ARTIEICIAL INVELLEENGE SERIES

=

-

—~

N
Llogic
for Problem
Solving

Robert Kowalski

Imperial College of Science and Technalogy
University of London

/

-

w

A
E.J

NORTHHOLLAND
NEW YORK + AMSTERDAM - OXFORD

Elsevier Science Publishing Co., Inc.
52 Vanderbilt Avenue, New York, New York 10017

Sole Distributors Outside USA and Canada:

Elsevier Science Publishers B.V.
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 1979 by Elsevier Science Publishing Co., Inc.

Library of Congress Cataloging in Publication Data

Kowalski, Robert.
Logic for problem solving.
(Artificial intelligence series) {The Computer science library}
Bibliography: p.
Includes index.
1. Problem solving. 2. Electronic digital computers—Programming.
3. Logic, Symbolic and mathematical. 1. Title.

QASL3.K68 519.7 79-22659

ISBN 0-444-00365-7 (hbk.)

ISBN 0-444-00368-1 (pbk.}

Current printing {last digit)
109 8

Manufactured in the United Stotes of America

To

my parents

Table of Contents

) INtrodUuCtion.s ceuicseerineseriecosossnaraconnsoenncvsoocsosrsnsnnnansoecosel

The family relationships example and clausal fOIMiiieevsvenasrsaases?
A more precise definition of clausal form.....iveenencnnecreceneesa
Top—down and bottom-up presentation of definitions.....ecceeeveiaea?

Semantics of clausal form..... -
The fallible Greek example........... ceeesesesseannneen PR X
The factorial eXampPle..e...cevssssnsrosaannscannns N 1
The universe of discourse and interpretations......ceeeeeeesanssnol?
A more precise definition of inconsistency............. [
The semantics of alternative conclusionS............ Weeessconnsalsalb
Horn clauses........ testescaasnscsarnscannses ceessssasrescanccan oo 16
Mushrooms and toadstoolS.......ceeavee.- Cesseonsrsroannaaans NP ¥
EXerciseS...eirieeesvnces ttesossnsrancannmonn I X -
2 Representation in Clausal FOIM..eueeecannocacronnnnn cesteesseasrranannl2

INfiXx NOtAtiON.s.evivearoestoooarnooarsnonsseessscsrsnsannaansosssell
Variables and types of individuals.......... cecenssosssroannnun .23
Existence.c.ceeeiieceennnnnnens cecsesssesstesaancsannnons cesreneesad5
=T T e) o . -
Denial of conclusions which are implications,.....c.vceevesecees,.28
Conditione which are implicationS..c.cveeecceeseveransnsacnsoesnseld
Definitions and “"if-and-only-if"...cieeieneecanconroennsasansoanssll
SeMantic NEtWOIKS.ueeeeeeaoneeannocassoereceasnessonnnsssaansannssll
Extended semantic NEtWOLKS...sessessvensssoanncsasssascassnnssnssadld
The representation of information by binary predicate symbols.....33
Advantages of the binary representation....c...ccsevascsccssnsssnaes3b
DAt b aSES ettt nervseeorsssssaansceannocnstcottsnasssnssnaannsaansveasll
Data guery languageS........... D B P
Data desScription.eceeassenssseacssocansnscanssssssssssnnarsaansveseld
Integrity constraints......c.iciiineennnns Cehessacarssaannenn cees i
A departmental databasSe.....iceecvrsnssesaarracnovacsscssonssronasadl
EQUAlitY . e ineenrieenroronesnnansooanosernoosnnnans ceseracasscansad2
EXercisesS.....ccceecnsnes Pesesscerrsenssaces e 1.

3 Top-down and Bottom-up Horn Clause Proof ProcedureS.......cessseese..49

B e 1§ o o o) ¢ Y]
The parsing problem...... cevesrsavactsacasena ceeenseenrssersarnasaacd9
A predicate logic representation of the parsing problem....... ses.52
Bottom—up inference....viveesecescsrnannnaas L X
TOP—Cown INfELENCE. vt vrasaroosassssarrosonnnsnns tevenasmsaannsvesa5D
The family relationships example............ S S .0 57
Inference rules and search StrategiesS....ecsiveecesnssvscansaansnessdd
Infinite search spaces: natural NUODEIS.....ecuneesss P Y
Definitions ...eenvacnn.. O Y4
Substitution and Matching....cueeeeeiieatorsrescanceccnsssssnssandld
Correctness and completeness of inference SystemS..eesesessscasess?l

EXerCIiSeS .t inerienreesosnnoceanneescsevasssanssssaanenasvvoconnsnaastl
4 Horn Clause Problem—SOlViINg.....eeeeceeasssesssscssnnssnnaansaanssessald

Path=finding.eeeivereeeerassnorearevssrssncocnsnsansooscrnsenaaanveld
The water containers ProblemM....eeeeeeaecreonssssanccanncesnvosessald
A simplified path-finding problem.....cceveeenecnnccannvsssonnrsaal?
Graph-representation of search spaces....... Cecareasessenscaans ves 9

Table of Contents

The Search Spaces for the Water Containers Problem.......ceveees..81
Search strategies for path-finding...veeesteeessoassosssornnsnaara83

The and-or tree representation of problem-reduction.......... seese85
The problem-solving interpretation of Horn clauses..... teseesssesa8B
Splitting and independent subgoalS....eeesveees. teestscsasensasasaa89
Dependent SUbGO021S.cceiieeeernecannecrnocetnacannas tieeassanasanasIl
Finding versus showing........... P 2
Lemmas, duplicate subgoals and lOOPS.cceervscennoccnss [P
Search strategies for problem-reduction spaces......... Peeesrnonn .95
Bi-directional problem-s50lving....ceeireanrecnnnennnnes eeesneasssa99

A notation for describing bi-directicnal problem-solving...seas...101
Another formulation of the path-finding problem.....c.e0nuueean..102
Other aspects of problem—-Solving....eeeeceeearocsnncans [1 K
EXEICISeS . eunnutesnasennoscrnasesnoscnnonsnnonsns D 1 - 1

5 The Procedural Interpretation of Horn ClauseS...veeuunceeseecrseeesaalB?

Terms 25 data SEIUCEULES...viereesncoesnscssnsosovsssvesssannssalB?
Computation by successive approximation to output........ecuee... 169
The variation of input~output ParamMeterS...cesesscovecanssscoanns 116
Non-determinism;: several procedures match a procedure call......11l
Sequential search regarded 2S iteratioN...ceesveescesovoosssonananll?
"Don't know" versus "don't care” non-determinism.......cc0nn00...113
Non—determinismzz The scheduling of procedure callS......eeves..114

Bottom-up execution Of ProgramS...seeeesecacssasncoaasooannencnns 118
The pragmatic content of logic ProgramS........... P 71
Separation of data StrucCtUres...ciiieeiseieeenceerseccnneassns vaesal2l
Terms versus relations as data SCLIUCLULES.eeveasvovansosanseannsal22
Databese formalisms and programming languageS......ceveesesesees .124

Algorithm = LOGiC + CONErOleeeeeecesosssonnnssasssaanneannovsaceslddd
Specification of the control COMPONENt....ciseesseeanseesassveesad2?
Natural Language = LogiC + CONtrol..iieeceseecsseanseansssaeessl?9
EXELCISeS .y eeerreennonnnvmanannans Gecacscannsencecsasanuneeroes 129

6 Plan-Formation and the Frame Problem......ceevivevencvrcncssocnnnens 133

Plan-formation and the Dlocks WOTld...esvevvevrovravacassnannsnnas 133
A clausal representation of the blocks world problem......cv.....134
Bottom-up execution of the state space axiom (l2}.....c0ecveenn. .138
Bottom-up execution of the frame axiom {15)..ivsevcesscesvooassssl39
Mixed top-down and bottom-up execution of the frame axiom....... .140
Top~down execution of the state space and frame axioms...........143
Applications of plan—formMation...c.veeesveerrroessessssansascaanas 144
Limitations.. it iiieiiieesneeannoesstocrsansnnns vecsassaannsea145
D =] oo 1= = ...146

7 Resolution...eeeesacnnenn PO 1

Negative goals and assertionS.....cceeecaneeenen. F O 1 ¥}
RESOLIUEION . it ireervressnvsassserasonnsocsssonss ceeasaanaeesse.149
Middle out reasoning with Horn clauses......ceeveeeanncen- eeeassalbB
Propositional logic example...iieveeenceecarrecannnennn vevessansealbl
Arrow notation for non-HOIN ClausSesS......cvvesvansancccarncens ...156
Disjunctive solutions to non-Horn clause problemsS......s.ceees0...157
Factoring.eeesveesses Gaasseassseszssrusesaransssansssasnnne veessa159
Exercises....... T PP £

Table of Contents

8 The Connection Graph Proof ProcedUre......eesveeescassssssocnssanaaslf3

The initial connection graph...cceeiessceenccansarsosssovsnecnnas163
The Resolution of links in connection graphs...........c000ve0...165
Mixed top~down and bottom-up search - the parsing problem........168
Macro-processing and middle-out reasoninNgee..ee.vecrecencsessess.169
Arrow notation for controlling selection of 1inkS..ceeeeceessesssl78
Self-resolving clauses..... sseseenneena P I ¢
Deletion of links whose resolvents are tautologieS...............174
The connection graph proof ProcedUre....stcesssecsscansaarsassesal?d
EXErCiSeS..iierieeannnranosnnessscsesvonrnsannan tessevensennan eseasl?7

9 Global Problem—Solving StrategieS....c.cceesesscecrnanrcescsesnceanansl?9
Deletion of redundant SUbGOAlS.svervecnsssosennnenosssoessvennaaslBO

Addition of surrogate SUbgOalS...ecieeerrenseanssennonnesassnansalBl
Rejection of inconsistent goal statementS.....ciseeeevescansnsesslB2

Generalising the use of diagrams in geometry............ seveeonea 183
Goals as generalised SOlULiONSeeveessceanosssosnevnnnansnssesassalB84
Goal transformation and the information explosion...... esesscenns 185
Loop detection by analysis of differencesS.iesicecressesstsearssesalB5
The factOrial eXemPle..cc.ieencoasssecnccasonssecasonsoan ceeeneane 187
Invariant properties of pProceduUreS....eecroesesecscansaaseessssaslB88
Exercises...... tveveennoenan tereonnenn sevrrerneen sesssernsen feesl198
1¢ Comparison of Clausal Form with Standard FOrm.......ceveeennnn ceeesl93

Introduction to the standard form of 10QiC.iesvuicuseassecsnvensaald3
Conversion to clausal fOrmM....ce.veerinsevnerenanoonnnnnnecnsoaaaald?
Comparison of clausal form with standard form......vevsevencnes..200
Conjunctive conclusions and disjunctive conditionsS...eeveeecases..208
Disjunctive conclusions..... P]
Only—-if halves of definitioNS.seesveerioanosssnoovannnn teveesveas 202
Implications as conditions of imMpPlicationS...eueeveearsneassasees.202
Derivation of programs from specifications....... tsvevreeanse ceea.204
EXerCISEeSeeeineneratseecasosnnannoanans teceunsssan (1 1Y

11 If-and-only-if...... U3 X

The need for the only-if halves of definitions....eeveececaasnssa21l
Terms versus relations as data structures......... - IV
The unstated only-if-assumption......c.icerveenneenosccnesncenneaslld
Ambiguity of only=if.. ...t iriieinoeennenscansacrnesnnannsnseealld
Object language and meta-language SoOlutionNS....iieseveancascaesesa2ld
Object language and meta-language interpretations of negation....217
Horn clauses augmented with negation interpreted as failure......219
Proof of pProgram PrOPErtieS..ceeeseceecrscnccanaroarsnsoosssnsonse 221
The monotonicity criticism of logical CONSEQUENCE.«.vastvesssenss222
190 33 o ob ¥=1= = J P K |

12 Formalisation Of Provability.iseecenrenconoconeononnsannannassessssel2d

Correct representability..saseeeereernceccocceaccocrnnoennesn reana226
A simple definition of a provability relation..... P X |
Direct execution versus simulation......ecieeevsnccessenoens ee...228
Addition and suppression of assumptions........... ieeresserevsesa230
BOOLSEraPPING e ucrreennoersnsosrsvessoncnnesnocanca P) §

Table of Contents

Combining the object language and meta-language........seooavseea232
Incompleteness of the combined object and meta-language..........233
More comprehensive form of the Demonstrate relation......eceev....234
Exercises..... Chesssannee X 1<

13 Logic, Change and Contradiction..... Catecaannees Ceceeaans certieeaans 239

Information systems...... ceveresaaans X 1. |
Dynamics of information system change.........eeceiinveveccanns..240
Restoration of consistency...... Cereeaaneeas X ¥
A logic program for natural 1anguUage....eeeseecescsesanssssoscsesa2dd
Conclusion........... ceteeieeraeae chasceereens cheraeene Cesaneans 246
References..... .2 ¥

INAeX.iueeenessonaunosnsosnsssannossvssossssansesssnsnsennsnsscasanssslbl

Preface

This book investigates the application of logic to problem-solving and
computer programming. It assumes no previous knowledge of these fields,
and may be appropriate therefore as an introduction to

logic,
the theory of problem-solving, and
computer programming.

Logic

Logic 1is an important tool in the analysis and presentation of
arguments. It investigates whether assumptions imply conclusions,
independently of their truth or falsity and independently of their
subject matter. This book aims to apply the traditional methods of logic
to contemporary theories of problem-solving and computer programming.

As an introduction to logic, the book differs from others in its use
of the clausal form of logic. This has several advantages. Clausal form
is simpler than the standard form of logic but is just as powerful. It is
simple enough to be introduced directly, without the usual preliminary
study of propositional logic, and it bears greater resemblance than
standard form to other formalisms used in data processing and computer
programming.

This book is not concerned with the wmathematics of logic but with its
applications. For an interesting and wmore thorough discussion of the
relationships between logic and language the reader is advised to consult
the books by Quine [1941) and Hodges [1977].

Problem-solving

The clausal form of logic can be used to elucidate and compare models
of problem-solving developed in cognitive psychology and artificial
intelligence. This book investigates the heuristic search, problem-
reduction and program execution models of problem-solving and argues that
logical inference provides a model which is both simpler and more
powerful.

The interpretation of logical inference as problem-solving builds upon
the distinction between bottom-up reasoning, forward from assumptions to
conclusions, and top-down reasoning, backwards from goals to subgoals.

Problem—-solving

The problem-solving interpretation of inference is primarily the top-down
interpretation. Bottom-up inference is the manner in which solutions are
generally presented and Jjustified, whereas top-down inference is the
manner in which solutions are most often discovered. Bottom-up inference
is the synthesis of new information from o0ld; top-down inference is the
analysis of goals into subgoals.

This book covers similar ground to the problem-solving sections of the
books by Nilsson [1971], Winston [1977] and Bundy et al [1978]. Where
those books use production systems, LISP or LOGO as the unifying
formalism, ours uses the clausal form of logic.

Computer programming

Employed as a language for communicating with computers, logic is
higher-level and more human-oriented than other formalisms specifically
developed for computers. In contrast with conventional computing
methodology, which employs different formalisms for expressing programs,
specifications, databases, queries and integrity constraints, legic
provides a single uniform language for all of these tasks. We shall
investigate the use of logic for databases, but concentrate on its use as
a programming language.

The meaning of programs expressed in conventional languages is defined
in terms of the behaviour they invoke within the computer. The meaning
of programs expressed in logic, on the other hand, can be defined in
machine-independent, human-oriented terms. As a consequence, logic
programs are easSier to construct, easier to understand, easier to
improve, and easier to adapt to other purposes.

The same methods of top-down inference which give logic a problem—
solving interpretation can be used to execute logic programs efficiently
by means of computers. Top-down inference unifies problem-solving and
computer programming. Moreover, it provides many of the facilities for
intelligent program execution, such as non-determinism, parallelism, and
procedure call by pattern-matching, which are under development for more
conventional programming languages today. An efficient programming
language, called PROLOG [Colmerauer et al 1972), [Roussel 1975],
[Bruynooghe 1976], {[Warren, Pereira and Pereira 1977] and [Clark and
McCabe 1979], based on the clausal form of logic, has been used for
applications in artificial intelligence, databases and engineering.

Mechanical theorem~proving

The use of the clausal form of logic and its associated systems of
inference 1is based upon investigations into the mechanical proof of
theorems by means of computers. The resolution rule of Robinson [1965a]
and the model-elimination proof procedure of Loveland [1968, 1969} have
been the main antecedents of the inference systems investigated in this
book. Their inference methods in turn are based upon earlier researches
by Berbrand {1930] and Prawitz ([1968].

Organisation of the book

direction of change. This combines the problem-solving interpretation of
logic with the classical use of logic in the analysis of human knowledge
and belief.

Level of the book

This book 1is an extension of lecture notes prepared in March 1974
[Kowalski 1974b) for an advanced course on the Foundations of Computer
Science held at the Mathematics Centre in Amsterdam. Short courses on the
same material were given by the author in Edinburgh, Milan, Rome and
Stockholm, between 1973 and 1975. Since 1975, parts of the book have been
used for introductory courses in logic and in problem-solving given to
computing students at Imperial College. A complete course covering all
the material in the book was given at the University of Syracuse in
1878.

The book is written at an informal level and contains almost no
proofs. It assumes no previous background in logic, problem-solving or
computer science, and may be suitable,therefore, for students at the
first year undergraduate level. Many of the exercises, however, are of a
more advanced level. Moreover, some of the discussion in Chapter 5,
comparing logic with conventional programming languages, may not be
completely intelliigible to readers without previous programming
experience.

Acknowledgements

Much of the material in this book has been influenced by the work of
my colleagues Keith Clark, Alain Colmerauver, Pat Hayes, Maarten van Emden
and David Warren. I am grateful to them and to Frank Brown, Alan Bundy,
Tony Hoare, Wilfred Hodges, Chris Hogger, Jan Nilsson, George Pollard,
Ray Reiter, Richard Waldinger and George Winterstein, for the valuable
comments they have made on earlier drafts of the book, and to Karen King,
Frank McCabe, Kevin Mitchell and Chris Moss, for helping to produced the
camera-ready copy. I am also happy to acknowledge the support of the
Science Reseach Council.

I am especially indebted to my wife, Danusia, and children, Dania,
Tania and Janina, for their patience and encouragement,

Preface

Although the inference methods in this book were originally designed
for use by computers, they can also be used by human beings. The problem-
solving strategies developed for efficient mechanical theorem-proving are
similar to those investigated by researchers concerned with computer
simulation of human problem-solving. In particular we have attempted to
present a view of logic which reconciles the machine-oriented view of
resolution with the heuristic proof-procedures of Bledsoe [1971, 1977}
and his colleagues.

This book can be regarded as a text in the field of mechanical
theorem-proving, similar to those by Chang and Lee [1973], Loveland
[1978] and Robinson [1979]. It is less formal, however, and makes no
attempt to give a broad coverage of the field.

Organisation of the book

The book is organised into three parts. The first part, Chapters 1 and
2, deals with the machine-independent semantics of the clausal form of
logic and the use of clausal form for representing information; the
second part, Chapters 3 to 8, deals with inference systems for clausal
form; and the third , Chapters 9 to 13, investigates extensions of
clausal form as well as more powerful problem-solving methods.

The first part of the book emphasises that logic, unlike most other
formalisms, can be understood without understanding its behaviour.
Examples are given of the use of logic for describing programs and
databases, and clausal form is compared with semantic networks for
representing the meanings of natural language sentences.

The second part of the book introduces inference methods for clausal
form in stages of 1increasing complexity. Chapters 3 to 6 deal with
inference methods for Horn clauses, which are simplified sentences,
mainly of the form

A if By and By and ... and Bp.

Top~down and bottom-up inference are introduced in Chapter 3 as
generalisations of top-down and bottom-up parsing procedures for context-—
free grammars. Chapter 4 deals with the problem-solving interpretation of
top-down inference, whereas Chapter 5 deals with its programming language
interpretation. Chapter 6 describes the application of Horn clause logic
to plen-formation problems. Inference methods for non-Horn clause
problems and their problem-solving interpretation are investigated in
Chapters 7 and B.

Chapter 9 deals with global problem-solving methods for clausal form,
whereas the remaining chapters investigate various extensions of clausal
form. Although clausal form is as powerful as the standard form of
logic, it is sometimes less natural. The standard form of 1logic and its
relationship to clausal form are investigated in Chapter 1@. Definitions
using "if-and-only-if" are treated separately in Chapter 11. In Chapter
12 we consider an extension of logic which combines the use and mention
of sentences in a manner similar to that of natural language. The final
chapter deals with the dynamics of changing information systems, paying
special attention to the role of contradiction in determining the

CHAPTER 1

Introduction

Logic studies the relationship of implication between assumptions and
conclusions. It tells us, for example, that the assumptions

Bob likes logic. and
Bob likes anyone who likes logic.

imply the conclusion
Bob likes himself.
but not the conclusion
Bob only likes people who like logic.

Logic is concerned not with the truth, falsity or acceptability of
individual sentences, but with the relationships between them. If a
conclusion is implied by true or otherwise acceptable assumptions, then
logic leads us to accept the conclusion. But if an unacceptable or false
conclusion is implied by given assumptions, then logic advises us to
reject at least one of the assumptions. Thus, if I reject the conclusion
that Bob likes himself then I am logically compelled to abandon either
the assumption that Bob 1likes logic or the assumption that Bob likes
anyone who likes logic.

To demonstrate that assumptions imply a conclusion, it 1is helpful to
construct a proof consisting of inference steps. For the proof to be
convincing, the individual inference steps need to be direct and obvious
and should fit together correctly. For this purpose, it is necessary that
the sentences be unambiguous and it is useful if the grammar of the
sentences is as simple as possible. The requirement that the language of
proofs be both unambiguous and grammatically simple motivates the use of
a symbolic language rather than a natural language such as English.

The symbolic language of the clausal form of logic, used in the first
nine chapters of this book, is exceedingly simple. The simplest sentences
are atomic sentences which name relationships between individuals:

Bob likes logic.
John likes Mary.

John is 2 years older than Mary.

{The underlined words are part of the names of relationships. Those not
underlined are names of individuals.) More complex sentences express that

2 Chapter 1: Introduction

atomic conditions imply atomic conclusions:
Mary likes John if John likes Mary.
Bob likes x if x likes logic.

Here x 1is a variable which names any individual. Sentences can have
several joint conditions or several alternative conclusions:

Mary likes John or Mary likes Bob if Mary likes x.
{Mary likes John or Bob if she likes anything at all).

x likes Bob if x is a student of Bob and x likes logic.

Sentences are also called clauses. In dgeneral, every clause expresses
that a number (possibly zero) of joint conditions imply a number
{possibly zero) of alternative conclusions, Conditions and conclusions
express relationships among individuals. The individuals may be fixed and
named by words such as

Bob, John, logic or 2

called (somewhat confusingly, perhaps) constant symbols, or they may be
arbitrary and named by variables such as

u, v, w, X, ¥, 2.

The use of function symbols to construct more complex names such as

dad (John) (i.e. John's dad)
fraction(3,4) (i.e. the fraction 3/4)
will be considered later.

This informal outline of the clausal form of logic will be elaborated
and slightly modified in the next section of this chapter. But the great
simplicity of clausal form compared with natural languages should already
be apparent. It is surprising therefore that clausal form has much of
the expressive power of natural language. 1In the last four chapters of
the book we shall investigate some of the shortcomings of clausal form
and propose ways of overcoming them.

The family relationships example and clausal form

It is convenient to express the atomic formulae which serve as the
conditions and conclusions of clauses in a simplified, 1if somewhat less
natural, form. The name of the relation is written in front of the atomic
formula, followed by the seguence of names of individuals to which the
relation applies. Thus we write Father (2eus,Ares) instead of Zeus is
father of Ares and Fairy-Princess(Harmonia) instead of Harmonia is a

fairy princess. Here, strictly speaking, "Fairy-princess” names a
property of individuals rather than a relation among individuals.
However, in order to simplify the terminology, we shall include
properties (also called predicates) when we speak of relations.

The family relationships example and clausal form 3

Moreover,to mix terminology thoroughly we shall refer to names of
relations as predicate symbols.

We use the arrow <—, read "if", to indicate implication, writing, for
example,

Female (x) <— Mother (x,y)
to express that
x is female if x is mother of y.
To simplify notation and the inference rules later on, it 1is
convenient to regard all clauses as implications, even if they have no
conditions or conclusions. Thus we write
Father (Zeus,Ares} <—

instead of
Father (Zeus,Ares).

Implications without conclusions are denials. The clause
<— Female (Zeus)

expresses that Zeus is not female.

The following clauses describe some of the properties and family
relationships of the Greek gods.

F1 Father (Zeus,Ares) <—

F2 Mother (Hera,Ares) <—

F3 Father (Ares,Harmonia) <—
F4 Mother (Aphrodite,Harmonia) <—
F5 Father (Cadmus, Semele) <—
Fé6 Mother (Harmonia,Semele) <—
F7 Father (Zeus,Dionysus) <—
F8 Mother (Semele,Dionysus) <—
F9 God (Zeus) <—

F1l4@ God (Hera) <—

F1l1 God (Ares} <—

F12 God (Aphrodite) <—

F13 Fairy-Princess (Harmonia) <—

4 Chapter 1: Introduction

The intended meaning of the clauses should be obvious. The following
clauses constrain, and therefore help to clarify, their meaning.

Fl4 Female(x) <— Mother (x,y)
F15 Male(x) <— PFather(x,y)

Fl6 Parent (x,y) <— Mother (x,y)
F17 Parent(x,y} <— Father (x,y)

These clauses state that, for all x and vy,
x is female if x is mother of y,
x is male if x is father of y,
X is parent of y if x is mother of y, and

x is parent of y if x is father of y.

Variables in different clauses are distinct even if they have the same
name. Thus the variable x in clause F14 has no connection with the
variable x in F15. The name of a variable has significance only within
the context of the clause in which it occurs. Two clauses which differ
only in the names of the variables they contain are equivalent and are
said to be variants of one another.

In the clausal form, all the conditions of a clause are conjoined
together (i.e. connected by "and"), whereas all the conclusions are
disjoined (i.e. connected by "or"). Hence the connectives "and" and "or"
can safely be replaced by commas. Commas between conditions, therefore,
" are read as "and" and between conclusions are read as "or". Thus
Fl8 Grandparent (x,y) <— Parent(x,z), Parent(z,y)

F19 Male(x), Female(x) <— Human(x)

where x, y and z are variables, state that for all x, y and z

X is grandparent of y if x is parent of z and
z is parent of vy,

x is male or x is female if x is human.

If several conclusions are implied by the same conditions then
separate clauses are needed for each conclusion. Similarly if the same
conclusion is implied by alternative conditions then separate clauses are
needed for each condition. For example, the sentence

Female(x) and Parent(x,y) <— Mother(x,y)

which can be expressed directly in the standard form of logic (defined in
Chapter 1#) can be expressed eguivalently by the clauses

The family relationships example and clausal form 5

Female {x) <— Mother (x,y)

Parent(x,y) <— Mother(x,y).
The two clauses are implicitly connected by "and": i.e. x is female if x
is the mother of y and x is the parent of y if x is the mother of y.
Similarly, the sentence

Parent (Xx,y) <— Mother(x,y) or Father (x,y)
can be expressed by the clauses

Parent (x,y) <— Mother (x,y)

Parent(x,y) <— Father (x,y)}

x is parent of y if x is mother of y and

x is parent of y if x is father y.

Predicate symbols can name relationships among more than two

individuals. For example, the atomic formula

Parents(x,y,z)
could be used to express that

x is the father of z and y is the mother of z

i,e, Parents(x,y,z) <~ Father(x,z), Mother(y,z).

A more precise definition of clausal form

We shall define the syntax (grammar} of clausal form more precisely
and at the same time indicate its correspondence with English,

A clause is an expression of the form

BlseeosBy <= Brsee Ay

where By,...,By,Ay,...,B, are atomic formulae, n > @ and m > #. The
atomic %ormulae BAls-.. B, are the joint conditions of the clause and
Bys...sBy are the alternative conclusions. If the clause contains

the variables x),...,xy then interpret it as stating that

for all x3,...,%g
By or ... or By 1f A; and ... and Aj.

If n = @ then interpret it as stating unconditionally that

for all X3 ... X
By or ... or Bp.

6 Chapter 1: Introduction

If m = @ then interpret it as stating that
for all Xy,... Xk
it iIs not the case that
Ay and ... and Ap .

If 1 =n =0 then write it as [J and interpret it as a sentence which
is always false.

An atom (or atomic formula)} is an expression of the form

P(Eysenasty)

where P is an m-place predicate symbol, tj,...,tp are terms and
m > 1. Interpret the atom as asserting that the relation called P

holds among the individuals called tyj,...,tp.

A term is a variable, a constant symbol or an expression of the
form

f(tlf-..,tm)

where f is an m-place function symbol, tj,...,t, are terms and m > 1.

The sets of predicate symbols, function symbols, constant symbols
and variables are any mutually disjoint sets. By convention, we
reserve the lower case letters

u,v,w,X,¥.2,
with or without adormments, for variables. The types of other kinds
of symbols can be identified by the positions they occupy in clauses.
The arrow of clausal form <— is written in the opposite direction to
that normally used in the standard form of logic. Where we write
B <—2&a (B if &)
it is more usual to write
A —> B {if A then B).

The difference, however, is only superficial. We use the notation B <— A
in order to draw attention to the conclusion of the clause.

The various places of a predicate symbol or function symbol are also
called its arguments. In the atom P(tl,...,tm), the first argument is £t
and the last argument is t.

Composite terms are needed in order to refer to infinitely many
individuals using only finitely many clauses. For example, the non-
negative integers can be represented by the terms

0, s(@), s{(s(B)), ..o, S(S(see5{(@)...)}, ue
_’W

n times

A more precise definition of clausal form 7

where @ is a constant symbol and s is a l-place function symbol (s stands
for "successor"). The term s(t) names the number which is one larger then
the number named by the term t. It is the successor of ¢t in the
succession of integers. The clauses

Numl Numb (§) <—
Num2 Numb {s (x)) <— Numb(x)
state that

is a number and

s{x) is a number if x is.

Top-down and bottom-up presentation of definitions

The definition of clausal form has been presented in a top-down
manner, The first definition explains the goal concept of clause in terms
of the concept of atomic formula, (which has not yet been defined). It
becomes the new goal concept, which in the next definition is reduced to
the two subgoal concepts of predicate symbol and term. The concept of
term is defined recursively and reduces eventually to the concepts of
constant symbol, variable and function symbol. Thus the original concept
finally reduces to the four concepts of predicate symbcl, constant
symbol, variable and function symbol. It does not matter what objects
these symbols are, provided they can be distinguished from one anotheg
and do not get confused with the "reserved" symbols:

<= , (and)
We assume therefore that the reserved symbols are not contained within
the other symbols.

The top-down presentation of definitions has the advantage of always
being well-motivated. Its disadvantage is that, since goal concepts are
defined in terms of subgoal concepts which are not yet defined,
definitions cannot be completely understood as they are presented.

The bottom—up presentation of definitions is the opposite. It begins
with concepts which are undefined, either because they are "primitive"
and undefinable or else because they are already well understood. Then it
defines new concepts in terms of onec already given, The definitions
terminate when the goal concept has been defined. Definitions can be
understood as soon as they are given, but the motivation cannot be
appreciated until all the definitions have been completed.

The distinction between top-down and bottom-up applies not only to the
presentation of definitions, but also to the presentation and discovery
of proofs and to the writing of computer programs. Proofs can be
presented in the traditional, bottom-up, mathematical manner; reasoning
forward from what 1is given, deriving new conclusions from previous ones
and terminating when the goal has been derived. Alternatively, proofs can
be presented in a top-down manner which reflects the process of their
discovery; reasoning backward from the goal, by reducing goals to

8 Chapter 1: Introduction

subgoals and terminating when all the subgoals are recognised as
solvable.

Computer programs also can be written bottom-up, starting with
primitive programs already understood by the computer and writing new
programs in terms of old ones. At each stage the programs can be executed
by the computer and can be tested. If the low-level programs already
written cannot be put together into suitable higher-level programs, then
they have to be rewritten. Experience teaches that it is better to write
programs top-down, writing the highest-level programs first in terms of
unwritten lower-level ones. The lower—level programs are written later
and are guaranteed to fit together properly. Moreover, the lower-level
programs later can be changed and improved without affecting the rest of
the program,

Together with the utility of using symbolic 1logic to represent
information, the distinction between top-down and bottom-up reasoning is
one of the major themes of this book. It is the distinction between
analysis (top-down) and synthesis (bottom-up), between teleology (top-
down) and determinism (bottom-up). Moreover, the use of top-down
inference in preference to bottom—up inference reconciles the classical,
logical view of reasoning as it ought to be performed with the
psychological view of reasoning as it 1s performed by human beings in
practice.

Top-down reasoning relates the human problem-solving strategy of
reducing goals to subgoals to the method of executing computer programs
by replacing procedure calls with procedure bodies. It unifies the study
of logic with both the study of human problem-solving and the study of
computer programming.

Semantics of clausal form

Syntax deals with the grammar of sentences. Historically, it also
deals with inference rules and proofs. Semantics, on the other hand,
deals with meaning. The translation of clauses into English gives only an
informal guide to their semantics.

In natural languages we speak casually of words and sentences as
having meanings. In symbolic logic we are more careful. Any meaning that
might be associated with a predicate symbol, constant symbol, function
symbol or sentence 1is relative to the collection of sentences which
express all the relevant assumptions. In the family relationships
example, for instance, if F1-19 express all the assumptions, then there
is nothing to rule out an interpretation in which the assertion

F Mother (Zeus,Ares) <—
holds. Such a possibility is consistent with the stated assumptions

F1-19, which alone determine any meaning that might be associated with
the symbols

"Mother™, "Father", "Zeus", etc.

Semantics of clausal form 9

To rule out the possibility F we need some additional assumption such as
F20 <— Male (x), Female(x).
F is consistent with F1-139 but inconsistent with Fi1-28.

Given a set of clauses which express all the assumptions concerning a
problem-domain, to understand any individual symbol or clause it 1is
necessary to determine what is logically implied by the assumptions. The
meaning of a predicate symbol, such as "Mother", might be identified with
the collection of all sentences which contain the predicate symbol and
are logically implied by the assumptions. Thus the meaning of "Mother" in
F1-2@ includes the denial

F* <— Mother (Zeus,Ares)
but the meaning of “"Mother" in F1-19 does not.

It follows that it 1is unnecessary to talk about meaning at all. All
talk about meaning can be reexpressed in terms of logical implication.
To define the semantics of the clausal form of logic, therefore, it
suffices to define the notion of logical implication.

In the clausal form of logic, to determine that a set of assumptions
imply a conclusion we deny that the conclusion holds and show that the
denial of the conclusion 1is inconsistent with the assumptions. The
semantics of clausal form, therefore, reduces to the notion of
inconsistency. To determine, for example, that the consequence F* is part
of the meaning of motherhood as determined by the clauses F1-28, we show
that the denial of F*, namely the assertion F, 1is inconsistent with
F1-20. The reduction of semantics to the notion of inconsistency may
seem unnatural, but it has significant computational advantages.

The inconsistency of a set of clauses can be demonstrated
"semantically” by showing that no interpretation of the set of clauses
makes them all true, or it can be demonstrated ‘"syntactically" by
constructing a2 proof consisting of inference steps. This book is about
the syntactic, proof-theoretic method of demonstrating inconsistency.
But, because c¢lauses can be understood informally by translating them
into English or more formally by considering the interpretations in which
they are true, we shall delay the investigation of inference rules and
proofs until Chapter 3.

The semantics of symbolic logic, based upon the notion of
interpretation, is independent of the inference rules used to manipulate
expressions 1in the language, This distinquishes 1logic from the vast
majority of formalisms employed in computing and artificial intelligence.
Programs expressed in normal programming languages need to be understood
in terms of the behaviour they evoke inside a computer. The burden of
communication falls upon the programmer, who needs to express information
in machine-oriented terms. However, when programs are expressed in
symbolic logic, they can be understood in terms of their human-oriented,
natural language egquivalents. The burden of communication then falls upon
the machine, which needs to perform mechanical operations (equivalent to
inference steps) to determine whether the information expressed in a
program logically implies the existence of a solution to a given problem,
The machine needs to be a problem—solver. The tasks of constructing

19 Chapter 1: Introduction

proofs, executing programs and solving problems become identical.
Moreover, similar problem-solving strategies apply, whether they are
applied by human-beings to problems posed in natural language or by
machines to problems posed in symbolic logic.

Before presenting the precise, semantic definitions of inconsistency
and interpretation, we shall illustrate by examples some of the
expressive capabilities of clausal form and some of the characteristics
of its sementics.

The fallible Greek example

To show that the assumptions

Gl Human (Turing) <—

G2 Human (Socrates) <—

G3 Greek (Socrates) <—

G4 Fallible(x) <— Human (x)

imply the conclusion that there is a fallible Greek, we deny the
conclusion

G5 <— Fallible(u), Greek(u)

and show that the resulting set of clauses is inconsistent. Moreover, the
demonstration of inconsistency can be analysed to determine the reason
for the inconsistency of G5 with Gl-~4, namely the substitution

u = Socrates

which identifies an individual that is both fallible and Greek. In this
way the clause G5 can be regarded as expressing the problem of finding an
individual u which 1is a fallible Greek. The substitution, u = Socrates,
which can be extracted from the proof, can be regarded as a solution to
the problem.

The example of the fallible Greek was first introduced to explain the
behaviour of programs written in the programming language PLANNER [Hewitt
1969]. Our intention here is just the opposite: to show that information
expressed in logic can be understood without understanding the behaviour
it evokes inside a machine.

The factorial example

The fallible Greek example 1is not typical of programs written in
conventional programming languages. However, the factorial example is.

The factorial of @ is 1.
The factorial of x+1 is x+1 times the factorial of x.

The factorial example 11

The simplest formulation of the definition uses function symbols:

fact (x) names the factorial of x,
times(x,y) the product of x and vy,
s (x) x+1.

A 2-place predicate symbol expresses equality. Equal(x,y) holds when x
llisll y.

Equal (fact (¢), 1) <-
Equal (fact (s(x)}, times(s{x), fact(x))) <—
To complete the definition, additional definitions are needed to

characterise "times" and "Equal”. The following clauses are typical of
the ones which are necessary for equality.

(1) Equal (x,x) <—
(2) Equal (x,y) <— Egquel(x,z), Equal(z,y)
(3) Equal (fact (x), fact(y)) <— Equal(x,y)

To find the factorial of 2, for example, we deny that it exists:
(4) <— Equal{fact(s(s(@))), w)
But (1) and (4) alone are inconsistent and the substitution

w = fact(s(s(2)))

can be identified as the reason for inconsistency. Unfortunately, the
substitution is not very informative.

The problem is that the function symbols "fact", "times" and "s" allow

numbers to be referred to by many different names. The variable-free
terms

s(s(@)), s(l), s{fact(#)), s(fact(times(B, s5(08))))
all name the same number 2 and are egual to one another. The problem can
be solved if individuals are given unique names. In this example it

suffices to employ only the constant symbol @ and the function symbol s.
The factorial and multiplication functions can be treated as relations.

Fact (x,y) holds when the factorial of x is y.
Times (x,y,2z) holds when x times y is z.

Then the clauses

Factl Fact(®, s{@)) <—

Fact2 Fact(s(x), u) <— Fact(x,v), Times(s(x), v, u)

completely define the factorial relationship relative to an appropriate

definition of multiplication. The equality relation does not appear and
its definition 1is unnecessary. Assume that a definition of

12 Chapter 1: Introduction

multiplication, including such clauses as
Times (@,x,9) <—
Times(s{@), ¥, y) <—
etc.

is provided. To solve the problem of finding the factorial of 2, we deny
that it exists.

Fact3 <— Fact(s(s(08)), w)

The resulting set of clauses Factl-3 1is inconsistent with any definition
of Times which implies the assertions

Times(s({s(@)), s(B), s(s{(B))) <
Times (s(B), s(@), s{@)) < .

Given a demonstration of inconsistency it is possible to extract the only
substitution

w = s{s(@))
which solves the problem., In this way the definition of Fact supplemented
by a definition of Times serves as a program which can be used by a

computer to calculate factorials. The program can be understood without
understanding how the computer works.

The universe of discourse and interpretations

In this section and the next we define the semantics of clausal form.
These sections are more rigorous than the rest of the chapter and may be
safely skimmed through on a first reading.

The two formulations of the factorial definition illustrate a general
principle of <clausal writing style. To avoid problems associated with
individuals having more than one name, constant symbols and function
symbols should be used sparingly. If individuals are named by unique
variable~free terms, then the universe of discourse of a set of clauses,
which intuitively represents the collection of all individuals described
by the clauses, can be identified with the collection of all variable-
free terms which can be constructed from the constant symbols and
function symbols occurring in the set of clauses. A candidate
interpretation for a set of clauses can then be regarded as any
assignment to each n-place predicate symbol occurring in the set of
clauses of an n-place relation over the universe of discourse.

The assumptions Gl-4 of the fallible Greek problem are a simple
example. They have a small, finite universe of discourse, consisting of
the two constant symbols

"Turing" and "Socrates".

The universe of discourse and interpretations 13

To specify a candidate interpretation is to specify a relation over the
universe of discourse for each of the three predicate symbols in the set
of clauses. Each predicate symbol can be assigned four different
interpretations and therefore the set of clauses as a whole has a total
of

4%4%4 = 64

different candidate interpretations.* But only two of them make all of
the clauses Gl-4 true. One of them makes all of the variable-free atoms

Human (Socrates)}, Human(Turing),
Fallible(Socrates), Fallible(Turing),
Greek (Socrates), Greek(Turing)

true. The other makes the atoms

Human (Socrates), Human{Turing),
Fallible(Socrates), Fallible(Turing),
Greek (Socrates)

true but Greek (Turing)
false.

The larger set of clauses Gl-5 has the same universe of discourse and
the same collection of 64 candidate interpretations. However, none of the
64 interpretations make all five clauses Gl-5 simultaneously true. The
two interpretations which make Gl-4 all true make G5 false. In particular
the instance

G'5s <— Fallible(Socrates), Greek{Socrates)

of G5, in which u = Socrates, is false in both interpretations, because
the two conditions

Fallible(Socrates) and Greek (Socrates)

denied by G'5 are true in both interpretations. Since G'5 is false in
both interpretations, G5 is false also (because a clause containing
variables is true in an interpretation if and only if all its instances
are true and is false if one of its instances 1is false). Therefore Gl1-5
is inconsistent because there is no interpretation which makes all of its
clauses true. By analysing the proof of inconsistency it is possible to
identify the individual

u = Socrates
whose existence is inconsistently denied by the clause G5.
The semantic method of showing the inconsistency of a set of clauses,

by demonstrating that no interpretation makes all of its clauses true,
is a general method which can be used for any set of clauses. Moreover,

* The symbol "*" is used throughout this book for multiplication.

14 Chapter 1l: Introduction

the interpretations which need to be considered can always be restricted
to those whose domain of individuals consists of the universe of
discourse. If the set of clauses contains no constant symbols, then it
is necessary to include in the universe of discourse a single, arbitrary
constant symbol. In this case the universe of discourse consists of all
variable-free terms which can be constructed from the given constant
symbol symbol and any function symbols which might occur in the set of
clauses.

The inclusion of an arbitrary constant symbol in the universe of
discourse, if there 1is none in the set of <clauses, formalises the
assumption that at least one individual exists. Because of this
assumption, the clause

(1) Good (x) <—

which expresses that everything is good, implies that at least one thing
is good. It is inconsistent with the assumption that nothing is good

(2) <— Good(y) .

The universe of discourse consists of some single, arbitrary constant
symbol, say -(-. There are only two candidate interpretations - one in
which

Good(*#—) is true
the other in which
Good(~}) 1is false.

The first interpretation falsifies (2}). The second interpretation
falsifies (1). So (1) and (2) are, therefore, simultaneously true in no
interpretation and are inconsistent. Notice that the demonstration of
inconsistency does not depend on the name of the arbitrary member of the
universe of discourse. The argument is the same no matter what constant
symbol is used.

The notion of interpretation itself can be simplified. To specify an
interpretation it suffices to specify its effect on the truth or falsity
of variable-~free atomic formulae. An interpretation of a set of clauses,
therefore, can be regarded as any assignment of either one of the two

truth values

true or false
to every every variable-free atom which can be constructed from the

universe of discourse and the predicate symbols occurring in the set of
clauses.

A more precise definition of inconsistency

We are now in a position to present a more precise definition of
inconsistency.

A more precise definition of inconsistency 15

A set of clauses S 1is inconsistent if and only if it is not
consistent. It is consistent if and only if all its clauses are true
in some interpretation of S.

A clause is true in an interpretation of a set of clauses S if and
only 1if every variable-free instance of the clause, obtained by
replacing variables by terms from the universe of discourse of §, is
true in the interpretation. Otherwise the clause is false in the
interpretation.

A variable-free clause is true in an interpretation I if and only
if whenever all of its conditions are true in I, at least one of its
conclusions is true in I. Egquivalently, the clause is true in I if
and only if at least one of its conditions is false in I or at least
one of its conclusions is true in I. Otherwise, the clause is false
in I.

The precise definition of inconsistency clarifies the semantics of the
empty clause, (. Since the empty clause has neither conditions nor
conclusions it cannot possibly be true in any interpretation. It is the
only clause which is self-inconsistent. To demonstrate the inconsistency
of a set of clauses it suffices to demonstrate that it logically implies
the obviously inconsistent empty clause. The empty set of clauses,
however, is consistent. All clauses which belong to it are true in all
interpretations, since it contains no clauses which can be false.

The notions of instantiation and substitution are important not only
for defining the semantics of clausal form but also for defining the
inference rules later on. An instance of a clause is obtained by applying
a substitution to the clause. A substitution is an assignment of terms to
variables. Only one term is assigned to any given variable. It is
convenient to represent a substitution as a collection of independent
substitution components:

{Xl=t1, Xy =t2, cewsy Xm=tm}

Each component x; = t; of the substitution assigns a term t; to a
variable x;. The result of applying a substitution ¢ to an expression E
is a new expression EoO which is just 1like E except that, wherever O
contains a substitution component x; = t; and E contains an occurrence of
the variable xj, the new expression contains an occurrence of t;. The
application of & to E replaces all occurrences of the same variable by
the same term. The expression E can be any term, atom, clause or set of
clauses. Different variables may be replaced by the same term.

It follows that distinct variables do not necessarily refer to
distinct individuals. The assumptions

Ll Likes (Bob,logic) <—
L2 Likes{Bob,x} <— Likes(x,logic)
L3 <— Likes(x,y), Likes(y,y)

No one likes anyone who likes himself.

16 Chapter 1: Introduction

for example, are inconsistent because L1 and L2 are inconsistent with the
instance

<— Likes(Bob,Bob), Likes{Bob,Bob)

of L3 in which both x = Bob and y = Bob.

The semantics of alternative conclusions

The precise definition of inconsistency clarifies the semantics of
alternative conclusions. If a clause has several conclusions, then it
should be interpreted as stating that if all its conditions hold then at
least one (but possibly more) of its conclusions hold. This inclusive
interpretation of "or" contrasts with the exclusive interpretation in
which "A or B" is interpreted as expressing that either one or other of A
and B holds, but not both.

The inclusive interpretation of "or" implies, for example, that the
set of assumptions

Bl Animal (x), Mineral(x), Vegetable(x) <—
B2 Animal (x) <— Oyster (x)

B3 Mineral(x) <— Brick(x)

B4 Vegetable (x) <— Cabbage (x)

is consistent with the possibility that something is both an animal and a
vegetable:

B5 Animal {x) <— Bacterium(x)
B6 Vegetable (x) <— Bacterium(x)
B7 Bacterium{ &) <—

The exclusive sense of "or" can be captured by means cf inclusive "or"
and denial. To express, for example, that every human is either male or
female but not both, requires two clauses:

Female (x), Male(x) <— Human({x)

<— Female(x), Male(x), Human(x)

Horn clauses

For many applications of logic, it is sufficient to restrict the form
of clauses to those containing at most one conclusion. Clauses containing
at most one conclusion are called Horn clauses, because they were first
investigated by the logician Alfred Horn [1951]. It can be shown, in
fact, (exercise 5 in Chapter 12} that any problem which can be expressed

Horn clauses 17

in logic can be reexpressed by means of Horn clauses.

The majority of formalisms for computer programming bear greater
resemblence to Horn c¢lauses than they do to "non-Horn" clauses. In
addition, most of the models of problem-solving which have been developed
in artificial intelligence can be regarded as wmodels for problems
expressed by means of Horn clauses.

Because Horn clauses are such an important subset of clausal form,
and because inference methods for Horn clauses have a simple problem-
solving and computer programming interpretation, we shall investigate
them in detail (in Chapters 3-6) before investigating the full clausal
form in general (in Chapters 7-8). It 1is important to appreciate,
however, that although non-Horn clauses might be dispensible in theory
they are indispensible in practice. Moreover, the extension of Horn
clause problem-solving wmethods to clausal form in general is a
significant extension of the simpler models of problem-solving which are
more popular today.

Mushrooms and toadstools

A simple example which can be expressed naturally only by means of
non-Horn clauses is one which expresses some typical beliefs concerning
mushrooms and toadstools. Suppose I believe

(1 Every fungus is a mushroom or a toadstool.
(2) Every boletus is a fungqus.

(3) All toadstools are poisonous. and

(4) No boletus is a mushroom,

Symbolically,

Fungl Mushroom(x), Toadstool(x) <— Fungus (x)
Fung?2 Fungus (x) <~ Boletus(x)

Fung3 Poisonous (x} <— Toadstool (x)

Fung4 <~ Boletus(x), Mushroom(x)

then I should also believe at least the more obvious of the logical
consequences of my beliefs. In particular I should believe that

All boleti are poisonous.
Fung5 Poisonous{x} <— Boletus(x)

But every collector of edible fungi knows that few boleti are
poisonous and most are guite tasty. If I reject the conclusion Fung5 and
maintain my belief in logic then I must reject at least one of my initial
assumptions Fungl-4. It is surprising how many people abandon logic
instead. .

18

Exercises

1) Using the same vocabulary

form:

a)

b}

c)

d)

e)

f)

X
y

is
is
is
is
is
is

Chapter 1l: Introduction

a mother of y if

(i.e. predicate symbols,

a female and x is a parent of y.

a father of y if

a male parent of y.

human if

a parent of x and y is human.

An individual is human if
his (or her) mother is human and
his (or her} father is human.

If a person is human
then his (or her) mother is human or
his (or her) father is human.

No one is his (or her) own parent.

2) Given clauses which define the relationships

Father (x,y) (x
Mother (x,y) (x
Male{x) (x
Female (x) (x
Parent (x,y) {x
Diff (x,y) {(x

is
is
is
is
is
is

father of y)
mother of y)
male)

female)

parent of y)
different from y)

define the following additional relationships:

M{x} (x
F{x}) (x
S(x,y) (x
D(x,y} (x
Gf (x,y) (x
Sib{x,y) (x

For example the clause

defines the

Aunt(X,Y)

relationship BAunt(x,y)

the Female, Sib and Parent relations.

is
is
is
is
is
is

(x

3) Let the intended interpretation of

mother)

father)

son of y)
daughter of y)
grandfather of y)
sibling of y)

L T VR VT s TR T]

<— Female{x), Sib(x,z), Parent(z,y)

is an aunt of y)

constants and
function symbols) as in F1-19, express the following sentences in clausal

in

terms of

Exercises 19

Hc (x) be x is a heavenly creature
Wa (x) x is worth discussing
Star (x) X is a star

Comet {x) X 1s a2 comet

Planet {x) x is a planet

Near (x,y) X is near y

HE (x) x has a tail.

a) Express in clausal form the assumptions:
Every heavenly creature worth discussing is a star, planet
or comet.
Venus is a heavenly creature, which is not a star.
Comets near the sun have tails.
Venus is near the sun but does not have a tail.

b) what "obvious" missing assumption needs to be added to the
clauses gbove for them to imply the conclusion

venus is a planet ?
4) Using only the predicate symbols, Numb, O0dd and Even, the function
symbol s, and the constant B, express in clausal form
a) the conditions under which a number is even,

b) the conditions under which a number is odd,

c) that no number is both odd and even,
d) that 2 number is odd if its successor is even,
e) that a2 number is even if its successor is odd,

E) that the successor of a number is odd if the number is
even and that the successor is even if the number is oda.

5) Let the intended interpretation of

Parity (x,odd) be x is odd
Parity (x,even) be x is even.

Let the notion of opposite parities be expressed by the two clauses

Opp (odd,even) <—
Opp (even,odd) <—

Define the notion of a number being odd or even using only three
additional clauses, two of them variable-free assertions.

6) Inventing your own predicate symbols, express the following
a2ssumptions in clausal form. Use only two constants, one to name my cat,
the other to name me.

20 Chapter 1: Introduction

Birds like worms.

Cats like fish.

Friends like each other.

My cat is my friend.

My cat eats everything it likes.

What do these assumptions imply that my cat eats?

7) Assume that arcs in a directed graph, e.q.

are described by assertions of the form

Distance({r,s,t) <-
(the length of the arch from r to s is t).

Thus the assertion
Distance(A,B,3) <-

describes the arc from A to B. Assume also that the relationship
Plus(x,y,z),

which holds when x+y = z, is already given. Using only one clause,

extend the definition of the relationship Dist{(x,y,z) so that it
expresses that there is a path of length z from x to Y.

8) Assume that the relationships

Empty (Xx) (the list x is empty)
First(x,u) (the first element of list x is u)
Rest (x,v) {the rest of the list x following

the first element, is the list v)

are already given. Pictorially, the relationship

holds when both of the conditions First(x,u) and Rest(x,v) hold.
a) Define the new relationship
Memb(z,x) (element z is a member of list x)

in terms of the First and Rest relations. Two clauses are

Exercises 21

necessary.
b) Define the relationship

Sub (x,y) (21l elements of list x
are elements of list y)

in terms of the Empty, First, Rest and Memb relations.
c) Assume

Plus(x,y,2z) (x +y = z)

is given. Define the relationship

Sum(x,w} (the sum of all elements in
the list of numbers x is w)

in terms of the Empty, First, Rest and Plus relations,

9) Using predicate symbols of your own invention, but no function
symbols or constants, express the following sentences in clausal form:

No dragon who lives in a zoo is happy.

aAny animal who meets kind people is happy.

People who visit zoos are kind.

Animals who live in 200s meet the people who visit zoos.

What two missing additional assumptions are needed to justify the
conclusion

No dragon lives in a zoo. °?

19) There are four different variable-free atoms which can be
constructed from the vocabulary of clauses L1-3. Consequently there are
16 gifferent interpretations of L1-3. How many of these interpretations
make both L1 and L2 true? How many make L3 true? How many make all of
L1-3 true?

22

CHAPTER 2

Representation in Clausal Form

In order to construct a mechanical problem-solving system, it 1is
necessary to express information in an unambiguous language. Moreover,
for the system also to serve as a model of human problem-solving, the
language needs to resemble the natural 1languages used by human beings.
The language of symbolic logic is both precise enough to be understood
and manipulated by computers and natural enough to be regarded as a
simplified form of natural language.

In this chapter, we shall compare the clausal form of logic with some
of the features of natural language. We shall also compare it with
semantic networks for representing natural language meanings and with
relational databases for representing information in computers. In order

to make the relationship between logic and natural 1language more
apparent, we introduce the infix notation for predicate symbols.

Infix notation

The informal notation used to introduce clausal form at the beginning
of the first chapter can be given formal status.

Binary (two-place) predicate symbols can be written between their
arguments. Instead of writing atoms in prefix form

= (x,y), < {(x,¥), Father({x,y)
we can write them in infix form

X =Y, x <Y, x is the father of y

respectively. The expression "is the father of" is regarded as a single
predicate symbol,)

Unary (one-place) predicate symbols can be written after their
arguments, without the attendant parentheses. Thus we can write

x is good <— x accomplishes y, y is good

instead of
Good (x) <— Accomplishes(x,y), Good(y).

Unary predicate symbols written after their arguments are also regarded

Infix notation 23

as infix notation.

For predicate symbols having more than two arguments, infix notation
distributes parts of a predicate symbol between its arguments. Thus we
can write

John gave book to Mary <—
instead of
Gave (John, book, Mary) <—

where "gave" and "to" are regarded as the first and second parts of the
single predicate symbol "Gave".

Infix notation, though easier to read, increases the possibility of
ambiguity. The expression

John is a student <—

in infix notation can be interpreted as either one of the two clauses
Student (John} <—
Isa{John,student) <—

in prefix notation. To eliminate ambiguity, we underline infix predicate
symbols and their parts. Thus the atom in the clause

John is a student <—
has one argument, whereas the atom in
John is a student <—

has two arguments. Underlining may be omitted, as in the case of the two
binary predicate symbols " = " and " < ", when there is no ambiguity.

