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Orca is a concurrent and parallel garbage collector for actor programs, which does not require any stop-the-
world steps, or synchronisation mechanisms, and which has been designed to support zero-copy message
passing and sharing of mutable data. Orca is part of the runtime of the actor-based language Pony. Pony’s
runtime was co-designed with the Pony language. This co-design allowed us to exploit certain language
properties in order to optimise performance of garbage collection. Namely, Orca relies on the absence of race
conditions in order to avoid read/write barriers, and it leverages actor message passing for synchronisation
among actors. This paper describes Pony, its type system, and the Orca garbage collection algorithm. An
evaluation of the performance of Orca suggests that it is fast and scalable for idiomatic workloads.
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1 INTRODUCTION
Pony is an object-oriented programming language designed from the ground up to support low-
latency, highly concurrent applications written in the actor model of computation [Hewitt et al.
1973]. The impetus for a new language comes from the authors’ experience with the requirements
of financial applications, namely a need for i) scalable concurrency, from tens to thousands of
concurrent components; ii) performance approaching that of low-level languages; and iii) ease
of development and rapid prototyping. Alternatives such as Erlang and Java were considered but
performance was felt to be inadequate for the former, and pauses due to garbage collection were a
stumbling block for adoption of the latter.
This paper introduces Orca, Pony’s concurrent garbage collection algorithm. Orca stands for

Ownership and Reference Counting-based Garbage Collection in the Actor World. It was co-
designed with the language’s type system to allow actors to share mutable objects and to reclaim
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memory without any form of synchronisation between actors. Orca’s core design principle is
to allow each individual actor to collect the objects it allocated without having to wait on, or
synchronise with, other actors running in parallel. The approach has its roots in Henriksson’s [1998]
work on real-time memory management where a collector thread was scheduled during slack time,
i.e. the portions of a system’s schedule during which no high-priority task is running. In actor
systems, there is a different notion of slack time: once an actor is done processing a message, it will
idle until the next message comes along. Due to the asynchronous nature of actor computation it
may be possible for the collector to process multiple actors in parallel without impacting overall
application throughput. Garbage collection becomes part of each actor’s behaviour and can be
properly accounted and scheduled by the scheduler.
In a purely functional actor language such as Erlang [Armstrong 2007], it would be trivial to

implement a collector such as ours. When data structures are immutable (i.e. cannot be changed),
an implementation can simply copy all data exchanged in messages between actors. This ensures
that each actor is the root of a disjoint partition of the system’s heap. Isolated partitions can be
garbage collected in parallel without need for synchronisation. One of the early decisions in the
design of Pony was to support mutable data structures and, for efficiency reasons, to implement
zero-copy message passing. Mutability introduce challenges in a highly concurrent system. The
Pony type system enforces a key property: it ensures that programs are data race-free. Thus, while
actors can exchange mutable objects in messages, and these objects are not copied, the type system
makes sure that at most one actor at a time is able to update any given object. This allows the
garbage collector to inspect objects without synchronisation or barriers.

To reclaim an object shared with other actors, the creating actor must be informed when those
actors have dropped all references to the shared object. Orca tracks dependencies by deferred
reference counts. The meaning of a count larger than one is that at least one, but possibly more,
actors other than the object’s creator may hold a reference to that object (or has a yet-to-be-
processed message containing the object in its mailbox). Orca piggy-backs reference updates on
actor message passing, and messages are traced by the collector. This tracing comes at a run-time
cost, but does not require synchronisation due to Pony’s type system. Also, because reference
counts model actors’ interest in an object, as opposed to actual reference topologies, cycles are
not an issue in Orca, unlike traditional reference counting (c.f. Section 5.6). Figure 1 illustrates the
fine-grained interleaving of Orca and actor operations running on a four-core system.
This paper describes the implementation of Orca and presents the features of Pony that are

needed by the collector. While our presentation is Pony-centric, we believe that Orca could be
used in other concurrent languages. In fact, one experiment that is underway is to reuse the Pony
run-time system and in particularOrca to implement the Encore programming language [Brandauer
et al. 2015], which uses a different type system [Castegren and Wrigstad. 2016] and shared-memory
features like futures. Moreover, while the implementation presented here is limited to a single node,
we have designed Orca so that it can be extended to a distributed setting.

This paper makes the following contributions:
(1) We present a runtime — language co-design that shows how actor isolation can be leveraged

for concurrent garbage collectionwithout deep copying of messages and how race-free tracing
on message send/receives can replace write barriers. (Language is discussed in Section 3. GC
in Section 4.)

(2) We describe Orca in terms of C-like pseudocode, give the intuitions for the design, sketch
invariants which underpin Orca’s soundness, and show how these invariants can be used to
reason about optimisations to the protocol. (Section 5.)

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 72. Publication date: October 2017.



Orca: GC and Type System Co-Design for Actor Languages 72:3

Co
re

s 1
–4

1e8 CPU cycles

Fig. 1. CPU usage during part of a small Pony program. To the right is a blow-up of a small window. Y-axis:
the different core IDs. X-axis the application’s timeline (from 5002 × 105 to 5010 × 105 CPU cycles). The
diagram demonstrates that while a core may be garbage collecting, other cores may also be garbage collecting,
or executing behaviours, or tracing upon send/receipt. (Behaviour=mutator)

(3) We evaluate our implementation on a number of small benchmarks including both small
idiomatic programs and synthetic benchmarks aimed at exploring the scalability limits of
Orca. (Section 6.)

Our evaluation has the limitations one would expect from a new language, namely few benchmarks.
Commercial users of Pony, in the financial sector, are not able to share their code. We are left with
synthetic benchmarks we implemented ourselves. Their value is limited and they likely do not
cover the full range of interesting behaviours. Nevertheless, they are consistent with our experience
and the experience of our customers. To validate our claims of performance and responsiveness,
we compare with a version of Pony that does not perform garbage collection and with commercial
collectors for Erlang and Java.

Reproducing our results requires a parallel machine (Orca scales up to 64 cores), used in exclusive
mode, and with installations of the three languages and the various versions of the GC. In Section
6, we provide links to code that allows the interested reader to build on our work.

2 BACKGROUND
The actor paradigmwas first introduced in the 70’s in [Hewitt et al. 1973]. It models concurrent entit-
ies with spawnable actors which execute behaviours (methods) in response to messages from other
actors. The increasing levels of parallelism available in modern hardware has rejuvenated interest
in this model of computation. Some languages, such as Erlang [Armstrong 2007] and Salsa [Wang
2013], are designed to support actors directly, but this is not strictly necessary. Several successful
actor frameworks are implemented as a libraries, for example Akka [2017], ActorFoundry [2017]
and ProActive [Caromel and Henrio 2004], which are widely used libraries for Scala and Java. Pony
is a language designed from the ground up to support actors. Features of the language, such as its
type system, were crafted with an eye towards helping the run-time system — including the garbage
collector — improve throughput and reduce pause times. To this end, it leverages the isolation
arising naturally in actor systems, important to maintain the single thread of control abstraction
[Agha 1986].

Improving responsiveness of concurrent applications is long-standing goal of garbage collection
research. Algorithms such as Azul’s Pauseless GC [Click et al. 2005] and C4 [Tene et al. 2011] target
Java enterprise systems with hundreds to thousands of threads. As Java threads share mutable
state, memory barriers are often added to stores to protect the invariants of a collector in the
presence of threads operating in parallel. Real-time collectors such as Schism [Pizlo et al. 2010]
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1 actor Ring
2 var next: (Ring | None)
3 new create() ⇒next = None
4 new create_set(n: Ring) ⇒next = n
5 be set(n: Ring) ⇒next = n
6 be pass(i: U32) ⇒
7 if i > 0 then
8 try (next as Ring).pass(i−1) end
9 end

1 actor Main
2 new create(env: Env) ⇒
3 let hd = Ring
4 var tl = hd
5 for k in Range[U32](0, 8) do
6 tl = Ring.create_set(tl)
7 end
8 hd.set(tl)
9 hd.pass(16)

Fig. 2. Actor ring.

