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Abstract

The NAND system is a theorem prover derived from an original idea by Sandqvist Tor.

It can be applied to propositional and first order logic. The major difference from other

proof systems resides on its syntactic normal form, which is the Bracket Nand Normal Form

(BNNF). Logical formulas are represented as lists using only two operators that play the

role of negation and conjunction. When translated into BNNF, the usual distributivity

laws of boolean logic are merged into a single one. This is because the bracket operator

has the ability of metamorphosing between the conjunctive and disjunctive operators.

A semantic tree distribution method using BNNF expressions that uses a single exten-

sion rule is defined in similarity to NNF tableau methods. When combined with a set of

simplification-reduction rules the proof of a theorem can be accelerated. Finally, some of

the techniques defined for NAND are related to recent techniques in knowledge compilation

systems.
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Chapter 1

Motivations and structure

Automated theorem proving is a well developed field of automated reasoning in arti-

ficial intelligence that uses deductive reasoning to derive conclusions about formal logical

sentences. The automated attribute means that the reasoning process is programmed and

done by a machine, and not by humans. Of course, up to now, it is still the human’s task

to develop the program. Applications of theorem proving range from pure mathematics,

with the discovery of proofs for mathematical conjectures, to applied areas like software

and hardware implementation and verification.

The theorem proving landscape is densely populated. Currently established methods

for classical logic vary in their applicability domain (propositional logic, first-order logic,

etc.), their representation (clausal/non-clausal forms, semantic trees, semantic graphs, de-

cision diagrams, etc.) and, most importantly, in the proof strategies they employ (choice of

inference rules, sentence orderings, etc.). Traditional renowned methods are Smullyan’s an-

alytic tableaux [25], Mondadori’s KE-tableaux [2], the Davis-Putnam-Logemann-Loveland

procedure (DPLL) [5, 6], Ordered Binary Decision Diagrams (OBDD) [15] and, of course,

Robinsons’s resolution [22]. Tableau methods and resolution can be applied to both propo-

sitional and first-order logic, while DPLL and OBBD’s cover the propositional domain.

Other differences are that resolution and DPLL work with Conjunctive Normal Form

(CNF), or clausal form for short, while tableaux can deal with Negation Normal Form

(NNF). An extension of DPLL to non clausal form is described in [18]. OBDD’s are

themselves a canonical normal form that can be constructed for any boolean function.

Some of these techniques, originally developed for asserting the satisfiability of a the-

ory, have later been rediscovered as powerful tools for knowledge compilation. While

traditional proof systems concentrate on deciding whether a theory is valid or not and,

perhaps, returning a counter model for the theory, knowledge compilation is concerned
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2 CHAPTER 1. MOTIVATIONS AND STRUCTURE

with preprocessing the given theory so that it can be used in later queries. The goal is to

optimise the theory representation so that it speeds up the query answering process. Ob-

viously, as a bonus, the preprocessing stage also decides on the validity of the underlying

theory. Although the compilation process may itself be slower than a general refutation

procedure, once it is done it can be reused in many queries making it faster overall. Along-

side, new normal form representations were introduced (DNNF [7, 8], OFNNF [11, 12], full

dissolvents [16, 20, 17]) as an efficient representation basis for the propositional theories.

The NAND proof system we implement in this project is based on a new normal form

originally introduced by Sandqvist [23], also explored by Lin Yang [26]. We call it the

Bracket Nand Normal Form (BNNF). The representation is based on a generalisation of

the NAND operator or Sheffer’s stroke [24]. Logical formulas are represented as lists using

only two operators that play the role of negation and conjunction. It is a versatile system

that can reproduce NNF analytic or KE tableau methods using only one extension rule.

It also includes a series of simplification rules that can be used alone or coupled to the

tableau method to derive a proof of a logical expression or compile a theory into DNNF.

The NAND simplification rules are equivalence rules that are also found in other proof

and compilation systems. But, when translated into BNNF syntax, a single rule emulates

well known inference rules like unit resolution, subsumption and factoring. This is due

to the dual nature of the operator that is used to represent BNNF formulas, which is

able to metamorphose between a conjunction and a disjunction as the logical formula is

manipulated.

The best application of the NAND system is in the domain of propositional logic where

the simplification rules can be freely applied. They play an important role in this system.

The extension of NAND to first order logic is also achieved in terms of analytic tableaux

style proofs.

Most of the systems we have mentioned in this introduction, including our NAND, are

closely related. We shall overview some of them briefly, paying particular attention to

knowledge compilation techniques which are object of relatively recent work which the

reader may be less familiarised with. However, we do expect the reader to be familiar

with the general concepts of propositional and first order logic.

The structure of this text is as follows. Chapter 2 contains the definition of analytic

and KE NNF tableaux as well as the rules for the clausal DPLL. These are given in Section

2.1. Section 2.2 contains a description of the normal forms for knowledge compilation. The

ones presented are the OBDD’s in Section 2.2.1, DNNF’s in Section 2.2.2, path dissolution

in Section 2.2.3 and FNNF’s in Section 2.2.4.

The NAND system and its applications are introduced in Chapter 3. The syntax and
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semantics for BNNF logical formulas is presented in Section 3.1, where the bracket opera-

tor is defined. Properties like depth, size and degree and the distributivity rule are defined

in Section 3.2. Section 3.3 contains the set of simplification rules, namely bracket simpli-

fications, formula reductions and Shanon expansion. The tree expansion method that is

similar to tableau methods is given in Section 3.4. Section 3.5 gives an application of the

NAND system as a compilation method into DNNF normal form, and also contains the

tests that where performed against the LeanTap [27] implementation of analytic tableaux.

Finally, the NAND system for the first order logic is described in Section3.6.

Conclusions are summarised in Chapter 4.
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Chapter 2

Background

2.1 Proof Systems

2.1.1 Tableau Methods

Analytic tableau methods are refutation procedures with application in propositional and

first order logic. Here we will describe the propositional case. A good reference for tableau

methods is the Smullyan book [25].

The tableau method can be defined for general logical form using all the boolean

connectives, for negation normal from (NNF) and for conjunctive normal form (CNF).

Negation normal form represents logical formulas using only the connectives ∧, ∨ and ¬,

where ¬ must be at the literal level. Conjunctive normal form (or clausal form) is defined

as a conjoined set of disjoined literals as, for instance (a∨ b∨ c) ∧ (b∨d)∧ (a∨d). There is

also another definition of tableaux that uses signed formulas, but we will not cover them

here. We shall focus on the propositional NNF case.

During the construction of a tableau, the initial formula or formula set is decomposed

by successively splitting the formulas at each connective ∧ or ∨, until the literal level is

reached. This splitting into cases draws a tree structure where each node is marked with

a (sub)formula. A formula that belongs to a branch can be used to extend that branch

according to the tableaux rules:

α1 ∧ α2

α1

α2

β1 ∨ β2

β1 | β2

p

¬ p

× (2.1.1)

From left to right, the three rules are known as the α rule, β rule and closure rule.

5



6 CHAPTER 2. BACKGROUND

Their interpretation is the following.

α rule If in a node of a given branch there exists a formula of the form α1∧α2, then that

branch can be extended by attaching both α1 and α2 below it;

β rule If in a node of a given branch there exists a formula of the form β1 ∨ β2, then we

can add a split at the end of that branch and attach each βi as a leaf node;

Closure rule If a branch contains to complementary literals p and ¬ p, then close that

branch. This branch cannot be extended.

Each formula can be selected only once along each branch. Only formulas that belong

to a branch can be selected for the extension of that branch. If all the branches end up

closed, it means that the initial formula F was unsatisfiable. If there are no more formulas

to be selected and some of the branches are left open, then F is satisfiable. It does not

mean that F is a tautology, it only means that there are true or false assignments to the

atoms of F that make it satisfiable. In this case we say that there is an interpretation

I that satisfies F . We also say that F is unsatisfiable if there is no interpretation that

satisfies it. In other words, under all possible assignments over atoms of F , F is always

false.

We can see why in this way the tableau is a refutation procedure. If we negate the

original theorem T and draw a tableau for it, and the tableau closes, it means that ¬T
was unsatisfiable. Consequently, T is valid, i.e., it is a tautology.

Example 2.1.1 Consider the following tautology

F ≡ ( p ∨ ( q ∧ r) ) ⇒ ( ( p ∨ q) ∧ ( p ∨ r ) ) (2.1.2)

with NNF(¬F) given by

NNF(¬F) = ( p ∨ ( q ∧ r) ) ∧ ( (¬ p ∧ ¬ q) ∨ (¬ p ∧ ¬ r ) ) (2.1.3)

A closed tableau for NNF(¬F) is given in Figure 2.1.

Firstly, the α rule is applied to NNF(¬F) and the two formulas are placed at the root

of the tableau. Then the β rule is applied to ( p ∨ ( q ∧ r) ) splitting the branch into two, a

leaf marked with p and another leaf marked with ( q ∧ r). Next, the second formula at the

root node is select and the β rule is applied to it, under node p. At the same time, on the

right branch, we apply the α rule on q ∧ r, which extends that branch without splitting.

The second formula on the root is also selected to extend this branch with a split under the

leaf node r. Finally, α rules are applied at each leaf, closing all the branches because they

all contain complementary literals.
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( p ∨ ( q ∧ r) )
( (¬ p ∧ ¬ q) ∨ (¬ p ∧ ¬ r ) )

p q ∧ r

|
q

r

(¬ p ∧ ¬ q) (¬ p ∧ ¬ r ) (¬ p ∧ ¬ q) (¬ p ∧ ¬ r )

| | | |
¬ p ¬ p ¬ p ¬ p

¬ q ¬ r ¬ q ¬ r

¡
¡

@
@

¡
¡

@
@

­
­

­
­

­­

J
J

J
J

JJ

Figure 2.1: Closed Tableau

Note that even if the tableau of Figure 2.1 was not closed it would be complete, because

no more formulas were left for selection.

