
DoC Cloud Guide: ElasticSearch Tutorial

Introduction - Fleets of Ephemeral VMs

The DoC private IaaS cloud gives you the ability to:

Create cloud instances (VMs to you and me).

Based on virtual machine templates or ISOs.

As long-lived or short-lived (ephemeral) as you like.

This tutorial shows a way of using ephemeral VMs:

Pick some parallel program - we’ve chosen ElasticSearch.

Create a Gold VM with ElasticSearch installed, set to run and
discover other ElasticSearch nodes automatically.

Create a template from the Gold VM.

Create a fleet of identically configured VMs by cloning the
ElasticSearch template.

Do all this purely to run an experiment.

Then destroy the fleet when we’re done! But keep the template.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 1 / 17

DoC Cloud Guide: ElasticSearch Tutorial

Our Example: Apache ElasticSearch

ElasticSearch (ES) is a document storage system that:

Stores one or more document collections called indexes; think
databases.

Each index contains one or more types; think tables.

Each type contains many JSON documents of similar
structure; think hierarchical JSON records.

Automatically infers the data types - with optional guidance.

Automatically indexes every field in a variety of ways - eg.
every word in a plain text string.

Elastic: automatically stores replicas of each document on
different ES nodes for resiliency.. and spreads the documents
out over any number of ES nodes for scalability.

Allows powerful ad-hoc queries.. and search performance
apparently scales linearly as nodes are added.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 2 / 17

More about ElasticSearch

Using ElasticSearch

Work with ES via a JSON-based RESTful API.

The API allows you to create indexes and types.

then add, update and delete any number of JSON documents
(assuming the nodes have space to store and index them all).

intelligently search what it’s indexed.

Optionally aggregate the results into a frequency distribution
(like group by in SQL terms).

Because ES infers the type of each field heuristically.. it can
index more intelligently:

For example, suppose your documents have a “postdate” field,
and ES infers that the values are dates and times.. you can search
for documents posted within a specific range of date-times.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 3 / 17

ElasticSearch in the DoC Cloud

ElasticSearch: in the DoC Cloud?

ES can run on a single machine.

or a cluster of machines on the same local network, with the
same ES cluster name.

Nodes discover each other automatically by network
broadcasts.. elect a master.. and cope with nodes disappearing.

To create an ES cluster via the DoC cloud:

Create a customized VM called the ES Gold VM.. “Gold”
means the perfect, hand-crafted VM from which we clone.

Install Java and ES on it.

Set a particular ES cluster name.

configure ES to run on boot.

Then make a template from the Gold VM.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 4 / 17

ElasticSearch in the DoC Cloud

Then we clone many VMs from that template.

If we got it right.. on startup they’ll discover each other and
form a cluster.

Then we throw any number of JSON documents at any of the
VMs via the API.. (or in parallel at all of the VMs).

ES automatically stores, replicates and indexes the JSON
documents for us.

Then we can search in a variety of ways.

Then add extra documents, or delete or update existing
documents, then search again, as often as we like.

Sounds complex - days of careful work and programming?

No! We can do this experiment - from scratch - in an hour.

Are you ready? Start your stopwatch and let’s go then!

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 5 / 17

Let’s go: the Gold VM

Create the ES Gold VM

Log into cloudstack.doc.ic.ac.uk/client..

Use your college username and password, and use “imperial” as
the domain.

Create a Cloud Instance (VM) called “ElasticGold”:

Select Instances and then Add Instance.
Select From Template, then Ubuntu 12.04 (non CSG) 64-bit.
Note down the username guest/password combination.
Choose Local storage, 1GB RAM, 1Ghz.
Choose No data disk.
Set the name to “ElasticGold”, and the group to “ElasticSearch”.
Now Launch VM.
Determine the VM’s IP address - click on NICs. Suppose it’s
146.169.44.200.
Start the VM Console.
Login as guest.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 6 / 17

Let’s go: the Gold VM

Configure the Gold VM: Setting up Java and ES

Set the password - via passwd guest - to something more relevant to
this application, eg BouncyCastle.
From your desktop machine, ssh into the VM and check that
the new password works:
ssh guest@146.169.44.200

Become root in the ssh session, then do the rest of this setup
in that ssh session:
sudo bash

