it. 

information is logically related to the existing 
or not, it will need to be treated as independent and 

(4) The new information is inconsistent with the information system. 
A contradiction can be derived when the new information is introduced. 
The assumptions which contribute to the refutation can be identified, and 
consistency can be restored by rejecting or modifying one or more of the 
assumptions which lead to the contradiction. The previous record of the 
utility of assumptions can be used to help determine which assumptions 
should be changed. 

It is this last case, in which a contradiction occurs, which is the 
most important. 

Restoration of consistency 

Contradiction and its reconciliation play an important role in 
philosophy and in theories of problem-solving. It is the driving force 
behind change (thesis, antithesis and synthesis) in the Hegelian 
dialectic and the main instrument for advancing knowledge (conjectures 
and refutations [Popper 1963] and proofs and counter-examples [Lakatos 
1973J) in the Popperian philosophy of science and mathematics. In 
problem-solving, it is an advanced form of intelligent backtracking and 
an important component of truth maintenance problem-solving systems 
[Doyle 1978], [Stallman and Sussman 1977J. 

It is a major feature of Quine1s [1953] argument against the 
distinction between necessary and contingent truths that, when a 
contradiction arises, consistency can be restored by rejecting or 
modifying any assumption which contributes to the derivation of 
contradiction. No belief is immune from possible alteration. Even the 
laws of mathematics and logic, to the extent that they are included among 
the assumptions of information systems, are subject to critical 
assessment and change. 

This does not mean that any belief can be altered as easily as any 
other. Psychological attachment and even computational commitment may 
vary from one belief to another. Nor is it pragmatically desirable to 
treat different beliefs the same. Some contribute to the derivation of 
useful consequences more often than others; and some participate more 
often in the derivation of contradictions. It benefits the well-
functioning of the belief system as a whole, therefore, to abandon, among 
the beliefs which lead to contradiction, the one which contributes least 
to the derivation of useful consequences. In the longer term, if 
contradictions continue and the assessed utility of beliefs changes, it 
may be necessary to backtrack, reinstate a previously abandoned belief 
and abandon an alternative instead. 

Thus the deriVation of inconsistency contributes to the search space 
of alternative information systems. For each assumption which contributes 
to the derivation of a contradiction there exists at least one 
alternative new belief system obtained by abandoning or suitably 
modifying the assumption. The space can be searched in depth-first 
fashion, backtracking when a contradiction arises, or several branches 
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can be investigated in parallel. Parallel exploration of alternatives has 
the advantage that the consequences of abandoning a belief can be 
explored before a decision is made. Such parallel exploration of several 
internally consistent, but mutually inconsistent, belief systems may, of 
course, give an external the illusion of a single inconsistent 
system. 

The derivation of inconsistencies plays an important role in the 
development of computer programs and databases. Generally, when an 
inconsistency arises between a program and its specification or between 
data and integrity constraints, it is the program or the data which is 
rejected. Indeed, by definition, it is a main function of specifications 
and integrity constraints to rule out incorrect programs and data. None 
the less there are frequent occasions when it is necessary to abandon or 
modify the specification or integrity constraint instead. For example, 
given the conflict which arises between the integrity constraint 

No vehicles are allowed in the park. 

and the need for police and other emergency services to have access to 
the park, it is likely that preference will be given to the police and 
that the integrity constraint will have to be modified instead: 

No unauthorised vehicles are allowed in the park. 

Preference is also given to incoming data when it is treated as an 
exception to general rules. Early versions of a university department's 
timetable, for example, might be described by ambitiously general rules: 

All first year lectures are held in room 144. 
All lectures attended by more than 
80 students are held in room 145. 

Subsequent additions to the database 

The first year logic lectures 
are attended by 100 students. 

might result in contradiction. Consistency can be restored 
the new data as an exception to a general rule, replacing 
rule by a more restricted one 

All first year lectures, except 
logic, are held in room 144. 

by treating 
the original 

Notice in this last example that the assumption which has been 
modified is not necessarily the one which has been least useful in the 
past. What matters in general is not simply the utility of a belief but 
rather the difference between its utility and that of its replacement. 
Treating new data as an exception to a general rule when a contradiction 
arises has the advantage of avoiding the contradiction while pr'eserving 
most of the useful consequences of the existing information system. 

Contradiction also plays an important role in text comprehension. It 
helps to disambiguate sentences by rejecting interpretations which are 
inconsistent with the current interpretation of the text-so-far, and it 
helps to reject inconsistent explanatory hypotheses. If all 
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interpretations of a new sentence lead to contradiction, the system may 
attempt to restore consistency by altering a previous hypothesis or an 
interpretation of a previous sentence instead. 

Perhaps the classical example in which an information system needs to 
cope with contradiction is the case in which the report of an empirical 
observation or experiment contradicts a scientific theory. Whether it is 
more beneficial to reject the report or a statement of the theory depends 
on the overall effect on the information system. It is even possible that 
several alternatives might lead to incomparable, equally viable, but 
mutually incompatible, theories. 

As Lakatos [1974] argues, in a mature theory with a history of useful 
consequences it is generally more useful to reject an anomalous 
conflicting report than it is to abandon the theory as a whole. 

But it is almost never the case that a whole theory needs to be 
abandoned anyway. A complex information system is a collection of 
cooperating individual beliefs, some of which are more useful and more 
firmly held than others. Propositions which reside in the central core of 
a theory are more firmly held than those which are located closer to the 
periphery, where rival hypotheses may coexist as mutually incompatible 
alternatives. Reports of empirical observations can help to accumulate 
evidence in favour of one alternative over another. 

