
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Network-level FPGA Acceleration of Low Latency Market

Data Feed Arbitration

Stewart DENHOLM†, Nonmember, Hiroaki INOUE††, Takashi TAKENAKA††, Members,
Tobias BECKER†, and Wayne LUK†, Nonmembers

SUMMARY Financial exchanges provide market data feeds
to update their members about changes in the market. Feed
messages are often used in time-critical automated trading ap-
plications, and two identical feeds (A and B feeds) are provided
in order to reduce message loss. A key challenge is to support
A/B line arbitration efficiently to compensate for missing pack-
ets, while offering flexibility for various operational modes such
as prioritising for low latency or for high data reliability. This
paper presents a reconfigurable acceleration approach for A/B
arbitration operating at the network level, capable of supporting
any messaging protocol. Two modes of operation are provided
simultaneously: one prioritising low latency, and one prioritising
high reliability with three dynamically configurable windowing
methods. We also present a model for message feed processing
latencies that is useful for evaluating scalability in future applica-
tions. We outline a new low latency, high throughput architecture
and demonstrate a cycle-accurate testing framework to measure
the actual latency of packets within the FPGA. We implement
and compare the performance of the NASDAQ TotalView-ITCH,
OPRA and ARCA market data feed protocols using a Xilinx
Virtex-6 FPGA. For high reliability messages we achieve latencies
of 42ns for TotalView-ITCH and 36.75ns for OPRA and ARCA.
6ns and 5.25ns are obtained for low latency messages. The most
resource intensive protocol, TotalView-ITCH, is also implemented
in a Xilinx Virtex-5 FPGA within a network interface card; it is
used to validate our approach with real market data. We offer
latencies 10 times lower than an FPGA-based commercial design
and 4.1 times lower than the hardware-accelerated IBM Pow-
erEN processor, with throughputs more than double the required
10Gbps line rate.
key words: data feed arbitration, acceleration, FPGA, low
latency, finance

1. Introduction

Financial exchanges send out market information in
form of market data feeds. These data feeds describe
market events such as available and completed trades.
Financial institutions can subscribe to these data feeds
and utilise the information in a number of applications:
It is possible to determine the current state of the mar-
ket and the institution’s risk, to search for time-critical
arbitrage opportunities, or to trade automatically with
algorithmic trading platforms. In the latter two exam-
ples, time-critical decisions have to be made based on
the input data, often by analysing patterns within the

Manuscript received January 1, 2011.
Manuscript revised January 1, 2011.

†The author is with Imperial College London, UK
††The author is with NEC Corporation, Kawasaki, Japan
DOI: 10.1587/trans.E0.??.1

data. This decision making is a critical element for
electronic trading and hence, it is vital messages are
received and presented in the correct order. Failure to
do so will result in the loss of profit-generating oppor-
tunities, provide competitors with an advantage, and
create a false image of the current state of the market,
increasing risk.

As message feeds are typically transmitted over
Ethernet using UDP, they offer no guarantee that the
messages will be received or arrive in order. Ever in-
creasing line rates allow for lower latency transmissions,
but little work is being done to tackle messages that are
lost in transmission. Financial exchanges address this
issue by providing redundant networks that transmit
two identical message feeds from the exchange, referred
to as A and B feeds. Financial institutions traditionally
arbitrate between the two feeds in software to miti-
gate the effects of lost packets, and provide a single
message stream for processing by downstream financial
applications. However, general-purpose architectures of
CPU systems separate data acquisition and processing,
leading to latency penalties when processing external
data.

The pipelined and parallel nature of A/B arbitra-
tion provides an opportunity for hardware acceleration
of time-critical processing before the resulting data is
passed to the CPU. While FPGAs are capable of per-
forming high bandwidth, low latency processing, achiev-
ing this requires careful consideration of design choices,
especially when dealing with the data-path widths neces-
sary to support the ever-increasing demands on latency
and throughput. Resource choice, placement and, often
times, duplication play a pivotal role in meeting these
constraints.

In this work we present an architecture for low
latency A/B arbitration, supporting all market data feed
protocols. We provide a low latency and a high reliability
mode, and support dynamically configurable windowing
methods so that downstream applications can alter the
arbitrator to respond to changing requirements in real
time. The contributions of our work are:

• A new hardware accelerated, low latency A/B line
arbitrator which runs two packet windowing modes
simultaneously. It supports three dynamic window-
ing methods, any market data protocol, indepen-

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

dent memory allocation per input, and configurable
data-path widths (section 3).
• Performance models and design considerations nec-

essary to perform low latency processing of data
from multiple inputs. This includes: critical path
analysis, guaranteeing deterministic memory access,
and creation of a low latency testing framework
(section 4 and 5).
• Implementation and evaluation of A/B line arbi-

tration using the NASDAQ TotalView-ITCH [1],
OPRA [2] and ARCA [3] market data feed proto-
cols in a Xilinx Virtex-6 FPGA. TotalView-ITCH
is also implemented on a Xilinx Virtex-5 FPGA
within a network interface card. We use our new
low latency testing framework and real market data
to measure its performance (section 6 and 7).