Definition 2.1.2 (Complete Tableau) A tableau is complete if it is closed or if, for

every branch θ, every compound (non literal) formula in θ has been used for extending θ.

When a tableau is completed, the result of conjoining all literals along each branch

and disjoining the branches gives a disjunctive normal form (DNF) representation of the

root node. DNF is the dual of CNF. It is a disjoined set of conjoined literals. The

closed branches of a tableau correspond to those conjunctions in the DNF that result in

contradictions.

Analytic tableaux are only allowed to pick formulas that exist in the branch being

extended. Another type of tableaux, called the KE-tableaux [1, 2] only performs splitting

on literals. A split is performed by adding two nodes marked with p and ¬ p as leaf nodes

of the split. The literal is chosen form the atom set of formulas in that branch . This rule

is called the principle of bivalence (PB) rule.

The rules for NNF KE-tableaux are1:
1We have used the same notation as in [11].
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p | ¬ p

α1 ∧ α2

α1

α2

¬β1

β1 ∨ β2

β2

¬β2

β1 ∨ β2

β1

p

¬ p

× (2.1.4)

The PB rule can be found again in the Davis Putnam procedure under slightly different

surroundings.

2.1.2 Davis Putnam Procedure

The Davis Putnam procedure (DP) is a decision procedure originally developed in 1960

by Martin Davis and Hillary Putnam [5] for clausal propositional theories1.

Later refinements with contributions by Logemann and Loveland [6] improved on the

original algorithm which is now known as the Davis-Putnam-Logemann-Loveland proce-

dure (DPLL).

The algorithm is very simple and yet, or because of that, very efficient. Its is based

on refutation, which means that the initial theorem is negated and an attempt to derive

a contradiction is made.

The formal steps are the following. Given a clause set2 S:

Tautology Rule Remove all tautologous clauses from S, i.e., those that contain a literal

and its complement in the form (L ∨ L ).

One Literal Rule For each unit clause L ∈ S: i) Delete all clauses containing L; ii)

Delete all occurrences of L from the remaining clauses.

Pure Literal Rule If a literal L ∈ S but L /∈ S, delete all clauses containing L. L is a

pure literal.

Termination Rule If the empty clause (false) is generated, then there is a refutation.

Otherwise, if no clauses are left, then S is satisfiable.

Splitting Rule If none of the above cases apply, select a literal L and split the clause

set into two sets SL and SL. SL is the clause set that results from S after all clauses

containing L have been deleted and all occurrences of L removed from the remaining
1The Davis-Putnam procedure can also be applied to first order logic (FOL) using Herbrand models

[25]. MACE [14], a DPLL theorem prover, still uses this technique.
2A clause is a disjunction of literals, and a set of clauses is a conjunction of clauses.
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clauses. Conversely, SL is the clause set obtained form S after removing all clauses

containing L and removing all occurrences of L from the other clauses.

Below we give an example were this method is applied.

Example 2.1.3 Consider the clause set

S = {(¬ q ∨ r), (¬r ∨ p), (¬ r ∨ q), (¬ p ∨ q ∨ r), (p ∨ q), (¬ p,∨¬ q)} (2.1.5)

There are no unit clauses neither pure literals , so we select the literal p to apply the

splitting rule. Then

Sp = {(¬ q ∨ r), (¬ r ∨ q), (q ∨ r), (¬ q)} (2.1.6)

and

Sp = {(¬ q ∨ r), (¬r), (¬ r ∨ q), (q)} (2.1.7)

we now apply to Sp the unit literal rule on ¬ q , and apply to Sp the unit literal rule on

¬ r to obtain

Sp = {(¬ r), (r)} (2.1.8)

and

Sp = {(¬ q), (q)} (2.1.9)

And finally apply the unit literal rules on r and q which generates the empty clause on both

Sp and Sp. Since each set contains the empty clause, the proof has succeeded. In other

words, the given clause set is unsatisfiable. If some of the clause sets had become empty,

then the derivation would have failed.

There is also an extension of DPLL to non-clausal form, known as the non-clausal

Davis-Putnam (NCDP) that can be found in [18].

2.2 Normal Forms

2.2.1 Ordered Binary Decision Diagrams

One of the applications of automated reasoning is hardware and software verification. Or-

dered binary decision diagrams (OBBD) are a canonical representation of Boolean func-

tions that uses directed acyclic graphs. Satisfiability and equivalence testing between
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boolean functions becomes very efficient using OBDD’s. For that reason they have been

widely implied in digital system design, verification and testing.

A comprehensive overview of OBBD’s and its IF normal form representation is pre-

sented by Moore in [15]. The description we shall give here, including theorems and formal

definitions, are based on his paper.

The Boyer-Moore logic represents boolean propositional variables by IF-THEN-ELSE

statements. If we want to say, for example, that X is true, we can say it as IF-X-THEN-

TRUE-ELSE-FALSE. The shorthand notation for the IF statements is

(IF X Y Z) ≡ IF X THEN Y ELSE Z (2.2.10)

The IF axioms are

Axiom 2.2.1 (IF T Y Z) = Y

Axiom 2.2.2 (IF F Y Z) = Z

where T and F are constant symbols. We may intuitively recognise them as true and

false. Since the IF variables are boolean, they are also mapped onto T or F.

A set of four theorems is needed for manipulating the normal form. Although they are

all important, the last two are the “main ingredients”.

Theorem 2.2.3 (IF-X-T-F) (IF X T F) = X

Theorem 2.2.4 (IF-X-Y-Y) (IF X Y Y) = Y

Theorem 2.2.5 (Reduction) Consider the expression (IF X Φ Ψ), where X is a boolean

variable. Then every occurrence of X in Φ can be replaced by T and every occurrence of

X in Ψ may be replaced by F.

We stop here for a brief moment to pay attention to this theorem. As we shall see

when we get to the NAND formalism, this is the theorem that inspired the >−⊥ reduction

rules of Theorems 3.3.4 and 3.3.5 that are used for BNNF1 formula simplifications. The

justification for it is that once we analyse the functions Φ or Ψ, the variable X has already

been tested and its value is known. It can be either T or F. If it is T we go into the

then-branch, if X is F we go into the else-branch. Therefore, if we are in the then-branch

X must have been true, and conversely for the else-branch.
1Bracket Nand Normal Form (BNNF) is defined in Chapter 3.
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Example 2.2.6 Consider the IF expression (IF X (IF Y X F) (IF X Z Y) ). By the

reduction theorem, X can be replaced by T in (IF Y X F) and by F in (IF X Z Y). The

resulting IF expression is (IF X (IF Y T F) (IF F Z Y) ) which later reduces to (IF X Y

Y ) by Theorem 2.2.3 and Axiom 2.2.2, and then to Y by Theorem 2.2.4.

The theorem that follows is also extremely relevant. In propositional logic it is basi-

cally equivalent to what is known as Shanon expansion (SE)1. We have already seen an

application of SE which is the splitting rule of the Davis Putnam procedure and, as we

shall see further, it is also used in the three other normal forms described in this chapter.

Furthermore, it can also be used in the NAND system for formula simplifications.

Theorem 2.2.7 (IF Distribution) Let fn be a function symbol acting on a set of vari-

ables {A1, . . . , An} where one of them is an (IF X Y Z) expression. The IF-distribution

over the function symbol fn is given by:

( fn A1 . . . ( IF X Y Z ) . . . An ) = ( IF X (2.2.11)

( fn A1 . . . Y . . . An )

( fn A1 . . . Z . . . An ) )

What the distribution theorem is doing is splitting into cases. The case when X is T

and the case where X is F. For each case the reduction theorem applies.

The IF representation defined so far is not yet normalised. The IF normal form sets a

few extra rules as defined below.

Definition 2.2.8 (IF Normal Form) The constant symbols T and F are in IF normal

form. An expression (IF X Y Z) is in IF normal form if

• X contains no IF’s and is neither T nor F

• X does not occur in Y or Z

• Y and Z are not identical

• Y and Z are in IF normal form

No other expressions are in IF normal form.

To normalise a given IF expression the above theorems and axioms should be applied

recursively. Here is an example that combines the several rules.
1See equations (2.2.21), (3.3.18) or (3.3.19)
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Example 2.2.9 Consider the IF expression ( IF ( IF X Y T ) Z ( IF Z F Y ) ). First of

all we see that the test expression ( IF X Y T ) contains IF’s. IF-distribution is applied

on X:

( IF X ( IF Y Z ( IF Z F Y ) ) (2.2.12)

( IF T Z ( IF Z F Y ) ) )

Next, we apply the Axiom 2.2.1 and reduction on Y

( IF X ( IF Y Z ( IF Z F F ) ) ( Z ) ) (2.2.13)

followed by the IF-X-Y-Y Theorem

( IF X ( IF Y Z F ) ( Z ) ) (2.2.14)

Finally, theorem IF-X-T-F is used to replace the single variable Z

( IF X ( IF Y ( IF Z T F ) F ) ( IF Z T F) ) (2.2.15)

The OBDD corresponding to this IF canonical form is shown In Figure 2.2.

X

Y

Z

0 1

1 0

0

1

1

0

¡
¡

A
A
A
A
AA

"
"

"
""

b
b

b
bb

Figure 2.2: OBDD

Distributivity usually increases the size of the function because each expansion creates

a duplicate. But the order of variables upon which distribution is made can be fixed

according to some predefined criteria. When the IF normal form variables are ordered

along all branches based on that criteria, then we have an IF canonical form. In the

previous example, for instance, if the chosen variable ordering was X < Y < Z then the

result we obtained is already in canonical form. In this context, canonical means that

for each variable ordering there is a unique representation of any boolean function. For
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example, under the ordering X < Y , “X AND Y” can be represented as ( IF X ( IF Y T

F ) F ). We leave to the reader the normalisation of the other connectives.

