Proof Critics for IsaPlanner

Moa Johansson Lucas Dixon
Alan Bundy
*School of Informatics, University of Edinburgh
Appleton Tower, Crichton St, Edinburgh EH8 9LE, UK
{noa. j ohansson, | ucas. di xon, a.bundy}@d. ac. uk

Abstract

The discovery of missing lemmas and case-splits are challenging pretiterautomated theorem proving. Most
interactive provers rely on the user for guidance through these fstepk. Proof-planning critics were introduced by
Ireland as a way of automating this. Here, we present ongoing wordajgng critics for lemma speculation and case-
analysis in higher-order logic in the IsaPlanner system.

1 Introduction

Proof-planning is a method for automating proof search|astipg the fact that there exists families of proofs thaah
a similar structure (Bundy (1988)). One example is proofsriathematical induction, which consist of a base-case and a
step-case that is proved by appealing to the inductive Ingsig. Rippling is a heuristic commonly used in proof-piagn
to guide rewriting of the step-case goal towards a form whigedypothesis can be applied (Bundy et al. (2005)). It works
by annotating syntactic similarities between the hypdthasd the goal. Only rewrites that preserve the similagitidile
decreasing the differences are allowed. Proof-planniiiggmvere introduced by Ireland and Bundy (1996) as a method
of rescuing failed proof-attempts. Each critic is triggetsy a particular failure pattern. This information is thesed to
suggest a patch, such as the introduction of a missing lerameneralisation, a case-split or a new induction rule.
IsaPlanner is a proof-planner for the theorem prover I$al{€lixon (2005)). It provides an inductive prover, with
an efficient implementation of higher-order rippling. Untecently, IsaPlanner only supported one critic, for lemma
calculation. This critic would simply attempt to prove a gealised version of a blocked goal as a lemma. Recent
developments of IsaPlanner’s proof-representationudioly improved support for managing shared meta-variainles
proofs and the capability to refer to subgoals by name, haaaent possible to start experimenting with more sophistida
critics. Here we describe the implementation of two suctiosi for lemma speculation and for case-analysis, indise
the work of Ireland and Bundy (1996).

2 Lemma Speculation

Rippling is said to bdlocked if the inductive hypothesis cannot be applied and no moreitesvexists that will decrease
the differences towards the step-case goal. This might#tdithat an extra lemma is needed. The lemma speculation
critic attempts to create a schematic lemma that keepstthiasiies and inserts higher-order meta-variables stamtbr

yet unknown term-structure. As an example consider a bkbdpling attempt in the step-case of the proof (by inductio
ont) of rev(rev(t) Q1) = rev(l) @ t1.

Given : VI'.rev(rev(t) @Ql") =rev(l') @t
Goal : rev(rev(t) @[n] Q1) =rev(l) @ (h:: t)

The hypothesis (given) is not applicable to the goal and ncemawrite rules can be applied, why the lemma spec-
ulation critic would be fired. The first choice point for thetiris to pick a subterm to unblock. For the purpose of this
example, we choose the right hand side of the goal. This talheanstitute the left hand side of our lemma. As rippling
require preservation of similarities between the goal drdiven, the right hand side is constructed by insertingamet
variables, standing for term structures yet to be deterdhiitgo an instance of the corresponding part of the hypdghes
We prefix meta-variables with ‘?’.In our example we get thieesnatic lemma:

rev(l) Q (h :: t) =?F ((?Fa(rev(l), h, t, 1) @Qt), h, t, 1)

1rev is the list reversal function, ‘@’ denote append and ‘:rets for cons.



Viewing the term as a tree, meta-variables are insertedeabach function symbol. For exampl&h, is inserted
‘above’ rev(l), taking this as its first argument. To ensure the correcairtftions for meta-variables are allowed, they
each also take the variables of the gaalt(and!) as arguments. Application of this lemma gives the new goal:

Goal : rev(rev(t) Q [h] Q1) =?F,((?Fy(rev(l), h, t, 1) Qt), h, t, 1)

After applying the schematic lemma, rippling based rewgtcontinues, aiming to instantiate the meta-variablesttis
rewriting process to be more efficient, it is necessary ttrisigher-order unification. Otherwise, it would be piixs

to unify a top-level variable, such &4, with the left-hand side of almost any rewrite rule, reqigtin a huge search
space. Instead, we check the goal for function symbols ssichia and match this to rewrite rules also containing some
occurrence ofev. Consider a rewrite rule together with the goal:

rev(X) QY] = rev(Y :: X) < =1E ((?Fa(rev(l), h, t, 1) Qt), h, t, 1)
—_—— ——

The critic notices a common occurrencereb in the LHS of the rule and in the RHS of the god. can be unified
with [, so to make the rule applicable we need to unify the metalobat F, with the remaining term-structure of the LHS
of the rule. This suggest the unifige.z Q [?Y5(h, ¢, 1)] for 7 F;. After this rewrite the goal takes the form:

Goal : rev(rev(t) @ [h] Q1) =?F((rev(?Ya(h, t, 1) :: 1) Q¢t),h, t, 1)

Although we restrict the rewriting to rules involving comméunction symbols the search space can still be large gparti
ularly when working in large theories. We hope to develogHer heuristics to improve the efficiency of this.

After rewriting, the proof is concluded by exploring the jctions of remaining meta-variables, thereby attempting
make the inductive hypothesis applicable. HE&, is projected onto its first argument aitl; is projected ontd. The
resulting subterm :: [ can now be unified with the universally quantifiéih the hypothesis to find a match. As IsaPlanner
now supports shared meta-variables across the proof, ¢ps stescribed above has the side effect of instantiating the
schematic lemma:

rev(l) @ (h::t) =rev(l) Qh| Q¢

The lemma can now be generalised and proved using the maghiineady existing in IsaPlanner.

3 CaseAnalysis

Program specifications commonly contain if- and case-statts. As a first step towards automating some software
verification proofs, a critic for case-analysis of if-staents has been developed. It automatically introducesexsali
during rippling if the condition of the if-statement canrm® shown to be true or false. This results in two new subgoals
that are solved either by further rippling or by simplifiaatiif rippling is not applicable. We are also in the process of
implementing a similar critic for case-statements.

4 Conclusion and Further Work

We have described some ongoing work implementing prodtsrih IsaPlanner to improve its automation, following the
ideas of Ireland and Bundy (1996). A first version of a lemmecsiation critic has been implemented. We hope to further
experiment with this critic to get a better idea of its seasphce and improve the heuristics for rewriting in the presen
of meta-variables.

A critic for case-analysis of if-statements has also begriémented, to aid automation of software verification psoof
Further critics we hope to implement include generalisatibaccumulator variables in proofs about tail recursivectu
tions, and critics for revision and synthesis of inductichemes.
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