2. Background and Motivation

Reliable communication protocols such as TCP rely
on retransmission of lost packets to provide a reliable
message stream, but retransmissions lead to higher la-
tencies and degraded throughput. As an alternative,
one can achieve reliability through duplicating packets
and sending them through disjoint communication chan-
nels. Multiple path communication with duplicated
packets is an established method to provide reliable
communication for time-critical applications [4]. It has
also been demonstrated that dual path communication
with FPGA-based duplication and merging can main-
tain higher bandwidths with lower retransmission rates
than a single path solution [5]. However, the focus
in previous work on multi-path communication is usu-
ally on reducing retransmission rates, maintaining high
bandwidths, or providing protection against complete
link failure.

A/B arbitration is a form multi-path communi-
cation that avoids retransmission and is therefore not
fully reliable. Retransmission of packets would result
in unacceptable latencies where time-sensitive trading
opportunities will be lost. Instead, the goal is usually
to balance minimal packet losses and low communica-
tion latencies. A/B line arbitration aims to compensate
for missing packets within an acceptable time frame
and allowing each application to set and adjust this
time frame themselves is a key factor in its successful
operation and our proposed design.

The importance of A/B arbitration will continue
to grow in the future as line rates increase and financial
exchanges continue to process an ever growing number
of messages. Since exchanges send multiple messages
per packet using multicast UDP, any error during trans-
mission will result in the loss of all packet messages.
More packets processed every second means more mes-
sages bundled together into each packet, increasing its

informational value and the chance that it will contain
a bit error and be lost.

NASDAQ TotalView-ITCH 4.1, OPRA and ARCA
are market data feed protocols that provide market
information. TotalView ITCH is a data-feed provided by
NASDAQ and delivers a range of market data in variable
length messages [1]. The messages include order book
information reflecting the interest of buyers and sellers
in a particular financial instrument, trade messages,
administrative messages such as paused trading on a
security, and event controls such as start and end of the
day. The NYSE Arca data feed contains similar market
information on depth of book, trades, order imbalance
data, and security status messages [3] but the technical
implementation and packet size differ from TotalView-
ITCH. The Options Price Reporting Authority (OPRA)
provides information about transactions in the options
markets [2]. Information such as last sale information
and current options quotations is featured in a data
feed of variable length packets that can contain multiple
messages.

Morris [6] uses a Celoxica board to process finan-
cial messages, achieving a 3.5M messages per second
throughput and hardware latency of 4µs. Their trading
platform is one of the few including line arbitration,
but no details of its performance are given. It uses
a single, simple windowing system similar to the high
reliability count mode in this work and only supports
the OPRA FAST format. The windowing thresholds
are not discussed and cannot be changed.

Most stand-alone A/B arbitrators are commercial
and their implementation details are usually not pre-
sented. They tend to operate within a network interface
card (NIC) and communicate with the host via PCI
Express.

One such arbitrator from Solarflare [7] uses an
Altera Stratix V FPGA. It supports either a low latency
mode or a maximum reliability mode; the latter being
similar to the high reliability time & count mode in
this work. Multiple message protocols are supported,
but no processing latency figures are available. Another
platform from Enyx [8], also using the Altera Stratix
V, does not give any details regarding the windowing
method used or possible configuration options. It is non-
deterministic, with packet processing latencies ranging
from 1050− 3080ns based on 1500 byte packets. Some
protocols, like TotalView-ITCH 4.1, specify 9000 byte
packets must be supported, so it is unclear how this
latency will scale with larger packets.

Recently, a number of FPGA based feed processors
have been proposed. The majority do not mention A/B
line arbitration, such as the OPRA FAST feed decoder
from Leber [9], and the NASDAQ data feed handler
by Pottathuparambil [10]. Other works describe, but
do not implement, arbitration, like the high frequency
trading IP library from Lockwood [11]. This is a strange
omission since line arbitration is an integral part of

DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
3

message feed processing as it increases the amount of
available information and actively prevents message loss.

Platforms incorporating some aspects of feed pro-
cessing and trading within an FPGA are limited in the
range of functions they provide, making it difficult to
customise desired features. The flexibility to support
applications with different data requirements and dif-
ferent time scales is not present in past works. Single
trading platforms are therefore unlikely to be deployed
within financial organisations unless the design features
exactly meet the needs of the organisation, including
the market data feed protocol used.

In our previous work [12] we looked at fitting mul-
tiple basic A/B line arbitrators into a single FPGA, but
with only a single arbitration mode we limited the range
of downstream applications we could support. This is
addressed in this work with the use of three high relia-
bility modes, one of which can be output simultaneously
with a new low latency focused windowing method. We
also lacked the low latency architectures and testing
methodologies necessary to achieve the lowest possible
latencies, remedied here by the creation of a new low
latency design and testing framework.

3. Flexible A/B Line Arbitration

Messages from financial exchanges are transmitted via
identical A and B data streams. Due to network in-
frastructure differences, or errors during transmission,
messages may fail to arrive, or may be reordered. By
subscribing to both streams, members reduce the likeli-
hood of message loss, but must now merge and order
the two streams. This is facilitated by unique identifiers
within each message, typically taking the form of an
incrementing sequence number.

Uncertainty regarding the presence and order of
messages on the A and B streams give rise to four
possibilities. A message may: (1) arrive on both streams;
(2) be missing from one stream; (3) be missing from
both streams; or (4) arrive out-of-order. For the first
and second cases we should pass through the earliest
message we encounter, and have no expectation of seeing
it again. However, the third and fourth cases illustrate
the need for an expectation regarding future messages.
We require a centralised system to monitor the streams
and share state information

It is important to distinguish between market data
messages and packets. Exchanges send UDP packets
containing one or more messages. This can be viewed
as a continuous block of messages, all correctly ordered
by sequence number, with no missing messages. When
a packet is missing we are in fact dealing with a block
of missing messages.