OBDD’s are represented as decision diagrams (directed acyclic graphs) which have

direct correspondence to IF canonical forms. Graphs are handled with less redundancy

then binary decision trees because they can store identical subgraphs only once. The

canonical property of OBDDs is what makes equivalence testing efficient. With that

regard, OBDD’s are more efficient then DNNF’s, the normal form we will describe next.

2.2.2 Decomposable Negation Normal Form

Decomposable Negation Normal Form (DNNF) has been recently introduced by Darwiche

[7, 8] as a formal compilation language for propositional theories. The main advantage

over the existing OBDD’s is that it is more space efficient, which is one of the major

concerns in any compilation technique. The other two evaluation factors are universality

and tractability. Universality is defined as the capability of providing a representation for

any propositional theory, while the degree of tractability gives a measure on the logical

operations that can be performed in polynomial time under this language. As shown by

Darwiche, DNNF is universal and supports many operations — satisfiability, conjoining,

projecting, computing minimum-cardinality, amongst others — in linear time. However,

DNNF’s are not canonical forms because they do not provide unique representations of

boolean functions. As a consequence, equivalence testing is less efficient than for OBDD’s.

The class of DNNF formulas is a sub-class of the more general NNF’s1 and its formulas

obey the decomposability property defined below. The definitions and general description

presented here is based on Darwiche’s’ papers. A few examples were added that were not

in the original papers.

Definition 2.2.10 A logical formula F is said to be in decomposable negation normal

form (DNNF) if the following two conditions are satisfied:

1. F is in NNF

2. F satisfies the decomposability property: for every conjunction α ∈ F , such that

α =
∧n

k=1 αk, no atoms are shared between any two conjuncts αi, αj (i, j = 1, . . . , n

and i 6= j, ), ie atoms(αi)
⋂

atoms(αj) = ∅
1Negation normal form represents logical formulas using only the connectives ∧, ∨ and ¬, where ¬ must

be at the literal level. Conjunctive normal form (CNF) is defined as a conjoined set of disjoined literals

( `1 ∨ . . . ∨ `m1 ) ∧ ( `1 ∨ . . . ∨ `m2 ) ∧ . . . ∧ ( `1 ∨ . . . ∨ `mp ).
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From this definition we observe that (reduced) DNF’s1 are themselves a sub-class of

DNNF’s, ie every DNF is automatically DNNF, but not the converse. We have appended

the word ”reduced” to point out that the DNF should be cleared of terms like A ∧ ¬A

or A ∧ A, which are obvious violations to the decomposability property. This is a soft

assumption, and a reasonable one too, because for DNF’s the variable A can only be

a literal, thus making the simplification A ∧ ¬A ' false and A ∧ A ' A quite

straightforward.

This is not the case for CNF’s though, which are generally not DNNF’s as we can see

from the following example.

Example 2.2.11

1. The formula F = ( a∧ (b∨ c) ) ∨ (b∧¬ a) is in DNNF because the two conjunctions

appearing in F are ∧1 = a ∧ (b ∨ c) and ∧2 = b ∧ ¬ a, and none of them shares

atoms across its conjuncts ∧i,j:

∧1,1 ≡ a,

∧1,2 ≡ b ∨ c,

atoms(∧1,1) = {a}
atoms(∧1,2) = {b, c}

}
{a}⋂{b, c} = ∅

and

∧2,1 ≡ b,

∧2,2 ≡ ¬ a,

atoms(∧2,1) = {b}
atoms(∧2,2) = {a}

}
{b}⋂{a} = ∅

2. The CNF formula F = (a∨b)∧(¬ b∨c) is not in DNNF because the atom b appears

in both sides of the conjunction.

3. The formula F = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) is both in DNNF and DNF. Although all

atoms are shared across the disjunctions, they are not shared across the conjunctions.

But the equivalent formula F ′ = (a ∧ (b ∨ c)) ∨ (b ∧ c) is still DNNF but not DNF.

The advantage brought by the decomposability property is that, for certain operations,

each subformula becomes independent of the others. This means that the original problem

can be split into a set of smaller independent problems in a way that is proportional to

the size of the initial formula. This applies, for instance, when testing satisfiability. As

we know, a conjunctive formula is only satisfiable if all of its conjuncts are. However, the

converse is not necessarily true. Even when each argument is satisfiable on its own, their
1Disjunctive normal form (DNF) is the dual of CNF and represents a disjoined set of conjoined literals

( `1 ∧ . . . ∧ `m1 ) ∨ ( `1 ∧ . . . ∧ `m2 ) ∨ . . . ∨ ( `1 ∧ . . . ∧ `mp ).
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conjunction will no longer be if the individual interpretations are incompatible. With

DNNF’s this is never the case because atoms are not shared across conjunctions and, con-

sequently, any interference is excluded. Moreover, if the symbols true and false are not

present, then the DNNF is intrinsically satisfiable, and the reason is precisely the same

one: with no atoms being shared, the truth assignments amongst subformulas are always

compatible and deriving a refutation is just not possible. Note that for achieving a refu-

tation one must inevitably encounter either the explicit symbol false or a contradictory

expression of the form A ∧ ¬A . But, by assumption, no constant symbols are present

and, by definition, this type of expression never occurs, neither implicitly nor explicitly,

inside a DNNF. This shows how the compilation technique is at the same time a refuta-

tion procedure. Which seems reasonable enough, since the result of efficiently compiling

a contradiction should be the constant symbol false. Therefore, a non-empty DNNF is

always satisfiable.

Naturally, DNF’s inherit the same property since, as mentioned previously, they are a

sub-class of DNNF’s. Still, DNNF formulas are potentially much smaller than equivalent

DNF’s because they are less restrictive and accommodate non distributed elements. Take,

for instance, the DNNF formula F = (A∨B)∧ (C∨D), which also happens to be in CNF.

Its DNF representation is given by F = (A∧C)∨ (A∧D)∨ (B ∧C)∨ (B ∧D) where the

size of F has duplicated. In the worst cases, the DNF can be exponentially bigger than

an optimal DNNF.

In the process of answering queries, the DNNF theory must be combined with the

query objects. For example, if one wants to test whether a theory H entails some

sentence S, the usual procedure is to derive a refutation of H ∧ ¬S. In other words,

a satisfiability test on H ∧ ¬S is be performed. We know that H alone is satisfiable

because it is a compiled DNNF; and, by hypothesis, ¬S is also satisfiable, otherwise it

would be pointless to test it against H. If the extended theory H ∧ ¬S were a DNNF,

then the test would be completed and positive. However, even if ¬S is also a DNNF, the

composition H∧¬S may have lost its DNNF status because DNNF’s are not closed under

the conjunctive operation. In the event that some of the atoms contained in ¬S happen

to be present in H the decomposability property gets violated. Hence satisfiability is also

no longer guaranteed.

As a solution for bypassing the closure problem, the following operations are defined

which preserve the normal form.

Definition 2.2.12 (Conditioning) Let S be a propositional sentence and ` = `1 ∧
. . . ∧ `n a conjunctive set of literals. The conditioning of S on `, denoted S | `, is
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the sentence obtained from S after replacing every occurrence of `i by true and every

occurrence of ¯̀
i by false, for each i = 1, . . . , n. Where literal ¯̀ is the negative of `, ie

¯̀= ¬ ` or ¬ ¯̀= ` .

Definition 2.2.13 (Conjoining) Let S be a propositional sentence and ` = `1 ∧ . . .∧ `n

a conjunctive set of literals. The conjoining of S and ` is defined as the following

operation

Conjoin(S, `) = (S | `) ∧ `

As an example, suppose that we had a DNNF theory given by H = ( a ∧ (¬ b ∨ c) ) ∨
(b ∧ ¬ a), and conclusion of the form S = b. As mentioned above, in order to test the

entailment H |= S we will perform a satisfiability test on H∧¬S. The expression H∧¬S
is not DNNF because atoms (H) = {a, b, c } and atoms (¬S) = {b} have the non empty

intersection {b}. But if instead we perform the closed conjoining operation (H |¬S)∧¬S
we get:

(H |¬S) = (H |¬ b) (2.2.16)

= ( a ∧ (true ∨ c) ) ∨ (false ∧ ¬ a)

= a

and

(H |¬S) ∧ ¬S = a ∧ ¬ b (2.2.17)

where occurrences of b and ¬ b on H have been replaced by false and true, respectively.

Replacing the shared atom b by a constant symbol has renormalised H ∧ ¬S towards an

equivalent DNNF expression which, in this case, is satisfiable.

The effect of conjoining and conditioning is similar to the >−⊥ reduction rules defined

for the NAND system (see Theorems 3.3.4 and 3.3.5). Although in NAND the goal is to

simplify the initial formula which is not necessarily DNNF, the aim here is to preserve

the normal form. Furthermore, when the replacement operation is combined with the

set of immediate simplifications { true ∧ A ' A, false ∧ A ' false, true ∨ A '
true, false ∨ A ' A }, the whole operation is similar to the one-literal rule of the non-

clausal Davis-Putnam (NCDP) procedure ([18]; see also [9] or the original papers [5, 6]

for the clausal version).

But it may not always be that simple. When ¬S is not a conjunctive set of literals,

as required by the conjoining operation preconditions, the conditioning phase cannot be
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performed. Otherwise, the resulting expression would not be an equivalent one. In those

cases, a possible solution we suggest is to convert ¬S into a DNF, where the conjoining

can be independently performed on each disjunct. But perhaps a better solution is to split

the conjoining operation into separate parts at every disjunction ∨ in ¬S, avoiding the

need to perform the prior DNF normalisation step.

