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Abstract. AutoMed is a database integration system that is designed
to support the integration of schemas expressed in a variety of high-level
conceptual modelling languages. It is based on the idea of expressing
transformations of schemas as a sequence of primitive transformation
steps, each of which is a bi-directional mapping between schemas. To be-
come an efficient schema integration system in practice, where the num-
ber and size of schemas involved in the integration may be very large,
the amount of time spent on the evaluation of transformations must be
reduced to a minimal level. It is also important that the integrity of a
set of transformations is maintained during the process of transforma-
tion optimisation. This paper discusses a new representation of schema
transformations which facilitates the verification of the well-formedness
of transformation sequences, and the optimisation of transformation se-
quences.

1 Introduction

A major task in database integration is the generation of a global schema from
a collection of local source schemas of existing databases. There are three main
approaches to database integration, namely global as view (GAV), local as view
(LAV), and both as view (BAV) [12].

In GAV, the constructs in the global schema are defined as views over source
local schemas. The popularity of this approach, which is adopted by a number
of database integration systems such as TSIMMIS [6], InterViso [15], and Gar-
lic [14], can be attributed to its simplicity of implementation. Source schemas are
integrated by a set of view definitions which contain predefined query plans that
describe the location and retrieval method of the required data. Query planning
is made simple and efficient in this approach, however it suffers from one major
drawback — when new schemas are added to the system or existing schemas are
modified, all corresponding query templates will have to be rewritten.

In LAV, local schema constructs in data sources are defined as views over the
global schema. Some systems adopting the LAV approach include Infomaster [5],
Information Manifold [8], and Agora [9]. Query plans are computed at the time
queries are submitted to the system. This approach offers greater flexibility over
the GAV approach in changes in the number or contents of local schemas because



in LAV, the changes can be handled without affecting existing view definitions.
The drawbacks of the LAV approach are that, (1) query processing is much more
complex than in GAV, and (2) if the contents of the global schema changes,
modification is then required for all the views that contain in their definition the
changed global schema constructs.

In BAV, bi-directional mappings between schemas are used for transforming
schemas and thus it supports evolution of both global and local schemas [11]. It
is also possible to automatically derive GAV and LAV views from BAV views.
Section 2 discusses the AutoMed [13] framework which adopts the BAV ap-
proach. More detailed discussion on the conversion of GAV and LAV into BAV
views and vice versa can be found in [12]. The flexibility of the BAV approach
allows transformations to be manipulated for optimisation purposes. Section 3
describes new techniques we have developed for the optimisation of transforma-
tion sequences. Section 4 concludes the paper with some remarks on the possible
extension in the applicability of our optimisation techniques.

2 The AutoMed Framework

The AutoMed framework supports the integration of schemas that are expressed
in different data modelling languages. The use of a high-level data model as the
Common Data Model (CDM) in the global schema makes it very complicated to
map constructs of local schemas, which possibly use different data models, with
one another. This is because, typically, high-level models provide a richer set of
modelling constructs, and hence a concept may be represented in a number of
ways. To avoid this complication, the AutoMed framework uses the Hypergraph
Data Model (HDM) [13], a low-level hypergraph-based data model, as the CDM.

The constructs contained in the HDM are Node, Edge, and Constraint. An
HDM schema S is then a triple containing a set of Nodes, a set of Edges, and
a set of Constraints — S = (Nodes, Edges, Constraints). Nodes and Edges
have a scheme and Constraints are boolean-valued queries over S. The scheme
of a node is {IV)), where N is the name of the node. The scheme of an edge is
{E, Ny,...,N,), where E is the name of the edge and Ny, ..., N, are the nodes
connected by E.! A set of mappings between higher-level model constructs and
HDM constructs is defined. A set of primitive transformations has been de-
fined to transform HDM models. The operators of these transformations include
add, delete and rename for semantically equivalent schemas, extend and contract
for semantically overlapping (non-equivalent) schemas, and id for use only in
the implementation of the AutoMed system.? By using the mappings between
constructs of different models, schemas and transformations can be translated

! 1t is optional to give an edge a name: where an edge is not given a name, its scheme
will be (-, N1,...,Np).