This means packets, rather than messages, are the
smallest unit of data we process and store. In the
case where market data protocols do not issue packet
numbers—such as OPRA, where sequence numbers are

Fig. 1: The layout of our A/B line arbitration design.

assigned to messages—we use the sequence number of
the first message in the packet to identify that packet.
The next expected packet is then:

SNpkt+1 = SNpkt +Mpkt (1)

where SNpkt is the sequence number of the current
packet and Mpkt is the number of messages it contains.

Figure 1 gives our design layout, showing the high
reliability and low latency modes. The windowing mod-
ule supports three high reliability modes of operation,
for which the windowing thresholds can be set at run-
time. An operator or monitoring function can adjust
these thresholds to meet application or data feed re-
quirements.

3.1 High Reliability Modes

When we encounter a packet with a sequence number
larger than the next expected sequence number, it has
arrived out of order. The missing packet, or packets,
may be late, or never arrive. A high reliability mode
stores these early packets and waits for the missing
packets, stalling the output.

We decide how long to wait for missing packets
using a windowing system, based on either: the amount
of time we have stalled the output, the number of mes-
sages delayed, or a hybrid of both time and message
count. Within this window we store new packets while
waiting for the missing packets. Whatever system used,
we must ensure not to delay a valid, expected packet as
this is the most likely case.

Count-based windowing is used by [6], time & count
by [7], while [8] does not detail its windowing approach.
This is the first work to support all three methods pro-
vide low latency, application-specific parametrisation,
and output a high reliability and low latency stream
simultaneously. Furthermore, we offer dynamic recon-
figuration between the three windowing modes so that
downstream applications can modify the arbitration
method in real time, a feature not previously available.

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 2: High reliability time. Fig. 3: High reliability count. Fig. 4: High reliability time & count.

High reliability - time: A time-based windowing
approach is good when we want to set a hard limit on
possible delays and define the maximum processing time
of packets.

When we delay a packet, P , we assign it a timeout
value, T , the maximum number of clock cycles we will
delay it. T is decremented each clock cycle, and when it
reaches zero we discard any missing packets and output
P . An example with a single input is given in Figure 2,
where packet P2 is late, but arrives before P3’s timeout
reaches zero and is able to be output. P7, however, is
too late, so the delayed packets P8 and P9 are output,
and P7 is discarded.

Assigning the maximum timeout value to a packet
then decrementing it is a more beneficial than incre-
menting from zero. The timeout check is then simply a
zero equality check, and the number of remaining cycles
may be used to predict this condition and pre-compute
future data values, such as the expected number of
buffered messages in the next cycle.
High reliability - count: Time-based windowing sets
a packet timeout regardless of how many messages it con-
tains. Counting delayed messages—not packets—more
accurately represents processing delay, as the number
of messages per packet varies during the day. This
time-independent approach better matches the pace of
incoming data.

We output a delayed packet when either: the miss-
ing packet or packets arrive, or the number of stored
messages exceeds the maximum-count threshold. Two
examples of this are shown in Figure 3’s single input
example. Packet P3 arrives before we exceed maximum-
count = 2 buffered messages, so P3 and the stored
packets P4 and P5 are output. Packet P7 does not ar-
rive, so when we receive P10 and there are now more
than maximum-count = 2 messages buffered, we discard
P7 and output the stored packets in order.

One issue with count-based windowing occurs at the
end of the day. With no more input packets to process,
we cannot output stored packets. This windowing is
used in [6], but residual packets are not addressed. It is
solved in this work either by use of the hybrid time &
count method’s time limit, or by dynamically altering
the maximum-count threshold.
High reliability - time & count: Combining the
time and count based high modes provides the most
robust solution for processing out-of-order packets. We
can utilise the count threshold’s time-independent abil-
ity to follow the incoming packet rate as it fluctuates

during the day, whilst still allowing an upper limit on
delay times.

In Figure 4’s single input example, both the time
and count windowing thresholds are used to determine
if a stored packet should be output. Packet P4 takes
too long to arrive, therefore exceeding P5’s timeout
and resulting in P4 being discarded. Later, P8 is also
late, but whilst waiting for P9’s timeout, the number of
buffered messages exceeds maximum-count = 2, and P8

is discarded.

3.2 Low Latency Mode

The singular arbitration mode in our base design [12]
lacked the ability to reduce arbitration to its simplest,
fastest form: outputting a stream of unique, ordered
packets. We present it in this work as the low latency
mode.

We treat an input packet as valid based solely on
whether its sequence number is larger than or equal to
the next expected sequence number. We do not wait
for missing packets and hence, do not require resources
for packet storage while also minimising transmission
latencies.

The Ethernet, IP and UDP packet headers pose a
problem when trying to minimise the arbitration latency.
The packet’s sequence number is only visible after we
process these headers, which may take a number of
cycles. We solve this by assuming a packet is valid
and immediately output it. When we encounter the
sequence number and it is not valid—i.e., less than the
next expected sequence number—we register an output
error, causing the packet to be discarded.

