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Abstract

Modelling uncertainty in neural networks is an important task in an automated
image segmentation pipeline. In this work, we compared uncertainty estimates
obtained using Monte Carlo (MC) Dropout and Bayes by Backprop (BBB) on a
U-Net for cardiac MRI segmentation. We also showed a practical application of
uncertainty measures in detecting inaccurate segmentation.

1 Introduction

Neural networks have been shown to perform well for automatic cardiac MR image segmentation
[Bai et al., 2018, Bernard et al., 2018]. However, when using these methods in an automated image
analysis pipeline, it is important to know which segmentation results are problematic and require
further manual inspection. This may reduce segmentation errors for downstream analysis.

A few methods have been proposed to directly predict cardiac MR image segmentation quality using
machine learning techniques. For example, Robinson et al. [2018] used a 3D residual network to
directly predict the Dice score of a predicted segmentation. However, these methods add another
black-box on top of the automated segmentation. Another approach is to look at model uncertainty.
While uncertainty is not the same as accuracy, a model with well calibrated uncertainties would mean
that segmentation outputs with low uncertainty are likely correct while outputs with high uncertainty
are likely problematic. In terms of quality control, identifying segmentations with high uncertainty
and correcting these cases with manual segmentation may lead to lower segmentation errors.

Several papers have explored segmentation uncertainty in medical images using MC Dropout to
approximate Bayesian neural networks [Roy et al., 2018, Leibig et al., 2017]. However, there are
some limitations with this method. For example, when using a constant dropout rate, the model
uncertainty does not decrease as more data is observed [Osband, 2016] and the dropout rate needs
to be tuned depending on model size and number of data points [Gal, 2016]. Other approaches to
approximate Bayesian neural networks include Concrete Dropout and Bayes By Backprop; however,
these methods have not yet been explored in medical imaging. In this paper, we compared two
methods for estimating uncertainty - MC Dropout and Bayes by Backprop - in the context of cardiac
MR image segmentation. In addition, we explored the use of uncertainty measures derived from these
methods for detecting inaccurate segmentation.
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2 Methods

Bayesian Neural Networks Bayesian neural networks (BNNs) provide a theoretical framework for
capturing model uncertainty. In BNNs, we would like to calculate a posterior distribution of weights,
p(w|X,Y) instead of a maximum likelihood or maximum-a-posteriori estimate of w. Variational in-
ference is a scalable technique that aims to learn an approximate posterior distribution of the weights,
q(w), by minimizing the KL divergence between the approximate and true posterior. This is equiv-
alent to maximizing the evidence lower bound (ELBO): Eq(w)[log p(Y|X,w)]− KL[q(w)||p(w)]
where p(w) is the prior distribution of the weights. The first term is the data-driven term while
the second term can be viewed as a regularizer. For classification problems, the log likelihood or
log p(Y|X,w) is equivalent to negative cross-entropy.

Bayes by Backprop (BBB) A simple way to parameterize the posterior distribution of the weights
is to use a fully factorized Gaussian and perform gradient updates using the “reparameterization
trick”. Each weight in the neural network is drawn independently from a Gaussian distribution with
mean µ and standard deviation σ which is parameterized by softplus(ρ). The training procedure,
known as Bayes by Backprop (BBB) [Blundell et al., 2015], is as follows:

1. Sample ε ∼ N (0, I). Then, set w = µ+ softplus(ρ) ◦ ε
2. Calculate the loss function (-ELBO):L = cross-entropy+αKL[(q(w)||N (µprior, σpriorI)]

3. Update all parameters, µ and ρ, with a gradient descent optimizer (e.g., Adam)

MC Dropout MC Dropout [Gal and Ghahramani, 2016] is a commonly used method because it is
easy to implement and does not require additional parameters or weights. This can be interpreted as
choosing the posterior distribution q(w) to be a mixture of two Gaussians with very small variances,
one at 0 and the other at the weight. Dropout is applied during training and testing in order to obtain
segmentation samples.

Dataset We used short-axis b-SSFP cine MR images from the UK Biobank dataset and trained
models for the segmentation of the left ventricle blood pool (LV), left ventricle myocardium (Myo)
and right ventricle (RV). 156, 103, and 569 subjects were used for training, validation, and testing,
respectively. Each subject has, on average, 20 images slices.

Bayesian Segmentation Network We used a basic 2D U-Net [Ronneberger et al., 2015] with
either MC Dropout or BBB. The basic U-Net consists of 10 layers with 3x3 filters and 2 layers with
1x1 convolutions followed by a softmax layer. The number of filters ranges from 32 to 512. In both
methods, the final prediction was obtained by averaging the softmax probabilities of 50 samples.