2 The id transformations are special transformations that are used only in the imple-
mentation of the AutoMed system. They are used for mapping Java object references
that point to two semantically equivalent constructs. More details on id transforma-
tions can be found in [3].



from one modelling language to another. Table 1 shows some of the primitive
transformations available for transforming ER models and their corresponding
transformations expressed in the HDM.

ER transformations HDM transformations
addEnt({N)),q) addNode({N),q)
addAtt({(N, A)),.q) addNode({(V : A), {Y | (X,Y) € q}),

addEdge((_, N, N : A),q)

addRel({R, N1, ..., Nu)q) addEdge({R, N1, ..., Nn),q)

addGen({G, N, N1,...,N,))  addCons(Ny C N), ..., addCons(N, C N)
Table 1. Example primitive transformations

In AutoMed [1] two schemas S; and S» are transformed into each other by
incrementally applying to them a set of primitive transformations. This set of
transformations forms the pathway between S; and S». A distinguishing feature
of the AutoMed approach is that transformations are automatically reversible,
i.e., transformations are bi-directional, thus pathways are also bi-directional.
This is achieved by embedding in each transformation the extent of the con-
struct created or removed by the transformation. The extent is expressed as a
query ¢, as shown in Table 1, which defines how the data associated with the
new/removed construct can be derived from other existing constructs in the
original schema. Note that some transformations do not contain ¢. This means
that the new/removed construct cannot be derived from existing constructs in
the original schema. The reader is referred to [10] for a more detailed discus-
sion on the AutoMed transformations and its current state of implementation [3,
2]. Table 2 shows some example ER transformations ¢ and their reversed form
t. The reversibility of transformations enables automatic translation of queries
posed on any schema into appropriate queries on a particular target schema, as
long as there exists a pathway between the schemas. To illustrate how schemas

t:S. = Sy t:5, =Sy
addEnt({N),q) deleteEnt({V)),q)
addAtt({N, A),q) deleteAtt({(V, A),q)
deleteEnt({(N)),q) addEnt({N),q)
deleteAtt({V, AY,q)  addAtt({N, A),q)
Table 2. Reversibility of ER transformations

are transformed, Figure 1 shows three source ER schemas S;, S» and Ss3, and
their global schema S,. In the figure, rectangular boxes, circles, diamonds and
hexagons respectively denote entities, attributes, relationships and generalisation
hierarchies; key attributes are underlined and nullable attributes are suffixed by

#.
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The pathway from S; to S,, denoted TPs, _;s,, is shown below.? The last
value in the scheme of attributes is one of key, null and notnull, which respectively
represents primary key, nullable and non-nullable attributes.

TPs, s, :

t1 addEnt({(male)), {X | (X,’ m’) € {person,sex,notnull)})

t2 addEnt({({female), {X | (X,’ f') € {person,sex,notnull))})

t3 addGen({(sex,person,male,female)))

t4 deleteAtt({(person,sex,notnull)),

{X,)Y|X € {maleh AY =" m' VX € {female) AY = f'})

ts extendAtt({(dept,site,null)))

Reversing each of the transformations and their order in T'Ps, s, gives us
the pathway from S, back to Si.

TPs, s, ¢

5 contractAtt({(dept,site,null)))

t4 addAtt({person,sex,notnull)),

X, Y| X € (maleh AY =" m' vX e {female) AY = f'})

3 deleteGen({(sex,person,male,female)))

t; deleteEnt({female)), {X | (X, f') € {{person,sex,notnull)})

t1 deleteEnt({male)), {X | {X,/ m') € {person,sex,notnull})})

PathwaysT'Ps, s, and T Ps,_, s, are shown below. Their reverse, i.e., T Ps, s,
and TPs,_,s, are derived in a similar fashion as for T'Ps, s, .