Similarly, when packets arrive on both input
streams simultaneously, we must make the choice of
which packet we should output without any information
on either packet’s contents. There is no method that
can guarantee a priori which stream to select, so we
instead select the last stream on which we encountered
a valid packet. This differs from the previous high relia-
bility modes where we have additional cycles available
to process and compare the sequence number.

With these simple operations we reduce arbitration
to a single cycle. The single arbitration mode in [12]
took 7 cycles meaning, with our new arbitrator design,
applications can receive an arbitrated stream of packets
7 times faster if they are able to accommodate missing
packets. Also, as it does not require many resources, we

DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
5

can output the low latency mode simultaneously with
our high reliability mode.

3.3 Network-level Operation

By choosing to arbitrate between message streams at the
network layer we remove the need for each downstream
application to arbitrate between the streams themselves,
eliminating this processing redundancy. However, when
processing at the network-level, rather than within a
computing node, we must take an active role in routing
non-market data packets. Even within a dedicated mar-
ket data feed network, routers and NICs will transmit
information requests to other nodes. We must reserve
FPGA resources to route these non-market feed pack-
ets. Network identification packets are typically only
hundreds of bits, requiring little storage space, and are
processed at the lowest possible priority to minimise
interference with market packets.

Past works [6], [7] and [8] focus on processing mar-
ket data feeds on FPGAs situated within computing
nodes rather than at the network-level. Data is then
passed to the CPU or GPU via low latency DMA trans-
fers. This scales poorly if further nodes are needed as
each will need an FPGA for data feed processing. Our
packet-based, network-level arbitrator consolidates the
node-independent arbitration operations. Only the low
latency DMA transfers need be implemented within
nodes to create a newly scalable system with the same
functionality as past works.

3.4 Customisation and Extensibility

As our arbitrator deals with the initial stages of stor-
ing, processing and identifying market feed packets and
messages, it is a simple matter to extend our system to
provide additional functionality within the FPGA. We
support the following customisations:

The windowing threshold values can be recon-
figured at run time, as discussed above. The user, or
a monitoring function is able to tailor the time and
number of messages delayed, to meet both the changing
needs of the market and downstream applications.

Any physical connection for input and out-
put ports can be used. Our arbitrator can connect to
any commercial or customised network by translating
the connection’s interface, e.g. Ethernet or InfiniBand,
to a standard FPGA interface. The arbitrator may also
be used within a computing node, rather than at the
network level.

The size and number of packets stored can
be configured at compile time, for both market and
non-market packets. The size of the pipeline is adjusted
accordingly.

Any market data feed protocol can be adopted,
not just those of TotalView-ITCH, OPRA and ARCA.
The only protocol-specific information required is the

maximum packet size, and the location and bit-width
of the sequence number within the packet.

4. Performance Model

Low latency processing within an FPGA has many diffi-
culties, and the high performance requirements of A/B
line arbitration specifically, pose a number of challenges.
In this section we present a performance model of our
high performance, low latency arbitration approach.

Any decision regarding a new packet is dependent
on its sequence number, and therefore the number of
cycles we must wait to process it. Given the packet byte
position where the sequence number begins, Posseq, its
length in bytes, Lenseq, and the byte width of our data-
path, Datawidth, the number of cycles we must wait to
encounter the sequence number is then:

Cseq = bPosseq + Lenseq − 1

Datawidth
c (2)

The packet processing latency’s lower bound is
achieved when we encounter expected packets. No fur-
ther processing should be needed, but due to the delay
from Equation 2 we must still begin storing it in mem-
ory and then read it out. The number of cycles for an
expected packet is then:

Cexp = Cseq + Cread (3)

The worst case time delay, Ct, is the number of
cycles we wait when the windowing system delays a
packet. This acts as the upper bound latency. Ct is
potentially infinite for the high reliability count mode,
as it is designed to be time-independent. In practice
this only occurs when there are no further packets to
process, and can be resolved via runtime alteration of
the maximum-count threshold. The upper bound cycle
delay is given by:

Cmax = Cexp + Cwrite + Ct (4)

Ct for the time mode is simply the timeout, while
for time & count it is the lower of the time and count de-
lays. In finding Ct for the count mode we must take into
account the time taken to receive sufficient messages—
not packets—to exceed our maximum-count threshold.
This is based on: the maximum-count value, MC; the
maximum number of packets that can be stored in the
buffer, n; the number of cycles required to find the
stored packet with the lowest sequence number, log2(n);
the number of packets per input, per cycle, λp; the
number of messages per packet, λm; and the number of
inputs, I. For the count mode, Ct is then:

Ct = log2(n) +
MC

I × λp × λm
(5)

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 5: The address generator automatically splitting a
large memory.

5. High-Performance Architecture

Achieving fast, low latency processing in our arbitrator
requires careful development of the overall hardware
architecture. In this section, we present several architec-
tural considerations to achieve low latency processing
of data from multiple input streams.

5.1 Deterministic, Multiple-Input Memory Access

Storing data in DDR memory is unsuitable for low la-
tency applications due its high access times. In addition,
DDR memory locations must be refreshed periodically
to maintain their state, leading to non-deterministic
access patterns. Other memory types, such as Content-
Addressable Memory (CAM) or specialised flash mem-
ory, are not widely available in commercial systems and
their access latencies are still higher than those required
by high performance designs. Internal FPGA memory,
such as Block RAMs, are the best option to ensure fast
and predictable access times.

