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ABSTRACT
Schema-based data transformation and integration (DTI)
has been an active research area for some time, while more
recent advances in ontologies have led to significant research
in ontology-based DTI. These two approaches present some
overlaps and some differences, and in this paper we inves-
tigate possible synergies between them. In particular, we
show how ontologies can enhance schema-based DTI ap-
proaches by providing richer semantics for schema constructs.
We also illustrate one way in which schema-based DTI ap-
proaches can be used together with ontology-based approaches
in a heterogeneous data integration setting.

1. INTRODUCTION
Schema-based data transformation and integration (DTI)

is a well-studied research area. Mappings between source
and target schemas can be expressed using global-as-view
(GAV), local-as-view (LAV), global-local-as-view (GLAV) or
both-as-view (BAV) rules [14, 15, 17], and it is also possible
to define data-level mappings [2]. Mappings can be gener-
ated either manually or semi-automatically using a variety
of schema matching techniques [23, 24]. Depending on the
mapping rules, one can use GAV, LAV or GLAV query pro-
cessing techniques [9, 5] to answer queries posed on virtual
integrated schemas using the data sources.

Similarly, ontologies too may need to be transformed or
integrated, and this requires ontology matching and map-
ping [11, 6]. Relationships between ontologies can be ex-
pressed in a variety of ways [21], e.g. using first order logic
rules, using the schema-based approaches mentioned above,
or using mapping ontologies, whose instances are used to de-
fine possibly complex mappings between ontologies. After
specifying such mappings, one can use ontology-based query
answering techniques [20, 22] to answer queries posed on the
target or integrated ontology.

When creating a virtual integrated resource from a num-
ber of data sources, the integrated schema may be defined
using a standard data modelling language, or it may be
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a source-independent ontology defined in an ontology lan-
guage. The latter approach has the advantage of describ-
ing the domain at a high-level of abstraction, separating
users’ knowledge of the domain from the source data, and
also allows domain knowledge to be expressed as logical for-
malisms, allowing inference mechanisms and ultimately con-
verting the integrated resource into a knowledgebase. The
integration strategy may vary significantly, e.g. [22] first
federates a set of relational data sources, and then pro-
vides GLAV mappings between the federated schema and
the global ontology, while [20] translates database schemas
to ontologies and provides first order logic mappings between
these ontologies and a global ontology.

We argue that cross-fertilisation between schema-based
and ontology-based DTI can be beneficial. In particular,
in this paper we focus on the use of ontologies to enhance
schema-based approaches, firstly as a means of providing
richer semantics for schema constructs and thus facilitat-
ing schema-based DTI, and secondly as a means of enabling
schema-based DTI approaches to be used together with onto-
logy-based ones.

Section 2 first gives an overview of the AutoMed schema-
based DTI system, and then shows how the RDFS and
OWL-DL languages can be represented within AutoMed. To
date, AutoMed has been used extensively in schema-based
DTI settings and so these extensions enable ongoing and fu-
ture research into the synergies between schema-based and
ontology-based approaches.

Section 3 describes firstly the integration of ontologies
using AutoMed, and then schema-based transformation of
data output by web services, assisted by semantic enrich-
ment provided by mapping schemas to ontologies. As dis-
cussed in [1, 12], semantic enrichment of heterogeneous data
sources as a means of facilitating their transformation and
integration is desirable as it enhances scalability and reusabil-
ity. However, this has not been explored in detail to date,
with the exception of [3] and [28] in which web service input
and output data are enriched with semantics provided by an
ontology, thus facilitating matching and mapping generation
between heterogeneous services.

Section 4 next describes the use of an ontology as an en-
riched interface to a relational virtual integrated resource.
Compared with [22], our approach leverages existing schema-
based data integration and query processing capabilities (in
this case of AutoMed, but the approach is more generally ap-
plicable), while still allowing ontology query rewriting tech-
niques such as those of [22] to be used to generate suit-
able sub-queries targeted at the virtual integrated relational



schema, to be evaluated using AutoMed’s query processing
capabilities, from a query posed on the ontology.

Section 5 gives our concluding remarks.

2. AUTOMED OVERVIEW
AutoMed (www.doc.ic.ac.uk/automed) is a heterogeneous

DTI system which can handle virtual, materialised, and in-
deed hybrid data integration across multiple data models.
It supports a hypergraph-based data model (the HDM) and
provides facilities for specifying higher-level modelling lan-
guages in terms of this HDM (via the API of AutoMed’s
Model Definitions Repository). An HDM schema consists
of a set of nodes, edges and constraints, and each modelling
construct of a higher-level modelling language is specified
as some combination of HDM nodes, edges and constraints
(see [16]). For any modelling language, M, specified in this
way AutoMed provides a set of primitive schema transfor-
mations that can be applied to schema constructs expressed
inM. In particular, for every construct ofM there is an add

and a delete primitive transformation which add to/delete
from a schema an instance of that construct. For those
constructs of M which have textual names, there is also a
rename primitive transformation.