and Metronome [Bacon et al. 2003] manage to further reduce pause times, but at a cost in terms
of performance — up to 40% slowdowns can be expected. As Orca, thanks to its co-design with
the Pony type system, does not require barriers on access to individual memory locations, it is
reasonable to expect better throughput. In a way,Orca can be viewed as having barriers on message
sends which are less frequent than stores. Various designs for segregated heaps have been explored
in the literature. Domani et al. [2002] introduced a collector that segregates between thread-local
objects and shared objects. Write barriers are used to distinguish between shared and unshared
objects, and shared objects are collected in a full GC phase which introduces significant global
pauses. Orca does not require full GC as all objects belong to a single actor and are collected by
that actor. Pizlo et al. [2007] introduced hierarchical real-time collection in. The idea is to segregate
the heap into heaplets which can be collected by different collectors. To deal with references across
heaplets, a global collection phase is required. Write barriers are used to record cross-heaplet
references in a global data structure. Orca avoids the need for global collection thanks to its
reference counting scheme. Spring et al. [2007] proposed Reflexes as an abstraction for real-time
concurrent computing. Like actors in Pony, Reflexes are isolated, single-threaded computations
communicating by message passing. The Reflex type system ensures that mutable messages can be
communicated without synchronisation or copy. Unlike Pony, Reflexes were not garbage collected
but relied on a constrained form of region allocation. Furthermore, only a limited set of data types
were allowed in messages. Auerbach et al. [2008] extended Reflexes with per-task garbage collection.
Orca gives programmers more flexibility as arbitrary objects can be communicated in messages.
Erlang is an actor-based language with its own dedicated virtual machine called BEAM [Arm-

strong 2007]. For memory management purposes, BEAM performs a deep copy of messages, i.e. the
transitive closure of objects reachable from the message is copied. This ensures that actor states
are isolated. Binary objects (byte-oriented data) are treated specially, as copying them would be
too costly, so they are reference counted. Binary objects may not contain pointers and so cannot
create cycles, thus obviating the need for a cycle collector. Orca does not copy messages, but it
does trace them, both on send and receive, to track actor–object dependencies.
A related problem for actor-based languages is the collection of actors. An actor must be kept

alive as long as any other actor has a reference to it, the actor is executing, or it has a non-empty
message queue. In Actor Foundry, the actor graph is turned into an object graph so that a tracing
collector may reclaim actors as well as objects [Vardhan and Agha 2002]. SALSA [2013] uses
snapshots, reference listing, and trace-based global heaps to collect both local and distributed
actors. Passive objects are collected using the underlying JVM’s trace-based collector. Pony uses
MAC [Clebsch and Drossopoulou 2013] to collect actors wheras Orca (and hence this paper) is only
concerned with collection of objects.
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3 PONY: ACTORS, OBJECTS & CAPABILITIES
Actors in Pony are single-threaded stateful constructs with a first-in-first-out message queue.
Figure 2 illustrates how to create a ring of actors exchanging a decreasing numeric value. It shows
two actor declarations. The Main actor creates eight Ring actors and connects them together. A Ring
has two behaviours: when it receives message set, it updates its next field to refer to the message’s
argument; when it receives message pass, it sends a message to the next actor in the ring.

Actors take messages from the front of their message queue and execute the behaviour associated
with that message. As part of executing a behaviour, an actor can create a new actor, change its
state, or send messages to other actors – placed at the end of their respective message queues.
Message delivery preserves causality: thus if an actor A sends a message msg1 to B followed by
msg2 to C, then msg2 is causally dependent on msg1. If actor C reacts to msg2 by sending msg3 to B,
causal delivery requires that msg1 be processed before msg3. Section 3.1 and Section 5.4 discusses
how and why of causality in more detail.
Pony’s object model is familiar from languages such as C#, Java, and Scala — namely a stati-

1 class D
2

3 class E
4 var f: D val
5 var g: (E iso | None)
6 new create(v: D val) ⇒
7 f = v
8 g = None
9 fun ref update(v: E iso) ⇒
10 g = consume v

Fig. 3. Classes.

cally typed, class-based system with both structural (interfaces)
and nominal (traits) subtyping. Figure 3 illustrates how to define
classes with a combination of mutable and immutable state. Class
D has no fields or functions, instances of this class are created by
invoking the default (empty) constructor, e.g. d = D. Class E has
two fields. Fields that may be uninitialised are given union types
with None; here field g has type (E iso | None).

We now describe how Pony’s type system — capabilities are
attached to types — [Clebsch et al. 2015; Steed 2016] uses cap-
abilities to constrain behaviours. We distinguish between send-
able and non-sendable capabilities. Sendable capabilities are
used for objects that may be exchanged in messages. The val
capability denotes the ability to read fields of an object, which is immutable (i.e. cannot
change1). The tag capability denotes an opaque reference, one that cannot be read or writ-
ten to (only the object’s identity can be used). The iso capability denotes the ability to write
fields of an object, and other actors may neither read nor write to fields of that object.
Non-sendable capabilities, i.e. reference (ref), transition (trn), and box (box), may not be used in
messages. The ref capability is for objects that can be read from and written to, as well as aliased
internally to the current actor.

1 var v: D val = recover val D end
2 var v1: D val = v // ✓
3 var v2: D iso = v // ✗
4

5 var i: D iso = recover iso D end
6 var i1: D tag = i // ✓
7 var i2: D iso = i // ✗
8 var i3: D val = i // ✗
9

10 var i4: D iso = consume i // ✓

Fig. 4. Aliasing constraints.

Capabilities also limit aliasing. An object reachable through
a val reference can only be aliased as val and tag and box;
an object reachable through a tag capability can be aliased
without constraint; and an object reachable through an iso
reference can only be aliased by tag references. These aliasing
constraints ensure at compile time that Pony programs are
data race free — a fact leveraged by Orca as we shall soon see.
Figure 4 illustrates some of the constraints enforced by

capabilities. Line 1 creates v, an instance of D, and gives a val
capability to it. Upon creation, objects have ref capability by
default. Thus, when creating objects with other capability, one
needs to recover the newly created object to val or iso capability.
It is thus allowed to create further val aliases (Line 2). However

1This is a stronger property than read-only, where immutability only applies through certain references or to certain agents.
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1 actor A
2 be m(b: B, c: C) ⇒
3 let e: E iso = recover iso
4 E(recover val D end)
5 end
6 c.m(e, e.f)
7 b.m(consume e)

8 actor B
9 be m(e: E iso) ⇒
10 var d: D iso = recover iso

E end
11 e.update(consume d)
12 ... // more code

13 actor C
14 var _e: E tag
15 var _d: D val
16 be m(e: E tag, d: D val) ⇒
17 ...

A B C
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A B C
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(a) Snapshot 1.
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(b) Snapshot 2.
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(c) Snapshot 3.

Fig. 5. Actors and their heaps . Dashed arrows are stack references. Continuous arrows are heap references.

attempting to create an iso alias is not allowed (Line 3). Line 5 creates another instance of D, this
time with an iso reference which allows the current actor to read and write fields of the object
(if it has any). Only tag aliases to this object are allowed (Lines 6–8). Line 10 illustrates how to
transfer an iso capability by moving the reference from the variable i to the variable i4 using the
consume operator. A variable whose contents has been consumed cannot be read before it has been
re-assigned.

In addition to transferring capabilities between variables, the type system also allows converting
a capability into another. For example, mutable objects can become immutable (but not the other
way around) during their lifetimes.

Figure 5 combines the features we have discussed in a single example. Namely, three actors A, B
and C create objects (o1, o2, . . . ) and share them via message passing. When A receives message m,
and executes Lines 3–5, it creates objects o2 of class D, and o1 of class E, and holds an iso capability
to o1 (variable e) — this is shown in Snapshot 1. Then, in Line 6, it sends m to C, containing a
tag reference to o1 (e), and a val reference to o2 (e.f). In Line 7, it sends m to B, containing an iso
reference to o1, after consuming its own reference e. The order in which B and C process their
messages from A is non-deterministic. Assuming that B is scheduled first, receiving the message
first (lines 10–11), B can update o1, because it holds an iso reference to it. This is shown in Snapshot
2. Assume that while B is executing the code from Line 12 onwards, C is scheduled. This is shown
in Snapshot 3. We now see that objects o1 and o2 are accessible from both B and C. Note that this
cannot introduce data races: B can read and modify o1 while C cannot read nor modify it, and both
B and C can read but not modify o2.

3.1 Leveraging the Co-Design
Co-designing a language together with its runtime allows enforcing a number of properties desirable
from the point of view of its implementation. The use of capabilities segregates objects into non-
sendable and potentially-shared objects. This naturally leads to a programming style that favours
local objects, as shared objects require additional attention. Non-sendable objects tend to be more
numerous than sendable objects [Wrigstad et al. 2009]. Trivially, such objects are never subject to
data races.
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The preponderance of non-sendable objects means that it is sensible to design a collector where
allocation and reclamation happens locally inside a single actor, in parallel with all other actors,
no matter what they are doing. Such local garbage collection gives a more intuitive cost model
of memory management than a single shared heap: each actor only has to account for garbage
collection of the object it has created in its execution costs. This means for example that judicious
allocation elsewhere in a system cannot slow down the current actor by forcing it to participate in
garbage collection.
Objects referenced by sendable capabilities may be shared by multiple actors, but if they are

mutable, Pony’s type system ensures that, at any given point in time, at most one actor is allowed
to modify them. Thus Pony programs are data race-free. When an actor is idle, the only objects
accessible to it are in its fields or in messages in the actor’s queue (transitively).
Scheduling collection when an actor is idle avoids having to consider roots on the stack and

ensures that behaviours need not pause for memory management. Moreover, because shared objects
are data race-free, it is possible to implement a non-blocking collector — as no other actor may be
mutating an object while the object is being traced. In terms of synchronisation operations, the
only memory barrier present in Pony is when messages are enqueued, which causes manipulation
of reference counts (which are local to the current object, and therefore trivially atomic without
need for synchronisation). This is sufficient to ensure visibility of writes for shared objects. Also,
the type system ensures that all fields are initialised, so there is no need to zero out pages.
Finally, because message delivery is causal, the same messaging infrastructure that delivers

application-level messages can be used to deliver reference increments and decrements. Here,
causality is important because processing increments and decrements for the same object out of
order may lead to premature deallocation.