Install a JDK, plus iftop:
apt-get update

apt-get dist-upgrade

Reboot may be required after the above

apt-get install python-software-properties iftop

apt-get install openjdk-7-jdk

Then freshen up all the packages:
apt-get autoremove

apt-get upgrade

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 7 / 17

Let’s go: the Gold VM

Configure the Gold VM: continued

Install the ES Debian package:
wget -O - http://packages.elasticsearch.org/GPG-KEY-elasticsearch | apt-key add -

echo ’deb http://packages.elasticsearch.org/elasticsearch/1.0/debian stable main’ >

/etc/apt/sources.list.d/elasticsearch.list

apt-get update

apt-get install elasticsearch

Make ES start on boot:
update-rc.d elasticsearch defaults 95 10

Set the cluster name to something like “BouncyBunny” by:
echo "cluster.name: BouncyBunny" >> /etc/elasticsearch/elasticsearch.yml

Finally, tidy things up and halt the machine:
/etc/init.d/elasticsearch stop

rm -rf /var/lib/elasticsearch/*

rm -rf /var/log/elasticsearch/*

sync

shutdown -h now

In the GUI, select Stop Instance; wait for it to finish.

All the above should have taken approx 10 minutes to do.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 8 / 17

Let’s go: Cloning the Gold VM

Create a template, clone from it

Select View Volumes, select the root disk, then Create
Template.

Name the template “elasticsearchnode” and set the description to:
“BouncyBunny elastic search node, user guest, password BouncyCastle”.

Wait for the template to be created - this might take 2 minutes.

Clone a new VM from your “elasticsearchnode” template:

Select Instances and then Add Instance.
Select From Template, then My Templates, then
elasticsearchnode.
Choose Local storage, 1GB RAM, 1Ghz.
Choose No data disk.
Set the name to “elastic1”, and the group to the “ElasticSearch” group.
Launch VM, wait for it to start.
Determine the IP address - click on NICs. eg 146.169.44.201.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 9 / 17

Let’s go: Checking the Cloned Node

Check the ES Node

From your machine, ssh into your new Cloned VM:
ssh guest@146.169.44.201

Carry on using your ssh session.

Check that ES is running:
ps auxww|grep -i elastic

tail /var/log/elasticsearch/BouncyBunny.log

If it isn’t, you’ll need to check the logs and carefully check that
every single change you tried to make in the Gold VM is reflected
here in the first node VM.

When you find a difference, destroy the VM and the template,
alter the Gold VM, take the template again, and try creating
your first node again.

If you got it right first time, well done!

This probably took about 20 minutes. Iteration and debugging
takes extra time, of course.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 10 / 17

Let’s go: ES on a single node

Test ES on a single node

What can we do with a one-node ES system?

As a basic test, use Curl to insert our first JSON document (type
this all on one line):
curl -XPUT http://146.169.44.201:9200/twitter/tweets/1

-d ’{"username": "dunc", "message": "this is a tweet",

"postdate": "20140225T11:55:00"}’

Note that:

The “-d” argument is the JSON document to store.
“twitter” is the name of our first index, created implicitly.
“tweets” is the name of our first type, created implicitly.
“1” is the internal document id (within “twitter/tweets”) of the
document we want to store.

the response is:
{"_index":"twitter","_type":"tweets","_id":"1","_version":1,"created":true}

Insert a second fake tweet as document 2:
curl -XPUT http://146.169.44.201:9200/twitter/tweets/2

-d ’{"username": "dunc", "message": "this is another tweet",

"postdate": "20140226T12:55:00"}’

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 11 / 17

Let’s go: ES on a single node

More Tests

Retrieve our first document via:
curl -XGET http://146.169.44.201:9200/twitter/tweets/1

the response is:
{"_index":"twitter","_type":"tweets","_id":"1","_version":2,"found":true,

"_source" : {"username": "dunc", "message": "this is a tweet",

"postdate": "20140225T11:55:00"}}

Note that it returns the original JSON document plus various
bits of meta-data.

Perform a simple search for tweets by “dunc”:
curl -XGET http://146.169.44.201:9200/twitter/tweets/_search\?q=username:dunc

The (very long) results include:
{ ... "hits":[

{"_index":"twitter","_type":"tweets","_id":"1","_score":0.5945348,

"_source" : {"username": "dunc", "message": "this is a tweet",

"postdate": "20140225T11:55:00"}

},

{"_index":"twitter","_type":"tweets","_id":"-JifysE9QGO5ngODwUnOAw", ...