Infix notation can also be employed for function symbols. We can write
x+y, x*y, x!, x+1, x's dad
for example, instead of
+{x,y), times(x,y), fact(x), s(x), dad(x).

Infix notation for function symbols and associated conventions for
reducing parentheses will be discussed again in Chapter S.

Variables and types of individuals

The analogue of variables in logic are such words in English as

"something®, "anything", "everything”,
"nothing", "a thing", "things".

24 Chapter 2: Representation in Clausal Form

For example,

<— x is good, x 1is bad
Nothing is both good and bad.

x is bad <— x accomplishes y, y is bad
Anything which accomplishes something bad is bad itself.

There are many occasions, however, in which logic uses a variable, but
English uses a word which refers to a specific type (or classification)
of individual, It is wusual in logic to name types by means of one-
argument predicate symbols. Thus, the English sentence

All men are animals.
would be expressed by the clause

X is an animal <— x is a man ,
The variable x in the clause is avoided in the English by referring to
the type "men"”. This is even more obvious if the English sentence is
paraphrased

Men are animals.
The English words "anyone", “"everyone", "anywhere", "somewhere'",
"anytime", "sometime" refer to individuals of type "human", "place”, and
"time”".

Relative pronouns in English, such as "who", "which" and "where" refer
to individuals already mentioned in the same sentence. For example

Anyone who eats animals is a carnivore.
x is a carnivore <— x is human,

x eats vy,

y is an animal

The restrictive relative clause

who eats animals

adds two extra conditions concerning the individual x mentioned in the
main sentence

Anyone is a carnivore.
X is a carnivore <- x is human

The non-restrictive relative clause, however, in the sentence
John, who eats animals, is a carnivore.
Jobn is a cornivore <~
John eats y <— y is an animal

adds an extra sentence to the main sentence.

The words "is a" occur so frequently in English that it is natural to
treat them as a single unit and to symbolize them by a binary predicate

Variables and types of individuals 25

symbol. Thus we write

X is a animal <- x is a human
treuting types as individuals rather than as properties of individuals.
The treatment of types as individuals increases expressive power. It
allows us to write clauses which refer to types by means of variables,
for example

Xis ay < xisaz, zis ay

which expresses the transitivity of "is a", Transitivity cannot be
expressed in clausal form if types are treated as properties.

Existence
The English word "some" expresses existence. In the standard form of
logic the existence of individuals can be expressed without giving them a
name. But in the clausal form of logic, existence is expressed by naming
individuals, using constant symbols and function symbols. The sentence
Some men are animals.
for example, can be expressed by means of the clauses
© is a man <-
@ is a animal <—
where the constant symbol is not used elsewhere to name a different
individual. Notice, however, that the same clauses can also be regarded
2s expressing the English sentence
Some animals are men.
The English words "has" and "have" often express existence. The

sentence

Zeus has & parent who loves him,

for example, can be reexpressed as
Some parent of Zeus loves him.
In clausal form, a constant symbol 1is needed to name the loving
parent. The rame doesn't matter provided it is not used elsewhere for a

different individual. If the constant symbol ® satisfies this
condition, then the sentence is symbolized by means of the clauses

(© is a parent of Zeus <—

@ loves zeus <~

26 Chapter 2: Representation in Clausal Form

To express that
everyone has a parent who loves him

the loving parent needs to be named by a function symbol. The simpler
clauses

@ is a parent of x <— x is a human

O loves x <— x is a human
express the stronger assumption that a single individual, who is a parent
of everyone, loves everyone. We need to express the more modest
assumption that for every human x there is an individual which is a
loving parent of x. Different individuals might have different loving
parents. The loving parent of x is a function of x and its name needs to
be constructed by a function symbol applied to x. Any function symbol can
be used, provided it 1is different from any used elsewhere. If the
function symbol ‘“par" satisfies this condition, then the term par(x)

names the 1loving parent of x and the sentence can be expressed by the
clauses

par(x) is a parent of x <— x is a human

par (x) loves x <— x is a2 human.

In 2 similar manner, the assumptions
Everyone has a mother.
Offices have desks.
Birds have wings.
can be symbolized, using function symbols, by such clauses as
mum(x} is a mother of x <— x is a human
© d(x) is a desk <— x is a office
d(x) is in x <— x is a office
w(x) is a wing <— x is a bird
w(x) is part of x <— x is a bird.
Individuals can be named by function symbols having several arguments.
The "English" sentence
For every individual x and every list y
there exists a list whose first element
is x and rest is y.

for example, can be expressed by the clauses

Existence 27

cons(x,y) is a list <— y is a list

x is the first of cons(x,y) <— y is a list

y is the rest of cons(x,y) <—y is 2 list

where the term cons(x,y) names the list

constructed by putting the element x in front of the list y. Although
the infix notation for the clauses is easy to read, the prefix notation
is more compact:

L(cons(x,y)) <= L{(y)
First(x, cons(x,y)) <— L{y)

Rest (y, cons(x,Y)} < L{y).

The existence of an individual which is referred to in the conclusions
of a statement needs to be expressed by a constant symbol or function
symbol. However, it needs to be expressed by a variable if the individual
is referred to in the conditions of the statement but not in the
conclusions. For example

One person is a grandparent of another if
he has a child who is parent of the other.

x is grandparent of y <— x is human,
y is human,
x is parent of z,
z is parent of y

It is often easier to understand a clause if variables which occur in
conditions but not in conclusions are read as expressing existence. For
example, the clause

Mary likes John <— Mary likes x
can be read as stating that
if there is anything that Mary likes at all,
then Mary likes John.
The clause
x has y <— z gives y to x

expresses that x has y if someone gives y to x.

28 Chapter 2: Representation in Clausal Form

Negation
Negation can be expressed directly in the standard form of logic. In
the clausal form it can only be expressed indirectly. The conclusion-
less clauses
<— Mother (Zeus, x)
<— Mother (x,y), Father(x,z)
for example, state that
Zeus is not the mother of anyone and
no one is both a father and a mother.
It is a feature of clausal form semantics that a negated condition
can be reexpressed as an unnegated conclusion., The sentence
Robert is at work if he is not at home.
which can be expressed directly with a negative condition

At (Robert,work) <— not-At (Robert,home)

in standard form can be expressed without negation in clausal form by
means of a non-Born clause

At (Robert,work), At{Robert,home} <— .

The sentence
not-Happy (John) <— not-Likes(Mary,John)

in standard form can be reexpressed in clausal form
Likes{Mary,John} <— Bappy(John}.

Notice that the different English sentences
Every fungus which is not a toadstool is a mushroom.
Every fungus which is not a mushroom is a toadstool.
Everything which is neither a mushroom nor a
toadstool is not a fungus.

all have the same clausal form

Toadstool {x), Mushroom(x) <— Fungus(X).

Denial of conclusions which are implications

In clausal form, to show that assumptions imply a conclusion, it is
necessary to deny that the conclusion holds and to demonstrate

Denial of conclusions which are implications 29

inconsistency. A typical conclusion often has the form of an implication:
All boleti are poisonous.
Poisonous{x) <— Boletus(x)

for example. 1In general, an implication is a Horn clause with a single
conclusion and one or more conditions. A Horn clause with a conclusion,
but no condition, is called an assertion. It is often convenient,
however, to use the terminlogy "implication" in the wider sense which
includes assertions.

To deny an implication it is necessary to assert the existence of
individuals satisfying 211 of the conditions and to deny that they
satisfy the conclusions. In this case, we assert the existence of an
individual, say ﬁ? , which is a boletus and deny that it is poisonous.

Boletus(¢) <—
<— Poisonous(9)
In Chapter 10, when we investigate the standard form of logic, we
shall formulate a systematic procedure for transforming denials of

sentences into clausal form. Meanwhile, it suffices to use the rule above
for denying conclusions which have the form of implications.

Conditions which are implications

In natural language and in the standard form of logic it is common for
a condition to have the form of an implication. For example, the
implication
All Bob's students like logic.

which has the structure of a Horn clause

X likes logic <— x is a student of Bob

is the condition of the sentence

{1) Bob is happy if all his students like logic.

Although the sentence can be expressed directly in the standard form
of logic, it needs to be paraphrased before it can be expressed in
clausal form. In Chapter 10 we shall present a systematic method for
transforming such sentences from standard form into clausal form. Here we
can illustrate the method by successively transforming the original
sentence (1) in English:

(2) Not all of Bob's students like logic if Bob is unhappy.

(The unnegated condition and conclusion of (1) become the negated
conclusion and negated condition of (2).)

3 Chapter 2: Representation in Clausal Form

(3) There is a student of Bob, who doesn't like
logic, if Bob is unhappy.

(The conclusion of (2), which is the denial of an implication, is
reexpressed by asserting the existence of an individual which satisfies
the condition of being a student of Bob but not the conclusion of liking
logic.)

4) There_is a student of Bob, say (@ ,
and doesn't like logic, if Bob is unhappy.

(The culprit is given a name.)

{S) is a student of Bob if Bob is unhappy.
() doesn't like logic if Bob is unhappy.

(The two conclusions are expressed by two sentences having the same
condition.}

(6) @ is 2 student of Bob or Bob is happy.
Bob is happy if (& 1likes logic.

(The negated condition is reexpressed as an unnegated conclusion and the
negated conclusion as an unnegated condition.)

{(7) ® is a student of Bob, Bob is happy <-
Bob is happy <— likes logic

The transformztion from English to clausal form can be compressed. In
the simple case where the English sentence has the form

A if B is implied by C.

i.e. A < [B <= C]

in the standerd form of logic, the corresponding clauses have the form
A, C ¢«
A <— B,

Complications arise when, as in the preceding example, the condition
B <—C

contains variables which need to be replaced by constant symbols or terms
involving function symbols.

Although sentences having conditions which are implications may appear
unnatural in clausal form, they have a natural problem-solving
interpretation, discussed in Chapters 7 and 8. In Chapter 18 we shall
investigate such sentences in dgreater detail. Until then we shall
concentrate on examples which can be expressed by Horn clauses, whose
conditions are simple atomic formulae.

Definitions and "“if-and-only-if" 31

Definitions and "if-and-only-if"

It is normal in mathematics and 1logic to express definitions by means
of "if-and-only-if":

x is grandparent of y if-and-only-if

there is a z which is child of x and parent of y.
The expression

A if-and-only-if B
is interpreted as meaning

A if B and A only-if B.
"A only-if B" is normally interpreted as

B if A,

This interpretation of "only-if®", however, 1is not the only one. In
Chapter 11 we shall discuss an alternative interpretation.

The expression "if-and-only-if" can be expressed directly in the
standard form of logic. In the clausal form, however, the two halves need
to be expressed independently. Moreover, the only-if half is often
unnatural. In the case of the only-if half of the grandparent definition

x is parent of rel(x,y) <— x is grandparent of y

rel(x,y) is parent of y <~ x is grandparent of y

a function symbol is necessary to name the relative of x and y who is a
child of x and a parent of y.

If-and-only~-if definitions and sentences having conditions which are
implications are the two main cases in which clausal form is more awkward
than both natural language and the standard form of logic. Until Chapters
19 and 11 we shall avoid complications by using only the if-halves of

definitions, which is adequate for most purposes.

Semantic networks

Many researchers in the field of artificial intelligence use semantic
networks, as an alternative to symbolic logic, to represent information
in computers. Semantic networks are used both as models of human memory
organisation and as representation schemes for the meanings of natural
language sentences.

32 Chapter 2: Representation in Clausal Form

A semantic network is a graph whose nodes represent individuals and
whose directed arcs represent binary relationships. Each individual is
represented by only one node. The information in the clauses F1l-6 of
Chapter 1, for example, can be represented by means of the semantic
network.

Hera

Father Father

Zeus Harmonia
Mother Mother
Aphrodite Semele

Father

Cadmus

In general, a semantic network can be regarded as equivalent to the
set of variable-free assertions represented by its arcs. An arc labelled
R directed from node s to node t

R
R

s t

represents the assertion

R{s,t} < .

Simple semantic networks have no provision for representing variables,
function symbols, n-ary predicate symbols or clauses having conditions or
alternative conclusions. As we shall see later, the restriction to binary
relations 1is not an important 1limitation, because every n-ary
relationship c¢an be reexpressed as the conjunction of n+l binary
relationships. Other restrictions, however, are more serious and have
motivated several investigators to propose extensions [Shapiro 1971,
1972], [Hendrix 1975], [Schubert 1977], all of which treat semantic
networks as an alternative syntax for symbolic logic. The one described
below treats extended semantic networks as a pictorial syntax for clausal
form [Deliyanni and Kowalski 1979].

Extended semantic networks 33

Extended semantic networks

As in simple semantic networks, nodes represent individuals and arcs
represent binary relationships. However, nodes can be constants,
variables or terms constructed using function symbols. Arcs can
represent conditions as well as conclusions and are grouped into clauses.
Conditions are drawn with two lines and conclusions with one heavy line
as before. Clauses containing more than one atom are delimited by
enclosing them within subnetworks. The extended semantic network

corresponds to the set of clauses
John likes Mary <—
John is a human <—
Mary likes John, Mary likes Bob <~ Mary likes x

Bob likes y <— y likes logic.

Apart from their pictorial aspect, semantic networks have two other
attractions: They provide a useful scheme for storing information, and
they enforce the discipline of using binary rather than more general n-
ary predicate symbols. The fact that every individual is represented by
a single node means that all information about the individual is directly
accessible from the node. This feature has been exploited in the design
of path-finding problem-solving strategies. In the next two sections,
however, we shall compare the use of binary predicate symbols with that
of more general n-ary predicate symbols.

The representation of information by binary predicate symbols

Every n-ary relationship can be reexpressed as a conjunction of n+l
binary relationships. For example, the assertion

John gave book to Mary <—

can be reexpressed in English:

34 Chapter 2: Representation in Clausal Form

There is an event e

which is an act of giving
by an actor John

of an object book

to a recipient Mary.

In clausal form, ignoring the assertion which describes that e is of
type "event", the single 3-place relationship can be reformulated as 4
binary relationships,

e is an act of giving <—
e has actor John <—
e has object book <—
e has recipient Mary <—

The semantic network representation
giving John

act of

object book

recipient
Mary

of the clauses 1is similar to the case structure analysis of natural
language employed in 1linguistics [Fillmore 1968] and artificial
intelligence {[Quillian 1968], [Schank 1973, 1975], [Simmons 1973].

In general, to replace an n-ary relationship by binary relationships
it is necessary to treat the n-ary relationship and its relation as
individuals (giving them names such as "e" and "giving" in the preceding
example). It 1is necessary to introduce a binary relationship which
expresses that the n-ary relationship belongs to the n-ary relation: in
this example, the binary relationship

e is an act of giving <— .

For every argument of the n-ary relationship, a binary relationship is
needed to express that the argument belongs to the n-ary relationship.

We shall refer to the representation of information by general n-ary
relationships as the n-ary representation and the corresponding
representation by means of binary relations as the binary representation.

Binary relationships <can replace n-ary relationships in both
conditions and conclusions of clauses. For example, the English sentence

A person possesses an Object
after it is given to him,

can be expressed in.the form

The representation of information by binary predicate symbols 35

For every event u in which x gives y to z,
there exists a situation, say result{u),
immediately after u, which is a

state of possession by the subject z of the
object y.

The systematic formulation of the sentence in <clausal form using
binary predicate symbols ignoring types, produces four Horn clauses all
having the same conditions.

is an act of giving,
has actor x,
has oBJect Yr

has recipient z

is an act of giving,
has actor x,

has object vy,

has recipient z

is an act of giving,
has actor x,

has object vy,

has recipient z

is an act of giving,
has actor x,

has object y,

has recipient z

result(u} jis immediately after u <—

(=3 =18 =1 =1

result(u) is a state of possession <—

cccoco

result(u) has subject z <—

ccccoc

result(u} has object vy <—

[= =J =3 =]

In this example, the binary representation is less compact than an n-
ary representation which includes explicit arguments for the act u and
the state result(u).

result(u) is immediately after u <—
u is an act of giving by x of y to z

result(u) is a state of possession by 2z of y <—
u is an act of giving by x of y to 2

However, if we assume that every act of giving has an actor, object and
recipient then the original binary representation can be reformulated
more compactly.

result(u) is immediately after u <— u is _an act of giving

result(u) is a state of possession <— u jis an act of giving

result{u) has subject z <~ u has recipient 2
result(u) has object y <— u has object y

36 Chapter 2: Representation in Clausal Form

Advantages of the binary representation

The binary representation is generally more expressive than the n-ary
representation. It makes it easier to add new information and to ignore
information that is unknown,
In the binary representation, relations and relationships are treated
as individuals. Consequently it is possible to talk about them in such
sentences as
Mary wants John to give her the book.
Mary wants e <— .

The corresponding expression in the n-ary representation
Mary wants (John gave book to Mary) <—

is not a legal sentence of clausal form.

The ability to talk about relationships in the binary representation
also makes it easier to add new information about a relationship. For
example, having expressed that

John gave the book to Mary

to add the new information that he did so in Hyde park requires only the
addition of a new assertion

Hyde park is the location of e <—

in the binary representation. But, in the n-ary representation, it
requires replacing the original assertion which used a 3-place predicate
symbol

John gave book to Mary <—
by a new one with a 4-place predicate symbol.

John gave book to Mary in Hyde park <—

Notice, however, that it is really the treatment of relationships as

individuals which 1is responsible for the advantages of the binary
representation in the preceding two examples. Both of the sentences

Mary wants e <—

Hyde park is the location of e <—

can be expressed in an n-ary representation with an an explicit argument
which names the relationship e.

e is an act of giving by John of book to Mary <—

The binary representation is also more convenient than the n-ary

Advantages of the binary representation 37

representations when components of a relationship are unknown. For
example, to express that

the book was given to John

it suffices in the binary representation simply to state what is known
and to ignore what is unknown.

e' is an act of giving <—
e' has object book <—
e' has recipient John <—

In the two n-ary representations, on the other hand, it is necessary to
give the unknown actor a name.

_@, gave book to John <—
or e' is an act of giving by fOL of book to John <-—

The argument in favour of binary relations is not conclusive. There
are many relationships, such as

times y is z,

received grade y for course z,

is the y-th element of seguence z, and
1s a proof that the assumptions «x
imply the conclusion y

obtained by the proof procedure u,

< M oM X

for which an n-ary representation is more convenient than the binary
representation. The use of general n-ary relations moreover is more
common than the use of binary relations in the field of databases.

Databases

A database is a collection of information to be used for a variety of
purposes. A typical database might contain a firm's personnel records,
details of bank transactions or the police files of convicted criminals.
Increasingly, such databases are represented in a form which can be
processed by computers. These are used to update the databases, to check
the consistency of data, and to answer requests for information.

A single database might be used to obtain information by many users
with little computer training. In this case the data need to be
represented in a simple form which is independent of its representation
inside the computer. Consequently, the database query language must be
both simple to learn and easy to use. It is now widely accepted that
these requirements can best be satisfied if data are viewed as relations
[Coda 1974]).

The relational view of data is equivalent to the representation of
data by tables: The argument positions of a relation can be regarded as
the columns of a table and the relationships which make up the relation
are its rows. Thus the 5-column, 3-row table

38 Chapter 2: Representation in Clausal Form

Birthday club Name Office Dues Birthdate Date joined

Mary | president| 10p 4.Mar.77 4.Mar.77
John secretary | 1dp 2,Mar.78 2.Mar.78
Bob treasurer | 10p 1,Jan.8@ 1.Jan. 88

represents the 5-argument relation which is described by the 3
assertions:

Club(Mary, president, 18p, 4.Mar.77, 4.Mar.?77) <-
Club(John, secretary, 1lép, 2.Mar.78, 2.Mar.78) <—
Club(Bob, treasurer, 1@p, l.Jan.8@, 1.Jan.88) <-

The same information can be described by using binary predicate
symbols. In this example the binary representation can be simplified
because each row of the table can be uniguely identified by the value in
its first column. Accordingly, the value in that column is said to be a
key of the table. In the binary representation of the table, the key can
function as the name of the relationship which it identifies.

Bl Member {Mary, birthday club) <—
B2 Member (John, birthday club) <—
B3 Member (Bob, birthday club) <~
B4 Office (Mary, president) <-

B5 Office(John, secretary) <-—

Bé Qffice(Bob, treasurer) <—

B? Dues (Mary, l1l@p) <—

B8 Dues (John, 10p) <~

B9 Dues (Bob, 10p) <—

Bl1@ Birthdate(Mary, 4.Mar.77) <—

Bll Birthdate (John, 2.,Mar.78) <—

B12 Birthdate (Bob, 1.Jan.88@) <—

813 Datejoined(Mary, 4.Mar.77) <

Bl4 Datejoined (John, 2.Mar.78) <—

B15 Datejoined(Bob, 1.Jan.B@) <—

Notice that the binary representation of the table, though more
longwinded, is easier to read than the n-ary representation. The names of
the columns, which are necessary for understanding the table, are not
represented in the n-ary representation, but are represented by binary
predicate symbols in the binary representation.

More importantly from a computational point of view, the binary
representation can often express general laws which could not be
expressed at all in the n-ary representation. In particular, the general
laws

Dues(x, 1@p} <— Member (x, birthday club)
batejoined(x,y) <— Member (x, birthday club},
Birthdate(x,y)

can replace the specific assertions B7-9 and B13-15 in the binary
representation, but cannot be formulated in the n-ary representation at
all.

Data query languages 39

Data gquery languages

The relational view of data has been used more for data queries than
for data description.

Most relational guery languages use the symbolism of symbolic logic or
relational algebra. Relational calculus query languages [Codd 1972] can
be regarded as using a binary representation of relations. Given, for
example, the data contained in the Birthday club and the Address tables

Birthday club Name Office Dues Birthdate Date joined

Address Name Street number Street Town

the query What Birthday club members live
on Euclid Avenue?

can be formulated in the binary representation

<— Answer (x)
Answer {x) <— Member (x, birthday club),
Street (x, Euclid Ave)

in a manner similar to that of the relational calculus. It can also be
formulated in the n-ary representation

<— Answer (x)
Answer (x) <— Club(x,y,z,u,v),
Address(x, y', Euclid Ave, z')

similar to that of the tabular query-by-example language [Zloof 1975].
The relationship between gqueries expressed in the clausal form of
logic and ones expressed in query-by-example has been investigated by van

Emden [1979). A classification of relational query languages, all based
on the standard form of logic, has been made by Pirotte [1978].

Data description

The relational model of data is not concerned with the formalism used
to represent data within the computer. It is compatible with any
formalism which can be viewed abstractly in terms of relations.
Nevertheless, the use of symbolic logic 1is especially attractive. It has
the advantage that the same formalism can be used both for expressing
queries and for defining data. Moreover, when the data can be defined by

48 Chapter 2: Representation in Clausal Form

means of general laws, the data definitions are indistinguishable from
programs. The sentence

Dues (x, 18p) <— Member (x, birthday club)

for example, can be regarded both as a general law and as a program which
computes the dues paid by members of the birthday club.

Symbolic logic was used before the relational model of databases to
describe both data and queries in question-answering systems. Among the
first systems were those described by Darlington [196%9] and Green [1968%a,
1969b]. The use of the "Answer" predicate symbol, in particular, was
introduced by Green. More recent systems have been developed in
Marseille [Colmerauer et al 1972], [Dahl and Sambuc 1976] and Maryland
[Minker et al 1873], {McSkimin and Minker 19771, and by Nicolas and Syre
{1974} and Kellogg, Klahr and Travis [1978].

Integrity constraints

Since data often contain errors, integrity constraints are wused to
describe properties which the data need to satisfy in order to be
correct. The clause

y is before z <— Today(z},
Member (x, birthday club),
Birthdate(x,y)

for example, expresses that all members of the birthday club were born
before today. If today were l.Apr.79

Today(l.Apr.7%) <
then given an appropriate definition of the is before relation, the data

Member (Bob, birthday club) <—
Birthdate (Bob, 1.Jan.B88) <~

would be inconsistent with the integrity constraint and should be
rejected by an intelligent database management system.

Using symbolic logic as a formalism for describing information blurs
the conventional distinction between databases and programs. Integrity
constraints for databases are indistinguishable from program properties.
The clause

X <y <— Fact(x,y)

for example, describes a property which needs to be satisfied by a
correct definition of the factorial relation. Like an integrity
constraint, its purpose is not to contribute to the definition of the
and Fact relations but rather to constrain the definitions from having
unacceptable properties.

Integrity constraints can be used for other purposes. They can be used
to reject inconsistent queries

Integrity constraints 41

What number is less than 1,360
and is the factorial of 5,200 ?

and to transform difficult goals into easier ones. The use of integrity
constraints to aid problem-solving is investigated in Chapter 9.

A departmental database

The PROLOG [Roussel 1975] Horn clause problem-solving system developed
in Marseille has been used for a variety of tasks which combine features
of both databases and programs. It has been used in Marseille for natural
language gquestion answering [Colmerauer et al 1972], [Dahl and Sambuc
1976] and symbolic integration [Bergman and Kanoui 19731, in Edinburgh
for plan-formation [Warren 1974, 1976], geometry theorem-proving [Welham
1976], [Coelho and Pereira 1975], the solution of mechanics problems
expressed in English [Bundy et al 1979] and compiler-writing [Warren,
Pereira and Pereira 1977] and in Budapest for computer-aided design
[Markusz 1977) and drug analysis [Futo, Darvas and Szeredi 1978]. 1In
London we have implemented part of a database which describes the
activities of our department. The following clauses are typical of those
used to describe the data.

X is occupied with y <— x teaches y

X 1is occupied with y <— x attends y

X is occupied with y <— x is member of committee y
9:30 is the hour of 304 <—

Fri 1is the day of 304 <

3 is the level of 364 <—

145 is the room of x <— 3 is the level of x

RAK teaches 304 <—

145 has capacity 60 <—

65 people attend 304 <—

X attends vy <— x is a student in year z,
z is the level of y

Problem-solving is the name of 304 <—

Here it is assumed that course 364 meets only once a week. If it meets
more often, then composite terms, part(304,1), part(304,2), for example,
might be used to name diferent parts of the course.

Various integrity constraints, such as

<-~ x is the room of y, x has capacity u,
v people attend y, u < v

can be expressed and tested for consistency with the data. Queries can be
answered by denying that they have an answer, proving inconsistency and
extracting from the proof the information needed to construct the answer.
Thus, to determine the activity with which RAK is occupied at 9:30 on
Fridays it suffices to deny that there is such an activity:

<— Answer {x)
Answer {(x) <— RAK 1is occupied with x,
9:30 is the hour of x,

Fri 1is the day of «x

42 Chapter 2: Representation in Clausal Form

The substitution x = 384

which can be extracted from the proof answers the guery. The answer
extraction can be done automatically by the problem-solving system.

Equality

Mathematical notation normally uses function symbols and the binary
predicate symbol = (equality) where we have used other predicate symbols.
It is usuval to write

x*y = 2 instead of Times(x,y,2z)
x! =y instead of Fact(x,y)
X = father (y) instead of Father(x,y}.

Similarly, the relational calculus query language uses function
symbols and equality, writing

office(x) = y instead of Office(x,y)

dues (x) =y 1instead of Dues(x,y)
birthdate(x) =y instead of Birthdate(x,y)
datejoined(x) = y instead of Datejoined(x,y).

Functional notation is often more compact than relational notation. It
is simpler, for example, to express

The date on which a member of the
birthday club joins the club is the
same as his birth date.
in the functional notation
birthdate(x) = datejoined(x) <— Member (x, birthday club)

than in the relational notation

Birthdate(x,y} <— Member (x, birthday club), Datejoined(x,y)
Datejoined(x,y} <— Member(x, birthday club), Birthdate(x,y).

Fquality is necessary whenever an individual has more than one name.
For example:

Jove = Jupiter <— .

It is also necessary, even in the relational notation, to express that
one arqument of a relation is a function of the others. For example:

X = y <— Father({x,z), Father(y,z)

To show that a set of clauses S containing the eguality symbol is
inconsistent, the set of clauses needs to contain the following axioms
characterising the eguality relation, for every function symbol £ and
every predicate symbol P occurring in S, (including the equality symbol) .

Equality 43

El X = x <—
E2 P(xl,...,xm) <—P(yl....,y); X1=yl, cenry xm=ym
E3 f(xl,...,xm) = f(yl,...,ymT <= X1=Y1s «esr Xp=¥nm

For example, to demonstrate that the assumptions

Jl Jekyl = Hyde <—
J2 father {John) = Hyde <—
J3 Member (father (John), birthday club) <-

imply the conclusion

Member (Jekyl, birthday club} <—
it is necessary to deny the conclusion
J4 <— Member (Jekyl, birthday club)

and add the appropriate axioms for the equality relation:

J5 X = X <—

Jé Member (xj,Xp) <— Member (yj.¥2), X3 = Y1, X3 = ¥
Ji7 X] = X3 <yl T Y2 X} T Y. X2 T Y2

J8 father (x) = father(y) <— x =y

The resulting set of clauses J1-8 1is inconsistent because J1-3 are
"obviously" inconsistent with the instances

Hyde = Hyde <—
birthday club = birthday club <—
Member (Jekyl, birthday club) <— Member (father (John), birthday club),
Jekyl = father (John},
birthday club = birthday club
Jekyl = father (John) <— Hyde = Hyde, Jekyl = Hyde, father (John) = Hyde

of J5-7. Clause J8 in this example does not contribute to the
inconsistency.

Problem-solving is considerably simplified if individuals have only
one name (distinct variable-free terms naming distinct individuals). Then
the single axiom

El X = X <—

expresses the only situation in which two individuals are the same (if
they have the same names). The infinitely-many axioms

D Diff(s,t) <

for every pair of distinct variable-free terms s and t, express the only
situations in which individuals are different (if they have different
names) . Given a finite set of clauses S the infinitely-many axioms D can
be replaced by finitely many clauses

44 Chapter 2: Representation in Clausal Form

Dl Diff (a,b) <—

for every pair of distinct constants a and b in S
D2 Diff(a, £(Xj,u..,xp)) <~
D3 Diff (£(xy,...,%Xg), @) <

for every constant a and function symbol f in S.

D4 Diff (£(Xq,evesXp)y G(¥Y]sener¥p)) <=
for every pair of distinct function symbols f and g in S.

DS Diff(f(xl,...,xm), f(yl,...,ym)) <— lef(xl,yl)
for every function symbol f in S and argument i of f.

Diff(x,y) is the same as not-(x = y). This can be expressed
Diff (x,y) if-and-only~if not-(x =y), i.e.
D*1 Diff (x,y) <— not-(x = y)
D*2 not-({x = y) <— Diff(x,y)

in the "standard form®™ of logic or

Diff(x,y), x =y <—
<— Diff(x,y), x = ¥y

in the clausal form. However, there is another interpretation of
Diff(x,y) only~-if not-(x = y)
which is different from D*2, namely

D* D*]1 describes the only condition for which the conclusion
Diff (x,y) holds.

D* talks about the sentence D*1. It is a sentence of the meta-language,
talking about individuals which are sentences of the object language.
The relationship between the object language, in which one uses
sentences, and the meta-language, in which one talks about sentences, is
investigated in Chapters 11 and 12.

To simplify matters for the remainder of the book we shall, whenever
possible, refer to individuals by unigue names, using the equality and
Diff predicate symbols only in conditions of clauses, except for their
"definitions":

El X = x <— and
D Diff (s,t) <—
for all pairs of distinct variable-free terms s and t.

In practice the Diff relation is defined by more efficient means.

Exercises

1) Express the following sentences in clausal form. Some of them are
ambiguous.

Exercises 45

a) Everyone likes someone.

b) Everyone likes everyone.

c) Someone likes everyone.

d) No one likes anyone.

e) No one likes someone.

f) Someone likes no one.

g) John and Mary like themselves.

h} A teacher is happy if he belongs to no committees.
(Paraphrase the sentence first: It is not the case that a
teacher is happy and belongs to some committee.)

i) Anyone who knows anything about logic likes logic.

2) In each of the following arguments the assumptions imply the
conclusion. Express the assumptions and the denial of the conclusion in
clausal form, so that the resulting set of clauses is inconsistent.
Demonstrate inconsistency by showing that the set of clauses is true in

no interpretation.

a) Assumption There is a single individual who is a loving parent of
everyone.

Conclusion Everyone has a parent who loves him.
b) Assumptions All easterners like all westerners.
All westerners 1like all easterners who like some
westerner.

Conclusion All westerners like all easterners without exception.

c) Assumptions Canaries are birds.
All birds have wings.

Conclusion Canaries have wings.

d) Assumptions Anything which accomplishes something good is good itself.
Anything which accomplishes something bad is bad itself.
War accomplishes both peace and suffering.
Peace is good and suffering is bad.
Conclusion Some things are both good and bad.

e} Assumptions x is a member of cons({x,y}.
X is a member of cons{u,y} if x is a member of y.

Conclusion A is a member of cons(C, cons{A, cons(C, nil))).

f) Assumption Bob is happy if all his students like logic.

46 Chapter 2: Representation in Clausal Form

Conclusion Bob is happy if he has no students.

3) The word "like" in exercise (6} of Chapter 1 disgquises two
different meanings. Redo exercise (6) distinguishing between the notions

x likes to eat y and
X likes to be with y.

You can do so either by using two completely distinct predicate symbols,
Like; and Like,, or by using a single three argument predicate symbol,
one of which is the name of an event (eating) or of a state (being with).

4) Express in clausal form the information represented in the
following semantic network and English sentences:

Subject-of

fire Prometheus forbid

Object Actor Act

humans

Recipient
e e'

The object of e' is any act of giving fire to humans.
If a ruler forbids an act which is performed by one of his
subjects then there is another event in which the ruler
punishes the subject.

5) This exercise is based on Schank's [1973, 1975) conceptual analysis
of actions. Let the intended interpretation of

Act(x,y} be x is an act of type y,

Possess{x,y,u) x possesses y in state u,
Actor (x,y) the actor of act x is vy,
Object(x,y) the object of act x is y,
Donor {x,y) the donor of act x is y,

Recipient (x,y) the recipient of act x is y.
Let the terms

ATRANS name the type of all acts of abstract

transactions,
GIVE the type of all acts of giving,
TAKE the type of all acts of taking,
result(u) the state immediately after the act u,
prior (u) the state immediately prior to the act u.

Express the following sentences in clausal form:

Exercises 47

a) In the state immediately after any act of type ATRANS, the
recipient of the act possesses the object of the act.

b) In the state immediately prior to any act of the type
ATRANS, the donor possesses the object of the act.

c) An act of type ATRANS is an act of giving if the actor is
the donor.

d) An act of type ATRANS is an act of taking if the actor is
the recipient.

6) Redo exercise (5) using equality and function symbols. Let

act (x) name the type of act x,
actor (x) the actor of x,
object (x) the object of x,
donor (x) the donor of x,
recipient (x) the recipient of x.

7} Let Parents(x,y,z) hold when x is the father and y the mother of z.
Formulate a set of clauses whose only variable-free assertions concern
the Parents relation but which imply the variable-free assertions Fl-8 of
Chapter 1.

8) Assume that data is given in the Supplier, Part and Supply tables:

Supplier Supplier-Number Name Status City

Part Part-Number Name Colour Weight

Supply Supplier—-Number Part-Number Quantity

Formulate the following queries in clausal form. Use both the binary and
the n-ary representations, taking advantage of the fact that Supplier-
Number is a key of the Supplier table and Part-Number is a key of the
Part table. Assume that the relationship

x <y {x is less than y)

48

Chapter 2: Representation in Clausal Form

is already given.

a)
b)
c)

d)

e)

)

q)

What are the numbers of suppliers of nuts?
What are the names of suppliers of bolts?
What are the locations of suppliers of nuts and bolts?

What are the names of parts supplied by the supplier named
John?

What are the names of suppliers located in London who
supply nuts weighing more than one ounce?

What are the names of suppliers of both nuts and bolts?

What are the names of suppliers of nuts or bolts?

49

CHAPTER 3

Top-down and Bottom-up Horn Clause Proof Procedures

Introduction

The parsing problem - to show that a string of words forms a sentence
according to given rules of grammar - can be represented in logic as a
problem of demonstrating the inconsistency of a set of Horn clauses.

Different parsing procedures for determining that a string is a
sentence correspond to different proof procedures for demonstrating
inconsistency. Top-down parsing procedures correspond to goal-directed
proof procedures which work backwards from the conclusion by wusing
implications to reduce problems to subproblems. The aim is to reduce the
original problem to a set of subproblems each of which has been solved.
Bottom-up parsing procedures correspond to proof procedures which work
forward from the initial set of assumptions, by using implications to
derive conclusions from assumptions. The aim is to derive assertions
which directly solve each of the initially given problems.

Top-down and bottom-up proof procedures apply to the solution of any
problem. Top-down inference is the analysis of goals into subgoals;
bottom-up inference is the synthesis of new information from old. 1n
this chapter we define top-down and bottom-up inference for Horn clauses
only. Later we shall extend their definition to non-Horn clauses and
investigate systems which combine both directions of inference.

The parsing problem

The following description of the parsing problem is based on Foster's
description [Foster 1978] of a formulation by Amarel.
Given a grammar and a string of words such as
"The slithy toves did gyre"

the problem is to demonstrate that the string is a sentence. This can be
done by filling in the triangle

5¢ Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

sentence
The slithy toves did g§re
with a parse tree:
sentence

noun phrase verb phrase

determiner verb

The slithy “toves "did gyre

The parse tree is constructed in accordance with a grammar. In this
example, the following rules of grammar have been used.

(1) A noun phrase followed by a verb phrase is a sentence.

(2) A determiner followed by an adjective followed by a noun
is & noun phrase.

(3) An auxiliary followed by a verb is a verb phrase.

(4) "The" is a determiner.
(5) "slithy" is an adjective.
(6) "toves" is a noun.

(7) “did" is an auxiliary.
(8) ‘“gyre" is a verb.

Different ways of filling in the triangle determine different parsing
procedures. Top-down procedures are determined by filling in the
triangle from the top downwards. Bottom-up procedures are obtained by
filling in the triangle from the bottom upwards.

A top-down procedure might generate all branches in parallel:

sentence

noun phrase verb phrase

The slithy toves did gyre

The parsing problem 51

or it might generate one branch at a time, say from left to right.

sentence

noun phrase verb phrase

The slithy ‘toves did gyre

Similarly, a bottom-up procedure might work on all words in the input
string in parallel:

sentence

determiner

adj noun au}r erb

T

The slfthy toves did gyre

or it might work on one word at a time.

sentence

noun phrase

determiner

The slithy toves did gyre

The triangle can be filled in from right to 1left, bi-directionally
top-down and bottom-up, and even from the middle out. Every systematic
method of filling in the triangle determines a parsing procedure. At this
point, it 1is important to distinguish mainly between the top-down and
bottom-up procedures.

52 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

A predicate logic representation of the parsing problem

There are many ways to represent the parsing problem in logic. The one
we describe here has the property that different parsing procedures
correspond to different proof procedures for the same representation.

We regard the initial string of words as a graph. A node of the graph
occurs between adjacent words of the initial string and also at the
beginning and end of the string. We regard words in the string as labels
on the arcs connecting adjacent nodes:

1 2 3 4
o— S o >0

the slithy toves did gyre

6
>0

Yo

The nodes are arbitrarily named 1-6. No ordering is implied by the
numbers used to name the nodes.

The rules of grammar can be regarded as statements concerning labelled
graphs:

If there is a path from node x to y labelled “the" then
the path from x to y is alsc labelled "determiner", i.e.

Det (X,y) <— the(x,y}.

If there is a path from x to u labelled "determiner” and a
path from u to v labelled "adjective" and a path from v to
y labelled "noun" then there is a path from x to y
lebelled “"noun phrase”, i.e.

Np(x,y) <- Det(x,u), Adj(u,v), Noun(v,y).
A parse of the initial string of words can be regarded as a graph

which is labelled according to rules of grammar and has a path, from the
beginning of the string tc the end, labelled "sentence":

sentence

verb phrase'

noun phrase

the slithy toves did gyre

The initial graph is represented by a set of assertions:

A predicate logic representation of the parsing problem 53

Parse 1 the(1,2) <—
Parse 2 slithy(2,3) <—
Parse 3 toves(3,4) <
Parse 4 did (4,5) <—
Parse 5 gyre(5,6) <—

The rules of grammar are represented by clauses containing variables:

Parse 6 Sent (x,y} <~ Np(x,z), Vp(z,y)

Parse 7 Np (x,y) <— Det (x,u), Adj(u,v), Noun(v,y)
Parse 8 Vp(x,y) <— Aux(x,z), Verb(z,y)

Parse 9 Det (x,yY) <— the(x,y)

Parse 1P Adj (x,y) <= slitby(x,y)

Parse 11 Noun (x,Y) <— toves(x,y)

Parse 12 Rux (x,y) <— did(x,y)

Parse 13 Verb(x,y) < gyre(x,y}

These are the only rules of grammar needed to parse the original string
of words. 1In a more realistic formulation of the problem, we have to
consider the use of other rules of grammar as well. For example:

Parse 14 Np (x,¥) <— Det(x,z), Noun(z,y)
Parse 15 Np (x,Y) <= Noun (X,y)

Parse 16 Vp(x,y) <— Verb(x,y)

Parse 17 Det (x,Y) <= a(x,y)

Parse 18 Adj (x,y) < brillig(x,y)

Parse 19 Noun(x,y) <— wabe(x,y)

Parse 20 Verb(x,y) <— gimble{x,y)

To show that the string of words from 1 to 6 is a sentence we show
that the denial of the goal

Parse 21 <— Sent{1,6)

is inconsistent with Parse 1-29.

Bottom-up inference

A bottom-up refutation begins with assertions in the input set of
clauses. It uses implications to derive new assertions from old ones,
and ends with the derivation of assertions which explictly contradict the
denial of the goal.

A graphical representation of the bottom-up refutation of Parse 1-21
is shown below. It resembles the parse tree turned upside-down. Nodes
are labelled by assertions, The implication used to derive a new
asgsertion labels the bundle of arcs 1leading from the old assertions to
the new one.

54 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

the(1l,2)<— slithy(2,3)<— toves(3,4)<—p did(4,5)<—y gyre(5,6)<—
Parse 9 Parse 10 Parse 11 Parse 12 Parse 13
Det (1,2)<— Adj (2,3} <— Noun(3,4)<—, Aux({4,5)<— Verb(5,6)<—

Parse 7
Np{(l,4) <=
Parse 6
Sent (1,6} <—

Parse 21

O

The assertion
Np(1,4) <—
for example, is obtained from the three assertions
Det (1,2} <-—
Adj(2,3) <~
Noun (3,4} <—
by matching them with the three conditions of the clause
Np(x,y) <— Det(x,u), Adj{u,v), Noun(v,y}.

Matching is accomplished by finding a most general substitution, in this
case

{x=1, u=2, v=3, y=4},

which makes the assertions identical to the conditions.

In general, one step of bottom-up inference matches (in the most
general possible manner) a number of assertions with the conditions of a
clause and derives a new assertion. The new assertion consists of the
conclusion of the clause instantiated by the matching substitution. 1I1f
the clause is a denial (which has no conclusion) then the derived clause
is the empty clause, A more precise definition is given at the end of the
chapter.

Bottom-up inference is a generalisation of instantiation combined with
the classical rule of modus ponens:
From A < and B <~ A derive B < .

Instantiation is restricted to the minimum needed to match assertions
with conditions, so that modus ponens can be applied.

Top—-down inference 55

Top-down inference

A top-down refutation begins with a denial in the input set of
clauses. It uses implications and assertions to derive new denials from
old ones and ends with the derivation of the empty clause.

A graphical representation of a top-down refutation of Parse 1-21 is
given below. Nodes are labelled by denials. An arc is labelled by the
input clause which is used to derive the denial at the bottom of the arc.
Selected atoms are underlined.

p <— Sent (1,6)
Parse 6
p <~ Np(1,2z), Vp(z,6)
Parse 7
<— Det(l,u}, Adj(u,v), Noun(v,z), Vp(z,6)
Parse 9
¢ <— the(l,u), Adj(u,v), Noun(v,z), Vp(z,6)
Parse 1
b <— Adj(2,v), Noun{v,z), Vp(z,6}
Parse 19
<— slithy(2,v), Noun(v,z), Vp{z,6)
Parse 2 L
<~ Noun({3,z), Vp(z,6)
Parse 11
y <— toves(3,z), Vp(z,6)
Parse 3
p <— Vp (4,6}
Parse B
+<- Aux (4,w), Verb{(w,6)
Parse 12
b <— did (4,w), Verb(w,6)
Parse 4
'<—>Verb(5,6)
Parse 13
P <— gyre(5,6)
Parse 5
>0

Beginning with the initial denial
<— sent(1,6)

top-down inference matches the condition of the denial with the
conclusion of the implication

Sent (x,y} <— Np(x,z), Vp(z,y)
deriving the new denial
<— Np({l,z), Vp(z,6)

which consists of the conditions of the input clause instantiated by the
matching substitution

{x=11 Y=6}o

56 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

The inference step formalises the reasoning that

if there is no sentence from 1 to 6 then there is no z
such that there is a noun phrase from 1 to z followed by a
verb phrase from z to 6.

The same inference step can also be interpreted from a problem-solving
point of view:

The goal of showing that there is a sentence from 1 to 6
can be solved if a z can be found such that the subgoals
of showing there is a noun phrase from 1 to 2z and a verb
phrase from 2z to 6 can be solved.

In the problem~-solving interpretation, the original goal is reduced to
two new subgoals.

In general, top-down inference involves matching a selected condition
of a denial with the conclusion of an implication and deriving a nhew
denial by replacing the selected condition by the conditions of the
implication and applying the matching substitution. If the implication
is an assertion, which has no c¢onditions, then the selected condition is
simply deleted and the matching substitution is applied. If, in addition,
the selected condition is the only condition in the denial then the
derived clause is the empty clause. In the problem-solving
interpretation, a denial is interpreted as a collection of goals. Top-
down inference replaces a selected goal {in the context of a collection
of goals) by a set of subgoals. B precise definition of top-down
inference is given at the end of the chapter, while the problem-solving
interpretation is investigated in the next chapter.

Top-down inference is a generalisation of instantiation combined with
modus tollens:
From not-A and A <— B derive not-B.

Instantiation is restricted to the minimum needed to apply the modus
tollens rule,

Different top-down refutations are determined by selecting different
atoms in denials for the application of top-down inference. For example,
clause Parse 8 could be applied to the denial

<— Np{(l,2), Vp(z,6)
to derive the new denial
<— Np(1,z), Aux(z,u}, Verb{u,6)

If there is a refutation for one selection of atoms then there is a
refutation for any other selection.

It is also possible (as in bottom-up inference) to select all
conditions in a denial simultaneously. The fiqure below illustrates such
a top-down parallel refutation. Below each selected condition is the name
of the clause used in the derivation of the next denial.

Top-down inference 57

¢<— Sent(1,6)
Parse 6

;<_- Np(llz) r VP(er)

Parse 7 Parse 8

<— Det (l,u), Adj(u,v), Noun(v,z), Aux(z,w), Verb(w,6)

Parse 9 Parse 1@ Parse 11 Parse 12 Parse 13

, <— the(l,u), slithy(u,v), toves(v,z), did(z,w), gyre(w,6)

Parse 1 Parse 2 Parse 3 Parse 4 Parse 5

>0

This formulation of the parsing problem was obtained by Alain
Colmeraver with the author by expressing his Q-system [Colmerauver 1973]
in logic. It is significant that, whereas the Q-system is a bottom-up
parsing procedure, the Horn clause formulation is more abstract and can
be used either top—down or bottom-up.

Although the example uses only context-free rules of grammar, it is
easy to extend the representation to express context-sensitive grammars
and arbitrary rewriting systems [Chomsky 1957].

The family relationships example

The concepts of top-down and bottom-up inference apply to any set of
Horn clauses. The clauses which define family relationships, F1-19 of
Chapter 1, provide another example.

Given clauses F1-19, the protlem of showing that Zeus is a grandparent
of Harmonia can be represented as the problem of filling in the triangle

Grandparent (Zeus,Harmonia)

Father {(Zeus,Ares) Father (Ares,Harmonia)

58 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

with a derivation tree:

Grandparent (Zeus ,Harmonia)

Parent (Zeus ,Ares) Parent (Ares ,Harmonia)

Father (Zeus,Ares) Father {Ares,Harmonia)

In the clausal form of logic, the problem is to show that the denial
F* <— Grandparent(Zeus,Harmonia)

is inconsistent with the clauses Fl-19. The figures below illustrate
bottom-up, top-down, and parallel top-~down refutations.

Father (Zeus,Ares) <— Father (Ares,Harmonia)} <—

F17

Parent (Zeus,Ares) <— Parent (Ares,Harmonia) <—

Grandparent (Zeus,Harmonia) <—

]

3

A bottom-up refutation of F* and F1-19

<— Grandparent (Zeus ,Harmonia}

F18 <— Parent (Zeus,2z), Parent{z,Harmonia)
R <— Father (Zeus,z), Parent (z,Harmonia)
£l <— Father (Zeus,z}, Father (z,Harmonia)
:i <— Father (Ares,Harmonia)

O

A top-down refutation of F* and F1-19

The family relationships example 59

, <~ Grandparent (Zeus ,Harmonia)
F18

}<—»Parent(Zeus,z), Parent (z ,Harmonia)
F17 F17

L < Father (Zeus,z), Father (z,Harmonia)
Fl F3

L O

A parallel top-down refutation of F* and Fl-19.

—_—

Because the operation of matching atomic formulae is so general, top-
down and bottom-up inference can be used not only to show that Zeus is a
grandparent of Harmonia but also to find a grandparent of Harmonia or to
find a grandchild of Zeus. This is illustrated in the top-down refutation
which shows the inconsistency of F1-19 with F**,

| ekl <~ Grandparent{u,Harmonia}

The grandparent of Harmonia whose existence contradicts F** can be
determined by analysing the matching substitutions used in the
refutation. The last step of the refutation matches the variable u from
the initial denial with the constant symbol "Zeus", determining that
u = Zeus is a grandparent of Harmonia.

<— Grandparent (u,Harmonia)

F18 [
| <— Parent(u,z), Parent {z,Harmonia)
F17
, <— Parent(u,z), Father (z,Harmonia)
F3
, <— Parent {u,Ares)
F17
<— Father (u,Ares)
Fl
u = Zeus
¢ a

Notice that the first step of the refutation matches the condition
Grandparent (u,Harmonia)
with the conclusion
Grandparent (x,y) .

Top-down inference uses & most general substitution which makes the two
atoms identical, in this case

{x = u, y = Harmonial.

Any less general substitutions, such as

60 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

{x

Ares, u = Ares, y = Harmonia}
or {x =

Zeus, U = Zeus, vy = Harmonia}

which alsoc makes the two atoms identical, need not be considered.

Given any two atoms, all (most general)} matching substitutions differ
only in the names they give to variables and are otherwise equivalent,
Conseqguently, it is necessary to use only one of them in any inference
step. The matching substitution

{u = x, y = Harmonia}

for example, 1is equivalent to the one used in the first step of the
refutation above. It gives rise to the equivalent denial

<— Parent(x,z), Parent(z,Harmonia}
which is a variant of the other.

The possibility of restricting instantiation to the generation of most
general matching substitutions was observed by Prawitz [(1960] and
elaborated by Robinson [1965a] who incorporated it into the resolution
rule (Chapter B8), which generalises the top-down and bottom-up inference
rules investigated in this chapter. Unification algorithms for matching
atomic formulae have been the subject of much investigation [Robinson
1971}, {Paterson and Wegman 1976}, [Martelli and Montanari 1977].

Inference rules and search strategies

Inference rules are the building blocks of proof procedures. A proof
procedure is a systematic method for showing that a set of assumptions
imply a conclusion. Proof procedures for the clausal form of logic are
refutation procedures, which show that assumptions imply a conclusion by
demonstrating that the assumptions are inconsistent with the denial of
the conclusion.

Inference rules specify the form of the individual steps which make up
a proof, BAll possible ways of applying the inference rules, both to an
initially given set of clauses and to the clauses derived from them,
determine the search space for the set of clauses. Specifying a
systematic search strategy for investigating clauses in the search space
determines a proof procedure.

Top-down inference determines search spaces which have the form of a
tree. 1Individual nodes of the search space are labelled by denials which
contain a selected condition. For each input clause whose conclusion
matches the selected condition there 1is an arc, labelled by the input
clause, which 1leads to the denial obtained by applying top-down
inference. A refutation 1is a path in the search space leading from the
initial denial to the empty clause [l.

A top-down search space for the problem of finding a grandparent of
Harmonia is illustrated in the figure below. To save space, abbreviations
such as

Inference rules and search strategies 61

Ha for Harmonia
He for Hera
P for Parent etc.

have been used for constant symbols and predicate symbols, and the input
clauses labelling arcs have been omitted. Darkened nodes at the tips of
the search tree contain selected conditions which match the conclusion of
no input clause.

<— G(u,Ha)

{~ P(u,z), P{z,Ha)

<~ P(u,z), F(z,Ha) <— P(u,z), M(z,Ha}

<~ P(u,Ar} <~ P(u,Aph)

<— F(u,Ar) <~ M{u,Ar) <— F(u,Aph) <— M(u,Aph)

u = Ze u = He
a O

The search space is finite and can be searched completely in a finite
amount of time. The two mein kinds of search strategy are breadth-first
and depth-first search. Breadth-first search explores all branches of
the search tree to the seme depth, n steps away from the root of the
tree, before exploring them to the next depth, n+l steps away from the
root. Pictorially, breadth-first search explores the search space above
in the following sequence:

Depth B °

jwl

epth 1

In

Depth

W

Depth

62 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

Depth 4

Depth 5

Depth-first search explores one branch of the search space at a time.
When it reaches a tip of the tree it backtracks and tries an alternative

branch as close to the tip as possible.

Branch 1 Branch 2
1 1
2
3 3
5 7
0 0
Branch 3 Branch 4
1 1
B8 8
9 9
18 11

The numbers next to arcs indicate the sequence in which the arcs are
generated, Here the first branch already contains a solution of the
problem. If only one solution is required, then the rest of the search
space need not be generated. The whole search space has to be generated,
however, if all solutions are desired. In this case there are two

Inference rules and search strategies 63

refutations, each of which determines a different answer to the gquestion

Who is a grandparent u of Harmonia?
u = Zeus, u = Hera.

The search space for top-down inference is affected by the selection
of conditione in denials. In the search space above, conditions were
deliberately chosen with the intention of minimising the size of the
search space. In the search space below, the selection of conditions
maximises its size.

<— G(u,Ba)

<— P(u,z), P(z,Ha)

<— F(u,z), P(z,Ha) {— M{u,z), P(z,Ha)

<—P (Ar ,Ha), <-P (S, Ha) <—P (Ha,Ha) <—P (Ar ,Ha)

<P (D, Ha) <—P (D,Ha)

0«

Both top-down search spaces are complete in the sense that they
contain a refutation if the set of clauses is inconsistent. It suffices,
therefore, to search either one search space or the other. 1In general,
other things being equal, the larger the search space the more difficult
it is for the search strategy to find a refutation.

In the problem-solving interpretation of top-down inference, the
selection of a condition in a denial is the selection for solution of a
subgoal from a set of subgoals. It 1is one of the most important
considerations of problem-solving strategy and a major topic of the next
two chapters.

The structure of bottom-up search spaces 1is more complex than that of
top-down search spaces. Conseguently, they are more difficult to search.
The figure below illustrates the bottom-up search space for the family
relationships example. Nodes are labelled by assertions. A bundle of arcs
connects the assertions which match the conditions of an input ¢lause
with the new assertion derived by bottom-up inference. The input clause
which ought to label the bundle is omitted to save space. Darkened nodes
indicate assertions to which no bottom-up inference step applies. The
same abbreviations are used as before. In addition, we use

M1 for Male and
F1 for Female.

64 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

o F(Ze,Ar) <— F (Ar,Ha) <— M(Be,Ar) <-— F(Ze,D) <—

P{Ze,Ar)<—N_M1l(Ar)<= P(Ar,Ha)<-A_Fl(He)<— P(He,Ar)<”? Ml(Ze)<—

M1 (Ze) <— P(Ze,D) <—
G(Ze,Ha)(— G(He,Ha)(-—
(. O
o. M(Aph,Ha) <— M(HaS) < M(S,D) <= F(C,S5) <—,

P (Aph,Ha)<— Fl (Ha) <~ P(Ha,S}<z=R/ F1(S)<— P(S,D)<=R M1{C)<—
F1 (Aph) <— P(C,5)<—d

> // >
G{Aph,S}<— G (Ar,5)<— G{(Ha,D)<— G(C,D)<—

Not included in the figure are the input assertions, such as
God(Zeus) <— and Fairy-Princess(Harmonia) <—
which match no conditions. Notice that the assertion
Male (Zeus) <—

is derived in two different ways, giving rise to two nodes labelled by
the same assertion. In the next chapter, we consider representations of
search spaces in which different nodes are labelled by different clauses.