To see how causality arises naturally in Pony, consider a scenario where three actors with empty
message queues, A, B and C are executing, possibly in parallel, the statements in the table (the
rows of each column is in program order). Inside each actor, sends and receives are not reordered.
Furthermore, mailboxes are FIFO ordered, and send(T, msg) is a synchronous operation that returns
only after msg has successfully been appended to the message queue of the target T. The order
of the sends in A thus guarantee that msg1(...) will end up in B’s mailbox before msg2(...) ends
up in C’s mailbox. Since C’s sending of msg3 to B is triggered by the receipt of msg2(...) (a causal
dependence), regardless of when in time B is executed, recv(x) in B will have x = msg1(...) and not
x = msg3(...).

in A in B in C
send(B, msg1(...)) recv(x) recv(z)
send(C, msg2(...)) recv(y) send(B, msg3(...))

4 ORCA: A NON-BLOCKING CONCURRENT COLLECTOR
Having introduced the Pony language, we are finally ready to discuss its garbage collector. Orca,
like Pony itself is written in C. In the following discussion, we show pseudo-code simplified for
explanatory purposes. Interested readers are referred to the open source Pony repository for full
source code of the collector. We skip over aspects of the system that are not directly relevant to
Orca. The object model is simple: objects are structures with a header field containing a pointer to
a type, and a sequence of fields accessible at fixed offsets. Primitive values are unboxed machine
representations. Programs are compiled ahead-of-time.
Orca is a non-moving, concurrent, multi-threaded collector with no atomic operations. The

collector has no read/write barriers. Each actor is tasked with reclaiming the objects that it has
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allocated. This is implemented as a combination of mark and sweep for objects that are not shared
with other actors and a variant of reference counting for shared objects. Reference counts are
coarse-grained and represent the total interest in an object from the actors and messages that
reference it. This is an abstract number, which allows additional optimisations (e.g. further sharing
an object without notifying its owner). Reference counts are incremented or decremented by
the runtime system upon message send or receipt. Moreover, explicit requests for increments or
decrements may be sent to the owner. Increment messages (INCs) communicate additional use of
an object in the system. Decrements (DECs) communicate a decrease in external use of an object.

4.1 Fundamentals and Correctness
We now discuss the fundamental properties which guarantee that Orca will never collect locally
reachable or visible objects. We hope, as Orca diverges from mainstream collectors, that this will
make the design and its rationale more intuitive. We call an object visible, if it is reachable from a
foreign actor or from a message. An object’s owner is the actor that created it. An actor is foreign to
an object if it is not its owner. An object is protected at some actor, if the actor’s reference count for
this object is greater than 0, meaning that the actor will make sure the object is not reclaimed. Orca
relies on the type system and the reference counts to reflect and respect object visibility as well
actors’ interest in an object (I=invariant):

I1 At any point, if an actor may write to an object, then no other actor can read from or write to
this object’s fields. Thus, ORCA can avoid write barriers and tracing needs no synchronisation.

I2 Immutability is persistent (i.e. an immutable object will never be seen as mutable) and deep
(i.e. no object accessible from an immutable object is seen an mutable).

I3 Any live object is protected at its owner.
I4 Any object reachable from a foreign actor is protected at this actor.
I5 The owner’s reference count for an object is consistent with the state of the system.

The first and second invariant are enforced by the Pony type system, while the rest are Orca’s
responsibility. The notion of consistency in I5 intuitively means that the owner of an object must
have a view of the number of outstanding remote references that agrees with that of the other
entities in the system. For any given object, LRC is the owner’s reference count, OMC is the sum
of all INC and DEC messages which increment and decrement reference counts, FRC is the sum
of the reference counts in all other actors, and AMC is the number of application messages from
which the object is reachable. Consistency means that LRC + OMC = FRC + AMC. Additionally,
Orca assumes that finalisers are “safe” in the sense that running a finaliser cannot revive an object
(Pony provies statically guaranteed safe finalisers).

4.2 Preliminaries: Key Data Structures
The reference counts discussed earlier are held within the structures describing actors. We define
these, as well as some more Pony runtime data structures in Figure 6.

A Context is a thread-local data structure used to keep information about the execution context
of the current thread. The field curr is a reference to the currently executing actor, traceobj and
traceact are two function pointers used for garbage collection, the function they refer to depends
on the phase of the collector. The gc field is a stack of object references and associated tracing
function used by the collector during marking. Finally, acquire is a map of actor reference count
data structures which is used to record foreign objects discovered during marking.
An Actor has a queue of messages mq, a local heap hp, and three fields dedicated to garbage

collection. The current epoch is an unsigned integer held in mark. Fields orcs and arcs are hashmaps
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1 struct Context {
2 Actor curr
3 Trace traceobj
4 Trace traceact
5 Stack gc
6 ARCmap acquire
7 }

1 struct Actor {
2 Messages mq
3 Heap hp
4 uint mark
5 ORCmap orcs
6 ARCmap arcs
7 }

1 struct Heap {
2 Chunk free[S]
3 Chunk full[S]
4 Chunk large
5 uint used
6 uint ngc
7 }

1 struct Chunk {
2 Actor owner
3 char[] mem
4 uint sz
5 uint slots
6 uint shallow
7 uint finalize
8 Chunk next
9 }

1 struct ORC {
2 Any tgt
3 uint rc
4 uint mark
5 bool immut
6 }

1 struct ARC {
2 Actor actor
3 uint rc
4 uint mark
5 ORCmap map
6 }

Fig. 6. Data structures.

used to record reference counts for local objects shared with other actors through message sends,
and foreign objects shared with the current actor through message receipts.

A Heap is an actor-local data structure that contains the set of Chunks which hold objects allocated
by that actor. Each chunk holds up to 64 objects and are segregated into S+1 size classes. Small
objects are allocated in one of the S size classes. Large objects are allocated into their own chunks.
An actor’s Heap thus consists of an array (one per size class) of chunks with available slots (free),
an array of fully occupied chunks (full), as well as a chunk for large objects (large). The heap also
keeps track of the total amount of live memory (used) and the threshold used to determine when
the next GC cycle should run (ngc). Note that this is determined per actor.

A Chunk is a block of memory (mem) associated to an actor (owner). Each chunk holds a number
of equal sized slots (sz). A bitmap (slots) indicates which slots are occupied and which slots are
available. This bitmap is also used during marking. The shallow field is a bitmap used during GC to
indicate which objects should be traced recursively. The finalise bit map indicates which objects
have finalizers. Chunks are arranged as linked lists (next).

An object reference count, ORC, is a data structure allocated to keep track of shared objects. Each
ORC refers to an object (tgt), keeps a reference count (rc) which is an upper bound on the number
of references to that object; a mark field used during GC and a field to indicate if the object should
be treated as immutable. Note that reference counts do not directly reflect the number of references
to an object or the topology of object graphs. Instead, they are an upper bound on the number of
entities (other actors or messages) which have references to the target object. This entails that
cycles do not prevent collection2 and that update of reference counts can be deferred.
Figure 7 illustrates a configuration with two actors. Object o1 is local to actor a1. It is refer-

enced locally by object o0 and externally from object o2 which is local to actor a2. Since actor
a1 has shared o1, it has an ORC for that object (in Actor.orcs). Actor a2 has received o1 in a mes-
sage, so it has a reference to actor a1 (in Actor.arcs) and that data structure has an ORC for a1.

2Cycles of actors are handled separately from Orca, see Clebsch and Drossopoulou [2013].
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Fig. 7. Reference counts.

The value of the reference count for o1 is 1, because
object o2 points to it. The value of reference count
in a1 is also 1, because one other entity has access to
the object o1. Note that the local reference from o0 to
o1 is not counted. This diagram also shows that even
though local objects may point to foreign objects
(here o2 is local to, and o1 is foreign to, a2), the associ-
ated book-keeping information (i.e. Chunk, ORCMap
and ARCMap) are contained within the actor, and
thus can be manipulated by the actor without race
conditions.
Object reference counts are only created for ob-

jects that have been sent in a message. When ORC.rc
drops to zero for an object, its ORC can be deallocated. Local tracing can now safely determine
whether the object is live or garbage. The owner of an object is notified that other actors have either
acquired a reference to an object, or dropped all their reference through INC and DEC messages.
Thus, line 5 in Figure 9 may process e.g. a decrease in a reference count for an object to the point
where its ORC.rc drops to zero. If the next turn in the event loop is a garbage collect, this object
will be freed if no local references remain.