For MC Dropout, we experimented with adding dropout on all layers or only on the central layers
with different dropout rates: 0.5, 0.3, 0.1. These settings effectively tune the amount of uncertainty in
the model. For BBB, we experimented with different standard deviations of the prior distribution:
σprior =: 0.1, 1.0, 10, 30 and different coefficients for the prior term: α = 0.1 or 1.0. We used
the Dice coefficient and average symmetric surface distance (ASSD) to compare the quality of the
segmentation and evaluate the average per-pixel negative log likelihood and calibration plots to
compare the uncertainty estimates.

Structural Uncertainty Measures Similar to Roy et al. [2018], we defined two structural uncer-
tainty measures as follows:

1. DiceMeanToSamples = Mean
({

Dice(S̄, Si)
}
i=1...T

)
2. ASSDMeanToSamples = Mean

({
ASSD(S̄, Si)

}
i=1...T

)
where S̄ is the mean predicted segmentation and Si, i ∈ {1 . . . T}, are predicted segmentation
samples from the neural network. We use the standard definitions of the Dice coefficient and ASSD
[Bai et al., 2018] except for cases where one of the segmentations is blank (the structure is not present
in the slice). The Dice coefficient was set to 1 when both segmentations are blank and 0 when one of
the segmentations is blank. ASSD was set to 0 when both segmentations are blank and to the average
diameter of the non-blank segmentation when exactly one segmentation is blank.
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3 Results

Training Time UNet-BBB has twice as many parameters as UNet-MCDropout and requires 1.5 -
2x the amount of time for training. Both methods require similar time for inference.

Segmentation Performance and Uncertainty Estimates For each method, we report test per-
formance of the model which gave the best validation log likelihood. Among the MC Dropout
models, adding dropout on the central layers with a dropout rate of 0.5 performed the best. For BBB,
α = 30 with σprior = 1.0 performed the best. Table 1 shows that UNet-MCDropout and UNet-BBB
performed equally well in terms of the Dice coefficient, ASSD, and test log likelihood. Both methods
also have excellent calibration based on plots of confidence vs accuracy (not shown here). Variance
of the segmentation probability maps was observed to be higher around the edges of the ventricles
and near the base and apex of the heart where segmentation is poor.

Table 1: Segmentation performance of the U-Net with MC Dropout or BBB. ↑ indicates
higher is better. ↓ indicates lower is better. Format: Mean (Standard Deviation)

Dice ↑ ASSD (mm) ↓ Test Log Likelihood ↑
LV Myo RV LV Myo RV (×10−3)

UNet-MCDropout 0.938 0.875 0.899 1.05 1.08 1.76 -4.80 (1.70)
(0.038) (0.032) (0.045) (0.38) (0.34) (0.71)

UNet-BBB 0.937 0.872 0.898 1.07 1.08 1.77 -4.88 (1.56)
(0.040) (0.031) (0.044) (0.42) (0.31) (0.70)

Segmentation Quality Control For each method, we considered the predicted segmentation to be
poor when True Dice < 0.85 or True ASSD > 1.5 mm. These numbers are loosely based on the
inter-observer variability reported in Bai et al. [2018]. We then calculated the uncertainty measures,
DiceMeanToSamples and ASSDMeanToSamples, using the network prediction samples alone and evaluated
how well these could identify poor segmentation.

Figure 1 shows the relationship between the number of images with poor segmentation remaining in
the dataset and the number of images flagged for manual correction as we change the uncertainty
threshold, i.e., (positives - true positives) vs (true positives + false positives) where positive represents
poor segmentation. As we restrict the predictions to be the ones in which we are more certain, we
flag more images for manual correction and the number of images with poor segmentations decreases.
The ideal curve for these plots would be towards the bottom left. Figure 1 shows that the two methods
are comparable. MC Dropout is better than BBB in terms of average precision for detection of poor
segmentation.
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Figure 1: Number of images with poor segmentation remaining after flagging images for manual correction.
Rows: Different criteria for poor segmentation. Columns: Different structures. Dashed line represents ideal
curve.

3



4 Conclusions

In this work, we showed that MC Dropout and BBB demonstrated similar performance in a U-Net
for cardiac MRI segmentation. Uncertainty measures derived from either method may be used in
detecting inaccurate segmentation. Having the ability to know when a segmentation is inaccurate is
useful to reduce downstream errors.
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