In practice, few strategies other than breadth-first search have been
applied to bottom-up search spaces. As in top-down search spaces,
breadth-first search explores all assertions of depth n before generating
any of depth n+l. The depth of an assertion is one greater than the
maximum of the depths of its parent assertions.

Search strategies are an important part of all problem-solving systems
and are investigated in greater detail in the next chapter.

Infinite search spaces: natural numbers

The search spaces for the parsing problem and the family relationships
problems are both finite. Infinite search spaces are normally associated
with clauses containing function symbols. The definition of natural
number using the successor function symbol is a simple example.

Infinite search spaces: natural numbers 65

Numb (@) <—

Numb (s {x)}) <— Numb(x}

Suppose the problem is to show that three is a number.
<— Numb(s{s(s(0))))

The top-down search space is finite

<— Numb(s(s{s(8))))

<— Numb(s{s(8}))

<— Numb({s(0))

<{— Numb (8)

and contains only the solution o¢of the problem. The bottom-up search
space, however, is infinite.

Numb (@) <—

, Numb(s(@)) <—

b, Numb (s(s(8})) <—

Numb (s {(s{s(B)))} <

] /// Numb (s (s(s({s(@))})} <=

Numb(s(s(s(s{s(8)))))) <

For the problem of finding a number, however, both search spaces are
infinite. Moreover, both spaces contain an infinite number of solutions.

66 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

y <— Numb {u}
u=20 u = s(u'}
O , <— Numb({u')

u' =8 u'= s(u'")
O <— Numb (u'")
u''= 4@ u''= s(u''")
O <~ Numb{u''")

Here each arc of the top—down search space is labelled by that part of
the matching substitution which is needed to find the number u whose
existence is denied in the initial statement of the problem.

Numb () <—
O Numb(s (#)) <—
O Numb (s (s(@})) <—
O Numb(s({s(s(B}))) <-

When search spaces are infinite, depth-first search strategies are
subject to the possibility of following the wrong branch of the search
space and thus failing to find a refutation. In the present example, this
happens in the top-down search space if the clause
Numb (s {x)} <— Numb (x)

is always used before the assertion
Numb (@) <—

and in the bottom~up search space if
Numb (s (x)} <— Numb (x)

is always used before the denial
<— Numb({u) .

To guarantee the completeness of a proof procedure, not only must the

search space be complete, but the search strategy must be exhaustive:
eventually investigating every node of the search space.

Definitions 67

Definitions

Some of the concepts introduced in this chapter are defined more
precisely below:

Let S be a set of Horn clauses and let there be given a selection
strategy which picks a condition from any denial. A sequence of denials

Cl, C2, ey Cn

is a top-down derivation of C. from S if
1) the first clause C; belongs to S and
2) every denial in the sequence, other than the first, is
obtained from the preceding denial by an application of
top-down inference, using a clause in S.

A derivation of the empty clause from S is a refutation of S.

Given a denial

|v
—

{— Al""'Ai—l'Ai'A1+1"'°'Am m
with selected atom A; and an implication
B <~ Bys..-s By n>o

which shares no variables with the denial, a new denial can be obtained
by top-down inference if the selected atom A; matches the conclusion B of
the implication. The new denial consists of all the conditions of the

original denial (except for the selected condition) together with all the
conditions of the implication, with the matching substitution © applied:

<= (Bys-v-rBi_14B1reeesBr Aii1ree. B0

If the denial and the implication contain variables in common, then
they have to be renamed, giving equivalent clauses which share no
variables, before top-down inference is attempted. Thus to apply top-down
inference to the denial

<— Np(y,u), Vp(u,2z}
using the clause
Np(x,y) <— Det(x,u), Noun(u,y)

it is necessary to rename variables first, using, for example, the
variant implication

Np(x',y') < Det(x',u'), Noun(u',y")
to obtain the new denial

<— Det{y,u'), Noun(u',u), Vp(u,z)

68 Chapter 3: Top—-down and Bottom-up Horn Clause Proof Procedures

where the matching substitution is

{x* =y, y'=ul.

In general, any condition can be selected in a denial. The selection
strategy is of the last-in-first-out kind if the selected condition is
always one of the conditions most recently introduced into the denial, in
particular one of the conditions

B1©,...,B,8
in the new denial
<— Ale, cen ,Ai_le,Ble,. .e ,Bne,Ai+le,. .e 'Ame .

A top-down derivation can be represented as a graph by associating a
node with every denial C; in the derivation and by inserting an arc,
from it to the next denial™Cy4y, labelled by the implication used in the
inference step.

The definition of matching substitution is needed to define both top-
down and bottom-up inference and will be presented after the top-level of
the definition of bottom-up inference.

It is convenient to define a graph-representation of bottom-up
inference from the outset. Let 5 be a set of Horn clauses. A graph D with
nodes labelled by assertions is a bottom-up derivation of a clause C from
5 if

1) D consists of a single node labelled by C, belonging to
S and C is either an assertion or the empty clause, or

2) D consists of subderivations,

Dy of Ay, <— from §,
D2 of Ay <= from S,

D, of Ay <— from S,

whose root nodes are connected by arcs to a new node
labelled by C and C is obtained from A) <, Ajp ¢, ...,
Ap <— by bottom-up inference using a clause C' in S.

Definitions 69

The clause C' labels the bundle of arcs associated with
the inference step.

It is convenient to define the bottom-up inference of clause C from m
assertions

Ay <, By <~ , ..., By <

using clause C' by decomposing the inference into a sequence of m simpler
inference steps. Suppose that C' has the form

B <— By, By, ..., By or
<— B], By, .-+, Bp.

The clause C is obtained by bottom—up inference using C' from

By <—, By <=, ..., Ay <=

1) by selecting a condition, say Bj, of C', matching it
with an assertion, say Ay <, and deriving the
intermediate clause C"

(B <— Bz, ceey Bm)e or
(<= Bz, ceey Bm)e

where © is the matching substitution and

2} deriving C by bottom-up inference from

Ay <=, ..., By <— using C".

3) 1f m=1 then C = C",

4) In step (1) the variables in A; <~ need to be distinct

from those in (C'. If necessary, variables need to be
renamed to make them distinct,

It can be shown that the conditions in C' can be selected 1in any order
without affecting the clause C which is finally derived.

The assertions Ay <, Ay <=, .y Ay <~ to which bottom-up
inference is applied need not all be distinct. For example, the assertion

Friends (Narcissus, Narcissus} <—

can be derived in one step of bottom-up inference from two copies of the
assertion

Likes{Narcissus, Narcissus) <—
using the clause

Friends (x,y) <— Likes(x,y)}, Likes(y,x).

7@ Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

Substitution and matching
It remains to define the notions of substitution and matching.
A substitution

{x1=t1, ceey xm=tm]

is a set of substitution components of the form

where x; is a variable and t; is a term. Distinct substitution components
of a suéstitution

i and x4y = tj ‘
have distinct variables x; and x;. Thus a substitution can be regarded as

a function which maps variables Onto terms. If E is an expression (term,
atom, or clause} then the result of applying the substitution

e = [x1=tl, R
to E is a new expression
EQ
which is identical to E except that for every component xj=t; which

belongs to ©, wherever E contains an occurrence of xj, E® contains an
occurrence of t;. The new expression E6 is said to be an instance of E.

A substitution o unifies the two expressions E; and E; if it makes
them identical, i.e.
Elc’ = Ezo'.

Ejo is the common instance of E; and E; determined by 0. A substitution
® matches E; and E, (is a most general unifier of Ej and Ejp) if

1) ® unifies Ey and E; and
2) the common instance

E o
determined %y any other unifier ¢ of E; and E; is an
instance of the common instance
E,©
determined b% 8. Thus
Ejo = (E10))\
for some substitution A.

Every pair of expressions which can be unified can also be matched.
Moreover, all matching substitutions are equivalent, in the sense that
the common instances they determine are variants.

Correctness and completeness of inference systems 71

Correctness and completeness of inference systems

A system of inference rules is correct (or sound) if every set of
clauses which has a refutation constructed in accordance with the
inference rules is inconsistent. The system is complete if every
inconsistent set has a refutation. The notions of correctness and
completeness connect semantics with the part of syntax concerned with
proof theory. An inference system which is both correct and complete is
one for which the semantic notion of inconsistency coincides with the
proof theoretic notion of refutability. The correctness of top-down and
bottom-up inference is easy to verify.

Bottom-up inference is a special case of the hyper-resolution rule
defined and proved complete by Robinson [1965b]. Top-down inference is a
form of the model elimination rule introduced and proved by Loveland
{1968, 1969). Like hyper-resolution, model elimination applies to
arbitrary sets of clauses. In both cases for non-Horn clauses, however,
an additional rule of inference, the factoring rule, discussed in Chapter
7, is needed for completeness.

Many forms of top-down inference have been developed, notably linear
resolution [Loveland 1970], [Luckham 1978], ordered linear resolution
[Reiter 1971], SL-resolution [Kowalski and Kuehner 1971], G-deduction
[Michie et al 1972), inter-connectivity graph resolution [Sickel 1976]
and analytic resolution [Brand 1976]. Linear resolution employs no
restriction on the selection of atoms for top-down inference. Given a
denial containing n atoms it potentially investigates the n! redundant
sequences in which the atoms can be selected. The other systems,
including model elimination, employ last-in-first-out selection
procedures. The importance of selecting atoms in a more flexible manner
will be studied in the next two chapters. Completeness for top-down
inference systems employing arbitrary selection procedures has been
proved by several authors including Brown [1973]) and Hill {[1974].

Top-down and bottom-up inference are special cases of the resolution
rule [Robinson 1965a]. A system which mixes top-down and bottom-up
inference for Horn clauses has been described by Kuehner [1972]). The
connection graph proof procedure [Kowalski 1974a) investigated in Chapter
8 combines both directions of inference for non-Horn clauses as well. A
non-resolution system which uses the standard form of logic rather than
clausal form has been developed for applications in mathematical theorem-
proving by Bledsoe and his colleaques [1971, 1977]. His system also
combines bottom-up reasoning forwards from assumptions together with
top-down reasoning backwards from conclusions.

Exercises

1) A string of items can be regarded as a directed graph whose nodes
are spaces and whose arcs are labelled by items connecting one space to
the next. An arc labelled by an item connecting space x to space y

w

|
<V

72 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

can be represented by means of a three place relationship
Conn (x,w,y}.
Thus the assertions
Conn (4,D,2) <—
Conn{2,A,3) <
Conn{(3,D,f) <—
represent the string

DAD

whose spaces are arbitrarily named

A string 1is a palindrome if it reads the same backwards as it does
forwards. Express the following more precise definition by means of Horn
clauses.

a) A string from space x to space y is a palindrome if the
item from x to x' is the same as the item from y' to y and
the string from x' to y' is a palindrome.

b) A string from x to y is a palindrome if there is an item
from x to y.

<) A string from x to x is a palindrome.

Construct both top-down and bottom-up solutions for the problem of
showing that the string D A D is a palindrome.

2) Let strings be represented by means of the three place Conn
relation as in exercise (1).

a) Define by means of Horn clauses the relationships

Identical(w,x,u,v}) which holds when the string from u to v
consists of w copies of the same item x,

i.e.
X X x
u T v
w times
Admissible{(u,v) which holds when, for some i, the string

from u to v consists of 1 copies of item a
followed by i copies of item b followed by
i copies of ¢, i.e. has the form

Exercises 73

a a b b C c
- O SO —
e Je—
i times i times i times

b} Exhibit the entire top-down and bottom-up search spaces
for the problem of showing that the string a b ¢ is
admissible. In the case of the top-down search space
select conditions in a manner which minimises the size of
the search space.

3) Using the clause
Distance(x,y,w) <— Distance(x,z,u), Distance(z,y,v), Plus(u,v,w)

and any assertions such as

Plus(3,2,5) <
Plus(5,4,9) <

which 2re necessary for the Plus relation, construct top-down and bottom-
up solutions to the problem

<— Distance(A,M,w)

for the graph shown in exercise (7) of Chapter 1. How many distinct
solutions does the top-down search space contain? 1Is the problem

<—~ Distance({x,X,w)

solvable?

4) The relation x < y can be defined by the Horn clauses

g < x <~
s5{x) < s(y) <— x < y.

Generate the top-down and bottom-up search spaces (where they are finite)
for the following problems.

a) <— s(s(B)) < s(s(s{B)))
b) < s{s(8))) < w
c) <~ w < s(s(B))
d) <~ s(s(w}) < s{w)
e) <— s(s(w)) < s(8)
5) Define the relation Plus(x,y,z) which holds when x+y = z. You can

use two clauses, one for the case x is @, the other for the case x is
s{x').

74 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

6) Assume that the relations

Plus{x,y,z) and Times(u,v,w)

are defined by variable-free assertions and hold whenever x+y = z and
u*v = w respectively.

a)

b}

Let Exp(x,y,z) stand for the relation x to the exponent y
is z, written xTy = z. Express the following sentences in
clausal form, without using function symbols.

xTl = x for 2ll x.
xT(u+v) = y*z if xfu = y and xiv = z.
xTu = 2 if xt(u+v) = w and xfv = y and y*z = w.

Using the clauses from part (a) solve the following
problems by means of both top-down and bottom—up
refutations.

If 2Ta = 1P and a+a = b, then find w such that 21tb = w.
If 3fc = 12 and b+l = ¢ then find w such that 3Tb = w.
Show that for every x there is a z such that x18 = z.

You may need to assume such obvious facts about
multiplication as Times(l,x,x) < .

75

CHAPTER 4

Horn Clause Problem-Solving

When logic 1is used to express problems and problem-solving methods,
proof procedures behave as problem-solvers. We shall argue that Horn
clause inference subsumes many of the alternative models of problem-
solving developed in artificial intelligence.

In this chapter we compare Horn clause inference both with the path-
finding model of the Graph Traverser [Doran and Michie 1966] and the
General Problem Solver [Newell and Simon 1963] and with the and-or tree
model of problem-reduction {Gelernter 1963), [Nilsson 1971]. In the next
chapter we compare Horn clause inference with problem~solving regarded as
execution of programs. In subsegquent chapters we investigate both the use
of non-Horn clauses in problem-solving (Chapters 7 and 8) as well as more
global problem-solving strategies (Chapter 9).

The close relationship between problem-reduction and top-down
inference has been observed by several authors, including [Kowalski and
Kuehner 1971], [Loveland and Stickel 1973], [Pople 1973], [Van der Brug
and Minker 1975). Moreover it is already implicit in the Logic Theorist
[1963], The General Problem-Solver and the Geometry Theorem Proving
Machine ([Gelernter 1963].

Path-finding
It is possible to express any problem as a path-finding problem.
Given an initial state A, a goal state Z, and operators

which transform one state into another, the problem is to
find a path from A to 2.

The water containers problem

The water-containers problem can be formulated naturally as a path-
finding problem.

Given p=——=— Goal m————=
— — e ——
e —
7 5 4 don't
litres litres litres care

both empty

76 Chapter 4: Horn Clause Problem-Solving

Given both a seven and a five 1litre container, initially empty, the goal
is to find a seguence of actions which leaves four litres of liguid in
the seven litre container. There are three kinds of actions which can
alter the state of the containers:

(1) A container can be filled.

(2) A container can be emptied.

(3) Ligquid can be poured from one container into the other,
until the first is empty or the second is full.

The water-containers problem has a simple Horn clause formulation.
Interpret

State{u,v) as expressing that there is a state in which
the 7 litre container contains u litres of liquid and the
5 litre container contains v litres.

Assume that the relations
XxX+y =2z and x <y

are already defined (by infinitely many variable-free assertions, for
example) .

WwCl State(@,0) <—

WC2 <— State(4,y)

WC3 State(7,y) <— State(x,y}

WC4 State(x,5}) <— State(x,y)

WCS State(®,y) <— State(x,y)

WCé State(x,@) <— State(x,y)

wC7 State(@,y) <— State{u,v), utv =y, y <5
WC8 State(x,@) <— State(u,v), utv =1x, x <7
WC9 State(7,y) <— State(u,v), utv = w, 7ty = w
wClo State(x,5) < State(u,v), utv = w, 5+X = w

Clauses WCl and WC2 express the given and the goal states respectively.
WC3 and WC4 define the action of filling a container. WC5 and WC6 define
emptying a container. WC7 and WC8 define pouring from one container into
another until the first is empty. WC9 and WC1l@ define pouring from one
into another until the second is full.

Before investigating the top-down and bottom-up search spaces, it is
useful to define the graph-representation of search spaces. First we
shall consider 2 simplified version of the path-finding problem and its
Horn c¢lause formulation.

A simplified path-finding problem 77

A simplified path-finding problem

Suppose the problem is to find a path from node A to node Z in the
following graph.

The problem can be formulated with a one-place predicate
Go (x)
which expresses that it is possible to go to node x. Later in the
chapter we shall compare this formulation with the one (suggested by
semantic networks) which employs a two-place predicate

Go* (x,y)

expressing that it is possible to go from node x to node y.

Go (A) < <— Go{2)
Go {B) <— Go({A} Go (C) <— Go(A)
Go (D) <~ Go(B) Go(F) <— Go(C)
Go(E) <~ Go(B) Go (X) <— Go(D)
Go{Z) <— Go({X) Go(X) <— Go(E)

Go (Z) <— Go(Y)

In this formulation the clauses which describe the graph behave as path-
finding procedures which connect adjacent nodes. The top-down and bottom—
up search spaces are both trees.

78 Chapter 4: Horn Clause Problem-Solving

Go(A) <—
Go(B) <— Go(C) <=
Go (D) <— » GO (E) <— Go(F) <—
Go(X) <=} Go(X) «<-
Go(z) <— 3 Go(z) <=
O% 0O

Bottom-up search space

<— Go(2)
<— Go(X) <= Go(Y)
< Go(D) <~ Go (E)
<~ Go(B) <— Go(B)
<{— Go (A} <~ Go(A)
O a

- Top-down search space

In both search spaces there is a one-to-one correspondence between
refutations and solution paths. Both search spaces, however, contain
undesirable redundancies. The bottom-up search space derives the
assertion Go(X) <~ in two different ways and then redundantly uses it
twice in the same way to obtain two refutations. The top-down search
space derives the goal statement <— Go(B) in two different ways and then
redundantly solves it twice in the same way. These redundancies can be
eliminated by representing the search spaces as dgraphs rather than as
trees.

Graph-representation of search spaces 79

Graph-representation of search spaces

The graph-representation of a search space is obtained from the tree-
representation by identifying nodes which have the same label. Thus no
clause occurs in the graph-representation more than once.

Go (A} <

Go (B) Go(C) <~

Go (D) <— Go (E) <—

Go (F) <—

Go (X) <—

Go(2) <—

0

Graph-representation of the bottom-up search space

<= Go(2)

<~ Go {X) <— Go (Y}

<~ Go (D) <~ Go(E)
<= Go (B)
{— Go(A)

0

Graph-representation of the top-down search space

Use of the graph-representation suggests that whenever a search
strategy generates a clause in the search space, it checks whether the
clause has been generated before. If it has, then only one occurrence of
the clause is retained. Generally, the new occurrence is deleted.

The graph-representation can turn an infinite search space into a
finite one. The top-down search space for the problem of finding a path
from A to 2 in the following graph is a simple example.

Chapter 4: Horn Clause Problem-Solving

<— Go(Z)

<= Go (X) < GofY)
<— Go (D)
<~ Go (B)
<= Go (&) <= Go (X}
O <~ Go (D)

<— Go (B)

<— Go(B)

<— Go(B)

Infinite top-down search space in the tree representation

Graph-representation of search spaces 81

<— Go(2)
<— Go (X) <— Go(Y)
<— Go(D)
<— Go (B)
<— Go (B)
C

Finite top-down search space in the graph-representation

The Search Spaces for the Water Containers Problem

We can now exhibit the graph representations of the search spaces for
the water containers problem, In order to avoid complicating the
appearance of the search spaces, arcs which lead to nodes labelled by
clauses which already occur elsewhere in the search space are not always
shown.

The top-down search space is more complicated than the bottom-up
search space. Notice, however, that the matching substitutions which are
generated in the first step of both branches of the top—-down search space
determine that if the goal

<— State (4,x)

has a solution, then x must be either @ or 5,

Generally speaking, the conclusions of clauses WC3-18 will not match
any goal state which cannot have at least one container either full or
empty. For this reason, in the clause

<— State(u,v), utv = 9
it is easier to select the second goal which generates pairs of integers

adding up to 9, and to reject those yielding impossible goal states than
it is to solve the subgoals in the other sequence.

82 Chapter 4: Horn Clause Problem-Solving

State(@,0) <

wWC4

State(7,8) <4 p, State(@,5)

WC4 WC1@ WC8
State(7,5) <— State(2,5) State(5,0)
WC4 WCé WC4
State(2,9) State(5,5)
WC8 WC7 WC9

State(@,2)

State(7,3)

WC3 WC5

State (7, 2) ” State (8, 3)

wCo

WC1@ WC8

State(4,5) State(3,0)

WC2 WC6

WC4

State (4,0} State(3,5)

WC2 WC7 WwCo

State(®,4)

State(7,1)

WC5 WC3 WC5

State(7,4)

State(@,1)

WC9 wcle WC8

tate(6,5)

State{l1,0)
wWC4
State(6,0) <—

State(l,5) <—

Bottom-up search space for the containers problem

<—

The Search Spaces for the Water Containers Problem

<— State(4,x)

Top~down search space for the containers problem

Search strategies for path-finding

«<= State(u,v), utv <— State{u,v), utv =
<— State{d,4) <{— State(7,2)
WC5 WC3
,<— State(y,4) <— State(y,2)
WC9 y =7 WC7 y =8
<— State(u,v), u+v = 11 <— State(u,v), utv =
L, <— State(6,5) <— State(2,0)
w4 WC6
h<— State(6,y) <{— State{2,y)
WCg y =280 WCi@ y =5
A <— State(u,v), uty = 6 ,<— State{u,v), utv =
L <— State{(1,5) <~ State(7,9)
WC4 WC3
L <— State(1l,y) <— State(y,0)
y =@ WC1 Y=Vh
<~ State(0,1) O :
WC5 ’
<— State(y,1l)
WC3 y =7
b (— State(3,5)
w4
b <— State(3,y)
WCg y = 8
L<— State(9,3)
WC5
p <— Statel(y,3)
y =717

83

The path-finding model of problem-solving is concerned more with the
development of search strategies than it is with the structure of search
spaces and the representation of information. Given the task of finding a
path in a graph, the search problem becomes one of devising intelligent

84 Chapter 4: Horn Clause Problem-Solving

strategies for searching the graph.

Most search strategies for path-finding employ some form of guidance
by evaluation functions. Given a search space, an evaluation function

f applied to nodes in the space produces real numbers as values. The
value f{N) of a node N is intended to measure the usefulness of
continuing the search from that node. The greater the value of the node
the more promising it is to apply operators to it. heuristic search
strategy, guided by the evaluation function, always searches from the
node of currently greatest value.

Breadth-first and depth-first search can be regarded as special cases
of heuristic search, 1In depth-first search, the value of a node is its
distance from the start node. In breadth-first search, it is the inverse
of its distance from the start node. In both cases, the distance between
two nodes is measured simply by the number of arcs contained in the
currently shortest path connecting the nodes.

In a typical path-finding problem, a node in the search space
represents a state of some collection of objects. If there are n objects,
a state can be represented by the n-tuple consisting of the individual
states of the objects. In the water containers problem, for example,
there are two objects which can be in one of the eight states #-7. Such
state-space path-finding problems can easily be represented with Horn
clauses by using a predicate

State(xl,xz,...,xm)
which expresses that the state in which

the lst individual is in state x;
the 2nd individual is in state xj

the mth individual is in state xp
is possible.

Special evaluation functions are useful for such state-space problems,
In the simplest case, given a node

N = State(sy,S9,...,8p)

(which is either an assertion or a goal, depending on the direction of
the search space) and searching for a node

T = State(ty,tp,...,tp)

the distance between N and T might be estimated by the sum of the
distances between the individual states.

dist(tl, s1) + dist(ty, sp) + ... + dist(ty, sp)
The value of a node is greater the smaller its estimated distance to T.

More sophisticated evaluation functions might estimate overall distance
by a weighted sum of individual distances or by a more complex function

Search strategies for path-finding 85

of individual distances (such as the square root of the weighted sum of
the squares of the distances).

In many path-finding problems, costs are associated with nodes or arcs
of the graph and the problem is to find the least costly path connecting
the given and goal nodes. In the water—-containers problem, for example,
it might be required to find the shortest solution. In such cases, the
greater the cost of reaching a node the smaller is its value. Both
evaluation function guided search strategies [Nilsson 1971] and branch-
and-bound [Lawler and Wood 1966] are useful for such problems.

It is not always possible or desirable to use a numerical-valued
evaluation function to guide the search strategy. It may be possible,
none the less, to define a merit ordering among nodes in the search
space. The search strategy, guided by the merit ordering, always
searches from a node having the greatest merit.

Since a top-down refutation can be regarded as a path from an initial
set of goals to the empty clause, the problem of finding a refutation in
a top-down Horn clause search space can be regarded as a path-finding
problem and the theory of heuristic search can be applied. However, it
must be modified when applied to bottom-up search spaces where solutions
are more naturally regarded as trees or graphs [Kowalski 1972]. Even in
the case of top-down search spaces the heuristic search path-finding
model of problem-solving does not address the important problem of
selecting subgoals. These deficiencies are remedied by the problem-
reduction model of problem-solving and its associated and-or tree
representation.

The and-or tree representation of problem-reduction

In the problem-reduction model of problem-solving the task is to find
a solution to an initially given problem, using a given collection of
assertions and procedures to reduce problems to subproblems. The task is
accomplished by repeatedly applying procedures to unsolved problems,
replacing them by subproblems, until the initial problem has eventually
been replaced by the empty set of subproblems.

In the and-or tree representation of problem-reduction, nodes of the
tree are labelled by problems:

{1) The root node is labelled by the initial problem.

(2) If a problem A labels a node and a procedure reduces A to
the subproblems A;,Aj,...,A; then the node is connected by a
bundle of directed arcs to nodes labelled by the individual
subproblems. The bundle itself may be labelled by the
procedure.

86 Chapter 4: Horn Clause Problem-Solving

(3) If the problem A labelling a node matches an assertion, then
it is connected by a single arc to a node labelled by the
empty collection of subproblems.

A

|

0

The figure below illustrates both the and-or tree representation and
the Horn clause representation for a simple problem-reduction task.

Happy (John)

Likes (Mary,John) Rich (John)

Kind (John) Handsome (John) Strong (John}

Likes(John,Mary)

O

Pretty (Mary) O (N

O
Initial Problem <— Happy (John)
Procedures Happy (John} <— Rich(John)
Happy (John) <— Likes{Mary,John)
Likes {Mary,John) <— Likes{John,Mary), Kind(John}
Likes {Mary,John) <— Handsome(John), Strong(dohn}
Likes{John,Mary) <— Pretty(Mary)
Assertions Pretty (Mary) <—

Kind (John) <—
Handsome (John) <—
Strong(John) <—

The problem has two solutions which can be represented as subtrees of
the and-or tree:

The and-or tree representation of problem-reducticon 87

Happy (John) Happy (John)
Likes (Mary,John) Likes (Mary,John)
Likes{John,Mary) Kind (John) Handsome (John} Strong (John)
Pretty (Mary)] 0 N
O
one solution the other solution

The and-or graph representation is obtained from the and-or tree
representation by 1identifying 211 nodes which are labelled by the same
subproblem. In the example below, the and-or graph representation turns
an infinite and-or tree search space into a finite one. The problem has

no solution.
Happy (John) Happy (John)
Likes (Mary,John) Likes (Mary,John)
Kind (John) Likes (John,Mary Kind {(John)
] O
Pretty (Mary) Pretty (Mary})
] 0

Likes(John,Mary)

Likes (Mary,John)

and-or tree representation and-or graph representation
Initial Problem <— Bappy (John)
Procedures Happy (John) <— Likes(Mary,John)

Likes (Mary,John) <— Likes(John,Mary), Kind(John)}
Likes {John,Mary) <— Likes{Mary,John), Pretty(Mary)

Assertions Pretty (Mary) <—
Kind (John) «<—

Both the and-or tree and and-or graph representations of problem-
reduction focus attention on the structure of the search space and on

88 Chapter 4: Horn Clause Problem-Solving

search strategies. However, they ignore both the structure of the
problems which 1label the nodes of the search space and the connection
between problems in the form of shared variables. The Horn clause model
of problem-reduction represents problems by atomic formulae and makes
explicit (in the form of matching substitutions) the information which is
generated when a procedure or assertion is applied to a problem.

The problem-solving interpretation of Horn clauses

The problem-solving interpretation of Horn clauses is basically the
top~down interpretation.

The atoms in a denial < AjyeessBp are interpreted as problems,
or goals, to be solved. If the denial contains the wvariables xj,...,xg
then it is interpreted as stating the goal:

Find Xy,...,Xg
which soclve the problems AlreeerPp.

and is called a goal statement.

An implication A <~ Ap,s...pBpg is interpreted as a problem-solving
method, or procedure:

To solve a problem of the form A,
solve the subproblems Aj,...,Ay.

Given a problem B which matches A, the procedure reduces the solution of
B to the solution of the subproblems

A1©, ..., A0

where © is the matching substitution. We say both that the procedure
matches A and that it applies to A.

An assertion A <~ is interpreted as a procedure which solves
problems directly without reducing them to further subproblems,

The empty clause [] is interpreted as the empty goal statement.

The and-or tree and and-or graph representations can be extended to
Horn clause problem-reduction in general. It is necessary to represent
the contribution of a procedure to the values of the variables 1in the
problem to which the procedure is applied. In the extended and-or tree
representation, each bundle of arcs is labelled by that part of the
matching substitution (called the output component) which affects
variables in the problem under consideration. The figure below
illustrates the extended and-or tree representation for the fallible
Greek problem of Chapter 1.

The problem-solving interpretation of Horn clauses 89

Fallible(x) Greek {x)

X = Socrates

a

Human (x)

x = Turing X = Socrates

O

In general, the substitution © which matches a problem B with a
procedure A <— Aj,...,A; can be decomposed into two parts 6 = 8;U 8-

(1) One part 6; affects variables in the procedure. It passes
input from the problem to be solved to the procedure which
tries.to solve‘it.‘ ©; is called the input component of the
matching substitution.

(2) The other part & affects variables in the problem to be
solved. It passes output from the procedure to the problem
whose solution is being attempted. 8y is called the output
component of the matching substitution.

Thus the procedure reduces the problem B to the collection of subproblems

Alei,. .e ,Amel

whereas the output component 6, 1is the procedure's contribution to
finding the values of the variablé&s in B.

When the matching substitution makes a variable, say x, in the problem
identical to a variable, say y, in the procedure, then it 1is useful to
treat the substitution as transmitting input and to include y = x in
the input component of the matching substitution.

Splitting and independent subgoals

An important characteristic of the and-or tree representation is that
it explicitly exhibits the splitting of a goal statement into separate
subgoals. Splitting is especially useful when the subgoals share no
variables. Subgoals which share no variables are independent and can be
solved by different problem-solvers working independently.

In the family relationships example the two subgoals in the initial
goal statement

{— Parent{x,Ares)}, Parent(Ares,z)

share no variables and are independent.

99 Chapter 4: Horn Clause Problem-Solving

Parent (Ares,z)
Parent (x,Ares)

Mother {(Ares,z) Father (Ares,z)

Mother (x,Ares) Father (x,Ares)

z = Harmonia

O

X = Zeus

O

X = Hera

0

Any solution to the problem of finding an x which is a parent of Ares is
compatible with any solution to the problem of finding a z which is a
child of Ares. Problem-solvers could work on the separate problems
simultaneously without danger of interfering with one another.

Top-down search spaces whose nodes are labelled by goal statements
contain redundancies when subgoals are independent. This 1is illustrated
by the goal statement search space for the previous problem. The same
abbreviations are used as in the previous chapter.

<— P(x,Ar), P(Ar,z)

<— M(x,Ar}, P(Ar,z) <~ F(x,Ar), P(Ar,z)
<— F{x,Ar) ,M(Ar,2z) J <- F(x,Ar),F(Ar,z)
<— M(x,Ar) M(Ar,z) <~ M{x,Ar),F(Ar, z)
z = Harmonia z = Harmonia
<— M(x,Ar) P <— F(x,Ar)
x = Hera X = Zeus
J 0 O

Here the subgoal of finding a child of Ares is redundantly considered
twice, once in the context of the goal statement <— M(x,Ar), P(Ar,z)
and again in the context of the goal statement <— F{(x,Ar), P(Ar,2z}. 1In
the and-or tree search space the subgoal is represented only once.

More generally, given an initial goal statement <— A, B, n ways of
solving A and m ways of solving B, the goal statement top-down search
space contains n*m branches, whereas the and-or tree contains only n+m.

Dependent subgoals 91

Dependent subgoals

The extended and-or tree representation does not specify the
relationship between the solution of a goal statement and the solution of
its separate subgoals. 1In particular, the problem-solving interpretation
leaves open the possibility that a goal statement

<— Al""'Am
might be solved by

(1) independently solving the separate subgoals, obtaining
associated substitutions ©q,...,8p which solve the subgoals
and then

(2) combining the separate substitutions to obtain a solution of
the goal statement itself.

If the subgoals are independent then it suffices to combine the separate
substitutions by taking their union. If they are dependent then it is
necessary to combine them by finding a most general common instance of
the substitutions. For example, the combined substitution for the
independent subgoals in the goal statement

<— Parent(x,Ares}), Parent{Ares,z}
is simply the union
{x = Hera, 2z = Harmonial

of the individual substitutions. But the combined substitution for the
dependent subgoals

<— 8 <y, Even(y)
given the separate substitutions

ty = s(y")} and {y = s(s(@))},
is obtained by matching the two values for y giving

ly = s(s(g)}.

Top—-down goal-statement search spaces make explicit both the
dependencies among sub-goals and the effect on the size of the search
space of solving different subgoals in different sequences. The and-or
tree search space for the problem of the fallible Greek, for example, is
independent of the order in which the top level goals are solved. The
goal statement search spaces, however, are guite different. Solving goals
in one sequence we obtain a search space containing alternative branches,
whereas solving them in a different sequence generates a search space
consisting only of the solution itself. Notice that, as in the extended
and-or tree representation, it is useful to label arcs by the output
component of the matching substitution.

92 Chapter 4: Horn Clause Problem-Solving

<— Fallible(x), Greek(x)

<— Human (x}, Greek (x)

X = Turing x = Socrates
<— Greek (Turing) <— Greek (Socrates)
0

One top-down search space

, <— Fallible(x), Greek(x)

, <— Human(x), Greek {x)
X = Socrates

<— Human (Socrates)

¢ D

Another search space

For the remainder of the book we shall use goal statement search
spaces (in preference to extended and-or tree spaces), because they make
it easier to show the effect of the subgoal selection strategy on the
size of the search space. In practice, computer implementations of Horn
clause problem-solving systems use a representation which combines
features of both and-or tree and goal-statement spaces.

The goal statement search spaces for the fallible Greek problem
illustrate a general principle. When subgoals are dependent, select one
to which the fewest procedures apply. The aim is to minimise the overall
size of the search space by locally minimising the number of alternative
branches which emanate from any node.

Finding versus showing

Logic does not distinguish between procedures which show that a given
relationship holds and procedures which find individuals for which it
holds. Thus the grandparent procedure, for example, is able not only to
show that one individual is grandparent of another but also to find both
grandparents and grandchildren.

Finding versus showing 93

The difference between showing and finding 1is indicated by the
presence or absence of variables. In dgeneral, the more variables a
problem contains, the more finding there is to be done.

Any procedure which applies to a showing problem P(t) alsc applies to
the corresponding finding problem P(x). Thus the search space for a
finding problem is generally larger than it is for a showing problem.
This suggests the principle of selecting a subgoal which involves least
finding and most showing. This principle 1is subsumed by the one which
selects the subgoal to which fewest procedures apply, but it is easier to
apply. It reguires only an analysis of the subgoals under consideration
rather than an analysis of all the matching procedures as well.

Applying these principles to the grandparent procedure
Grandparent (x,y) <— Parent(x,z), Parent{z,y)

results in the selection of different subgoals depending on the form of
the problem to be solved:

(1) Given x, to find grandchildren y of x, first find children z
of x, then find children y of z.

{2) Given y, to find grandparents x of y, first find parents z
of y, then find parents x of z.

(3) Given both x and vy, to show x is grandparent of y, compare
the number n of children of x with the number m (two) of
parents of y.

If n <m, first £find children 2z of x then show they are
parents of y.

If n > m, first find parents z of y and then show they are
children of x.

If n =m, it doesn't matter which of the two subgoals is
selected first.

(4) Given neither x nor y, to find individuals in the
grandparent relationship, it doesn't matter which subgoal is
selected first.

The principle of preference for subgoals to which fewest procedures
apply has two aspects. On one hand, it is a principle of procrastination,
which delays as long as possible the selection of explosive subgoals that
can be solved in many ways. On the other hand, it is a principle of eager
consideration of subgoals which can be solved in few ways.

The principle of procrastination can lead to smaller searches in two
ways. When subgoals share variables, delaying the selection of a finding
problem (which can be solved in many ways) can turn it into a more
manageable showing problem which can be solved in fewer ways. Finding the
values of variables may be done more efficiently by selecting other, less
explosive, dependent subgoals. Whether subgoals are dependent or not, it
may be possible to postpone the consideration of explosive subproblems
until after the initial problem has been solved by alternative methods.
By then, whether or not the explosive subproblem has been instantiated it
can be ignored.

94 Chapter 4: Horn Clause Problem—~Solving

The principle of eager consideration is of particular utility when a
subgoal can be solved in at most one way. To solve a goal statement, all
its subgoals have to be solved. Therefore, if a goal statement contains
an unsolvable subgoal, which matches no procedure, then the selection and
recognition of the unsolvable subgoal demonstrates the unsolvability of
the goal statement as a whole; hence we avoid the unnecessary
consideration of other subgoals in the same goal statement. When only a
single procedure matches a given subgoal, then it must be applied sooner
or later, if the goal statement has a solution. Early consideration has
the advantage that any information in the form of values for variables
can be obtained as soon as possible and communicated to other dependent
subgoals. Moreover, 1if the procedure eventually fails to solve the
subgoal, then consideration of other more explosive subgoals in the same
goal statement may be avoided.

The number of procedures (including assertions) which apply to a given
subgoal is only a local approximation to the total number of ways the
subgoal can be solved. It can be misleading in some cases. Better
approximations can be obtained by employing look-ahead techniques similar
to the mini-max wethods discussed later in this chapter.

The effect of different strategies for selecting subgoals on the size
of the search space is more pronounced when composite terms, constructed
by means of function symbols, are involved. The effect of composite terms
on the selection of subgoals will be investigated in the next chapter.

Lemmas, duplicate subgoals and loops

Many features of the extended and-or graph representation can be
incorporated into the top-down goal statement representation by
generating lemmas which record the solution of solved subgoals. When a
subgoal is solved, an assertion can be generated which solves the subgoal
directly in one step. Such assertions are lemmas, which are found by top-
down deduction but could have been generated bottom—up. Thus a lemma
which has been generated when a subgoal is solved in the context of one
goal statement can be used to solve the same subgoal directly when it
arises again in the context of another goal statement.

To achieve the problem-solving power of and~or graphs, negative lemmas
also need to be generated when a subgoal is recognised as unsolvable.
Negative lemmas can be used to recognise that the same subgoal is
unsolvable when it arises again in another context.

The generation of positive lemmas was first described by Loveland
[1969] for the top-down model-elimination proof procedure. Both positive
and negative lemma generation are incorporated into the top-down parsing
procedure for context-free grammars devised by Earley [(1970]. An
equivalent of lemma generation in Horn clause problem-sclving has been
proposed by Warren [unpublished] as an extension of the Earley parsing
procedure.

The simple case, where duplicate subgoals occur in the same goal
statement, can be dealt with directly - simply by deleting all but one
of the duplicate occurrences. Such merging of duplicate atoms in the same
clause is a special case of the factoring rule described in Chapter 7.

Lemmas, duplicate subgoals and loops 95

It is also a special case of the rule for deleting redundant subgoals,
described in Chapter 9.

Perhaps the most important case of duplicate subgoals arises when a
goal occurs as its own subgoal. This is one of the situations that leads
to loops and to infinite search spaces. Given a goal B and a matching
procedure

A < Al,Azp.. - ,Am

each of the goals A18,R28,...,A,0 where 6 is the matching substitution
is a subgoal of B. Moreover, any subgoal of a subgoal of B is also a
subgoal of B. Thus one goal is subgoal of another if they both occur on
the same branch of the and-or tree search space.

Loop detection procedures, which test whether a goal occurs as its own
subgoal, are a feature of Loveland's model elimination procedure and of
Sl-resolution, More general loop detection strategies, which test
whether a goal subsumes a subgoal, have been investigated by Derek Brough
[1979] and have been incorporated into a Horn clause problem-solving
system implemented at Imperial College.

Search strategies for problem-reduction spaces

Search strategies for and-or trees and graphs are extensions of those
for path-finding. They differ primarily because they combine the
evaluation of procedures with the selection of subgoals.

The mini-max and alpha-beta strategies [see Nilsson 71] are commonly
employed when and-or trees represent game playing problems. Individual
subgoals represent states of the game. Alternative procedures which apply
to a given subgoal represent the problem-solver's alternative moves for
the state represented by the subgoal. The bundle of subgoals wnich
results from the application of a procedure represents the states
associated with all the opponent's alternative responses to the problem
solver's move.

The value of a move (represented by a procedure) for the problem-—
solver is only as great as the opponent's strongest response. Thus the
value of applying a procedure is the minimum of the values of the
subgoals in the bundle associated with the procedure. The value of an
individual state of the game (represented by a subgoal) on the other
hand, is as great as the problem-solver's best move. Hence the value of a
subgoal is the maximum of the values of the procedures which apply to the
subgoal.

Given an initial evaluation of subgoals, wini-max evaluation looks
ahead into the search space and provides a revised, more accurate
evaluation of subgoals. It can be used not only for game playing but for
problem-reduction in general. An appropriately modified version of mini-
max evaluation can be used specifically to improve the criterion for
selecting subgoals. A general method for using 'look-ahead' to improve
evaluation functions for clausal theorem-proving has been developed for
the connection graph proof procedure [Kowalski 1974a) presented in
Chapter 8.

96 Chapter 4: Horn Clause Problem-Solving

For many problem-reduction applications it is more appropriate to use
some form of depth-first search. This is efficient to implement because
only one branch of the top-down search space is considered at any time.
When no untried procedure applies to the selected subgoal in the goal
statement at the end of the branch, the search strategy backtracks to the
next-to-last node of the branch and tries to solve the selected subgoal
there in an alternative way. For this reason depth-first search is also

called backtracking.

Although backtracking is effective in many cases it can be
distressingly unintelligent in others. Both successful and unsuccessful
applications of backtracking are illustrated by the arch recognition
problem,

Consider, for example, the problem of recognising an arch in the
following scene:

It is convenient to name an arch by means of a function symbol which
collects together the immediate constituents of the arch. We let the term

aly,x,z)

name the arch

which consists of block x on top of left tower y and right tower z. A
tower can be named by using a function symbol which combines the block on
top of the tower with the subtower beneath it. We let the term

t(u,v)

name the tower

Search strategies for problem-reduction spaces 97

which consists of block u on top of tower v. Thus t(B,A) names the tower
comprising block B on top of block A; a{(t(B,A),D,C}) names the arch in the
scene above. The scene and the definitions of arch and tower are
represented by clauses Al-12.

Al Arch{a(y,x,z)) <— Block(x), Tower(y},
Tower (z), On(x,y), On(x,z)
A2 Tower (x) <— Block (x)
A3 Tower (t{x,y)) <= Block(x), Tower(y), On(x,y)
A4 On(x, t(y,z)) <= On(x,y)
AS Block (&) <—
A6 Block (B} <—
A7 Block {C) <—
A8 Block (D) <—
A9 Block(E) <—
AlG On(B,A) <~
All On(D,B) <—
Al2 On(D,C) <—

Clause A4 reduces the problem of determining whether a block is on a
tower to that of determining whether the block is on the block which is
on top of the tower.

The definition of arch Al is unsatisfactory for several reasons (see
exercise 5), The problems which arise with backtracking, however, are
independent of them.

Consider the problem
<— Arch(a(t(B,A}, D, C))

of recognising the arch in which block D is both on the tower B on A and
on the tower C. Using Al and solving subproblems in any sequence, the
top-down search gspace consists of just the single path which solves the
problem. No search strategy, including backtracking, behaves unintelli-
gently.

Suppose, however, that the problem is to find an arch in the scene
<— Arch(w).

Assume that subproblems are selected and procedures are applied in the
order in which they are written., Because such strategies are especially
easy to implement, they are incorporated in many computer-based problem-
solving systems. The initial problem guickly reduces to an unsclvable
goal statement.

98 Chapter 4: Horn Clause Problem-Solving

¢ < Arch(w)}
al
w = a(errz)
<— Block(x), Tower({(y), Tower (z), On(x,y), On(x,z)
X = A
AS
<— Tower (y}, Tower(z), On{A,y), On(A,z)
A2
4 <— Block (v}, Tower{(z), On{(A,y), On(a,z)
AS
y =A
} <— Tower (z), On(a,A), On(A,z)
A2
<— Block (z), On(A,A), On(A,z)
A5
z = A
4 <— On(A,A), On{A,Rn)

unsolvable

The simple depth-first strategy backtracks to the previous node and
searches for another block z. But changing 2z does not affect the
unsolvability of On(x,y) so 1long as x and y are both A, The backtracker
goes into an infinite 1loop, trying a potentially infinite sequence of
towers z which do not affect the unsolvability of the subproblem On(x,y),
where x and y are A.

Backtracking can be made more intelligent if, when generating an
unsolvable subgoal, it analyses the substitutions which cause the failure
(in this case x=A and y=A), and backtracks to a node where it can undo
them (in this case to the goal statement containing the selected subgoal
Block(y)). Efficiency can be improved by preserving intermediate solved
subgoals. The backtracker can be made more intelligent still by analysing
the failure, not only to identify the subgoal whose solution should be
undone, but also to determine how it should be done [Schmidt et al 1978],
In this example, when the subgoal On(x,y) with x=A and y=A is recognised
as unsolvable, the assertion On(B,A) <— can be identified as the
nearest match, The search strategy can then backtrack to the goal
statement containing the selected subgoal Block(x) with substitution x=a
and test whether Block{x) with x=B can be solved. Such goal-directed
intelligent backtracking has the spirit of Sussman's [1975] model of
problem-solving. Instead of carefully evaluating subgoals and alternative
procedures, the problem-solver picks them arbitrarily. If they fail, he
analyses the mistake in order to find a better method of solution,

Notice, however, that the effect of solving subgoals in an arbitrary
sequence and backtracking intelligently when things go wrong can be
achieved more directly by selecting the correct subgoals in the first
place. In this example, it suffices to select the subgoals

Oon(x,y) and On(x,z)

before the others in the definition Al of the arch., Similarly, the
subgoal

Search strateqies for problem-reduction spaces 99

On (x,Yy)

should be selected first in the definition A3 of tower. It is necessary,
moreover, to try the assertions Al@-12, which define the location of
blocks resting on blocks, before the procedure A4, which defines the
location of blocks on towers.

<— Arch (w)

w = a(Ylez)

<— Block{x), Tower (y), Tower(z), On{x,y), On{x,z)

X =B
y =A

<— Block (B), Tower (A), Tower{z), On(B,z)
z = A

<— Block (B), Tower (A), Tower (A)

<— Tower (A)

<~ Block (A)

O

Here the duplicate subgecal Tower (A) has been deleted to avoid redundancy.
Notice that the first solution finds the pathological arch:

B
a(d, B, A) B

Backtracking is employed in both the PLANNER [Hewitt 1969] programming
language and the PROLOG [Colmerauer et al 1972] [Roussel 1975} top-down,
Horn clause programming system. The inefficiencies of backtracking in
PLANNER led to the development of CONNIVER [Sussman and McDermott 1972a,
1972b}, a PLANNER-like programming language in which the programmer
writes both problem-solving procedures and search strategies. In PROLOG,
the problem-sclver provides the backtracking search strategy but the
programmer can control the extent of backtracking.

Various problem-solvers incorporating intelligent backtracking have
been designed and implemented by Sussman and his colleagues [Sussman
19751, [Stallwan and Sussman 1977], [Doyle 1978]. Intelligent Horn
clause backtracking problem-solvers have alsc been investigated by Cox
and Pietrzykowski (19761, [Cox 1978] and by Bruynooghe {1978]. Limited
intelligent backtracking strategies have also been implemented in various
Horn clause systems at Imperial College.

Bi~directional problem-solving

The Horn clauses which describe a typical problem-solving task can be
classified into three kinds:

160 Chapter 4: Horn Clause Problem-Solving

(1) general-purpose procedures (including assertions), which
describe the problem-domain,

(2) problem-specific assertions, which express the hypotheses of
the problem to be solved, and

(3) a goal statement, which expresses the problem itself.

Problem-specific assertions can be absent from a given task
description. But when they are present, it may be useful to combine top—
down reasoning (from the problem to be solved) with bottom-up reasoning
(from the hypotheses of the problem). However, it is important in this
case to avoid bottom-up reasoning from assertions which are part of the
general description of the problem-domain. This restricted use of
bottom-up reasoning combined with top-down reasoning is a characteristic
feature of Bledsoe's theorem-proving system [1971].

The majority of bottom-up proof procedures, however, do not
distinguish betwen different types of assertions. As a result, they
generally lead to combinatorially explosive behaviour, generating
assertions which follow from the general description of the problem-
domain, in addition to assertions which follow from the assumptions of
the particular problem at hand.

A useful criterion for combining problem-specific bottom—up reasoning
with top-down reasoning is a variation of the one proposed by Pohl [1972]
for path-finding problems:

At every step choose the direction of inference which
gives rise to the least number of alternatives.

In the top-down direction, the number of alternatives is the smallest
number of procedures which match the selected subgoal in a goal
statement. In the bottom-up direction, it 1is the smallest number of
assertions which can be derived from any assertion. The Pohl criterion
is illustrated for a path-finding problem below.

2
2 4
2 2
3 1 N
3 2
The search space generated The search space generated
in one direction in the other direction

The number next to each node indicates the number of successor nodes.
The Pohl criterion selects the direction associated with generating the

Bi~directional problem-solving 191

successor of N. Given the previous formulation of the path-finding
problem, bi-directional path-finding 1is accomplished by combining top-
down and bottom-up reasoning.

A notation for describing bi-directional problem-solving

The distinction between top-down and bottom-up inference can be
pictured using arrows to indicate the direction of reasoning. For every
pair of matching atoms in the initial set of clauses (of which one is a
condition and the other a conclusion) an arrow is directed from one atom
to the other.

For top-down inference, arrows are directed from conditions to

conclusions. For the grandparent problem, we obtain the following graph.

<— Grandparent (Zeus,Harmonia)

Grandparent (X,y) <— Parent(x,z), Parent(z,y)

Parent{x,y) <— Father(x,y):§§§§§§§5 Parent (x,y} <— Miﬂfer(x,y)
Father {(Zeus,Ares) <— Father (Ares,Harmonia) <— Mother (Hera,Ares) <—

Reasoning is guided by the direction of the arrows. It starts with the
initial goal statement, is transferred within procedures from conclusions
to conditions and ends with the assertions.

For bottom-up inference, arrows are directed from conclusions to
conditions.

<— Grandparent {Zeus,Harmonia)

Grandparent (x,y) <— Parent(x,z), Parent(z,y)

Parent (x,y) <— Father(x,y) Parent(x,y)é;;%%Pther(x,y)
Father (Zeus,Ares) <— Father (Ares,Harmonia)}) <— Mother (Hera,Ares) <—

Reasoning begins with the assertions, is transferred within procedures
from conditions to conclusions, and ends with the goal statement.

102 Chapter 4: Horn Clause Problem-Solving

The grandparent definition can also be used in a combined top-down,
bottom-up manner. Different combinations can be represented by using
numbers to indicate sequencing. For simplicity, we show only the notation
associated with the grandparent definition. The combination of directions

3

Grandparent(x,y) <— Parent(x,z), Parent(z,y)

represents the algorithm which

1} waits until x is asserted to be parent of z, then
2) finds a child y of z, and finally
3) asserts that x is grandparent of y.

The combination indicated by

1

Grandparent(x,y) <— Parent{x,z), Parent(z,y)

T l

2 3

1) responds to the problem of showing that
x is grandparent of vy,

2) by waiting until x is asserted to be parent of z,
and then

3) attempting to show that z is parent of y.

The arrow notation can also be used for non-Horn clauses. In Chapter 8
it is used to <control the behaviour of the connection graph proof
procedure.

Another formulation of the path-finding problem

The effectiveness of a problem-solving strategy (such as bi-
directional reasoning) depends on the problem—formulation rather than on
the problem itself. This is shown by comparing the previous formulation
of the path-finding problem with the one suggested by the representation
of semantic networks.

In this representation we employ a predicate Go*(x,y) which expresses
that it is possible to go from node x to node y. Assertions describe the
arcs in the initial graph. The following assertions describe the graph at
the beginning of the chapter.

Another formulation of the path-finding problem 183

Go*{(A,B) <— Go* (D,X) <—
Go*{a,C) < Go* (E,X) <—
Go*(B,D) <— Go* (X,2) <—
Go*(B,E) <— Go* (Y,2) <—
Go*{C,F) <—

In addition to the assertions, a single procedure is necessary for path-
finding

Go* (x,y) < Go*(x,z), Go*{(z,y).

The problem of finding a path from A to 2 is described by a single goal
statement

<— Go*(&,Z).

HBere the assertions are specific to the graph, whereas the path-
finding procedure is general-purpose. However, only the goal statement is
specific to the particular path in the graph., Bottom-up inference
generates assertions about paths which are unmotivated by the particular
path to be found. Both forward and backward search, as well as bi-
directional search, can be accomplished by top-down inference alone. The
direction of search depends on the choice of subgoal in the path-finding
procedure. Selecting Go*(x,z) before Go*(z,y) is forward search.
Selecting the two subgoals in parallel or timesharing between them gives
rise to bi-~directional search.

The path-finding problem can be formulated in different ways; the same
problem-solving behaviour can be obtained from different formulations by
applying different problem-solving strategies. Even the specific
behaviour determined by the bi-directional path-finding strategy which at
every step chooses the direction which grows least rapidly can be
accomplished with both formulations. 1In the first formulation it is
obtained by applying the Pohl criterion for combining top-down and
bottom-up inference. In the second formulation it is accomplished by top-
down inference alone, applying the strategy of selecting the subgocal to
which fewest procedures (including assertions) apply.

Other aspects of problem-solving

Problem-solving can be classified into three main stages.

1) The first stage identifies the problem-domain and formulates
problem-solving procedures.

2) The second stage applies the procedures to the solution of
problems.

3) The third stage improves the problem problem-solving
strategies and procedures.

This chapter has been restricted to a discussion of the second stage. It
has not considered the other stages which are concerned with learning.
In this respect we have followed the advice of McCarthy [1968] and Minsky
[1968] to explore the adequacy of the representation language before
dealing with the problems of formulating and improving the representation
of the problem domain.

104 Chapter 4: Horn Clause Problem-Solving

In the next chapter we investigate the interpretation of the Horn
clause subset of logic as a programming language. This unifies problem-—
solving with programming. The first stage of problem-solving is the
initial stage of problem formulation and specification. The second stage
runs the specification as a program, and the third identifies
inefficiencies and remedies them by improving the procedures and
tailoring the problem-solving strategies to the problems to be solved.

In subsequent chapters we investigate the role of non-Horn clauses in
problem-solving and the use of global problem-solving strategies. In the
last chapter we compare the interpretation of logic as a model for
problem-solving with the role of logic in philosophy as a model for
representing beliefs and formalising arguments.

However, nowhere in this book do we investigate the problems of
learning. Nor do we investigate such important strategies as problem-
solving by example and by analogy.