Instances of modelling constructs within a particular schema
are identified by means of their scheme enclosed within dou-
ble chevrons 〈〈. . .〉〉. AutoMed schemas can be incrementally
transformed by applying to them a sequence of primitive
transformations, each adding, deleting or renaming just one
schema construct (thus, in general, AutoMed schemas may
contain constructs of more than one modelling language). A
sequence of primitive transformations from one schema X1

to another schema X2 is termed a transformation pathway
from X1 to X2. All source, intermediate, and integrated
schemas, and the pathways between them, are stored in Au-
toMed’s Schemas & Transformations Repository.

Each add and delete transformation is accompanied by
a query specifying the extent of the added or deleted con-
struct in terms of the rest of the constructs in the schema.
This query is expressed in a comprehensions-based func-
tional query language, IQL1.

Also available are extend and contract primitive trans-
formations which behave in the same way as add and delete

except that they state that the extent of the new/removed
construct cannot be precisely derived from the other con-
structs present in the schema. More specifically, each extend

and contract transformation takes a pair of queries that
specify a lower and an upper bound on the extent of the
construct. The lower bound may be Void and the upper
bound may be Any, which respectively indicate no known
information about the lower or upper bound of the extent
of the new construct.

Typically, a transformation pathway from a source schema
X1 to a target schema X2 consists of a growing phase, in
which schema constructs of X2 that are missing from X1

are added using add and extend transformations, followed
by a shrinking phase in which schema constructs of X1 not
present in X2 are removed using delete and contract trans-
formations.

1Such languages subsume query languages such as SQL-92
and OQL in expressiveness [4]. IQL also provides a common
query language for AutoMed that queries written in various
high level query languages can be translated into and out
of. Further details are given in [10].

The queries supplied with primitive transformations can
be used to generate GAV, LAV or indeed GLAV mappings
between source and target schemas, and to translate queries
and data along a transformation pathway (see [17, 18, 19]).
The queries supplied with primitive transformations also
provide the necessary information for pathways to be auto-
matically reversible, in that each add/extend transformation
is reversed by a delete/contract transformation with the
same arguments, while each rename is reversed by a rename

with the two arguments swapped.

2.1 Representing Ontologies in
AutoMed

We have extended AutoMed to support the RDFS [26],
OWL-Lite and OWL-DL [25] languages. Below, we briefly
describe the definitions of RDFS and OWL-DL in terms of
AutoMed’s HDM. The definition of OWL-Lite is a subset of
that of OWL-DL and we therefore omit it.

Representing RDFS in the HDM:

• An RDFS class c is represented by a node in the HDM
and is identified by the scheme 〈〈c〉〉.

• An RDFS property p linking two classes c1 and c2 is
identified by the scheme 〈〈p, c1, c2〉〉. In the HDM it is
represented by an edge between nodes c1 and c2 and a
cardinality constraint stating that each instance of c1

is associated with precisely one instance of c2 (HDM
constraints can be specified in IQL). This representa-
tion in the HDM also captures implicitly the RDFS
rdfs:domain and rdfs:range properties.

• Text in RDFS is represented by the rdfs:Literal con-
struct. In the HDM, this is represented by a node and
identified by the scheme 〈〈rdfs : Literal〉〉, of which there
is one occurrence in any RDFS ontology.

• A subclass constraint in RDFS states that a class csub

is a subclass of another class csup. In the HDM, this
is represented by a constraint stating that instances
of csub are also instances of csup, and identified by the
scheme 〈〈rdfs : subClassOf, csub, csup〉〉.

• A subproperty constraint in RDFS states that a prop-
erty psub is a subproperty of another property psup. In
the HDM, this is represented by a constraint stating
that instances of psub are also instances of psup, and
identified by the scheme 〈〈rdfs : subPropertyOf, psub, psup〉〉.

Representing OWL-DL in the HDM:

• OWL-DL defines the class owl:Thing as a superclass of
all classes. This is represented by a node in the HDM
and identified by the scheme 〈〈owl : Thing〉〉, of which
there is one occurrence in any OWL-DL ontology.

• Any other OWL-DL class c is also represented by a
node in the HDM and is identified by the scheme 〈〈c〉〉.
There is, in addition, an HDM constraint stating that
all instances of c are also instances of owl:Thing.

If c is a complex OWL-DL class, i.e. it is defined using
other classes and set operators, there is also an HDM
constraint specifying the extent of 〈〈c〉〉 with respect to
these classes. For example, for class c1 defined as the
union of classes c2 and c3 using the owl:unionOf oper-
ator, the HDM constraint would be c1 = (c2 union c3).



• OWL-DL properties are represented in the same way
as RDFS properties, and likewise for the rdfs:Literal,
rdfs:subClassOf and rdfs:subPropertyOf constructs.

Finally, OWL-DL incorporates a large a number of con-
straints and we give below the representation of just one
of these in the HDM. OWL-DL’s other constraints are rep-
resented similarly.

• In OWL-DL a class c1 may be asserted to be seman-
tically identical to another class c2. In the HDM this
assertion is identified the scheme 〈〈owl : sameAs, c1, c2〉〉
and is represented by two constraints, one stating that
the instances of c1 are also instances of c2 and the other
stating the converse.