TP52_,5g :
6 addEnt({dept)), {X | {-, X) € {person,dname,notnull})})
t7 addAtt({(dept,dname,key)), {X, X | {_, X) € {(person,dname,notnull)}})
s extendAtt({(dept,site,null}))
o addRel({worksin,person,dept,1:1,1:N)), {X,Y | (X,Y) € {person,dname,notnull}) }
t1o deleteAtt({(person,dname,notnull)),
XY | (4, X,Y) € {worksin,person,dept,1:1,1:N )}

NN

~+

~

S S

TPs, s, :
t10 addAtt({person,dname,notnull)),
{X, Y | (L, X,Y) € {worksin,person,dept,1:1,1:N))}
ty deleteRel({worksin,person,dept,1:1,1:N)),
{X, Y | (X,Y) € {(person,dname,notnull)) }
ts contractAtt({{dept,site,null}))
t7 deleteAtt({dept,dname,key)), {X, X | (-, X) € {person,dname,notnull)})
ts deleteEnt({dept)), {X | (-, X} € {person,dname,notnull})})
TPs; s, ¢
t11 renameEnt({{employee)), {(person)))
t12 renameAtt({{dept,location,null}), {dept,site,null)))
t13 addEnt({male)), {X | (X, m’) € {person,sex,notnull})})
t14 addEnt({female), {X | (X, ') € {person,sex,notnull))})
t15 addGen({(sex,person,male,female)))
t1e deleteAtt({person,sex,notnull)),
{X,Y | X € (male) AY =" m' VX € {female) AY =" {'})

3 Note that for transformation t;, because an ER generalization is translated down
into a constraint in the HDM, and constraints do not have an extent, so a query
is not required for the addGen transformation. More details can be found in [10,
pg. 104].



_ TPss;
t16 addAtt({person,sex,notnull)),
{X,Y | X € (male) AY =" m’' VX € {female) AY =" f'})
t15 deleteGen({(sex,person,male,female)))
t14 deleteEnt({(female)), {X | (X, f'} € {person,sex,notnull}})
t13 deleteEnt({male)), {X | (X, m'} € {person,sex,notnull})})
12 renameAtt({(dept,site,null)), {dept,location,null)))
t11 renameEnt({person)), {employee)))

3 Optimising Transformation Pathways

The transformations in Section 2 are specific to the ER model. In this section,
the focus is on the general operation types of transformations. For example,
an add transformation in this section refers to all the add-type transformations
including addEnt, addRel, etc., for the ER model, addNode and addEdge, etc., for
the HDM, and all other add X for other data models, where X is a construct of
a particular data model.

A pathway may contain redundancy as the number and size of schemas grow
in a network of schemas interconnected by pathways. The aim of developing
transformation optimisation techniques [11] is to detect such redundancy, and
rebuild the pathway with the redundant transformations removed, so as to make
the evaluation of transformations, and hence the materialization of intentional
schemas, more efficient.

We have developed a formal representation of transformation called the
Transformation Manipulation Language (TML) that can be used for detecting
any redundancy in pathways, as well as validating their well-formedness.

3.1 Semantics of Transformations and a Transformation
Manipulation Language

The TML is designed to represent transformations in a form suitable for the
analysis of the schema constructs that are created, deleted or are required to be
present or absent for the transformation to be correct. In the definitions that
follow, we require a function sc which, given a query or a schema construct,
determines all the schema constructs that must exist for the query or schema
construct to be valid.

The function sc(P), where P is a schema construct, is a recursive function
that returns the union of P itself, plus sc(p1) U se(p2) U ... U sc(pr), where p;
are the constructs in the scheme of P.

sc({p,p1,p2, -, Pa))) = (P, p1, P2, .., pa)) U sc(pr) U sc(pa) U ... U sc(pn)

For example, sc({w,p.d)) = {{w,p.d), {p)), {d)}. Table 3 shows the properties
of the sc(P) function.