Exercises

1) a) Express the arrow-inversion problem by means of Horn clauses
without function symbols:

Given three arrows in a row D U D, pointed down, up,
down respectively, the goal is to reach the state D D D in
which all arrows point down. The only action possible is
to invert a pair of adjacent arrows, changing both their
directions simultaneously.

Hint : Let State(x,y,z) express that there is a possible state in which
the first, second and third arrows point in directions x, y and 2
respectively.

b) Show that the problem is unsolvable by generating the
graph representation of the top-down search space and
showing that it contains no solutions.

c) Describe how the clausal formulation of the problem can be
modified in order to

i) invert adjacent arrows only when they have opposite
directions,

ii) add an action which interchanges adjacent arrows,

iii) deal with a row of four arrows instead of three.

2) a) Express the farmer, wolf, goat and cabbage problem by means
of Horn clauses:

The farmer, wolf, goat and cabbage are all on the north
bank of a river and the problem is to transfer them to the
south bank. The farmer has a boat which he can row taking
at most one passenger at a time. The goat cannot be left
with the wolf unless the farmer is present. The cabbage,

Exercises 185

which counts as a passenger, cannct be left with the goat
unless the farmer is present.

b) Compare the graph representations of both the top-down and
bottom-up search spaces.

c) Can you find useful evaluation functions to guide the

search for a solution?

3) Given the two different representations of the path-finding
problem, compare the problem-solving strategies needed

a) to recognise that there is no path from A to B if there is
no arc leading from A or no arc leading to B and

b) to show that it is possible to go from A to A,

4) Let sequences be characterised by means of two relations
Item{i,j,k) which holds when i; = k i.e.
the j-th element in the sequenZe i is k and
Length(i,u) which holds when the length of sequence i is u.

Thus the sequence
A: ajs89,.005a
can be characterised by means of the assertions:

Item (A,l,al) <=
Item(A,2,a5) <—

Item(A,n,a,) <=
Length(A,n) <—
Assume that Plus(x,y,z) holds when x+y = z.
a) Define by means of Horn clauses the relation Sum(x,v)
which holds when v 1is the sum of the numbers in the
sequence X.

b) Use the clauses of part {(a) to find top~down the sum of
the numbers in the sequence B: 3,4,10.

c) Can Sum(x,v) be defined in such a manner that, given x to
find v, the search space contains only the solution?
5) a) List all the solutions to the problem
<~ Arch(w)

implied by the definition of arch and the description of the scene given

106

Chapter 4: Horn Clause Problem-Solving

by clauses Al-12.

b)

Reformulate the definition of arch and tower by means of
Horn clauses in order to eliminate as many pathological
arches and towers as possible. (This problem can be
solved more easily later using negation as failure,
investigated in Chapter 11.)

6) Consider the problem

<— Numb{u), Numb{v), u > v

given the clauses

Numb (8} <—
Numb (s (x)) <— Numb(x)
s{x) > 8 <
s(x) > s(y) <— x> y.

Analyse the behaviour of the backtracking search strategy for solving the

problem.

Assume that the solution of subgoals is attempted in the order

in which they are written and that alternative clauses also are tried in
the order given.

127

CHAPTER 5

The Procedural Interpretation of Horn Clauses

A Horn clause

B('_Al,.co'AIn m> @

is interpreted as a procedure whose body {Aj,...,Ap} is a set of
procedure calls A;. Top-down derivations are computations. Generation of
a new goal statement from an old one by matching the selected procedure
call with the name B of a procedure

B <— Al""'Am

is procedure invocation.

A logic program consists of a set of Born clause procedures and is
activated by an initial goal statement.

Conventional programs mix the logic of the information used in solving
problems together with the control over the manner in which the
information 1is used. Logic programs are more abstract. They c¢ontrol
neither the order in which different procedures are invoked when several
match a given procedure call, nor the order in which procedure calls are
executed when several belong to the same goal statement.

Logic programs express only the logic of problem-solving methods. They
are easier to understand, easier to verify and easier to change. They
are especially congenial to inexperienced programmers and database users
who do not want to become involved with the details of contrelling the
program's behavicur.

The first logic programming system, called PROLOG [Colmerauer et al
1973}, [Roussel 1975] based on the procedural interpretation of Horn
clauses [Kowalski 1974) was designed and implemented in 1972. A PROLOG
compiler written in PROLOG for the PDPl1@ was implemented at the
University of Edinburgh by Warren, Pereira and Pereira [1977]. They
showed that the PROLOG compiler executes LISP-like 1logic programs as
efficiently as compiled LISP [McCarthy et al 1962].

Terms as data structures

Data 1in logic programs can be represented by means of terms or
relations. The use of terms as data structures gives Horn clause programs
many of the characteristics of a list-processing language like LISP. More
generally, they function as recursive data structures of the kind

108 Chapter 5: The Procedural Interpretation of Horn Clauses

advocated by Hoare [1972]. The use of relations in logic programs, on
the other hand, 1is 1like the representation of data by relations in
database formalisms [Codd 1970]. Relations are also 1like tables and
arrays in conventional programming languages. They will be discussed in
more detail later in the chapter.

As in LISP, binary trees can be represented by means of a binary
function symbol:

cons (X,yY) names the tree m

which has the subtree x immediately to the 1left of the root node and the
subtree y immediately to the right. Thus the term

A
cons (A,cons (B,C)}) names the tree ’/ﬁ:;}\x
C

B
and the program

Tips (x,1) <— Label(x)
Tips{cons(x,y), w} < Tips(x,u), Tips{y,v), utv = w

defines the relationship Tips(x,y) which holds when y is the number of
tips in the binary tree x. Label(x) holds when x is a label:

Label (3) <—
Label (B) <—
Label(C) <—

for example. The goal statement

<~ Tips(cons(A,cons(B,C)), y)
expresses the goal of computing the number of tips in the tree pictured
above. The term cons(A,cons(B,C)) names the input and the variable y

names the output. The top-down solution

<— Tips(cons(A,cons(B,C}), y)

<- Tips(A,u), Tips(cons(B,C), V), utv =y

<— Label{A,u), Tips(cons(B,C), V), utv =y
u=1

<~ Tips{cons(B,C), v}, 1+v =y

<~ Tips(B,u'), Tips{C,v'}), u'+v' = v, 1+v = y
u'=l
v'=l § <— Label (B), Label(C), 1+l = v, 1+v = ¥y
v =2

y <— 142 = y

y =3

D

is a computation of the output y = 3. The search space contains only the
computation.

Terms as data structures 109

Lists can be regarded, as in LISP, as a special kind of binary tree.
The term cons(x,y) names the list

which has first element x followed by the list y. The constant symbol

nil names the empty list. Thus the term cons{A,cons{B,cons(C,nil)})
names the list A,B,C and the program

Item(cons{x,y), 1, x) <
Item(cons(x,y), u, z) < Item(y,v,z), v+l = u

defines the relationship Item(x,y,z) which holds when the y-th element of
the list x is z. Notice that the term cons(A,B) does not name the list
A,B because B is not a list. The list consisting of B alone is named by
cons (B,nil) and therefore the list A,B is named by cons(A,cons(B,nil)).

Programs may be easier to read if infix notation is used for function
symbols and conventions are used for suppressing parentheses. It |is
especially convenient to use an infix function symbol "." for lists

x.Y stands for cons(x,y}
and to reduce parentheses by letting
x.y.z stand for cons{x,cons(y,z)}.
Thus the list A,B,C can be represented by the term
A.B.C.nil .

Facilities for defining infix function symbols and for reducing
parentheses are provided in PROLOG. The programmer can further reduce
parentheses by declaring precedence relations among function symbols.
Thus by declaring that the infix function symbol & binds more closely
than the infix function symbol >, the term

p&gor &s

can be written instead of

{p & q) o (r & s).

Computation by successive approximation to output

Horn clause procedures transmit output throughout computation.
Partial outputs accumulate and determine successive approximations to the
final output. The approximations are generated whether or not cthe
computation eventually succeeds.

119 Chapter 5: The Procedural Interpretation of Horn Clauses

The figure below illustrates the computation by successive
approximation of the list which results from appending 3.nil to 2.1.nil .
<- Append{2.1.nil, 3.nil, x)

X = 2.0 (2)

<— Append(l.nil, 3.nil, u)
u = 1l.u' (2)

¢— Append(nil, 3.nil, u")

u' = 3,nil (1)

]
(1) Append (nil,x,x) <—
(2) aAppend (X.y, Z, X.u) <— Append(y,z,u)

Clause (1) states that appending any list x to the empty 1list produces
the list x, Clause (2) states that appending a list z to a non-empty list
x.y produces a list x.u with the same first element and with a remainder
u which is the result of appending z to y.

The successive steps of the computation determine successive
approximations to the output

>
Houon

In general, the output of a computation can be regarded as the collection
of all output components of matching substitutions performed in the
computation. The output can be compactified, as in the example above, by
applying output components lower in the refutation to the terms of output
components higher in the refutation.

The variation of input-output parameters

The distinction between the input and output parameters of a procedure
depends upon the context in which the procedure is invoked. Any subset of
the procedure’'s parameters can be given as input. The remaining
parameters are then computed as output.

The following computation Illustrates the use of Append to compute the
list x which produces 2.1.3.nil when 3.nil is appended to it. The search
space contains, in addition to the successfully terminating computation,

The variation of input~output parameters 111

only one other step, which fails because no procedure matches its
procedure call.

<— Append (x, 3.nil, 2.1.3.nil)

X = 2.x
<— Append(xy, 3.nil, 1l.3.nil)
)(1= 1.)(2
<— Append (x5, 3.nil, 3.nil)

Xy = nil

O

Xy = 3.)(3

<— append(x3, 3.nil, nil)

The ability to execute the same procedure with various patterns of
input and output is an important feature of logic programs. It implies,
for example, that the same procedures which compute derivatives of
functions can also be used to compute integrals [Bergman and Kanoui
1973]. Procedures which verify that a given program meets given
specifications can also be used to generate programs from specifications
[Moss 1977].

Non-determinism,: several procedures match z procedure call

Compared with normal programs, Horn clause programs executed top-down
are non-deterministic in two main senses: When several procedures match a
given procedure call, the search strateqy by means of which the
alternative procedures are tried is not determined;. When several
procedure calls need to be executed in a single goal statement, the order
of execution is not determined,.

In the first case, alternative procedures may compute alternative
outputs. If only one output is needed, it is not determined; which output
will be found. If all outputs are required, it is not determined; in
which order they will be generated.

A procedure, which is deterministic; for one pattern of input and
output parameters may be non—deterministicl for a different pattern. The
Append procedure, for example, is non-deterministic; when it is used to
partition a given list into two parts as in the problem

< append(x, y, 2.1.3.nil).
The search space of all computations is illustrated pbelow. Notice the
economy which is obtained by structuring the search space as a tree. The

two different partitions

3.nil and
nil

X 1 1
X .1.3.nil, vy

for example, are both obtained from the single initial approximation

X = 2.l.x2 .

112 Chapter 5: The Procedural Interpretation of Horn Clauses

<— Append(x, y, 2.1.3.nil)

X = nil X = 2.xy
y = 2.1.3.nil
O <— Append(xy, Y, 1.3.nil)
Xl = nil Xl = 1.X2
y =1.3.ni

<— Append(xy, Y, 3.nil)

Xy = 3.x3

L
]

<— Append(x3, y, nil)

O

Sequential search regarded as iteration

The ability to specify repeated execution of the same command is an
essential feature of all programming languages. Such repetition, also
called iteration* , can be accomplished by executing recursive Horn
clause procedures. It can also be achieved by using backtracking to
search a space of alternativs. The definition of grandparent is a simple
example. Suppose that we are given data about individuals 1in the
parenthood relationship

Parent {Zeus,Ares) <—

Parent {(Hera,Ares) <—

Parent (Ares,Harmonia) <—

Parent (Semele,Dionysus) <—

Parent (Zeus,Dionysus) <—
etc.

and the problem is to show that Zeus is a grandparent of Harmonia
<— Grandparent {Zeus,Harmonia)

using the definition of grandparent
Grandparent (x,y) <— Parent(x,z), Parent(z,y).

In a conventional programming language, the programmer would have to
specify both how the data in the parenthood relationship is stored and
how it is retrieved. In a logic program, the same decisions are taken by
the program executor instead. In either case, the simplest strategy is to

store and retrieve the data seguentially. The parenthood relationship
might be stored sequentially, either in a two-dimensional array or in a

*Some of the discussion in the next few sections refers to features of
conventional programming languages. The reader who is not familiar with
such languages can ignore these sections without disadvantage.

Sequential search regarded as iteration 113

linked 1list. The sequential retrieval strategy is an iteration,
consisting of a double loop, one nested inside the other. To show Zeus is
a grandparent of Harmonia, the outer loop searches for a child z of Zeus
and the inner loop tests whether z is a parent of Harmonia. The iterative
algorithm which has to be specified by the programmer in a conventional
programming language 1is identical in this case to the behaviour
determined; by the backtracking strategy for executing non-deterministicj
programs.

In other cases, as when the Append procedure is used to partition
lists, backtracking is more general than iteration. In general, whereas
iteration searches a tree whose depth 1is determined by the number of
loops which are nested, backtracking searches an arbitrarily deep tree of
alternatives,

The suitability of a search strategy depends upon the structure in
which the data is stored. Iteration, regarded as sequential search, is
suitable for data stored sequentially. Other search strategies are
appropriate for such data structures as hash tables, binary trees or
semantic networks. Fishman and Minker {1975] for example, store data in
a manner which facilitates parallel search, whereas Deliyanni and
Kowalski {1979] propose a path-following strategy for retrieving data
stored in semantic networks.

"Don't know" versus "don't care" non-determinismg

Non-determinism does not always entail the need to search for a
solution. The definition of Max(x,y,z) (the maximum of x and y is z) is
an example.

Max (x,y,x) <— x >

Max (X,Y,y) <~y >

Both procedures apply when x and y are identical, as in the case
<— Max(3,3,z).

Searching for a solution, which is wunavoidable in the general case,
creates redundancy when it is unnecessary. Backtracking is redundant, for
example, when it is applied to the goal statement

<— Max(3,3,z), Even(z)

and the procedure calls are executed in the order in which they are
written. The second procedure call Even(z)}, which succeeds when 2z is
even, fails no matter how the first procedure call is executed.
Backtracking after the first failure, to try a different way of executing
the first procedure call, is both unnecessary and redundant.

Searching can be restricted in general whenever the output variables
of a procedure call are a function of the input -~ for example, when the
variable y is a function of x in the relation F(x,y) and x is given as
input. Backtracking can be suppressed if the first solution of the goal
F(A,y) fails to solve the second goal G(y) in the goal statement

114 Chapter 5: The Procedural Interpretation of Horn Clauses

<~ F(A,y), G(y).

When searching for a solution is unnecessary, then the program
executor "doesn't care" which solution is generated nor how it is
obtained. Otherwise, searching is unavoidable when the executor "doesn't
know". Don't care non-determinism; is a dominant feature of Dijkstra's
language of guarded commands [19%6]. The wuse of don't care non-
determinisml to restrict search is a form of intelligent backtracking.

Non-determinism can have both don't know and don't care
characteristics, %he path-finding problem is an example. Given the
problem of finding a path from A to N

<~ Go (A,N)

for example, the program executor doesn't care which path is found but
normally doesn't know which procedures to apply in order to find it.
Searching is necessary to find one path but is unnecessary and redundant
thereafter.

The path-finding problem is a special case of the general situation in
which a procedure call shares no variables with other calls in the same
goal statement. Any non-determinism; involved in executing the procedure
call matters only until the first solution is found. The second
procedure call in the body of the procedure

Happy (Bob) <— Teaches(Bob,x), Attends(y,x)

Bob is happy if he teaches a course
which someone attends.

is an example. If it is executed after the other procedure call, then
its only variable y occurs in no other procedure call and it suffices to
find only a single solution. '

The property that a procedure call contains no variables or that all
its variables occur in no other procedure call is a syntactic property
which the program executor can easily recognise without the aid of the
programmer. The situation, however, in which search can be restricted
because a procedure call computes the value of a function is undecidable
in principle. It is easier for the programmer to convey such information
to the program executor as a comment about the program, than it is for
the executor to discover the fact for itself.

Don't care non-determinism; provides a way of adding extra information
to @ program without enlarging the search space and even reducing its
size. The new information may solve a problem more directly than the
original procedures, and if the non-determinism; doesn’'t matter then the
original procedures can be ignored.

Non-determinism,: The scheduling of procedure calls

In conventional programming languages the program contreols the
scheduling of procedure calls - usually in some fixed sequence, but
sometimes timesharing among them or executing them in parallel. In logic,

Non-determinism,: The scheduling of procedure calls 115

however, the body of a procedure specifies only the collection of
procedure calls. The manner in which they are executed is determined; not
by the program but by the execution mechanism. Different strategies for
scheduling procedure calls affect the efficiency of execution but do not
affect the meaning as determined by the relations which are computed.

The definition of sorted lists is a simple example. Assume that the
definition of the < relation is already given.

Sort (x,y) holds when y is a sorted version of list x,
Perm(x,y) y is a permutation of x,
Delete(x,y,2) z results from deleting any one

occurrence of x from y.

S1 Sort(x,y) <— Perm{x,y), Ord(y)

S2 Perm(nil,nil) <—

s3 Perm(z, x.y} <— Delete(x,z,2'}, Perm(z',y)
sS4 Delete(x, X.Y, Yy) <=

S5 Delete(x, y.Z, y.u) <— Delete(x,z,u)

S6 Ord(nil) <~

57 Ord{x.nil) <—

S8 Ord(x.y.z) <— x <y, Ord(y.z)

In principle, the procedure calls in the body of procedure S1 can be
executed in any sequence. Given a list 1, to generate a sorted version y
of 1, it 1is possible firstly to execute the procedure call Ord(y),
generating an ordered list y, and then to execute Perm(l,y), testing
whether y is a permutation of 1, If the test fails, other ordered lists
can be generated until the test succeeds. It is more effective, of
course, to execute procedure calls in the opposite sequence - first
generating permutations of x and then testing whether they are ordered.
But no matter in which sequence procedure calls are executed and no
matter what the cost in terms of efficiency, the result in terms of the
input-output relation computed is the same.

Effective scheduling of procedure calls depends upon the pattern of
input and output. Generally it is more efficient to execute a procedure
call which contains the input in preference to one which does not. Thus,
given the problem

<— Sort(l,y)
I<— Perm(l,y), Ord(y)
of finding a sorted version y of an input list 1 it 1is better to select
for execution the procedure call Perm(l,y) which contains the input than
it is to select Ord(y) which does not. 1If both 17 and 1, are given
and the problem
] <~ Sort(ly,1l,)

<— Perm(1ly,1,5), Ord(1y)

is to test that 1, is a sorted version of 1y, then both procedure calls
contain the input and it does not affect ef%iciency which procedure call
is executed first. Moreover, since the two procedure calls do not share

116 Chapter 5: The Procedural Interpretation of Horn Clauses

variables and since they are equally good candidates for execution, they
can be executed together - either timesharing between them if only one
processor is available or executing them in parallel if several can be
used.

In general, it is advantageous to execute procedure calls as soon as
sufficient input is available. Given procedures (S1-8) and the goal of
sorting the list 2.1.3.nil, generating permutations before testing them
for orderedness, the test for orderedness can be initiated just as
effectively when the first two elements of the permutation have been
determined as it can when the entire permutation has been generated.
Executing procedure calls as soon as possible has the advantage that
failure can be detected as soon as possible. The figure below illustrates
the effectiveness of eagerly executing the orderedness test to reject in
one step all permutations which have first element 2 and second element
1,

<— Sort(2.1.3.nil, y)}

<— Perm(2.1.3.nil, y), Ord(y)

Yy = x.y'
<— Delete(x, 2.1.3.nil, 2'), Perm(z', y'), Ord(x.y')
X =2
z' =1.3.nil
<— Perm(l.3.nil, y'), Ord(2.y")
Yl = xl.y“
<— Delete(x', 1.3.nil, 2z"), Perm(z", y"), Ord(2.x'.y")
x' =1
z" = 3.nil

<— Perm(3.nil, y"), Ord(2.1l.y")

} <— Perm(3.nil, y"), 2<1, Ord(l.y"™)

The behaviour of the admissible pairs problem is a more dramatic
example, which is intolerably non-deterministic; if procedure calls are
executed last-in-first-out. A pair {a,b) of lists of numbers is
admissible if the two lists have the same length and for every i

if aj is the i-th element of a and

b is the i-th element of b, then
bi & 2*ai and
aj+1 = 3*bj.
Pictorially:
a: a g eeeeaes an Bppleceres-
2 *\L/Z *l / Z*L/; *l /
b: bl b2bn bn+1....-..

The following clauses, in which lists are represented by means of terms,
define the desired relationship:

Non—determinismy: The scheduling of procedure calls 117

Adm(x,y) <— Double(x,y}, Triple(x,y)

Double(nil,nil) <—

Double(x.y, u.v} < Times{2,x,u), Double(y,v)
Triple(x.nil, u.nil) <—

Triple(x.y.z, u.v) <— Times(3,u,y}, Triple(y.z, v)

Consider the problem of generating an admissible pair of lists whose
first list begins with with the number 1:

<— Adm(l.y, w)

The program is intolerably non-deterministic; if procedure calls are
executed last-in-first-out, completing the execution of one call before
initiating another. It becomes virtually deterministicy, however, if
procedure calls are executed as soon as sufficient input is available.
The two procedure calls behave as co-operating sequential processes. As
soon as either one of the two processes, Double or Triple, has enough
information about its input it runs until it needs more. By that time it
has produced enough output for the other process to resume execution.

¢ <—Adm(l.y, u)
<— Double(l.y, u}, Triple(l.y, u}
u=u'.wv
<— Times(2,1,u'),Double(y,v), Triple(l.y, u'.v)
u' = 2
<— Double(y,v), Triple(l.y, 2.v)
y = nil
v = nil y =y'.z
O <— Double(y'.z, v), Times(3,2,y'}), Triple(y'.z, v)
y' =6
<—- Double(6.z, v}, Triple(6.2, v)
v =u".v’
<~ Times(2,6,u"), Double(z,v'), Triple(6.z, u".v')
u" = 12
<— Double{z,v'), Triple{(6.z, 12.v')
z = nil
v'= nil
0

Coroutines, which cooperatively produce and consume data, can be
written in programming languages such as SIMULA. Such coroutines,
however, are syntactically and semantically different from normal
procedures. However, more recent schemes, in which procedures are called
by need ([Henderson and Morris 1976] and the activation of processes is

118 Chapter 5: The Procedural Interpretation of Horn Clauses

controlled by the flow of data (Kahn 1974} [Friedman and Wise 1978],
resemble the execution of procedures in 1logic programs. The strategy for
executing procedure calls is not determined by the program but by the
program executor.

Bottom-up execution of programs

The procedural interpretation of Horn clauses 1is primarily the top~
down interpretation. It 1is sometimes possible, however, to give a
procedural interpretation to bottom-up inference. Although it 1is
generally more efficient for computers to interpret Horn clauses top~
down, it is often more natural for people to understand them bottom-up.
Moreover, it is sometimes more efficient to execute programs bottom-up
rather than top~down.

A student of mathematics, for example, is more likely to understand
the recursive definition of factorial

The factorial of 6 is 1 <—

The factorial of x is u <— y+l = x,
the factorial of y is v,
x*y = u

bottom-up, as determining the sequence of assertions

The factorial of & is <—

1
The factorial of 1 is 1 <—
The factorial of 2 is 2 <—
The factorial of 3 is 6 <—
etc.
than he is to understand it top-down, as reducing goals to subgoals. In
this example, bottom-up derivation of factorials has a computational

flavour. It behaves as an iterative computation which accumulates
factorials of successively larger numbers until it derives the one which
is desired.

The definition of Fibonacci number can be executed more efficiently
bottom-up than top-down.

The @-th Fibonacci number is 1 <—

The 1-th Fibonacci number is 1 <—

The u+2-th Fibonacci number is x <—
the u+l-th Fibonacci number is y,
the u-th Fibonacci number is z,
ytz = x

Here the terms u+2 and v+l are expressions to be evaluated rather than
terms representing data structures. This notation is an abbreviation for
the one which has explicit procedure calls in the body to evaluate u+2
and u+l.

Interpreted top-down, finding the u+l-th Fibonacci number
reintroduces the subproblem of finding the u-th Fibonacci number. The
top-down computation is an and-tree whose nodes are procedure calls, the

Bottom-up execution of programs 119

number of which is an exponential function of u. The problem of
computing the Fibonacci of 4, for example, determines a tree, which
ignoring additions contains a total of 9 goals and subgoals.

Fib(4,x)

Fib(3,y) Fib(2,2)

Fib(2,x") Fib(l,x") Fib(l,z") Fib{@,z")

Fib{1l,y') Fib(@,y")

Here Fib(u,x) means the u-th Fibonacci number is x. Executing the same
definition bottom-up generates the sequence of assertions

The @-th Fibonacci number is 1 <—
The 1-th Fibonacci number is 1 <—
The 2-th Fibonacci number is 2 <~
The 3-th Fibonacci number is 3 <—

etc.

The number of computation steps for the Fibonacci of u executed bottom-up
is a linear function of u.

In this example, bottom-up execution is also potentially less space-
consuming than top-down execution. Top-down execution uses space which is
proportional to u, whereas bottom-up execution needs to store only two
assertions and therefore can use a small constant amount of storage. That
only two assertions need to be stored during bottom-up execution is a
consequence of the deletion rules for the connection graph proof
procedure (Chapter 8).

Notice that the efficiency of top-down execution approaches that of
bottom-up execution if similar procedure calls {i.e. the u-th Fibonacci
number is z and the u-th Fibonacci number is z') are executed only once.
Such top-down execution is an extension of Earley's parsing algorithm
[Earley 1978] as described by Warren [unpublished].

Iteration in conventional programming languages has three different
interpretations in logic programs. The classical interpretation regards
iteration as a special case of top-down execution of recursive
definitions., The iteration

To do P, repeat Q until R
for example, can be expressed in the form

P(x) <~ R{x)
P(x) <— Q{x,x"'), P(x")

where x is an input parameter which controls the number of iterations
through the loop and R(x) and Q(x,x'} hold for distinct x. The recursion
is a form of iteration if Q(X,x') is executed before P{x'}. Consequently

129 Chapter 5: The Procedural Interpretation of Horn Clauses

each new subgoal P(x') can replace the previous subgoal P(x). Execution,
therefore, reguires only a constant amount of storage for the current
subgoal.

The interpretation of iteration as top-down execution of certain forms
of recursive definitions is the only interpretation of iteration possible
in the conventional model of computation by recursion. In logic programs,
however, it 1is also possible to regard iteration either as segquential
search through a space of alternative responses to a procedure call or as
bottom~up execution of recursive definitions.

The pragmatic content of logic programs

It is a common mistake to treat logic simply as a specification
language whose statements have semantic content without pragmatic value.
Such an attitude is self-fulfilling. To use logic while ignoring its
pragmatic aspects is to make information potentially unusable.

Two different statements can express the same information and
therefore have the same meaning. But one might be useful for solving
problems and the other one useless.

The sorting problem, studied by van Emden [1977], is a good example
of the pragmatics of logic. The simple program {S1-8) for sorting lists

Sort (x,y) <— Perm({x,y), Ord{y)

is a good specification, but a useless program. Even the scheduling of
procedure calls which uses Ord(y}) to monitor the partial output of
Perm(x,y) is hopelessly inefficient {taking time 2Tn in order to sort a
list of length n}. 1In contrast, even simple sequential execution of
procedure calls produces an efficient algorithm, Quicksort [Hoare 1961],
taking time n*log(n), from the program:

Sort*(nil,nil) <—
Sort*(x.y, z) <— Partition{x,y,u,v), Sort*(u,u’),
Sort*(v,v'), Append(u', x.v', z).

Here it is intended that Partition(x,y,u,v) holds when u is the list
of all members of y which are less than or equal to x and v is the list
of all members of y which are greater than x.

Sort and Sort* are equivalent in the sense that Sort(s,t) and
Sort*(s,t) hold for the same pairs of terms s, t. Sort is useful as a
specification of sortedness but useless for efficiently sorting lists.
Sort* is efficient but less obviously correct.

In general, a given problem can be expressed in many different ways.
The two representations of the path-finding problem (one using the
predicate Go(x), the other using the predicate Go*(x,y}) can be
generalised to other problems. Even the definition of factorial can be
represented in two ways. The previous definition corresponds to the one-
place-predicate formulation of path-finding. The definition below
corresponds to the two-place-predicate formulation.

The pragmatic content of logic programs 121

FPact* (x,y,u,v)

expresses that the factorial of x is y if the factorial of u is v.
Fact*(u,v,u,v) <—
Fact*(x,y,u,v) <— u+l = u', u'*v = v', Fact*(x,y,u',v')

To find the factorial of an integer represented by a term t, a single
goal statement incorporates not only the goal but also the information
that the factorial of # is 1.

<{— Fact*(t,y,8,1)

The new formulation of factorial executed top-down behaves in the same
iterative manner as the original formulation executed in a mixed top-
down, bottom—up fashion. The 0ld formulation is more obviously correct,

whereas the new formulation is easier to execute efficiently with more
limited problem-solving facilities.

Separation of data structures

For a well-structured program, it is desirable that the data
structures be separated from the procedures which interrogate and
manipulate them., Separation of data structures from procedures means
that the representation of the data can be altered without altering the
higher-level procedures. It is easier to improve efficiency, therefore,
by replacing an inefficient data structure with a more efficient one. In
a2 large complex program the information which needs to be supplied by the
data structures is often completely identified only in the final stages
of the program design. By separating data structures from procedures, it
is possible to write the higher levels of the program before the data
structures have been determined.

Data storage and retrieval are automatically separated from procedures
when data is represented by relations, as in the family relationships
example. When data is represented instead by terms it is the
programmer’s responsibility to separate them in the program.

The arch recognition problem is a simple example. The previous
formulation which mixes procedures and data structures can be replaced by
one which separates them. Mention of the data structures in the top-level
procedures can be replaced by procedure calls which access, compute or
construct the data.

Arch({x) <— Block(v), Tower (u), Tower(w), On(v,u),
On(v,w), Left(x,u), Right(x,w), Top{(x,v)
Tower (x} <— Block (x)

Tower (x) <— Block (u), Tower(v), On{u,v),
Top{x,u), Bottom({x,v)

On{x,y} <— Top(y,u), On{x,u)

122 Chapter 5: The Procedural Interpretation of Horn Clauses

Here the Top, Left, Right and Bottom relations define the interface
between the procedures and the data structures. It is intended that
Top(X,y) holds when the top of x is y,
Left(x,y) the left subtower of arch x is vy,
Right (x,y) the right subtower of arch x is y,
Bottom(x,y} the bottom of tower x is y.

The data structures can be defined separately by defining their
interface with the top-level procedures:

Top(a{u,v,w), V) <—
Top{t({u,v), u) <=
Left(a{u,v,w), u) <—
Right (a{u,v,w), w) <
Bottom({t(u,v), v) <

In this case the interfacing procedures are defined simply by means of
assertions. But in other cases they might be defined by more general
kinds of procedures.

Comparing the two formulations of the arches program, we notice
another advantage of separating procedures and data structures: with
infix notation for predicate symbols and with well chosen names for the
interfacing procedures, data-structure-independent programs are
virtually self-documenting. For conventional programs which mix data
structures and procedures, the programmer needs to provide documentation
which explains the data structures and is external to the program. For
well-structured programs which separate procedures and data structures,
such documentation is provided by the interfacing procedures and is part
of the program.

Despite the arguments for separating procedures and data structures,
programmers mix them for the sake of run time efficiency. One way of
reconciling efficiency with good program structure is to make use of the
macro-processing facilities provided in some programming languages.
Macro-processing flattens the hierarchy of non-recursive procedure calls
by executing them at compile time before a problem is given. It is alsoc a
feature of the program improving transformations developed by Burstall
and barlington [1977].

The analogue of macro-processing in logic is bottom-up or middle-out
reasoning combined with deletion of clauses. Such macro-processing is a
special case of more general facilities provided by the connection graph
proof procedure (Chapter 8). 1In the case of the arches program, the
original formulation can be derived from the new one simply by bottom—up
execution of the interfacing procedure calls.

Terms versus relations as data structures

Data in 1logic programs can be represented either by means of terms,
as in the Append and Arches examples, or by means of relations, as in
the Parsing and Family Relationships examples.

Terms versus relations as data structures 123

When data is represented by terms, the input to a program is normally
represented by a term in the initial goal statement. Top-down execution
is problem-dependent and behaves like recursive evaluation in
conventional programming languages. Bottom-up execution, although it
sometimes behaves like 1iteration, as in the Factorial and Fibonacci
examples, is more often problem-independent and computationally
explosive, unless it can somehow be guided by a global consideration of
the problem to be solved. Global strategies for problem—-solving are
investigated in Chapter 9.

wWhen data is represented by means of relations (defined by assertions
and procedures) the input is normally expressed by assertions. Both top-
down and bottom-up execution are problem-dependent. Top—down execution
interrogates the input and bottom-up execution manipulates it, deriving
new data from that which is initially given.

It is always possible to represent data by means of terms. LISP for
example, represents all data by means of constant symbols and a single
binary function symbol "cons", Recursion theory represents all data by
means of natural numbers using a single constant symbol @ and a unary
function symbol "s". It is instructive to compare the previous
formulation of the parsing problem with a formulation which represents
data by means of terms.

Sent (x) <= Np(y), Vp(z), Append{y,z,x)

Np (x) <— Det(y), Adj(z), Noun(v},
Append (y,z,u), Append(u,v,x)

Vp({x) <— Aux({y), Verb(z), Append({y,z,x)

Det (the.nil) <—

Adj(slithy.nil) <—

Noun(toves.nil) <-—

Aux {did.nil) <—

Verb(gyre.nil) <—

Both the input string of words and the problem of showing that it is a
sentence are incorporated in the initial goal statement:

<— Sent {the.slithy.toves.did.gyre.nil)

Notice the procedure calls Append, which have no analogue in the
earlier formulation of the parsing problem. When the data is represented
by means of assertions, the program has direct access to the data,
similar to that given by arrays in conventional programming languages.
when the data is represented by terms, then special procedures 1like
Append are needed to provide access to the contents of the data
structures.

It is possible to represent data entirely by means of relations as in
relational databases [Codd 1978¢}. Instead of representing the list

2, c, b, a
by the term

cons{a, cons{c, cons{b, cons{a, nil))}}

124 Chapter 5: The Procedural Interpretation of Horn Clauses

or a.c.b.a.nil
we can give it a name, say A, and represent it by the assertions

Item(A,1l,a) <—
Item(A,2,c) <—
Item(A,3,b) <—
Item(A,4,a) <—
Length{A,4) <—

where Item(x,y,z) means that
z is the y-th item of x
and Length{x,y) means that

y is the length of x.

Instead of writing an explicitly recursive program for reversing
lists, either

Reverse (nil,nil) <—
Reverse(x.y, z) <— Reverse(y,u), Append(u, x.nil, z)

or more efficiently

Reverse(x,y) <— Rev(x,nil,y)
Rev(nil,y,y) <—
Rev(x.y, z, u) <— Rev(y, ¥X.z, u)

we can write a non-recursive program:

Item(rev(x), u, y) < Item{(x,v,y), Length(x,w),
utv = w', wtl =w'
Length(rev(x), y) <— Length{x,y)

Here the term rev(x) names the list which is the reverse of x.

When data is represented by means of terms, the program needs to
specify how data is stored and retrieved and it needs to take
responsibility for the separation of the data from the higher levels of
the program. Data located closer to the surface of a term can be accessed
more directly than data located deeper inside., When data is represented
by relations, the program defines the data at an abstract level which is
independent of the storage and retrieval scheme adopted by the
programming system. When a relation is defined by means of assertions,
the program has direct access to the information.

Database formalisms and programming languages

Conventional database formalisms are different from the formalisms
used for programming languages. Logic, in contrast, is the same whether
it is used for databases, database queries and programs or for database
integrity constraints and program specifications. Indeed, especially

Database formalisms and programming languages 125

when relations are used as data structures, the use of logic blurs the
normal distinction between databases and programs. General laws for data
description are indistinguishable from procedures in programs, and
database integrity constraints are the same as program properties.

The conventional distinction between databases and programs is not
reflected by the nature of computational problems. A representation in
logic of the symbolic integration problem, for example, like the one
written in PROLOG by Bergman and Kanoui [1973] can be regarded as both a
database and a program. The relationship of a function to its integral is
defined by means of assertions such as

sin{x) is the integral of cos{x) with respect to x
and by general rules, such as

u + v is the integral of u' + v' with respect to x
if u is the integral of u' with respect to x
and v is the integral of v' with respect to x.

The definition of the relation can be viewed both as the definition of a
recursive procedure and as the description of a database by a combination
of explicit assertions and implicit rules.

The desirability of combining databases and programs more intimately
than is possible with conventional formalisms is beginning to be
appreciated by the database community. The design of a programming
language [Zloof and delong 1977] based on guery-by-example is a
significant development of this kind.

Algorithm = Logic + Control

Conventional algorithms and programs expressed in conventional
programming languages combine the logic of the information to be used in
solving problems with the c¢ontrol over the manner in which the
information is put to |use. This relationship can be expressed
symbolically by the egquation

Algorithm = Logic + Control {A =L +C}).

Logic programs express only the logic component L of algorithms. The
control component C is exercised by the program executor, either
following 1its own autonomously determined control decisions or else
following control instructions provided by the programmer,

The conceptual separation of logic from control has several
advantages:

(1) Algorithms can be constructed by successive refinement,
designing the logic component before the control component.

(2) Algorithms can be improved by improving their control
component without changing the logic component at all,

126 Chapter 5: The Procedural Interpretation of Horn Clauses

(3) Algorithms can be generated from specifications, can be
verified and can be transformed into more efficient ones,
without considering the control component, by applying
deductive inference rules to the logic component alone.

(4) Inexperienced programmers and database users can restrict
their interaction with the computing system to the
definition of the logic component, leaving the determination
of the control component to the computer.

In the systematic development of well-structured algorithms it is
appropriate for the logic component to be specified before the control
component, The logic component expresses the domain-specific part of an
algorithm. It both determines the meaning of the algorithm and influences
the way it behaves. The control component, on the other hand,
determines the general-purpose problem-solving strategy. It affects only
the efficiency of the algorithm without affecting its meaning.

Thus different algorithms BA; and A;, obtained by applying different
control C; and C, to the same logic L, are equivalent in the sense that
they solve the same problems with the same results. Symbolically

Ay and A, are equivalent if Aj
A

L +C; and
L+C2.

The eguivalence of different algorithms having the same 1logic can be
used to improve the efficiency of an algorithm by improving its control
without changing its logic. 1In particular, replacing bottom-up by top-
down control often, though not always, improves efficiency, whereas
replacing top-down seguential execution of procedure calls by top~down
consumer-producer and parallel execution almost always improves
efficiency, and never harms it.

The arguments for separating logic from control are like the arguments
for separating procedures from data structures. When procedures are
separated from data structures, it is possible to distinguish what
functions the data structures perform from the manner in which they
perform them. An algorithm can be improved by replacing an inefficient
data structure by a more efficient one, ©provided that the new data
structure performs the same functions as the old one. Similarly, when
logic is separated from control, it 1is possible to distinguish what the
algorithm does, as determined by the logic component, from the manner
in which it is done, as determined by the control component. An
algorithm can be improved by replacing an inefficient control strategy by
2 more efficient one, provided that the logic component is unaltered. In
both cases, it is easier to determine the meaning of the algorithm and
to improve efficiency without affecting meaning.

The separation of logic from control simplifies the problem of
relating programs to specifications. By ignoring the control component
entirely, it is possible to use rules of deduction to show, for
example, that the logic component of an algorithm is correct, because
it is implied by its specification. The same techniques of deduction can
also be used to generate a logic program from its specification or to
transform an inefficient program into a more efficient one. These
techniques have been developed by Bibel [1976a, 1976b, 1978], Clark and
Tarnlund [1977] Clark and Sickel [1978], Clark and Darlington [1978] and

Algorithm = Logic + Control 127

Hogger [1979]) for logic programs and are similar to ones developed for
recursion equations by Burstall and Darlington [1977] and for LISP by
Manna and Waldinger [1978}. A brief introduction to these methods is
presented in Chapter 18, which deals with the standard form of logic and
its relationship to clausal form.

The analysis of algorithms into logic and control components provides
two distinct metheods for improving the efficiency of an algorithm. Given
a fixed control component, incorporated in a program executor with
limited problem-seclving capabilities, efficiency can be improved by
changing the representation of the problem in the logic component; or,
given a fixed logic component, it can be improved by improving the
problem-solving capabilities of the program executor. Changing the logic
component is a useful short-term strategy, since the representation of
the problem is generally easier to change than the problem-solver.
Changing the control component, on the other hand, is a better long-term
solution, since improving the problem—-solver improves its performance
for many different problems.

Specification of the control component

The control component can be expressed by the programmer in a separate
control language; or it can be determined by the program executor itself.
The provision of a separate control language allows the programmer to
advise the problem-solver about program execution and is suitable for the
more experienced programmer. The determination of control by the program
executor, on the other hand, relieves the programmer of the need to
specify control altogether and is more useful for the inexperienced
programmer, the casual database user, and even the expert programmer
during the early stages of program development.

A completely satisfactory, autonomous control strategy, however,
has not yet been designed. The problem of designing an efficient
algorithm for scheduling procedure calls, in particular, has still to be
solved, The principle of procrastination, which delays execution when a
procedure call can be executed in many ways, and the complementary
principle, which initiates execution as soon as a procedure call can be
executed in no more than one way, work efficiently in a large number of
cases. But they are inadequate when all procedure calls are non-
deterministic;. Annotations for controlling the execution of procedure
calls as coroutines have been provided in the PROLOG system {Clark and
McCabe 1979] at Imperial College. They are similar to the annotations for
recursion equations proposed by Schwarz [1977].

Butonomous search strategies have been designed for both top-down and
bottom~up search spaces in theorem-proving. These strategies use merit
orderings or evaluation functions to guide the generation of clauses in
the search space. Arguments against such search strategies have been
advanced by Hayes [1973]. He argues that the kind of information they
provide is not adequate for effective problem~solving and proposes that
more suitable information can be supplied by the programmer in an
auxiliary control language. That a given relation is a function of
certain arguments is an example of such information.

128 Chapter 5: The Procedural Interpretation of Horn Clauses

Control primitives for guiding search strategies have been provided in
programming languages like PLANNER [Hewitt 1969], MICROPLANNER (Sussman,
Winograd and Charniak 1971], CONNIVER [Sussman and McDermott 1972],
POPLER [Davies 1973], SAIL [Feldman et al 1972), QA4 [Rulifson et al
1973] and QLISP [Reboh and Sacerdoti 1973]. The recommendation lists of
PLANNER and MICROPLANNER in particular enable the programmer to specify
the order in which procedures should be tried in order to execute a given
procedure call, Such information might be useful in fault diagnosis
programs, for example, when the programmer knows that a symptom P is
more likely to be caused by Q than by R. This might be indicated to the
problem-solver by the recommendation that the procedure

P <—Q
be tried before P <—R.

Both autonomous and user-specified control over the direction of
execution have been provided in theorem-proving and in artificial
intelligence programming languages., In programming languages of the
PLANNER family, the direction in which procedures are executed is
specified in advance by the types associated with procedure declarations
(consequent theorem type if the direction is top-down, antecedent
theorem type if it 1is bottom-up). Moreover each procedure call is
assigned the type of the procedures which it is allowed to invoke.
Autonomous, system-determined strategies for controlling direction of
execution are more common in operational research and theorem-proving.
Few strategies have been investigated, however, other than the one
which chooses the direction having the current 1least branching rate.
Both system-determined and user-specified control over direction are
investigated in Chapter 8, which describes the connection graph proof
procedure.

Despite the difficulties involved, the desirability of separating
logic from control and of allocating responsibility for exercising
control to the problem-solver is generally accepted in the field of
databases. Given, for example, a data base which defines the relations

Supplier (x,y,z} supplier number x has name y and status z,

Part(x,y.,z) part number x has name y and unit cost z,

Supply(x,y,2) supplier number x supplies part number y
in quantity z.

the guery wWho supplies books?

<— Answer (y}

Answer(y) <— Supplies(x,y,z), Supply(x,u,v), Part(u,book,w)
specifies only the logic component of the problem. The data retrieval
system needs to determine that, for the sake of efficiency, the
procedure call Part{u,book,w) (containing the input) should be executed
first. Given the structurally similar query

What parts are supplied by John?

<— Answer (y)
Answer {y) <— Supplier{x,John,z), Supply(x,u,v), Part{u,y,w)

Specification of the control component 129

however, it needs to recognise that Supplier (x,John,z) should be executed
first.

For inexperienced database users it is desirable that queries be
expressed in a formalism as close to natural language as possible. Since
logic originates from the analysis of natural language, it is not
surprising that database gquery languages express only the logic component
of algorithms. Restricting query languages to the lcgic component has
other advantages. It has the consequence that storage and retrieval
schemes can be changed and improved in the control component without
affecting the user's view of the data as defined by the logic component.
In general, the higher the 1level of the programming language and the
less advanced the level of the programmer, the more the system needs to
assume responsibility for efficiency and to exercise control over the use
of the information it is given.

The notion that
computation = controlled deduction

was first proposed by Hayes [1973] and more recently by Bibel [1978],
Kowalski [1976], Pratt [1977] and Schwarz [1977]. The similar thesis
that database systems be decomposed into a relational component which
defines the logic of the data, and a control component which manages data
storage and retrieval, has been advocated by Codd [1970}. Hewitt's
argument [1969] for the programming language PLANNER, though generally
regarded as an argument against logic, can be regarded more positively
as an argument for the thesis that algorithms consist of both logic and
control components.

Natural Language = Logic + Control

The procedural interpretation of Horn clauses reconciles the classical
role of logic in the analysis of language with the interpretation of
natural language statements as programs [Winograd 1972]. Like
algorithms, natural lanquage combines logic with control. The sentence

If you want Mary to like you then give her presents and
be kind to animals.

combines the declarative information

Mary likes you if you give her presents and
are kind to animals.

with the advice that it be used top-down to solve problems of being liked
by Mary to subproblems of giving her presents and being kind to animals.

Exercises

1) Let the Delete relation be defined by the procedures

139 Chapter 5: The Procedural Interpretation of Horn Clauses

Dl Delete(x, X.y, y) <—
D1 Delete(x, z.y, W) <— Delete(x,y,w)

a} Use Dl-2 top-down to delete 1 from the list 2.l.nil .
Exhibit the entire top-down search space.

b) Use D1-2 top-down to add 1 to the list 2.nil , Exhibit
the entire search space.

c) Assume that Diff(x,y} holds when X and y are not
identical. Define the relation Delallocc(x,y,w) which
holds when w is the list which results from deleting all
occurrences of x from the list y.

2) Describe a representation of the path-finding problem which makes
it possible to find the 1list of all nodes in a path from one node to
another.

3} Reformulate the water containers problem of Chapter 4 to
incorporate loop checking into the program, so that it can be executed
efficiently even if the problem—solver does not recognise and delete
loops.

4) Let Partition(x,y,u,v) be defined by

Partition(x,y,u,v) <— sShuffle(u,v,y), Small(x,u), Big(x,v)
Shuffle (nil, v, v) <=

Shuffle(v, nil, v) <

Shuffle(x.y, z, x.u) < Shuffle(y,z,u)

shuffle(y, x.z, x.u) <= Shuffle(y,z,u)

where Small(x,u) holds when x < all members of u,
Big (x,u) x > all members of u,
Shuffle(u,v,y) the lists u and v can

be shuffled together
to obtain the list y.

Consider the problem <-— Partition(s,t,u,v) where s and t are given as
input and u and v are desired as output.

a) Define Small{x,u) and Big(x,u} recursively in terms of the
relations < and > .

b) Describe the behaviour of the procedures given above and
in part a) when backtracking is used to solve the problem
top-down, executing procedure calls sequentially, left-to-
right.

c) Describe a more deterministic way of executing procedure
calls for the same problem.

d)

Exercises 131

Redefine Partition(x,y,u,v) so that behaviour similar to
that of part c¢) is achieved by simple 1left-to-right
execution of procedure calls.

5) Let the relation Is(x,y) which holds when x is an initial sublist

of y

be defined by

Is(x,y) <— Append(x,z,Y)

a) Define Is(x,y} recursively without using Append.
b) The relation S1(x,y) which holds when x is a sublist of y
u X v
Y
y
can be specified by
S51({x,y)} <— Append(u,x,w), Append(w,v,y)
Define S1(x,y) recursively in terms of Is without using
Append.

c) Describe an execution strategy for the two procedure calls
in the specification of S1 above which behaves in the same
way as top-down sequential execution of the recursive
definition of Sl.

7 a) Express the 8-queens problem by means of Horn clauses:

Given an 8 by 8 checker board, find a list of eight
queen positions such that no queen can take another. One
gueen can take another if both are located on the same
row, same column or same diagonal of the checker board.
Assume that the Plus relation

Plus(x,y,2) {x+y = z)
is already defined by variable free assertions.
b) Modify the 8-queens problem and show that the 2-gueens

problem (placing 2 gueens on a 2 by 2 checker board) is
unsolvable by generating the entire top-down search space.
Execute procedure calls in a manner which minimises the
size of the search space.

132 Chapter 5: The Procedural Interpretation of Horn Clauses

8) Any binary tree can be regarded as representing a list. For
example, the tree

(/<::)k\:>n\% named by the term
cons (cons (tip(A), tip{B}), cons(tip{(C), tip(D})}

A B

In general the

D represents the list A.B.C.D.nil .

relationship Represents(x,y) which holds when the tree x

represents list y can be defined by the clauses:

R1
R2
R3
R4

a)

b)

c)

4d)

Represents(nil,nil) <-—
Represents(tip(x), x.nil) <—
Represents(cons(tip(x), y), x.z) <— Represents{y,z)
Represents(cons(cons(x,y), z), W) <—
Represents{cons{x, cons(y,z)), w)

Define the relationship Samelists(x,y) which holds when
the trees x and y represent the same lists.

Use procedures Rl-4 and (a) to reduce the problem of
showing the two trees

and
A
A B B

represent the same lists to the problem of showing that
the subtrees named by s and t represent the same lists.

Use procedures R1-4 and {(a) to show that the problem of
showing the two trees

and
A
B A C

represent the same lists, where t and s name any subtrees,
is not solvable.

Generalise the execution strategies employed in (b) and
(c) and describe an efficient general strategy for
executing the procedure calls in R1-4 and (a)
cooperatively rather than sequentially.

133

CHAPTER 6

Plan-Formation and the Frame Problem

In the plan-formation problem we are given an initial state, a goal
state, and a set of actions which transform one state into another. The
problem is to construct a plan, consisting of an appropriate sequence of
actions, which transforms the initial state into the goal state.

The plan-formation problem is identical, therefore, to the state-space
problem. The n-tuple representation of state-space problems is not
feasible, however, when the number n of individuals is large or unknown.
In this chapter, we investigate a version of the binary representation of
state space problems.

The use of 1logic, in both the n-ary and binary representations, runs
into the frame problem: how to deal with the fact that almost all
statements which hold true of a given state continue to hold after an
action has been performed. It has often been assumed that such facts
cannot be expressed naturally in logic and cannot be used efficiently.

The supposed inadeguacies of logic have led to the development of
special systems, such as STRIPS [Fikes and Nilsson 1971] and PLANNER
{Hewitt 1969], specifically intended to deal with the frame problem. We
shall argue that an equally satisfactory treatment of the frame problem
can be obtained in logic: by using terms to name statements and by using
the frame axiom, which describes the statements which continue to hold
after an action has been performed, top-down rather than bottom-up.

Plan-formation and the blocks world

We shall consider the simple blocks world plan-formation problem
[Sacerdoti 1977] in detail. There are three manipulatable blocks A, B
and C and three unmanipulatable places p, g and r. The location of
objects in the initial and goal states is illustrated below:

A
A B
B C C
p g r P g L

Initial state Goal state

134 Chapter 6: Plan-Formation and the Frame Problem

There is a single action
trans(x,y,z)

which transfers x from y to 2. The action can be performed in a given
state if

is manipulatable,
and z are clear,

is on y, and

is different from z,

L]

The new statement that

X is on z and
y is clear

holds true of the new state which results when the action has been
performed. All statements which held in the previous state, except that

x is on y and
z is clear,

continue to hold in the new state.

In general, an action is defined by specifying its preconditions and
postconditions. Preconditions are statements which must hold in a state
before an action can be performed; whereas postconditions are statements
which hold in the new state after the action has been performed.
Postconditions are of two kinds: new statements which are added to the
description of the new state and o01d statements which continue to hold
from the previous state. The old statements are described by means of a
frame axiom which expresses that all statements which held in the old
state, except for those explicitly stated as exceptions to be deleted,
continue to hold in the new state, The explicit specification for every
action of preconditions, added statements and deleted statements is due
to STRIPS.

A clausal representation of the blocks world problem

In this formulation, both states and statements are regarded as
individuals and are represented by means of terms. That a statement x
holds true in a state y is represented by a binary relationship

Holds (x,Y) .

States are named by constant symbols or by composite terms. It is
convenient to let the constant symbol O name the initial state and to let
the term

result (u,v)

name the state which results from applying the action u to the state v.

A clausal representation of the blocks world problem 135

The representation of statements by means of terms is discussed in
Chapter 12 concerned with formalising part of the meta-lanquage. Here it
is sufficient to let the term

on(x,y)
name the statement that x is on y and
clear (x)
that x is clear. An alternative representation, in which the term

atom (x,y)

names the atomic formula with predicate symbol x and list of arguments y,
is more flexible but not necessary here.

In the following clauses

Poss (%) expresses that state x is possible,
Manip(x) object x is manipulatable,
Diff (x,y) x is different from y.

Initial state @ (1) Poss(B) <—
(2) Holds(on(A,B), B) <—
(3) Holds(on(B,p), B8) <
(4) Holds(on(C,r), 8) <—
(5) Holds(clear({a), B} <—
(6) Holds(clear{qg), B) <—
(7) Holds({clear({(C), B) <—

State-independent

assertions (8) Menip(a) <—
{9) Manip(B) <—
(1) Manip{(C) <—

Goal state (11) <— Holds(on(A,B),w), Holds(on{(B,C),w),
Holds{(on{(C,r) ,w), Poss(w)

State space and

preconditions (12) Poss{result(trans(x,y.z),w)}) <— Poss(w),
Manip(x), Diff (x,z}, Holds({clear(x),w),
Holds(clear (z) ,w), Holds(on(x,y) ,w)

Added statements (13) Holds(on(x,z), result(trans(x,y,z), w)) <—
(14) Holds(clear(y), result{trans(x,y,z), w)} <—

Frame axiom and deleted

statements (15) Holds(u, result(trans{x,y,z), w)) <—
Holds (u,w), Diff (u, on(x,y)).,
Diff (u, clear({z))

Clauses (1)-(6) describe the initial state, whereas <clauses (7)-(10)
describe the state independent facts about the manipulatability of blocks
and cleuse (11) describes the goal state. The remaining clauses describe
the action of transferring an object from one location to another. Clause
(12) defines the structure of the state-space search space. It expresses

136 Chapter 6: Plan-Formation and the Frame Problem

the preconditions which need to hold before an action can be applied to a
possible state in order to produce a new one. Clauses (13) and (14)
express the postconditions which are added by the action, whereas (15)
expresses those which hold in the new state because they held in the
previous state and were not destroyed by the action.

The relationship Diff(s,t) holds, for variable-free terms s and t,
when s and t are syntactically distinct. It 1is useful to imagine that
clauses (1)-(15) are supplemented by infinitely many clauses of the form

Diff(s,t) <—

for every pair of terms s and t which do not match. Equivalently, the
same relation can be defined by the axioms

Diff(f(xlr‘--lxm) ’ g(yl!~~'IYn)) <=

for every pair of distinct function symbols f and g, including the cases
m=@ and n = & when £ and g are constant symbols, and

Diff(f(xl,oo-,xm), f(yl,...,ym)) <— Diff(Xi'Yi)

for every function symbol f and for every argument i of f, excluding the
case m = @ when f is a constant symbol. In practice, it is more efficient
to define Diff as the negation of identity

Diff (x,y) < not-(x = y)
X = X <=

and to determine that not-(x = y) holds by showing that x = y fails to
hold. Such an interpretation of negation as failure and its relationship
to the normal interpretation of negation has been studied by Clark [1978]
and is discussed in Chapter 11 which 1is concerned with definitions
expressed in terms of "if-and-only-if".