3. ENRICHMENT AND TRANSFORMATION
OF WEB SERVICE DATA

This section extends our earlier work in [28] by describ-
ing the use of multiple ontologies to enrich and transform
web service data. This requires each service input/output
to be mapped to a suitable ontology, and transformation
pathways to be defined between the different ontologies to
which service inputs/outputs are mapped. This use of mul-
tiple ontologies is discussed in detail here for the first time,
as is the independence of our approach from the ontology
language employed and its ability to handle multiple ontol-
ogy languages concurrently. Section 3.1 discusses the inte-
gration of heterogeneous ontologies using AutoMed. Sec-
tion 3.2 describes the semantic enrichment of services from
different systems using different ontologies. Section 3.3 dis-
cusses matching and mapping generation for the enriched
services, and finally data translation between them.

We illustrate this via an application in lifelong learning,
MyPlan. The MyPlan project (www.lkl.ac.uk/research/
myplan) aims to develop models of learners and to support
them in planning their lifelong learning. One goal of MyPlan
is to facilitate interoperability in a scalable fashion between
existing systems targeted at the lifelong learner. Since di-
rect access to these systems’ repositories is in general not
possible, an approach based on reconciling and combining
the services the systems provide is being explored.

For our running example here, suppose we need to transfer
learners’ data from the L4All (www.lkl.ac.uk/research/
l4all) system to the eProfile (www.schools.bedfordshire.
gov.uk/im/EProfile) system. Each system is accompa-
nied by an ontology. L4All uses the L4ALL RDFS ontol-
ogy, developed specifically for the L4All system, while ePro-
file uses the Friend-Of-A-Friend OWL-DL2 ontology (www.
foaf-project.org). A Lifelong Learning Ontology, LLO
(defined in OWL-DL), has also been developed as part of
the MyPlan project which aims to encompass all concepts
relating to lifelong learners. Figure 1 illustrates a portion of
each of these ontologies.

Suppose now we need to transform the output of a ser-
vice S1 which retrieves data about a learner from L4All, to
become the input of a service S2 which inserts data about
that learner into eProfile. Listed below are a sample output
from S1:

<user>

2FOAF is OWL-Full, but we only use its OWL-DL subset
here.

<userID>John</userID>
<fullname>John Smith</fullname>
<age>1970</age> <gender>F</gender>
<email>JohnS@bbk.ac.uk</email>
<travel>15</travel> <location>London</location>
<occupation>Technology Professional</occupation>
<qual><![CDATA[PhD]]></qual>
<skills><![CDATA[write good reports]]></skills>
<interests><![CDATA[Sport]]></interests>

</user>

and a sample input for S2:

<eProfile>
<accountName>Mike2008</accountName>
<mbox>Mike2008@yahoo.com</mbox>
<name>Mike Jonson</name>
<interest>sport</interest>

</eProfile>

Our approach (see Figure 2) is to (1) integrate ontologies
L4ALL and FOAF into the global ontology LLO by means of
the appropriate transformation pathways, (2) automatically
extract XML schemas X1 and X2 for the output and input
of services S1 and S2, respectively, (3) enrich these schemas
using the L4ALL and FOAF ontologies, producing schemas
X ′

1 and X ′
2, and (4) automatically transform X ′

1 into X ′
2.

The result of this process is a transformation pathway
X1 ↔ X ′

1 ↔ X ′
2 ↔ X2, which can then be used at run-time

by the MyPlan service broker to automatically generate data
compliant with service S2 from data output by service S1.
We discuss steps (1)-(4) in more detail next.

Note that the XML documents consumed/produced by
services may conform to a DTD or XML Schema, or may
not be accompanied by a schema at all. For this reason,
in step (2) above, an XMLDSS schema (see Section 3.2) is
automatically extracted either from an accompanying DTD
or XML Schema, or, if a schema does not exist, from sample
input/output XML documents provided for the services.

L4ALL

Learner rdfs:Literal

Identification

interestsLearning
_Prefslearning-prefs

username

id
name

email

LLO

Learner rdfs:Literal

Identification

topicInterest
Interest

hasInterest

userID
has

Identification email

full
Name

FOAF

rdfs:Literal

name

accountName

holdsAccount

mbox topic
Interest

owl:Thing

Person
Online

Account

Agent

Figure 1: Ontologies L4ALL, LLO and FOAF.

3.1 Integrating Ontologies using AutoMed
The integration of the L4ALL and FOAF ontologies with

LLO using AutoMed requires the creation of transforma-
tion pathways L4ALL→LLO and FOAF→LLO. L4ALL and



Table 1: Fragment of the transformation pathway L4ALL→LLO→FOAF
. . . add steps for L4ALL→LLO. . .