The TML notation formalises a transformation ¢; transforming a schema S;
to a schema S;11 as having four conditions a;, b;, ¢f and d; :



sc(P;U...UP;) =sc(P)U...Usc(P;)
sc(D) =0
Table 3. Properties of the sc(P) function

— The positive precondition a] is the set of constructs that ¢; implies must be
present in S;. It comprises those constructs that are present in the query of
the transformation (given by sc(q)) together with any constructs implied as
being present by the construct c:

t; € {add(c, q),extend(c, q)} = af = (sc(c) — ¢) U sc(q)
t; € {delete(c, g), contract(c, q), rename(c, ¢'),id(c, ')} — aj = sc(c) U sc(q)

— The negative precondition b; is the set of constructs that ¢; implies must
not be present in S;. It comprises those constructs which the transformation
will add to the schema, and thus must not already be present:

t; € {add(c, q), extend(c, q), rename(c’, ¢),id(c,¢)} = b =¢
t; € {delete(c, ¢), contract(c,q)} = b, =0

— The positive postcondition c;r is the set of constructs that ¢; implies must

be present in S;y1, and is derived in the same way as a;r (i.e. the positive
precondition of %;):

t; € {add(c, q), extend(c, q), rename(c’, ¢),id(c', ¢)} — c;r = sc(c) U sc(q)
t; € {delete(c, g), contract(c,q)} — ¢ = (sc(c) — ¢) U sc(q)

— The negative postcondition d; is the set of constructs that ¢; implies must
not be present in S;y1, and is derived in the same way as b; :
t; € {delete(c, q), contract(c, g), rename(c, ¢'),id(c, ')} = d; = ¢,
t; € {add(c, q), extend(c,q)} = d; =0

Example 1 shows the add and extend transformations and their corresponding
TML representation. To save space, the constructs in Figure 1 are abbreviated

as shown in Table 4.
Example 1

TML(tr) = tr: [(d)(p){p.dn) ™, (d.dn)) ~, () (PN (p.dn) {d.dn) ™, 0]
TML(ts) = t5: [(d) ", (dish) ~, (d) (ds) ™, 0]

Abbreviation |[Scheme Abbreviation|Scheme

{p) {(person)) {w,p,d) {worksin,person,dept,1:1,1:N))
{p.dn)) {(person,dname,notnull}) || {s,p,m,f)) {(sex,person,male,female))
{p.s) {(person,sex,notnull)) {dy {(dept))

{(m) {(male)) {(d.dn)) {{dept,dname key))

%) ((female)) (d.s) ((dept.site,null)

{e) {(employee)) «d.1y {dept,location,null))

Table 4. Abbreviations used for the scheme of constructs in examples

Example 2 shows the delete and contract transformations and their corre-
sponding TML representation and Example 3 shows the rename transformation
and its corresponding TML representation.



Example 2

TML(E) = %o : [(d) (PN {p.dn) ™, 0, (p) (p.dn) T, (d)) ]
TML(E) = & : [(d)(ds) 0, ()™, (dsh) ]
Example 3

TML(tn) = o= [{e) ™, () 5 ()", (e ]

3.2 Properties of the TML

There are three types of transformations, namely insertion-only, removal-only
and insertion-removal transformations. add and extend are insertion-only trans-
formations as they insert a single construct into a schema. The delete and con-
tract transformations are removal-only as they remove a single construct from a
schema. rename and id are insertion-removal transformations where they insert
a construct into a schema and at the same time remove another construct from
that schema. In the TML, a transformation ¢; can be deduced as an insertion-
only transformation if d; = () because insertion-only transformations do not
require in their postconditions the absence of any constructs. Similarly, ¢; is a
removal-only transformation if b; = () because removal-only transformations do
not require in their preconditions the absence of any constructs. An insertion-
removal transformation will have the property (b;” # 0 A d; # ). The construct
inserted by a transformation ¢; can be found in b; and the construct removed
by ¢; can be found in d; .