This formulation of the plan-formation problem is similar to the one
employed by Green [1969b], based upon proposals of McCarthy and Hayes
[McCarthy and Hayes 1969). It differs from their formulations, however,
in its use of the Holds relation. They add an extra state parameter to
relations instead, writing, for example, On(x,y,w) to express that x is
on y in state w and Clear(x,w) that x is clear in w. The treatment of
statements as individuals, which is implied by the use of the Holds
relation, can be regerded as a formalisation of part of the meta-
language. The advantages of wusing logic as its own meta-language are
discussed later in Chapter 12, Here it suffices to note that treating
sentences as individuals avoids that part of the frame problem which is
concerned with expressing the frame axiom. Instead of employing a
separate freme axiom for every relation, writing, for example,

On(u, v, result(trans{x,y.,z), w)} <~ On(u,v,w), Diff{u,x)
Clear(u, result(trans(x,y,z), w)) < Clear(u,w), Diff{u,z)

it suffices to employ a single frame axiom
Holds{u, result(v,w)) <— Holds{u,w), Preserves(v,u)

where Preserves(v,u) expresses that the action v preserves the truth of

A clausal representation of the blocks world problem 137

statement u. The use of the Preserves relation separates the frame axiom
from the specification of the statements which are deleted by individual
actions. In the case of the trans-action:

Preserves(trans(x,y,z), u) < Diff (u, on(x,y)).,
Diff (u, clear(z))

As we shall see in the next chapter, clause (15), which combines the
frame axiom and the specification of the deleted statements, can be
obtained by macro-processing the procedure call to the relation
Preserves. Macro-processing executes procedure calls at compile time
before problems are given, rather than at run time during the course of
trying to solve them, It can be regarded as a form of middle-out
reasoning, which in turn 1is a special case of the resolution rule
[Robinson 1965a). Resolution alsc generalises top-down and bottom—-up
inference and applies to non-Horn clauses as well,

It is wuseful to <classify relations into two kinds: primitive
relations, which are independent of other relations, and defined
relations, which can be defined in terms of the primitives. In the blocks
wor1ld, the relationship which holds when one object is above another can
be defined in terms of the primitive relationship which holds when one
object is located directly on another.

Holds (above (X,y), w) <— Holds(on(x,y), w)
Holds (above {X,y), w) <— Holds(above(x,z), w),
Holds (above(z,y), w)

It suffices to specify added and deleted statements only for primitive
relations. The effect of actions on defined relationships is determined
by their effect on primitive relationships and by the definition of the
defined relations in terms of the primitives. The classification of
relations and its use in plan-formation was introduced with STRIPS.

We have treated the On and Clear relations as primitive. It would be
more natural, however, to define the Clear relation in terms of the On
relation:

Holds (clear (y), w} <~ for all x not-Holds(on(x,y), w)

We shall discuss this possibility in Chapter 11, which investigates if-
and-only-if definitions and the interpretation of negation as failure,

The logic of the blocks world problem is separate from its use.
Clauses can be used either top-down or bottom-up. They can also be used
in a mixture of directions. If the state space axiom (12) is used bottom-
up, then the problem-solver reasons forward from the initial state,
deriving new states from old ones, until the goal state is generated, If
the axiom is used top-down, then the problem-solver reasons backward from
the goal-state, until the initial state is generated.

The second part of the frame problem arises when the frame axiom (15)
is used bottom-up to derive, from an assertion that a given statement
holds in a given state, a new assertion that the same statement holds in
a following state. For more realistic plan-formation tasks than the
blocks world problem, a typical state needs to be described by a large
number of assertions, many of which are unrelated to the problem at hand.

138 Chapter 6: Plan-Formation and the Frame Problem

In such situations it is not computationally feasible to use the frame
axiom bottom-up to copy preserved facts from state to state,

Both PLANNER and STRIPS deal with the frame problem by abandoning the
frame axiom and using special-purpose procedures instead. Similar results
can be obtained by retaining the frame axiom but interpreting it top-
down:

To determine whether a statement u holds in a state result(v,w)

{1} show u is added by v,
(1i) alternatively, if u is not deleted by v,
determine whether u holds in the previous state w.

Changing the direction of execution of the frame axiom exemplifies the
general strategy of improving an algorithm by improving its control
without changing its logic.

We shall illustrate the different solutions determined for the blocks

world problem by using the state space and frame axioms in different
directions.

Bottom—up execution of the state space axiom (12)

The following illustration displays part or the search space of states
determined by executing {12) bottom-up.

4]
Initial State

P q r
EL___ B
AT N[
e 2___ [a] 0 1 0 4 6 3
/State§
7| g
1 R Goal State 6

Bottom-up execution of the state space axiom (12) 139

Distinct nodes represent distinct states. However, distinct states
labelled by the same number are characterised by the same statements. In
this case, the redundancy arises because it is never useful to pick up
the same object twice in a row.

The assertions which are generated by bottom-up execution of the state
space axiom describe the search space of states illustrated above and are
independent of the direction of execution of the frame axiom.

The following assertions, concerning states which belong to the
solution path, are generated by bottom-up execution of the frame axiom.

Holds (on{B,p), 1) <— Holds{on(C,r), 1} <—
Holds(on(A,q), 5) <— Holds{on(C,r), 5) <-
Holds(on(B,C), 6) <— Holds (on{C,r), 6) <—
Holds{clear (a), 1) <— Holds(clear{C), 1) <—
Holds (clear (B), 5) <— Holds {(clear (A), 5) <—
Holds(clear (A}, 6) <— Holds (clear (p), 6) <—

The additional assertions

Holds(on(A,q), 1) <— Holds (clear (B), 1) <~
Holds{(on(B,C), 5) <=~ Holds (clear (p), 5) <~
Holds (on{A,B}, 6) < Holds (clear(q), 6) <—

which are needed for a complete description of the same states are
instances of the clauses (13) and (14) which specify the statements added
by the trans-action. As in the previous illustration,

1 abbreviates result(trans{A,B,q), @),
5 result(trans(B,p,C), 1},
6 result(trans(A,q,B), 5).

In the general case, a search strategy might need to generate many
assertions concerning states which are not relevant to the solution as
well as assertions such as

Holds (on (B,p), result(trans{aA,C,B), B)) <—
Holds(on(B,p), result{trans(B,q,C}, B)) <—
Holds{on(B,p), result(trans(B,B,B), 8)) <—

which describe impossible states. The generation of such undesirable
assertions is avoided if the frame axiom is used top~down. It can also be
avoided when the frame axiom is used bottom-up by adding the extra
condition

Poss (result (trans{x,y,z), w))

to the frame axiom.

149 Chapter 6: Plan-Formation and the Frame Problem

Mixed top-down and bottom-up execution of the frame axiom

Top-down execution of the frame axiom may be combined with bottom-up
execution of the state space exiom. This can be pictured in arrow
notation:

3 1 2 2

1 l L

Poss (result(trans(x,y,z), w)) < Poss(w), Manip(x)}, Holds{clear(x), w),
Holds (clear (z}, w), Holds{on(x,y), w), Diff(x,z)

l l l

2 2 2

It can be simulated by top-down execution alone. It suffices to rewrite
clauses (1), (11) and (12) using a predicate symbol Nposs which 1is the
negation of Poss. Clauses (1), (11) and (12) become (1'), (11') and
(12') respectively.

(1") <{— Nposs(0)

(11") Nposs (w) <— Holds(on{(A,B), w)}, Holds{(on(B,C), w),
Holds(on(C,r}, w)

(12") Nposs (w) <= Nposs(result(trans(x,y,z), w)), Manip(x),

Holds(clear (x), w), Holds(clear(z), w),
Holds(on(x,y), w), Diff(x,z)

The renaming of predicate symbols, of the kind involved in rewriting
clauses (1), (11) and (12), has been investigated by Meltzer ([1966] and
will be considered again in the next chapter.

A small part of the search space 1is illustrated below. The mixed top-
down, bottom—up execution strategy 1is eguivalent to pure top-down
execution using clauses (1'), (11') and (12') instead of (1), (11) and
(12). All arcs which diverge from the solution path are illustrated.
Nodes which are labelled by clauses containing unsolvable subgoals are
darkened to indicate that they are terminal failure nodes. The circled
numbers preceding underlined atoms indicate the order in which they or
their descendants are selected. Unlabelled arcs indicate execution of
procedure calls containing the predicate symbol Diff. Some nodes are left
unlabelled in order to suppress distracting details. t(x,y,z) abbreviates
trans{x,y,z).

Notice that many alternatives to the solution path fail after only a
few steps. The alternatives which do not fail correspond to genuine
alternative actions in the search space of states.

Mixed top-down and bottom-up execution of the frame axiom 141

, Poss (@) <—

(12}
(11) , Poss (result (t(x,y,z),0)) <— Manip(x},S:)Holds(clear(x),ﬂ),
(7) (5) olds(clear (z},0),
(6 @Holds(onjx,yLﬂ), Diff (x,z)
8}

}(

(2)
)

Poss (result{t(A,B,z),0)) <—@ Holds (clear (z),8) ,(DDiff (A,z)
(6)
Poss (result(t(A,B,q},B8)) <—

/ (12)
(11) Poss (result{t(x,y,z},1})} <—(:)Manip(x),(:)Holds(clear(x),l)r
(14) Holds (clear (z) ,1),
(®Holds (on(x,y),1), Diff(x,z)
(9)
(15)

(3)

=
(8]

Poss (result(t(B,p,z),1)) <—(:)Holds(clear(z),l),(:)Diff(B,z)
(15)

.\
v

-
’é\

(7)

—_
N
P

, Poss {result(t(B,p,C),1)) <—
(12)
(lif////,Poss(result(t(x,y,z),S)) <—(;)ManiE(x!,(:)Holdslglear(x)LSL,
o
)

(15) lds(clear(z),5),
{14 > Holds (on(x,y),5), Diff(x,z)
(15)
(14 p
(7) L (5)
(6)

(8)
y Poss (result(t{A,y,z),5})) <— Holds{(clear(z),5),
(15) Holds (on{A,y},5),Diff (A, z)

(15) (13}

N

142 Chapter 6: Plan-Formation and the Frame Problem

Poss (result (t(A,q,2),5)) (-(:)Holds(clear(z),5),(:)Diff(A,z)
(15}
(14/

(14)

Poss {result(t(a,q,B),5)) <—

(1%}//// éi;%:)golds(on(A,B),s),(:)Holds(on(B,C),G), Holds (on(C,r),6)
(19/ ()
(15)
(13)
(15)
(15)
<— Holds (on({C,r),6)
(15)
L (15)
L (15}
,(4)
>
)
> 0

The eventual failure of the alternative attempts to solve the subgoals

Holds(on(A,y) ,5)
Holds{on(A,B),6) and
Holds{on(B,C),6)

can be hastened by strengthening the restrictions on the frame axiom. The
more restrictive version of the frame axiom

Holds{u, result(trans(x,y,z}, w)) <— Holds(u,w),
Diff{u, on(x,v)),
Diff{u, clear(z)),
Diff(u, clear(y})

Mixed top-down and bottom-up execution of the frame axiom 143

in particular, fails immediately whenever one of the clauses (13) or (14)
succeeds.

Top-down execution of the state space and frame axioms

Part of the search space of states determined by executing the state
space axiom top-down is illustrated below. As in the case where the state
space axiom is executed bottom-up, redundancy arises when the same object
is picked up twice in succession. The variables y and y' name locations
which have not yet been determined.

| goal state

N (@] [>:] b=

J
m

/!
N
mnma maa mf Hg B

y r y vy Y

/‘-/Y‘L 6]

B 5l B
81 [c] Ia1 fel 2l [c1 [al [c]
y'or y' r y v Yy Y y r y

r

initial state
y' =p

In the following solution all clauses are executed top-down. Subgoals
are considered breadth-first and left to right in the order in which they
are written. Duplicate subgoals are deleted. To save space, steps
involving the solution of subgoals containing the predicate symbol Diff
are not illustrated.

144 Chapter 6: Plan-Formation and the Frame Problem

<— Bolds(on({A,B),w), Holds(on(B,C),w),

13 Holds{(on(C,r) ,w), Poss(w)
15
15 w = result(trans(a,y,B) ,wy)
12
, <— Holds(on(B,C),w;), Holds{on(C,r),w;), Poss(wy)},
131 Manip(A), Holds(clear (A),wy), Holds(clear (B),w;y),
15 Holds(on(A,y),w;), Diff (a,B)
12
8
15 [w) = result(trans(B,y"',C),wy)
15
15 |
L <— Holds{on(C,r) ,w,), Poss(w,), Manip(B),
15 Holds(clear(B),wz), Holds(clear (C) ,wj),
12] Holds(on(B,y') ,wp), Diff (B,C), Holds(clear (A},wj)},
9] Holds{cless{Brswy}, Holds(on(A,y),wp)
14
15]
15 t wy = result(trans(a,B,y),w3)
15
13

L <— Holds(on{C,r) ,w3), Poss{wy), Manip(a),
Holds({(clear (A) ,w3), Holds{clear (y) ,w3),
Holds(on(A,B),w3?, Diff (a,y), Holds(clear (C) ,w3},
RHolds(on(B,y') ,w3), Holdstetear{i;w3]

Wl N DO B

Applications of plan-formation

The principal application of plan-formation has been the construction
of plans for robot-like machinery. Plan-formation has also been applied
to the automatic construction of programs from specifications. The
description of the input and the output states constitutes a
specification of a program. The definition of the preconditions and of
the statements added and deleted by actions expresses the semantics of
the machine operations. A plan consists of a sequence of machine
operations and represents a program. More elaborate systems of plan-—
formation include procedures for constructing plans with conditional
statements, loops and other operations. Horn c¢lause plan-formation
programs written by Warren [1974, 19761 and Moss [1977] have been applied
to program construction.

An application of plan-formation to the synthesis of organic compounds
was developed by Fogel, while a high school student, at Imperial College
during the summer of 1977. Chemical compounds, like states in plan-
formation, can be described by assertions concerning the objects (atoms
and bonds) which belong to them. The statement that

Applications of plan-formation 145

bond b of strength s holds between the
atoms aj and a, in the compound c

can be expressed by a single n-ary relationship
Bond(b,s,al,az,c) <—
or by several binary relationships:

b has strength s <-—
b bonds a; <=

b bonds a, <

b belongs to ¢ <—

An initial compound functions as an initial state and a goal compound as
a goal state, Chemical reactions are actions which transform one compound
into another. They are defined by specifying (1) the preconditions which
must hold before a reaction can take place, (2) the new bonds which the
reaction introduces and (3) the old bonds which the reaction destroys. A
frame axiom states that bonds which are not destroyed by a reaction are
preserved by it. Both the program written by Moss and the one written by
Fogel were implemented as Horn clause programs and run on a PROLOG-like
system developed at Imperial College.

Programs for drug analysis have been written in PROLOG at the Ministry
of Heavy Industry in Budapest [Futo, Darvas and Szeredi 1978]. These use
relaetional data structures similar to those in the organic synthesis
program. Because many of the properties of a given drug may be unknown,
the drug analysis programs employ binary rather than n-ary relations. The
programs have led to useful discoveries concerning previously unknown
drug interactions and concerning inconsistencies in descriptions of drugs
in the pharmaceutical literature.

Limitations

The approach taken in this chapter stores information about the
initial state explicitly and uses the frame axiom to compute information
about later states. It can be argued that this is wunnatural and
potentially inefficient. The alternative, when using depth-first search
and reasoning forward from the 1initial state, 1is to store the current
state explicitly and to compute information about earlier states. The two
approaches are intuitively eguivalent. The problem of formally explaining
and justifying the eguivalence, however, has still to be solved.

The treatment of plans as seguences of actions is another limitation,
which creates redundancies when actions do not interact and can be
performed in parallel. Performing the actions in seguence produces the
same results redundantly in any sequence. Systems for generating plans
which are partially ordered collections of actions have been described by
Sacerdoti [1975] and Tate [1974]. A Horn clause program which generates
partially ordered plans has also been written in PROLOG by Warren. A
survey of plan-formation systems and a comparison with the one presented
in this chapter has been made by Waldinger [1977].

146 Chapter 6: Plan-Formation and the Frame Problem

Exercises

1) Formulate an n-tuple representation of the blocks world problem.
Let State(x,y,z) hold when it is possible for block A to be on x, Bony
and C on z simultaneously. Compare problem-solving strategies for the n-—
tuple representation with those for the binary representation of the
problem.

2) Reformulate the water container problem investigated in Chapter 4
as a plan—-formation problem using the binary representation investigated
in this chapter. Compare the problem-solving strategies needed for
efficient solution of the problem in both the n-ary and binary
representations.

3) The assigment statement of conventional programming languages can
be regarded as an action which transforms one state of a computer into
another. The new state

assign(u,v,w)
differs from the preceding state w in that the location u contains v.

Assume that A, B and C are locations and that in the initjal state @
they contain a, b and ¢ respectively. The problem is to find a state in
which the initial vealues of A and B are interchanged.

Formulate and solve the problem as a plan-formation task.

147

CHAPTER 7

Resolution

We shall extend the Horn clause model of problem-solving to non-Horn
clauses. With non—-Horn clauses

(1) goals and assertions can be negative as well as positive,

(2) the application of procedures to goals can generate
assertions as well as subgoals,

(3) the solution of subgoals can require the analysis of
several alternative cases and

(4) solutions can be disjunctions: x = tj or t; or ... or tg.

Top—down and bottom-up inference can be extended to non-Horn clauses.
The new rules, as well as the old ones, are all special cases of the
general resolution rule introduced by Robinson [1965a].

Negative goals and assertions

In many cases a set of non-Horn clauses can be reexpressed as Horn
clauses by renaming predicate symbols [Meltzer 1966]. The non-Horn
clause

Pleasant (x), Nightmare{x) <— Dream(x)
for example, can be rewritten as the Horn clause
Nightmare(x) <— Dream(x), Unpleasant (x)

by reexpressing the negative atom not-Pleasant(x) as the positive atom
Unpleasant(x}.

Similarly the non-Horn clause problem of showing that every boletus is
poisonous can be transformed into a Horn clause problem by eliminating
the predicate symbol "Mushroom" and using the new predicate symbol
"Nonmushroom" instead. The unnegated atom, Nonmushroom(x), means the same
as the negated atom, not-Mushroom(x). The new Horn c¢lause problem
Fung'l-6 can be solved top-down or bottom-up.

148 Chapter 7: Resolution

Fung'l Toadstool (x) <— Fungus (x}, Nonmushroom(x)
Fung'2 Poisonous (x) <— Toadstool (x)

Fung'3 Fungus (x) <— Boletus({x}

Fung'4 Nonmushroom (x} <— Boletus (x)

Fung'5 Boletus (g) <—

Fung'6 <— Poisonous (4}

A bottom-up solution:

Boletus(4) < Boletus{ @) <—

Fung'3

Fungus () <~ Nonmushroom{ 4P } <—

oadstool () <—

Fung'2

L, Poisonous(4) <—

Fung'é

A top-down solution:

, <~ Poisonous (9’)

Fung'2

L, <— Toadstool ()
Fung'l

L <— Fungus(ﬁ? , Nonmushroom {4)
Fung'3

L ¢<— Boletus (4), Nonmushroom{4)
Fung'5

L <— Nonmushroom{ G)
Fung'4

b <~ Boletus(ﬁ?)
Fung'5

» O

Negative goals and assertions

The bottom-up derivation of the assertion

from the H
of the neg

directly f

Similarly

from the g

Nonmushroom () <~

149

orn clauses Fung'4 and Fung'5 is equivalent to the derivation

ative "assertion"
<— Mushroom (9)
rom the original clauses Fung 4-5,
<— Boletus({x), Mushroom{x)
Boletus (9*) <— .
the top-down derivation of the positive subgoals
<— Fungus (9), Nonmushroom(9)
oal statement

<— Toadstool (9)

by means of the Horn clause Fung'l is equivalent to the direct derivation

of the cla

from the s

by means o

Fungl

use
Mushroom{x) <— Fungus (x)
ame goal statement
<~ Toadstool ()
f the non-Horn clause

Toadstool (x) , Mushroom <— Fungus(x).

Resolution

In general, top-down and bottom-up inference for both Horn clauses and
lauses are special cases of the resolution rule: To create a
of two clauses it is necessary first to rename variables so

non-Horn ¢
resolvent
that diffe

The defini

rent clauses contain different variables.

Given a condition in one clause and a conclusion in the
other, the resolvent exists if the condition and the
conclusion wmatch. The two clauses are said to be the
parents of the resolvent clause. An atom is a condition of
the resolvent if it is obtained by applying the matching
substitution to a condition, different from the matched
condition, of one of the parents. Similarly, an atom is a
conclusion of the resolvent if it is obtained by applying
the matching substitution to a conclusion, different from
the matched conclusion, of one of the parent clauses.

tion can be expressed by means of Horn clauses. Let

158 Chapter 7: Resolution

res(x,u,y,v) name the resolvent which exists when, after
appropriate renaming of variables, the condition u
in x matches the conclusion v in y,

cond (x) the collection of conditions of clause x,
concl (x) the collection of conclusions of clause Xx,
union(x,y) the union of x and vy,

Apply (x,w,x') express that the result of applying to x the
substitution w is x',

Rename (x,y,w} the substitution w applied to clauses x and vy
results in clauses which contain no variables in

common,
Match(u,v,w) substitution w matches the atoms u and v,
Member (u,x) u is a member of x,

Combine (w),wy,w) the substitution w has the combined effect of
first applying substitution wj; and then applying
substitution wo,

Resolves(x,u,y,v,w) the resolvent of x and y on atoms u and v
exists and w 1is the combined substitution which
both renames variables and matches atoms.

Resolves(x,u,y,v,¥) <— Rename(x,y,w;) ,Member (u,cond(x)) ,Apply(u,wi,u'),
Member (v,concl{y)) ,Apply(v,w;,v') Match(u',v',w,y},
Combine (wy ,wy,w)

Member (z, cond(res{x,u,y,v))) <— Resolves(x,u,y,v,w),
Member {z', union(cond(x),cond{y))},
Diff(z',u), Apply(z',w,z)

Member (z, concl(res{(x,u,y,v}}) <— Resolves(x,u,y,v,w),
Member (z', union(concl {x) ,concl(y))},
Diff (z',v), Apply(z',w,z)
Member (z, union{x,y)) <— Member (z,x)
Member (z, union(x,y)) <— Member(z,y)
Notice that the definition can be used either top-down or bottom-up. The
Boyer-Moore structure-sharing implementation of resolution [1972] can be
regarded as using the definition top-down but saving solved subgcals of

the form Resolves(x,u,y,v,w)} as lemmas.

The definition given here is less general than Robinson's which also
incorporates the factoring rule described later in the chapter.

Middle out reasoning with Horn clauses

In addition to top-down and bottom-out inference, resolution includes
middle-out reasoning with Horn clauses. The resolvent of the two clauses

Fallible (x) <— Human(x)
Mortal (x) <— Fallible (x)

for example, is the clause Mortal(x) <— Human(x).

Middle out reasoning with Horn clauses 151

Middle~out reasoning can also be applied to different copies of the
same clause. From two copies of the definition of ancestor, for example

Ancestor (x,y) <— Ancestor (x,2), Ancestor(z,y)
Ancestor (u,v) <— Ancestor{u,w), Ancestor (w,v)

we can derive the resolvent

Ancestor (x,y) <— Ancestor (x,w) ,Ancestor (w,z)} ,Ancestor(z,y).

Propositional logic example

The clauses which define the semantics of propositional logic provide
instructive examples of the resolution rule. Here if x and y name
propositions x* and y* respectively then

X &y names the proposition x* and y*

xVy x* or y*

XDy if x* then y*

x>y x* if and only if y*

- X it is not the case that x*.

where &, V , 2, <> and - are infix function symbols. Read True(x) as
stating that x is true. The following set of clauses cannot be
reexpressed as Horn clauses by renaming predicate symbols.

T1 True {x&y) <— True(x), True(y)
T2 True (x) <— True {x&y)

T3 True({y) <~ True (x&y)

T4 True (x¥y) <— True(x)

TS True (xVy) <— True(y)

T6 True (x), True(y) <— True(xVy)
T7 True (xoy) ,True (x) <—

T8 True (x2y) <— True(y)

TS True{y) <— True(x}, True{xdy)
T18 True {x<>y) <— True(x y), True(ya>x)
T11 True (xoy) <— True{x<>y)

T12 True (ysx) <— True(x<>y)

T13 True (7x), True(x) <—

T14 <— True (7x), True(x)

Clauses T1-3 state that
X & y is true if and only if
x is true and y is true.
Clause T1 is the if-half of the statement and clauses T2-3 are the only-

if-half. Similarly the remaining clauses state that

T4-6 x Vy is true if and only if
X 1s true or y is true;

152 Chapter 7: Resolution

T7-9 X >y is true if and only if
if x is true then y is true;
T10-12 x <» y is true if and only if

x DYy 1is true and y o x 1is true;
T13-14 ~ x 1is true if and only if

X is not true.

This set of clauses is based upon a more general definition of "truth"
for sentences in the standard form of logic formulated by Colmerauer
[unpublished].

The if-halves of the statements are useful top-down to reduce problems
concerning the truth of a complex proposition to subproblems concerning
the truth of simpler propositions. The only-if halves, on the other hand,
are useful bottom-up to derive conclusions concerning the truth of simple
propositions from assumptions concerning the truth of more complicated
ones.

For example, to show that

p & g is true if p is true and g is not true
it is natural to reason top-down from the goal

<— True(p & ™q)
using the assumptions

Al True (p) <—
A2 <— True(q)

and regarding the second assumption A2 as a negative assertion.

<— True(p & Q)

T1

) <= True(p), True(7q)
Al

% <~ True (7q)
T13

True (q) <—

A2

d O

Propositional logic example 153

Here the clause TI13 can be regarded as reducing the problem of showing
that =g is true to the problem of showing that g is not true, which is
solved directly by assumption A2,*
On the bther hand, to show that
p is true and q is not true if p & g is true

it is more natural to reason bottom-up from the assumption

.True(p & ™) <— .

The clause
G True (@) <— True(p)

can be interpreted as expressing the goal of showing that p is true and g
not true.

True(p & g) <—
True(p) <—,

p True (gq) <—

<- True{q)

Clause T14 can be regarded as deriving the negative assertion that q is
not true, which solves the negative goal in G. Notice that the bundle of
arcs labelled G represents two successive resolution steps. The order in
which the steps are performed is not significant.

The problem of showing that

p V p is true

illustrates another characteristic feature of top-down problem-solving
with non-Horn clauses: No one method adegquately solves the problem, but

several alternative methods exhaust all the cases.

*Throughout this chapter only resolution refutations are exhibited.
Search spaces will be investigated in the next chapter.

154 Chapter 7: Resolution

<— True{p V p}
T4 T5

<— True (p) <— True (7p)

D

Methods T4 and T5 reduce the original problem to subproblems which
exhaust the two cases asserted by the non-Horn clause T13.

A bottom-up solution of the same problem would involve reasoning by
cases. Case analysis by bottom—up reasoning can be seen more clearly,
however, for the problem of showing that

r is true if p vy g is true,

assuming that

r is true if p is true, and r is true if q is true.

(1) <— True(r)

(2) True(p v q) <~

{3) True{r) <— True{p)
(4) True(r) <— True({(q)

True(p vy g) <—

T6
True (p), True{(qg) <—
(3)
True{r), True(q) <—
(1
¢ True(g) <—
(4)
4 True{r} <—
{1)
°0

Clause T6 derives a non-Horn clause which expresses that there are two
cases. The solution reasons bottom-up, first solving the goal in the
case that p is true and then solving it in the case that q is true. It
"remembers" the second case while it is working on the first one.

Propositional logic example

155

Given a goal and a Horn clause which reduces the goal to subgoals,
non-Horn clauses can be used to derive assumptions to assist the solution
of the subgoals. Such non-Horn clauses typically arise from non-clausal

sentences of the form

A < [B<C], D

in which a condition is an implication. In the problem-solving

interpretation, the clausal form of such a sentence

A, C <D
A <—B, D

can be regarded as stating that

in order to solve A, solve D, and solve B assuming C.

The clauses T7-8 arise from such a non-clausal sentence:
True(x > y) <— [True{y) <— True(x)]

To show that x > y is true,
show that y is true assuming that x is true.

In some cases only one of the clauses T7-8 is needed to solve
problem., If x is not true as in the case

<— True((p & "p}) > Q)
then only the non-Horn cléuse T7 which derives the assertion
True(p & —p) <—
is needed. But if y is true as in the case
< True(g > {(p V 7p})
then only the Horn clause T8 which derives the subgoal
<— True (p V¥ 7p)

is needed.

the

In most cases, however, both clauses need to be used. The simplest
problem which reguires the coopération of clauses T7-8 is that of showing

that p p is true.
<— True({p > p)
T7 T8

True(p) <— <— True (p)

156 Chapter 7: Resolution

The derived subgoal of showing that p is true is solved by the derived
assertion that p is true. The bundle of arcs associated with the
resolution step is unlabelled, because only derived clauses are involved
in the inference.

The problem of showing that

P 5 g is true if p or is true and r 5> g is true
is more interesting. Here it is natural to reason bi-directionally, both
forward from the two assumptions and backward from the conclusion.
Moreover, when reasoning backward from the conclusion

<~ True(p 2 q)
it is natural to reason forward from the derived assertion

True (p) <—
and backward from the derived subgoal

<— True(q)
The following resolution proof formalises the argument.

o True(p > r} <— » True(r o q) <—

<~ True{p > q}

T9 T9

8. True(r) <— True(p) n<— True(g) 5 True{q) <— True(r)

<— True (r)

Arrow notation for non-Horn clauses

The arrow notation used earlier for Horn clauses, to indicate the
combination of top-down and bottom—up inference, can also be used for
non-Horn clauses. The problem-solving interpretation, in particular, of
sentences of the form

A <= [B < (]

can be indicated by arrows associated with the corresponding clauses

Arrow notation for non-Horn clauses 157

¢

&
Ocp N

-

<{— <—

@

The notation associated with the first clause indicates that it should
wait for a subgoal of the form A and then derive the assertion C <— . The
notation associated with the second clause indicates that it should wait
for a subgoal of the form A and then derive the subgoal B.

The use of arrow notation to control the behaviour of a problem-solver
will be investigated in the next chapter.

Disjunctive solutions to non-Horn clause problems

Plan-formation tasks, described by means of non-Horn clauses, may
require the construction of conditicnal plans from disjunctive solutions.

Consider, for example, the problem of putting the maximum of two
numbers A and B in a location L:

M1 {— Holds(val(L,x), w), Max(A,B,x)
M2 Numb (A) <-

M3 Numb (B) <—

M4 Location(L) <—

M5 u<v, v <u <~ Numb(u), Numb(v)
M6 Max (u,v,u) <— v < u

M7 Max (u,v,v) <—u < v

Suppose that the only action available is the assignment operation. Given
a state w, it generates the new state

assign(u,v,w)

which results from w by putting v in location u. The "semantics” of the
action are described by specifying its preconditions and the statements
which are added and deleted when the action is performed. To simplify
matters, the single precondition, that u be a 1location, c¢an be
incorporated into the clauses which specify the added (M8) and deleted
(M9) statements:

M8 Holds(val(u,v), assign(u,v,w)) <— Location(u)
M9 Holds (x, assign{u,v,w}) <— Holds(x,w), Diff(x, val(u,y)),
Location (u)

Before solving the problem top-down it is convenient to reason one
step bottom-up:

158 Chapter 7: Resolution

M2 M3
M5
M1p A<B, B<A <—

The top-down solution using the derived lemma M1@ regquires that the two
procedures Mé and M7 cooperate to solve the single subgoal Max(a,B,x).

<— Holds(val (L,x),w), Max(A,B,x)

w=assign(L,x,w") M8
<— Location(L}, Max(A,B,x)

M4

<— Max(A,B,x)

X=A X=B

<—B <A <—aA <B

]

The solution is a disjunction of two possibilities
w = assign{(L,A,w') or assign(L,B,w'), for any w'.

A solution exists, but it is not determineds which of the two
possibilities it is.
Non-determinism3 contrasts with non-determinism;. A problem is non-
deterministic3 if its solution
X =1t or tp or ... or tg

is underspecified. It is non-deterministic) if its solution is
overspecified

X =t and ty and ... and tp.

The treatment of program construction as an application of plan-
formation was first proposed by Green [196%b] and Lee and Waldinger
[1969]. Lee and Waldinger, in particular, present an algorithm for
extracting conditional programs, such as

If A < B then w
else w

= assign(C,B,w')

= assign(C,A,w")

from disjunctive solutions. The relationship between plan-formation and
axiomatic semantics of programming languages has been investigated by
Moss [1977].

Factoring 159

Factoring

The resolution rule alone is complete for demonstrating the -
inconsistency of Horn clauses. Moreover, it 1is also adequate for many,
but not all, non-Horn clause problems. The combination of factoring and
resolution, first described in Robinson's original, unpublished paper is
equivalent to the published version of the resolution rule [Robinson
1965a]. Consequently, the completeness proof in the published paper
establishes completeness of resolution and factoring combined.

The barber paradox is a simple example which requires the use of
factoring.

Suppose that all barbers shave all people who do not shave
themselves and no barber shaves anyone who shaves himself.
Then there are no barbers.

To establish the conclusion we assert that there is a barber and
attempt to derive a contradiction.

Bl Shave(x,y), Shave(y,y) <— Barber (x)
B2 <— Shave(x,y), Shave(y,y}, Barber {x}
B3 Barber ((Q)) <—

That the three clauses are inconsistent can be demonstrated by
instantiating the first two clauses

Shave(cg,cg), Shave(CD,()) <— Barber(C))
<— shave (@,©), Shave(®,®), Barber (Q))

deleting duplicate atoms

Shave(CD,GD) <— Barber(CD)
<— Shave (@,@) , Barber (@)

and applying resolution.

Shave(CD,GD) <— Barber(CD)' Barber(CD) <— <— Shave(CD,CD), Barber(CD)

Shave (@ ,Q) < <— shave (@,@)

O

That resolution alone is inadequate for demonstrating inconsistency
can be seen more clearly by considering a simpler example:

51 S{x), S(y) <—
s2 <— S(u}, S{v)

The two clauses are inconsistent because they have instances

S{x), S{x} <
<= S{u}, S(u}

168 Chapter 7: Resolution

which, after removal of duplicate atoms, are directly contradictory:

S({x) <—
<— 5{u)

However , no matter how many times resolution is applied to clauses S1-2
and their descendants, every resolvent contains exactly two atoms, and
consequently no resolvent is the empty clause (which contains no atoms).

The factoring rule, which needs to supplement resolution in these
examples, generates instances of clauses in order to delete duplicate
atoms. The instantiating substitution can be restricted so that it
matches the two atoms which become duplicates. Applied to the two
clauses Bl and B2, factoring generates instances which are more general
than the two instances considered before.

Bl Shave {x,y), Shave(y,y) <— Barber (x}
(match underlined atoms)

Shave (x,x), Shave{x7XT <— Barber (x)
{delete duplicates)

B'l Shave (x,x}) <— Barber (x)
B'l is the only factor of Bl. Similarly B'2 is the only factor of B2:
B'2 <— Shave (x,x), Barber (x)

Application of factoring and the combined resolution and factoring
refutation can be exhibited in a graph.

Shave (x,y) ,Shave(y,y) <— Barber (x)} <— Shave(x,Yy) ,Shave(y,y) ,Barber (x)

factoring factoring

Shave (x,x) <— Barber (x) Barber(CD) <= <— Shave(x,x}, Barber (x)

Shave (Q),0) < <— Shave (D,®)

O
Factoring is only necessary infrequently and it creates redundancy if
it is applied too often. Perhaps the most restrictive constraint on the

use of factoring, without affecting completeness, is the one incorporated
in the model elimination proof procedure [Loveland 1968, 1969, 1978].

Exercises

1} Use resolution and factoring to show that the assumptions

John likes anyone who doesn't like himself.
John likes no one who likes himself.

Exercises

are inconsistent.

2) Suppose I believe:

(a} There exists a dragon.

161

(b) The dragon either sleeps ii. its cave or hunts in

the forest.

(c) If the dragon is hungry then it cannot sleep.

(@} If the dragon is tired then it cannot hunt.
Use resolution to answer the following guestions:
What does the dragon do when it is hungry?

What does the dragon do when it is tired?
What does the dragon do when it is hungry and tired?

To answer the questions it is necessary to make explicit the assumption:

If x cannot do y then x does not do y.

3) Express the following assumptions in clausal form:

Everyone admires a hero.
A failure admires everyone.
Anyone who is not a hero is a failure.

Use resolution and factoring to £find a pair of individuals
necessarily distinct) who admire one another.

4) This problem is discussed by Moore [1975]. Suppose there are
blocks A, B and C.

A is on B which is on C.
A is green, C is blue and
the colour of B is unknown.

Use resolution (and factoring if necessary) to find a green block
block which is not green. You must assume that blue is not green.
block does the proof find?

5) Using resolution and factoring, show that the following conclu
follow from assumptions T1-14.

{a) If polr & q)is true
then (p o r) & (p > g) is true.

(b) If p oqg is true
then there is an r such that (p> r) & {(r > q).
What r does the proof find?

(not

three

on a
What

sions

162 Chapter 7: Resolution

6) The relation Plus(x,y,z) which holds when x+y = z can be defined
using non-Horn clauses

Plus(x,y,z), Add(8,y) <
Plus (x,y,z) <— Add(x,z)
Add (s{x},s{z)) <— Add(x,z)

where s(x) names the successor of x. Use resolution and factoring to
solve the problem

<— Plus({x,y,s(y)), Plus(x,x,y}.

163

CHAPTER 8

The Connection Graph Proof Procedure

The search space determined by unrestricted application of the
resolution rule is highly redundant. Redundancy can be avoided, at the
expense of flexibility, by restricting resolution to top-down or bottom-
up inference. It c¢an also be avoided, however, without the loss of
flexibility by employing the connection graph proof procedure.

Clauses are stored in a graph and occurrences of matching atoms on
opposite sides of the arrow are connected by arcs. Associated with each
arc in the graph is the resolvent obtained by resolving the <¢lauses
connected by the arc. The main operation of the connection graph proof
procedure is the selection of an arbitrary arc and the incorporation of
the associated resolvent into the connection graph. Top-down inference is
pecformed by selecting an arc connected to a goal statement; bottom-up
inference, by selecting an arc connected to a clause which contains no
conditions. Redundancy 1is avoided by deleting the selected arc and by
restricting the number of new arcs which are added when the resolvent is
incorporated into the graph.

The initial connection graph

The first step of the connection graph proof procedure 1is the
construction of the initial connection graph. In addition to the initial
set of clauses, the initial connection graph contains an arc for every
pair of matching atoms on opposite sides of the arrow in different
clauses. The arc connects the atoms and is labelled by the mwatching
substitution. Later in the chapter we consider the case in which an arc
links atoms in the same clause.

The initial connection graph for a simple non-Horn clause problem is
illustrated below.

<— Happy (u)
u = x u = x
Happy (x) <— Playing(x) Happy (x) <— Working(y), x employs y

x = Bob y = Bob x = John
y = Bob

Playing (Bob), Working(Bob) <— John employs Bob <—

164 Chapter 8: The Connection Graph Proof Procedure

Associated with each arc in the graph is the resolvent obtained by
matching the atoms linked by the arc. Conversely, for every resolvent
which can be generated from different parent clauses there is an
associated arc in the graph.

According to Robinson's purity principle [Robinson 1965a}, a clause
which contains an unlinked atom can be deleted from a set of clauses
without affecting its consistency (or inconsistency). Such a clause can
not contribute to a resolution refutation because the wunlinked atom can
not be resolved upon.

Deletion of clauses containing unlinked atoms is an important feature
of the connection graph proof procedure. In addition to the clause
itself, all links connected to its atoms must also be deleted from the
graph. Deletion of such links, however, may cause atoms in other clauses
to become unlinked. Thus deletion of clauses can create a chain reaction
in which a succession of clauses is deleted from the graph. Deletion of
clauses simplifies the connection graph, reduces the search space, and
makes it easier to find a solution.

The effect of deleting clauses can be illustrated by assuming that Bob
is unemployed and modifying the preceding example.

<~ Happy (u)
u=x u = x
Happy (x) <— Playing (x) Happy (x) <— Working(y), x employs y
X = Bob y = Bob

Playing (Bob), Working(Bob) <—

We delete the clause which contains the unlinked atom.

<— Happy {u)
u=x
Happy (%} <— Playing (x)
X = Bob
Playing (Bob) , Working(Bob) <—
The new graph contains a new unlinked atom. Deletion of clauses
continues until we are left with the empty set of clauses. The empty set
of clauses is trivially consistent, because it contains no clauses which

can be false in an interpretation. Therefore the original set of clauses
is consistent as well.

The Resolution of links in connection graphs 165

The Resolution of links in connection graphs

The basic operation of the proof procedure is the selection of a link
and the generation of the associated resolvent, The link is deleted and
the resolvent is added to the graph. New links are added connecting atoms
in the resolvent to atoms in the rest of the graph. The new links can be
constructed, without searching the graph, from the links which are
already connected to the atoms in the parent clauses.

For example, in the initial connection graph at the beginning of the
chapter, we can reason bottom-up by selecting the link which matches the
two atoms containing the predicate symbol Playing. In the resolvent,
the atom Happy (Bob) descends from the atom Happy(x) in the parent
clause. All new links connected to the new atom descend from the links
connected to the parent atom. In this case the new link connecting
Happy (Bob) to Happy (u) is derived from the old 1link connecting
Happy (x) to Happy({u) . The new connection graph, which results from
selecting the 1link, generating the resolvent, adding new links and
deleting both parent clauses (which now contain unlinked atoms) is
illustrated below.

<— Happy (u})
u = Bob u=x
Happy (Bob)} , Working (Bob) <— Happy (x} <— Working(y)}, x employs y
y = Bob x = John
y = Bob

John employs Bob <—

The substitution u = Bob which labels the new link can be computed from
the substitution x = Bob which labelled the selected 1link and the
substitution u = x which labelled the "parent" 1link from which the new
link descends.

Before continuing with the example we outline the definition of the
proof procedure in general.

The connection qraph proof procedure begins with an initial connection
graph and processes it repeatedly until the empty clause is generated. It
processes a connection graph by

(1) repeatedly deleting clauses containing unlinked atoms
and deleting their associated links until all such
clauses have been deleted and then

(2) selecting a link, deleting it and adding the resolvent
and its associated new links to the graph.

This definition of the top-most level of the connection graph proof
procedure is given in the “repeat-until" iterative style of algorithm
description associated with Algol-like programming languages. At the end
of the chapter, we shall reexpress the definition in the Horn clause
logic programming style.

166 Chapter 8: The Connection Graph Proof Procedure

We return to the example. Any link may be selected from the graph. We
shall continue, however, with the bottom-up analysis of the case
Playing(Bob) by selecting the link labelled u =Bob. Deletion of the
selected link leaves one of the parents with an unlinked atom. The parent
is deleted.

<— Happy (u)
u =X
Working{Bob) <— Happy (x) <— Working{y), X employs y
y = Bob x = John
y = Bob

John employs Bob <—
The goal has now been solved in the first case Playing(Bob). Next we
investigate the remaining case Working(Bob), also reasoning bottom-up.

When the selected 1link is deleted, both parent c¢lauses contain unlinked
atoms and are deleted as well.

<— Happy (u)
u=x
Happy (x) <— x employs Bob
x = John
John employs Bob <—

We continue toO reason bottom—up and delete both parents because they
contain unlinked atoms.

<~ Happy (u)
u = John
Happy (John) <—

The resolvent associated with the remaining 1link is the empty clause and
both parents are deleted.

O

Notice that the proof gives a disjunctive answer to the question:
Is anyone happy?
Yes, Bob or John.

The sequence of successive connection graphs generated by the proof
procedure constitutes both a proof of inconsistency as well as a search
for the proof. In this example, every step in the search contributes to
the proof itself. In the general case, however, according to a theorem of
Ehrenfeucht and Rabin [Bundy 1971] [Meltzer 1972], it is not always

The Resolution of links in connection graphs 167

possible to avoid steps which are not relevant to the proof.

At every stage during the course of searching for a proof, any link
can be selected to generate a resolvent. The selection of different links
leads to the generation of different search spaces, some of which may be
easier to search than others. In the following sequence of connection
graphs we illustrate a top-down search for a solution to the previous
problem. Selected links are indicated by bold lines. Several links may be
marked for selection in the same graph when the order of selection does
not matter, in order to reduce the number of separate graphs displayed.
Deletion of clauses containing unlinked atoms 1is not exhibited
explicitly.

<— Happy (u)
u = x u = x
Happy (x)” <— Playing (x) Happy (x) <— Working(y), x employs y
X = Bob y i/ffg//////, x = John
y = Bob
Playing (Bob), Working(Bob) <— John employs Bob <—
<— Playing (u) <— Working(y), u employs y
u = Bob y = Bob u = John
y = Bob
Playing {(Bob), Working{Bob) <— John employs Bob <—

<— Working (Bob)

~

Working (Bob) <—

As in the bottom-up search for a solution, every step contributes to the
proof.

Notice that wunrestricted application of the resolution rule is
redundant in the sense that it determines a search space which contains
many unnecessary clauses including, in particular, all those which belong
to both the top-down and the bottom-up search spaces exhibited above.

168 Chapter 8: The Connection Graph Proof Procedure

Mixed top-down and bottom-up search - the parsing problem

Top-down and bottom-up inference can be mixed, simply by mixing the
selection of links connected to atoms in goal statements with the
selection of links connected to atoms in clauses which contain no
conditions. In general it is useful always to select a link which results
in the least complicated new graph. This strategy applied to a version
of the parsing problem of Chapter 3 results in a mixed top-down, bottom-
up search, As 1in the preceding example, selected links are indicated by
bold 1lines. Substitutions, which 1label links, are omitted from the
graph.

<— Sent{1,6)

Sent (x,y) <= Vp(z,y), Np(x,z

Vp{X,y) <— Aux(x,z), Verb(z,y) Vp(x,y) <—_Verb(x,y)

Verb(x,y) {<—,gyre(x,y) Np{(x,y) <~ Noun(x,y}

gyre(5,6) <— Np (x,y) <~ Det(x,u), Adj(u,v), NouTjj:zl////
Aux(x,y) <— dld(x,yi////////// ///// Noun (x,y) <—toves(x,y)
/////Det(x,y) <~ the(x,y) adi(x,y) <—-sf1thy(x,y)

did(4,5) <- the(l 2) < slithy(2,3) < toves(3,4)<—

<— vpl(z,6), Np(l,z)

Vp{x,y) <— Aux(x,z),Verb(z,y) Vp{x,y) < Verb(x,y)
Aux(4,5) <- vVerb(5,6) <— Np(x,y) <— Noun(x,y)

Np(x,y)} <— Det{x,u), Adj(u,v), Noun(v,y)

Det (1,2} < Adj(2,3) < Noun({(3,4) <—

Mixed top-down and bottom-up search - the parsing problem 169

< Vp(z,6), Np(l,z)
Vp(4,y)’?:’;;;;;;T;:‘ﬂ”’:;;:]y) <— Verb({x,y)

Verb(5,6) <— Np(l,y)” <— Noun(3,y) Np(x,y) <— Noun(x,y)

Noun({3,4) <—

= VD(Z;G): NP(]-'Z)

Vp(4,6) <— Vp(5,6) <— Np(l,4) <— Np(3,4) <

<— _Vp{4,6)

Vp(4,6) < Vp(5,6) <—

Macro-processing and middle-cut reasoning

In conventional programming languages, macro-processing transforms a
program by eliminating all calls to a given procedure, executing them in
advance of the particular problems to be solved. The original procedures
are replaced by the new ones. The analogue of macro-processing in logic
is middle-out reasoning combined with deletion of the parent clauses
because they contain unlinked atoms.

Macro-processing has the advantage that procedure calls are executed
once and for all before the problems are given, rather than repeatedly
during the course of trying to solve them.

Macro-processing can be illustrated by eliminating all calls to the Np
and Vp procedures in the parsing problem.

170 Chapter 8: The Connection Graph Proof Procedure

Sent(x,y) <— p(Zry)' NP(X'Z)

Vp(x,y) <—

ux(x,z), Verb(z,y} Vp(x,y) <— Verb(x,y)

Verb (x,y) <— gyre(x,y) <— Noun (x,y)

Np(X,y) <— Det(x,u), Adj(u,v), Nouyn(v,y)

Aux (x,y) <— did{x,y) Noun (x,y) <— toves(x,y)

Det (x,y) <— the(x,y) Adj (x,y) <— slithy(x,y)

Sent (x,y) <— Noun(x,z)},
Verb(z,y)

Sent (x,y) <— Noun(v,w),
Adj{u,v),
<— the(x,y) Det{x,u),
Verb(w,y)

Det {x,y)

L~

Adj (x,y) <— slithy({x,y)

Sent (Xx,y} <— Det(x,u),
Adj (u,v),

Noun(x,y) <~ toves(x,y) Noun (v,w},
Verb(z,y}4
Aux (w,Zz)

Verb(x,y) <— gyre(x,y)

N

/

Aux{x,y) < did(x,y)

\

Sent (x,y) <— Noun({x,u),
Bux{u,v}7y
Verb{v,y)

Arrow notation for controlling selection of links

The arrow notation, introduced informally earlier in the book, can be
used to control the selection of 1links in the connection graph proof
procedure. The links of a connection graph can be turned into arrows by
giving them a direction. A clause is regarded as active if all links
connected to its atoms are outgoing. A 1link may be selected if it is
connected to an atom in an active clause. The new links connected to
atoms in a resolvent inherit their direction from the parent links from
which they descend.

The connection graph proof procedure can be restricted to top—down
inference, by directing all arrows from conditions to conclusions. Then a

Arrow notation for controlling selection of links 171

clause is active if and only if it is a goal statement. The following
seguence of graphs illustrates the use of arrow notation to impose a top-
down problem-solving interpretation on the problem of the fallible Greek.
Despite notational similarities, there 1is no connection between arrow
notation in connection graphs and arcs in semantic networks.

<— Fallible(x), Greek{x}

Fallible(x) <— Human (x) Greek {Socrates) <—

Human (Turing) <— Human (Socrates) <-—

<— Fallible (Socrates)

Fallible(x) <— Human(x)

Human (Turing} <— Human (Socrates) <—

<- Human (Socrates)

Human {(Turing) <-— Human (Socrates} <—

The proof procedure c¢an be restricted to bottom-up inference, by
directing all arrows from conclusions to conditions. Then a clause is
active if and only if it has no conditions. The use of arrow notation for
bottom-up inference is illustrated below.

<~ Fallible({x), Greek(x)

Fallible(x) <~ Human (x) Greek (Socrates) <—

Human {Turing) <— Human (Socrates) <—

172 Chapter 8: The Connection Graph Proof Procedure

<— Fallible{Socrates)

Fallible{(Turing) <-— Fallible {Socrates) <—

O

The arrow notation can be used with non-Horn clauses to control the
generation of assertions for use in the solution of subgoals. The non-
Horn clause in the connection graph below, for example, denerates the
assertion '

Studentof (& ,Bob) <-
to assist the solution of the subgoal
< Likes(®),logic).

The two <c¢lauses from which the assertion and subgoal are derived,
together with the associated arrow notation, attempt to show that Bob is
happy by asserting that is a student of Bob and showing that
even likes logic. Since nothing else is said about the individual .
if it can be shown that likes logic, then anyone who is a student of
Bob likes logic. The two clauses, therefore, state in effect that

Bob is happy if all his students like logic.
The arrows in the following connection graph direct the search for a

solution top-down from the top-level goal and the derived subgoal, but
bottom-up from the assertion to be used in solving the subgoal.

<— _Happy (Bob)

— N\

Happy (Bob) <— Likes (2, logic)

ysmdmif (@ ,Bob) <—

Likes{x,logic)<-Studentof {x,Bob), Studies(x,logic)<—Studentof (x,Bob}
Studies(x,logic)

< Likes(@,logic)/ Stude\ntolf (@ ,Bob) <
Likes {x,logic)<—Studentof {x,Bob) , Studies(x,logic)<—Studentof (x,Bob)

srees " logm)_/

Arrow notation for controlling selection of links 173

<— Studies((),logic) Studies((),logic) <

O
Notice that Bob would also be happy if he had no students
<— Studentof (x,Bob)
or if everyone liked logic unconditionally
Likes(x,logic) <— .
There is no guarantee that every assignment of direction preserves the
solvability of a conpection graph., It seems sensible, moreover, to

restrict the direction of arrows so that all links connected to the same
atom have the same direction.

Self-resolving clauses

A self-resolving clause 1is one which resolves with a copy of itself.
For example, the clause

Append(x.y, z, X.y') <— Append(y,z,y¥")
resolves with the copy
Append (u.v, w, u.v') <— Append(v,w,v').
For the sake of completeness, it is necessary to connect resolving
atoms in a self-resclving clause by means of a link.
Append (x.y, 2, X.y') < Append{y,z,y"')

Such a 1link is a pseudo-link in the sense that is stands for a link
between atoms in different copies of the same clause.

Pseudo-1links can be selected for processing, but it is simpler for the
purposes of exposition to restrict their use to the derivetion of new
links. This is illustrated in the following example.

<~ Append (A.C.nil, B.nil, w)

Append(x.y, z, X.y') <- Append(y,z,y") Append (nil,x,x) <—

The single atom in the resolvent descends from an atom having two links,
one of which is a pseudo-link. The pseudo-link gives rise to a descendant
which is a normal link. The other 1link connected to the assertion has no
descendant. The original goal statement contains an unlinked atom and
therefore is discarded when the resolvent is added to the graph.

174 Chapter 8: The Connecticn Graph Proof Procedure

<— Append (C.nil, B.nil, w')

N

Append (x.y, z, x.y') <— Append(y,z,y") Append (nil,x,x) <—

The new graph 1is similar to the initial connection graph. However, this
time, when the resolvent is generated, it is the pseudo-link which has no
descendant and the link to the assertion which has.

<~ Append(nil, B.nil, w")

Append(X.y, zf/;t;:;—j:j‘;;;end(y,z,y') Append{nil,x,x) <—

The resolvent of the new 1link is the empty clause. Independently, the
recursive clause can be deleted because its conclusion has only a pseudo-
link. Once the recursive clause has been deleted, the assertion can be
deleted as well. The resulting connection graph consists of the empty
clause alone.

O

In general, a self-resolving clause can be deleted if one of its atoms
has no normal (non-pseudo-) links. The inheritance of 1links and pseudo-
links in connection graphs has been studied by Bruynooghe [1977]. Note
that, although in all of the preceeding examples the final connection
graph contains only the empty clause, in the general case it may contain
other clauses as well.

Deletion of links whose resolvents are tautologies

A clause is a tautology if it contains the same atom both as a
condition and as a conclusion. The use of tautologies in top-down
problem-solving leads to loops in which a goal reoccurs as its own
subgoal. For that reason, because they do not positively contribute to
the solution of problems, tautologies can be deleted from a set of
clauses without affecting inconsistency [Robinson 1965a]. In the
connection graph proof procedure, the effect of deleting tautologies can
be obtained by deleting links whose resolventsS are tautologies.

The set of clauses describing the concept of even number is an
example.

/——*\
Even(s{s(x))). <— Even(x) Even({®) <—
Even(x) <— Bven(s{s(x)))

The two links connecting the two recursive clauses have resolvents which
are tautologies. The links are deleted from the graph:

Deletion of links whose resolvents are tautologies 175

/”'—_‘ﬁh‘\\

Even(s{s(x))) <— Even(x) Even{(8) <—

Even(x) <— Even(s(s{x)))

The collection of three clauses is consistent because it contains no
goal statement. The two recursive clauses can be deleted because they
contain atoms with only pseudo-links. The basis assertion can then be
deleted as well. Given the goal statement

<~ Even(s{s(s(s(8))}))
moreover, the condition of the second recursive clause still has no non-

pseudo-link. Conseguently, the clause can be deleted, 1leaving the
simpler graph:

<— Even(s(s{s(s(8)))))
Even(s(s(x))) <— Even(x) Even (8) <—

In more complex examples it is not so easy to recognise that a clause
cannot contribute to a solution. In such cases a more global analysis may
be useful. Global problem-solving strategies are investigated in the next
chapter.

The connection graph proof procedure

We summarise here the definition of the connection graph proof
procedure in a style of English which corresponds to the procedural
interpretation of Horn clauses,

To demonstrate the inconsistency of a set of clauses by the
connection graph proof procedure, generate and solve its initial
connection graph.

The initial connection graph for a set of clauses contains all
clauses in the set, a {(non-pseudo-} 1link connecting each pair of
matching atoms on opposite sides of the arrow in different clauses,
and a pseudo-link connecting atoms on opposite sides of the arrow in
the same clause if the atoms match in different copies of the clause.