1 delete(〈〈l4 : id, l4 : Learner, l4 : Identification〉〉,〈〈llo : hasIdentification, llo : Learner, llo : Identification〉〉)
2 delete(〈〈l4 : learning − prefs, l4 : Learner, l4 : Learning Prefs〉〉,〈〈llo : hasInterest, llo : Learner, llo : Interest〉〉)
3 delete(〈〈l4 : interests, l4 : Learning Prefs, rdfs : Literal〉〉,〈〈llo : topicInterest, llo : Interest, rdfs : Literal〉〉)
4 delete(〈〈l4 : Learner〉〉,〈〈llo : Learner〉〉)
5 delete(〈〈l4 : email, l4 : Identification, rdfs : Literal〉〉,〈〈llo : email, llo : Identification, rdfs : Literal〉〉)
6 delete(〈〈l4 : username, l4 : Identification, rdfs : Literal〉〉,〈〈llo : userID, llo : Identification, rdfs : Literal〉〉)
7 delete(〈〈l4 : name, l4 : Identification, rdfs : Literal〉〉,〈〈llo : fullName, llo : Identification, rdfs : Literal〉〉)

. . . more delete steps for L4ALL→LLO. . .
. . . extend steps for L4ALL→LLO. . .
. . . contract steps for LLO→FOAF. . .

. . . add steps for LLO→FOAF. . .
. . . extend steps for LLO→FOAF. . .

8 delete(〈〈llo : userID, llo : Identification, rdfs : Literal〉〉,[{ha, lit}|{ag, oa} ← 〈〈foaf : holdsAccount, foaf : Agent, foaf : OnlineAccount〉〉;
{oa, lit} ← 〈〈foaf : accountName, foaf : OnlineAccount, rdfs : Literal〉〉])

9 delete(〈〈llo : fullName, llo : Identification, rdfs : Literal〉〉,[{t, lit}|{t, lit} ← 〈〈foaf : name, owl : Thing, rdfs : Literal〉〉; member t 〈〈foaf : Agent〉〉])
10 delete(〈〈llo : email, llo : Identification, rdfs : Literal〉〉,[{y, z}|{x, y, z} ← (generateProperty 〈〈foaf : mbox, foaf : Agent, rdfs : Literal〉〉)])
11 delete(〈〈llo : hasIdentification, llo : Learner, llo : Identification〉〉,[{x, y}|{x, y} ← (generateProperty 〈〈foaf : Agent〉〉)])
12 delete(〈〈llo : topicInterest, llo : Interest, rdfs : Literal〉〉,

[{y, z}|{x, y, z} ← (generateProperty 〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉)])
13 delete(〈〈llo : hasInterest, llo : Learner, llo : Interest〉〉,[{x, y}|{x, y, z} ← (generateProperty 〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉)])
14 delete(〈〈llo : Interest〉〉,[x|x ← (generateClass 〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉)])
15 delete(〈〈llo : Learner〉〉,〈〈foaf : Agent〉〉)

. . . more delete steps for LLO→FOAF. . .

XMLDSS
schema X1

S1 output
XML format

S2 input
XML format

  (2)  (2)

Service
S2

Service
S1

     (4)L4ALL FOAF

LLO AutoMed
pathway

AutoMed
pathway

C1 C2C’1

XMLDSS
schema X’1

XMLDSS
schema X’2

  (3)  (3)

   (3)
XMLDSS

schema X2

(1) (1)

Figure 2: Reconciliation of Services S1 and S2.

LLO overlap significantly, but L4ALL is expressed in RDFS
while LLO is expressed in OWL-DL. Both FOAF and LLO
are expressed in OWL-DL, but FOAF is a general-purpose
ontology while LLO targets lifelong learning.

Overcoming the modelling language heterogeneity prob-
lem between L4ALL and LLO is straightforward: each L4ALL
RDFS construct is transformed into an equivalent OWL con-
struct. For example, to replace the RDFS class 〈〈l4 : Learner〉〉
with the equivalent OWL-DL class with the same name, the
following transformations are applied to L4ALL:

add(〈〈llo : Learner〉〉,〈〈l4 : Learner〉〉)
delete(〈〈l4 : Learner〉〉,〈〈llo : Learner〉〉)

The first transformation above adds the OWL-DL construct
〈〈llo : Learner〉〉 to L4ALL, specifying that it is equivalent
to the RDFS construct 〈〈l4 : Learner〉〉. This can then be
deleted, specifying that it is equivalent to the OWL-DL con-
struct 〈〈llo : Learner〉〉. Note that, since a number of proper-
ties reference the 〈〈l4 : Learner〉〉 class, in practice these would

have to be deleted before deleting that class.
After translating the L4ALL ontology from RDFS to OWL-

DL, its integration with LLO is completed by specifying
the necessary extend transformations to “complete” L4ALL
with those constructs from LLO that it is lacking. The upper
part of Table 1 lists a fragment of the delete steps within
the pathway L4ALL → LLO, as these will be referred to
again in our running example.

Turning now to the integration of FOAF with LLO, the
lower part of Table 1 lists a fragment of the delete steps
within the pathway LLO → FOAF, as these will be referred
to again — note that this pathway is the reverse of the path-
way FOAF → LLO. We notice from 15 that 〈〈llo : Learner〉〉
is equivalent to 〈〈foaf : Agent〉〉. Since FOAF does not con-
tain a class analogous to 〈〈llo : Interest〉〉 in the LLO, in 14 we
use an IQL function generateClass to generate as many in-
stances of class 〈〈llo : Interest〉〉 as there are instances of prop-
erty 〈〈foaf : topic interest, foaf : Person, owl : Thing.〉〉. Simi-
larly, the IQL function generateProperty generates the extent
of a property. This function takes as input another prop-
erty (if the property for which the extent is to be generated
has a 1-n cardinality), or a class (if the property for which
the extent is to be generated has a 1-1 cardinality). We
also note that the LLO property userID maps to the join of
FOAF properties holdsAccount and accountName (see 8 ).
Finally, note that FOAF has a general-purpose name prop-
erty, with domain and range owl:Thing and rdfs:Literal, re-
spectively, whereas LLO only has a fullName property which
is not general-purpose (see 9 ).