3.3 Rules for Optimisation

We can verify whether or not a pathway is well-formed by expressing the trans-
formation steps in the TML. Provided that the pathway is well-formed, we can
determine when the order of two transformations can be rearranged, when they
can be simplified, and when they are redundant and hence can be removed from
the pathway. In this section, T'P refers to the pathway containing transforma-
tions t,, to t,, denoted T'Py, ,, as shown below.
TP = [tm = [a, by 6 din], tmgr 2 a1 b s 6 A ], -
tn : [af, by, ¢ d7]]

The set of rules discussed include the well-formedness rules (for verifying
whether or not TP is well-formed), the reordering rules (for checking whether
or not two transformations can be reordered), and the optimisation rules (for
detecting redundant and partially redundant transformations). A TP must be
verified as well-formed before any optimisation rules can be applied and its well-
formedness is maintained after the application of any optimisation rules.

Well-Formed Transformation Pathways A pathway TP from schema Sy,
to Sy, is said to be well-formed if for each transformation t; : S; — S; 11 within
it:



— The only difference between the schema constructs in S;;; and S; is those
constructs specifically changed by transformation ¢;, implying that S;11 =
(S;iucl)—d; and S; = (Siy1 Ual) —b;

— The constructs required by ¢; are in the schemas, implying that aZTL c S,
b; N S,' = Q), C?_ g Si+1 and d; N Si+1 = @

The rule for verifying the well-formedness of a pathway, wf, which captures
the definition discussed above, is given below. The first wf rule applies recur-
sively to each transformation in the pathway. When there is no more transforma-
tion, the second wf rule is used to verify that applying all the transformations
in the pathway to S, results in a schema that is equal to S,, both in terms
of the content of the schema constructs in each schema and the extent of the
schemas. Note that the wf rule may be used in two different ways. Firstly, given
a schema S,,, representing a data source and a pathway TP, we can derive the
structure and the extent of the resultant schema S,,. Secondly, if both S,,, and S,,
are existing schemas representing two data sources, the wf rule may be used to
verify that T'P contains the transformations that correctly transforms S,, into
Sh-

WF(Sm, Sns [tmytmtty - -5 tn-1]) < at €S AbL NS =0 A
wf((Sm U C%) —d,,, Sn, [tm+1, ce ,tn_1])
WF(SmsSn, []) ¢ Sm = Sn A Ezt(Sp) = Ext(S,)

Reordering Transformations Because the rules for detecting redundant and
partially redundant transformations only apply to adjacent transformations, the
order of transformations in a pathway may need to be altered during the detec-
tion of any possible redundancy, so that a transformation may be moved and
paired up with any other transformations in the pathway. Moving a transforma-
tion t; to pair up with ¢; in T'P involves recursively reordering ¢; with the next
transformation in 7T'P until the target index is reached. For example, moving t;
in TP so that it precedes t; involves reordering ¢; with ¢;11, if successful, then
t; with t; 12, etc., until the new index of ¢; in T'P is one less than the index of t;.

To rearrange the order of two adjacent transformations ¢; and ;4 in a well-
formed TP = [tm,. .-, ti, tit1, - - -, tn), we must first ensure that (i) ¢;11 does not
contain in its preconditions a constraint that is satisfied by the postconditions
of t;. That is, if ¢;;1 requires construct P to exist, i.e., P € a;ﬁrl, then P must
not have been inserted by t;, i.e., P ¢ b, . If t;; requires construct P not
to exist, i.e., P € b, ;, then P must not have been removed by t;, i.e., P ¢
d; . Assuming the reordering has taken place, TP would now look like TP’ =
[tms- -y tiz1,tit1, by tita, - - - » ). For TP’ to be well-formed, the conditions that
(ii) the postconditions of ¢;11 do not conflict with the preconditions of #; must
hold. That is, if P € c;r+1, then P ¢ b; must hold, and if P € d;_,, it must be
true that P ¢ aj . Also, (iii) the postconditions of ¢;_1 must not conflict with
the preconditions of ¢;41, which is now positioned next to ¢;—;. Similarly, (iv)