A connection graph is solved if it contains the empty clause.

To solve a connection graph which does not contain the empty
clause,

176 Chapter 8: The Connection Graph Proof Procedure

either delete a link whose resolvent is a tautology, &nd
solve the resulting connection graph,

or delete a clause containing an unlinked atom, together
with its associated 1links, and solve the resulting
connection graph,

or select a link which is not a pseudo-link, delete it,
add the resolvent together with its new 1links to the
graph, and solve the resulting connection graph.

A (non-pseudo-) 1link connects an occurrence L of an atom in a
resolvent to an occurrence K of an atom in another clause if L and K
match, L descends from an occurrence L' of an atom in a parent
clause, and there is a link (possibly a pseudo-link) between L' and

K.
TN TN
parent L' C'K parent C' L' KD
or ////’
resolvent L'C resolvent CL

A pseudo-~link connects L and K in a resolvent if L and K match, L
and K descend from L' and K' in the (same or different) parent
clauses, and there is a link between L' and K'.

TN 7~ ™~
parent L' C' K’ parents C' L' K'D
N ot N
resolvent L CK resolvent L CK

The four different ways of solving a connection graph correspond to
four clauses having the same conclusion. Ignoring the deletion of links
whose resolvents are tautologies, the resulting three procedures express
the logic and top-down control of the iterative algorithm described at
the beginning of the chapter. The earlier algorithm can be obtained from
the new one by further specifying the control over the use of the
procedures given here. In particular,

(1) the alternative ways of solving a connection graph
should be tried one at a time in the order in which they
are written above and

(2) backtracking should not be employed, as the non-
determinisml of the procedures doesn't matter.

The proof procedure which has been described is incomplete as it
stands, because the factoring operation has been omitted. In order to
avoid redundancy, severe restrictions need to be imposed on its use.
Since adequate restrictions have not yet been devised, and since it
gimplifies the description of the proof procedure, we have decided to
ignore the factoring operation altogether., A definition of the proof
procedure including factoring can be found in the original publication
[Kowalski 1974a].

The completeness of the connection graph proof procedure cannot be
assured if the selection of links which are needed for a proof is
postponed indefinitely. Such indefinite postponement might arise, for

The connection graph proof procedure 177

example, when the selection strategy carries out a depth-first search
along a non-terminating path of a top-down search space. The requirement
that every link eventually be scheduled for selection is the analogue of
the exhaustiveness of search strategies for more conventional proof
procedures.

A completeness proof for a variant of the connection graph proof
procedure has been constructed by Brown [unpublished]. 1In the case of
Horn clauses, his proof applies also to the proof procedure which has
been described here., Other completeness proofs for the general case have
been announced by Siekmann and Stephan [1976] and by Bibel (1979].

A number of proof procedures employ connection graphs but process them
in a manner different from the one described here. Noteworthy among
these are those of Sickel [1976] and Kellogg, Klahr and Travis [1978].
Closer to the connection graph procedure, however, is the unpublished
cancellation system of Colmerauer.

Exercises

1) Express the top-level of the definition of the connection graph
proof procedure by means of Horn clauses.

2) Using the methods described 1later in Chapter 18 for transforming
sentences from the standard form of 1logic into clausal form, the
definition of subset can be expressed by means of the following two
clauses:

' arb(x,y) € x <—

X g
X ¢y <~ arb(x,y) € y

Yy
Yy
Used top-~down these clauses behave as procedures which given a subgoal of

the form x ¢ vy,

assert that some arbitry individual, say arb(x,y), belongs
to x and try to show that it belongs to y.

Use the connection graph proof procedure to prove the following theorems.
a} The empty set ¢ defined by
<—x€®
is a subset of any set S.
b) Every set S is a subset of the universal set defined by
x €U <«
c) Every set is a subset of itself.

d) The set A such that

178 Chapter 8: The Connection Graph Proof Procedure

a{x), b{x) <— x € A

is a subset of the set B such that

X € B <— a(x)
X € B <— b(x)
Xx € B <— ¢c(x).

This is a formulation without equality of the problem of
showing that

{a,b} € (a,b,c,}.

3) Verify the claim made in Chapter 5 that, using the connection graph
proof procedure, bottom—up execution of the definition

Fib(@, s(@)) <—
Fib(s(s{(x)), w) <~ Fib(s(x), u), Fib({(x,v}, Plus(u,v,w)

of Fibonacci number requires only a constant amount of storage. Assume
that the Plus relation is defined by means of variable-free assertions
and ignore the space that would be needed to store them.

179

CHAPTER 9

Global Problem-Solving Strategies

In this chapter we investigate problem-solving strategies which deal
with problems as a whole rather than with subproblems individually. Goal
transformation deals with the combination of goals in goal statements,
whereas analysis of differences deals with the effect of procedures on
the difference between goals and assertions.

Goal transformation consists of a number of related strategies which
are concerned with the logical relationships among subgoals. It includes
deletion of redundant subgoals, which are implied by other subgoals,
addition of implicit subgoals which are easier and more useful to solve
than those which are explicitly given, rejection of inconsistent
subgoals, which are mutually incompatible, and rejection of subgoals
which are contradicted by an example.

The techniques of goal transformation are similar to those of program
transformation developed for recursion equations by Burstall and
Darlington [1977). Program transformation transforms programs before
problems are given, whereas goal transformation transforms goals during
the course of attempting to solve them. Goal transformation techniques
have also been used in robot plan-formation, mathematical programming and
geometry theorem-proving.,

Analysis of the differences between goals and assertions involves an
even more global approach to problem-solving. It attempts to identify
both procedures which reduce differences as well as those which increase
them or leave them invariant. Preference can be given to procedures
which reduce differences over those which do not. Goals can be rejected
as unsolvable if it can be demonstrated that no procedure reduces
differences at all.

The technigues of difference analysis are similar to ones used in
program-proving. Demonstrating that programs reduce differences is
involved in proving program termination, whereas demonstrating that
programs leave properties invariant is wused for proving program
properties. The strategy of selecting procedures for their effectiveness
at reducing differences is the basis, moreover, of the General Problem
Solver developed by Newell, Shaw and Simon [1963].

Although the methods we describe can also be applied to non-Horn
clauses, we shall simplify matters by limiting attention to top-down
problem-solving by Horn clauses alone. Moreover, we shall not concern
ourselves with the heuristics which would be needed for the effective
utilisation of these methods.

180 Chapter 9: Global Problem-Solving Strategies

Deletion of redundant subgoals

A subgoal can be deleted from a goal statement, if the assumption that
the other subgoals have a solution implies that the redundant subgoal has
a compatible sclution as well, According to this criterion, assuming the
transitivity of the < relation,

x{y<=x<z, 2y
the goal statement
<—rs,s<t, <t

contains the redundant subgoal r < t. For, assuming that the other
subgoals have a solution, it follows that the assertions

r' < s’ <
s' <t' <«

hold for appropriate instances r', s' and t' of the terms r, s and t
respectively. But those assertions together with the transitivity of <
imply the assertion

' b <—

which expresses that the third subgoal is compatibly solvable also. It is
unnecessary to solve the redundant subgoal explicitly. It suffices to
know that any solution of the other subgoals guarantees the existence of
a compatible solution of the third subgoal as well.

The transitivity clause does not need to be part of the program or
even a logical conseguence of it. To justify deletion of the redundant
subgoal, it suffices that transitivity be a property of the program. This
is the case, for example, if the < relation is defined by the clauses

8 <y <
s(x) < s(y) < x <vy.

A statement is a property of a Horn clause program P, if it is consistent
with P and together with P implies no variable-free assertions not
already implied by P. A program property, therefore, adds no solutions to
those which can be obtained by the program itself.

Deleting a duplicate occurrence of a subgoal is a special case of
deleting a redundant subgoal, since any one occurrence of a subgoal
implies any other occurrence. Thus the goal statement

<—- P, Q, P

for example, can be replaced by

<— P, Q.

Addition of surrogate subgoals 181

Addition of surrogate subgoals

Although it is often useful to delete redundant subgoals, it is
sometimes beneficial to add them instead.

The strategy of deriving additional subgoals is common in mathematical
programming, where subgoals are regarded as constraints to be satisfied.
A surrogate constraint, whose solution is implied by the solution of the
original constraints, can be added and then solved before the others,
This is useful if the surrogate constraint 1is easier to solve and aids
the solution of the original constraints by determining the wvalues of
some of their variables.

Consider, for example, the initial collection of two constraints
involving the variables x and y:

<— %ty = 2, x~y = D

A seguential, top-down problem-solver would generate pairs of numbers
satisfying one of the constraints and then test whether they solve the
other. A more intelligent problem-solver, programmed by Warren in PROLOG,
coroutines between the two subgoals solving them simultaneously by
successive approximation. The program, a general-purpose, Horn clause
problem-solver, always selects a subgoal which contains fewest variables
at the top~most level.

The normal, mathematical problem-solving method, however, derives and
solves a surrogate constraint instead. It assumes that the original
constraints have a solution and concludes (by adding the two equations
together) that the additional constraint

<— 2%x = 2

must also be satisfied by the same solution. The new constraint is
redundant in the new goal statement

— x+y = 2, x-y = 0, 2*x = 2

but it can be solved without any search. Moreover, once it has been
solved, the remaining instantiated original constraints

—ly =2, 1-y = @
can then be solved without search as well. In fact, it suffices to solve
just one of the remaining constraints, because the other constraint is
now redundant.
The strategy of surrogate subgoals is useful for plan-formation
problems. Consider, for example, the problem of finding a state w in
which the robot is in the room and next to the box

<— In(Rob,room,w), Nextto(Rob,box,w).

Assuming that the box is not in the room initially and that the robot is
more mobile than the box, it is useful to derive the surrogate subgoal

<~ In(box,room,w)

182 Chapter 9: Global Problem-Solving Strategies

from the original subgoals using the program properties

In{x,y,w) <~ In(z,y,w), Nextto(x,z,w)
Nextto(x,z,w) <— Nextto{z,x,w).

If the surrogate subgoal is added to the original goal statement
<~ In{Rob,room,w), Nextto(Rob,box,w), In(box,room,w)
and is selected for solution before the others, then the simplest

solution (where the robot pushes the box into the room) finds a state w
which directly solves the remaining subgoals.

Rejection of inconsistent goal statements

An entire goal statement can be rejected as unsolvable, if the
assumption that it can be solved leads to contradiction.

A simple case 1is the one in which a goal statement is subsumed by a
program property or an integrity constraint. The goal statement

G <~ On(A&,B,w}, Clear(B,w), On(B,C,w}
for example, is subsumed by the clause
C {— On(XIYOZ)I Clear(y,z)

which expresses that nothing is clear and has something on it at the same
time. In general, one clause C; subsumes another C, if all the
conditions and conclusions of some instance of C) are contained among the
conditions and conclusions of C, . The subsuming clause is more general
than the subsumed clause and possibly has fewer conditions or fewer
conclusions. In the example above, the instance of the subsuming clause C
(in which x = A, y =B and z = w) contains one fewer condition than the
subsumed clause G.

A clause can be deleted from a set of clauses if it is subsumed by
another clause in the same set. Deletion of the subsumed clause does not
affect the consistency (or inconsistency) of the set of clauses as a
whole. A thorough discussion of the completeness of deleting subsumed
clauses is contained in the book by Loveland [1978].

The strategy of deleting a subsumed goal statement can be regarded as
a special case of deleting an inconsistent one. In the preceding example,
the assumption

on(A,B,s) <—
Clear (B,s) <—
on(B,C,s) <—

that there exists a solution w=s of the goal statement G is
inconsistent with C.

Rejection of an inconsistent goal statement, however, is more general
than deletion of a subsumed one. It can involve an arbitrary amount of

Rejection of inconsistent goal statements 183

deduction. The database query
<— Teaches(John,y)

for example, is not subsumed by any of the clauses

Tl Teacher (x) <— Teaches(x,y)
T2 <— Teacher (x}, Student (x)
T3 Student (John) <—

but is unsolvable because the assumption that it is solvable, namely
Teaches (John,A) <—
say, is inconsistent with T1-3.

Similar strategies for rejecting queries which are inconsistent with
type information have been developed by McSkimin and Minker [1977] who
augment a resolution theorem-prover with a semantic network which stores
and processes type information. Subsumption of unsolvable goal statements
is also a feature of plan-formation systems developed by Dawson and
Siklossy [1977], Hewitt [1975] and, more generally, of the logic
programming system developed by Robinson and Sibert [1978].

Generalising the use of diagrams in geometry

In order to Jjustify the addition or deletion of a redundant subgoal,
it 1is necessary that the assumptions used to derive the subgoal be
properties of the procedures which can be used to solve it. In order to
justify rejection of an inconsistent goal statement, however, a weaker
condition suffices: The assumptions A used to derive inconsistency need
only be consistent with the procedures P.

For, suppose that

(1) P is consistent with A,

(ii) G* expresses that the goal statement G is solvable,
{(iii) G* is inconsistent with P and A, but

{iv) P solves G.

Then, since P solves G, P implies G* and therefore P together with A
implies G*. But then, since P is consistent with A, G* is consistent with
P and A , contradicting (iii). It follows that

if P is consistent with A, but
G* is inconsistent with P and A, then
P does not solve G.

The use of diagrams to reject unsolvable subgoals in Gelernter's
Geometry Theorem Proving Machine [1963] can be regarded as a case of
using assumptions which are consistent with the problem-solving
procedures to reject inconsistent goal statements. The axioms of
geometry function as procedures and the description of the diagram
functions as the additional assumptions. The use of a diagram is
justified, provided its description is consistent with the general axioms

184 Chapter 9: Global Problem-Solving Strategies

of geometry and with the particular hypotheses of the theorem to be
proved. Gelernter estimated that the use of diagrams reduced the size of
search spaces on the average to 1/20¢ their original size. The argument
above shows that the use of examples to recognise the unsolvability of
problems need not be restricted to geometry. Examples can be used to
recognise and reject unsolvable subgoals in any problem-domain.

Goals as generalised solutions

It is sometimes useful not to solve subgoals explicitly but to regard
them instead as standing for the general class of all their solutions.

Consider, for example, an initial goal statement
<— G{x)
which eventually reduces to the subgoal
—x > 2.
Instead of generating an arbitrary positive number x as an explicit
solution, it is more informative to report that any positive number is a
solution. This can be effected by regarding the subgoal x > @ as a
generalised solution which stands for the class of all its individual
solutions.
Solving subgoals by generalised solutions is a feature of Bledsoe's
approach to theorem-proving [1971, 1977]. To be effective, it needs to
be combined with goal transformation. Given a goal statement

—x>8, x>1, G(x)

for example, deletion of the redundant subgoal is necessary to transform
the goal statement to the new one:

—x>1, G(x)

Given
<-x <@, x >1, G(x}

on the other hand, rejection of inconsistent subgoals is necessary to
recognise that the goal statement is unsolvable.

Treating certain kinds of goals as generalised solutions is also
useful for database gueries, and is a feature both of Darlington's [1969]
resolution information retrieval system and of McSkimin and Minker's
[1977] semantic network theorem-prover. Given the query

Who teaches programming?
<— Teaches (x,programming)

and the general rule

All professors teach programming.
Teaches{x,programming) <— Professor (x)

Goals as generalised solutions 185

it is better to regard the resulting subgoal as a generalised solution
<— Professor (x)

than it is to report one or more of the answers which qualify as
solutions as a result of the assertions

Professor (Mary) <—

Professor (John) <—
Professor (Bob) <— .

Goal transformation and the information explosion

It is a characteristic of human problem=-solving that the assimilation
of additional information generally improves problem-solving efficiency.
This contrasts with the simple model of problem-solving in which all
knowledge is used as problem-solving procedures. Additional information
only increases the size of the search space and makes problems harder to
solve (except in those cases where only one solution is required and the
non-determinism; doesn't matter). In the goal transformation model,
however, additional information can be wused to transform goal statements
and to reduce the size of the search space.

Loop detection by analysis of differences

Like goal transformation, analysis of differences adds to the
possiblities of recognising that a procedure goes into a loop.

Consider, for example, the procedure
Numb {x} <— Numb(s(x))
given the goal
<~ Numb(s(s(8}))
and the assertion
Numb (@} <— .

Repeated top-down execution of the procedure gives rise to the non-
terminating, infinite sequence of subgoals:

<— Numb{s(s{®)}))

<— Numb(s{s(s(8)}})

In this case the connection graph proof procedure avoids the 1loop,
because the procedure call Numb(s{x))} has only a pseudo-link to the head
of the procedure. It follows that the procedure is unusable and can be

186 Chapter 9: Global Problem-Solving Strategies

deleted from the graph. If the assertion Numb(@) <— is replaced by the
assertion

Numb(s{(8)) <—
however, application of the procedure gives rise to the same infinite
loop, but the procedure can no longer be deleted, because its procedure
call has an additional non-pseudo-link to the new assertion. The loop can
be avoided in all these cases, though, if it can be recognised that
application of the procedure cannot reduce the difference between the
goal and the assertion. The goal differs from the assertion in that it
contains a greater number of occurrences of the function symbol s,

Application of the procedure only increases the difference by generating
subgoals which contain even more occurrences of s.

The global nature of difference analysis becomes apparent if the
assertion is replaced by the new assertion
Numb(s(s(s(s{@)})}) <— .

Now, application of the procedure reduces the difference between the goal
and the assertion and eventually solves the problem.

<~ Numb (s{s(8)))

<— Numb(s(s(s(@))})

<— Numb({s({s(s{s(B)))))
O

A procedure might be needed for a solution even if it increases the
difference between the goal and the assertions. Given, for example, the
goal

<~ Numb(s{s(s(@))))
and the assertion
Numb (@) <~
the procedure
Numb (s (s (X))) <— Numb(x)
decreases the difference, whereas the procedure
Numb (x) <— Numb(s(x))

increases it. But both procedures are necessary to solve the problem.

Loop detection by analysis of differences 187

p <— Numb(s(s(s(8)})))
b <— Numb (s(8))
» <— Numb(s(s(9)))
<— Numb({8)
O
In the preceding examples the application of a procedure which
increases differences either generates a loop or else is essential for a
solution. More often, increasing differences neither contributes to a

solution nor prevents its being found. Such 1is the case with the pair of
procedures

Numb (s (x)) <— Numb{x)
Numb(x) <— Numb(s{x)}.

If one of them unnecessarily increases differences, the other can be used
to restore them to their previous state. Indeed using one procedure after
the other simply generates the kind of loop which can be avoided in the
connection graph proof procedure by deleting links whose resolvents are
tautologies,

In all of these examples, the difference between subgoals and
assertions can be measured simply by the number of occurrences of the
function symbol s. In other cases the characterisation of differences is
more complicated.

The factorial example

The definition of factorial is a more realistic example. The non-
clausal sentence

Times(s(x),u,v}) -> [Fact(x,u} <> Fact(s(x),v}]
gives rise to two Horn clause procedures:
(1) Fact (s(x),v) <— Fact(x,u), Times(s{(x),u,v)
(2} Fact (x,u) <— Fact(s(x),v), Times(s{x),u,v)
Given the assertion
Fact(@,s(@)) <—

there is no goal for which the second procedure is necessary. However,
given the assertion

Fact (10,36288008) <—
instead, the second procedure is necessary for solving the problem

<— Fact(s(8) ,x)

188 Chapter 9: Global Problem-Solving Strategies

and the first procedure is unnecessary. Here the natural number n is
used as an abbreviation for the term

s(s(s{...(8)...)))
n times
containing n occurrences of the function symbol s.
More generally, it may be useful to have several assertions, e.g.

Fact(@,1) <—
Fact (18,3628800) <—

and, using analysis of differences, to apply the procedure which most
guickly narrows the gap between the problem and the assertions, using
(1), for example, for the problem

<— Fact(3,x)
and using (2) for

<— Fact(8,x).

Notice that the 1last example is a case of "don't care" non-

determinism;. There are several ways of finding the factorial, all of
which lead to the same result. It doesn't matter which method is chosen.

But, if backtracking is used, then it does matter (for the sake of
efficiency) that only one method is tried.

Invariant properties of procedures

The unsolvability of a problem can be detected not only by analysing
the effect of procedures on differences but also by analysing the
properties which procedures leave invariant. A problem can be recognised
as unsolvable if it can be shown that it differs from the assertions in a
property which is not affected by the procedures. A typical property of
this kind is parity.

Suppose we are given the clauses

Even(8) <—
Even(s(s(x))) <— Even{x)
Even(x) <— Even{s(s(x))}
<— Even(1l7)

By analysis of differences, the second procedure can be rejected as
useless. Used alone it only increases differences. Used together with
the other procedure it only generates loops. By analysis of invariants
the first procedure can also be rejected. It reduces a problem of a given
parity to a subproblem of the same parity. No matter hawrmany times the
procedure is used it cannot change the parity of the original problem.
Since the original problem has an odd number of occurrences of "s" and
the assertion has an even number, the procedure cannot be used to solve
the problem. Here parity can be determined by counting occurrences of the

Invariant properties of procedures 189

function symbol “s". In more realistic cases the invariant property is
more complex.

Such is the case in the following example, where the invariant
property is another form of parity. Given a sequence of six arrows (or
coins) each of which can face up or down, the problem is to transform
them from one state to another - for example, from

UuvuuDDD to uuoDDUU

There is only one action available: it 1is possible simultaneously to
change the direction of two adjacent arrows.

A simple n-tuple representation in which
State(dl, dz, d3, dd' dS' d6)
expresses that

the first arrow can have direction dy,
the second arrow can have direction dj,
and in general

the i-th arrow can have direction dj

simultaneously, is the following.

State(U0,U0,U,D,D,D) <—

<- State(y,U,D,D,U,U)
State(x,y,z,u,v,w) <= State(x'lylrzlulvrw)l OPP(XrK')r OPP(YrY')
State(x,y,z,u,v,w} <— State(x,y',z',u,v,w}, Opp(y.y'}, Opp(z,z")
State(x,y,z,u,v,w) <— State(x,y,z',u',v,w), Opp(z,z'), Opp(u,u’)
State(x,y,z,u,v,w) <— State(x,y,z,u',v',w), Opp(u,u'), Opplv,v'}
State(x,y,z,u,v,w) <— State(x,y,z,u,v',w'), Opp(v,v'}, Opp(w,w")

Opp(U,D) <—

Opp (D,U) <—

The problem is unsolvable, because, whereas the procedures leave
invariant the parity of the number of arrows in either direction, in the
assertion there is an odd number of arrows in both directions and in the
goal there is an even number, To show that the procedures leave parity
invariant it is necessary to consider the two cases: Either the two
inverted arrows have the same direction before inversion or they have
different directions. If they have the same direction, then inversion
increases the number of arrows in one direction by two and decreases the
number in the other by two, but leaves the parity the same. If they have
different directions, then inversion leaves the number of arrows in both

directions unchanged and therefore does not affect the parity. In both
cases parity is an invariant property of the procedures.

199 Chapter 9: Global Problem-Solving Strategies

The mutilated checker board problem is similar. Given a checker—board
with two opposite corners removed,

the problem is to cover it with dominoes, each one of which covers two
adjacent squares. Since adjacent squares have different colours, the
procedures leave invariant the difference between the number of uncovered
squares of different colours. The problem is unsolvable, therefore,
because in the goal state the difference 1is zero, but in the initial
state it is two.

There is an obvious relationship between proving that logic procedures
leave a property invariant and proving a property of a flowchart program
using invariants. In both cases the objective is to show that if a
property holds at the beginning of a repetitive process then it holds at
the end. This is done by showing that if it holds at the beginning of one
step of the process then it holds at the end of the step. The desired
result then holds by induction.

Exercises

1) Suppose y is a function of x in the relation F(x,y), i.e.
y =2 <~ F(x,y}, F(x,2)
where the only clause defining equality is
X = X <— .

Show how goal transformation can be used to eliminate redundancy when a
goal statement contains a pair of subgoals of the form

F(r,s) and F(r,t)

where r, s and t are terms.

2) Show that "goal transformation" can be used to justify transforming
the clause

Tower (t (x,y))} <— Block(x), Tower(y)., On(x,y)

Exercises 191

into the clause
Tower (t(X,y)) <— Tower(y), On(x,y).
What property of the On relation is needed for the transformation?

3) In Chapter 6, the precondition Diff(x,z) can be eliminated from
the definition of the action trans(x,y,z) and its use can be replaced by
that of the integrity constraint

<— Holds{on(x,x}, w)
instead. Compare the problem-solving behaviour needed for these two
alternative formulations of the plan-formation task.

4) Analyse the English sentence

S1 Reject stealing as a way of having something if you also
want to be virtuous.,

as a recommendation concerning the use of the procedure
Have (u,x) <— Steal({u,x)

applied to goal statements containing two subgoals of the form
Have(r,s) and Virtuous(r).

Can the notions of goal transformation be used to establish a logical
relationship between the sentences S1, S2 and S3?

s2 Do not steal if you want to be virtuous.
S3 Anyone who steals is not virtuous.

5) Discuss the formalisation of the following problems and the
problem-solving strategies needed to solve them intelligently.

a) Find an assignment of digits 1,2,3,...,9 to the cells of a
3 by 3 matrix such that:

row 1

row 2

row 3

(i) Exactly one digit is assigned to each cell.
(ii) No digit is assigned to more than one cell.

(ii) The three digit number in row 3 is the sum of the three

192

Chapter 9: Global Problem-Solving Strategies

digit numbers in rows 1 and 2.

(iv) If the digit i is assigned to a cell then the digit i+l is
assigned to a cell which is horizontally or vertically
adjacent.

b} Find an assignment of digits 1,2,3,...,9 to letters in the
names such that:

DONALD
+GERALD
ROBERT
(i) Exactly one digit is assigned to each letter.
(ii) No digit is assigned to more than one letter.
(iii)The 6 digit number assigned to the word "ROBERT" is the
sum of the 6 digit numbers assigned to “DONALD" and
"GERALD".

(iv) 5 is assigned to "D".

193

CHAPTER 18

Comparison of Clausal Form with Standard Form

Clausal form 1is simpler than the standard form of logic and bears
greater resemblance to other formalisms used for databases and
programming. Moreover, the resolution rule resembles conventional rules
for information processing and problem-solving more closely than does
standard form.

Although any problem can be converted from standard form to clausal
form, the standard form is often more economical and more natural than
the resulting collection of clauses. The specification of programs, in
particular, is an area in which the standard form of 1logic (or some
appropriate extension of Horn clause form) is more suitable than simple
clausal form. Moreover, the derivation of programs from specifications
can be achieved more naturally by reasoning with the standard form of
logic directly. Useful inference systems for the standard form of logic,
however, may be obtained by combining inference rules for <clausal form
with rules for converting from standard form to clausal form.

Introduction to the standard form of logic

We shall present only the informal semantics of the standard form of
logic, by associating expressions of English with expressions of the
symbolic language. Such notions as "consistency" for expressions in
standard form can be understood informally in terms of their English
language counterparts.

The standard form of logic provides explicit symbolism for the
propositional connectives "and", "or", "not", "if" and "“if and only if"
and for the quantifiers "for all™ and "“there exists". The propositional
connectives construct more complex propositions from simpler ones. The
symbol

& stands for "and"
Y stands for "or"

- stands for "not™"

-> stands for "if... then...
<—> stands for "if and only if".

" or "implies"

A clause

Ajy..eBy <= By,...,By

not containing variables, is written

194 Chapter 16: Comparison of Clausal Form with Standard Form

[By&...&B] —> [AjV...VAL]

in standard form. If n=@, the standard form omits the arrow

A1V---VAm

If m=06, the arrow becomes a negation symbol.

a[By&...&B],

In standard form the direction of the implication sign —> is opposite to
the one we have been using in clausal form. But like the inequality sign
< or > of arithmetic the direction of the implication sign is not

significant. Thus the expressions
A —> B and B <— A
are equivalent. But notice that
A ->Band A <— B

are not.

Sentences in standard form can also be constructed by means of the two

guantifiers.

The universal guantifier

ZWx stands for "for all x".

The existential quantifier

Jx stands for "there exists an x".

Example Some oysters can be crossed in love.

Clausal Form Oyster(YJ) <—
Crossed-in-Love () <

Standard form 3Ix [Oyster(x) & Crossed-in-Love (x)]

In the clausal formulation, in order to
necessary to give it a name, The
individuals to be referred to without
sentences are implicitly connected by
conjunction & can be written explicitly.

Example Every human has a mother.

refer to an individual, it is
existential quantifier allows
being named. In clausal form
"and”. In standard form the

Standard Form ‘xJy[Human(x) —> Mother (y,x)]

Clausal Form Mother (mum({x) ,x) <— Human(x)

Introduction to the standard form of logic 195

In the clausal form it is necessary to use a function symbol to name the
individual y which exists as a function of x.

Changing the order of the quantifiers changes the meaning. The
sentence

Iy’ [Human (x) —> Mother (y,x)]

states there is a single individual who is the mother of us all. The
clausal form uses a constant symbol to name the individual.

Mother (), x) < Human (x)

For the precise definition of sentence, it is necessary to define the
more general notion of formula. Formulae may contain free (unquantified)
variables, whereas sentences do not. Thus the formula

xJyLoves(x,Y)
is a sentence, but the formula

‘wxLoves (X,Y}

is not. It contains the bound (guantified) variable x and the free
variable vy.

Terms and atomic formulae are defined just as for clausal form.

An expression Z is a formula if and only if it is an atomic formula
or an expression of the form

[X & Y]

[X V Y]

[X => Y] or [Y <— X]
[X <> Y]

- X

Wv X or

Jv X

where X and Y are formulae and v is any variable.

Any formula 2z is a subformula of itself. In the first four cases
above, any subformula of X or Y is a subformula of Z; and in the last
three cases, any subformula of X is a subformula of 2.

An occurrence of a variable v in a formula Z is free (or unbound) if
it belongs to no subformula of 2% of the form v X or Jv X. If an
occurrence of v is free in X then it is bound in »w X and Jv X by the
quantifiers Wv or Jv respectively.

A formula is a sentence if and only if it contains no free occurrence
of a variable.

The definitions above permit sentences such as

196 Chapter 18: Comparison of Clausal Form with Standard Form

Ix [Oyster(x) & Jx Tasty(x)]

in which the same variable x is bound by different occurrences of a
quantifier. Such sentences create complications which are better
avoided. Consequently we shall restrict formulae Z to those which
satisfy the condition that

for every variable v which occurs in 2, either all
occurrences of v in 2 are free 1in Z or all occurrences of
v in 2 are bound by the same quantifier occurrence.

Any formula Z which violates the restriction can be transformed into an
equivalent one which satisfies it by renaming variables. This can be
done by applying the equivalences

VAL X <= v X!
Ju X <> Jv X'
where X' is obtained from X by replacing ail
occurrences of v by v and v does not occur in X.

to subformulae of Z. Any subformula can be replaced by an eguivalent one
without affecting the meaning of the formula in which it occurs.

Notice alsc that the definitions permit quantification v X or Jv X of
a variable v which does not occur in the formula X. Such gquantification
is vacuous in the sense that the resulting formula is equivalent to the
unguantified formula X. Deletion of vacuous quantifiers is justified by
the eguivalences:

YV X <> X
Jv X > X
where the variable v does not occur in X.

Several conventions can be employed to improve the readability of
formulae by reducing the number of brackets. Qutermost brackets can
always be omitted, writing A -> B, for example, rather than [A -> B].

The associativity of conjunction justifies omitting brackets when
several formulae are conjoined together. Since the formulae

A& [B&CC] and
(A & B] &« C

are equivalent, it is permissible to ignore brackets altogether, writing
A& Bs&C.

Similarly, the associativity of disjunction justifies writing

AVBYC
instead of AV [BYC] or
AV B] VC.

Brackets can be reduced further by establishing precedence rules for
the quantifiers and the propositional connectives. We shall follow the
conventions that

Introduction to the standard form of logic 197

The negation symbol = and the quantifiers 3, bind more
closely than the other symbols and conjunction & and

disjunction V bind more closely than implication -> and
eguivalence <—>.

Thus we may safely write
AVBVYCC<<DGS&EGS&F

instead of [[AV [BYC]] <~ [[D &« E] & F]}

for example.

Readability can be improved further by omitting universal quantifiers
at the beginning of sentences, writing, for example,

Grandparent {x,y) <— Parent(x,z) & Parent(z,y)
instead of ReAPoz [Grandparent (x,y) <— Parent(x,z) & Parent(z,y)]
as in clausal form. Such omission of universal guantifiers can be
performed safely only when the context makes it clear that the expression

is a sentence rather than a formula containing occurrences of free
variables.

Conversion to clausal form

Any sentence in standard form can be converted to clausal form. The
resulting set of clauses is consistent if and only if the sentence in
standard form is consistent. Thus conversion to clausal form can be used
to demonstrate the inconsistency of a set of sentences in standard form:

A set of sentences in standard form is inconsistent
if and only if the corresponding set of clauses
is inconsistent.

The rules for converting to clausal form can be expressed more simply,
to begin with, if implications and equivalences are reexpressed in terms
of negation, conjunction and disjunction by using the equivalences:

[X => Y] <= X VY

[X <> Y] <> [X = Y] & [¥Y = X] 1i.e.
[X <=> Y] <> ["XV Y] & [Y V X)
where X and Y are any formulae.

Once implications and eguivalences have been rewritten, the rest of the
conversion consists of

{1) moving negations inside the sentence past
conjunctions, disjunctions and guantifiers, until they
stand only in front of atomic formulae,

198 Chapter 18: Comparison of Clausal Form with Standard Form

(2) moving disjunctions inside the sentence past
conjunctions and quantifiers, until they connect only
atoms or negated atoms,

(3} eliminating existential quantifiers and

{4) reexpressing disjunctions
AV, VAL V "By ...VTB,
of atoms and their negations as clauses
Aj,oearBy <= Blres.sBy.

Negations can be moved in front of atoms by repeatedly applying the
following eguivalences:

X & Y] > XV oy

A{X V Y) > X & Y

a3v X —> Vv KX

v X <—> Jv X

X <> X

where X and Y are any formulae
and v is any variable,

Disjunctions can be moved inside a sentence until they connect only
atoms and their negations by using the equivalences:

XV [Y&zZ) < [XVY] & [XV2Z]

XV vy —> v [X V Y]

XV Y <> Vv [XV Y)

where the variable v does not occur in X.

The commutativity of disjunction

XVY<>yYVX

is needed to justify the similar egquivalences

[Y 8§ Z] V X <> [YV X] & {2V X]
FYVX <> Jv [Y V X]

Vv YV X —> W [Y V X]
where v does not occur in X.

The preceding equivalences are sufficient to transform any sentence
without guantifiers in standard form into an equivalent one in clausal
form. The elimination of an existential quantifier, however, produces a
sentence which is not equivalent. It introduces a constant or function
symbol in order to name an individual which is referred to only
implicitly in the original sentence. The new sentence implies, but is
not implied by, the original sentence., Nevertheless, the elimination of
the existential quantifier does not affect the consistency of the set of
sentences as a whole.

Given a conjunction (or set) of sentences S, in order to eliminate
existential gquantifiers from S it is necessary to eliminate them from
sentences of the form

Conversion to clausal form 199

YV, <. W du X
belonging to S. Such a sentence canxbe,peplaced by the new sentence

\V‘VIVV -es WY, X!

where X' is obtained from X by replacing
all free occurrences of u in X by the term
f(vys...,vy) where f is a function symbol
which does not occur in S.

If n=0 the term £(vy,...,vy) reduces to a constant symbol. Note that the
replacement is not ~an equivalence and it only applies to sentences, not
to formulae, The new conjunction (or set of sentences) is consistent (or
inconsistent) if and only if S is.

In order to transform sentences belonging to S into the correct form,
it is useful to move universal quantifiers inside conjunctions.

Vv [X & Y] <>V X VWV Y

Repeated application of the preceding rules will convert any
conjunction (or set) of sentences in standard form into a conjunction (or
set) of sentences, each of which has a form

Wop. . [AV. L VA NVABV. . VB]

which is equivalent to a clause

Als-esBy <= Bp,...,Bp.

The preceding rules express the logic of a family of algorithms for
converting from standard form to clausal form. All non-determinism; is
of the don't care variety. An efficient algorithm is obtained by always
applying the rules to an outermost propositional connective or
quantifier, replacing the formula on the left hand side of an equivalence
by the formula on the right hand side. Moreover, it 1is more convenient
in practice to leave the implication sign intact and to apply derived
eguivalences. The following derived eguivalences (see exercise 2) are
the most useful.

[X —> Y & 2] <—> [X = Y] & [X —> 2]
X VY > 2] <—> [X — 2] & [Y = 2Z]
X & °Y — 2z] —> X —> YV 2]
[X => oY V 2] <—> [X &Y —> 2]
X —> [¥Y > 2]] <= [X&Y > Z]
[{Xx => Y] = 2] <> [XV 7] & [y — 2z}

X >W Y >V [X = Y]
X—>3Jvy <= Jv [X = Y]
WY > X > Jv [Y = X]
Jv Y —> X W [Y = X))

where v does not occur in X.

In addition, generalisations of the eguivalences:

W IXVY —>32] <> [UsX->%] & [U&Y > 2]
U & [X—>Y] > 2] <> [U—>XVZ] & [Us&Y—>Z]

200 Chapter 1@: Comparison of Clausal Form with Standard Form

for example, are often useful as well. In order to apply them may
require application of the commutativity of conjunction:

X &Y <>YsX

Comparison of clausal form with standard form

Clausal form is a restricted subset of standard form. It has the
advantage that simple, efficient, and reasonably natural resolution
theorem provers have been developed for it. Standard form, however,
allows more liberal means of expression. Some kinds of sentences can be
expressed more economically and others more naturally than in clausal
form. The analysis in the next few sections, of the cases in which
standard form provides greater expressive power than clausal form,
suggests that what is needed is not full unrestricted standard form but a
limited extension of clausal form. In most cases it suffices to allow
non-atomic formulae as conditions and conclusions of implications.

By e By <= By,...sBy

It is wuseful, 1in particular, to allow conclusions A; which are
conjunctions of atoms and conditions Bj which are implications. In
addition it is useful to employ egquivalences <—> for definitions instead
of writing the two halves separately.

The ideal system of logic would combine the advantages of clausal form
with those of standard form. 1In order to do so, it would need both to
reduce to resolution for sentences already in clausal form and to
resemble the natural deduction systems of Bledsoe [1971], Brown [1977],
Bibel and Schreiber [1975), and Nevins [1974]. Such a system might
result from combining the resolution rule with the rules which convert
sentences from standard form to clausal form.

The satisfactory solution of the problem of deriving Horn clause
programs from program specifications in standard form requires such a
proof procedure. The problem has been investigated by Bibel [1976a,
1976b, 1978), Clark and Sickel [1977], and Bogger [1978a, 1978b, 1979].
Their derivation rules resemble both the rules for converting to clausal
form as well as the resolution rule which behaves as procedure
invocation., Proof procedures for the standard form of logic, which have
some of the necessary properties, have been developed by Murray (1978}
and by Manna and Waldinger [1978].

In the following sections we investigate a number of examples which
illustrate the limitations of clausal form and the inadequacy of dealing
with standard form simply by converting to clausal form and applying
resolution. At the end of the chapter we shall consider the problem of
deriving Horn clause programs from non-clausal specifications.

Conjunctive conclusions and disjunctive conditions

Standard form is more economical than clausal form when the same
conditions imply several conclusions or when the same conclusion is

Conjunctive conclusions and disjunctive conditions 201

implied by alternative conditions.

Example Everyone makes mistakes.

Standard form “ox3y [Human(x) —> Does({x,y) & Mistake({(y)]

Conversion (a) Human{x) —> Does(x, m(x)) & Mistake(m(x))
(b) “Human({x) V [Does{x, m(x}) & Mistake(m(x)})]

{(c) [-~Human(x) V Does(x, m(x))
["Human (x) V Mistake (m(x))

] &

]

Clausal form (d) Does(x, m(x)) <— Human({(x)
Mistake {(m(x)) <— Human{x)

In the clausal form, the same condition Human (x) needs to be repeated for
each separate conclusion. Notice that using the derived conversion rules
for implication, the conversion from (a) to (d) can be done in one step.

Example One person is an ancestor of another if he is a parent of
the other or he is an ancestor of an ancestor of the
other.

Standard Form Anc{x,y) <— Par(x,y} v 3z [Anc(x,z) & Anc(z,y}]
Conversion (a) Anc(x,y) v 7 [Par(x,y) Vv 3z [Anc(x,z) & Anc{(z,y)]]
(b) Anc{x,y) v [Par(x,y) & 13z [Anc(x,z) & Anc(z,y}]]

(c) [Anc(x,y) V "Par(x,y)] &
{Anc(x,y) Vv 73z [Anc(x,z) & Anc(z,y}]]

(d) (Anc(x,y) V "Par(x,y)] &
[Anc (x,y} V V2 [TAnc(x,2z) V TAnc(z,y)]]

(e) [Anc(x,y) V TPar(x,y)] &
Yz [Anc({x,y) V 7Anc(x,z) V TAnc{z,y)]

Clausal form (f) Anc{x,y)} <— Par (x,y)
Anc{x,y) <— Anc(x,z), Anc(z,y)

In the clausal form, the same conclusion needs to be repeated for each
alternative condition. The conversion from standard form is simplified
if the derived equvalences are used:

(a') [Anc(x,y) <— Par(x,y)] &
{Anc(x,y) <— 3z [Anc(x,z) & Anc(z,y}]]

(b") [Anc(x,y) < Par(x,y)] &
Y2 [Anc(x,y) <— Anc(x,z) & Anc(z,y))

(c") AnC(XIY) <— Par {X,Yy)
Anc(x,y) < Anc(x,z), Anc(z,y)

For the sake of simplicity we shall use the derived equivalences in the
rest of the chapter.

262 Chapter 18: Comparison of Clausal Form with Standard Form

Disjunctive conclusions

Standard form is both more economical and more intelligible when the
alternatives in a conclusion are conjunctions.

Example The earth is round and finite or flat and infinite.
Standard form [Round{(E) & Finite(E}] v [Flat(E) & Infinite(E)]

Conversion (a} [[Round (E) & Finite{(E)] V Flat(E)] &
[[Round (E} & Finite(E)] V Infinite(E}]

(b) [Round(E) V¥ Flat(E}] &
fFinite(E) Vv Flat(E)] &
[Round{(E} V Infinite(E)} &
[Finite(E) V Infinite(E}]

Clausal form Round(E), Flat(E) <—
Finite(E), Flat(E) <
Round (E}, Infinite(E)} <—
Finite(E), Infinite(E) <—

Only-if halves of definitions

We shall argue in the next chapter that Horn clauses often express
only the if-half of an if-and-only-if definition. The full if-and-only-
if definition can be expressed compactly in the standard form by using
the sign of equivalence <—>. 1In the c¢lausal form, the if-half and the
only-if half need to be expressed separately. The only-if half generally
expresses alternative conclusions and can be both uneconomical and
unnatural.

Example The only-if half of the if-and-only-if definition of
ancestor.

Standard form Anc(x,y) —> Par{x,y} V 3z[Anc(x,z) & Anc(z,y)]
Conversion (a) Jz [Anc{x,y) —> Par(x,y) V [Anc(x,z) & Anc{(z,y)]]

{b) anc(x,y) —> Par(x,y) V
[Anc(x, £(x,y)} & Anc{f(x,y), Y]

(c) Anc(x,y) —> [Par(x,y) V Anc(x, f(x,y)}] &
[Par (x,y) V Anc{f(x,y}, ¥}]

Clausal form Par (x,y), Anc(x, f(x,y)} <— Anc(x,y)
Par (x,y), Anc(f{x,y}, y)} < Anc(x,y)

Implications as conditions of implications

It is common for sentences of natural language to have conditions
which are themselves implications rather than simple atoms. Such
sentences can be expressed directly and naturally in standard form, but

Implications as conditions of implications 203

may be difficult to understand in clausal form.

Example
Standard form
Clausal form
Example

Standard form

Conversion

Clausal form

Example

Standard form

Clausal form

Example

Standard form

Clausal form

x2y is true if y is true whenever x is true.
True (x2y) <— [True(y) <— True(x)]

True (x23y), True(x) <—
True (xay) <— True(y)

Bob is happy if all his students like logic.
Happy (Bob} <—‘¢x [Studentof{Bob,x} —> Likes(x,logic)]

(2) 3x [Happy{Bob) <— [Studentof (Bob,x) —>
Likes (x,logic)]

(b) Happy (Bob) <— [Studentof (Bob,@) —> Likes(CD,IOQic)]

Happy (Bob) , Studentof (Bob,(®)) <
Happy (Bob) <— Likes((®),logic)

A supplier is preferred if all the parts he supplies

arrive on time.
Preferred(x) <~ Supplier(x) &
“u [Supplies(x,u) —> Arriveontime(u)]

Preferred(Xx) <— Supplier(x), Arriveontime (p{x})
Preferred(x), Supplies{x, p{x)) <— Supplier (x}

A set is well-ordered if and
subset has a least element. A set is non-empty if and
only if it has at least one element. An element of a set
is a least element if and only if it is less than or egqual
to every element of the set.

only 1if every non-empty

Wellordered(x) <~> Yz [Hasleastelmt(z) <— z€x &
Nonempty (2z)]

Nonempty (z) <> Ju u€z

Hasleastelmt(z) <—> Ju [uEz & Wv [v€z —> uxvll}

Wellordered (x),
Wellordered (x),

arb(x) € x <—

Nonempty {(arb(x)) <~

Wellordered (x) <— Hasleastelmt(arb{x})
Hasleastelmt (z) <— Wellordered(x), z£x, Nonempty(z)
Nonempty (z}) € <— u€z

select(z) € 2 <— Nonempty (z)

Hasleastelmt(z), el(z,u) € z <— u€z

Hasleastelmt(z) <— u < el(z,u), u€z

smallest (z) € z <— Hasleastelmt(z)

smallest (z) < u <— Hasleastelmt(z), u€z

204 Chapter 10: Comparison of Clausal Form with Standard Form

Derivation of programs from specifications

Programs can be expressed more naturally in logic if implications are
allowed as conditions. The definition of subset is a simple example:

Yy <—Vz [#x —> z€y]

The condition that "every element of x is an element of y" 1is neutral
aoout the manner in which the elements of x are investigated and shown to
be elements of y. In particular, it is consistent with the possibility
that all elements of x are investigated simultaneously, in parallel.
Such high-level specification is not possible in normal programming
languages. It is not even possible with Horn clauses.

Suppose that sets are represented by finite lists. Then the notions
of both membership and subset can be defined recursively by means of Horn
clauses:

zZ € z2.v <~

Z € u.v <— 2gv
nilg y <

u.vg y <~ uey, vgy

The Horn clause program is less natural and closer to the level of the
computer than the specification in standard form. It expresses details
which are left to the initiative of the theorem prover in the standard
form specification., It works, moreover, only for finite sets represented
by means of 1lists. The standard form specification, on the other hand,
works for both finite and infinite 1lists. Exercise (6b) demonstrates
this for the notion of ordered list.

The use of logic is more widely accepted as a specification language
than it is as a programming language. Methods for verifying conventional
programs relative to logic specifications are complicated therefore by
the need to relate two different languages. The methods of Floyd [(1967],
Manna [1969], Hoare [1969] and Dijkstra [1976] express specifications in
logic and relate them to programs by defining the semantics of programs
in logic.

Verification of programs is significantly easier when programs and
specifications are expressed in the same language. This is confirmed by
the results of Boyer and Moore [1975] who use LISP for both programs and
specifications, Manna and Waldinger [1977), who use LISP for programs and
LISP augmented with universally quantified implications for
specifications, and Burstall and Darlington [1977], who use recursion
equations for both programs and specifications. More recently, using the
procedural interpretation of Horn clauses, deduction strategies for
deriving logic programs from logic specifications have been developed by
Clark and Tarnlund [1977], Bibel [1976a, 1976b, 1978], Clark and Sickel
[1977], Hogger [1978a, 1978b, 1979] and Clark and Darlington {1978]. 1In
addition, Manna and Waldinger [1978] have developed an extension of
resolution for deriving LISP programs from logic specifications.

The derivation of logic programs from logic specifications has the
special characteristic that deduction is used both to run programs and to
derive programs from specifications. Programs c¢an be regarded as

Derivation of programs from specifications 2p5

computationally useful logical consequences of the specifications.

We shall illustrate the general method by deriving the Horn clause
program for subset from the standard form specification The inference
steps can be thought of as combining resolution with conversion to
clausal form, We start with the if-and-only-if specifications of the
subset and membership relations.

sl XY > Vvz [zE€x —> zey]
52 vz - {2enil] (i.e. <~ zgnil)
53 2 € u,v <~> z=u ¥ z€v

The basis of the recursive Horn clause program

[nilg y <— ___]

can be obtained directly by resolving the clausal form of S2 with the
first of the two clauses

XY, arb(x,y) € x <
%y <— arb(x,y) €y

obtained by converting S1 into clausal form,

The recursive clause of the program can be derived more naturally by
reasoning with the specifications in standard form. By matching the
underlined atoms in S1 and S3 we obtain

sS4 u.vg y <—Vvz [[z=uV z&v] > =z=yl.

It suffices, in this case, to use only the if-half of the definition of
subset, We can think of 5S4 as obtained by letting x be u.v in 851 and
then using the equivalence 53 to replace z € u.v by z=u ¥ zev. Next, we
begin to convert 54 to clausal form.

55 u.vg y <—WVvz [z=u —> zey] &
vz [zev —> zgy])

Any further conversion would result in non-Horn clauses. Fortunately the
two non-atomic conditions in S5 can be replaced by equivalent atomic
ones.

56 Vz [z=u —> z€y] <> ugy
57 vz [zev —> z€y] <> wvgy

Applying the two equivalences to S5 we obtain the rest of the program

u.vg y <—ouey, \gy

It remains to demonstrate the equivalences S6 and S7, The second one
57 is easy; it is an instance of Sl. The first equivalence is a special
case of a more general equivalence

Yz [z=u —> X] <> X!
where X' 1is obtained from X by
replacing all occurrences of z by u.

206 Chapter 10: Comparison of Clausal Form with Standard Form

which is useful in general.

The derivation of the subset program illustrates the use of inference
rules which apply directly to the standard form and which resemble both
resolution and the rules for converting from standard to clausal form.

Exercises

1) Express the following sentences in standard form and transform them
into clausal form.

a) A number is the maximum of a set of numbers if it belongs
to the set and is > all numbers which belong to the set.
(Hint: Define an auxiliary relationship Dominates(x,Y)
which holds when x > all numbers which belong to the set
of numbers y.)

b) A list of numbers is ordered if it is empty or its first
number is < all numbers in the rest of the list and the

rest of the list is ordered.

c) A number is the greatest common divisor of numbers x and y
if it divides x and y and 1is > all numbers which divide X
and vy.

2) The derived equivalences on page 199 can be justified by converting
each half of an equivalence to the same formula, by replacing subformulae
by equivalent subformulae. For example, both halves of the equivalence

X —=> {Y &2] <> [X—> Y] & [X — 2]
convert to the same formula

(AXvyY]s{dxvzl.

Derive the remaining eguivalences on page 199.

3) a) Express the following assumptions in standard form and
transform them into clausal form.

A dragon is happy if all its children can fly.

Green dragons can fly.
A dragon is green if at least one of its parents is green

and is pink otherwise.
b) Use resolution (and factoring if necessary) to show:

(i} Green dragons are happy.
(ii) Childless dragons are happy.

You will need to supply some "“obvious" missing
assumptions.

Exercises 297

c) wWhat should a pink dragon do to be happy?

4) This exercise is an extension of exercise 8 of Chapter 2. Given
data in the Supplier, Part and Supply tables, express the following
gueries in standard form. Use both the binary and n-ary representations.

a) What are the numbers of suppliers who supply all parts?

b) What are the names of suppliers who do not supply books?

c) What are the numbers of those suppliers who supply at
least all parts supplied by John?

5) a) Express the following assumption in standard form and
transform it into clausal form.

A logician is happy if all his arguments are sound.

b) Use resolution to show that the following conclusions are
implied by the assumption.

(i) A Logician is happy if everyone's arguments are sound.
(ii) A logician is happy if he doesn't argue.

6} a) Express the following assumptions in standard form and
transform them into clausal form.

(i) A sequence z is ordered if for every X, y, i and j,
x is the i-th element of z,
y is the j-th element of z and
i <3 imply x < y.

(ii) If 1 < j then u*i < u*j, for all i, j and u.

(iii)The i-th element of seguence S is 3*i for all i,

b) Use resolution to show that the sequence S is ordered.
Notice that S might have infinitely many elements.

7) Assume that the following relations are already defined:

x <y
X >y
Empty (x) the tree x contains no nodes.

Split{x,y,u,v) the tree x has root node labelled by item y,
left subtree u and right subtree v.

b4

208 Chapter 186: Comparison of Clausal Form with Standard Form

a) Express the following definition of the relation Ord(x) in
standard form:

The tree x is ordered if for every non-empty subtree z of
X

i) all items which belong to the left subtree of z are < the
item at the root of z and

ii) all items which belong to the right subtree of z are > the
item at the root of z.

You should define the following relations for this

purpose.
Subtree(z,x} z is a subtree of x
Belongs({y,x) the item y belongs to tree x.

b} Transform the definition of Ord(x) into clausal form.

8) The relationship Sl (x,y), i.e. x is a sublist of y, c¢an be
specified by:

S1(x,y) <—> Juiv3w([Append (u,x,v} & Append(v,w,y)]
Append (x,y,z) <> [x=nil & y=z] V¥
Judv3w(x=u.v & z=u.w & Append(v,y,w)]

Derive a recursive program for Sl(x,y), not involving Append, using the
following assumptions about equality if necessary:

X.¥ = U.v <—> x=u & y=v
9 Judv u.v = nil
X = x

9) The relationship Fact*{x,y,u,v) can be specified by

Fact*(x,y,u,v) <-> [Fact{x,y} => Fact(u,v)]
Fact (x,y) <—> [Zero{x) & Succ(x,y}] V¥
Ju3v[Succ(u,x} & Fact'(u,v)
& Times(x,v,y)]
Zero(@) <—
Succ(x, s(x)) <—

a) Derive a recursive program for Fact*({x,y,u,v), not
involving Fact.

b) Show that Fact{u,v} <> Fact*{@,s(@),u,v).

1p) Given the specification

Ord(x) <> VAlv[Consec{u,v,x) —> ugv]

Exercises 209

derive a Horn clause program for Ord(x}, using the following assumptions:

-~ Consec{u, v, nil)
- Consec{u, v, x.nil)
Consec(u, v, X.y) <> Consec(u,v,y} V Hz[u*x & y=v.z]

21¢

CHAPTER 11

If-and-only-if

In classical logic, definitions are expressed by means of "if-and-
only-if" (abbreviated “iff"). For example:

G* Grandparent (x,y} <—> Jz [Parent(x,z) & Parent(z,y)]

Horn clause programs and databases, however, express only the "if-halves"”
of iff-definitions:

G Grandparent (x,y) <— Parent({x,z), Parent(z,y)

We have managed to avoid the full iff-form of definitions because the if-~
halves alone are adequate for deriving all positive instances of the
relations. All variable~free assertions of the form

Grandparent(s,t) <—

which are implied by G* are already implied by G. It is not possible to
compute more factorials with the iff-definition

F* FaCt(x,y) <=> [x=0 & y:l]v
Ix'Jy' [x=x"+] & Fact({x',y') & y=x*y']

than with the if-half alone:

Fl Fact(x,y) < x=0, y=1
F2 Fact(x,y) <— x=x"+1, Fact(x',y'), y=x*y'

However, as we shall see 1in the next section, the full iff-form of
definitions is needed for proving properties of programs. It is also
needed in databases for answering gqueries involving universal quantifiers
and negation.

In the informal use of natural language, the if-form of definitions is
often employed even when the iff-definition is intended. This gives rise
to the problem of distinguishing when the missing only-if half of the
definition is intended and when it is not.

We shall argue that the problem is complicated by the fact that the
only-if halves of definitions are ambiguous.

A only if B
can be interpreted in the object language

B <— A

If-and-only-if 211

or in the meta-language
"A <— B" expresses the only condition under which A holds.

Consequently, proofs which need to appeal to the only~if halves can be
carried out either in the object 1language or in the meta-language.
Despite this difference, however, the structure of the proofs is
remarkably similar in both cases.

The need for the only-if halves of definitions

The only-if halves of definitions are needed for proving program
properties and for verifying database integrity constraints. Consider,
for example, the Horn clause program Fl-2 for computing factorials. It is
a property of the program that

The only factorial of @ is 1,
i,e., y=1 <— Fact(@,y).

