A Common Semantic Basis for BDI Languages

Louise A. Dennis Rafael H. Bordini Berndt Farwer
Michael Fisher

*Department of Computer Science, University of LiverpodiDepartment of Computer Science, University of Durham

As the concept of an ‘agent’ becomes more popular, so thetyasf programming languages based upon this concept
increases. Thesagent-basegrogramming languages range from minimal extensionsa@k through to logic-based
languages for ‘intelligent’ agents (Bordini et al. (2006an our work, we are particularly concerned (at least adi)
with approaches based aational agent theoriesprimarily theBDI theorydeveloped by Rao and Georgeff (1995). Such
languages not only incorporate the autonomous behaviguiresl for the agent concept, but also provide sophisticate
mechanisms for instigating, controlling, and reasoningualsuch behaviours.

Though programming languages based on the BDI approaals(tstll thes&DI languageyare increasingly popular,
there are several problems, for example:

1. there aréoo many languages;

2. many of the languages are similar, yet subtly differertis-tnakes it difficult for developers to learn more than one
language, as they are not based on agreed notions/defsifiother, such differences make it difficult to identify
precisely the general mechanisms and to transfer new meodmbetween languages; and

3. in spite of the fact that many BDI languages have logicalagics and utilise logical mechanisms, formal verifica-
tion tools are rare.

This last aspect is particularly important, since BDI agaftes are increasingly used in complex, critical appbceatisuch
as space exploration (Muscettola et al. (1998); Clancel é€@03); Sierhuis (2006)).

In our work! we are attempting to design an intermediate language @cAlle- Agent Infrastructure Laygrfor BDI-
style programming languages. There are several motiafmrthis, including:

e providing a common semantic basis for a number of BDI langsathus clarifying issues and aiding further pro-
gramming language development;

e supporting formal verification by developingr@del-checkeoptimised for checking AIL programs — existing BDI
languages can have compilers for AIL so as to take advanfatgassociated model-checker; and

e providing, potentially, a high-level virtual machine fdfieient and portable implementation.

Rather than attempting to cover all BDI languages from tlagt,stve have initially tackled some of the most popular.
Thus, we have principally referred to the variant of Ager&@p(Rao (1996)) used fason(Bordini et al. (2005b)) and
3APL (Dastani et al. (2005)) when designing the semanticghi® AlL, but have also taken Jadex (Pokahr et al. (2005))
and (Concurrent) MTATEM (Fisher (2005)) into account.

The current design for AIL, in the form of an extensive opiersl semantics, can be found in Dennis (2007) and
a discussion in Dennis et al. (2007). In order to model a @alet language in AlL it will be necessary to create an
AIL compiler for that language. Sometimes it will prove pids to map only fragments of a given language into AlL.
Our expectation is that large and useful fragments of modt&{le agent programming languages will be translatable.
In order to accommodate the main features of the primary BBfjliages, AIL has some components with overlapping
functionality.

In order to provide this semantics we needed to charactdrésehared concepts of beliefs, goals, actions, and plans
as well as accounting for common variations such as the useenits and deed stacks. Thus, our semantics develops a
complex data structure to represent intentions assogiatients (which include outstanding goals) with stacks efdde
(which include belief updates) to be performed. A geneedlisotion of a plan is developed to operate on this data streict
which captures many of the notions of plans available initeedture.

We have designed AIL aiming, in future work, not only to beeatd accommodate a variety of languages but also
to account for future developments of the existing langsag€or example, most languages currently concentrate on

*Work supported by EPSRC grants EP/D054788 (Durham) and ER&:®B (Liverpool).
1seehttp://wwwi.csc.liv.ac.ukf michael/ mcaplO6or details.



individual agents, so it is likely that those languages tllextended to include constructs to support the social téve
multi-agent systems, particularly the notion of “orgatimas”. AlL is therefore being designed with simple consteu
which allow it to model many of the most obvious developménmthis area. AlL’s social organisations are currently lohse
on METATEM'’s groups which flexibly allow the concepts of organisatand role to be captured (Fisher and Kakoudakis
(1999)). The treatment of groups of agents as agents indliright also provides a natural mechanism for introducing
concepts of modularity into agent programs.