Two additional data structures play a role in GC: The first is scheduler threads each of which
keeps a queue of actors that have pending work. Whenever a thread is idle, it pops an actor from
this queue and it schedules the actor’s work, passing its context to the actor. If a thread has no
work, it may steal an actor from another thread’s queue. The second data structure is a lock-free
multiple-producer, single-consumer FIFO message queue, one for each actor, from which it can
obtain messages. There are two kinds of messages in Pony, application messages sent by other actors
and system messages sent by the run time system (e.g. reference count increments and decrements).
Message queues are the only data structure requiring synchronisation: push and pop operations
are atomic.

4.3 Allocation and De-Allocation

1 alloc_small_fin(Actor a, Heap h, uint
szclass) {

2 Chunk c = heap.free[szclass]
3 if (c == NULL) c = allocate(szclass)
4 uint bit = ctz(c.slots)
5 c.slots &= ~(1 << bit)
6 c.finalize |= (1 << bit)
7 if (slots == 0) {
8 h.free[szclass] = c.next
9 c.next = h.full[szclass]
10 h.full[szclass] = c
11 }
12 h.used += sz_in_bytes(szclass)
13 return c.mem + (bit << MINBITS)
14 }

Fig. 8. Pseudo-code for allocation.

Orca has several allocation functions, Figure 8 shows
the allocation function for small objects that require
finalisation. This function does not require synchron-
isation in the fast path. The slow path is hit when
there are no chunks of the requested size class with
free slots. If this occurs, a new chunk is allocated.
Because this operation takes “global memory” and
makes it local to an actor, it requires synchronisa-
tion (and may end up request more memory from
the operating system). The allocation function finds
the first free slot, and sets the corresponding bit in
Chunk.slot and Chunk.finalize. If the chunk is full, it
is moved from the free list to the full list. Reclama-
tion happens implicitly at the end of a collector cycle,
the Chunk.slot field is written to during marking, any
slot that has not been marked is available for reuse.
Chunks that have free slots are moved from the Heap.full list to Heap.free.
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4.4 Garbage Collection & Collection Cycles
Orca allows multiple threads to perform collection in parallel without synchronisation. Each
thread’s work is summarised by the pseudo-code of Figure 9. Given an actor a, the scheduler takes
a snapshot of a’s message queue (Line 3) and then alternates between handling messages and
potentially performing a collection cycle. For any given actor, each collection cycle is identified
by its epoch (Actor.mark), used during marking. Epochs are incremented at the end of cycle (Line
11); no action is needed to prevent overflows as epochs are only compared for equality. Epochs are
actor-local and thus need no synchronisation.

1 run(Context ctx, Actor a) {
2 Message msg, end
3 end = atomic_load(a.mq.end)
4 while ((msg = pop(a.mq))) {
5 handle(ctx, a, msg)
6 if (needgc(a.heap)) {
7 roots(ctx, a)
8 markimmut(ctx) // Fig 10 left
9 traverse(ctx) // Fig 10 center
10 sweeporcs(a.orcs) // Fig 10 right
11 a.mark++
12 finalize(a.heap)
13 free(a.heap)
14 }
15 if (msg == end) break
16 }
17 }

Fig. 9. Pseudo-code for the scheduler’s run.

A garbage collection cycle is kicked off (Line 6) if
the memory allocated by the actor (Heap.used) is lar-
ger than the gradually increasing threshold (Heap.ngc).
Selecting small values for the threshold will result in
more frequent cycles. There is no global limit on al-
located memory as this would entail synchronisation.
There is nothing that prevents triggering garbage col-
lection during execution of a behaviour, but the im-
plementation of Orca in Pony currently only runs
between behaviours to avoid stack scanning. We have
not had any reports that suggests a need to implement
inter-behaviour GC from Pony users.

The initial value for Heap.ngc is 2N bytes, for some
(command-line) configurable N , which is 14 by default.
Upon each garbage collection cycle Heap.ngc is set to
M times its current value, for some (command-line)
configurableM , which is 2 by default.
The other steps of a collection cycle are as follows.

The roots function (Line 7) pushes all the fields of the
current actor on the stack (Context.gc). These are the only roots in Pony. The markimmut function
goes over the local immutable objects which have been shared, marks them as reachable, and
recurses into their substructures using a trace function obtained in a standard fashion from the
object header via the type() function. Function traverse recursively marks objects on the Context.gc
stack.

A reference p that is not found in this tracing is in precisely one category below:

1 markimmut(Context ctx) {
2 foreach (ORC o in ctx.curr.orcs)
3 if (o.immut && (o.rc > 0)) {
4 mark(o.tgt)
5 Trace fn = type(o.tgt).trace
6 fn(ctx, o.tgt)
7 }
8 }

1 traverse(Context ctx) {
2 foreach (pair in ctx.gc) {
3 Trace fn = pair[1]
4 Any p = pair[2]
5 fn(ctx, p)
6 }
7 }

1 sweeporcs(ORCmap orcs) {
2 foreach (ORC o in orcs)
3 if (o.rc > 0) {
4 Chunk c = chunk(o.tgt)
5 setbit(c.shallow, p, c.sz,

c.mem)
6 } else {
7 delete_index(map, i)
8 free(o)
9 }
10 }

Fig. 10. Pseudo-code for the auxiliary functions. pair is a (trace function, object) entry from the GC stack.
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1: Local and visible If p is a local visible object (i.e. it has an entry in LRC with a refcount > 0),
then p must be kept alive. Note that p may not actually be in use because of unprocessed
decrements in the message queue. This eventual consistency might delay collection of some
garbage, but not leak.

2: Local and invisible If p is a local and invisible object (i.e. whose refcount is 0), we can safely
delete p, after executing its finalizer (if any).

3: Foreign If p is foreign, we send a decrement to its owner that corresponds to the entry for p in
FRC (the foreign reference count table) and subsequently delete our FRC entry for p.

Invariant I3 (live objects protected at its owner) guarantees that no visible object will be collected,
and the actions in the second and third case preserve I5 (reference count consistency). For objects
to be collected, we care about the object’s owner, and the mode in which the object is referenced. If
the mode is tag, we do not recurse through the object.

The sweeporcs function visits all the ORCs of local objects and either sets them to be shallow (if
there is an outstanding reference count) or (if the reference count is zero) deletes the corresponding
entry in the ORCmap.
The finalize function runs the finalizers of objects that have been found unreachable. The free

function finds all chunks in the actor’s heap that have no live objects in them and returns them to
the free list on the global heap, causing the actor’s heap to shrink.

4.5 Send, Receive and Trace
4.5.1 Send. Figure 11 shows the pseudocode for tracing objects on message sends. When

sending, we are increasing AMC for the object (and eventually FRC upon receipt). For reference
count consistency (maintaining I5), we increase LRC for the object sent when sending a local
object. In the case of sending a remote object, we cannot directly access the owner’s LRC (that
would introduce synchronisation overhead) we instead decrease the sender’s FRC for that object —
a simple non-atomic decrement. Remember, reference count consistency is LRC + OMC = FRC +
AMC — which clearly shows why decreasing FRC and increasing AMC accordingly as the result
of an object being passed around does not need to modify the object’s owner’s LRC. However,
if the sender’s FRC is too small to be decreased (we cannot decrease it to zero), we inflate its
reference count with some constant value GCINC and send a corresponding acquire message to
the object’s owner to inform it of the inflated reference count (this increases ORC and the owner’s
LRC eventually on receipt).
We now walk through this in more detail following the pseudo code in Figure 11, but omitting

the parts highlighted — these represent optimisations which will be discussed later. The sendobject
function derives the owner of the object being sent — p — from its location in memory. If the object
we are sending is owned by the current (sending) actor, delegate to send_local, otherwise delegate
to send_remote. The parameter view tracks the static view of the reference passed, e.g. if it is a tag
(OPAQUE) or val (IMM), or mutable (MUT) capability.

On Line 8, the send_local function gets a handle to the ORC entry for the object p being sent,
from the local reference counts (LRC), which involves possibly creating it (I2). The field a.mark
holds the current epoch, and if we have already marked p in the current epoch, there is no more
work to be done (Line 9). Otherwise, we update the reference count for the object in the ORC entry
and mark it with the current epoch. Opaque (tag) values are not traced (Line 12) further.