the postconditions of ¢; must not conflict with the preconditions of ¢;45. All the
reordering rules are listed below, in the order they were described.

. b; n a?—_i-l = @ Ci—l N b:+1 = 0
(1) d; n b;;’_l — @ (111) d;_l N a?-—i_l — @ } lf T1>m
+ - _ + -
o Gy Db =10 .y G Nbigy=10 -
(ii) diyy N a;r -0 (iv) & N azu” _ ifi<n-—1

Example 4 Determining whether or not the order of transformations ts and
tg in T'Ps, ,s, can be swapped:

TML(ts,te) = ts: [(d)T, (dish) ", (dN{d.sh™, 0],
to : [P (AN Cp.dn) ™, w.p.d) ™, (PN (AN (p.dn)(w.p.d) ", 0]
Because all the rules for order rearrangement evaluate to (), we can conclude
that the order of ts and t9 can be reversed without affecting the overall result of
all the transformations in the pathway. The reader is referred to [16] for details
of the evaluation of these rules.

Detecting Redundant Transformations Two transformations ¢; and #;11,
that are adjacent to each other in a well-formed T P, are redundant if t; is the
reverse of t;,1, 1.e., t; = #;11 and vice versa, and the constructs being transformed
by t; and ;41 have the same extent. In this case, the state of the resultant schema
after applying all the transformations in TP is the same whether or not both
t; and t;41 are applied. In the TML terms, two transformations ¢; and ¢;;1 are
redundant if the following holds:

(af = ¢f) A (b7

2

where (z®y) = (z—y)U(y—=z), which serves to determine all the constructs added
or deleted by the pair of transformations. This rule qualifies two transformations
as redundant if they add/extend and then delete/contract (in either order) the
same construct, providing their associated queries result in the same extent. In
fact, the check on the extent is unnecessary if the transformations are a pair of
add/delete in either order because add and delete imply the insertion and removal
of all the data instances associated with the construct of the transformation.
As for cases where an extend or contract is one of the transformations in the
pair, a check on the extent of the construct must be carried out to ensure the
transformations are indeed dealing with the same construct.

Example 5 Determining whether or not ¢, and #14 are redundant (assuming
verification has already been done that ¢t> and #14 can be reordered so that they
are adjacent to each other):

TML(t2,f1a) = t2: [((PHEP.SHT, €E), (PN LPSHURY T, 0],
T = [P EPsH T, 0, (PN KpisH ™, €N ]



Because all the conditions for redundant transformations are satisfied, we
can conclude that ¢ and #14 are redundant.

Detecting Partially Redundant Transformations Two adjacent transfor-
mations, t; and #;11, are partially redundant if they satisfy the condition that (i)
either the positive precondition of ¢; is the same as the positive postcondition of
t;+1, or the negative precondition of ¢; is the same as the negative postcondition
of t;41. If either of these conditions is met, it is obvious that there is a certain
level of overlap or redundancy in the effects of ¢; and ¢;,,. Partially redundant
transformations must also satisfy the condition that (ii) what ¢; removes is not
what ;1 requires to be absent in its preconditions. This is because the con-
struct ¢ inserted by ;11 may not have the same semantics as the construct c
removed by t;, therefore, we cannot treat them as the same construct. On the
other hand, if ¢; inserts a construct ¢ which is required to be present in the
positive precondition of ¢;;1, because of the adjacency of ¢; and t; 1, ¢ refers to
the same construct and hence the operation on ¢ in ¢;;1 may be simplified with
that in ¢;. However, if ¢;11 is a remove-only type transformation and removes c,
we cannot optimise ¢; and ¢;1 because they are not redundant transformations
(refuted by rule (i)). Thus, (iii) partially redundant transformations are also re-
quired not to be a pair of insert-only transformation followed by a remove-only
transformation. These three rules for partially redundant transformations are
shown below.