Consider the case where ¬S = ¬ b∧ (¬ a∨ c). The conjoining can be firstly performed

on ¬ b, and afterwards on the two disjuncts a, c:

H1 = Conjoin (H,¬ b) (2.2.18)

= a ∧ ¬ b

H2 = Conjoin (H1,¬ a) H3 = Conjoin (H1, c) (2.2.19)

= (false ∧ ¬ b) ∧ ¬ a = (a ∧ ¬ b) ∧ c

= false = a ∧ ¬ b ∧ c

and the final result would be

Conjoin (H,¬S) = H2 ∨H3 (2.2.20)

= H3

DNNF Compilation Algorithm

The conjoining operation pushes an expression towards DNNF. Indeed, the proposed algo-

rithm for the actual construction of DNNF’s is also based on conjoining and conditioning.

One may recall at this point that the IF-normal form of OBDD’s is also based on an

equivalent reduction theorem. In fact, as mentioned by Darwiche, any algorithm that can

be used for compiling OBDD’s can also be used for DNNF’s. But in principle DNNF’s

are expected to be more space efficient and would require a better algorithm for that

achievement.

The input for the DNNF algorithm is a propositional theory in clausal form. The

clauses should be previously partitioned into a decomposition tree — a tree constructed

from the recursive binary partitioning of the initial set of clauses. In detail, if ∆ is a

clausal theory containing n clauses, than ∆left ∧∆right is a binary partition of ∆ into two

sub-theories, one containing k clauses and the other containing n − k clauses. When the

partitioning progresses recursively, the decomposition tree builds up — the nodes are the

partitioning points, with the first partition being the root node, and each leaf corresponds

to a single clause. A possible decomposition tree for the theory ∆ = {(¬F ∨ G), (F ∨
H), (G ∨H)} is shown in Figure 2.3.
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Figure 2.3: Example of a decomposition tree for the
clause set {(¬F ∨G), (F ∨H), (G∨H)}

In a decomposition tree, a node ∆k identifies the sub-theory composed of the clauses

contained in the subtrees below it. The atoms of ∆k, denoted atoms(∆k), is defined as

the set of atoms appearing in the theory ∆k. For this particular tree we have ∆0 = ∆

and ∆1 = {(¬F ∨ G), (F ∨ H)}, as well as atoms(∆0) = atoms(∆1) = {F, G, H},
atoms(∆2) = {F,G}, atoms(∆3) = {F, H} and atoms(∆4) = {G,H}.

The DNNF algorithm then goes as follows:

Darwiche’s Algorithm for Compiling CNF into DNNF:

Given a propositional theory in clausal form, ∆, and a decomposition tree for

∆ with ∆`, k and ∆r, k denoting the left and right sub-theories at each partition

node k, then an equivalent DNNF theory can be constructed through recursive

application of the following steps:

1. if ∆ contains a single clause `, then DNNF(∆) = `

2. otherwise, DNNF(∆k) =
∨

β DNNF(∆`, k |β) ∧ DNNF(∆r, k |β) ∧ β

where β is an instantiation β1 ∧ . . . ∧ βn over the atoms pi ( i = 1, . . . , n )

shared by the left and right sub-theories ∆`, k and ∆r, k. An instantiation βi

over an atom pi is one of βi = pi or βi = ¬ pi. The disjunctive operator
∨

β

ranges over all possible instantiations.

The central operation performed in this algorithm is basically the same as a Shanon ex-

pansion (repeated over several instantiations). In terms of the conjoining and conditioning
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operators, the Shanon expansion of ∆ with respect to atom p is defined as:

SE(∆, p) = ( (∆ | p ) ∧ p ) ∨ ( ( ∆ | ¬ p ) ∧ ¬ p ) (2.2.21)

And again, this is a similar operation to the IF-distribution-reduction operation for com-

piling OBDD’s. But there are at least two crucial differences with respect to an OBDD-

type algorithm: i) the partitioning of the clause set conditions the choice of atoms, even

if an ordering is predefined; ii) distributing over instantiations is localised around each

sub-theory according to the atom sets.

Our next example (based on the Prawitz rule1) will give a clearer view of what is meant

by these remarks.

Example 2.2.14 Consider the clausal theory ∆ = {(¬F ∨ G), (F ∨ H), (G ∨ H)} with

decomposition tree given as in Figure 2.3 . Direct application of the DNNF algorithm on

∆ gives the following trace:

DNNF(∆0) =
∨

β

DNNF(∆1|β) ∧ DNNF(∆4|β) ∧ β

where ∆1 and ∆4 are the left and right subtrees of ∆0, respectively, and β ranges over the

instantiations over the atom set {G,H}, obtained by calculating atoms(∆1)
⋂

atoms(∆4) =

{F, G, H}⋂{G,H} = {G,H}. So, in principle, β should be iterating over {(G∧H), (G∧
¬H), (¬G ∧H), (¬G ∧ ¬H)}, producing the following result:

(∆1 | G ∧ H ) = ( (¬F ∨G ) ∧ ( F ∨H ) | ( G ∧H ) )

= (¬F ∨ true ) ∧ ( F ∨ true )

= true

(∆1 | ¬G ∧ H ) = (¬F ∨ false ) ∧ ( F ∨ true )

= ¬F

(∆1 | G ∧ ¬H ) = (¬F ∨ true) ∧ ( F ∨ false )

= F

(∆1 | ¬G ∧ ¬H) = (¬F ∨ false ) ∧ ( F ∨ false )

= false

1See equation (2.2.44).
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and, similarly,

(∆4 | G ∧ H) = true (∆4 | ¬G ∧ H) = true

(∆4 |G ∧ ¬H) = true (∆4 | ¬G ∧ ¬H) = false

obtaining,

DNNF(∆0) = (G ∧ H ) ∨ (¬F ∧ ¬G ∧ H ) ∨ (F ∧ G ∧ ¬H )

which is only a sub-optimal DNNF!

It is actually DNF. Note how both H and G appear twice. Even something like

(H ∧ (G ∨ ¬F )) ∨ (F ∧ G ∧ ¬H)

would have already been better.

The previous example has shown how (not) to construct a DNNF. One of the reasons for

the poor result resides in how the algorithm has been applied. In practice, the conditioning

operation should not be performed over all possible instantiations simultaneously, but only

over one shared atom at a time. A single conditioning operation over one variable may

induce other variables, besides the selected one, to disappear from the sub-theories. When

that happens, distributing over those variables is pointless. What should have been done

in the above example was to first distribute around G (or H) and then, if still and where

required, around H (or G). Choosing between G and H to be the starting variable is

another issue that also has to be analysed. Either some predefined ordering G < H

(or H < G) is obeyed or a case analysis is performed. The case analysis may be to test

which of G or H removes the most variables, which may be expensive computation wise,

or to simply select the one that appears in the largest number of clauses. In our case it is

indifferent whether to start with G or H, so we will assume a lexicographic ordering and

start with G. As a reminder, the implied nodes are ∆1 = { (¬F ∨ G), (F ∨ H) } and

∆4 = {G ∨ H }:

(∆1 |G) = F ∨ H (∆1 | ¬G) = ¬F ∧ (F ∨ H) (2.2.22)

= ¬F ∧ (false ∨ H)

= ¬F ∧ H

(∆4 |G) = true (∆4 | ¬G) = H

Notice now how the new sub-theories (∆1 | G) and (∆4 | G) do not share any atoms, so

that conditioning on H or ¬H can be skipped. Note as well how further simplifications
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can take place as soon as fresh new atoms become available for conjoining, like it has been

done for (∆1 | ¬G).

Regarding the ¬G cases, both (∆1 | ¬G) and (∆4 | ¬G) still contain the shared atom

H, so conditioning on H and ¬H should be performed for them:

(∆1 | ¬G ∧H) = ¬F ∧ true (∆1 | ¬G ∧ ¬H) = false (2.2.23)

(∆4 | ¬G ∧H) = true (∆4 | ¬G ∧ ¬H) = false

Alternatively, further simplification on (∆1 | ¬G) ∧ (∆4 | ¬G) would directly give (¬F ∧
H) ∧ H = ¬F ∧ H. Either way, the final result is:

DNNF(∆) = (G ∧ (F ∨ H)) ∨ (¬G ∧ H ∧ ¬F ) (2.2.24)

Even if this is a better solution than the one obtained in Example 2.2.14, it is still not

optimal.

This brings us to the problem of choosing an optimal decomposition tree. If, in the

same example, the leaf nodes ∆3 and ∆4 were switched, as shown in Figure 2.4, the

outcome would be an equivalent, but different, DNNF.

∆0

∆1

∆2 ∆4 ∆3

‖ ‖ ‖
¬F ∨G G ∨H F ∨H

¡
¡

¡
¡

e
ee

e
e

e
e

ee

Figure 2.4: Decomposition tree for the clause
set {(¬F ∨G), (F ∨H), (G∨H)}

Based on this new decomposition tree, the atom set shared by the left and right subtrees

of ∆0, which are ∆1 and ∆3, respectively, is no longer {G,H }, but is instead given by:

atoms (∆1)
⋂

atoms (∆3) = {F,H} (2.2.25)

A case analysis on F and H indicates that conjoining with F , rather than H, removes

the largest number of variables. Under the new sub-theories ∆1 = (¬F ∨ G) ∧ (G ∨ H)
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and ∆3 = F ∨ H, we obtain:

(∆1 | F ) = G ∧ (G ∨ H) (∆1 | ¬F ) = G ∨ H (2.2.26)

= G ∧ (true ∨ H)

= G

(∆3 | F ) = true (∆3 | ¬F ) = H

After the simplification (∆1 | ¬F ) ∧ (∆3 | ¬F ) = (G ∨ H) ∧ H = H, we finally obtain:

DNNF (∆) = (F ∧ G) ∨ (¬F ∧ H) (2.2.27)

Clearly, this is the optimal DNNF for the set of clauses that were given.