To prove the property, however, reguires the only-if bhalf of the
definition of factorial as well as the property of eguality that

<— 9 = u+l.
The only-if halves of definitions are also needed for answering

gueries in logic databases. Consider, for example, the iff-definitions of
the Teaches and Professor relations:

T* Teaches(x,y) <> [x=A & y=184] YV
[x=A & y=301] V
[x=B & y=221]V
[x=C & y=185]V
[x=C & y=201]¥V
P* Professor(x) <—> x=A V x=B

Given, in addition, the clauses

Isa(194,programming) <—
Isa{221,programming} <— ,

the query

Do all professors teach programming?

WxJdy [Professor (x) —> Teaches(x,y) & Isa(y,programming)]?
can be answered positively. To answer the query, however, requires the
only-if half of the definition of the Professor relation. The object

language and meta-language proofs of the query are presented and compared
later in the chapter.

212 Chapter 11: If-and-only-if

Terms versus relations as data structures

The relationship between iff-definitions and their if-halves bears
upon the relationship between the use of terms and the use of relations
as data structures in logic programs. The use of terms in Horn clause
programs gives some of the power of the use of relations defined by means
of iff.

Consider, for example, the data depicted in the following scene:

C
B | EI

Restricted to the use of Horn clauses, the On and Clear relations have to
be defined independently:

On{A,B) < Clear (D) <—
Oon{(D,A}) <— Clear (E} <—
On(D,C) <—

The connection between the two relations can be expressed only by means
of an integrity constraint.

<— On{x,y), Clear({y)

By using iff-definitions, however, the Clear relation can be defined
in terms of the On relation.

Clear(y) <> ~23x On(x,y)

On(x,y) <> [x=A & y=B} vy
{x=D & y=A] V
[x=D & y=C] V

Notice, however, that in this formulation and the next everything is
clear except A, B and C. The Clear relation can be restricted, if
necessary, by adding an extra condition to the definition

Clear{y) <—> Block({y) & 73x On(x,y)
and appropriately defining the new predicate Block.

Iff-definitions cannot usually be expressed by means of Horn clauses.
However, some of the power of iff-definitions can be captured with Horn
clauses by using terms instead of relations as data structures. If the
data concerning the position of objects in the scene is collected in a
single term, then the Clear relation can be defined in terms of the data
about the scene. Here "On" is a predicate symbol, but "on" is a function
symbol.

Scene (on{A,B) .on{D,A}.on{D,C).nil) <—
On(x,y)} <— Scene{z), Member (on{x,y),z,T)
Clear (y) <— Scene(z), Member (on{x,y),z,F)

Terms versus relations as data structures 213

Member (x, x.y, T) <—
Member (x, nil, F) <—
Member (x, u.v, w) <— Diff(x,u), Member (x,v,w)

The term representation of the data is significantly less natural than
the relational representation. However, both the iff-definition and its
simulation by means of terms have several advantages over the simple,
Horn clause if-half of the definition. Many properties of the scene, such
as the number of objects it contains, can be determined from both the
iff-definition and the term representation but cannot be determined from
the simple if-half of the definition. Moreover, any change in the
position of objects (either by altering the iff-definition of the O©On
relation or by altering the assertion which describes the scene)
automatically implies the appropriate modification of the Clear relation.
However, if the two relations are defined independently, then alteration
of the scene is more difficult. Both the On and Clear relations have to
be changed explicitly and the new relationship between them needs to be
checked against the integrity constraint.

The unstated only-if-assumption

The statement of only the if~halves of definitions is common in
natural language, even when the full iff-definition is intended. Even
logicians, who normally insist on the explicit statement of all
assumptions, tolerate the unstated only-if assumption in the case of
recursive definitions. It is common for a logician to state only the if-
half of the definition of natural number, for example:

N1 B is a natural number.
N2 If x is a natural number then x+l1 is a natural number.

even when he intends the only-if half

N3 The only natural numbers are
those defined by statements N1-2.

as well.

Natural language, however, carries the unstated only-if assumption to
the extreme. The classical fallacy of logic 1is probably an example of
this. Suppose, for instance,

M1 Mortal (x) <— Human(x}.

1f we now assert

M2 Mortal (Bob} <—

then we may be tempted to conclude

M3 Human {Bob) <— .

But M3, although it may well be true, is not a logical consequence of the

explicitly stated assumptions M1-2, The fallacy would disappear, however,
if we could appeal to unstated assumptions - if we could assume, in

214 Chapter 11: If-and-only-if

particular, that the full iff-definition
M* Mortal (x) <> Human (x}
was intended when only the if-half was stated explicitly.

Comparing the two examples, the if-half of the definition of number
and the incomplete characterisation M1 of mortality, we are faced with
the dilemma of distinguishing when the unstated only-if assumption is
justified and when it is not, The same dilemma arises in the field of
databases where the problem is to decide whether the definition of the
data has already been closed or whether it is still open. The problem
has been investigated by Reiter [1978] who calls the assumption that the
database contains all the information there is to know the closed world
assumption and the assumption that it may not, the open world assumption.
Our proposal is to identify the closed world assumption with the
assumption that the missing only-if halves of definitions are intended
and to identify the open world assumption with the assumption that they
are not.

The problem of distinguishing between intended and unintended
assumptions disappears, of course, if all intentions are made explicit.
Explicit statement of intentions, moreover, makes it easy to mix closed
and open world assumptions in the same database, applying different
assumptions to different relations or even to different instances of the
same relation. We might decide, for example, to close the instances of
the Teaches relation which describe the courses taught by Bob, but to
leave open the ones taught by John.

Tl Teaches {Bob,x} <> x=304 V x=323 V x=1.4
T2 Teaches (John,212) <—
T3 Teaches(John,1.13) <—

It 1is curious that natural language should be so careless about
specifying whether or not only-if assumptions are intended. This may be a
consequence, in part, of the awkwardness of the iff syntax. In order to
close the definition of the courses taught by John, after adding the
assertion

T4 Teaches (John,163) <—

for example, it is necessary either to replace T2-4 by

T* Teaches (John,x} <-> x=212 V x=1.13 V x=183

or to add to T2-4 the explicit only-if half of the definition

T5 Teaches{John,x) —> x=212 V¥ x=1.13 V x=103.

Ahmore convenient syntax might be one which leaves T2-4 alone and states
that

T5%* all instances of Teaches(John,x) are defined by T2-4.

Ambiguity of only-if 215

Ambiguity of only-if

Our discussion of the relationship between iff-definitions and their
if~halves has been simplified by ignoring the ambiguity of the expression

A only if B.

In some cases we have interpreted it as a statement in the object
language

B <— A,
In other cases we have interpreted it in the meta-language

"A <~ B" expresses the only condition under which A holds.
The only-if half of the definition of natural number, which was
previously expressed in the meta-language, can also be expressed in the
object language.

Numb(x) —> x = @ v Ix'[x = x'+1 & Numb(x')]

Whether the expression "A only if B" is interpreted in the object
language or the meta-language, it has similar properties. For example,
in both cases the conclusion

B <—

is a conseguence of the assumptions

A only if B
A <— .

If "only-if" is interpreted in the object language, the conclusion
follows by one step of bottom-up reasoning. If it is interpreted in the
meta-language, it follows by reasoning about proofs:

If the only way of proving A is by proving B, and
A <— can be proved,
then B <— can be proved as well.

This example illustrates a general phenomenon: The two interpretations

of "only-if" justify similar conclusions in different, but structurally
similar, ways.

Object language and meta-language solutions

The problem of showing that all professors teach programming
Q Wx3y [Professor (x) —> Teaches(x,y) & Isa(y,programming)]
can be solved whether the only-if half of the definition P* of the

Professor relation is expressed in the object 1language or in the meta-
language.

216 Chapter 11: If-and-only-if

Suppose the only-if half of P* is expressed as a non-Horn clause
X = A, X = B < Professor(x)
in the object language. The query itself reduces to two clauses:

Ql Professor (@) <-
Q2 <~ Teaches((©),y), Isaly,programming)

Bottom-up reasoning from the assertion Q1 derives the non-Horn clause
©=na O=8«.

The two goals in Q2 can now be solved by case analysis. In the case C) =
A, the first goal in Q2 is solved by

Teaches(x,y) <— x = A, y = 104
x = x <{—

and the second goal by
Isa(104,programming) <— .
In the second case GD = B, the first goal is solved by

Teaches(x,y} <— x = B, y = 221
X = x

and the second goal by
Isa{221,programming) <— .,

Suppose, on the other hand, that the only-if half of P* is expressed
in the meta-language:

Pl Professor (x) <~ x = A
P2 Professor (x) <— x = B
P3 Pl and P2 express the only conditions under which

an individual is a member of the Professor relation.

To solve the problem, the guery Q needs to be expressed in the meta-
language as well.

Show that for every x which solves the goal

Ql* <{— Professor (x)
there is a y which solves the goals
Q2* <— Teaches(x,y), Isa(y,programming}.

Top-down reasoning from the goal Q1* derives only two solutions
x =A and x = B.

In the case x = A, the two goals in Q2* are solved by y = 104 using the
clauses

Object language and meta-language solutions 217

Teaches({x,y) <— x = A, y = 104
X = x <—
Isa(104,programming} <- .

In the case x = B, they are solved by y = 221 using the clauses

Teaches(x,y) < x =B, y = 221
X = X <—
Isa(221,programming} <— ,

Notice that the object language and meta-language proofs have similar
structure, In the meta-language proof, however, equality relates
variables to the terms to which they are bound in the components of
matching substitutions. In the object language proof, equality relates
different names for the same individual, Thus the equality symbol used
for expressing the only-if halves of definitions satisfies the axioms
El1-3 of Chapter 2, page 43. In the general case, these axioms are
extremely redundant. In this case, however, they are not even necessary.

Object language and meta-language interpretations of negation

The only-if halves of definitions are necessary to show that a
negative condition

<— not~P
holds. Depending on the interpretation of "only-if", the proof can be
carried out either at the object level or at the meta-level. Clark [1978]
has shown that for every meta-language proof of not~P obtained by a Horn
clause theorem-prover augmented with negation proved by failure, there
exists a structurally similar object language proof of not-P.

Consider the problem of showing that D is clear
<~ Clear (D)

given the if-halves of the definitions of the On and Clear relations:

Onl On{(a,B) <—
on2 On(D,n) <-
on3 on(D,C) <—
On4 Clear (y) <— nota3dx On(x,y)

In addition, the only~if half of the definition of the On relation is
necessary for a solution. However, the if-half of the definition of the
Clear relation is sufficient.

Suppose first that the only-if half of the definition is expressed in
the object language:

on5 On(x,y) > [x =A & y=B]V
[x =D &y =3A]V
[x =D &y=ClV

The sentence is more natural in the standard form than in the clausal

218 Chapter 11: If-and-only-if

form., It is also more natural to carry out the proof using standard
form, Moreover, the standard form proof 1is structurally similar to the
meta-language proof, whereas the clausal form proof is not. It will be
useful to reexpress the only-if half of the definition in the equivalent
form

not-On(x,y) <— [x #

AV y*¥ &
[x+DVy# &
DVy#+#

O w

|
1
]
where s # t is just an abbreviation for ~[s = t].
¢ < Clear (D)

<— not-3x On(x,D)

<= x not-On({x,D)
<~Vvx[[x # AVD3+B

]
[x + DV D¥A)
[x #+DV D FCl]

> DO

The last step of the proof verifies the three conditions by using the
"negative assertions”:

Oné D% B <
on7? D % A <—
On8 D % C <

The clausal form, resolution proof is left to exercise (2).

Suppose now that the only-if half of the definition is expressed in
the meta-language:

Clauses Onl-3 express the only conditions
under which the On relation holds.

The meta-level proof shows that every way of trying to solve the goal
<-On(x,D) fails. The structure of the proof, however, is similar to that
of the object level argument.

» <— Clear (D)

L <~ not-3x On(x,D)

} <— Bvery way of trying to solve <— On(x,D} fails

} <— Onl-3 fail to solve <— On({x,D)

O

The last step of the proof shows that Onl-3 fail to match On(x,D),

Object language and meta-language interpretations of negation 218

because D is different from (does not match} A, B and C. The object-level
proof, however, needs to reason about equality explicitly. Clark [1978]
shows that in general explicit axioms of equality are necessary at the
object level in order to simulate failure of the matching algorithm at
the meta-level.

Horn clauses augmented with negation interpreted as failure

The meta-language interpretation of "only-if" entails the
interpretation of negation as failure:

not-P holds
if the if-halves of definitions fail to establish P.

The language of Horn clauses augmented with negation as failure provides
a powerful extension of the language of Horn clauses alone. It is easy to
implement, efficient to use and has much of the expressive power of the
full standard form of logic. It is an important feature of all PROLOG
implementations that either they provide the negation operator explicitly
or else they provide means for defining it.

The expressive power of Horn clauses with negation 1is illustrated by
the definition of subset

Xgy<—Vziz€ex—>zE€yl,
which can be reexpressed

Xg y <— not-Jz [z € x, not-[z € y]]
x is a subset of y if no z in x fails to belong to y.

The explicit existential quantifier 3z can be eliminated and the negation
sign can be moved in front of atomic formulae if an auxiliary predicate
Nosub(x,y), which holds when x 1is not a subset of y, is employed. The
definition of subset becomes

Xg Y < not-Nosub(x,y)
Nosub({x,y) <- z € x, not-[z € y].

x is a subset of y if it cannot be shown
that it is not a subset of y.

x is not a subset of y if there is a z in x
which fails to belong to y.

A similar transformation can be applied to the definition of Clear block:

Clear (y) <— not-Covered (y)
Covered(y) <— On(x,y)

Clark's analysis of negation interpreted as failure assumes that
negations are so transformed that they stand only in front of atomic
formulae.

220 Chapter 11: If-and-only-if

Clark has shown that Horn clauses with negation interpreted as failure
do not have the full power of negation in the standard form of logic.
The simplest example of this is the sentence

P <— not-P
which implies

P <

in the standard form of logic, since

P <— not-P is equivalent to
P, P < is equivalent to
P <— .

But the attempt to solve
<— P given P <~ not-P

does not succeed because it goes into a loop when negation is interpreted
as failure.

A more complicated infinite loop arises during the attempt to solve
the goal

<— A using 1) A <— P(x)
2) A <— not-P(x)
3) P(x}) <— P(f(x))}

with negation interpreted as failure. Both procedures (1) and (2}
introduce the procedure call

<— P(x)

which neither succeeds nor fails in finite time. But in the standard form
of logic, A <— is a resolvent of (1) and (2).

These examples suggest that the deductive power of negation as failure
can be increased by adding loop detection to the resources of the Horn
clause problem—-solver. Because of the undecidability of logic [Church
1936} however, no problem-solver can recognise all situations in which a
goal is unsolvable. There 1is no best theorem-prover and no limit to the
extent to which a problem-solver can improve its ability to detect loops
and to establish negation by failure.

The recognition of failure by detecting loops in the meta-language is
eqguivalent to using proof by induction in the object language. by adding
proof by induction to the resources of the problem-solver. Proof by
induction is needed, moreover, in many cases when the only-if halves of
definitions are used to prove program properties.

Proof of program properties 221

Proof of program properties

Consider the Horn clause if-half of the definition of the Append-
relation

Al Append (nil,x,x) <—
A2 Append (x.y, 2z, X.y') <— Append(y,z,y"').

It has the property that

Append (x,nil,x) holds for all lists x.
Proof of the property reguires induction on the structure of lists. We
shall present both the object level and meta-level proofs. Both proofs
have similar structure. But the meta-level proof, because it is informal,
is easier to present first,

Suppose that A is any list, We need to show that

A3 Append(A,nil ,A) <—
can be proved using (Al) and (A2). The proof is by induction on the
structure of A, If A is nil, then there is a one-step proof of (A3) using
(Al) alone. If A is B.A', then by the induction hypothesis there is some
n-step proof of

Append{(A',nil ,A') < ,

By adding an extra step to the proof, using (A2), we obtain an n+l step
proof of

Append(x.A', nil, x.A') <—
for any x and therefore a proof of (A3) in particular.

For the object level proof, it 1is necessary to express an induction
schema for lists in the object language.

A4 F(x} <— List(x) & F(nil) & V¢vz [F(z) —> F(y.z}]

where F(x)}) is any formula containing free occurrences of only the
variable x, and F(t), for any term t, is obtained by replacing all free

occurrences of x in F by t. The object level proof can be carried out in
clausal form; but a non-clausal proof is more natural. We negate the
theorem to be proved and reason backward from the goal:

AS List (A) <~
<— Append (A,nil,A)

By A4, letting F(x) be Append(x,nil,x):

<— List(A), Append(nil,nil,nil),
YWz [Append (z,nil,z) —> Append(y.z, nil, y.z}]

By A5 and Al:

<— WYz [Append (z,nil,z) ~> Append(y.z, nil, y.z}]

222 Chapter 11: If-and-only-if

This reduces to an assertion and a subgoal:

A6 Append(A',nil,A') <—
<- Append(B.A', nil, B.A'}
A2
<~ Append{A',nil,a"')
A6

0

The method of proving properties of logic programs by means of
induction axioms expressed in the object language has been developed by
Clark and Tarnlund [1977].

The monotonicity criticism of logical conseguence

Logic has often been the subject of criticism. One of the most recent
and influential of these criticisms is that formulated by Minsky [1975]
concerning the monotonicity of logical consegquence.

Consider again the blocks world example

onl Cn (AIB) <
On2 On(D,A) <-—
on3 on({D,C} <—

Clear (y) <— not-3x On(x,y)

supplemented by the unstated only—-if half of the definition of the On
relation. These assumptions imply the conclusion

Clear{D} <— .

The monotonicity of logical consequence entails that the same conclusion
continues to hold no matter what new assumptions are added. In
particular, if we add the new assumption

On4 On(E,D} <=

the previous conclusion that D is clear still holds, even though it is
obviously inconsistent with the new information.

The critics argue that the monotonicity of 1logical consequence
contradicts common sense. Given the new assumption On(E,D) <— common
sense abandons the previous conclusion Clear(D) <— . Logic, because it
requires that the conclusion continues to hold, is unacceptable as a
model of human reasoning.

The argument 1is mistaken, in our opinion, because it oversimplifies
what is involved when a new assumption is added to a logic database. We
shall argue 1in the 1last chapter that, when a database becomes
inconsistent, consistency needs to be restored by rejecting or suitably
modifying an assumption in the database. 1In this example, either we
reject the new information or we reject or modify the only-if half of the
definition of the On relation. It is probably most natural either to
replace the original only-if assumption by the new assumption that only

The monotonicity criticism of logical consequence 223

Onl-4 define the On relation or else to abandon the only-if assumption
altogether. In either case the previous conclusion Clear (D) <— no longer
holds in the new database.

Logic avoids the monotonicity c¢riticism of logical consequence, if

proper account is taken of only-if assumptions and a realistic view is
taken of the way in which databases change in time.

Exercises

1) Use the only-if half of the definition of factorial together with
the assumption
< @ = u+l

to show that the only factorial of @ is 1.

2) Show that
not-Append(nil, a.nil, nil)
is a consequence of the iff-definition of the Append relation. Compare

the object language and meta-language proofs and identify the axioms of
equality needed for the object language proof.

3) Transform assumptions On4-8 into clausal form and use resolution to
show that
Clear (D)

i1s a consequence.

4) Show by means of resolution and factoring that
append(A,nil,A)
is implied by the iff definition of Append together with the appropriate
induction and equality axioms expresed in clausal form.
5) Using negation as failure, reformulate the definions of arch and
tower given in Chapter 4 so that the problem
<~ Arch(w)
has only two solutions

a{t(B,A), D, C) and
a(C, D, t(B,A))

w
w

Hou

224 Chapter 11: If-and-only-if

for the scene described by A4-12.

6) Given the Horn clauses

Append (nil,x,x} <—
Appned (x.y, 2, X.u) <— Append(y,z,u)
Member (x, x.y) <—
Member (x, y.z) <— Member {x,z)
show by means of induction in the meta-language that

for all x, u, v and w,
if Append(u,v,w) and Member (x,w}
then Member {(x,u) or Member (x,v).

7) a) Given the assumptions

N1 x € y <— not-Nosub(x,y)
N2 Nosub(x,y) <— z € x, not-{z € y]

a€ A <
a € B <—
b € B <~
show that AcB
interpreting negation as failure.
b} Let membership in the sets A and B be expressed by means
of Horn clauses. Discuss the circumstances under which it
can be shown that

i) AGg B

ii) ¢pcB
where there is no clause expressing membership in @

iii) agU
given x€ U <«—

iv) A ¢ A.

225

CHAPTER 12

Formalisation of Provability

The meta-language interpretation of "only-if" and its combination with
the object language can be achieved by formalising the meta-language and
amalgamating it with the object language. Such a combination of object
language and meta-language produces a system of logic which is closer to
natural language than the conventional systems which keep the two
languages distinct. In natural language, however, the combination of
object language and meta-language leads to such paradoxes as the self-
referential sentence:

This sentence is false.

We shall see that the attempt to reconstruct the paradoxes in the
amalgamated formal language leads instead to a true but unprovable
sentence:

This sentence is unprovable.

The construction and proof of unprovability are based on those in Godel's
proof of the incompleteness of formal arithmetic [Godel 1931]. 1Instead
of the incompleteness of arithmetic, however, we have the impossibility
of any attempt to completely formalise the notion of provability. The
proof of incompleteness, moreover, is simpler for provability than it is
for arithmetic.

Our purpose in combining the object language and meta-language,
however, is primarily a practical one. The amalgamated language is more
expressive and has greater problem-solving power than the object language
alone. It provides essential facilities for such applications of logic
programming as natural language understanding, database management, job
control and editing of programs,

The amalgamated language combines object language and meta-language
while preserving the normal semantics of logic. Thus all of the theory of
problem-solving, formulated in the previous chapters for the object
language alone, applies without change to the more powerful combination
of object language and meta-language.

The combination of object language and meta-language is a special case
of a more general construction. Given any two languages (i.e. systems of
logic with their associated proof procedures) it may be possible to
simulate the proof procedure of one language L; within the other Lj. The
simulation is accomplished by defining in L, the binary relationship
which holds when a conclusion can be deriveé from assumptions in Lj.
Sentences in L; need to be named by terms in L; and the provability
relation needs to be named by a bipary predicate symbol, say

226 Chapter 12: Formalisation of Provability

"Demonstrate”, and defined by means of sentences Pr in L,. Provided the
definition Pr correctly represents the provability relation of Ly,
simulation by means of Pr in L, is equivalent to direct execution of
the proof procedure of Ly- LZ’ the language in which Pr simulates Ly,
is a meta-language for the object language Lj. To serve as meta-language,
L, needs to possess sufficient expressive power. For any object language,
tﬁe language of Horn clauses is already adequate.

There are a number of cases of special interest. In the case in which
the meta-language is restricted to the Horn clause subset of logic, but
the object language encompasses the whole standard form, the meta-
language improves its own problem-solving abilities by simulating the
more powerful object 1language. In general, a simple unsophisticated
problem-solver can improve itself by using simulation to behave like a
more sophisticated one.

In the case in which the object 1language and meta-language are
identical the single language augmented by the definition Pr of its own
provability relation is an amalgamation of an object language with its
meta~language.

Correct representability

The condition of correct representability is the same in principle for
the definition cf the provability relation as it is for the definition of
the addition of natural numbers.

In order to define addition in logic¢c, it is necessary to name numbers
by means of terms. The easiest way to name the non-negative integers, for
example, is by means of a constant symbol # for =zero and a one-place
function symbol s for the successor function.

If t names the integer n
then s(t) names the integer n+l.

The following Horn clause definition correctly represents the addition
relation, named by the predicate symbol "Plus"“.

Plusl Plus{@,x,x) <—
Plus2 Plus(s(x),y,s{(z)) <— Plus(x,y,z)

Plusl-2 correctly represents the addition relation in the sense that

whenever 1, m and n are non-negative integers named by r,
s and t respectively, the relationship 1+m = n holds if-
and-only-if Plusl-2 implies Plus(r,s,t} <— .

Notice that correct representability does not reguire that

Plusl-2 implies -Plus(r,s,t) <— when 1+m = n does not
hold.

In order to define provability it is necessary to name sentences and
other expressions by means of terms, This can be accomplished in a
variety of ways and we shall not concern ourselves with the details here.

Correct representability 227

Given a representation of sentences by means of terms, a definition Pr
in a language L correctly represents the provability relation, named
"Demonstrate", og a language L,y if-and-only-if

whenever X and Y are sentences of L, named by terms X' and
Y' of L, respectlvely, conclusion 'Y can be derived from
assumptions X if-and-only-if conclusion
Demonstrate(X',Y"') can be éerlved from assumptions Pr in
L2.

Correct representability, however, does not reguire that Pr implies
“Demonstrate(X',Y') in L, when X does not imply ¥ in Lj.

Given a language L,, the construction of a definition which correctly
represents its proof procedure is not a particularly difficult matter.
Since proof procedures can be implemented by means of computer programs,
they can be implemented by means of Horn clause programs in particular.
Moreover, any Horn clause program which correctly implements a proof
procedure correctly represents its provability relation,

A simple definition of a provability relation

We shall present the top-level of a Horn c¢lause definition of the
provability relation for a Horn clause language in which assumptions are
regarded as programs and conclusions as collections of goals. In order to
increase readability, we use lower case character strings, such as

prog, goals, sub,
as variables and ones beginning with an upper case character, such as
NIL, Zeus, A,
as constants.
The first clause of the program states that

any program demonstrates the solvability of an
empty collection of goals.

The second clause, interpreted top-down, says that

to demonstrate the solvability of a collection of goals:
select a goal;

find an appropriate procedure in the program;

rename the variables in the procedure so that they are
distinct from the variables in the collection of goals;
match the selected goal with the head of the procedure;
add the body of the procedure to the rest of the goals;
apply the matching substitution to obtain a new collection
of goals; and

demonstrate that the program solves the new collection of
goals.

228 Chapter 12: Formalisation of Provability

Dl Demonstrate {(prog,goals) <— Empty (goals}

D2 Demonstrate (prog,goals) <— Select(gcals,goal,rest),
Member (procedure,prog},
Renamevars (procedure,goals,

procedure'),

Parts (procedure',head,body),
Match{goal,head,sub),
Add (body,rest,intergoals),
apply(intergoals, sub,newgoals),
Demonstrate (prog,newgoals)

To complete the definition it is necessary to define the lower-level
relations and to settle upon data structures for naming programs, goals,
collections of goals and substitutions. Rather than define these in
general, we shall present only an interface for the top-level with a
simple data structure for the problem of the fallible Greek.

We shall name an atomic formula whose predicate symbol is named P and
list of arguments is named t by the term

atom(P,t).

Bodies of procedures and collections of goals are named by lists of the
names of the atomic formulae they contain. Programs and procedures are
named by constants. The following clauses define the interface between
the top-level of the definition of Demonstrate and the data structures
for the problem of the fallible Greek.

Member (F1, F)} <—

Member (F2, F) <—

Member (F3, F) <—

Member (F4, F) <—

Parts(Fl, atom(Fallible,X.NIL), atom(Human,X.,NIL).NIL) <-—
Parts(F2, atom(Human,Turing.NIL), NIL) <—

Parts({F3, atom(Human,Socrates.NIL), NIL} <—

Parts(F4, atom{Greek,Socrates.NIL)}, NIL) <—

The top-level goal is described by the clause
<— Demonstrate(F, atom{Fallible,X.NIL}.atom(Greek,X.NIL).NIL}.

The constant symbol X names the variable x.

Direct execution versus simulation

Let Pr consist of the clauses Dl-2 together with whatever lower-
level clauses are needed to complete the definition of Demonstrate.
Suppose that Pr correctly represents the provability relation of a
language Ly and is expressed in a language L, (which may be identical to
Ll). Correct representability guarantees that direct execution in Lj and
simulation in L, are equivalent and interchangable:

Direct execution versus simulation 229

Given sentences X and Y of L; named by terms X' and Y'
respectively of Ly, direct execution of the proof
procedure of L to determine whether Y can be derived from
X in Ly is equivalent to simulation of Lj by showing that
Demonstrate(X',¥') can be derived from Pr in Lj.

The equivalence of direct execution and simulation is identical to the
reflection principles investigated by Weyhrauch [1978].

Correct representability of the provability relation means that the
object 1language and meta-language can cooperate to solve problems., A
problem in the object language can be solved by simulation in the meta-
langquage. <Conversely, a problem of the form

Demonstrate(X',¥')
in the meta-language can be solved by showing that
Y can be derived from X

in the object language. This has the advantage that direct execution is
generally more efficient than simulation in the meta-language.

Simulation in the meta-language, however, can be more powerful than
direct execution. It may be possible, in particular, to replace several
proofs of different, but similar, theorems 1in the object language by a
single proof in the meta-language. As a trivial example, all of the
problems below need to be solved separately in the object language, but
can be solved once and for all in the meta-language.

Mortal (Socrates) <— can be derived from
Human (Socrates) <— and
Mortal (x} <— Human (x)

Poisonous{ 9P) <— can be derived from
Boletus (9P) <~ and

Poisonous (X} <— Boletus(x)

Animal (Puff) <-— can be derived from
Dragon (Puff) <— and

Animal {(x) <— Dragon({x)}
In the meta-language it is possible with a single proof to show that

for any variable x, predicate symbols P and Q,
and term t of the object language,

Q) <— can be derived from
P(t) < and
Q(x) <= P(x).

The meta-language is more powerful than the object language in another
sense, The object-level proof procedure can only show that

X can be derived from Y

when both X and Y are given as input. The meta-level proof procedure,

230 Chapter 12: Formalisation of Provability

however, can solve Demonstrate goals of any pattern of input and output.

Given, for example, an appropriate definition of what constitutes an
interesting sentence, the meta-level goal statement

<— Demonstrate(X',y), Interesting(y)

can be used, in theory at least, to generate interesting consequences of
a given set of assumptions X. Moreover, by solving the two problems
cooperatively rather than sequentially, it is possible for the criteria
characterising interesting sentences to guide the generation of
consequences of X.

The goal statement
<— Demonstrate(t,Y'),

where Y' names a given consequence and t is a partially instantiated term
which names a given collection of assumptions X together with unknown
additional assumptions x, can be used to find the missing assumptions x.
The goal statement

<— Demonstrate(t,Yl'),Demonstrate(t,Yz'),...,Demonstrate(t,Ym')

moreover, can be used to find missing assumptions which together with the
given assumptions X imply all of the conclusions ¥1,¥3s.00s¥p. In the
simplest case, if the conclusions are sufficiently similar, tﬁe missing
assumptions may be an inductive generalisation of the conclusions.
Provided the proof procedure is sufficiently constrained it will avoid
generating useless assumptions such as Y &Yo&. . &Y, which trivially
imply the conclusions.

Addition and suppression of assumptions

Languages in the PLANNER family and most versions of PROLOG achieve
some of the power of the Demonstrate relation by providing facilities for
adding and suppressing statements during the course of a demonstration.
Instead of explicitly trying to solve a goal of the form

Demonstrate (X',Y")

in these languages it is necessary to

add the statements X to the program,
try to show Y, and then
suppress X afterwards.

Since assumptions <change dynamically during the course of a single
demonstration, such programs can be exceedingly dangerous.

Addition and suppression of assumptions can be accomplished more
safely by means of the Demonstrate relation. Moreover, efficiency can be
achieved by directly executing the proof procedure recursively on the
same machine or cooperatively on another machine instead of simulating it
with the definition. On the other hand, Demonstrate goals of other

Addition and suppression of assumptions 231

input-output patterns, which can not be solved by addition and
suppression of assumptions, can be solved by using the definition.
Addition and suppression of assumptions can only be used when the object
language and meta-language are the same, But, provided the meta-language
is sufficiently powerful, the Demonstrate relation can be used to connect
any two languages.

Bootstrapping

The meta-language L may differ in sophistication from the object
language Ly. If it is less sophisticated to start with, then it can use
its definition Pr of provability in L; to simulate L; and to increase
its own sophistication. This is bootstrapping: the language L5 pulling
itself up by its own bootstraps, using the definition Pr to solve
problems more intelligently than it would otherwise, acting the way it
thinks a more intelligent proof procedure would behave.

Bootstrapping can be effective even if the more sophisticated language
L, does not have an independent existence of its own. The definition, if
i% is consistent, can serve as a construction which causes the language
Ly to come into existence.

Bootstrapping, and more generally, defining an implementation of one
language within another is a common technigue in computing. An
implementation of a language is created by writing a program which
functions as a translator or interpreter for it 1in another existing
language.

The clauses Dl-2, which define the top-level of a Horn clause proof
procedure Lj can be used to bootstrap a simple top—down Horn clause proof
procedure L, which executes procedure calls segquentially in the order in
which they are are written. By means of appropriate definitions of the
rest of the program and of the procedure Select in particular, it is
possible to define a proof procedure which executes procedure calls
cooperatively. Although L, executes procedure calls sequentially, the new
proof procedure L; executes procedure calls as coroutines according to
the criteria specified in the procedure Select, By appropriate
modification of the definition, other improvements, such as loop
detection, intelligent backtracking and goal transformation, can also be
incorporated in the new proof procedure Lj. More modestly, the definition
of Demonstrate might only enhance the input syntax of L,, defining infix
notation for predicate symbols and function symbols, for example. More
ambitiously, it might define a proof procedure for a richer version of
logic, full clausal form or standard form, for example.

PROLOG systems and programs have used the bootstrapping technique
since their first implementation in 1972 in Marseille. They have been
used primarily for improving the input syntax and for coroutining. A
variety of Horn clause programs defining Horn clause provability have
also been written at Imperial College. Simple Horn clause programs
typically run about 188 times slower when simulated by wusing such
definitions than they do when executed directly. PROLOG programs have
also been written for non-Horn clause provability and by Broda for the
standard form of logic. The PROLOG compiler written in PROLOG by
Warren, Pereira, and Pereira [1977) and Colmerauer‘s [1977] interpreter

232 Chapter 12: Pormalisation of Provability

for a restricted subset of natural language can also be regarded as
applications of bootstrapping.

Combining the object language and meta-language

So far we have assumed an asymmetric relationship between the two
languages Lj and Lj. There is no reason in principle, however, why one
language should know more about its companion than the other. Both
languages might possess a definition of the other's proof procedure.
Each language could serve as the other's meta-"anguage and could simulate
its proof procedure.

There 1is no reason either why the two languages should not be
identical in all respects. It is possible therefore to have a single
language equipped with a definition Pr which is a correct
representation of its own proof procedure. Given a problem of the form

Demonstrate(X',Y')

it can use the definition to simulate itself or equivalently it can show
that

Y can be demonstrated from X

directly. Solving the problem by direct execution is equivalent to the
proof procedure calling itself recursively.

Such a relationship between object language and meta-language is
already familiar in the programming language LISP [McCarthy et al 1962].
The function of a LISP interpreter or compiler is

to evaluate an expression y in an environment x, which
defines the values of the symbols occurring in vy,
producing a result =z which is the value of y in the
environment Xx.

In functional notation this can be expressed
eval(x,y} = z,

which is like Demonstrate, except that the additional parameter z names
the output. We shall argue later that it is useful to extend Demonstrate
to a four argument relation

Demonstrate(x,y,u,2)
which holds when
given the assumptions named x,
the conclusion named y and
the control named u,
the proof procedure generates the output named z.

The function eval can be defined in LISP, like Demonstrate can be
defined in logic. In the same way that Demonstrate-goals with appropriate

Combining the object language and meta-language 233

input can be solved either by using the definition or by direct
execution, eval-function calls can be evaluated in LISP either by using
the definition of eval or by recursive invocation of the LISP evaluation
mechanism. Since LISP functions have fixed input parameters, explicit use
of the definition of eval can always be relaced by recursive invocation.
Indeed, it was a study of the analogue in logic of eval in LISP which led
the author and Ken Bowen to propose the amalgamation of object language
and meta-language presented in this chapter.

Incompleteness of the combined object and meta-language

The combination of object language and meta-language avoids the
paradoxes of self-reference in natural language. The attempt to
reconstruct them leads instead to the construction of a true but
unprovable sentence:

D -5 Demonstrate (Pr',D)

which mentions its own name D. The term Pr' names the definition Pr of
Demonstrate.

It is easy to show that, if Pr is consistent and correctly
represents the provability relation, then neither the sentence named D
nor its denial can be derived from Pr.

Consider the two cases:

(1) The sentence named D can be derived from Pr,
(2) Its denial Demonstrate(Pr',D) can be derived from Pr.

Case(l) By the assumption of correct representability, (1)
yase 'z
implies that

Demonstrate(Pr',D) can be derived from Pr. But then
both the sentence and its denial can be derived from
Pr, contradicting the assumption that Pr is
consistent.

Case{2) By the assumption of correct representability (2)
implies that

the sentence named D can be derived from Pr.

Again, both the sentence and its denial can be derived from Pr,
contradicting the assumption that Pr is consistent.

Since both cases lead to contradiction, neither the sentence
named D nor its denial can be derived from Pr.

But the proposition

The sentence named D can be derived from Pr.

234 Chapter 12: Formalisation of Provability

or equivalently (by correct representability)
Demonstrate (Pr',D)

is either true or false of the provability relation. We have just shown
(Case 1) it is not true., Therefore its denial

D -~ Demonstrate(Pr*,D)
is true, though unprovable.

The sentence named D is related to negation interpreted as failure.
Given the problem

Demonstrate (Pr',D)}

the proof procedure neither succeeds nor fails in finite time. (Finite
failure would imply that

D 1 Demonstrate(Pr',D)

could be proved from the iff-definition of Pr.) Thus the proof procedure
does not terminate in its attempt to solve the problem, and therefore its
denial

D - Demonstrate(Pr',D)

truly states that the problem cannot be solved.

The sentence named D can be constructed in a variety of ways including
the one used in Gédel's original incompleteness proof.

More comprehensive form of the Demonstrate relation

To simplify the discussion we have assumed that a proof procedure
determines a two-place relation between assumptions and conclusions. In
reality proof procedures are more complicated. They also accept control
specifications which guide the proof strategy and they return output. It
is more realistic, therefore, to regard a proof procedure as determining
a four-place relation

Demonstrate(x,y,u,z)
which holds when

given the assumptions named x,

the conclusion named y and

control named u,

the proof procedure generates the output named z.
The control parameter u might specify, for example,

(1) whether one proof method or another should be applied,

(2} whether one, all or "best" solutions are required, and
(3) whether a proof, trace of the search,

More comprehensive form of the Demonstrate relation 235

substitution for variables in the conclusion, or
simple Yes-No answer is required for the output z.

The trace of a proof procedure consists of the sequence of sentences
and other expressions generated by the proof procedure during the course
of searching for a solution. Thus the proof procedure may successfully
return as output the trace of an unsuccessful search for a solution. It
may also return a simple No-answer if it can determine that the search
space contains no solutions,

The more comprehensive form of the Demonstrate relation is useful for
obtaining and processing 1lists of all solutions. This is especially
useful in database applications to count all answers to a query or to
print the list of all answers as a table. Given a Horn clause database S
of suppliers and parts, for example, the Demonstrate relation can be used
both to formulate and answer the question

How many suppliers of stationery are located in London?

<— Demonstrate (S, atom(Supplies,X.Stationery.NIL).
atom(Location,X.London,.NIL} .NIL, all({X),z),
Count (z,w) .

Here all(X) specifies that a list of all distinct answers, consisting of
substitutions for the variable X, is required for the output z.
Count(z,w) can be defined by

Count (NIL, @) <—
Count{u.v, w} <— Count(v,w'), Plus{w',61l,w}.

Instead of counting the list of all answers, a procedure
Format (z ,w)

could rearrange the 1list 2z, inserting new page, new line and space
characters, so that the resulting 1list w, when printed, has the
appearance of a table.

Exercises

1} The top-level D1-2 of the definition of the Horn clause provability
relation can be tested for the problem of the Fallible Greek without
defining the lower-level procedures 1in full. It suffices to supply
assertions which solve the sub-problems which arise during the course of
trying to solve the top-level problem. The following assertions are
sufficient for repaming the procedures F1-4 and for finding the parts of
the resulting procedures.

Renamevars(Fl, goals, Fl') <—
Renamevars(F2, goals, F2) <—
Renamevars (F3, goals, F3) <—
Renamevars (F4, goals, F4) <—
Parts(Fl', atom(Fallible,Y), atom{Human,Y)}.NIL) <—

236 Chapter 12: Formalisation of Provability

a) Supply assertions or simple procedures for the remaining
conditions in D1-2,

b) Using the assertions and simple procedures from {(a), test
D1-2 for the problem of the Fallible Greek by using top-
down inference and backtracking to find a solution,

2) Complete the definition DI1-2 of the Demonstrate relation by
defining the lower-level procedures in full, For this purpose it is
useful to employ a different data structure for naming expressions of the
object language:

a) Predicate symbols and function symbols can be named by
constant symbols.

b) Constant symbols can be named by terms const(t) where t
names a number, e.g. @, s{8), ... etc.

c) Variables can be named by terms var(t) where t names a
number .

d) Composite terms can be named by terms of the form
term(s,t) where s names a function symbol and t names a
list of terms.

e) Atoms and lists of atoms in goal statements and procedure
bodies can be named as before.

f) Procedures can be named by terms proc(s,t} where s names
the head and t the body of the procedure.

g) Programs can be named by lists of the procedures they
contain.

h) Substitutions can be named by lists of substitution
components of the form sub(s,t) where s names a variable
and t names a term.

Notice that a simple way to rename the variables in a procedure is to

i) find T the maximum t such that var(t) occurs in the goals
and

ii) replace every occurrence of a variable var(s) in the
procedure by an occurrence of the variable var(r) where
r = s+T.

The simple definition of the Match relation

Match (exprl,expr2,sub) <— Apply(exprl,sub,expr3),
Apply (expr2,sub,expr3)

is liable to go into a loop when the two expressions do not match. A
safer definition 1is the one which employs two substitution parameters,
one for the current substitution which matches the parts of the two
expressions which have been examined so far and another for the final

Exercises 237

matching substitution.

3} Modify the definition of the Demonstrate relation, defining the
relationship

Demonstrate (prog,goals,sub)

which holds when the program solves the goals and generates a
substitution of terms for the variables occurring in the goal as a
solution.

This can be done at the top-level simply by adding extra conditions to
D2. The substitution reguired in the head of the clause can be obtained
by appropriately combining the substitution obtained by the recursive
call to the Demonstrate procedure in the body of the clause together with
the output component .of the substitution which matches the selected goal
with the head of the procedure.

4) Define the top-level of a deterministic; Horn clause interpreter
for Horn clause programs. The interpreter can be made deterministic by
explicitly managing the search through the top-down search space one
branch at a time.

Branches of a search space can be represented by lists of nodes. Each
node consists of

i) the list of goals at the node,
ii) the selected goal, and

iii) the list of untried procedures which have not yet been
applied to the goal.

To solve the initial collect of gosals, process the branch whose only
node consists of the initial goal statement, selected goal and the
appropriate list of untried procedures,

Any program successfully processes a branch whose tip contains the
empty list of goals.

To process a branch whose tip node contains a non-empty list of
untried procedures for the selected goal try to match the goal with the
head of the first untried procedure.

1) If the match fails, remove the procedure from the list of
untried procedures and process the new branch.

ii) 1If the match succeeds, remove the procedure from the list
of untried procedures, add a new tip containing the new
goal statement obtained by applying the successful
procedure, and process the new branch.

To process a branch whose tip node has an empty list of untried
procedures for its selected goal, backtrack by deleting the tip from the
branch and processing the new branch.

238 Chapter 12: Formalisation of Provability

5) Show that for any set of clauses S there exists a corresponding set
of Horn clauses S* such that S is consistent (or inconsistent) if and
only if S* is. Thus any problem which can be expressed in clausal form
can be expressed by means of Horn clauses using the correspondence *.

The correspondence can be established by showing that the provability
relation for clauses in general can be defined by means of Horn clauses.

239

CHAPTER 13

Logic, Change and Contradiction

Logic can be used to represent information and to solve problems. But
information changes and its representation needs to change accordingly.
In this chapter we consider the processes by means of which an
information system needs to change in time. The information systems
considered include not only programs and databases but also more complex
systems of the kind involved in scientific theories and computer-based
natural language understanding. We shall consider in detail the role
that contradiction plays in guiding the direction of change.

Information systems

Throughout this chapter the terminology information system, and
sometimes belief system, is used to refer to any collection of
assumptions (or beliefs) expressed in logic together with a proof
procedure and maintenance procedures, which manage the way the
information system deals with change.

Information systems include both assumptions which are explicit as
well as consequences which are implicit. In practice whether a sentence
is an implicit conseguence is a matter of degree. The accessibility of a
conseguence depends upon the complexity of finding a derivation. The more
complex the derivation, the more inaccessible its consequence. If a
derivation is too complex, its consequence 1is as inaccessible as if it
were not implied at all. Thus different information systems may entail
the same logical consequences but differ significantly in their pragmatic
value. Useful consequences may be efficiently accessible in one system
but practically inaccessible in another.

Databases can be regarded as simple information systems. A database
might change as the result of internal reorganisation or in response to
incoming data and queries. The proof procedure is used not only to answer
queries but also to assimilate new data into the database. There are
four possibilities:

The new data might already be implied by the database,
imply existing data,

be independent from it, or

inconsistent with it.

It is the last case which is most important. It includes both the case in
which new data violates integrity constraints as well as the one in which
it is an exception to a general rule.

249 Chapter 13: Logic, Change and Contradiction

Programs together with their specifications c¢an also be regarded as
information systems. A program which is inconsistent with its
specification can be made consistent by modifying either the program or
the specification. A program which is consistent with its specification
can be changed by replacing an inefficient procedure with a more
efficient one. It can also be changed by adapting it to a different
purpose.

In text comprehension, the information system consists of the reader's
understanding of the text which has been read so far. It needs to change
when new information needs to be assimilated. The new information might
be the reader's interpretation of the next sentence 1in the text or it
might be an hypothesis needed to explain information previously obtained
from the text. In both cases the new information might be one among
several alternatives. The new sentence might be ambiguous and admit
alternative interpretations or the previous information might be
explained by alternative hypotheses. If the new information is
inconsistent with the current information system an alternative to the
new information or to previously assimilated information may need to be
considered.

Scientific theories can be interpreted as information systems which
organise past experience and predict future ones. A theory may need to
change in the light of new experience or as the result of a new
hypothesis. An ambiguous experience can be reported in alternative ways,
and alternative hypotheses might explain the same phenomena. The
alternatives need to be compared by evaluating their effect on the state
of the scientific theory as a whole., If an alternative renders the theory
inconsistent then consistency can be restored by restricting or suitably
modifying any of the premises which contribute to the contradiction. This
includes both the case in which the new sentence is rejected and replaced
by an alternative as well as the one in which the new sentence is
accepted and an old one is rejected instead.

Dynamics of information system change

Both the situation in which an information system records its
interaction with the environment and the situation in which it generates
its own hypotheses result in the need to assimilate new information.
There are four possible deductive relationships between the new
information and the current information system. Each possibility suggests
different candidates for the new system.

(1) The new information can already be derived from the current
information system. The information system successfully anticipates the
new information and the new system is the same as the old one.
Assumptions which participate in the derivation can be identified and
their utility can be evaluated. More generally, assumptions can be
evaluated by assessing the extent to which they contribute to the
derivation of useful consequences. The evaluation of assumptions
according to utility can be used later to help determine which
assumptions should be abandoned or modified when a contradiction occurs.

(2) Part of the information in the current system can be derived from

the new information together with the information in the rest of the

Dynamics of information system change 241

system, The explicit assumptions of the new system consist of the new
information together with the explicit assumptions of the 0ld system
without the part that can be derived. The new system subsumes the old
one. It implies the same consequences and possibly new ones as well, The
assessed utility of the assumptions which participate in the derivations
can be increased by an amount which takes into consideration the number
of derived consequences, the complexity of the derivations and the
utility of the derived consequences themselves.

The simplest example is the one in which the new information is an
inductive generalisation of existing information. The situation in which
it is an abductive assumption [Peirce 1931] is more complicated. Suppose,
for example, that the current system already contains the information

(1) A&B&C<D
(2) A

Then the new information
D

is an abductive hypothesis. Together with (1) it implies (2). Moreover,
it also implies B and C. In order to justify 1its incorporation into the
information system, the hypothesis D may need to prove its utility., It
can do so, for example, by showing that B or C is already redundantly
contained in the existing database or by predicting them when they are
introduced as new information later on. Generation of abductive
hypotheses is similar to reasoning by means of defaults [Minsky 1975],
{Reiter 1978b]. If A is given, then D is assumed by default unless it
leads to contradiction or does not lead to sufficiently many useful
consequences.

Notice that cases (1) and (2) might both apply. Whether one case is
better than the other depends upon the overall utility of the resulting
information system.

(3) The new information is consistent with the information system but
is independent of it. The new information can neither be derived from
the current system nor be used to derive existing information. This is
potentially an undesirable situation which may lead the system to seek an
explanatory hypothesis, which together with the information in the rest
of the system implies the new information. Of course, the hypothesis
itself would alsc be independent and to justify its acceptance would have
to imply other useful consequences in addition to the one which motivated
its generation. The preceding example illustrates the situation. Suppose
the information system contains the assumption

A &BS&CK<KD

and the new information A is independent. If this leads the system to
generate the hypothesis D, then D itself is independent and there is no
net gain unless at least one of the additional conseqguences B or C can be
independently confirmed.

It is not always possible to determine in a reasonable time whether
one or other of the four deductive relationships apply. In such cases,

242 Chapter 13: Logic, Change and Contradiction

whether the new information is logically related to the existing
information system or not, it will need to be treated as independent and
added to it.

(4) The new information is inconsistent with the information system.
A contradiction can be derived when the new information 1is introduced.
The assumptions which contribute to the refutation can be identified, and
consistency can be restored by rejecting or modifying one or more of the
assumptions which lead to the contradiction. The previous record of the
utility of assumptions can be used to help determine which assumptions
should be changed.

It is this last case, in which a contradiction occurs, which is the
most important.

Restoration of consistency

Contradiction and its reconciliation play an important role in
philosophy and 1in theories of problem-solving. It is the driving force
behind change (thesis, antithesis and synthesis} in the Hegelian
dialectic and the main instrument for advancing knowledge (conjectures
and refutations [Popper 1963} and proofs and counter—examples [Lakatos
1973]) in the Popperian philosophy of science and mathematics. In
problem-solving, it is an advanced form of intelligent backtracking and
an important component of truth maintenance problem-solving systems
{Doyle 1978], [Stallman and Sussman 1977].

It is a major feature of Quine's [1953] argument against the
distinction between necessary and contingent truths that, when a
contradiction arises, consistency can be restored by rejecting or
modifying any assumption which contributes to the derivation of
contradiction. No belief is immune from possible alteration. Even the
laws of mathematics and logic, to the extent that they are included among
the assumptions of information systems, are subject to critical
assessment and change.

This does not mean that any belief can be altered as easily as any
other. Psychological attachment and even computational commitment may
vary from one belief to another. Nor 1is it pragmatically desirable to
treat different beliefs the same. Some contribute to the derivation of
useful consequences more often than others; and some participate more
often in the derivation of contradictions, It benefits the well-
functioning of the belief system as a whole, therefore, to abandon, among
the beliefs which lead to contradiction, the one which contributes least
to the derivation of useful consequences. In the longer term, if
contradictions continue and the assessed utility of beliefs changes, it
may be necessary to backtrack, reinstate a previously abandoned belief
and abandon an alternative instead.

Thus the derivation of inconsistency contributes to the search space
of alternative information systems. For each assumption which contributes
to the derivation of a contradiction there exists at least one
alternative new belief system obtained by abandoning or suitably
modifying the assumption. The space can be searched in depth-first
fashion, backtracking when a contradiction arises, or several branches

Restoration of consistency 243

can be investigated in parallel. Parallel exploration of alternatives has
the advantage that the conseguences of abandoning a belief can be
explored before a decision is made. Such parallel exploration of several
internally consistent, but mutually inconsistent, belief systems may, of
course, give an external observer the illusion of a single inconsistent
system.

The derivation of inconsistencies plays an important role in the
development of computer programs and databases. Generally, when an
inconsistency arises between a program and its specification or between
data and integrity constraints, it is the program or the data which is
rejected. Indeed, by definition, it is a main function of specifications
and integrity constraints to rule out incorrect programs and data. None
the less there are frequent occasions when it is necessary to abandon or
modify the specification or integrity constraint instead. For example,
given the conflict which arises between the integrity constraint

No vehicles are allowed in the park.

and the need for police and other emergency services to have access to
the park, it is likely that preference will be given to the police and
that the integrity constraint will have to be modified instead:

No unauthorised vehicles are allowed in the park.

Preference is also given to incoming data when it is treated as an
exception to general rules. Early versions of a university department's
timetable, for example, might be described by ambitiously general rules:

All first year lectures are held in room 144.
All lectures attended by more than
80 students are held in room 145,

Subseguent additions to the database

The first year logic lectures
are attended by 109 students.

might result in contradiction. Consistency can be restored by treating
the new data as an exception to a general rule, replacing the original
rule by a more restricted one

All first year lectures, except
logic, are held in room 144.

Notice in this last example that the assumption which has been
modified is not necessarily the one which has been least useful in the
past. What matters in general is not simply the utility of a belief but
rather the difference between its utility and that of its replacement.
Treating new data as an exception to a general rule when a contradiction
arises has the advantage of avoiding the contradiction while preserving
most of the useful consequences of the existing information system.

Contradiction also plays an important role in text comprehension, It
helps to disambiguate sentences by rejecting interpretations which are
inconsistent with the current interpretation of the text-so-far, and it
helps to reject inconsistent explanatory hypotheses. If all

244 Chapter 13: Logic, Change and Contradiction

interpretations of a new sentence lead to contradiction, the system may
attempt to restore consistency by altering a previous hypothesis or an
interpretation of a previous sentence instead.

Perhaps the classical example in which an information system needs to
cope with contradiction is the case in which the report of an empirical
observation or experiment contradicts a scientific theory. Whether it is
more beneficial to reject the report or a statement of the theory depends
on the overall effect on the information system. It is even possible that
several alternatives might lead to incomparable, equally viable, but
mutually incompatible, theories.

As Lakatos [1974] argues, in a mature theory with a history of useful
consequences it is generally more useful to reject an anomalous
conflicting report than it is to abandon the theory as a whole.

But it is almost never the case that a whole theory needs to be
abandoned anyway. A complex information system is a collection of
cooperating individual beliefs, some of which are more useful and more
firmly held than others. Propositions which reside in the central core of
a theory are more firmly held than those which are located closer to the
periphery, where rival hypotheses may coexist as mutually incompatible
alternatives. Reports of empirical observations can help to accumulate
evidence in favour of one alternative over another.

Even without restoring consistency, an inconsistent system can still
organise useful information. Although in theory inconsistent assumptions
imply any conclusion, in practice efficient proof procedures derive only
relevant conclusions with varying degrees of accessibility. Indeed, it
can be argued that practical provability, acheived by efficient
resolution-based proof procedures, satisfies all of the criteria
necessary for relevant entailment [Anderson and Belnap 1962].

Thus contradiction, far from harming an information system, helps to
indicate areas in which it can be improved. It facilitates the
development of systems by successive approximation - daring conjectures
followed by refutation and reconciliation. It favours bold, easily
falsified beliefs, which can be weakened if the need should arise, over
safe, timid beliefs, which are difficult to strenthen later on. Better to
make mistakes and to correct them than to make no progress at all.

A logic program for natural language

As a test of the theory of information systems outlined in this
chapter, a logic program for managing a natural language front-end to a
logic database has been designed by the author with Jaqueline Shane and
Karen Ritchie. A pilot version is being implemented using a theorem-
prover for the standard form of logic written by Krysia Broda.

The top-level of the program
Process({X,Y,z,X")

starting with an initial logic database x, processes a list y of natural
language 1input sentences, producing a correlated 1list z of output

A logic program for natural language 245

sentences, finishing with a new database x' at the end of the session.

Process (db, nil, nil, db) <—
Process (db, input.restin, output.restout, newdb) <—
Represents {input, logic, control),
Assimilate (db, logic, control, output, interdb},
Process (interdb, restin, restout, newdb)
Here as in the previous chapter, lower case character strings (e.g. "db",
"input", "restin") are variables.

Represents{input, logic, control) holds when the natural language input
can be interpreted as consisting of a logic
statement together with a control component.

Assimilate(db, logic, control, output, interdb} holds when assimilating
the logic statement and associated control into
the logic database results in an appropriate
output and a new intermediate database.