(i) af =cf,; ® b; =d;,,, where @ is the exclusive-or operator
(i) d; N by =0
(iii) ~(d; =0 A by, = )

The simplified transformation of two partially redundant transformations ¢;
and t;y; can be derived by evaluating the transformation that represents the
combined effect of ¢; and ¢;41. Example 6 shows the optimisation of a pair of
partially redundant transformations ¢5 and #12.

Example 6 Optimising partially redundant transformations t5 and #1> (as-
suming verification has already been done that t5 and #:» can be reordered so
that they are adjacent to each other):

TML(ts,f12) = t5: [(d) T, {d.s)™, (dhdd.sh™, 0,
Bz ¢ [(dD ()T, €)™, (AN LA™, (dish 7]

ts and %12 can be optimised because they satisfy the three rules for par-
tially redundant transformations. Evaluating the effects of t5 and #;2 results in
toim ()T, (d1) ™, (d)(d.dI) T, 0], which represents the primitive transfor-
mation extendAtt({(d.l))). The reader is referred to [16] for full details of the
evaluation.

Table 5 shows all possible transformation pairs, ¢, followed by %,, that can
be optimised using the techniques discussed in this section. By replacing add



with extend and delete with contract, this table also applies to the extend and
contract transformations.

ty
add(c, q) delete(c, q) rename(c, ')
add(c, q) NWF [] add(c, q)
to delete(c,q) |[] NWF NWF
rename(c’,c) NWF delete(c’, q) []
rename(c’,c) NWF delete(c’, q) rename(c’,c)

NWF = Not well-formed, [] = removal of transformations
Table 5. Summary of optimisable transformations

Representing Composite Transformations The results shown in Table 5
are derived by examining the effect of a transformation pair. The effect of a
transformation is the construct added/deleted by the transformation. The effect
of a composite transformation consisting of two transformations can be found
by evaluating the aggregate insertion, aggregate removal, net insertion, and net
removal of the pair of transformations. The aggregate insertion made by trans-
formations t,,, t, is the union of all the constructs inserted by t,,,t,, i.e., b,,,Ub, .
The aggregate removal made by transformations t,,,t, is the union of all the
constructs removed by t,,,t,, i.e., d, Ud, . The net insertion made by t,,,%, is
their aggregate insertion minus their aggregate removal, and their net removal
is their aggregate removal minus their aggregate insertion.

The resulting simplified transformation tg;,, which shows the net effect of
tm,tn will have as its positive precondition what t,,,t, require to be present
before any transformation is executed. However, some positive preconditions of
t,, may be removed by t,, therefore, their existence and the existence of the
constructs they imply (given by sc(aggregate removal)) is not required by tsipm.
However, the constructs in the net removal of t,,, t,, must be present before .,
can be applied. Also, constructs whose existence is implied by the constructs
belonging to the net insertion set must also be present in the positive precondi-
tion of ¢4, . Since what is contained in b; is the construct to be inserted by ¢;,
tsim Will have as its negative precondition the net insertion of t,,,t,. After the
execution of t4;,, what remains present in the resulting schema would be all the
constructs that exist before t;,, is applied, plus the net insertion of t,,, t,,, minus
the net removal of t,,,t,,. Finally, the negative postcondition of ts;, will contain
the net removal of t,,,t,. The evaluation of t,;,, is summarized in Table 6.