The send_remote function is more involved. Lines 26 and 27 are isomorphic with send_local. The
conditional on Line 29 is true when p is shared immutably and discussed in the next section.

Lines 34–37 deal with the the case when we cannot simply decrease the local FRC for reference
count consistency (as this would break I4). Line 36 inflates the current FRC and line 38 adds the
object and its immutability into a collection which will be used at the end of the call to notify
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1 sendobject(Context ctx, Any p, Type t, int view) {
2 Actor a = chunk(p).owner
3 if (a == ctx.curr) send_local(ctx, a, p, t, view)
4 else send_remote(ctx, a, p, t, view)
5 }
6

7 send_local(Context ctx, Actor a, Any p, Type t, int
view) {

8 ORC obj = getorput(&gc.local, p, a.mark)
9 if (obj.mark == a.mark) return
10 obj.rc++
11 obj.mark = a.mark
12 if (view == OPAQUE) return
13 if (view == IMM) obj.immut = true
14 if (!obj.immut) push(ctx.gc, (p, t.trace))
15 }
16

17 acquire(Context ctx, Actor actor, Any p, bool
immut) {

18 ARC aref = getorput(ctx.acquire, actor, 0)
19 ORC o = getorput(aref, p, 0)
20 o.rc += GCINC
21 o.immut = immut
22 }

24 send_remote(Context ctx, Actor a, Any
p, Type t, int view) {

25 Actor this = ctx.curr
26 ORC obj = getorput(this.ORCmap, p,

this.mark)
27 if (obj.mark == this.mark) return
28 obj.mark = this.mark
29 if (view == IMM && !obj.immut &&

obj.rc > 0) {
30 obj.rc += (GCINC - 1)
31 obj.immut = true
32 acquire(ctx, a, p, true)
33 mutability = MUT
34 } else if (obj.rc <= 1) {
35 if (view == IMM) obj.immut = true
36 obj.rc += (GCINC − 1)
37 acquire(ctx, a, p, obj.immut)
38 } else {
39 obj.rc−−
40 }
41 if (view ==

MUT) push(ctx.gc, (p, t.trace))
42 }

Fig. 11. ORCA logic for tracing argument objects on message sends. Section 5 describes optimisations.

the object’s owner that we have inflated our FRC — this will allow the owner to inflate its LRC
accordingly, thus preserving I5. If we are sending an object as immutable, Line 35 records this in
the ORC metadata, otherwise we push the object and its tracing function on the stack (Line 14).

Lines 38–39 deal with the case when it is possible to decrease the local FRC for reference count
consistency.

Finally, line 41 pushes the object onto the GC stack so that its contents are also traced using the
statically generated trace function t.trace for the type t. This function is generated by the Pony
compiler and leverages statically available capability information — for example whether it is
immutable or not.

4.5.2 Receive. In the interest of saving space, we refrain from discussing tracing on message
receive at the same level of detail as we did for sending. The code for receiving is simpler than, and
otherwise mostly isomorphic to, the code for sending, e.g., tracing does not recurse into opaque or
immutable structures, with one addition and one difference, which we discuss below.

Addition: On first receipt of an object, the actor will increase its apparent used memory to provoke
garbage collection. This is necessary as an actor who only handles remote objects would otherwise
never trigger garbage collection, and thus never send decrements for objects it has dropped. Because
the tracing of val objects has been optimised away, receipt of a val object increases the apparent
used memory with a constant which is currently 1024 bytes. This is a heuristic based on the small
number of Pony programs in existence.
Difference: Upon receiving an object owned by itself, the actor’s reference count for the object

will decrease. This is natural, since reference counts model the references from non-owning actors
and messages on the wire.
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1 class Obj
2 let f: Obj2 ref
3

4 actor Act
5 let f1: Obj iso
6 let f2: Obj trn
7 let f3: Obj ref
8 let f4: Obj box
9 let f5: Obj val
10 let f6: Obj tag

12 Obj_trace(Context ctx, Act obj) {
13 trace(ctx, obj.f, Obj2_trace, MUT)
14 }
15

16 Act_trace(Context ctx, Obj obj) {
17 trace(ctx, obj.f1, Obj_trace, MUT)
18 trace(ctx, obj.f2, Obj_trace, MUT)
19 trace(ctx, obj.f3, Obj_trace, MUT)
20 trace(ctx, obj.f4, Obj_trace, MUT)
21 trace(ctx, obj.f5, Obj_trace, IMM)
22 trace(ctx, obj.f6, Obj_trace, TAG)
23 }

25 trace(Context ctx, Any obj, Trace
fn, int view) {

26 if (local(obj)) {
27 mark(obj)
28 if (view != TAG) {
29 fn(ctx, obj) // recurse
30 }
31 } else {
32 mark_remote_obj(ctx, obj,

view)
33 }
34 }

Fig. 12. Synthesised trace functions for an actor and an object.

4.5.3 Synthesising Trace Functions. In order to trace objects, the Pony compiler generates a trace
function for each concrete type describing how to reach the fields of a readable instance of that type.

1 mark_remote_obj(Context ctx, Any obj, int
view){

2 if (marked(ctx, obj)) return
3 mark(owner(obj))
4 mark(obj)
5 if ((view == IMM) && !imm(ctx, obj) &&
6 (rc(ctx, obj) > 0)) {
7 rcinc(ctx, obj, AMOUNT)
8 setimm(ctx, obj)
9 acquire(ctx, owner(obj), obj, IMM)
10 view = MUT
11 else if (rc(ctx, obj) == 0) {
12 if (view == IMM) setimm(ctx, obj) {
13 rcinc(ctx, obj, AMOUNT)
14 acquire(ctx, owner(obj), obj, imm(ctx,

obj))
15 }
16 }
17 if (view == IMM) recurse(obj)
18 }

Fig. 13. Mark remote. Optimisations highlighted.

How to trace an object of a given type depends
on the types (and capabilities) of its fields: a field
of primitive type does not require any action; a
field of a type annotated with tag points to an
unreadable object which is marked as reachable
but cannot be considered a root, since the actor
cannot read its fields; otherwise, the field points
to a readable object which is marked as reachable
and, recursively, considered a root, meaning its
contents are traced.

Figure 12 shows a Pony object and a Pony actor
to the left, the pseudo code for their synthesised
trace functions in the middle, and the generic trace
function from the run time to the right. Note the
close correspondence between the class Obj and
Obj_trace and the actor Act and Act_trace.
Lines 21–22 show how the val and tag capab-

ilities are carried through in compilation of the
trace function. Line 28 shows how we are not re-
cursing through ţ objects, even when they are
local.Objects that are not local to an actor are
handled by the mark_remote_obj function (called
on Line 32), which is shown in Figure 13.

In mark_remote_obj, we mark the ORC of each
reachable object with the current epoch (Line 4). Because actor lifetimes are lower bounded by
objects on their local heaps, we also mark the object’s owner (Line 3). If we hit on an object that is
already marked, we stop. The rest is discussed in section 5.3.

5 OPTIMISATIONS, CORRECTNESS AND CAUSALITY
Immutability is deep and persistent. This allows immutable objects to be handled more efficiently
than mutable objects. If o1 is an immutable object and o3 is reachable from o1 (e.g., o1 stores a
reference to o2 in a field and o2 stores a reference to o3), it is easy to see that o1’s lifetime upper
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bounds the lifetime of o3. This gives rise to the idea that an immutable data structure need only be
traced by the owner of the immutable objects it contains.

RW

LF0

LF1 …

o1

o3

o2

o4

val

Fig. 14. An immutable aggregate
with two roots at o1 and o3.

Thus, a positive reference count for the root of an immutable
data structure suffices to keep alive all objects reachable from it
which are owned by the same actor. This reduces both the number
of reference count manipulations and the amount of tracing during
send, receive and garbage collection.

Figure 14 depicts an immutable aggregate (val) rooted in o1 with
subobjects o2 and o3 and o4 s.t. o1.owner = o2.owner and o1.owner
, o3.owner=o4.owner. This data structure can be protected by only
two positive reference counts, one for o1 and one for o3. The reason
why a positive reference count for o1 will not protect o3 is because
o3’s owner may be unaware of the relation between the two objects.
Hence, the aggregate has two roots.

5.1 Fundamentals and Correctness — Revisited
The optimisation for val objects can be explained by redefining what is means for an object to be
protected, and redefining AMC , and thus implicitly weakening invariants I3–I5. Namely, an object
o′ is protected by an object o, if either they are the same object, or o is immutable, and o reaches o′,
and they have the same owner. An object o is protected at actor a, if there exists an object o′ such
that a has a reference count strictly greater than 0 for a′, and o′ protects o. We also reinterpret
AMC (o) as the number of application messages which can access o without going through an
immutable object.
With these new definitions, I3–I5 read the same as before, but their meaning is now weaker.