It should be stressed that AutoMed provides facilities for
transforming/integrating schemas/ontologies by the speci-
fication of pathways between them that may be generated
either manually (as here), or semi-automatically (as in Sec-
tion 3.2) or automatically (as in Section 3.3). However, Au-
toMed does not (as yet) provide any facilities for verifying
the correctness of such pathways.



Table 2: Correspondences between XMLDSS schema X1 and the L4ALL Ontology
Construct: Path:
〈〈user$1〉〉 [c|c ← 〈〈l4 : Learner〉〉]
〈〈userID$1〉〉 [id|{l, id} ← 〈〈l4 : id, l4 : Learner, l4 : Identification〉〉; {id, lit} ← 〈〈l4 : username, l4 : Identification, rdfs : Literal〉〉]
〈〈fullname$1〉〉 [id|{l, id} ← 〈〈l4 : id, l4 : Learner, l4 : Identification〉〉; {id, lit} ← 〈〈l4 : name, l4 : Identification, rdfs : Literal〉〉]
〈〈email$1〉〉 [id|{l, id} ← 〈〈l4 : id, l4 : Learner, l4 : Identification〉〉; {id, lit} ← 〈〈l4 : email, l4 : Identification, rdfs : Literal〉〉]
〈〈interests$1〉〉 [p|{l, p} ← 〈〈l4 : learning − prefs, l4 : Learner, l4 : Learning Prefs〉〉;

{p, lit} ← 〈〈l4 : interests, l4 : Learning Prefs, rdfs : Literal〉〉]

Table 3: Correspondences between XMLDSS schema X1 and the FOAF Ontology
Construct: Path:
〈〈user$1〉〉 [c|c ← 〈〈foaf : Agent〉〉]
〈〈userID$1〉〉 [id|{l, id} ← (generateProperty〈〈foaf : Agent〉〉); {ag, oa} ← 〈〈foaf : holdsAccount, foaf : Agent, foaf : OnlineAccount〉〉;

{oa, userlit} ← 〈〈foaf : accountName, foaf : OnlineAccount, rdfs : Literal〉〉]
〈〈fullname$1〉〉 [id|{l, id} ← (generateProperty〈〈foaf : Agent〉〉); id ← 〈〈foaf : Agent〉〉; {id, lit} ← 〈〈foaf : name, owl : Thing, rdfs : Literal〉〉]
〈〈email$1〉〉 [id|{l, id} ← (generateProperty〈〈foaf : Agent〉〉); {x, id, lit} ← (generateProperty〈〈foaf : mbox, foaf : Agent, rdfs : Literal〉〉)]
〈〈interests$1〉〉 [p|{l, p, z} ← (generateProperty〈〈foaf : topicinterest, foaf : Person, owl : Thing〉〉);

{x, p, lit} ← (generateProperty〈〈foaf : topicinterest, foaf : Person, owl : Thing〉〉)]

X
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2
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1

PCData

 1
 1
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name$1

3

4

 1
 1
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1 user$1
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1

PCData

 1
 1

... email$1

5

 1

 1
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Figure 3: XMLDSS schemas X1 and X2.

3.2 XML Data Source Enrichment
XML data sources are represented in our approach using

the XML DataSource Schema (XMLDSS) data model, which
summarises the tree structure of XML documents, much like
DataGuides [8]. An XMLDSS schema consists of four kinds
of constructs: Element, Attribute, Text and NestList (see [28]
for details of their specification in terms of the HDM). The
last of these defines parent-child relationships either between
two elements ep and ec or between an element ep and the
Text node. These are respectively identified by schemes of
the form 〈〈i, ep, ec〉〉 and 〈〈i, ep, Text〉〉, where i is the position
of ec or Text within the list of children of ep. Note that, since
the same name can be used for two or more elements with
different semantics, element names are suffixed with $count,
where count is incremented every time the same element
name is encountered in a depth-first traversal of the schema.
Figure 3 illustrates the XMLDSS schemas for the example
documents given earlier in this section i.e. the output of
service S1 and the input of service S2, respectively.

Our data source enrichment process requires the creation
of a set of correspondences, C1, between X1 and its local
L4ALL ontology, and another set of correspondences, C2,
between X2 and its local FOAF ontology. As discussed
in [28], a correspondence defines an Element, Attribute or
NestList of an XMLDSS schema by means of an IQL query
over a typed ontology (our correspondences are ‘path-to-
path’ ones, in the terminology of [1]). In particular, an
Element may map either to a class 〈〈c〉〉; or to a path ending
with a class-valued property of the form 〈〈p, c1, c2〉〉, or to a
path ending with a literal-valued property 〈〈p, c, Literal〉〉; ad-
ditionally, the correspondence may state that the instances
of a class are constrained by membership in some subclass.