At the simplest level, control simply indicates whether a sentence is
a declerative statement or a question. Here «clause (1) deals with the
case that the input is a guestion. The result of attempting to answer the
guestion may or may not be a proof. (2) deals with the case that the
input is a declarative sentence already implicitly contained in the
database. In both cases, (l) and (2), assimilation of the new information
does not change the database., In the case A3, the next database consists
of the new information together with part (stay) of the existing
database. The new database implies all the data in the part (go) of the
0ld database which is no longer explicitly contained in the new database.
A4 adds the new information to the database if it cannct be derived or be
used to derive existing information. A5 deals with the case in which the
new information 1is inconsistent with the current database. The new
database results from analysing the proeof of contradiction and restoring
consistency.

Al Assimilate(db,logic,control,output,db) <— Question{control),
Demonstrate {db,logic,control,result),
ExtractOutput (result,cutput)

A2 Assimilate(db,logic,control,output,db) <— Declarative{control),
Demonstrate (db,logic,control,result},
Proof (result), IAlreadyKnowThat (output)

A3 Assimilate(db,logic,control,output,nextdb) <— Declarative(control),
db = stay v go,
nextdb = stay v {logic},
Ydata[data € go —>
Jresult{Demonstrate (nextdb,data,control,result) &
Proof (result))],
ThanksForTellingMe (cutput)

A4 Assimilate(db,logic,control,output,nextdb) <— Declarative(control),
Independent (db,logic,control),
nextdb = db U {logicl},
Acknowledge {output)

246 Chapter 13: Logic, Change and Contradiction

A5 Assimilate(db,logic,control,output,nextdb) <— Declarative(control),
incon = db U {logic},
Demonstrate {incon,[],control,cesult),
Proof (result),
AnalyseFailureRestoreConsistency{incon,result ,output,nextdb)

This is only a top-level sketch of part of the natural language
program., Important lower level procedures need to be defined and
specifications, such as A3, need to be transformed into efficient
procedures.

Our intention has been to deal with a restricted subset of natural
language suitable for untrained database users. However we do not insist
that input sentences be completely unambiguous. Certain ambiguities can
be dealt with by allowing Represents to be non-deterministic;; others,
such as those resulting from anaphora ("he®,"she","it",etc.), by adding
extra parameters to the Represents relation in order to deal with the
context of the previous natural language input.

For users interacting with a database it can be required that all
information included in the database be described explicitly. Implicit
assumptions, however, cannot be avoided in normal conversation and text
comprehension, where hypothesis generation schemes, such as frames
(Minsky 1975] and scripts [Schank 1975] are needed to fit sentences into
a coherent framework. The natural language program can be extended, in
theory at least, to accommodate the abductive generation of assumptions
by adding extra procedures. Here, in the case that the input is
independent from the existing database, clause A6 generates and adds to
the database a new assumption which together with the rest of the
database implies the new information. To be worth the effort, the new
information must be sufficiently wmore useful than the incoming
information itself,

A6 Assimilate(db,logic,control,output,nextdb) <— Declarative(control),
Independent (db,logic,control),
nextdb = db U {newassump},
Demonstrate (nextdb,logic,control,result),
Proof (result),
newassump is more useful in db than logic,
Iassume (newassump,output)

Conclusion

The theory of information systems attempts to combine the traditional
role which logic plays in epistemology and the philosophy of science with
its new role in computing. It attempts to reconcile the use of logic
without computational considerations with the use of complex, computer-
based computational systems without logical foundations. By exploiting
the computational interpretation of logic, it hopes to contribute to a
more useful communication of technigques between logic and computing.

References 247

References

Bmarel, S., [1966}, On Machine Representations of Problems of Reasoning
about Actions - the Missionaries and Cannibals Problem. Machine
Intelligence 3, Edinburgh University Press, New York, (B. Meltzer and
D. Michie, Eds.)} pp. 131-171.

Anderson, A.R., Belnap, N.D., [1962], The Pure Calculus of Entailment.
Journal of Symbolic Logic, Vol. 27, No.l, pp. 19-52.

Anderson, D.B., Hayes, P.J. [1972], An Arraignment of Theorem-proving or
the Logicians' Folly. D.C.L. Memo No.54, University of Edinburgh.

Bergman, M., Kanoui, H. [1973]), Application of Mechanical Theorem
Proving to Symbolic Calculus. Third International Symposium on
Advanced Computing Methods in Theoretical Physics, C.N.R.S.,
Marseilles, June 1973.

Bibel, W., [1976a}, Synthesis of Strategic Definitions and their Control.
Techn. Univ. Minchen, Abt. Mathem., Bericht Nr. 7618,

[1976b], A Uniform Approach to Programming. Techn. Univ. Minchen,
Abtl. Mathem., Bericht Nr. 7633.

[1978]), On Strategies for the Synthesis of Algorithms. Proc. AISB/GI
Conf. on AI, Hamburg, July 18-28, 1978,

Bledsoe, W.W., ({1971], Splittirg and Reduction Heuristics 1in Automatic
Theorem proving., Artificial Intelligence 2, pp. 55-77.

[1977], Non-resolution Theorem Proving. Artificial Intelligence, Vol
9. pp. 51-35.

Bobrow, D.G., Raphael, B., [1974], New Programming Languages for

Artificial Intelligence Research. ACM Computing Surveys, Vol, 6,
No.3. pp. 153-174.

Boyer, R.S., Moore, J.S., 1{1972], The Sharing of Structure in Theorem
Proving Programs. Machine Intelligence 7, Edinburgh University
Press, New York, (B. Meltzer and D. Michie, Eds.) pp. 101-116.

[1975], Proving Theorems about LISP Functions. J. ACM, Vol.22, No.l
pp. 129-144.

Brand, D., [1976], Analytic Resolution in Theorem Proving. Artificial
Intelligence Vol. 7. pp. 285-318.

Brough, D.B., [1979], Loop Trapping in Logic Programs, Dep. Rep. 79/9
Dep. of Computing and Control, Imperial College, London.

248 References

Brown, F.M., [1973] The use of Several Models as a Refinement of
Resolution with Sets of Horn Clauses. Department of Computational
Logic, University of Edinburgh, Memo No. 63.

{1974], SIM. Dep. of Comp. Logic Memo No. 72, Univ. of Edinburgh,

[1977), A Theorem prover for Elementary Set Theory. International
Joint Conference on Artificial Intelligence, 5,

Bruynocoghe, M., [1976], An Interpreter for Predicate Logic Programs, Part
1. Report CW 18, Applied Maths and Programming Division, Katholieke
Univ,, Leuven, Belgium.

[1977), The Inheritance of Links in a Connection Graph and its
Relation to Structure Sharing. Applied Mathematics and Programming
Division, Katholieke Universiteit, Leuven, Belgium.

(1978], Intelligent Backtracking for an Interpreter of Horn Clause
Logic Programs. Report CW 16, Applied Maths and Programming
Division, Katholieke University, Louven, Belgium, Also in Proc.
Collogium on Mathematical Logic in Programming, Hungary, Sept. 1978.

Bundy, A., [1971], There Is No Best Proof Procedure. Sigart Newsletter,
December 1971. pé6,

{19761, My Experiences with Prolog. DAI Working Paper No. 12,
University of Edinburgh.

(editor) [1978], Artificial Intelligence, Edinburgh University Press.

Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R., Palmer, M.,
[1979]), MECHO: A Program to Solve Mechanics Problems. DATI Working
Paper No. 58, Univ. of Edinburgh.

Burstall, R.M., Darlington, J., {1977], Trensformation for Developing
Recursive Programs. J. ACM Vol.24 No.l. pp. 44-67.

Chang, C.L., [1976], DEDUCE: A Deductive Query Language for Relational
Data Bases. Pattern Recognition and Artificial Intelligence (C. H.
Chen Ed.), Academic Press, New York, pp. 1@8-134.

Chang, C.L., Lee, R.C.T., [1973}, Symbolic Logic and Mechanical Theorem
Proving. Academic Press, New York.

Chomgky, N., [1957], Syntactic Structures, Mouton and Co., The Hague.

Church, A,, [1936], A Note on the Entscheidungsproblem. Journal of
Symbolic Logic, Vol.l pp. 48-41, Correction ibid., ppl@l-1@2.

Clark, K.L., [1978], Negation as Failure. Logic and Data Bases. (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York,, pp. 293-322,

Clark, K.L., Darlington, J., {1978], Algorithm Classification through
Synthesis. To appear in Computer Journal.

Clark, K.L., McKeeman, W., Sickel, S., [1978], Logic Programming Applied
to: Numerical Integration. Technical Rep. 78-8-004, Univ. of

References 249

California Santa Cruz.

Clark, K.L., Tarnlund, S-A., [1977] A First Order Theory of Data and
Programs. Proceedings IFIP 77, North Holland, pp. 939-944.

Clark, K.L., McCabe, F., [1979]), Programmers' Guide to IC-Prolog. CCD
Rep. 79/7, Imperial College, London.

Codd, E.F., [1978], A Relational Model for Large Shared Data Bases. CACM
Vol. 13, No. 6 (June 1978), pp. 377-387.

[1972], Relational Completeness of Data Base Sublanguages. Data Base
Systems (R. Rustin, Ed.), Prentice-Hall, Englewood Cliffs, N.J., pp.
65-98.

Coelho, H.,, Pereira, L., [1975], The Dialectic Development of GEOM, a
PROLOG Geometry Theorem Prover, Dept. of Art. 1Int., Univ. of
Edinburgh.

Colmerauer, A., [1973], Les systemes-Q ou un Formalisme pour Analyser et
Synthetiser des Phrases sur Ordinateur. Publication Interne No.43,
Dept. d'Informatique, Universite de Montreal.

(1977], An Interesting Natural Language Subset. Proc. Workshop on
Logic and Data Bases. Toulouse.

[1978], Metamorphosis Grammars. Natural Language Communication with
Computers, (L. Bolc, Ed.), Lecture Notes in Computer Science No. 63,
Springer-Verlag, Berlin, Heidelberg, New York. pp. 133-189.

Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P., [1973], Un Systeme
de Comunication Homme-machine en Francais. Rapport, Groupe
Intelligence Artificielle, Universite d'Aix Marseille, Luminy.

Cox, P., [1978], Locating the Source of Unification Failure. Proc. of
2nd WNational Conf. Canadian Soc. for Computational Studies of
Intelligence, Toronto, pp. 20-29,

Cox., P., Pietrzykowski, T., [1976], A Graphical Deduction System,
Department of Computer Science, University of Waterloo, Ontario,
Canada.

Dzhl, V., Sambuc, R., [1976], Un Systeme de Bases de Donnees en Logique
du Premier Ordre, en Vue de sa Consultation en Langue Naturelle.
Rapport, Groupe d' Intelligence Artificielle, Universite Marseille-
Luminy.

Darlington, J., {1975}, Application of Transformation to Program
Synthesis. Proc. IRIA Symp. on Proving and Improving Programs, Arc-—
et-Senans, France, pp. 133-144,

Darlington, J., Burstall, R.M., [1976], A System that Automaticaly
Improves Programs. Acta Informatica, Vol.6, pp. 41-68.

Darlington, J.L., {1969], Theorem Proving and Information Retrieval.
Machine Intelligence 4, (B. Meltzer and D. Michie, Eds.), American
Elsevier Co., New York.

259 References

Davies, J., [1973}, Popler 1.5 Reference Manual. T.P.U. Report No. 1,
University of Edinburgh, May 1973.

Dawson, C., Siklossy, L., [1977], The Role of Preprocessing in Problem
-solving Systems. International Joint Conference on Artificial
Intelligence, 5, pp. 465-471,

Deliyanni, A., Kowalski, R.A., [1979], Logic and Semantic Networks.
Comm. ACM. Vol. 22, No. 3, pp. 184-192..

Derkson, J., Rulifson, J.F., Wwaldinger, R.J., [1972]), QA4 Language
Applied to Robot Planning. AFIPS Fall Joint Computer Conference, pp.
1181-1192.

Dijkstra, E.W., [1976], A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey.

Doran, J.E., Michie, D., [1966], Experiments with the Graph Traverser
Program. Proc.R. Soc.A., Vol.294. pp. 235-259.

Doyle, J., [1978), Truth Maintenance Systems for Problem Solving.
TR~419, MIT AI Lab., Also IJCAI 5 pp. 247.

Earley, J., [1978), An Efficient Context-free Parsing Algorithm. CACM,
pp. 94-102.

Elcock, E.W., Foster, J.M., Gray, P.M.D., McGregor, J.J., Murray, A. M.,
[1871], ABSET, a Programming Language Based on Sets: Motivation and
Examples. Machine 1Intelligence 6, Edinburgh University Press, New
York, (B. Meltzer and D. Michie, Eds.), pp. 467-492.

Ernst, G.W., [1971], The Utility of Independent Subgoals in Theorem
Proving. Information and Control, April 1971.

Feldman, J.A., Low, J.R., Swinehart, D.C., Taylor, R.H., [1972], Recent
Developments in SAIL -~ an Algol-based Language for Artificial
Intelligence, IJCAI 5 pp. 235-246.

Fikes, R.E., Hendrix, G.G., [1975}, A Network-based Knowledge
Representation and its Natural Deduction System. SRI Memo.

Fikes, R.E., Nilsson, N.J., [(1971], STRIPS: A New Approach to the
Application of Theorem-proving to Problem Solving. Artificial
Intelligence Vol 2., pp. 189-208.

Fillmore, C.J., {1968}, The Cese for Case. Universals in Linguistic
Theory, (Bach and Harms, Eds.), Holt, Rinehart and Winston, Chicago.

Fishman, D.H., Minker, J., [1975], Pi - Representation. A Clause
Representation for Parallel Search. Artificial Intelligence, Vol. 6,
No.2, pp. 183-127.

Floyd, R.W., [1967]), Assigning Meanings to Programs. Proc. Symposia in
Applied Mathematics, Vol.19, American Maths Society, pp. 19-32.

Foster, J.M., [197@], Automatic Syntactic Analysis. Macdonald /
Elsevier.

References 251

Foster, J.M., Elcock, E.W., [1969], ABSYS 1: An Incremental Compiler for
Assertions. Machine Intelligence 4, Edinburgh University Press, New
York, (B. Meltzer and D. Michie, Eds.). pp. 423-439.

Friedman, D.P., Wise, D.S., {1978], Aspects of Applicative Programming
for parallel processing. IEEE Trans Comp. C-27 ({April 78), pp.
289-296,

Futo, I, Darvas, F., Cholnoky, E., [1977), Practical Application of an AI
Language 2. Proceedings of the Hungarian Conference on Computing,
Budapest. pp. 385-400.

Futo, I, Darvas, F., Szeredi, P., 1[1978], The Application of PROLOG to
the Development of QA and DBM Systems. Logic and Data Bases. (H.
Gallaire and J, Minker, Eds.), Plenum Press, New York, pp. 347-375.

Gallaire, H., Minker, J., (Editors), {1978), Logic and Data Bases.
Plenum Press, New York,

Gallaire, H., Minker, J., Nicholas, J.M., [1978], An Overview and
Introduction to Logic and Data Bases. Logic and Data Bases (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York 1978. PpP.
3-39.

Gelernter, H., {1963], Realization of a Geometry-Theorem Proving Machine.
Reproduced 1in Computers and Thought, (Feigenbaum and Feldman,
Eds.) ,McGraw Hill, New York. pp. 134-152,

Gilmore, P.G., [1977], Defining and Computing Many-valued Functions,.
Parallel Computers - Parallel Mathematics. (M. Feilmeier, ed.) pp.
17-23.

Godel, K., [1931], Uber Formal Unentscheidbare S#tze der Principia
Mathematica und verwandter System 1. Monatshefte flir Mathematik und
Physik 38. pp. 173-198. English translation in From Frege to Gddel:
A Sourcebook in Mathematical Logic 1879-1931. (Ed. by van
Heijenoort), Harvard University Press, Cambridge, Mass., pp. 596-616.

Golomb, S., Baumert, L., [1965], Backtrack Programming. J. ACM Vol.l2,
pp. 516-524.

Green, C.C., {1969a], Theorem Proving by Resolution as a Basis for

Question—-Answering Systems. Machine 1Intelligence 4, Edinburgh
University Press, New York, {B. Meltzer and D. Michie, Eds.) pp.
183-2095.

{1969b], Application of Theorem-Proving to Problem Solving. Proc.
Int. Joint Conf. on AI, Washington, BDPC. (D.E. Walker,and L.M.
Norton, Eds.), pp. 219-2480.

Hayes, P.J., [1973], Computation and Deduction. Proc. 2nd MFCS Symp.
Czechoslovak Academy of Sciences, pp. 185-118.

[1977), 1In Defense of Logic. International Joint Conference on
Artificial Intelligence, 5, pp. 559-565.

Henderson, P., Morris, J., [1976], A Lazy Evaluator. 3rd. Symp. on

252 References

principles of programming languages. Atlanta. pp. 95-1@3.

Hendrix, G.G., [1975]), Expanding the Utility of Semantic Networks through
Partitioning. IJCAI 4, Tiblisi, Georgia, pp. 115-121.

Herbrand, J., [1938], Recherches sur 1la Theorie de la Demonstration.
Travaux de la Societe des Sciences et des Letters de Varsovie, Classe
III, Science Mathematique et Physique, No. 33.

Hewitt, C., [1969], PLANNER: A Language for Proving Theorems in Robots.
Proc. IJCAI, Washington, D.C., pp. 295-301.

{1975], How to use what you know. Proc. IJCAI, Tbilisi, Georgia, pp.
189-198.

Hill, R., [1974], LUSH Resolution and its Completeness. DCL Memo No. 78,
University of Edinburgh, School of Artificial 1Intelligence, August
1974.

Hoare, C.A.R., [1961], Algorithm 64. CACM, Vol. 4, pp. 321.

[1969], An Axiomatic Basis for Computer Programming. CACM, Vol. 12,
No.18 pp. 576-583.

[1972}, Proof of Correctness of Data Representation. Acta
Informatica 1. pp. 271-281.

Hodges, W., [1977], Logic. Penguin Books, Middlesex, England.

Hogger, C.J., [1978a], Goal Oriented Derivation of Logic Programs. Proc.
MFCS Conf., Polish Academy of Sciences, Zakopane.

[1978b], Program Synthesis in Predicate Logic. Proc. AISB/GI Conf.
on AI, Hamburg, July, 18-20.

[1979], Derivation of Logic Programs. Ph.D. Thesis, Imperial
College.

Horn, A., [1951], ©On Sentences which are True of Direct Unions of
Algebras. Journal of Symbolic Logic, 16, pp. 14-21.

Kellogg, C., Klahr, P., Travis, L., [1978], Deductive Planning and
Pathfinding for Relational Data Bases. Logic and Data Bases, (H.
Galleire and J. Minker, Eds.)}, Plenum Press, New York, pp. 179-200.

Kowalski, R.A., [1969], Search Strategies for Theorem-proving. Machine
Intelligence 5, Edinburgh University Press, New York, (B, Meltzer and
D. Michie, Eds.), pp. 181-281.

[1972]), And-or Graphs, Theorem Proving Graphs and Bi-directional
Search. Machine Intelligence 7, Edinburgh University Press, New
York, (B. Meltzer and D, Michie, Eds.) pp. 167-194.

[1974a], A Proof Procedure Using Connection Graphs. J. ACM 22, pp.
572-595.

[1974b], Logic for Problem Solving. Memo No. 75, Dept. of

References 253

Computational Logic, University of Edinburgh.

[1974c], Predicate Logic as Programming Language. Proc. IFIP 74,
North Holland Publishing Co., Amsterdam, pp. 569-574.

[1978], Logic for Data Description. Logic and Data Bases. (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York, pp. 77-182.

[1979], Algorithm = Logic + Control. CACM, August 1979.

Kowalski, R.A., Hayes, P.J., [1968], Semantic Trees in Automatic Theorem-
proving. Machine Intelligence 4, (B. Meltzer and D. Michie, Eds.),
Edinburgh University Press, pp. 87-~161.

Kowalski, R.A., Kuehner, D., [1971], Linear Resolution with Selection
Function. Artificial Intelligence Vol 2, pp. 227-260.

Kuehner, D., [1972], Some Special Purpose Resolution Systems. Machine
Intelligence 7, Edinburgh University Press, New York, (B, Meltzer and
D. Michie, Eds.) pp. 117-128.

Lakatos, I., [1963], Proofs and Refutations. British Journal for the
Philosophy of Science,Vol. 14, pp. 1-25,128-139, 221-243, 296-342,

{1974], History of Science and its Rational Reconstructions. The
Interaction between Science and Philosophy. (Y. Elkana, E4d.)},
Humanities Press, Atlantic Heights, N.J., pp. 195-241,

Lawler, E., Wood, D. Branch and Bound Methods: A Survey. Oper. Res. Vol
14, No 4, pp. 699-719

Lee, R.C.T., Waldinger, R.J., ({1969], PROW: A Step Toward Automatic
Program Writing. Proc. IJCAI, Washington D.C.

Loveland, D.W., [1968), Mechanical Theorem Proving by Model Elimination.
JACM 15, April 1968, pp. 236-251.

[1969], A Simplified Format for the Model Elimination Procedure. J.
ACM, July 1969, pp. 349-363.

[1978), A Linear Format for Resclution. Symposium on Automatic
Demonstration, Lecture Notes in Math 125, Springer-Verlag, Berlin,
pp. 147-162.

[1972], A Unifying View of Some Linear Herbrand Procedures. JACM 19,
(April 1972). pp. 366-384,

[1978], Rutomated Theorem Proving: A Logical Basis. North Holland
Publishing Co., Amsterdam, New York and Oxford.

Loveland, D.W., Stickel, M.E., [1973], A Hole in Goal Trees: Some
Guidance from Resolution Theory. Reproduced in IEEE Trans on
Computers, C-25, April 1976, pp. 335-341.

Luckham, D., [1978], Refinement Theorems 1in Resolution Theory. Symp. on
Automatic Demonstration, Lecture Notes in Math 125, Springer-Verlag,
Berlin, pp. 163-198.

254 References

Manna, 2., [1969], The Correctness of Programs. J. Computing and System
Science, Vol. 3, pp. 119-127.

Manna, Z., Waldinger, R.J., [1975]), Knowledge and Reasoniny in Program
Synthesis. Artificial 1Intelligence Journal, Vol. 6, No.2., pp.
175-208.

[1977], The Automatic Synthesis of Systems of Recursive Programs.
Proc. IJCAI Conf. pp. 485-411.

[1978], A Framework for Deductive Programming. Computer Science
Dept, Stanford Univ, and SRI International.

Markusz, Z., [1977], How to design variants of flats using the
programming language PROLOG based on mathematical logic. Proc, IFIP
77 North Holland, Amsterdam, pp. 885-889,

Martelli, A., Montanari, U., [1977], Theorem Proving with Structure
Sharing and Efficient Unification. International Joint Conference on
Artificial Intelligence, 5, pp. 543.

McCarthy, J., [1963}, A Basis for a Mathematical Theory of Computation.
Computer Programming and Formal Systems, (P. Brafford and D.
Hirschberg, Eds.), North Holland, Amsterdam. pp. 33-78,.

[1968a], Programs with Common Sense. Semantic Information
Processing, (Minsky,M., Ed), MIT Press, Cambridge, Mass., pp.
493-418,

[1968b], Situations, Actions and Causal Laws. Semantic Information
Processing, (M. Minsky, Ed.) MIT Press, Cambridge, Mass. pPp.
419-417.

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.,
[1962], LISP Programmers Manual., MIT Press. Cambridge, Mass.

McCarthy, J., Hayes, P.J., [1969], Some Philosophical Problems from the
Standpoint of Artificial Intelligence. Machine Intelligence 4,
Edinburgh University Press, New York, (B. Meltzer and D. Michie,
Eds.), pp. 463-582,

McDermott, D., Doyle, J., [1978], Non-monotonic Logic I. AI Memo 486,
August 1978, AI Lab., MIT,

McPermott, D.V,, Sussman, G.J., [(1972), The Conniver Reference Manual.
AI Memo No.259, MIT, Project MAC.

McSkimin, J.R., Minker, J., [1977], The Use of a Semantic Network in a
Deductive Question-answering System. International Joint Conference
on Artificial Intelligence, 5, pp. 58-58.

Meltzer, B., [1966], Theorem Proving for Computers: Some Results on
Resolution and Renaming. Computing Journal 8, (January 1966), pp.
341-343.

{1972], The Impossibility of Perfect Proof Procedures. AISB European
Newsletter, Issue 15, Nov. 1973, pp. 28-29.

References 255

Michie, D., Ross, R., Shannan, G.J., [1972], G-Deduction. Machine
Intelligence 7, Edinburgh University Press, New York, (B. Meltzer and
D. Michie, Eds.) pp. 141-165.

Minker, J., [1975], Performing Inferences over Relational Data Bases.
Proceedings of 1975 ACM SIGMOD International Connference on
Management of Data, pp. 79-91.

Minker, J., Fishman, D.H., and McSkimin, J.R., [1973]}, The Q* Algorithm -
a Search Strategy for a Deductive Question—-answering system.
Artificial Intelligence, Vol 4. pp. 225-243,

Minsky, M.L., [1968], Descriptive Languages and Problem Solving.

Semantic Information Processing, (M. Minsky, Ed.}, MIT Press.
Cambridge, Mass., pp. 413-424,

[1975), A Framework for the Representation of Knowledge. The
Psychology of Computer Vision, (P. Winston, Ed.), McGraw Hill, New
York, pp. 211-288.

Moore, R.C., {1975]), Reasoning from Incomplete Knowledge in a Procedural
Deduction System. Memo A1-TR-347, Artificial Intelligence Lab., MIT.

Moss, C.D,S., [1977], A Comparison of Hoare's Axiomatic Approach to
Semantics and Plan Formation Studies. Imperial College, Dept. of
Computing and Control, M.Sc.Thesis.

[1979], A New Grammar for Algol 68, Dep. Rep. 79/6, Imperial
College, London.

Murray, N., [1978], A Proof Procedure for Non-Clausal First Order Logic.
Research Report, University of Syracuse, New York.

Mylopoulos, J., Cohen, P., Borgida, A., and Sugar, L., [1975], Semantic
Networks and the Generation of Context, 4th IJCAI, Tiblisi, Georgia.
PP. 134-142.

Nevins, A.J., [1974], A Human-Oriented Logic for Automatic Theorem
Proving. JACM, Vol 21, pp. 606-621.

Newell, a., Shaw, J.C. and Simon, H.A., [1963], Empirical Explorations
with the ULogic Theory Machine: A Case Study in Heuristics.
Reproduced in Computers and Thought, (Feigenbaum and Feldman, Eds.),
McGraw Hill, New York, pp. 189-133.

Newell, A., Simon, H., [1963], GPS, A Program that Simulates Human
Thought ., Reproduced in Computers and Thought, (Feigenbaum and
Feldmwen, Eds.), McGraw Hill, New York, pp. 279-296.

Nicholas, J.M., Gallaire, H., [1978], Data Base: Theory vs.
Interpretation. Logic and Data Bases, (H. Gallaire and J. Minker
Eds.), Plenum Press, New York, pp. 33-54.

Nicholas, J.M., Syre, J.C., {1974], Natural Question-answering and
Automatic Deduction in the System SYNTEX. Proceedings IFIP Congress
1974, North Holland, Amsterdam. pp. 595-599.

256 References

Nilsson, N.J., [19711, Problem Solving Methods in Artificial
Intelligence. McGraw Hill, New York.

Paterson, M.S., Wegman, M.N., [1976], Linear Unification. Proc. 8th
Annual ACM Symp. on Theory of Computing. pp. 181-186.

Peirce, C.S., [1931], Collected Papers of Charles Saunders Peirce.
vol.2, 1931 -1958, (C. Hartshorn et al, Eds.), Harvard University
Press, Cambridge, Mass.

Pereira, F., Warren, D.H.D., [1978}, Definite Clause Grammars Compared
with Augmented Transition Networks. Research Report, Dept. of AI,
Edinburgh.

Pereira, L.M., Monteiro, L.F., {1978], The Semantics of Parallelism and
Coroutining in Logic Programming. Colloguium on Mathematical Logic
in Programming, Salgo'tarjan, Hungary.

Pirotte, A., [1978], High Level Data Base Query Languages. Legic and
Data Bases, (H. Gallaire and J. Minker, Eds.), Plenum Press, New
York, pp. 409-436.

Pohl, I., [19768}, Heuristic Search Viewed as Pathfinding in a Graph.
Artificial Intelligence Vol.l, pp. 193-204.

[1972], Bi-directional search. Machine Intelligence 7, Edinburgh
University Press, New York, (B. Meltzer and D. Michie, Eds.), pp.
127-14@.

Pople, H., [1973], On the Mechanisation of Abductive Logic, Proc. IJCAI
3, pp. 387-419.

Popper, K.R., [(1963]), <C{onjectures and Refutations; The Growth of
Scientific Knowledge. Rouledge and Kegan Paul, London.

Pratt, V.R., [1977], The Competence/ Per formance Dichotomy in
Programming., 4th ACM SIGACT / SIGPLAN Symp. on Principles of
Programming Languages, Santa Monica, California, pp. 194-2080.

Prawitz, D., [196@¢], An Improved Proof Procedure. Theoria 26, pp.

182-139.

Quillian, M.R., {1968], Semantic Memory. Semantic Information
Processing, (Minsky, M., Ed.), MIT Press, Cambridge, Mass., pp.
227-276.

Quine, W.V.0., [1941, Revised 1965], Elementary Logic. Harper and Row,
New York.

[1953], Two Dogmas of Empiricism. In "From a Logical Point of View".
Hutchinson, London.

Quine, W.V.0., Ullian, J.S., {1978], The Web of Belief, 2nd Edition,
Random House, New York.

Raphael, B., [1971], The Frame Problem in Problem Solving Systems.
Artificial Intelligence and Heuristic Programming. (Findler, N. V.,

References 257

Meltzer, B., Eds.), Edinburgh University Press, Edinburgh, pp.
159-169,

Reboh, R., Sacerdoti, E., [1973], A Preliminary Qlisp Manual. Technical
Note 81, SRI Project 8721.

Reiter, R., [1971], Two Results on Ordering for Resolution with Merging
and Linear Format. J. ACM 18 {October 1971), pp. 630-646.

{1972], The Use of Models in Automatic Theorem Proving. Technical
Report 72-89, Dept.of Computer Science, University of British
Columbia,

{1978a2], Deductive Questioning-Answering on Relational Data Bases.
Logic and Data Bases, (H. Gallaire and J. Minker, Eds.) Plenum Press,
New York, pp. 149-177.

[1978b], On Reasoning by Default. Proc. 2nd Symp. on Theoretical
Issues in Natural Language Processing. Urbana, Illinois.

{1978¢c], ©On Closed World Data Bases. Logic and Data Bases, (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York, pp. 55-76.

Robinson, J.A., [1965a], A Machine Oriented Logic Based on the Resolution
Principle. J. ACM 12 (January 1965), pp. 23-41.

(1965b], Automatic Deduction with Hyper-Resolution. Intern. Journal
of Computer Math. 1, pp. 227-234.

[1967], A Review of Automatic Theorem-Proving. Annual Symposia in
Applied Math. XIX, Americen Math. Society, Providence, pp. 1-18.

[1968), The Generalised Resolution Principle. Machine Intelligence
3, (Dale and Michie, Eds.), Oliver and Boyd, Edinburgh 1968, pp.
77-93.

[1971], Computational Logic: The Unification Computation. Machine
Intelligence 6, Edinburgh University Press, New York, (B. Meltzer and
D. Michie, Eds.). pp. 63-72.

[1979], Logic: Form and Function. Edinburgh University Press.

Robinson, J.A., Sibert, E.E., [1978}, Logic Programming in LISP: A
Progress Report, School of Computer and Information Science,
Syracuse University.

Roussel, P., {1975], PROLOG: Manuel de Reference et d'Utilisation.
Groupe d'Intelligence Artificielle, Universite d'Aix-Marseille,
Luminy, Sept. 1975.

Rulifson, J.F., Derekson, J.A.C., Waldinger, R.J., [1973]), QA 4: B
Procedural Calculus for Intuitive Reasoning. Technical Note 73,
Artificial Intelligence Center, SRI.

Sacerdoti, E.D., [1975], The Non-linear Nature of Plans. Proc. IJCAI 4,
Tiblisi, Georgia, USSR. pp. 206-214.

258 References

[1877], A Structure for Plans and Behaviour. Elsevier North Holland,
New York.

Schank, R.C., [1973], Identification of Conceptualizations Underlying
Natural Language. Computer Models of Thought and Language.
(R.C.Schank and K. Colby, Eds.) W.H.Freeman and Co., San Francisco.
pp. 187-247.

[1975], Conceptual Information Processing. North Holland Publishing
Co., Amsterdam. American Elsevier Publishing Co., New York.

Schmidt, C.F., Sridharan, N.S., Goodson, J.L., {1978], The Plan
Recognition Problem: An Intersection of Psychology and Artificial
Intelligence. Artificial Intelligence, Vol. 11, Nos. 1,2. Aug. 1978,
pp. 45-83.

Schubert, L.K., [1976], Extending the Expressive Power of Semantic
Networks., Artificial Intelligence, Vol 7. pp. 163-198,

{1977], Inferences on Quantified Semantic Networks. Tech. Rep. NL32,
University of Texas, February 1977.

Schwartz, J., [1977], Using Annotations to Make Recursion Equations
Behave. Research Memo, Dept. of Artificial Intelligence, University
of Edinburgh.

Shapiro, 5.C., [1971]), A Net Structure for Semantic Information Storage,
Deduction and Retrieval. Proc. IJCAI, The British Computer Society,
London. pp. 512-523.

[1977]), Representing and Locating Deduction Rules in a Semantic
Network. Proc. of the Workshop on Pattern-directed Inference
Systems. ACM/SIGART Newsletter No.63. pp. 14-18.

Sickel, 5., [1976], A Search Technique for Clause Interconnectivity
Graphs. IEEE Transactions on Computers, Special Issue on Automatic
Theorem Proving, C-25, 8, August 1978. pp. 823-835.

[1978], Invertibility of Logic Programs. Technical Rep. 78-8-985,
Univ. of California, Santa Cruz.

Siekmann, J., Stephan, W., [1976], Completeness and Soundness of the
Connection Graph Proof Procedure. Interner Bericht Nr. 7/76, Inst.
fir Informatik I, Universitdt Karlsruhe.

Simmons, R.F., [1973], Semantic Networks: Their Computation and Use for
Understanding English Sentences. Computer Models of Thought and
Language, (Schank R. C., and Colby, K., Eds.), W. H. Freeman and Co.,
San Francisco, pp. 63-113.

Simmons, R.F., Chester, D., [1977], Inferences in Quantified Semantic
Networks. International Joint Conference on Artificial Intelligence,
5, p267.

Stallman, R.M., Sussman, G.J., [1977), Forward Reasoning and Dependency-—
directed Backtracking in a System for Computer-aided Circuit
Analysis. Artificial Intelligence, Vol.9, No.2, pp. 135-196.

References 259

Sussman, G.,J., [1975], A Computer Model of Skill Acquisition. American
Elsevier Publishing Co., Amsterdam.

Sussman, G.J., McDermott, D.V,, [1972a], Why Conniving is Better than
Planning. AI Memo No. 255, MIT Project Mac, April 1972.

(1972b], From PLANNER to CONNIVER - a Genetic Approach. AFIPS Fall
Joint Computer Conf. pp. 1171-1179.

Sussman, G.J., Winograd, T., Charniak, E., {1971), MICRO-PLANNER
Reference Manual. AI Memo 263a, AI Lab, MIT.

Tarnlund, S-A., (1975a], An Interpreter for the Programming Language
Predicate Logic. Proc. IJCAI, Tiblisi, pp. 621-608.

[1975b], Logic Information Processing. TRITA-IBADB 1034, Department
of Information Processing and Computer Science, The Royal Institute
of Technology and The University of Stockholm, Sweden,

{1976], A Logical Basis for Data Bases. TRITA -IBADB 1629, Dept. of
Computer Science, Royal Institute of Technology, Stockholm.

[1977]), Horn Clause Computability. BIT 17, 2, pp. 215-226.

Tate, A., [1974], INTERPLAN: A Plan Generation System that Can Deal with
Interactions between Goals. Memo MIP-R-189, Machine Intelligence
Research Unit, University of Edinburgh.

Van der Brug, G.J., Minker, J., [1975), State Space, Problem Reduction
and Theorem Proving - Some Relationships. C. ACM 18, (February
1975), pp. 1@7-115.

Van Emden, M.H., [1976], Verification Conditions as Representations for
Programs. Proc. Third Int. Col., on Automata, Languages and
Programming, Edinburgh University Press. pp. 99-119.

{1977], Programming in Resolution Logic. Machine Intelligence 8, pp.
266-299.

{1978], Computation and Deductive Information Retrieval. Formal
Description of Programming Concepts, (E. Neuhold, Ed4d.), North
Holland, pp. 421-448.

Van Emden, M.H., Kowalski, R.A., [1976], The Semantics of Predicate Logic
as a Programming Language. J. ACM, Vol 23, No 4, pp. 733-742.

Waldinger, R., [1977], Achieving Several Goals Simultaneously. Machine
Intelligence 8, {(Elcock, E. W., Michie, D, Eds.), Ellis Horwood Ltd.
and John Wiley. pp. 94-136.

Warren, D.H.D., [1974], WARPLAN: A System for Generating Plans. DCL Memo
76, Dept. of Artificial Intelligence, University of Edinburgh.

[1976], Generating Conditiconal Plans and Programs. Proc. AISB Summer
Conference, Edinburgh. pp. 344-354.

[1977a), Implementing Prolog. Res. Rep. 39, 46. Dept. of A.I., Univ,

260 References

of Edinburgh.

[1977b], Logic Programming and compiler writing. Research Rep. 44,
Dep. of A.I., Univ. of Edinburgh.

Warren, D.H.D., Pereira, L.M., Pereira, F., [1977], PROLOG- The Language
and its Implementation Compared with LISP. Proc. Symp. on AI and
Programming Languages, SIGPLAN Notices, Vol. 12, No.8, and SIGART
Newsletters No, 64, August 1977. pp. 169-115.

Welham, R., [1976], Geometry Problem Solving. DAI Research Report No.l4.
University of Edinburgh.

Weyhrauch, P., (1978], Prolegomena. to a Theory of Formal Reasoning.
Report AIM-315, Computer Science Department, Stanford University.

Winograd, T., [1972], Understanding Natural Language. Academic Press.

[1975], Frame Representation and the Declarative-procedural
Controversy. Representation and Understanding, (Bobrow and Collins,
Eds.), Academic Press.

Winston, P.H., [1977], Artificial Intelligence. Addison-Wesley, Reading,
Mass.

wWong, H.K.T., Mylopoulos, J., [1977], Two Views of Data Semantics: A
Survey of Data Models in Artificial Intelligence and Database
Management. INFOR, Vol. 15, No.3

Woods, W.A., [1975], What's in a 1link - Foundations for Semantic
Networks. Representation and Understanding, (D. Bobrow and A.
Collins, Eds.), Academic Press, New York. pp. 35-582.

Yates, R., Raphael, B., Hart, T., [1970], Resolution Graphs. Artificial
Intelligence 1, (Winter 1978), pp. 257-289.

Zloof, M.M., [1975], CQuery-by-Example. Proceedings AFIPS 1975 NCC, Vol
44, AFIPS Press, Montvale, N, J., pp. 431-348.

2loof, M.M., de Long, S.P., [1977], The System for Business Automation
(SBA): Programming Language. CACM Vol 206, No. 6 (June 1977), pp.
385-396.

Index

262 Index

abductive hypothesisz4l
accessibility of consequences239
actionsl33

active clausel70

added statementsl34

addition of assumptions23@
addition of surrogate subgoalsl79, 181
admissible pairs problemllé
algorithml@2, 125

alpha-beta95

alternative conditions2@l
ambiguity23, 218

ambiquity of only-if215
analogyl#4

analysis49
case structure34

analysis of differencesl79, 185
analysis of invariantsl88
analytic resolution7l

and-or tree?5, 85
extended8B

Andersonz44

answer extraction42
antecedent theoreml28
aprlicetion of procedure8s

application of substitutionl5, 76

Index
arch recognition preblem96, 185, 121
argumenté
arrayll2
arrow inversion problemld4, 189
arrow notationl@dl, 148, 156, 179
artificial intelligence75, 128
assertion29, 85
assignmentl46, 157
assimilation of informationl85, 245
associativity of conjunctionl96
associativity of disjunctionl96
assumption8
atomé
atomic formula2, 6
atomic sentencel
axiom

framel3s
state spacel3?

backtracking62, 96, 112, 113, 136, 176
intelligentl1l4

belief system239

Belnap244

Bergman4l, 111, 125

bi-directional problem-solving99, 101

bi-directional reasoningl56

bi-directional searchl63

Bibell26, 129, 177, 200, 204

binary predicate symbol22

263

264

binary relationship33

binary representation34, 133, 145

binary treelf8, 132
Bledsoeiv, 71, 180, 184, 284
blocks world probleml33, 146
bootstrapping23l

bot tom-up?

bottom-up derivation68
bottom-up executionll8, 123
bottom-up inference69
bottom-up parsing49
bottom-up refutation53

bound variablel95

Boyerl56, 264
branch-and-bound85

Brand71

breadth-first search6l, 84
Brough95

Brown71l, 177, 208
Bruynoogheiii, 99, 174
bundle of arcs85

Bundyiii, 41, 166

Burstalll22, 127, 179, 284

calculationl2

calculus
relational39

call by needll?7

Index

cancellation system of Colmerauerl??

Index
case analysisl54, 216
case structure analysis34
Changiv
Charniak128
Chomsky57
Church22@
Clarkiii, 126, 127, 136, 206, 204, 217, 219,
clausal formS
clause2, 5
deletion ofl64
empty88
empty set ofl64
Hornlé
non-Hornl7, 147
non-restrictive relative24
restrictive relative24
self-resolvingl?3
closed world assumption2l4
co-operating sequential processll?
Codd37, 39, 168, 123, 129
Coelho4l

Colmeraueriii, 4@, 41, 57, 99, 187, 231
cancellation systeml?7?7

common instance76
commutativity of disjunction20e

completeness63, 66, 71
of connection graph proof procedurel?6

complier-writing4l

component
of substitution7@

composite termsé
computetionl@g?7, 189, 129

computer-aided design4l

222

265

266 Index
conceptual analysis of actions46
conclusionl, 5

conditionl, 5
selection ofé63

conjunctionl97
connhection graph95, 119, 122

connection graph proof procedure7l, 182, 163
completenessl76

connectives4
propositionall93

CONNIVER99, 128

cons27, 168

consequent theoreml28
consistencyl5, 164, 183, 193
constant symbolZz, 6
consumer-producerl2é
context-free grammar57, 94
context-sensitive grammar57
control componentl25, 127
control languagel2?
controlled deductionl29
conversion to clausal forml97
coroutinel}l?, 127, 181
coroutinesll?

correct representability226
correcthess7l

Cox99

Dahl40, 41

Index
Darlingtond4d, 122, 126, 127, 179, 184, 224
Darvasdl, 145
data flowll?
data structuresl®7, 113, 122, 212
recursiveld?
separation ofl2l
databasel7, 168, 128, 239
departmentaldl
relational3?7, 123
database formalismsl24
database gueryl28
Daviesl28
Dawsonl83
default reasoning24l
defined relationsl37
definition of factoriall8?, 21¢, 211
definition of natural number2l3
definition of subsetl?77, 2064, 219
definitions2l®
deleted statementsl34
deletion of clausesl6d
deletion of redundant subgoalsl?79, 188
deletion of vacuous gquantifiersl96
Deliyanni32, 113
deLongl25
Demonstrate relation227
denial3
departmental databasedl

dependent subgoals9l, 93

267

268 Index
depth-first searchél, 84, 96, 177
derivation

bottom-up68

top-down67
derivation of inconsistency242
derivation of programsl93
derived equivalenceslS9
Diff relation43, 136
Dijkstrall4, 224

direct execution226, 228

discourse
universe ofl2, 14

disjunctionl97

disjunctive conclusionsz@2
disjunctive solutionsl57
documentationlz2

don't cere non-determinism(l1l2, 188
don't know non-determinismyl13
Doran?5

DoyleS9, 242

drug anelysisd4l, 145

duplicate subgoal%4, 99

Earley94, 119

Earley parsing procedure94, 119
efficiencyl26, 128

Ehrenfeucht - Rabin Theoreml6é
eight-queens probleml3l

elimination of existential quantifiersl96

Index 269
empty clause6, 15, 88
empty set of clausesl5, 164
equalityll, 42, 211

equivalencel%6, 197
derivedl99

equivalence of programsl2d, 126
evaluation function84

exception to general rules243
exclusive interpretation of “or"16

execution
bottom-upll8, 123

exhaustive search strategyé6, 177
existence25, 27

existential quantifiersl94
elimination of198

expressionlS, 70

extended and-or tree8B

extended semantic network33

factorial definitionl®, 118, 12¢, 187, 218, 211
factoring7l, 94, 159

failure
negation asl36, 137

fallacy of logic2l3

falsityl4

farmer, wolf, goat and cabbage problemlg4
fault diagnosisl28

Feldmanl28

Fibonacci numberll8, 178

270 Index
Fikesl33

Fillmore34

Fishmanll3

Floyd2e4

formalisation of provability225

formulal9s
atomic2

Foster49

frame axioml38
frame probleml33
frames246

free variablel95
Friedmanll?

functionll3, 127
evaluation84

function symbol2, 6, 26, 96, 195
cons27?
infix109

functional notation42

Futo4l, 145

G-deduction?l

game playing95

Gelernter?75, 183

general law39, 125

General Problem Solver?75, 179

geometry
use of diagramsl83

Geometry Theorem Proving Machine?5, 183
geometry theorem-proving4l

gosl state?5

Indev 271

goal statement88
goal transformationl?79
goals as generalised solutionslB4
GBdel225
grammar

context-freeS7, 94

context-sensitive57
graph representation of a search space79
Graph Traverser75

Greend4®, 136, 158

guarded commandll4

Hayesl27, 129, 136
Hendersonll?
Hendrix32
Herbrandiii
heuristic search84
Hewittl®, 99, 128, 129, 133, 183
Hill71

Hoarel®7, 120, 204
Hodgesii

Hoggerl26, 20¢, 204
Holds relationl36
Hornlé

Horn clauselé
problem-solving interpretation of8%

human memory31

hyper~resolution7l

if-and-only-if31, 136, 137, 219

272 Index
implication3, 9, 28, 29, 197
inclusive interpretation of "or"lé6
incompleteness of formal arithmetic2z5
incompleteness of the formalisation of provability233
inconsistency9, 14, 197
independent subgoals89
individual?
induction schemaz2l
inductive generalisation24l
inference
bottom-up69
top-down67
inference rulesé60
inference system
completeness of7l
correctness of71
infinite searché64
infix function symboll@9
infix notation22, 1@9
information retrievalls4
information system239
inheritance of 1inksl74
initial state75
input89, 108, 123
input component8%
input parameterll?

instancel3, 15, 7@
common78

instantiationl5

Index

integration
symbolic4l

integrity constraintd@, 124, 191, 211, 243
intelligent backtracking98, 114, 242
inter—connectivity graph resolution7l
interfacing proceduresl2?2

interpretation$, 12

invariants
analysis of188

iterationll2, 118, 119

Kahnll?

Kanouidl, 111, 125
Kellogg49, 177
key38

Klahr4@, 177

Kowalskiv, 32, 71, 75, 85, $5, 187, 113, 129,

Kuehner?71, 7%

Lakatos242, 244
LawlerB5
laws125
learningl@3
Leeiv, 158

LemmaS4
negativeS4

linear resolution?l

1inkl75

LISP107, 199, 123, 127, 204, 232
list1d9, 112

273

274 Index
logic
propositionall5l
standard forml27, 152, 193
logic componentl25
logic programil@?
Logic Theorist75
logical implication9
loop9%4, 174, 185, 228
loop detectionl85s
Lovelandiii, iv, 71, 75, 94, 169, 182

Luckham71

macro-processingl22, 137, 169
maintenance procedure239
Mannal27, 200, 204
Markusz4l

Martelli6®

matching54

matching procedureB8
matching substitution76, 8%
mathematical programmingl8l
McCabeiii, 127

McCarthyl@3, 187, 136, 232
McDermott99, 128
McSkimin4d, 183, 184
meaning4, B8

mechanics problems4l

Meltzerl4B, 147, 166

Index 275

memory
human31

merit ordering85

meta-languaged44, 135, 136, 211, 215, 226
Michie7l, 75

MICROPLANNER128

middle-out reasoningl37, 158, 169
mini-max85

Minker4@, 75, 113, 183, 184
Minskyl@3, 222, 241, 246

model elimination7l, 94

modus ponens54

modus tollens56

monotonicity criticism222
Montanariéd

MoorelS5®, 161, 284

Morrisll?

Mosslll, 144, 158

most general substitution54, 59
most general unifier76

Murray<269

mutilated checker board probleml9¢

n-ary representation34
name of an individuall9%4
natural deduction systems288

natural language3l, 129, 218, 213, 225, 233, 244

276 Index
negation28, 197, 217
negation as failurel3é, 137, 217, 234
negative goals and assertionsld?
negative lemma94
network

extended semantic33

semantic3l
Nevins299
Newell?75, 179
Nicolas4#
Nilssoniii, 75, 85, 133
non-determinismlll, 176

don't carel88

don't knowl88
non-determinism;111, 113
non-determinismy114
non-Horn clausel?, 147
non-restrictive relative clause24
notation

functionald?2

infix22

prefix22
object languaged4d4, 218, 215, 226
omission of universal quantifiersl97
only-if31
only-if halves of definitions282
open world zesumption2l4
operators?5
or

exclusive interpretationlé
inclusive interpretationlé

ordered linear reolution7l

organic compounds
synthesis ofl44

output89, 188, 189
output componentB88, 89

output parameterll®

palindrome72

paradox of self-reference225, 233

parallel executionl2é
parallel searchll3
parallelismllé
parameter
inputll#®
outputll®
parent clauseld$
parityl9
parse tree5#
parsing problem49, 123, 168
partial outputlp9, 120
Patersoné@

path-finding?5, 77, 85

path-finding problemlf2, 114, 139

path-finding search strategies83

Peirce24l
Pereiraiii, 41, 187, 231
Pietrzykowski99

Pirotte39

Index

plan-formationd4l, 133, 181, 183, 191

278 Index
PLANNER1@, 99, 128, 129, 133, 138, 230
Pohl108

Pople?75

POPLER128

Popper242

postconditionsl34

pragmaticsl2@

Prattl129

Prawitziii, 68

precedence relation
among function symbolsl89
among guantifiers and connectivesl%6

preconditionsl34
predicate2

predicate symbol3, 6
binary22
renaming ofl48, 147
unary22

prefix notation22

primitive relationgl3?

principle of eager consideration$3
principle of procrastination93

problem
admissible pairsllé
arch recognition%6, 121
arrow inversionld4, 189
blocks worldl33, 146
farmer, wolf, goat and cabbagel4
framel33
mutilated checker boardl9@
parsingl23
path-findingl@2, 114, 128, 130
plan~formationl33
sortinglls, 12@
state-spacel33
symbolic integrationl25
water containers?5, 81, 138, 146

Index
B-queensl3l

problem-reduction?5, 85
search strategies for95

problem-solving75
global strategiesl79

problem-solving by examplel@4

problem-solving interpretation of Horn clauses56, 63, 88
problem-solving method88

procedural interpretationld?

procedure85, 88, 187

procedure bodyl@7

procedure invocationl®?7

procedure namel@?

procrastination
principle o0f93

programl2, 187

program correctnessl2é
program derivation284
program designl2l, 125
program equivalencel2®, 126

program propertiesdg, 211
proof of229

program provingl?79, 194

program semantics2@4

program specificationl24, 144, 200
program terminationl?9

program transformationl22, 126, 179

2886 Index
program verification2@4
PROLOG41, 99, 187, 189, 125, 127, 145, 219

pPronoun
relative24

proofl

proof by induction22l

proof procedureé6®d
connection graph7l, 182
trace235

proof theory7l

property2

propositional connectivesl93

propositional logicl5l

provability
formalisation o0f225

pseudo~1ink173, 175, 185

purity principlel64

Q-system57
Qr4128
QLISP128
quantifiersl93

existentiall9%4
universall94

query
languages39

query-by-example3$, 125
question-answering4fé, 41
Quillian34

Quineii, 242

Rabinlé6

Index 281

Rebohl28
recursionll®
recursion equationsl2?7, 179, 264
recursion theoryl23
recursive data structuresl@?
recursive definition213
redundancy71, $9, 113, 139, 143, 145, 167
reflection principle22%
refutation56, 67

bottom-up53

top-down55
refutation proceduretd
Reiter7l, 214, 241
rejection of inconsistent goal statementsl?9, 182
rejection of subgoals contradicted by an examplel?79
relation2, 12, 122, 212

Diffl136

Holdsl36
relational calculus39, 42

relational database37, 123

relationshipl
binary33

relative pronoun24

renaming of predicate symbolsi4d, 147
renaming of variablesl49, 196

representation
binary34
n-ary34

resolution7l, 137, 147
analytic7l
inter~connectivity graph7l
linear7l
ordered linear?7l
structure-sharing implementationl59

282 Index

resolventl49

restoration of consistency242

restrictive relative clause24

rewriting systems57

Robinsoniii, iv, 66, 71, 137, 147, 159, 164, 174, 183
Rousseliii, 41, 99, 187

Rulifsoniz8

Sacerdotil2g, 133, 145

SAIL128

Sambuc4@, 41

Schank34, 46, 246

Schmidt98

Schreiber2@®

Schubert32

Schwarz127, 129

scientific theory24¢

script246

search
breadth-first6l, 84
depth-first6l, 84, 96
heuristic84
infinite64

search spaceé6d
graph representation of79

search strategy6é, 113
exhaustive66, 177
for path-finding83
for problem-reduction spaces$5

selection strategyé67

self-referential sentence225

Index
self-resolving clausel?3

semantic network3l, 162, 113, 183, 184
extended33

semantics8, 71, 144, 151, 193
semantics of programs204

sentencel95
atomicl

separation of data structuresl2l
separation of logic from controll2s
seguential searchll2

Shapiro32

Shaw?75, 179

Sibertl183

Sickel7l, 126, 177, 200, 204
Siekmannl77

Siklossyl83

Simmons34

Simon75, 179

SIMULAL17

simulation225, 228
SL-resolution7l, 95

solution
disjunctivel5?

sorting problemll5, 120
soundness?1

specification languagel2®, 284
specification of programsl93
splitting89

Stallman99, 242

283

284 Index
standard form of logic29, 127, 152, 193
conversion to clausal forml97

semanticsl93
stateB4, 95
goal?5s
initial?75
state space axioml37
state space probleml33
Stephanl?7
Stickel75
strategy
for subgoal selection93
last-in-first—outé8
searché@
selection6?
STRIPS133, 134, 137, 138
structure-sharing implementation of resolutionl5®
subformulal9s
subgoalSs
subgoal selection strategy92

subset
definition of177, 219

substitutionld, 15, 70
application ofl5, 7@

matching76, 89
most general54, 59

substitution componentl5, 78
subsumptionl&2

successor7

surrogate constraintlgl
Sussman%8, 99, 128, 242
symbol

conetant2, 6
function2, 6, 26

Index
predicated, 6
symbolic integrationdl, 125
syntax5, 8
synthesis4$
synthesis of organic compoundsl44
Syredd

Szeredidl, 145

tables37

Tarnlundl26, 2064, 222
Tatel4s

tautologyl74, 187

termsé, 1907, 122, 212
composite6

text comprehension24g@
timesharingl@3, 116

top-down?7

top~down derivation6?
top-down inference6?

top-down parallel refutation5é
top-down parsing4$

top-down refutationS55

trace of a proof procedure235
transitivity25, 189

Travis4e, 177

tree
and-or75, 85

tree-representation of search spaces79

285

286 Index
triangle49, 57

truthl4, 152

truth maintenance242

types23, 24

unary predicate symbol22
undecidability of logic22@
unification7@

unification algorithméd

unifier
most general?d

universal quantifier194
universe of discoursel2, 14
unstated only-if assumption2l3

utility240

Van der Brug75

Van Emden39, 120

variable2, 6, 23

variant4, 66, 67
verification of programszg4

vocabularyl8

Waldingerl27, 145, 158, 200, 204

Warreniii, 41, 107, 144, 231

water containers problem?5, 81, 84, 132, 146
Wegmanb@

Welham4l

Weyhrauch229

Winogradl28, 129

Index
Winstoniii
Wisell?7

Wood#85

Zloof39, 125

287

	Chapter0
	Chapter1
	Chapter10
	Chapter11
	Chapter12
	Chapter13
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Chapter7
	Chapter8
	Chapter9
	References
	Index