For the example from Figure 14, we have that o1 protects o2 but not o3, and o3 protects o4, and o4 is
protected at a, where a=owner (o3), as long as a’s reference count for o4 or for o3 is > 0.
In the implementation, whether an object is known to be immutable is shown by the immut

flag. Lines 13, 31 and 35 keep track of the fact that the object has been reached as immutable. As a
consequence, future sends of p will not recurse deeper into the object and garbage collection will
not need to trace inside foreign immutable objects. Instead, the objects will be kept alive by Orca
because they are protected by an object with an LRC > 0.

5.2 Send — Revisited
The val optimisation is implemented in Figure 11. Hitting an object that is marked as val, tracing
does not recurse into the object structure (Line 14). Something similar happens in send_remote,
but here we must cater to two more cases: 1) a iso turned into a val, and 2) dropping parts of an
immutable structure giving it new roots e.g., obtaining a direct reference to o2 and dropping o1.

For send_local, both cases are handled in Line 13 and 14 which marks an IMM object thusly, and
does not recurse. For send_remote, Case 1 is caught by the conditional on Line 29. We update the
ORC to reflect the immutability of p, and send a message to the owner updating its immutability
status accordingly (Line 33). At the same time, we inflate our own reference count (−1 to account
for the sent reference) for the object (Line 31) to allow sharing it cheaply again.

Case 2 is caught by the conditional on Line 34. In this case, the reference count for p will be zero,
unless there is a direct reference to p elsewhere in the same actor. Since we come here from a field
or variable whose type is val, mutable will be IMM and we update the ORC entry accordingly. This
is required because we may not have seen the object before if it was shared as part of an immutable
structure which therefore was not traced (this applies also to send_local). For the same reason, this
status change must be communicated to the owner (Line 37).
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Without the optimisation, Line 41’s guard changes to != OPAQUE.

5.3 Marking — Revisited
The code in Fig. 13 implements the immutability optimisations for marking. The guard on Line 5
captures the case when we see an object as immutable, but the object’s immutability flag is not yet
set. In this case, we set our local immutability flag, and construct a transfer message that informs
the owner of the change. Last, we set view = MUT in order to avoid recursing on Line 17. The
guard on Line 11 captures the case when tracing finds an object for which there is no FRC entry.
This is true when new references into immutable structures are created.

Finally, mark_remote_obj only recurses through an object when the view is immutable. This is
necessary to identify all protectors in an immutable structure.

5.4 The Importance of Causality for Reference Counting
Causality is crucial for the safety of Orca — in particular in what concerns the delivery of reference
count increment and decrement messages. Consider the following scenario with actors A, B and
C. The object o is owned by A, and its reference count in A and B is 1. B sends o to C, triggering a
notification to o’s owner A. In the table below, the rows of each column are in program order and
the message queues are empty.

in A in B in C
recv(x) send(A, INC(o, 256)) recv(z)
recv(y) send(C, msg1(o)) send(A, DEC(o,1))

The causal relationship between B’s send(C, msg1(o)) and C’s send(A, DEC(o, 1)), guarantees
that the message INC(o,256) will be be stored in A’s mailbox before DEC(o,1). If messages were
not delivered in causal order, the DEC message could overtake the INC message, causing A to
erroneously collect o even though B still has references to it. Similar ordering problems occur in
manual reference counting [Hillegass 2011].

5.5 The Need to Refine I5
In sections 4.5.1 and 4.5.2 we argued that the actions upon sending and receiving objects preserve
I5. But this is a simplification: Upon closer inspection, we can see that the invariant is restored only
at the end each procedure (e.g. on line 10 in Fig. 11, by incrementing the RC we break the invariant
temporarily, and only restore it when we send the message and thus implicitly also incrementing
the AMC).
Moroever, if we consider that actors execute concurrently with other actors, we realize that

invariant I5, as stated so far, need not hold even at the end of a procedure. For example if an actor
α1 competes sending a messagem1 containing object o, and at the same time another actor α2 starts
sending another message containing the same object o, then, even though at the point where α1
putsm1 on the message queue andAMC (o) is incremented and thus counterbalances the increment
or increment of α1’s RC for o, actor α2 has modified its RC for o, and so I5 does not hold.

Therefore, I5 is a useful simplification. It would only hold at the start and end of the procedures,
and only if the procedures were executed atomically. In a companion paper in preparation, we
refine the definition of I5, so that it holds at each point of execution.

5.6 Object Cycles Require No Special Treatment
As we already said in the introduction, because reference counts are upper bounds on the number
of actors which have a stake in an object, rather than the number of paths leading to the object, the
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treatment of object cycles requires no special treatment: As the simplest case, assume a cycle of
objects all owned by the same actor. When these objects become globally unreachable, then their
LRC will become 0, and the owning actor will collect them. In the general case, assume a cycle of
globally unreachable objects owned by n different actors. When one of these actors performs GC, it
will trace and find that objects from that cycle are no longer reachable from it and will send to the
owner of each foreign object from the cycle the appropriate decrement message. When all n actors
have completed one GC cycle, all the objects from the unreachable cycle will have a LRC=0, and
will then be collectable by their owner.

6 EXPERIMENTAL EVALUATION
In this Section we evaluate these design choices by studying the performance of our Orca imple-
mentation in terms of responsiveness, scalability, message overhead and footprint. We compared
the execution of “equivalent” actor programs written in Pony, Erlang and Akka. For Akka we used
C4 [Tene et al. 2011], G1GC [Detlefs et al. 2004], Concurrent Mark–Sweep, and Parallel OldGen. We
found that for our particular benchmarks C4 performed better than the other JVM collectors, and
therefore we only report C4 for Akka in the paper (results for the other collectors in Appendix A).
Moreover, we compare execution of Pony programs with and without garbage collection.

Given that Pony is a young language with a small set of users (compared to Akka and Erlang), the
set of programs available is still quite small. We have therefore used a small set of micro-benchmarks
for our tests. While these micro-benchmarks are not enough for a comprehensive evaluation of a
garbage collector, they show that Orca can be efficiently implemented in an actor language.

6.1 Reproducability
We obtained our results by running on a parallel machine (64 cores), used in exclusive mode, and
with installations of the three languages and the various versions of the GC. We were unable to
bundle installations of all these and so have been unable to provide a successful artifact. Nevertheless,
we provide here links to the source code of Pony implementation used for this evaluation, as well
as to the sources for the Pony, Akka and Erlang benchmark programs, and some of the scripts to
run them. These can be found at https://github.com/jupvfranco/ponyc. The latest version of Pony
is: https://github.com/ponylang/ponyc.

6.2 HowWe Evaluate Orca
We use small benchmarks either designed by ourselves or taken from well-known benchmark
suites [Imam and Sarkar 2014; team 2017; The Computer Language Benchmarks Game 2017].
Our choice of benchmarks was guided by the following principles: they should be actor-based,

send many messages, and have high memory pressure. Moreover, they should cover other char-
acteristics which affect the performance of our protocol: different message sizes, different object
lifetimes, different number of actors, c.f. Figure 15.
We used existing Akka and Erlang sources as much as possible. When porting these programs

to Pony, we tried to stay faithful to the original programs. Nevertheless, differences in available
libraries necessitated some adaptations. Naturally these comparisons are rough, and also include
non-GC factors. We use these benchmarks:
trees: Based on the GCBench benchmark [Ellis et al. 2017] and code based on the binary trees

benchmark from the CLBG [The Computer Language Benchmarks Game 2017].
trees′: Variation of trees; spawns many more actors, increasing parallelism, and the number of

trees created.
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Program

Different lifetimes ✓ ✓ ✗ ✗ ✗ ✗
Large allocation ✓ ✓ ✗ ✓ ✗ ✓
Many Messages ✓ ✓ ✓ ✗ ✓ ✓
Large messages ✗ ✗ ✗ ✓ ✗ ✗
Sharing ✗ ✗ ✓ ✓ ✗ ✗
Mutator work ✓ ✓ ✗ ✓ ✗ ✓

Protocol

Responsiveness ✗ ✗ ✗ ✗ ✗ ✓
Scalability ✗ ✓ ✓ ✗ ✓ ✗
Message Overhd. ✓ ✓ ✗ ✓ ✓ ✗
Footprint ✓ ✓ ✓ ✓ ✓ ✗

Fig. 15. Characterisation of benchmarks.

rings: A ring of actors that pass around a number for n times. We adapted this from the Threadring
benchmark in CLBG [The Computer Language Benchmarks Game 2017] to create several
rings running at the same time (to increase parallelism).

heavyRing: A ring of actors passing around large (object) graphs. Developed by us to stress Orca’s
weak points.

mailbox: A highly contended mailbox, from the CAF benchmarks [team 2017].
serverSimulation: We simulate a server implementation based on a number of actors processing

messages in parallel. We measure the differences between processing time of pairs of message,
and visualise the jitter in processing times. Global pauses introduce jitter across all servers.
Long pauses mean larger outliers.