Even without restoring consistency, an inconsistent system can still 
organise useful information. Although in theory inconsistent assumptions 
imply any conclusion, in practice efficient proof procedures derive only 
relevant conclusions with varying degrees of accessibility. Indeed, it 
can be argued that practical provability, acheived by efficient 
resolution-based proof procedures, satisfies all of the criteria 
necessary for relevant entailment [Anderson and Belnap 1962]. 

Thus contradiction, far from harming an information system, helps to 
indicate areas in which it can be improved. It facilitates the 
development of systems by successive approximation - daring conjectures 
followed by refutation and reconciliation. It favours bold, easily 
falsified beliefs, which can be weakened if the need should arise, over 
safe, timid beliefs, which are difficult to strenthen later on. Better to 
make mistakes and to correct them than to make no progress at all. 

logic program for natural language 

As a test of the theory of information systems outlined in this 
chapter, a logic program for managing a natural language front-end to a 
logic database has been designed by the author with Jaqueline Shane and 
Karen Ritchie. A pilot version is being implemented using a theorem-
prover for the standard form of logic written by Krysia Broda. 

The top-level of the program 

Process(x,y,z,x') 

starting with an initial logic database x, processes a list y of natural 
language input sentences, producing a correlated list z of output 
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sentences, finishing with a new database x' at the end of the session. 

Process (db, nil, nil, db) (-
Process (db, input.restin, output.restout, newdb) (-

Represents (input, logic, control), 
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Assimilate (db, logic, control, output, interdb), 
Process (interdb, restin, restout, newdb) 

Here as in the previous chapter, lower case character strings (e.g. "db", 
"input", "restin") are variables. 

Represents {input, logic, control) holds when the natural language 
can be interpreted as consisting of a 
statement together with a control component. 

input 
logic 

Assimilate(db, logic, control, output, interdb) holds when assimilating 
the logic statement and associated control into 
the logic database results in an appropriate 
output and a new intermediate database. 

At the simplest level, control simply indicates whether a sentence is 
a declarative statement or a question. Here clause (1) deals with the 
case that the input is a question. The result of attempting to answer the 
question mayor may not be a proof. (2) deals with the case that the 
input is a declarative sentence already implicitly contained in the 
database. In both cases, (1) and (2), assimilation of the new information 
does not change the database. In the case A3, the next database consists 
of the new information together with part (stay) of the existing 
database. The new database implies all the data in the part (go) of the 
old database which is no longer explicitly contained in the new database. 
A4 adds the new information to the database if it cannot be derived or be 
used to derive existing information. AS deals with the case in which the 
new information is inconsistent with the current database. The new 
database results from analysing the proof of contradiction and restoring 
consistency. 

Al Assimilate(db,logic,control,output,db) (- Question(control), 
Demonstrate(db,logic,control,result) , 
ExtractOutput(result,output) 

A2 Assimilate (db,logic,control,output,db) (- Declarative (control) , 
Demonstrate(db,logic,control,result), 
Proof(result), IAlreadyKnowThat(output) 

A3 Assimilate(db,logic,control,output,nextdb) (- Declarative (control) , 
db = stay u go, 
nextdb = stay u {logic}, 
Vdata [data & go -) 

3result [Demonstrate (nextdb,data,control,result) & 
Proof(result)ll, 

ThanksForTellingMe(output) 

A4 Assimilate (db,logic,control,output,nextdb) (- Declarative (control) , 
Independent (db,logic,control) , 
nextdb = db u {logic}, 
Acknowledge (output) 
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A5 Assimilate (db,logic,control,output,nextdb) (- Declarative (control) , 
incon ; db U {logic}, 

proof(result), 
AnalyseFailureRestoreConsistency(incon,result,output,nextdb) 

This is only a top-level sketch of part of the natural language 
program. Important lower level procedures need to be defined and 
specifications, such as A3, need to be transformed into efficient 
procedures. 

Our intention has been to deal with a restricted subset of natural 
language suitable for untrained database users. However we do not insist 
that input sentences be completely unambiguous. Certain ambiguities can 
be dealt with by allowing Represents to be non-deterministicl: others, 
such as those resulting from anaphora (nhe","she","it",etc.l, by adding 
extra parameters to the Represents relation in order to deal with the 
context of the previous natural language input. 

For users interacting with a database it can be required that all 
information included in the database be described explicitly. Implicit 
assumptions, however, cannot be avoided in normal conversation and text 
comprehension, where hypothesis generation schemes, such as frames 
[Minsky 1975] and scripts [Schank 1975] are needed to fit sentences into 
a coherent framework. The natural language program can be extended, in 
theory at least, to accommodate the abductive generation of assumptions 
by adding extra procedures. Here, in the case that the input is 
independent from the existing database, clause A6 generates and adds to 
the database a new assumption which together with the rest of the 
database implies the new information. To be worth the effort, the new 
information must be sufficiently more useful than the incoming 
information itself. 

A6 Assimilate(db,logic,control,output,nextdb) (- Declarative (control) , 
Independent (db,logic,control) , 

Conclusion 

nextdb ; db U {newassump}, 
Demonstrate (nextdb,logic,control,result) , 
Proof (result) , 
newassump is more useful in db than logic, 
Ias5ume(newassump,output) 

The theory of information systems attempts to combine the traditional 
role which logic plays in epistemology and the philosophy of science with 
its new role in computing. It attempts to reconcile the use of logic 
without computational considerations with the use of complex, computer-
based computational systems without logical foundations. By exploiting 
the computational interpretation of logic, it hopes to contribute to a 
more useful communication of techniques between logic and computing. 
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