
Long Running Processes on Linux Or, how to do your work without inconveniencing everyone

You may need to create Linux processes that will need to run for
hours or days (”long-running processes” or LRPs), and must
continue to run on lab machines after you log out. Staying
logged in for several hours and locking your screen is a common
(but bad!) way of achieving this.

This causes inconvenience to other users, and specifically breaks
the DoC screen locking policy - which was requested by students.
This policy is:

No-one should lock any lab computer for more than
30 minutes without discussing it with CSG first. The
only exception to this is if we have specifically allocated
you a project machine.

So, here’s our advice about how to complete your work in the
least disruptive way possible:

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 1 / 7

Long Running Processes on Linux Our Advice

If your problem can be parallelised into one algorithm operating
independently on different sets of data, we recommend the
Condor batch processing framework, which handles the donkey
work (starting jobs on idle machines, killing processes off when
an interactive user returns, and restarting that job somewhere
else). See our local Condor documentation for more information.

If Condor is not appropriate, you need to find one or more
suitable machines most appropriate to run your LRPs on:

Shell servers are NEVER the right answer.
The batch servers batch1.doc.ic.ac.uk (aka tui) and
batch2.doc.ic.ac.uk (aka potoo01) are powerful machines and may
well be suitable - but there are only two such machines!
Often a Linux lab machine is the best choice, given that lab
machines have as many cores as servers nowadays, and desktop
processors may run faster than server processors.

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 2 / 7

Long Running Processes on Linux GUIs

If your program only has a GUI, this is an obstacle to automation
and running it while not logged on.

Can you build a non-interactive, non-graphical version of the
software, or use another piece of software instead?

If it is not possible to eliminate the GUI, you may have no choice
but to use a lab machine for long periods of time.

In this case, please discuss this with us before doing it - please
email this info to help@doc.ic.ac.uk telling us (at least):

what you’re trying to do?
how long you believe it will take?
why you really truly can’t get rid of the GUI?
which machine(s) you’re thinking of using?

Perhaps we’ll be able to suggest a way of achieving the same
goal without using software with a GUI, or suggest you use a
non-lab PC.

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 3 / 7

Long Running Processes on Linux Non-interactive Programs

Given a non-interactive program, and a chosen machine (let’s say
matrix15), estimate how long the program should take to run
(eg. by trying smaller test cases).
Also ensure your LRP is not going to inconvenience other users
of the same machine (eg. by using all the RAM, CPU power or
network bandwidth of the machine). This is very important and
is your responsibility.
Now, work out how to run the program automatically [this is also
necessary for using condor]: work out a single command that will
run the program in an automatic fashion with the correct data
inputs, and capture the output.
To achieve this, you may need to use a mixture of:

commmand line arguments,
input redirection - CMD < INPUTFILE, or CMD < /dev/null,
output redirection - CMD > OUTPUTFILE 2> ERRORFILE, or
CMD > OUTPUTFILE 2>&1 to redirect stderr (fd 2) to
OUTPUTFILE.

(above in Bourne shell ”sh” syntax).

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 4 / 7

Long Running Processes on Linux Non-interactive Programs

Wrap the above ”run it automatically” command up in a short
shell script, called RUNME for instance, roughly of the form:

#/!/bin/sh -

cd STARTING_DIRECTORY

CMD ARGS < INPUTFILE > OUTPUTFILE 2> ERRORFILE

Make it executable: chmod +x RUNME and then run it from
another directory (eg /) using it’s absolute path:

set dir=‘pwd‘

cd /

$dir/RUNME

Check that it works completely, check the output and error files.

You can pass RUNME arguments through to your chosen
command by adding $* (shell command line arguments) to the
CMD ARGS invocation.

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 5 / 7

Long Running Processes on Linux Non-interactive Programs

To run your RUNME script on your chosen machine in the
background: do the following (tcsh syntax):

nice nohup $dir/RUNME </dev/null >&/dev/null &

That means:

Run the script RUNME found in directory $dir.
Detached from keyboard (</dev/null)
Detached from screen [stdout and stderr] (>&/dev/null)
In the background (&)
Make it immune to hangup signals (nohup)
reduce it’s scheduling priority (be nice) to favour other processes

Now, log out and back in again. Check that RUNME is still
running by: ps auxww|grep RUNME

Monitor your LRP for a while with top to check it’s resource
utilization will not overwhelm the machine.

Check the output file periodically (NB: the most recent 4K of
output may not appear in the output until the output buffer is
full, or the file is flushed).

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 6 / 7

Long Running Processes on Linux Summary

Check that the LRP finishes in a reasonable amount of time - kill
it off if it fails to terminate in twice the estimated time! Do not
just leave it running for days when it should have finished in 2
hours!

If you follow these guidelines, you should be able to get your
long-running work done, without inconveniencing other users.

Don’t Forgot to Optimize the Hotspots: Orthogonal to the
above, before running a program for days, try to optimize it’s
performance on a relatively small dataset:

Profile your program’s runtime behaviour, to see where it’s really
spending the time. No programmer fully understands the runtime
behaviour of their own code - profiling always surprises you!
Then optimize the hotspot - the small part of the program that
is taking the most amount of time!

Some members of CSG have a lot of expertise in this area, it’s
well worth discussing such problems with us.

Duncan White (Systems Manager, CSG) Long Running Processes: Tips Feb 2014 7 / 7

	Long Running Processes on Linux
	Or, how to do your work without inconveniencing everyone
	Our Advice
	GUIs
	Non-interactive Programs
	Summary