What this tells us is that the final structure of a DNNF is very sensitive to the parti-

tioning of the decomposition tree, since it directly affects the order in which atoms can be

selected. Good decomposition trees are generally those with small treewidth — a measure

on the degree of connectivity of the tree, given by the number of shared atoms between

sibling subtrees of a node or between the node and its ancestors. In this way formula

expansion is delayed or pushed to relevant groups of subformulas. But this is not always

a decisive factor because the trees in Figures 2.3 and 2.4 have the same width and result

in different DNNF optimisations. We shall not go in detail into the subject of building

decomposition trees, but advise the interested reader to consult [8] for a more insightful

discussion on this matter.

Alternative Compilation Methods

The disadvantage of using decomposition trees for compiling DNNFs is their reliance

on clausal form. Alternatively, as suggested in [17], the method can be generalised to

any normal form if Shanon expansion (also known as semantic factoring) is iteratively

applied throughout the formula. Nevertheless, the problem of how and when atoms and

subformulas should be selected for expansion remains. The general principle that aims

to prevent exponential growth of the theory is, again, to localise the expansions around

shared atoms only, with priority given to those with the highest reduction factor.

Other procedures that can be used for constructing DNNFs are regular NNF tableaux,

KE-tableaux [1, 2], FNNF tableaux [11] or the NAND system. FNNF tableaux will be

discussed later in Section 2.2.4, and NAND compilation is described in Chapter 3, Section

3.5.1.
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As for regular tableaux, we know that any complete strictly analytic regular tableau

reproduces a minimal DNF model of its root. Because closed branches are ignored, the

model does not contain contradictory terms of type ¬A ∧ A . If, in addition, regularity

is imposed, then no atom will appear twice in any one branch. By combination of these

two properties, decomposability is ensured. Mondadori’s KE-tableaux are even more ver-

satile because they are able to reproduce Shanon’s expansion by virtue of the principle of

bivalence (PB) or the atomic cut rule. In either case, the compilation efficiency depends

on the strategies implemented throughout the tableaux, like formula selection, ordering of

literals, etc. The complexities inherent to choosing the best strategy are again related the

problem of building an optimal decomposition tree and deciding on variable ordering.

2.2.3 Path Dissolution

In the previous section the class of DNNF formulas was introduced. Here we describe

a superset of DNNFs studied by Murray [16, 20, 17], called the full dissolvents. A full

dissolvent is an NNF formula whose DNF does not contain any complementary literals

across conjunctions. Decomposability has been relaxed to a linklessness property, where

a link is any conjunction of two complementary literals.

As an alternative to DNNF’s, this new class of formulas also encloses interesting prop-

erties with regards to knowledge compilation. Because linklessness is less restrictive than

decomposability, full dissolvents are also universal — ie, they are able to represent any

propositional theory — and are more space efficient than DNNFs. Moreover, although

atoms can be shared across conjunctions, entailment, projection and conditioning oper-

ations are still performed in linear time. In general, however, full dissolvents are not as

tractable as DNNF’s, like when computing minimum cardinalities.

Path dissolution is an inference rule that transforms any NNF formula into a full

dissolvent by eliminating from it all links. In [16] it has been defined in terms of semantic

graphs, which are a nice diagrammatic way to globally visualise the connections within

complex NNF formulas. Below, a semantic graph is depicted next to an equivalent NNF

formula:

[ (A ∨ C) ∧ (B ∨ (C ∧ A) ] ∨ [ D ∧ E ] (2.2.28)

m
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A ∨ C E

∧ ∨ ∧
C D

B ∨ ∧
A

(2.2.29)

Each literal in the graph is called a node, and is also a subgraph. A subgraph is a

semantic graph that is contained in another semantic graph. Furthermore, a c-arc (d-arc)

is defined as a ∧-connection (∨-connection) between any two semantic graphs. The total

number of c-arcs (d-arcs) matches the number of symbols ∧ (∨). In the above graph there

are three c-arcs and three d-arcs: for example, a d-arc between A and C and a c-arc

between E and D.

The following definitions are important for subsequent discussion, so we should also

be acquainted with them.

Definition 2.2.15 ( c-d Connection) Two nodes in a semantic graph are c-connected

(d-connected) if there is a c-arc (d-arc) joining its subgraphs.

Definition 2.2.16 ( c-d Path) In a semantic graph, a c-path (d-path) is a maximal set

of c-connected (d-connected) nodes.

For example, in our graph, A and C are c-connected, while A and C are d-connected.

The c-paths are {A,B}, {A,C,A}, {C,B}, {C,C,A} and {E, D}, while the d-paths

are {A, C, E}, {A, C, D}, {B,C, E}, {B,C,D}, {B, A,E} and {B, A,D}. Therefore,

when the graph is read from left to right, systematically, conjoining all possible d-paths,

one obtains a CNF representation of the original formula. Conversely, reading it in a

top-bottom way and disjoining all c-paths returns an equivalent DNF. We also see that

there are two links on variables C and A within the first two c-paths listed above.

In order to eliminate links, the path dissolution technique operates by replacing the

subgraph containing the link by an equivalent one where the link has been dissolved, i.e, the

c-path containing the link is removed and paths are restructured. The following concepts

will be used in the definition of the dissolvent operator.

Definition 2.2.17 (CPE, CC) Let N be a node in a semantic graph G.

• The c-path extension of N in G, denoted CPE (N,G), is the subgraph of G consisting

of all the c-paths through G that contain N .
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• The c-path complement N in G, denoted CC(N,G), is the subgraph of G consisting

of all the c-paths through G that do not contain N .

Upon this definition it is clear that for any two subgraphs G and H and a node N , we

always have the identities

CPE(N,G) ∨ CC(N,G) = G (2.2.30)

CPE (N,G) ∧ CPE (N,H) = ∅ (2.2.31)

where the empty set represents the empty graph which in turn represents the constant

symbol false. The equations hold whether or not N ∈ G or N ∈ H, because for N /∈ G it

follows that CPE (N,G) = ∅ and CC (N,G) = G.

We procede with an example.

Example 2.2.18 Consider G to be the complete semantic graph displayed in (2.2.29).

The c-path extension of C in G is the subgraph

CPE (C, G) =

C

∧
C

B ∨ ∧
A

(2.2.32)

While the c-path complement of C in G is precisely the complementary subgraph

CC(C, G) =

A E

∧ ∨ ∧
C D

B ∨ ∧
A

(2.2.33)

We may now give a definition for the dissolution operator DV1.

Definition 2.2.19 (DV) Let G and H be two semantic graphs connected by a c-arc, such

that O = G ∧ H, and let N and N be two complementary nodes with N ∈ G and N ∈ H.

The dissolvent of the link N = {N,N} in O, denoted DV(N , O), is given by
1The original definitions given in [16] for CPE, CC and DV are more general than those presented here,

because they do not restrict to nodes, but to subgraphs. However, they do require the introduction of

further concepts on semantic graph theory and a level of detail that would overload this overview on path

dissolution.
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CPE (N,G) CC (N,G) CC (N,G)

DV(N , O) = ∧ ∨ ∧ ∨ ∧
CC(N,H) CC (N,H) CPE (N,H)

(2.2.34)

Dissolution is a re-write rule, and the expression above is obtained from the identities

(2.2.30) and (2.2.31) applied to G and H and through distributivity. Hence, the following

are equivalent:

G CPE(N,G) ∨ CC(N,G)

DV (N , G ∧ H) ' ∧ ' ∧
H CPE(N,H) ∨ CC(N,H)

(2.2.35)

After distributing (2.2.35) over ∧, the c-path CPE (N,G) ∧ CPE (N,H) disappears

by virtue of (2.2.31), yielding DV (N , G ∧ H) as in (2.2.34).

In practice, the dissolution operator is usually replaced by one of the more compact,

equivalent transformations:

G CC(N,G)

DV(N , G ∧ H) = ∧ ∨ ∧
CC(N,H) CPE (N,H)

(2.2.36)

or

CPE (N,G) CC (N,G)

DV(N , G ∧ H) = ∧ ∨ ∧
CC(N,H) H

(2.2.37)

Lets see an application of dissolution with an example.

The semantic graph displayed in (2.2.29) had two links C = {C, C} and A = {A, A},
both contained in c-paths traversing the left hand side subgraph L = G ∧ H:
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(G)
A ∨ C

∧

(H)

C

B ∨ ∧
A

(L) (2.2.38)

To eliminate those links, the dissolvent operator should be applied both on C and on

A. We start with C, and note that C ∈ H and C ∈ G. Therefore, the c-path extensions

and complements we must compute for the link {C, C} are the following:

CPE (C, G) = C CC(C, G) = A (2.2.39)

CC (C, H) = B CPE (C, H) = C ∧A

In fact we do not need CPE (C, G) if equation (2.2.36) is used, leading to the subgraph

LXY

DV (C, L) =

A ∨ C

∧
B

(X )

∨
A

∧
C

∧
A

(Y) (LXY )

(2.2.40)

Alternatively, if equation (2.2.37) is used instead, then we do not need CPE (C, H) to

obtain the equivalent subgraph LWZ
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DV (C, L) =

C

∧
B

(W)

∨
A

∧
C

B ∨ ∧
A

(Z) (LWZ)

(2.2.41)

where C is playing the role of the N that appears on equations (2.2.36) and (2.2.37).