Appendix A shows some important characteristics of our benchmarks, such as the number of actors
and the total amount of memory allocated, and specify the heap sizes used. We benchmark on an
AMD Opteron 6276 with 32 cores (2 hyper-threads per core), 8 NUMA nodes, 128GB RAM, 16KB
L1, 2MB L2, 6MB L3, running Debian 8 (jessie). We use Pony 0.8.0, Erlang 18.3, and Scala 2.11.6
(openjdk 1.8). We spent a limited amount of time experimenting with tuning the JVM, C4 and other
collectors, and performed no tuning of Pony programs.
We used the built-in telemetry of C4, JVM, and we extended the Pony runtime with telemetry

information. We used SystemTap to obtain GC times for Erlang, and Erlang’s built-in telemetry
to measure copying on message sending. As in [Blackburn et al. 2004], we set the heap size to 3
times the minimum required to run the benchmark (maximum live set size) on the JVM—the latter
measured when running with parallel collector, using a similar methodology of [Singer et al. 2010].
Note that it is not possible to set the heap size for Orca and Beam. For the JVM results we used the
flags -verbose:gc, -XX:+PrintGCDetails, and -XX:+PrintGCTimeStamps. We set the same initial
and maximum heap size (using the flags -Xms and -Xmx). For Erlang, we obtained the overhead of
message sending and copying to a receiver using built-in telemetry. We obtained the wall-clock
GC times through SystemTap [SystemTap 2017] probes for gc_major__start, gc_major__end, gc_min-
or__start, and gc_minor__end. For Orca, we used its built-in support for telemetry which gives what
and how many messages are sent, time spent on GC, scanning, allocated bytes, etc. We use the unix
time command to get total execution time and footprint (maximum resident set size). Telemetry
overhead for Pony and Java is very low—1%–2% in our tests, but quite high for Erlang. Thus we
report for Erlang: (total execution times without telemetry)× % of copy and GC times measured

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 72. Publication date: October 2017.



Orca: GC and Type System Co-Design for Actor Languages 72:19

(a) trees

4 8 16 32 64
0

1

2

3

4

T
im

e
 (

m
ic

ro
se

c)

1e8 Orca

4 8 16 32 64

Erlang

4 8 16 32 64

C4

(b) trees’

4 8 16 32 64
0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
ic

ro
se

c)

1e8 Orca

4 8 16 32 64

Erlang

4 8 16 32 64

C4

(c) rings

4 8 16 32 64
0

1

2

3

4

5

6

7

8

T
im

e
 (

m
ic

ro
se

c)

1e7 Orca

4 8 16 32 64

Erlang

4 8 16 32 64

C4

(d) mailbox

4 8 16 32 64
0

1

2

3

4

5

6

7

8
T

im
e

 (
m

ic
ro

se
c)

1e7 Orca

4 8 16 32 64

Erlang

4 8 16 32 64

C4

mutator time mutator overhead concurrent gc s tw gc

Fig. 16. Strong scalability on 4–64 cores. (stw=stop-the-world.)

with telemetry. Finally, we used numactl to restrict core counts and select cores of close proximity.
We repeated each benchmark 10 times and report averages in our plots and standard deviations in
Appendix A.3.

6.3 Scalability
Figure 16 shows execution times for trees, trees′, rings and mailbox, in Pony, Erlang, and Akka,
over a variable number of cores — from 4 to 64 — so that we test scalability.

Themeasurements are inmicroseconds— smaller is better.We keep the same scale for one program
across different languages, but differ it across different programs. We measure stop-the-world time,
concurrent garbage collection time, mutator overhead time and mutator time.
– stop-the-world time: All the cores are doing GC or waiting for GC to finish. This is is zero forOrca
or Beam. For the JVM-based GC’s, the telemetry gives the start and end times of stop-the-world
steps; we calculate the intervals, and sum them up.

– concurrent garbage collection time: GC work concurrently with mutator threads. This is the sum
of the times spent on concurrent GC by all threads/actors divided by the number of cores.

– mutator overhead time: extra work due to GC. In Beam, this is time copying message contents, in
Orca, this is time spent tracing on message sent/receipt, and we take it as 0 for the JVM collectors.
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Fig. 17. Responsiveness. X-axis: request ID, Y-axis: Jitter/difference between finishing time (seconds) of
subsequent requests. Java measurements are from a warmed-up VM and does not include JIT’ing.

– mutator time: time executing application code. This includes time when actors are idle. This
is the total execution time (from start to end of application) minus the sum of three variables
described above.
We were unable to measure mutator overhead in the different JVM collectors, using solely the

available JVM flags. We leave this for future work. Thus application time presented for the JVM
collectors include mutator overhead time.

Although we use a small set of micro-benchmarks to test scalability, it is interesting to observe
that Pony, when runningOrca, scales better than C4 and Erlang. Both trees and trees´ benchmarks
allocate large amounts of data; all four benchmarks send thousands of application messages; and
all benchmarks, except trees, spawn many actors. We do not observe long mutation times in Pony
even though these include object allocation, of which there are many in these tests. Similarly, we
we do not observe long GC times, even though many of the objects created in trees and trees´ are
short-lived and thus trigger many GC cycles.

We believe we see better mutator times in Pony because, and not only: 1) Pony does not require
the programmer to send extra messages for actor termination, contrarily to Erlang and Akka; and
mainly 2) Pony uses the type system to avoid read and write barriers, whereas Akka uses JVM write
barriers. While these benchmarks send many messages, they do not send large data structures.
Thus they do not stress scanning upon message send and receive. We will discuss the overhead
of message scanning later, however note Pony’s message exchanging appears to be faster than
Erlang, for programs that exchange many primitive values (no scanning required), such as rings
andmailbox— the time spent on sending and receiving in Pony is not visible while we can observe
it in Erlang. We believe this is due to the absence of selective receive in Pony, and because message
sending uses a single atomic operation, and none on receiving.
Orca does not require any stop-the-world steps, and actors can collect their own heaps inde-

pendently, without any synchronisation mechanisms. Moreover, it is enough for these particular
benchmarks to schedule garbage collection only between behaviors, allowing us to avoid stack
scanning. Finally, the mark-and-don’t-sweep nature of the collector allows for better cache locality
— as discussed previously, dead objects will not pollute the memory caches. All these properties
together allow for collection significantly faster than in Akka. Note than in Erlang, where heaps
are also collected individually, garbage collection time is also rather small.

6.4 Responsiveness
Figure 17 shows the results from our serverSim benchmark. Each server processes, in isolation,
requests of the same size, and the number of servers equals the number of hardware threads on the
machine (64). Each request causes the server to create and operate on a binary tree of depth 14.
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Fig. 18. CPU usage of serverSim. Y-axis: the different core IDs. X-axis the application’s timeline in CPU
cycles.

We plot the difference between the time of completion of a request and its immediate precedessor;
we take this as a measure of GC-induced jitter. Namely, garbage is accumulated forcing GC to
trigger at various points, depending on GC protocol. Orca experiences very little jitter, whereas the
performance of JVM-based collectors vary considerably more. We have tried different workloads,
and we saw that Erlang has very little jitter for smaller workloads. However, for bigger workloads,
Erlang behaves poorly because it spends more time on GC and more messages are accumulated in
actors’ queues. Results for smaller workloads are in Appendix A. Both Orca and Erlang are able
to collect actors’ heaps individually, meaning GC is evenly amortised, and each actor’s collection
touches only a few megabytes of memory as opposed to an entire heap. Moreover, Orca opts to
do many short collection cycles (this is shown eg in Figure 18 which shows this the apllication’s
timeline on a shorter version of the serverSim benchmark3) which lead to only small variation in
response times.

6.5 Orca vs NoGC
We now compare Pony running Orca (Pony-Orca) with a version of Pony that does not garbage
collect (Pony-NoGC). We ran trees, trees′, rings and mailbox, and measured execution times on
different numbers of cores, using Pony-Orca and Pony-NoGC. With this experiment we do not
intend to measure the overhead of Orca in Pony — this would not be the right approach for such
results, as garbage collection reduces memory pressure, and the number of page requests to the
operating system. Indeed, we ran the trees and trees′ benchmarks with smaller arguments (less
allocation), or otherwise they would crash without garbage collection. Instead, with this test, we
show that Orca is very important for Pony’s performance in memory intensive programs.
Pony-NoGC does not garbage collect at all — no actor nor object collection — and it does not

send any GC related runtime messages, nor does any tracing upon message sending or receiving.
For comparison, we switched off actor collection when running Pony-Orca, but keptOrcamessages
and scanning on message passing. Scalability results are in Figures 19.
On benchmarks that do not allocate much memory, such as rings and mailbox, garbage col-

lection may affect performance (slightly in the former), or may not have any impact at all (in the
latter). However, without garbage collection, benchmarks as trees and trees′ show slow downs
and poor scalability. This happens because the runtime needs to request more memory pages to
the operating system, an expensive operation.