An Attribute may map either to a literal-valued property or
to a path ending with a literal-valued property. A NestList
between an Element and the Text construct may correspond
to literal-valued property or to a path ending with such a
property. This type of correspondence is used for reconciling
data type incompatibilities between the XMLDSS schema
and the ontology. In addition to these 1-1 correspondences,
we also support 1-n correspondences as follows. An Ele-
ment/Attribute may map to more than one path over the
ontology. In this case, n correspondences are required, each
associating the same XMLDSS Element/Attribute to a differ-
ent path over the ontology, and specifying an expression that
determines the part of the extent of the Element/Attribute
to which the correspondence applies. This expression is in
general a select-project IQL query. We note that these ex-
tended correspondences are GLAV rules and, since the ex-
ample presented here does not make use of them, we refer
the reader to [28] for further details.

Table 2 lists some of the correspondences, C1, between X1

and L4ALL. The correspondences between X2 and FOAF,
C2, are similar, but are not listed due to lack of space.

Using the correspondences C2, it is possible to automati-
cally transform schema X2 into a schema X ′

2 that is seman-
tically enriched since its element names use terms from the
FOAF ontology. For example, 〈〈eProfile$1〉〉 is renamed to
〈〈foaf : Agent〉〉 and 〈〈mbox〉〉 to 〈〈Agent.mbox.Literal〉〉.

In order to enrich also X1 with respect to X2’s ontology,
we can automatically reformulate each correspondence in C1

using the transformation pathway L4ALL→LLO→FOAF of
Table 1. The new set of correspondences, C′1 (see Table 3),
now links X1 with FOAF, and so can be used to transform
X1 into an enriched schema X ′

1 that uses terms from FOAF.
As discussed in [28], there is a proviso here that the new
set of correspondences C′1 must conform syntactically to the
correspondence format accepted by the enrichment process.

3.3 Ontology-Assisted Schema and Data
Transformation

Resulting from the above data source enrichment process
are schemas X ′

1 and X ′
2 that both use the terminology of

FOAF, as well as pathways X1 → X ′
1 and X2 → X ′

2. How-
ever, this is not, in general, enough for transforming data
from one data source to the other:



First, X ′
1 and X ′

2 may be structurally different, e.g. X ′
1

may use attributes rather than elements to store text. This
is not the case in our running example and the reader is re-
ferred to our earlier work in [30, 28] for details of a schema
restructuring algorithm (SRA) that automatically creates
a transformation pathway between two structurally hetero-
geneous XMLDSS schemas, provided elements are named
according to the same terminology.

Second, even though both XMLDSS schemas use the same
terminology, element names may contain subtle differences,
due to sub-class and sub-property constraints in the ontol-
ogy. For example, this is the case with elements 〈〈email$1〉〉
and 〈〈mbox$1〉〉 from schemas X1 and X2, which were re-
placed by elements 〈〈foaf : Agent.foaf : mbox.rdfs : Literal$1〉〉
and 〈〈foaf : Agent.foaf : mbox.owl : Thing$1〉〉 in X ′

1 and X ′
2.

The SRA algorithm is able to use input that specifies an el-
ement in the source schema to be a sub-class or super-class
of an element in the target and vice-versa. Deriving this
input involves splitting each path name in its constituent
parts and comparing the corresponding classes and proper-
ties. For example, given path names A.B.C and A’.B’.C’, we
compare A with A’, B with B’ etc., to derive whether A ≡ A′,
A ⊆ A′ or A ⊇ A′. The SRA algorithm can handle equiv-
alence and subsumption relationships between elements, as
well as union (two elements from schema X ′

1 may correspond
to a single element in X ′

2). However, the algorithm does not
handle intersection and so ignores cases where e.g. A and C
are super-classes of A’ and C’, but B is a sub-property of B’.

The result of the above ontology-assisted data transforma-
tion process is a pathway X ′

1 → X ′
2. When this is composed

with the pathway X1 → X ′
1 and the reverse of the pathway

X2 → X ′
2 generated from the previous data source enrich-

ment process, an overall pathway X1 → X ′
1 → X ′

2 → X2 is
obtained.

This pathway can now be used to automatically transform
data that is structured according to X1 to be structured
according to X2, using the algorithm of [29]. For example,
the output from S1 given earlier would be translated into
the following X2-compliant data:

<eProfile>
<accountName>John</accountName>
<mbox>JohnS@bbk.ac.uk</mbox>
<name>John Smith</name>
<interest>Sport</interest>

</eProfile>

4. ONTOLOGY-BASED ACCESS TO AN IN-
TEGRATED RESOURCE

We turn now to our use of an ontology for accessing an
integrated relational resource. This work forms part of the
EU ASSIST project (see assist.iti.gr) for which three
relational databases containing patients’ medical data need
to be integrated. A predefined OWL-DL ontology will pro-
vide a high-level representation of the integrated resource,
to which user queries will be submitted.