"_source" : {"username": "dunc", "message": "this is another tweet",

"postdate": "20140226T12:55:00"}

}

]

}

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 12 / 17

Let’s go: Using ES on multiple nodes

ES on multiple nodes

Now, return to the CloudStack Web UI, and create a second VM
from the ElasticSearch template.
Check both nodes’ log files and verify that they’ve formed a
cluster. It’s hard to see them replicating data because they’re so
quick, and our data set is so tiny.
Rerun your search unchanged. Same results should appear.
Determine the second node’s IP address, and rerun your search
query using the second node’s IP address. Both nodes are up,
have copies of all documents, and can simultaneously permit
inserts, updates, deletions and queries.
Make up more fake tweets and insert them. Write a program to
read a file containing tweets (or make up random tweets) and
invoke Curl once per tweet to insert it.
Create a third and fourth VM from the ElasticSearch template.
Rerun some tests. Then destroy one of the VMs and verify that
no data has been lost.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 13 / 17

Words, Anagrams and Anagram Sets

New Example: Words, Anagrams and Anagram Sets

Let’s switch example: Consider the problem of finding sets of
words that are anagrams of one another (like “dog” and “god”).

Specifically, our task is to find the biggest set of anagram
words in a given wordlist, and which words form that set (or sets
of the same maximum size)?

Choose an ES index and type name: words/anagrams.

Decide what JSON structure we want to store:

A word, and
That word’s signature.

The signature is the bag of letters contained in the word, sorted
into character order. (eg. sig(’dog’)=’dgo’). Words that are
anagrams of one another have the same signature.

In JSON format, a document describing a single word and it’s
signature is: { "word": "dog", "sig": "dgo" }

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 14 / 17

Words, Anagrams and Anagram Sets

Anagram Sets continued

Getting bored with running Curl myself, I wrote some Perl scripts
(and a module) to simplify things. Fetch them by:
git clone git@gitlab.doc.ic.ac.uk:dcw/elasticsearch_anagrams.git

and look around.

Edit the Defns.pm module and change the IP address of an ES
node, contained in the $elastic definition near the top.

Decide on a wordlist (eg /usr/share/dict/words), and insert
all the words via:
./insert-words-and-sigs /usr/share/dict/words

This takes approximately 20 minutes to complete. After this,
search for words with signature “dgo”:
curl -XGET http://146.169.44.201:9200/words/anagrams/_search\?q=sig:dgo

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 15 / 17

Words, Anagrams and Anagram Sets

Anagram Sets continued

Use findanagram to find all anagrams of a given word, this is a
wrapper around the search logic:
./findanagram dog

./findanagram last

The results of the latter are:
last: last salt slat lats

Use findanagrams to find all anagrams of all words:
./findanagrams > /tmp/anagram_sets

Use findbiggestanagramsets to find the biggest anagram set(s)
and display their members:
./findbiggestanagramsets

To speed up the very slow insert script, use a bulk insert API
variant, used in the Perl script:
./bulkinsert /usr/share/dict/words

Now it finishes in a few seconds!

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 16 / 17

Summary - what have we done?

Summary

What have we achived? we’ve:

Created fleets of ephemeral VMs to perform experiments.

Created a hand crafted Gold VM with your desired software and
configuration on it.

Shut the Gold VM down cleanly and made a template from it.

Cloned a VM from the template.

Tested that it works.

Cloned more VMs from the template.

Ran your experiments; gathered your results.

Destroyed all the cloned VMs.

Note: keep the Gold VM or template to ensure reproducibility.

Read www.doc.ic.ac.uk/csg/services/cloud for much more
information about the DoC private cloud.

Duncan White (Systems Manager, CSG) ElasticSearch Cloud Tutorial Feb 2014 17 / 17

	DoC Cloud Guide: ElasticSearch Tutorial
	More about ElasticSearch
	ElasticSearch in the DoC Cloud
	Let's go: the Gold VM
	Let's go: Cloning the Gold VM
	Let's go: Checking the Cloned Node
	Let's go: ES on a single node
	Let's go: Using ES on multiple nodes
	Words, Anagrams and Anagram Sets
	Summary - what have we done?