With multiple input sources and a single, cen-
tralised memory within an FPGA, the number of writers
to memory will exceed the available memory ports. In
reality, a large FPGA memory is comprised of many,
smaller ones mapped to any available memory within
the FPGA. Many memory ports are then available to
us, but micromanaging memory on such a scale is un-
desirable. The problem can be tackled at a higher,
algorithmic level through the use of memory address
generators.

For our multiple input system we create a single
logical memory, providing the address of a free memory
location to the logic for each input. The simplest case
of two inputs is shown in Figure 5, where the address
range of input A covers the first half of the memory,
and input B, the second. When built, the two memory
halves will be independent and so will be mapped close
to their respective accessors.

To tackle storage inefficiencies, i.e., when data does
not appear uniformly across all inputs, we must: (1)
minimise data duplicated across inputs; (2) ensure the
initial memory allocation reflects the percentage of total
data originating at each input; and (3) make sure data
is removed from each memory in proportion to that
memory’s occupancy.

For (1), we have no duplicated data in memory
as we guarantee packets are globally unique by check-
ing packet sequence numbers. Given the nature of our
duplicated market data feeds, (2) is tackled by evenly

allocating memory to each input. Finally, for (3), ar-
bitration provides for a well defined, ordered removal
of packets, for which our packet windowing methods
establish an upper bound.

We select a memory packet to output by finding
the smallest sequence number using a binary search,
requiring log2(n) cycles for n packets. Binary search is
realised in a pipelined data-path that uses Block RAM
for storing the packet numbers. The key comparison
is realised with a register storing the search key and a
comparator. The search index calculation uses two regis-
ters for the upper and lower search index, an adder and
bitshift for the midpoint calculation, and a comparator.
We do not sort packets before writing to memory as
binary insertion takes the same amount of time, but
does not scale well with multiple inputs.

5.2 Optimising Packet Accesses

Now that data access is predictable and can be easily
scaled for multiple writes we must deal with read latency.
Block RAMs require two clock cycles for their data to
be available, making packet comparison in memory very
costly, especially if both packets are stored within a
single Block RAM. A small meta-data cache in registers
will allow immediate access to packet-specific informa-
tion, reducing routing latency as fewer links to packet
memory are required.

The meta-data cache is shown in Table 1, with
example bit widths for the larger, TotalView-ITCH
protocol. To be effective it must be small, fast and
contain all necessary packet information. A cache line
is 128 bits wide and utilises dual-port distributed RAM
so it can be written and read in the same clock cycle.
It makes efficient use of resources as, even for the large
TotalView-ITCH protocol, each cache line fits into a
single SLICEM within the FPGA.

Table 1: Meta-data cache contents.
Name Bits Description

Nr. of Data 10 Size of packet/data-path width

Sequence Nr. 64 Packet’s unique sequence number

Cycles Remaining 32 Cycles until this packet times out

Nr. of Messages 16 Total messages in this packet

Final Byte Enable 4 Enable signal for final packet bytes

Packet Being Input 1 Is this packet still being input

Cache Line Free 1 Cache line available or occupied

Total 128

5.3 Cycle-Accurate Testing

The difficulty in testing low latency designs is that many
of the corner cases occur within nanosecond time-frames,
so it becomes difficult to arrange packets from multiple
feeds to arrive at the arbitrator at precise times. We
therefore create a testing framework within the FPGA

DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
7

Fig. 6: The cycle-accurate testing framework.

using two wrappers around our design, as shown in
Figure 6.

The outer, splitter wrapper, takes a packet from one
input and mirrors it on the others, either in the current
cycle or delayed one or two cycles. The splitter can
increment or decrement the mirrored sequence number
so it appears as a new packet. The inner, timer wrapper,
notes incoming packet sequence numbers, counts the
cycles until it appears on the output, and writes this
latency into the packet header.

The testing framework only requires the packet’s
sequence number location, and is otherwise application
and protocol independent. We do not interfere with the
arbitrator’s operation or affect the critical path as all
measurements are performed outside of the arbitration
module.

5.4 Improving Throughput and Latency

Improving the throughput and latency of a design can be
accomplished by widening the data-path or increasing
the clock frequency. A wider data-path requires more
resources and routing at each stage of the design, but
means fewer clock cycles are required to process packets
(see Equation 2).

The critical path is defined by operations with the
largest combined logic (Tl) and routing (Tr) delays. The
maximum clock frequency is then:

Fmax =
1

Tl + Tr
(6)

Logic delays are reduced by increased parallelism,
and using multi-staged pipelines to spread processing
over multiple cycles. Our log2(n) binary packet searcher
and multi-stage input packet processing are targeted at
minimising this delay.

Routing delays are reduced by using fewer resources,
placing interconnecting resources physically closer to-
gether, and using additional data buffering stages. Rout-
ing delays are harder to reduce and depend heavily on
the FPGA utilisation and the design’s interconnections.
We tackle this by separating data processing streams so
logic and memory for each stream are independent and
can be placed together.

Our design’s critical path comes from packet
storage and sequence number comparisons. Any re-
source/frequency trade-offs to improve throughput and
latency must then be made by modifying these design

elements: either storing fewer packets or comparing
shorter sequence numbers.