[22] terms such a setting “ontology-based data access”
and describes a solution whereby relational databases are
first federated, and then GLAV mappings are specified be-
tween the federated database and the ontology. Given a
query posed on the ontology, the GLAV mappings are used
to generate SQL sub-queries submitted to the relational data
sources for evaluation. We have implemented an alternative
approach in the ASSIST project that leverages AutoMed’s
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Figure 4: The ASSIST Integrated Resource.

existing schema-based data integration and query process-
ing capabilities. In particular, we have first integrated the
three relational databases into a virtual integrated relational
schema. This schema is then automatically translated into
an equivalent OWL-DL representation, and finally this is
manually transformed into the predefined ASSIST OWL-DL
ontology, enriched with appropriate medical expert knowl-
edge. This architecture is illustrated in Figure 4.

In the rest of this section, Section 4.1 briefly discusses
the integration of the relational databases under a virtual
relational schema, while Section 4.2 describes the relational-
to-OWL-DL translation algorithm.

4.1 Integrating the relational data sources
Reference [16] discusses how the relational data model

can be encoded in the HDM, [17] gives several relational
data transformation/integration examples, while [27] dis-
cusses a large scale integration of several relational pro-
teomics databases using AutoMed.

Briefly, a relation R is represented by an HDM node and
identified by a scheme 〈〈R〉〉; the extent of the node is the
projection of R onto its primary key attributes. An at-
tribute a of R is identified by a scheme 〈〈R, a〉〉 and is rep-
resented by an HDM node (for the attribute) and an edge
(between the relation and the attribute); the extent of the
edge is the projection of R onto its primary key attributes
plus a itself. There are also HDM constraint representations
for primary keys and foreign keys. To illustrate, consider
a relation from the virtual integrated schema of ASSIST,
patient(pid,birthdate,visitId), where visitId references the pri-
mary key attribute, vid, of another relation, visit. Then,
patient is represented in the HDM by a construct 〈〈patient〉〉,
three constructs 〈〈patient, pid〉〉, 〈〈patient, birthdate〉〉 and
〈〈patient, visitID〉〉, a primary key construct
〈〈patient pk, patient, 〈〈patient, pid〉〉〉〉, and a foreign key con-
struct 〈〈patient fk, patient, 〈〈patient, visitId〉〉, visit, 〈〈visit, vid〉〉〉〉.

To illustrate the transformation of the ASSIST data sources
into the virtual integrated schema, the following example
shows how patient data is sourced from the AUTh database:



add(〈〈patient〉〉,[{′assist.auth.gr : patient′, t}|t ← 〈〈patInfo〉〉])
add(〈〈patient, birthdate〉〉,[{{′assist.auth.gr : patInfo′, t}, b}|

{t, b} ← 〈〈patInfo, BirthDate〉〉])
add(〈〈patient, visitId〉〉,[{{′assist.auth.gr : patInfo′, t}, v}|

{t, v} ← 〈〈patInfo, visit〉〉])

4.2 Translation into OWL
The translation of the relational integrated schema into

an equivalent OWL representation is undertaken using an
algorithm based on [13], which describes the representation
of relational databases in RDF. Similarly to [13], our trans-
lation of relational schemas into OWL can support both
single-attribute and composite primary and foreign keys.

The algorithm, listed in Panel 1, takes an AutoMed rela-
tional schema SRel as input and outputs an AutoMed OWL
schema SOnt. The algorithm has three parts. The first
part (lines 2–8), translates the relations of schema SRel.
In particular, a relation 〈〈R〉〉 translates to a Class C in
SOnt, each of its attributes 〈〈R, a〉〉 translates to a Property
〈〈a, C, rdfs : Literal〉〉, while the primary key of 〈〈R〉〉 trans-
lates into another Class 〈〈Cpk〉〉 and a Property 〈〈pk, C, Cpk〉〉.
The second part (lines 9–17), translates the foreign key con-
straints of schema SRel. In particular, the algorithm creates
two Class constructs, 〈〈CRfk〉〉 and 〈〈CSfk〉〉, representing the
set of attributes of relation R and the set of attributes of
relation S that reference the former. The algorithm also
creates Property constructs 〈〈fk, CR, CRfk〉〉, 〈〈fk, CS, CSfk〉〉 and
〈〈fk, CSfk , CRfk〉〉 that link the newly added Class constructs
together with each other and with the Class constructs that
represent relations R and S. The third part (line 18), which
removes the relational schema constructs from schema SOnt

is straightforward and omitted.
Note that, as specified in the algorithm, the extent of a

Class construct that represents a relation is generated by
skolemising the extent of the corresponding relational con-
struct. This is because all individuals in an ontology must be
unique, and the values of a primary key of a relation are not
necessarily unique across all values of all primary keys within
a database. In our setting, which has the added require-
ment of uniqueness across data sources, we use IQL func-
tion getLSID that generates a tuple {sk, r} for each primary
key value r, where sk is the LSID of relation 〈〈R〉〉. An LSID
is a Life Sciences Research Uniform Resource Name (URN)
specification that provides a standardised naming scheme
for entities in the life sciences [7]. For example, the LSID
URN:LSID:assist.auth.gr.patients:126 refers to the row with
primary key value 126 in table patients of the AUTh database
— in this case, the LSID issuing authority is assist.auth.gr.
The generality of the LSID naming scheme has rendered it
useful in domains outside the life sciences as well.