3.4 An Optimisation Example

This section shows how optimisation techniques discussed in this paper can be
applied to cut down on the number of transformations in a pathway. Example 7
illustrates the optimisation of T'Ps, _, g, .



Aggregate insertion of ty,, tn

b Ub,

Aggregate removal of ty,, t

dm Udy,

Net insertion of ¢,y

aggregate insertion - aggregate removal

Net removal of t,,,t,

aggregate removal - aggregate insertion

Simplified transformation tgim
representing the composite

transformgtion t,,t,

+

al;,, = (af Ual) — sc(aggregate removal)
U sc(net removal)
U (sc(net insertion)—net insertion)
b,;,, = net insertion
¢t = alk, U net insertion — net removal
d.. = net removal

sim

Table 6. Representing composite transformation tgim

Example 7 Optimising T Ps, _,g,:

TPs; s, ¢

t1 addEnt({m), {X | (X, m') € (p.sH})
t2 addEnt({(f), {X | (X, f') € {p.sH})

ts addGen({s,p,m,f))

ta deleteAtt({p.sh, {X, Y | X € {mPAY = m' VX e (HAY="f})

ts extendAtt({(d,s))

T16 addAtt({p.s), (X, Y | X € (m) AY =" m' VX € () AY =' f'})

t15 deleteGen({(s,p,m,f))

t14 deleteEnt({(f), {X | X1y € {p.sH})
t13 deleteEnt({m), {X | (X, m’) € {p.s)})

t12 renameAtt({(d,s), (d,I))
t11 renameEnt({p)), (e))

The above pathway is formed by joining T Ps, s, and T Ps,_,s,. First t4

and t5 are reordered. Since t4 and ti6 are redundant, they are removed from the
pathway. We apply the same optimisation to transformation pairs t5 and s, t2
and t14, and ¢, and #;3. By now, the number of transformations in the pathway

has dramatically decreased as shown in TPg, _, 5. in Table 7. We further optimise
ts and 12 to form ti7 as extendAtt({(dept,location,null))) as shown in Example 6.
The final optimised pathway T'Pg, _, 5 is shown in Table 7.

-I-P'S1 —S3 6
ts extendAtt({(d.s))

)
12 renameAtt({d,s)), (d.1))

t11 renameEnt({(p)), {e)))

1
TP51—)S3 N

t17 extendAtt({(d,I))
t11 renameEnt({p)), (e)

Table 7. Optimising T'Ps, s,




4 Conclusion

We have discussed in this paper the AutoMed integration system which adopts
the BAV approach and techniques for optimising transformations in this sys-
tem. We have looked at how transformations can be expressed in the TML, and
shown how TML rules can be applied for pathway optimisation. A transforma-
tion pathway optimisation tool using the TML has been implemented in the
AutoMed project. This tool, which is currently fully functional, is being opti-
mised for more speedy performance. An evaluation of performance gain by using
the TML techniques is also scheduled to be carried out.

The use of the TML can also be extended to automatically detect any possible
needs for repairing the global schema [11] in the face of evolving source schemas.
An initial idea of how this could be achieved is to periodically scan all the
pathways connected to the global schema. If a removal of a particular construct
is found in each and every of the pathways, which means this construct has now
become obsolete, then this construct should be removed from the global schema
to give a more updated reflection of the changes in its connected sources. The
techniques on using the TML to resolve some of the issues raised by schema
evolution will be investigated in the near future.

While the study of using techniques on database schema optimisation as a
way to increase the efficiency in schema integration and query processing re-
ceives considerable attention [7,18], the study of optimisation focused solely on
transformations is a rather new topic. It is our intention to develop the TML
as a general transformation manipulation language that can be used by other
schema transformation formalisms. Generally speaking, the TML is applicable
with other schema transformation languages, so long as these languages clearly
indicate the pre- and postconditions of the transformations and the associations
between new and existing constructs. The possibility of using the TML with
other transformation languages described in [4,7,17] will be investigated.
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