6. Implementation

We verify our proposed design and low latency architec-
ture by implementing an A/B line arbitrator for each of
the TotalView-ITCH, OPRA and ARCA market data
feed protocols. For each protocol we require knowledge
of the maximum packet size, the sequence number width
and the byte position of the sequence number in the
packet. This is determined by their specifications, and
is given in Table 2.

To reduce latency we make use of a wide 128-bit
data-path, double the 64-bit width commonly used—as
64-bit multiplied by the 156.25MHz reference frequency
= 10Gbps. This can negatively affect the routing de-
lay, but with our low latency architecture we achieve
latencies an order of magnitude lower than [8] while
maintaining at least 20Gbps throughput, twice that of
the 10Gbps Ethernet line rate.

Table 2: Packet protocol specifications.
Protocol Max Packet Size Sequence Number

Width Position
ITCH 9000 bytes 64 bits 53
OPRA 1000 bytes 31 bits 47
ARCA 1400 bytes 32 bits 46

We verify and test our design in two ways. First, we
implement an arbitrator for each of our chosen protocols
within a Xilinx Virtex-6 LX365T FPGA on an Alpha
Data ADM-XRC-6T1 card. As our processing rate is
greater than the 10Gbit Ethernet connections used by
each protocol, we transfer data via PCI Express. We
configure each arbitrator for their respective protocols by
entering the values from Table 2 into our configuration
file. Adopting a new protocol in the future requires only
that we indicate where the equivalent fields are located
within the new packet format.

Second, we implement our design on a Xilinx Virtex-
5 LX330T FPGA within an iD ID-XV5-PE20G network
interface card. This card receives a duplicated data
feed over two 10Gbit Ethernet connections. The high
reliability and low latency outputs are transmitted to
the host via PCI Express, with the layout given in
Figure 7. We also allow for additional user logic within
the FPGA. The TotalView-ITCH protocol is used to
test our real world design as it is the most resource and
processing intensive, and messages from 9 September
2012 are used to test the system.

OPRA and ARCA operate on top of UDP, while
TotalView-ITCH uses a UDP variant called moldUDP64
[13]. Our design stores 8 packets, each with sufficient
space for the Ethernet (14 bytes), IP (20 bytes) and
UDP (8 bytes) headers, as well as the packet payloads
from Table 2. Each packet has an associated meta-data

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 7: The layout of our arbitrator module within the
FPGA.

cache entry, for which the entire cache will require only
4 slices. With our deterministic, multiple-input memory
architecture we can simultaneously write packets from
each input feed and read packets out. The high-level
nature of the architecture also makes it simple to expand
or contract the memory size at compile time to suit our
specific market protocol.

7. Results

Sequence number comparisons are a source of our crit-
ical path, so reducing the width of sequence numbers
will lower our routing delay and latency. Our Virtex-6
implementation found TotalView-ITCH, with its 64-bit
sequence numbers achieved a single cycle latency of 6ns,
whereas the OPRA and ARCA both achieved 5.25ns
with sequence number widths half that of TotalView-
ITCH. This suggests that artificially truncating the
sequence numbers of packets can benefit arbitration, at
the cost of additional logic to deal with packets that
straddle the new sequence number boundary.

TotalView-ITCH’s 6ns latency results in a 166MHz
FPGA design with a maximum throughput of 21.3Gbps,
while OPRA and ARCA’s 5.25ns latency means a
190MHz design and a maximum throughput of 24.3Gbps.
Both designs are fast enough to satisfy 20Gbps process-
ing. With financial markets making greater use of higher
throughput connections, our design will be well placed to
capitalise on this increased throughput capacity. Indeed,
the TotalView-ITCH message feed is already available
via both 10Gbps and 40Gbps connections. However,
only fraction of this throughput is currently used by
the message feed. Figure 8 illustrates the market activ-
ity for TotalView-ITCH at different times of the day,
showing the total throughput per second. The rate of
incoming messages changes throughout the day, illus-
trating the need for run-time configuration of the high
reliability mode thresholds. For example, the acceptable
delay between the busy 9.30− 16.00 market hours will
be less than in the pre and post market hours. We
find that, at peak times, we must process 73Mbps (or
1000 packets per second). Our implementation is more
than capable of meeting existing demand, so we must

1x100

1x101

1x102

1x103

1x104

1x105

1x106

1x107

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

B
yt

es
/s

Time of Day

Fig. 8: Market data feed throughput during the day.

focus on shortening our processing latency, i.e., the time
taken to react to packets and messages. Previous works
often emphasise the fact that their designs operate at
the 10Gbit Ethernet line rate, but this is not required
to meet the rate of arriving current market data feed
messages.

TotalView-ITCH’s requirement for 9000 byte pack-
ets is multiple times that of OPRA (1000 bytes) or
ARCA (1400 bytes). Figures 9 and 10 show its resource
usage does not increase in proportion to this require-
ment, mainly due to buffering host communications.
Buffering plays a larger role in our network interface
card design as we implement two bi-directional 10Gbit
Ethernet connections. Its operation is therefore an im-
portant test of real world performance.

7.1 Latency

We measure our packet processing latency by analysing
our design and making use of the formulae we derive in
Section 4. We find that for our implementation, Cwrite,
the number of cycles required to write to our packet
buffer, to equal 2: one cycle to trigger a write operation,
and one cycle to write to the memory. Cread, takes:
one cycle to trigger an output operation, one cycle to
specify the memory location, one cycle for the data to
appear on the memory output, and one cycle to output
the data, for a total of 4 cycles. Each packet is broken
up into smaller segments, each of size Datawidth, and
subsequent packet segment reads are pipelined.