Inthe short term, planned work revolves around the impleatam of AIL (in JavA ) and the provision of compilers for,
at least, significant fragments of AgentSpeak and 3APL.érdhger term, the correctness of these compilers needs to be
addressed and verification tools for AIL developed. In patér, we aim to use and extend the JPF model-checker (Visser
et al. (2000)) so that AIL classes are treated as internakekof JPF which should provide for efficient verification of
agent programs written in various BDI languages.

References

Rafael H. Bordini, Mehdi Dastani,idgen Dix, and Amal El Fallah Seghrouchni, editorglulti-Agent Programming:
Languages, Platforms and Applicatiofsumber 15 in Multiagent Systems, Artificial Societies, &ichulated Organi-
zations. Springer-Verlag, 2005a.

Rafael H. Bordini, Jomi F. Hbner, and Renata Vieiralason and the golden fleece of agent-oriented programming. In
Bordini et al. (2005a), chapter 1, pages 3-37.

William J. Clancey, Maarten Sierhuis, Charis Kaskiris, &ah van Hoof. Advantages of Brahms for Specifying and Im-
plementing a Multiagent Human-Robotic Exploration SystémiProc. 16th International Florida Artificial Intelligence
Research Society Conference (FLAIRSges 7-11. AAAI Press, 2003. ISBN 1-57735-177-0.

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Chy@&fe Programming multi-agent systems in 3APL. In
Bordini et al. (2005a), chapter 2, pages 39-67.

Louise A. Dennis. Agent Infrastructure Layer (AIL): Designd Operational Semantics v1.0. Technical Report ULCS-07-
001, Department of Computer Science, University of Livedp@007. Available fromhttp://www.csc.liv.ac.uk/research/
techreports/

Louise A. Dennis, Rafael H. Bordini, Berndt Farwer, Mich&&her, and Mike Wooldridge. A common semantic basis
for BDI languages. IiProgramming Multi-Agent Systems (ProMAS '02007. To Appeatr.

M. Fisher. METATEM: The story so far. InProc. 3rd International Workshop on Programming Multiag&ystems
(ProMAS) volume 3862 of_NAl, pages 3-22. Springer, 2005.

M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Bxadle Temporal Logic. IfProc. 12th International
Symposium on Languages for Intensional Programming (IsMPrld Scientific Press, 1999.

N. Muscettola, P. Pandurang Nayak, Barney Pell, and Bridhaiis. Remote Agent: To Boldly Go Where No Al System
Has Gone BeforeAtrtificial Intelligence 103(1-2):5-48, 1998.

Alexander Pokahr, Lars Braubach, and Winfried LamersdAarFlexible BDI Architecture Supporting Extensibility. In
Proc. IEEE/WIC/ACM International Conference on Intelligégent Technology (IATpages 379-385, 9 2005.

A. S. Rao and M. Georgeff. BDI Agents: from theory to practit® Proc. 1st International Conference on Multi-Agent
Systems (ICMASpages 312—-319, San Francisco, CA, June 1995.

Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Lddimamputable Language. IRroc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-AgemdNMAAMAW) volume 1038 oL NCS pages 42-55.
Springer, 1996.

Maarten Sierhuis. Multiagent Modeling and Simulation innfan-Robot Mission Operations. (Sk#p://ic.arc.nasa.gov/
ic/publicationy, 2006.

Willem Visser, Klaus Havelund, Guillaume Brat, and SeumguBark. Model checking programs. Rioceedings of the
Fifteenth International Conference on Automated SoftviEargineering (ASE’00), 11-15 September, Grenoble, France
pages 3-12. IEEE Computer Society, 2000.