Memory pressure also affects Pony’s responsiveness, as we can see in Figure 20. The serverSim
benchmark is very similar to the trees benchmark, in that it allocates many trees. Over time, the
amount of memory allocated increases and Pony becomes less responsive, also due to the increasing
number of page requests.

3We run it on fewer cores, with fewer actors, and fewer requests, for presentation purposes only. However this gives us
similar behaviour to the “full” version, in the sense that GC is triggered many times for short periods.
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Fig. 19. Scalability of Pony-Orca and Pony-NoGC. Execution times (seconds) on 4–64 cores. Lower is better.

Fig. 20. Responsiveness of Pony-Orca and Pony-NoGC. X-axis: request ID, Y-axis: Jitter/difference between
finishing time of subsequent requests. All times in seconds. Lower is better.

benchmark #app #INC #DEC #cycles #INC
#app

#DEC
#cycles

1. trees 22369658 0 14 4194453 0.0 ∼ 0
2. trees′ 20884713 0 138 3847755 0.0 ∼ 0
3. heavyRing 775 640 705 642 0.8 1.1
4. rings 64001668 0 1408 137 0.0 10.3
5. mailbox 496000996 0 992 1 0.0 992.0

5・104 

10・104 

15・104 

20・104 

25・104 

30・104 

0

2・106 

4・106

6・106 

8・106

10・106 

12・106 

0
heavyRing rings trees trees´ mailbox

(kB) (kB)

4 8 12 16
Depth

0

5

10

15

20

25

30

(s)

Ti
m

e

Fig. 21. Orca overhead due to tracing on message send and receive.

6.6 Mutator Overhead
As explained in previous Sections,Orca relies on tracing uponmessage sending and receiving, and on
additional runtimemessages. This extrawork adds some overhead to the program’s execution, which
we call mutator overhead. We now discuss how much overhead Orca added to our benchmarks.
Figure 21 shows the number of application, increment, and decrement messages sent for each
benchmark, and the total number of GC cycles performed by all actors. Although 1, 2, 4, and 5
send many application messages, they never send increment messages. Most of the benchmarks
require many decrement messages, however the ratio of decrement messages over number of GC
cycles is quite small, is mainly due to the use of weighted reference counts. Figure 21 also shows
in microseconds the mutator time, mutator overhead (time spent on tracing upon sending and
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receiving) and GC time of the heavyRing benchmark. We ran this benchmark using 4 cores only4
and we vary the depth of the tree being sent from 4 to 16. This benchmark stresses one of Orca’s
weaknesses: message tracing, and considering that all this benchmark does is receive a mutable
object graph and forward it, it is expected to observe quite some overhead due to tracing. Indeed
we obtained 21% of total execution time, for the largest graph. Notably, changing these structures
to be passed as read-only completely avoids this overhead because no tracing is needed. Similar
optimisations are not possible in Beam or on the JVM. We have run such experiments, passing
immutable graphs instead, and as expected, we observed that the execution time for different
depths keeps “constant” and always below 1 second. Passing immutable data structures in Pony,
independently of their size, is almost for free.

Moreover it is also interesting to observe some GC time in this benchmark. Even though objects
do not become unreachable, Orca still performs some GC cycles 5.

6.7 Footprint
Figure 22 shows the footprint — maximum resident set size — obtained using a core count of 64
for all the benchmarks, except for the heavyRing benchmark which was obtained using depth 16
for the tree being passed around. The reason why Orca is in general worse than C4 is that in the
current implementation of Orca in Pony, GC cycles are triggered only between behaviours. Thus,
they are not as frequent as in C4 causing a larger footprint. Adding support for GC in the middle of
behaviours is orthogonal to the Orca protocol and the reason why it has not yet been implemented
is the hassle of stack scanning. Moreover, Orca also sends more messages due to GC, and it keeps
reference counting structures, which require extra space.
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Fig. 22. Footprint (KB). Note difference in y-axis in two plots.

7 CONCLUSION
Orca represents a point in the GC design space where local tracing of messages both at the sender
and the receiver side is used to avoid global GC stops. While this tracing is algorithmically costly,
scanning can be performed locally in a thread without impacting the rest of the system. Thus,
as the number of cores increases, the global impact of a single message send decreases. This
can be contrasted with a stop-the-world GC where additional threads may increase the latency
between triggering a collection and the start of the actual collection. Thus, even in an actor system
where the entire heap is effectively shared by all actors, the necessary tracing can be performed
4The ring is composed by 64 actors that behave sequentially — an actor only sends the tree after receiving it.
5Actors consume their references to the trees being passed and need to inform the owner that they no longer can reach it.
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concurrently, without blocking. Theoretically, a parallel stop-the-world collector should be able
to perform a global collection more efficiently than Orca because each object would be marked
only once (as opposed to twice per message send plus once per collection), and because of heap
partitioning techniques such as generational GC operating on a global scale. For such techniques to
be beneficial, however, their gains must outweigh any time lost waiting for threads to stop or due to
negative coherency effects for propagating mark bits to cores sharing objects. Marking algorithms
that can run in parallel with a mutator can reduce stop-the-world latency, but at the cost of less
efficient marking which may slow down the mark-phase, and expensive write-barriers slowing
down mutators.

Orca’s design allows an application to be partitioned into as many local heaps as there are actors,
and to be collected in parallel. This makes it relatively straightforward to extend Orca with an
upper-bounded heap, actor-local thresholds for collection, more coarse-grained garbage collection
like collecting all actors on a scheduler thread at the same time, or stop the entire system to collect
garbage. Some optimisations, like collecting several actors together could be implemented by fusing
their local heaps which would void the need for tracing when sending messages between these
actors. While this may be helpful for groups of actors frequently exchanging messages, a downside
is the complication of doing work stealing for load-balancing if stealing must keep all actors sharing
a single heap on the same thread. We leave this for future work.
On a similar note, in the context of the Encore actor language, Yang and Wrigstad [2017]

construct a layer on-top of Orca that supports concurrent operations on shared mutable state. This
reintroduces write-barriers, but only for the isolated sections of a program that need this feature
and relies on Encore’s type system for lock-free primitives [Castegren and Wrigstad 2017]. Since
locks can be constructed from these primitives, it is possible to handle locks in a similar fashion,
moving closer to thread-based concurrency. This too is an interesting direction for future work.

A EVALUATION (CONTINUATION)
Table 1 shows some important characteristics of our benchmarks. We list the number of application
actors and the total amount of memory allocated. We also show (in Megabytes) the heap size with
which we run them.

Table 1. Benchmarks characteristics. NI stands for Not Implemented, NA for Not Applicable, ? for unable to
measure. While perfectly possible, we have not implemented support for upper-bounding the heap in Orca
and there is as of yet no telemetry that allows us to simply sum up the size of each actor’s local heap.

Benchmark #actors # MB allocated Heap size (MB)
Pony Akka Erlang Orca Beam JVM

trees 14 226859 282602 ? 6000
trees′ 131 163641 198885 ? 7500
heavyRing 65 ? ? ? NA NA 2G
rings 1281 0.01 5881.36 ? 21
mailbox 497 0.02 NI NI NI

A.1 Scalability Results for All JVM Collectors
Here we compare the scalability of the various JVM collectors with each other. Based on the results
shown here we decided to report only C4 in Section 6. In Figure 23 we compare the results for
trees, trees′, and ringswith four different JVM collectors. We did not include heavyRing because
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although this benchmark spawns 64 actors, it has sequential behaviour, and thus it is not interesting
to evaluate scalability.

A.2 All Responsiveness Results
In Figures 24 and 25 we complete the information from Figure 17. Namely, in Figure 24, we repeat
the results for Orca, Beam, C4, and G1 from Figure 17, and in addition we show responsiveness
results for CMS, G1GC and Parallel. Here servers process trees of depth 14. Interestingly, in this
benchmark, G1GC seems to have better average responsiveness than C4, but worse outliers.
In Figure 25, we compare the responsiveness results of for Orca, Beam, C4, and G1. In this

benchmark, the servers process requests of depth 8.

A.3 Standard Deviations
In Table 2 we report the standard deviations of total execution times. Averages are reported in plots.
The column heads denote tree depth.
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Fig. 24. Resposiveness results for all protocols. Requests to servers trigger the creation of trees of Depth 14.
Results are in seconds. This Figure completes the plots in Figure 17

Fig. 25. Responsiveness results for Orca, Erlang, C4, G1, and Go. Requests to servers trigger the creation of
trees of Depth 8. Results are in seconds. This Figure completes the plots in Figure 17.
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