Plugging the protocol specific values Posseq and
Lenseq from Table 2 and Datawidth of our 128-bit (16
byte) data-path into Equation 2, we find the num-
ber of cycles to encounter the sequence number are:
Cseq = b 53+8−1

16 c = 3, Cseq = b 47+4−1
16 c = 3, and

Cseq = b 46+4−1
16 c = 3, for TotalView-ITCH, OPRA and

ARCA respectively. Despite having different message
formats, the sequence numbers of all three protocols
happen to be visible in the same cycle. The lower
bound of the packet processing latency is then found as
Cexp = 3 + 4 = 7 cycles.

DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
9

0

2000

4000

6000

8000

10000

12000

Slice Registers Slice LUTs

TotalView-ITCH
OPRA
ARCA

Fig. 9: Slice usage for the three
messaging protocols.

0

5

10

15

20

25

30

35

40

45

50

Block RAMs

TotalView-ITCH
OPRA
ARCA

Fig. 10: Block RAM usage for the
three messaging protocols.

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

W
o
rs

t
c
a
s
e
 t
im

e
 d

e
la

y
 (

c
y
c
le

s
)

Messages/cycle/input

Maximum-count = 100

Maximum-count = 10

current message rate
10x current message rate
100x current message rate

Fig. 11: Worst case time delay as an
indicator of arbitrator saturation.

The upper bound latency, Cmax, requires knowl-
edge of the worst case time delay, Ct. For the high relia-
bility time mode Ct is the user-defined timeout value for
a stored packet, therefore, Cmax = 3 + 2 + Ct = 5 + Ct.
To delay a packet for a maximum of 50 cycles, for ex-
ample, we set the timeout to 50− 5 = 45 cycles.

The high reliability count mode is not dependent
on time, but rather the rate of arriving messages, so
its upper bound latency offers little insight. As an
example, let us consider our implementation and the
peak time performance for TotalView-ITCH messages
where we receive around 1000 messages per second.
From this we obtain: n = 8, I = 2, λp = 6.5 × 10−6

packets per cycle and λm = 9000/6 = 1500 messages
per packet. Here, λm assumes the worst case sce-
nario of 100% packet utilisation, modelling a fully sat-
urated market feed. Using Equation 5 and setting the
maximum-count threshold MC = 10 messages, we find
Ct = log2(8)+ 10

2×6.5×10−6×1500 = 516 cycles. The upper

bound latency is then Cmax = 3 + (2− 1) + 516 = 520
cycles, where one of the Cwrite cycles is performed in
parallel, so the write latency is only 1 cycle.

A worst case time delay of 520 cycles is a long
time for TotalView-ITCH messages, but for OPRA we
find an even longer 10125 cycles. For MC = 10 it
is possible for this threshold to be exceeded multiple
time over within a single cycle, and indeed, this is the
most likely scenario. It is therefore best that Cmax

is not used as an indicator of upper bound latency,
but rather as a measure of the incoming message rate,
with consistently low values indicating an increasing
likelihood of throughput saturation.

7.2 Real World Performance

From analysing the messages from our real world imple-
mentation, within which we process TotalView-ITCH
messages from two redundant 10Gbps Ethernet links,
we find we process about 322 million messages through-
out the day. This would require 29 bits for message
sequence numbers, demonstrating that we can safely
truncate TotalView-ITCH messages without affecting
performance.

The real world implementation also allows us to
verify our latency calculations by making use of our
cycle-accurate testing framework. By inspecting the
packets on the host after they have been arbitrated we
can easily read out the number of cycles it took for each
packet to be processed. For the high reliability mode
we find it takes 7 cycles to process expected packets,
i.e., packets not needing to be buffered. For the low
latency mode we find packets are processed in 1 cycle.
This low latency result also succeeds in demonstrating
the resolution of our testing framework, as we are able
to measure processes that occur within one cycle.

7.3 Future Performance Scalability

Our new saturation indicator is shown in Figure 11
where the message rate is used to calculate the worst
case time delay, Ct, for maximum-count values ranging
between 10 and 100 messages. As the rate increases,
Ct tends towards log2(8) = 3 cycles, indicating the
arbitrator is becoming saturated and the high reliability
mode is now effectively functioning as a higher latency
version of the low latency mode. The value we calculated
for Ct using our real market data implementation is
plotted in the graph as a square. From this we see
that current market rates are well within the range that
allows the high reliability modes to work effectively.

To model future message rates we plot a circle and
triangle in Figure 11, representing over 6 million and 60
million messages per second respectively. We see that
6 million messages is over an order of magnitude away
from saturation meaning our arbitrator is well within its
operational limits. The triangle’s 60 million messages a
second is closer to saturation, but has not yet crossed
the inflection point. For such high message rates, the
effectiveness of arbitration can then be increased using
a higher maximum-count.

As even 60 million messages per second is still less
than the 10Gbps line rate of Ethernet, it is possible to
process 100 times the current market data rate using
current technology.