The link C = {C, C} has been dissolved from both LXY and LWZ , and the link

A = {A, A} is now confined to the right hand side subgraphs (Y) and (Z). Therefore, it

suffices to apply dissolution on A using either (Y) or (Z). Obviously, (Y) is the easiest

case since the whole subgraph consists of a single c-path along the link. Hence we can

directly replace (Y) by ∅ in LXY to generate the (linkless) full dissolvent for L

FD (L) =
A ∨ C

∧
B

(2.2.42)

If we were to use (Z) instead, then we should repartition (Y) into two c-connected

subgraphs, one containing A and the other containing A, and repeat for (Y) the steps we

performed for L.

One important special case of the dissolution operator is the following. Consider again

the definition of DV and its transformation (2.2.34). When CPE (N,G) = CPE (N,H),

then the subgraph CC (N,G) ∧ CC (N,H) is subsumed and the dissolvent becomes

CPE (N,G) CC (N,G)

∧ ∨ ∧
CC(N,H) CPE (N,H)

(2.2.43)

This derives from what is commonly know as the Prawitz rule, here expressed in terms

of semantic graphs:

N ∨ X

∧
N ∨ Y

'
N N

∧ ∨ ∧
Y X

(2.2.44)
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which is itself a special case of Shanon expansion1. The term that has been subsumed

on the right hand side corresponds to X ∧ Y . This transformation is particularly useful

because the size of the formula does not increase and not only the link {N,N} is dissolved

but also any possible links between X and Y . Furthermore, if Y (or X) contain a node

N (or N), it is now possible to apply unit dissolution on N to the subgraphs N ∧ Y (or

N ∧ X). Unit dissolution is another special case of dissolution that occurs when one of

the subgraphs G or H is a node. Here, if we name G ≡ N and H ≡ Y , then we have

that CPE (N,G) = N and CC (N,G) = ∅. The only subgraph of (2.2.34) that survives

(if H is not itself a node too, in which case the whole subgraph G ∧ H is empty) is

CPE (N,G)∧CC(N,H). This has the same effect as replacing all occurrences of N in H
by false, which is a linear operation in the size of H. In [17], a special class of formulas

is presented that can be compiled in linear time and space into DNNF essentially using

the Prawitz rule and dissolution.

This overview of path dissolution has concentrated on techniques to remove unsat-

isfiable paths from a formula, where the operators acted at the literal level. A wider

perspective of this theory is presented in [16, 20]. It includes the dual operators of DV,

CPE and CC that act on d-paths as well as on disjunctive links. A link is disjunctive if

it refers to complementary literals that are d-connected. The dual of DV has the effect of

removing tautologies form a formula. In [20], in particular, an anti-link operator is used

to detect subsumed paths. Where an anti-link, as opposed to a link, is an identical pair

of connected literals.

2.2.4 Factored Negation Normal Form

One of the major problems inherent to CNF, DNF or even NNF normal forms is the

exponential increase in the size of a formula when the original logical expression contains

equivalences. Each equivalence sign that is normalised upon into ∧’s and ∨’s doubles in

size:

A⇔B ' (A ∧B) ∨ (¬A ∧ ¬B) (2.2.45)

This affects any method, either a proof or knowledge compilation system that takes as in-

put an NNF. This basically includes all the methods introduced so far — DPLL, tableaux,

OBBD, DNNF and full dissolvents — of which the first three are renowned mainstream

techniques in theorem proving.

An alternative method that operates on negated form (NF) as a generalisation of NNF

has been suggested by Hähnle, Murray and Rosenthal [11]. Negated form formulas are
1Already defined in (2.2.21) and later in (3.3.19)
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those constructed with the binary connectives ∧, ∨ and ⇔ and where all negations ¬ are

at the atomic level. The only (crucial) difference between NF and NNF is the presence of

the equivalence symbol in the former, which has been introduced to solve the duplication

issue. Therefore, what is needed, is a new (or adapted) method that is able to interpret

NF.

The NF procedure they introduce is an efficient proof system resembling an NCDP at

the tableaux level which is an improvement over KE-tableaux (even if non NF input is

used). It is also a knowledge compilation system producing formulas in factored negation

normal form (FNNF) or ordered factored negation normal form (OFNNF) which, in a

similar way to OBBD’s, provide a canonical representation for any logical formula. FNNF

itself is not NF, and that is due to main inference rule of the compilation algorithm which,

again, is Shanon expansion (SE)1 or, in tableaux vocabulary, the atomic cut. But the

FNNF is the end stage of the compilation, and avoiding exponential initial or middle

stages can dramatically speed up the process, particularly if formula reduction is taking

place.

The NF algorithm is similar to DPLL and BDD’s in the sense that it applies Shanon

expansion for each atom of an NF formula, as well as formula reductions (although it does

not apply the pure literal rule). It is different form DNNF’s because the choice of atoms

is not oriented towards removing links or anti-links2. Moreover, it also becomes similar to

OBDD’s when atoms are selected in a preset order. In this case, what results is an ordered

factored negation normal form (OFNNF).

The set of simplifications that are applied in combination with Shanon expansion are

the idempotency laws

(A ∨A) ' A (A ∧A) ' A (2.2.46)

and all the usual simplifications pertaining to the constant symbols true and false, of

which we state the ones involving equivalences:

A⇔ false ' ¬A A⇔¬A ' false (2.2.47)

A⇔ true ' A A⇔A ' true

The next example shows how compilation is done without ever having to distribute

equivalences.
1See equations (2.2.21), (3.3.18) or (3.3.19).
2Borrowing some of the path dissolution vocabulary, a link is a conjoined complementary pair of literals,

and an anti-link is a conjoined identical pair of literals. See Section 2.2.3.
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Example 2.2.20 Consider the NF formula F = ( a⇔ b ) ⇔ (¬ a⇔ c) and the ordered

atom set {a, b, c} . The conversion steps into OFNNF(F) are shown below in a semantic

graph type representation, where > ≡ true and ⊥ ≡ false . Simplifications (SIMP)

alternate with Shanon expansions SE(p) on atom p ∈ {a, b, c}:

a ¬ a

SE(a) ∧ ∨ ∧
(>⇔ b ) ⇔ (⊥⇔ c) (⊥⇔ b ) ⇔ (>⇔ c)

↓
a ¬ a

SIMP ∧ ∨ ∧
b ⇔ ¬ c ¬ b ⇔ c

↓
a ¬ a

∧ ∨ ∧
SE(b) b ∨ ¬ b b ∨ ¬ b

∧ ∧ ∧ ∧
>⇔¬ c ⊥⇔¬ c ⊥⇔ c >⇔ c

↓ a ¬ a

∧ ∨ ∧
SIMP b ∨ ¬ b b ∨ ¬ b

∧ ∧ ∧ ∧
¬ c c ¬ c c

FNNF compilation can also be defined in terms of tableaux, as a generalisation of

Mondadori’s KE-tableaux. In order to handle the equivalence connective from NF formu-

las, the KE β-rules are replaced by the more general Massacci’s linear simplifications (the

two right most). Atomic cut and α-rules (two left most) are left the same:

p | ¬ p

α1 ∧ α2

α1

α2

φ

(ψ[ φ ])

ψ[ true/φ ]

¬ p

(ψ[ p ])

ψ[ false/p ]
(2.2.48)
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where p is an atom, ψ and φ are NF expressions and ψ[ true/φ ] represents ψ after

the replacement of φ by true . Similarly for ψ[ false/p ]. Note that, in the right most

Massacci rule, ¬ p must be a literal (or p an atom) because in NF negations only appear

at the literal level. The atomic cut plus the Massacci’s simplifications emulate Shanon

expansion. Since they can never increase the size of the formula nor add branches to the

tableaux, they should be given priority over the atomic cut or alpha rules. We will see on

next Chapter that Massacci’s simplifications are essentially to the >−⊥ reduction rules

for NAND (See Theorems 3.3.4 and 3.3.5).



Chapter 3

The NAND Formalism

The NAND system introduces a formal language that relies on classical logic representation

constrained by the usage of the “NAND” boolean operator (or, in fact, an extension of it),

meaning “not and” or, in natural English, “not both”. The “NAND” operator, also known

as Sheffer’s stroke [24], is usually represented by the symbol ↑:

s ↑ r ≡ ¬ (s ∧ r) (3.0.1)

The restriction to the use of ↑ is not an expressiveness limitation in the sense that {↑} forms

a complete set of connectives. As we know, the usual boolean operators — conjunction

(∧), disjunction (∨), implication (⇒), equivalence (⇔) and negation (¬) — can all be

defined by means of Sheffer’s stroke:

(s ∧ r) ⇔ (s ↑ r) ↑ (s ↑ r) (3.0.2)

(s ∨ r) ⇔ (s ↑ s) ↑ (r ↑ r)

(s ⇒ r) ⇔ s ↑ (r ↑ r)

(s ⇔ r) ⇔ (s ↑ r) ↑ ((s ↑ s) ↑ (r ↑ r))

¬s ⇔ s ↑ s

While deriving the above expressions we realise that we need to use the trick of replac-

ing every occurrence of ¬N by its equivalent ¬(N ∧N). This does not seem very practical

or efficient. Moreover, the operator ↑ is not associative and is limited to its binary scope.

By this we mean that in addition to ¬(N1 ∧ N2) we would like to have an easy way of

writing more general expressions like ¬ (N1 ∧N2 ∧ . . .∧Nn) or even just ¬N . This can be

achieved by decoupling {↑} into {¬,∧} as to provide a more flexible usage of negation and

conjunction. The resulting operator is then comparable to a Sheffer’s stroke with variable

33
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arity. As for the above expressions, they may be re-written in the following normal form,

which from here on shall be referred to as the NAND normal form.