The extent of a Property construct that represents an at-
tribute is generated similarly, i.e. each tuple is of the form
{{sk, r}, a}, where {sk, r} is generated as above, and a is the
attribute value.

Note also that, although primary and foreign key con-
structs are modelled as constraints in the HDM represen-
tation of the relational data model, the corresponding con-
structs in the HDM representation of the OWL data model
are extensional constructs, in the spirit of [13].

Referring to the example in Section 4.1, relation patient(id,
birthdate, visitId) is represented in the OWL schema with a
Class construct 〈〈patient〉〉, and one Property construct per
attribute, 〈〈id, patient, rdfs : Literal〉〉, 〈〈birthdate,patient,
rdfs:Literal〉〉 and 〈〈visitId, patient, rdfs : Literal〉〉. The primary

Panel 1: Relational-to-OWL Translation
Input: AutoMed Relational Schema SRel

Output: AutoMed OWL Schema SOnt

Copy SRel to SOnt1

Add class 〈〈rdfs : Literal〉〉 to SOnt2

for each relation R in SRel do3

Add class 〈〈C〉〉 to SOnt and populate its extent using4

query [getLSID 〈〈R〉〉 r|r ← 〈〈R〉〉]
for each attribute a of R do5

Add property 〈〈a, C, rdfs : Literal〉〉 to SOnt and6

populate its extent using query
[{(getLSID 〈〈R〉〉 r), a}|{r, a} ← 〈〈R, a〉〉]

Add class 〈〈Cpk〉〉 to SOnt and populate its extent using7

query [getLSID 〈〈R〉〉 r|r ← 〈〈R〉〉]
Add property 〈〈pk, C, Cpk〉〉 and populate its extent using8

query [{(getLSID 〈〈R〉〉 r), (getLSID 〈〈R〉〉 r)}|r ← 〈〈R〉〉]
for each relation R in SRel do9

for each foreign key with label fk identifying attributes10

ai of R being referenced by attributes bi of S (1 ≤ i ≤ n)
do

Let Q1 be11

[{r, {a1, . . . , ai, . . . , an}}|r ← 〈〈R〉〉; {r, a1} ←
〈〈R, a1〉〉; . . . ; {r, ai} ← 〈〈R, ai〉〉 . . . ; {r, an} ← 〈〈R, an〉〉]
Let Q2 be12

[{s, {b1, . . . , bi, . . . , bn}}|s ← 〈〈S〉〉; {s, b1} ←
〈〈S, b1〉〉; . . . ; {s, bi} ← 〈〈S, bi〉〉 . . . ; {s, bn} ← 〈〈S, bn〉〉]
Add class 〈〈CRfk

〉〉 to SOnt and populate its extent13

using query [(getLSID 〈〈R〉〉 cr)|{r, cr} ← Q1]
Add class 〈〈CSfk

〉〉 to SOnt and populate its extent14

using query [(getLSID 〈〈S〉〉 cs)|{s, cs} ← Q2]
Add property 〈〈fk, CR, CRfk

〉〉 to SOnt and populate15

its extent using query Q1

Add property 〈〈fk, CS, CSfk
〉〉 to SOnt and populate its16

extent using query Q2

Add property 〈〈fk, CSfk
, CRfk

〉〉 to SOnt and populate17

its extent using query
[{(getLSID 〈〈R〉〉 cs), (getLSID 〈〈S〉〉 cs)}|{s, cs} ← Q2]

deleteRelationalConstructs(SOnt)18

key of the relation is represented with Class 〈〈patient pk〉〉
and Property 〈〈patient has pk, patient, patient pk〉〉, and the
foreign key between relations patient and visit is represented
with Class constructs 〈〈patient visit fk〉〉, 〈〈visit patient fk〉〉 and
Property constructs 〈〈patient has fk, patient, patient visit fk〉〉,
〈〈visit has fk, visit, visit patient fk〉〉, and 〈〈patient fk visit, pa-
tient visit fk,visit patient fk〉〉.

After automatically translating the virtual integrated re-
lational schema into an OWL-DL ontology, we manually
transform this ontology into the predefined ASSIST OWL-
DL domain ontology — see Figure 4.

5. CONCLUDING REMARKS
In this paper we have discussed two possible synergies

between schema-based and ontology-based approaches to
data transformation/integration (DTI). Firstly, we have dis-
cussed the transformation of heterogeneous XML data by us-
ing multiple ontologies as a ‘semantic bridge’ between them.
This entails first integrating the ontologies using AutoMed,
then enriching the XML data sources with semantics pro-
vided by the ontologies, and then automatically undertak-
ing ontology-assisted data restructuring. This functionality
is currently being deployed in order to support the inter-
operability of different lifelong learning systems within the
MyPlan project.

Secondly, we have presented an approach to ontology-



based access of relational data sources that leverages Au-
toMed’s schema-based DTI and query processing capabili-
ties. This is currently being used to support the integration
of heterogeneous medical databases under a predefined on-
tology in the ASSIST project. Although illustrated in the
context of AutoMed, our approach is more generally appli-
cable to other schema-based DTI and query processing sys-
tems, and would allow their capabilities to be combined with
ontology-based query rewriting and evaluation techniques.
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