Compressing Propositional Refutations Using Subsumption

Hasan Amjad
*University of Cambridge Computer Laboratory

15 J J Thomson Avenue, Cambridge CB3 OFD, UK
Hasan. Anj ad@| . cam ac. uk

Abstract

We describe ongoing work on the use of subsumption to remedendant inferences from propositional resolution
refutation proofs of the style generated by conflict driviause learning SAT solvers. This is used for faster LCFestyl
proof replay in interactive theorem provers. There may bésan application in the extraction of small unsatisfiableso

1 Introduction

Recent years have seen a trend towards tool combinatioe iautomated reasoning community, where specialised high-
performance proof engines are integrated within more readnd expressive frameworks. The hope is to combine the
expressiveness and maturity of the framework with the perémce of the specialised tool.

One such framework is the “HOL” family of LCF style higherdar logic interactive theorem provers, e.g., Isabelle,
HOL4, HOL Light etc(Gordon and Melham, 1993). Being LCF stydnly a small core of code is trusted. This assurance
comes at a price: all non-trusted code must ultimately détetp the core.

A SAT solver is a specialised high-performance tool for dij propositional satisfiability. Many important problem
in verification can be solved by representing them as instatthe satisfiability problem. zChaff (Moskewicz et ab02)
is, among others, a well known SAT solver that can producsa@ludon refutation proof in case of unsatisfiability.

In earlier work we constructed an LCF style interface betwd®L provers and proof producing SAT solvers (Weber
and Amjad, 2007), dramatically improving the provers’ prsipional proof capability. In this paper we describe omgoi
work on compressing SAT solver proofs using subsumptiore dim is to reduce proof checking time in the theorem
prover by giving it a shorter proof.

We assume the reader is familiar with the terms resolutidrsabsumption as used in automated reasoning, and related
terminology.

2 Our Contribution

We can prove propositional tautologies in interactive pravby asking a SAT solver to prove that the negation of the
tautology is unsatisfiable. The SAT solver outputs a proafratisfiability. The input term to the SAT solver must be in
conjunctive normal form. The proof is then output as a grorgsblution refutation from the initial clauses of the input
term. This proofis then replayed in the LCF style prover.

Subsumption on propositional clauses is just subset imiug/here clauses are considered as sets of literals. The co
idea is that replacing clauses by smaller ones may allow gkipoinferences further down the proof, and also give faster
convergence to the empty clause.

The proof trace from the SAT solver is just a log of all confttzuse derivations. Each derivation is a linelain of
resolutions. Since the SAT solver uses backtracking, mbayns are never used later in the proof. As a preprocessing
step, we discard such chains via a DFS of the resolution ggtgpting with the empty clause.

A chain can be represented by the notatity{p1)C1(p2)Cs . .. (pn)Ch, 1.€., resolve clauseS, andC; with pivot
variablep,, then resolve the resolvent witth, with pivot po, and so on. Lef?;, Rs, ... be the intermediate resolvents
andR,, be the final resolvent. Thg; are either initial clauses or the final resolvents of eadi&ins.

We scan resolvents in order of derivation, looking for sutgtion by initial clauses or earlier final resolvents. Dgrin
the scan of a chain, a subsumption may replace,Bapy D, such thap, ¢ D. We can then reduce the original chain to
Co(p1)Ci1(p3)Cs . .. (pn)Cy, which derives a possibly smaller final resolvent. Supp@sevas an earlier such resolvent,
so perhaps nows ¢ Cy. If ps ¢ Cj also, we can further reduce the chairGg(p1)C1 . .. (pn)Ch.

The scan for subsuming clauses must be done on the fly, sinoésgre often too big to read into memory. We use
forward subsumption since backward subsumption, whilefasuffers from serious problems, which we shall touchrupo
later. We considered ideas for fast forward subsumptiod irsérst-order provers but were unable to usefully adaptthe
to our setting. Instead, we employ the following ideas taespap forward subsumption:



1. Given how conflict clauses are derived, we may assuime ¢ R,. Then eithedD.D C R,, or R, is not
subsumed. Ifitis, and if alsBE,i < n.E C R; A E ¢ R,, then3j > i.p; € E. On the other hand, i, is not
subsumed, then #F, i < n.E C R;, the same restriction ol applies. Thus, when checking subsumption for any
R;, it suffices to look at clauses containipgfor j > 4. In fact, it suffices to check only those containimng ;.

2. The above optimisation does not help when checking supsamof R,,, where clauses containing any of the
literals of R,, must be examined. However, by ordering literals, it sufficesheck only those clauses whose least
literal is in R,,, by checking clauses containing literals®f in ascending order of literal.

3. Once we have rejected obvious non-candidates by coimgidéeir literals, we can further narrow down the search
by considering clause characteristics. Cons@et {p1,...,pn}. For{q,...,qn} C C, it must be thain < n,
q1 > p1 andg,, < p,, if literals are ordered. Then we can partition clauses bg and for each patrtition:

(@) Map aclaus® = {qi, ..., ¢y} to the point(g,,, 1) € R
(b) Recordthe projectio,. of (¢,,, ¢1) considered as a position vector, onto the unit positionorgdy /2, 1/1/2).
(c) ThenforD C {pi,...,p,} to hold, we need/2p; < D, < v/2p,.

Thus we quickly narrow the search to promising clauses. Tdrstacase complexity is as bad as a brute force linear
scan of all candidate clauses because the range is an guexxapation, but the method works well in practice.

4. Finally, we use a fast but incomplete test for subset gichu(E€n and Biere, 2005), falling back to a more expensive
check that is linear in the length of the smaller clause.

3 Concluding Remarks

We have so far achieved compression ratios of three to sexexemt with our prototype implementation (ignoring the
compression from the obvious preprocessing step), on liadyestrial problems taken from the SATLIB benchmarks
collection. The small figures are unsurprising, as SAT gsleee already very accurate and efficient. The pay-off imser
of net time savings has so far been mixed, with savings betw2@% to +4%, but we are confident the pay-offs will all
become positive as our implementation improves.

Even though checking backward subsumption is faster thavefal subsumption, for each successful check we must
confirm that the subsumed clause was not used to derive tleaisig clause, to avoid a circular dependency in the
proof. Doing this efficiently is a challenge, because thefgaan be very large, with millions of inferences. Preliariyn
experiments show compression doubling, but the implentients too slow at the moment.

Another application of this work is the extraction of smatlsatisfiable cores. We just count the initial clauses of the
compressed proof. At the moment this count yields about 5SO¥teqerformance of the latest algorithm (Gershman et al.,
2006). We are therefore hopeful that with the addition ofkward subsumption and special heuristics for expressing
initial clause preference during scans, we will have a cditipemethod.

There has been limited related work in this area. Subsumpités been used for minimising SAT problems prior to
proof search (E€n and Biere, 2005) but has been mostly nuleds too costly to be of use during proof search. Though
there is much literature on proof compression, particyliarthe proof-carrying code community, we have only beemrabl
to find theoretical papers as far as shortening of propositiproofs is concerned.
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