(s ∧ r) ⇔ ¬¬ (s ∧ r) (3.0.3)

(s ∨ r) ⇔ ¬ (¬ s ∧ ¬ r)

(s ⇒ r) ⇔ ¬ (s ∧ ¬ r)

(s ⇔ r) ⇔ ¬ (¬(s ∧ r) ∧ ¬ (¬ s ∧ ¬ r))

¬ s ⇔ ¬ s

s ⇔ ¬¬ s

Note that in NAND normal form each sentence must be preceded by (at least) one

occurrence of ¬. We call these the outer level negations. Conversely, inner level double

negations are those that occur inside an expression (ie, they are not the main connective),

and may be dropped whenever judged appropriate.

As an aside, it is worth mentioning that instead of “NAND” we could have explored

the “NOR” connective, symbolically represented by ↓, meaning “not or” or “neither”. As

a matter of fact, the framework developed here works both for NAND and NOR under very

few minor adaptations that do not affect the core procedures. We shall come back to this

in the context of tree expansions.

3.1 Syntax and Semantics

We have followed the symbolic primitives suggested by Lin Yang [26] and have chosen

to adopt the square bracket normal form “[ ]” which works both as a connective and

a grouping indicator. This notation is also very convenient to be used in Prolog when

interpreted as a list. The square bracket pairs act as group negations ¬ ( ) and commas

are introduced in the place of the ∧-connections:

¬ (N1 ∧N2 ∧ . . . ∧Nn) ­ [ N1, N2, . . . , Nn ] (3.1.4)

Conversion to bracket NAND normal form (BNNF) happens recursively, so that each

Ni that is a compound formula on itself should also be converted, and so on and so forth

until the only operators participating in the final formula are ‘[ ]’ and ‘,’. Commas will

sometimes be omitted for the sake of compactness and whenever clearness of reading is not

affected. What we now have is a global operator that partially inherits the associativity

of ∧, and which happens to behave like ↑ for the special case of n = 2.
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From here on we shall refer to expressions written in BNNF as NAND expressions or

NAND formulas. To better see how this works, let us return to the NAND normal form

scheme (3.0.3) and convert it to BNNF:

(p ∧ q) ­ [[ p, q ]] (3.1.5)

(p ∨ q) ­ [[ p ], [ q ]]

(p ⇒ q) ­ [ p, [ q ] ]

(p ⇔ q) ­ [ [ p, q ], [[ p ], [ q ]] ]

¬ p ­ [ p ]

p ­ [[ p ]]

All we have done was to directly replace every occurrence of ‘¬ ( )’ by a ‘[ ]’ and

every ‘∧’ by a ‘,’, as indicated by (3.1.4). This set of conversion rules is denominated the

NAND conversion primitives, and will make our life easier when translating formal logical

expressions into NAND expressions. Again, note the presence of external brackets on each

formula. This requisite can become somehow annoying if we want to refer to inner parts

of a formula, like when saying that formula [ p, [ q ] ] contains a p and a [ q ]. Omitting

external brackets when referring to p seems, in this case, to be perfectly reasonable and

even preferable. For this reason we shall relax our concept of NAND formula to allow for

these cases and introduce the strict notion of a well formed formula (wff).

Definition 3.1.1 (Well-formed formula) A NAND formula is a well-formed formula

(wff) if and only if it matches one of the following:

1. [ ]

2. [ α ], where α is either an atom or a wff.

3. [ α1, . . . , αn ], where n ∈ N and each αi (i = 1, . . . , n) is either an atom or a wff.

Note from this definition that even when α is an atom, α by itself is not a wff. At

least one pair of external square brackets is required to “hold” any wff. For atomic α to

become a wff we would instead have to write it as [[α]]. Thus every wff is a NAND formula,

but not the converse.

Example 3.1.2

• [ p, q, r ] , [[ p, q, r ]] , [· · · [[ p, q, r ]] · · · ] are wffs.

• p, q, r is neither a wff nor a NAND formula.
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• [ p ] , [[ p ]] , [[[ p ]]] , [· · · [[[ p ]]] · · · ] are wffs.

• p, if atomic, is a NAND formula in the broad sense but not a wff.

• [ ] , [[ ]] , [[[ ]]] , [· · · [[[ ]]] · · · ] are all wffs.

In the above, dots stand for any number of bracket pairs and p, q and r are NAND formulas.

At this point the reader has probably guessed what do empty bracketed expressions

like [ ] and [[ ]] mean. Indeed, they stand for false (⊥) and true (>), respectively. This

convention is not an arbitrary one but instead arises naturally within the NAND formalism.

A nice way to see this is by doing the following exercise. Start by writing down the logical

expression >∧N1 ∧N2, which is of course equivalent to N1 ∧N2, together with its NAND

counterpart [[N1, N2 ]]. Then progress from there by successively removing one Ni at a

time, until no more N ′
is are left. At the final stage we should have found the NAND symbol

for >. The derivation is schematised below.

> ∧N1 ∧N2 ­ [[ N1, N2 ]]

> ∧N1 ­ [[ N1 ]]

> ­ [[ ]]

(3.1.6)

In the same way, repeating these steps for ¬ (> ∧ N1 ∧ N2) and [N1, N2 ] leads to

obtaining:

¬ (> ∧N1 ∧N2) ­ [ N1, N2 ]

¬ (> ∧N1) ­ [ N1 ]

¬> ­ [ ]

⊥ ­ [ ]

(3.1.7)

Obviously, the relation ¬⊥ = > still holds since the negation of [ ] is precisely [[ ]].

Similarly, ¬> = ⊥ should also hold, and so it does. Although negating [[ ]] introduces an

extra pair of brackets, thus originating [[[ ]]], we know that [[[ ]]] amounts to ¬¬⊥. And

since double negations cancel out we then retrieve ⊥. What this shows is that consecutive

doubled bracket pairs are self-eliminating. In other words, every even number of inner

square bracket pairs can be dropped, while odd numbered ones reduce to a single pair.

As it is, this is quite an elegant feature of the NAND system. Suppose that we are given

the logical expression N1 ∧N2 ∧N3, and that at some stage we have the information that

N2 is a tautology. We would then replace N2 by > in the original expression to obtain

N1 ∧ > ∧ N3. Since > is the neutral element for the ∧ operator, it is absorbed by the

remaining arguments, thus obtaining N1 ∧N3. In order to do the same thing using NAND
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Table 3.1:

Logical Expression NAND Expression

a ∧ b ∧ c [ [ a b c ] ]

a ∨ b ∨ c [ [ a ] [ b ] [ c ] ]

(a ∧ b) ∨ c [ [ a b ] [ c ] ]

(a ∧ b)⇒ (c ∧ d) [ a b [ c d ] ]

(a ∧ b)⇒ (c ∨ d) [ a b [ c ] [ d ] ]

(a ∨ b)⇒ (c ∧ d) [ [ [ a ] [ b ] ] [ c d ] ]

(a ∨ b)⇒ (c ∨ d) [ [ [ a ] [ b ] ] [ c ] [ d ] ]

expressions, we must replace N2 by [[ ]] in the initial formula [[N1, N2, N3 ]] and get

[[ N1, [[ ]], N3 ]]. Now, using the self-eliminating property of double bracket pairs, the

inner level [[ ]] can be dropped to naturally produce [[N1, N3 ]].

We shall review the subject of bracket cancellation within the context of the simplifi-

cation rules. For the moment, it is worth looking at a few examples that will help bring

some intuition and mechanisation to the translation process. The table below contains

some logical expressions alongside with their equivalent NAND representation.

The reader is invited to reproduce these transformations by first expressing each sen-

tence in terms of ¬ and ∧ and only afterwards writing them in bracket notation. This is

one possible way to automate the translation method. It is advised to cancel out all double

negations after the first step is performed since it will avoid a lot of extra bracketing on

the final NAND formula.

An alternative way of transforming formal logical expressions into NAND expressions

consists of directly applying the NAND conversion primitives displayed in scheme (3.1.5).

The advantage in this case is skipping the first step of the former method. The disadvan-

tage is that many unnecessary brackets will appear in the final resulting formula. Table 3.2

lists the same translated expressions as in Table 3.1 but this time using the later method.

As expected, Tables 3.1 and 3.2 give the same result after removing double bracket

pairs. We will do in detail one of these examples using both methods.

Example 3.1.3

Method 1. Let us consider the logical expression (a ∧ b)⇒ (c ∨ d). The first step of the

translation is to re-write it in NAND normal form as ¬(a ∧ b∧¬ c∧¬ d). No double
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Table 3.2:

Logical Expression NAND Expression

(a ∧ b) ∧ c [[ [[ a b ]], c ]]

(a ∨ b) ∨ c [ [[ [ a ][ b ] ]], [ c ] ]

(a ∧ b) ∨ c [ [ [[ a b ]] ], [ c ] ]

(a ∧ b)⇒ (d ∧ e) [ [[ a b ]], [ [[ c d ]] ] ]

(a ∧ b)⇒ (c ∨ d) [ [[a b]], [[ [ c ][ d ] ]] ]

(a ∨ b)⇒ (c ∧ d) [ [[ a ][ b ]], [[ c d ]] ]

(a ∨ b)⇒ (c ∨ d) [ [[ a ][ b ]], [[ [ c ][ d ] ]] ]

negations are present so we go right to the second step which is to replace negations

by brackets and conjunctions by (implicit) commas where we get [ a b [ c ] [ d ] ].