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

7.4 Performance Improvement

We now measure our new arbitrator design against our
basic design from previous work [12]. The new design
supports three high reliability windowing methods and
simultaneously outputs a low latency mode with a single
clock cycle latency. In high reliability mode, our new
design achieves a 42ns latency for the resource intensive
TotalView-ITCH protocol, and 36.75ns for OPRA and
ARCA. The previous design achieved only a 56ns latency
for all packet protocols. In low latency mode, our new
design supports latencies of 6ns for TotalView-ITCH
and 5.25ns for OPRA and ARCA. This mode is not
available in previous work.

Finally, we compare a software arbitrator using the
cutting-edge IBM PowerEN processor [14], with out-of-
order packets stored in L2 cache and using a time-based
windowing mechanism similar to the high reliability
time mode in this work. Arbitration is performed using
only the OPRA protocol and takes 150ns compared to
36.75ns in our design. Thus, our design achieves a 4.1
times lower latency.

8. Conclusion

In this paper we outline an A/B line arbitrator for mar-
ket data feeds that operates at the network level. We
present an architecture that simultaneously produces a
high reliability and a low latency output stream. A key
novelty in this work is the ability to dynamically recon-
figure the high reliability with three windowing methods
to adapt to the requirements of downstream financial
applications in real time. We also introduce network-
level processing which was previously not available. Our
architecture supports any market data protocol, and
can be configured for different data-path widths.

Furthermore, we present a model for packet process-
ing latencies and discuss architectural considerations of
efficient low latency design, opportunities for efficient,
high-level configuration, and our impact on downstream
applications.

An implementation of our architecture targeting
a Xilinx Virtex-6 FPGA achieves lower latencies than
our previous work. We now achieve 42ns for TotalView-
ITCH and 36.75ns for OPRA and ARCA, where our
previous implementation had a fixed latency of 56ns
regardless of the protocol on the same target device.
Both designs have a lower bound latency of 7 cycles for
high reliability processing, while our new low latency
mode performs simple arbitration within 1 cycle. This
corresponds to latencies of 6ns and 5.25ns respectively.
This mode was not available previously.

Finally, the most resource intensive protocol,
TotalView-ITCH, is also implemented on a Xilinx Virtex-
5 FPGA within a network interface card using real
market data, and verified using our new cycle-accurate

testing. We discover latency measurements can indi-
cate message feed saturation, providing a quantifiable
method to indicate the point at which the low latency
windowing mode becomes the optimal approach. This
is used to demonstrate the effectiveness of our design
at message rates 100 times their current level. For the
three messaging protocols examined, TotalView-ITCH,
OPRA and ARCA, we offer latencies 10 times lower
than an FPGA-based commercial design and 4.1 times
lower than the hardware-accelerated IBM PowerEN pro-
cessor, with throughputs more than double that of the
specified 10Gbps line rate.

References

[1] “NASDAQ TotalView-ITCH 4.1.” https://www.nasdaqtrader.

com/content/technicalsupport/specifications/dataproducts/

NQTV-ITCH-V4_1.pdf, 2013.
[2] “OPRA Participant Interface Specification.” http://www.

opradata.com/specs/participant_interface_specification.

pdf, 2011.
[3] “NYSE ARCA Europe Exchange Client Specification.” http:

//www.nyxdata.com/doc/36868, 2013.
[4] P. Ramanathan and K.G. Shin, “Delivery of time-critical

messages using a multiple copy approach,” ACM Trans.
Comput. Syst., vol.10, no.2, pp.144–166, May 1992.

[5] Y. Kodama, T. Kudoh, and T. Shimizu, “Dependable
communication using multiple network paths on fast long-
distance networks,” Systems and Computers in Japan,
vol.38, no.12, pp.46–54, 2007.

[6] G. Morris, D. Thomas, and W. Luk, “FPGA Accelerated
Low-Latency Market Data Feed Processing,” High Perfor-
mance Interconnects, 17th IEEE Symposium on, 2009.

[7] Solarflare, “Solarflare AOE Line Arbitration Brief.” http://

www.solarflare.com/Content/UserFiles/Documents/Solarflare_

AOE_Line_Arbitration_Brief.pdf, 2013.
[8] Cisco, “The next generation trading infrastructure.” http://

www.cisco.com/c/dam/en/us/products/collateral/switches/

nexus-3000-series-switches/white_paper_c11-720080.pdf.
[9] C. Leber, B. Geib, and H. Litz, “High Frequency Trading

Acceleration Using FPGAs,” Field Programmable Logic and
Applications (FPL), pp.317–322, 2011.

[10] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and
V. Natoli, “Low-Latency FPGA Based Financial Data Feed
Handler,” Field-Programmable Custom Computing Ma-
chines (FCCM), pp.93–96, 2011.

[11] J.W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English,
and K.A. Vissers, “A Low-Latency Library in FPGA Hard-
ware for High-Frequency Trading (HFT),” High-Performance
Interconnects (HOTI), pp.9–16, 2012.

[12] S. Denholm, H. Inoue, T. Takenaka, and W. Luk,
“Application-specific customisation of market data feed arbi-
tration,” Field Programmable Technology (FPT), pp.322–
325, 2013.

[13] “MoldUDP64 Protocol.” http://www.nasdaqtrader.com/

content/technicalsupport/specifications/dataproducts/

moldudp64.pdf, 2009.
[14] D. Pasetto, K. Lynch, R. Tucker, B. Maguire, F. Petrini,

and H. Franke, “Ultra low latency market data feed on IBM
PowerEN,” Computer Science - Research and Development,
vol.26, pp.307–315, 2011.