Method 2. Consider the same logical expression as before, (a ∧ b)⇒ (c ∨ d). Its main

connective is the implication sign, so re-write it as L⇒ R, where L stands for a ∧ b

and R for c ∨ d. In NAND syntax implications are written as [ L [ R ] ], where L is

always the lhs argument and R the rhs argument (see (3.1.5)). In our case, L has

the syntactic value [[ a b ]], which means a∧ b, while R is given by [ [ c ] [ d ] ], meaning

c ∨ d. Now take the template [ L [ R ] ] and replace L and R by their new values to

finally obtain [ [[ a b ]], [ [[ c ][ d ]] ] ].

3.2 General Properties

A NAND formula can be viewed as a list of elements, where each element is either an atom

or another list. By decomposing an initial list L into all of its elements and sub-elements,

recursively, we obtain the set of proper subformulas of L. On a broader sense we further

define the set of subformulas of L to be the new set {proper subformulas of L} ⋃
L.

Atomic elements are also considered subformulas (or just formulas), even if, by definition,

they are not wffs.

Example 3.2.1 The set of proper subformulas of [[ [ a b ] c ]] is the set { [ [ a b ] c ], [ a b ],

a, b, c }.
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Each sub-formula has an associated depth level, which matches the number of subfor-

mulas that have to be extracted before reaching it. More precisely, the depth level can be

calculated in the following way.

Definition 3.2.2 (Depth level) Let X be a NAND formula and let Y = [α1, . . . , αn]

(n ≥ 1) belong to the set of subformulas of X (which contains X). We say that a sub-

formula Z of X is at a given depth level relative to X, and denote it by depthX (Z),

according to the following rules:

1. depthX (X) = 0

2. depthX (α1) = 1 + depthX (Y )

3. α1, . . . , αn are all at the same depth level.

Based on this definition we shall further define the (absolute) depth of a formula as

the maximum depth level of all its subformulas:

depth (X) = max
Z

{depthX (Z) } , Z sub-formula of X

Thus, both an atom and the empty formula [ ] have zero absolute depth.

As stated by Lin Yang [26], and here restated in terms of the above definitions, we can

say the following.

Definition 3.2.3 (Immediate sub-formula) Let X be a NAND formula and Z one of

its subformulas. Then Z is an immediate sub-formula of X, denoted Z ≺ X, if and only

if depthX (Z) = 1. Conversely, X is said to be the immediate ancestor or parent of Z.

In practice, all the immediate subformulas of a general NAND expression [N1, · · · , Nn ]

are N1, · · · , Nn .

Example 3.2.4 The only immediate sub-formula of [[ [ a b ] c ]] is [[ a b ] c ] , while the

immediate subformulas of [[ a b ] c ] are [ a b ] and c .

The concept of immediate sub-formula will become useful when creating refutation

models by tree expansion (discussed later in section 3.4).

Together with depth, there are other measures like size and degree. The size of a

NAND formula is defined to be the total count of atoms contained in it, while its degree

corresponds to the bracket pair count. The concept of degree has been previously defined

in [26] and is given again below, together with that of size.
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Definition 3.2.5 (Degree) The degree of a NAND formula is determined by the following

rules:

1. deg ([ ]) = 1

2. deg (α) = 0, for atomic α

3. deg ([α1, . . . , αn]) = 1 +
∑n

i=1 deg (αi), for n ∈ N.

Definition 3.2.6 (Size) The size of a NAND formula is taken to be the total count of

atom occurrences within it, over all depth levels.

1. size ([ ]) = 0

2. size (α) = 1, for atomic α

3. size ([α1, . . . , αn]) =
∑n

i=1 size (αi), for n ∈ N.

Depth, size and degree are not perfectly correlated. For example, the expression

[ p, [ q, [ r, s ] ], [ t ] ] has depth 3, degree 4 and size 5, whereas [ [ [ p ], [ q ], [ r ], [ t ] ] ] has

the same depth, degree 6 and size 4. By making use of these parameters different formula

selection strategies can be explored on view of improving efficiency.

NAND also inherits the distributivity rules for the boolean operators ∧ and ∨ from

formal logic. Let us recall them:

• Distributivity of ∨ over ∧: c ∨ (a ∧ b) ⇔ (c ∨ a) ∧ (c ∨ b)

• Distributivity of ∧ over ∨: c ∧ (a ∨ b) ⇔ (c ∧ a) ∨ (c ∧ b)

If we translate both sides of these equivalences into NAND form we can directly deduce

the distributivity rules for NAND.

• Rule 1: [ [ c ] [ a b ] ] ⇔ [[ [[ c ] [ a ]] [[ c ] [ b ]] ]]

• Rule 2: [[ c [[ a ] [ b ]] ]] ⇔ [ [ c a ] [ c b ] ]

Now the interesting thing to notice is that if we apply a small change to these rules

then they can be merged into a single one which suits our purposes. Simply take Rule 1

and add one external bracket to the left hand side (lhs) while removing it from the right

hand side (rhs). The equivalence is preserved and we obtain:
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• Rule 1: [[ [ c ] [ a b ] ]] ⇔ [ [[ c ] [ a ]] [[ c ] [ b ]] ]

• Rule 2: [[ c [[ a ] [ b ]] ]] ⇔ [ [ c a ] [ c b ] ]

Apart from the fact that each literal in Rule 1 is the negated version of each literal in

Rule 2, the two rules are now the same. It is quite neat though not surprising that this

occurs, since when defining the NAND formalism the disjunctive operator got absorbed by

the conjunctive one, so that in practice we are left with a single ambivalent operator, thus

a single distributivity rule. We shall redefine distributivity in the following way which, we

believe, might be the clearest way to read it. Nevertheless, the reader should feel free to

use any other equivalent form:

• Distributivity of NAND: [[ C [A, B ] ]] ⇔ [ [ C [ A ] ] [ C [ B ] ] ]

Here, each of A, B and C may stand for any general NAND expression, and not necessarily

atoms or negated atoms. The reader should notice that if A, B and C assume the values

a, b and [ c ], respectively, as specified on the lhs of Rule 1, we then recover Rule 1.

Conversely, if A, B and C assume, respectively, the values [ a ], [ b ] and c, then Rule 2

gets reproduced. Remember that double brackets are double negations that can cancel

out inside a formula, so that [[ a ]] reduces to a and, similarly, [[ b ]] reduces to b. This

property should also bring us attention to the fact that the lhs of the distributivity rule

above is surrounded by double bracketing. Therefore, the brackets disappear whenever

the expression occurs inside another formula, which is usually the case. This is indeed the

significant detail that renders distributivity useful.

When adequately applied, the distributivity in NAND has the effect of raising/lowering

the depth levels of targeted subformulas. This is of particular importance when performing

formula simplifications, which is the subject of next section. At the same time, distribu-

tivity can reduce/increase the size of NAND formulas which is quite useful for knowledge

compilation systems [7]. An example containing the application of the distributivity rule

will be postponed until after some simplification techniques have been introduced.

3.3 Simplification Rules

Formula reduction can be achieved by applying systematic simplification techniques. Our

first aim is to be able to provide the shortest/simplest version that a given NAND expression

can adopt by trying to reduce the number of atoms there involved. Our final goal is to

find either a proof or a counter model for a given set of logical sentences when they are

represented as a single NAND expression. For example, given the formula [[ a, a, a ]] meaning
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a ∧ a ∧ a, we should obviously reduce it to its equivalent [[ a ]], meaning a. A tautology

would be reflected by the initial formula being reduced to [[ ]], while a contradiction should

result in [ ].

The simplification rules here described reproduce some of the well known inference

rules and techniques typically used in other formal automated deduction systems. In

particular, we will later pay some attention to semantic tableaux methods and the Davis

Putnam procedure [3, 9, 25, 6]. Some of the rules they employ, like subsumption, Modus

ponens or unit resolution and tautology removal, have also an interpretation in terms of

the NAND formalism.

Double Bracket Elimination

The reader is probably by now well familiarised with the bracket simplification rules. How-

ever, they have not been properly formalised and that’s what we will do here. As already

mentioned, double bracket elimination is the counterpart of double negation elimination:

¬¬N

N
­ [[ N ]]

N
(3.3.8)

The only restriction of double bracket elimination is that it may not be applied to NAND

expressions having exactly two external bracket pairs that do not occur inside another

formula. Should we do so, the resulting expression would not be a wff. The important

idea to retain here is that if NAND expressions are to be treated as lists then they must

be globally delimited by at least one pair of outer brackets. For proper subformulas this

is no longer an issue since they are already contained within a wff.

In the example below we use the term simplified for meaning that a formula contains

no redundancies. Formal definition of simplification is given afterwards.

Example 3.3.1 In the following examples consider N to be atomic. Then,

• [[N ]] is simplified

• [[[N ]]] simplifies to [N ]

• [ [[N1, N2 ]], N3 ] simplifies to [ N1, N2, N3 ]

• [ N1, [[ ]] , N3 ] simplifies to [ N1, N3 ]

• [[ [N1 ], [[ [ N2, N3 ], [[N4 ]] ]] ]] simplifies to [[ [N1 ], [ N2, N3 ], N4 ]]

But what does [ N1, [ ] , N3 ] simplify to? Naturally, [ ] stands for ⊥ so it will

absorb every sub-formula present at the same depth level, in this case N1 and N3, finally
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reducing to [[ ]]. Thus the whole initial expression either reduces to [[ ]] or, if it was itself

a sub-formula within another larger formula, then it disappears completely because [[ ]] is

self-eliminated. So any formula containing [ ] as an immediate sub-formula is a tautology

and the bracket absorption rule holds:

[ N1, · · · , [ ] , · · · , Nn ]
[ [ ] ]

(3.3.9)

Definition 3.3.2 (Bracket Simplification) A NAND formula is said to be (bracket)

simplified if it remains unchanged after recursive applications of both double bracket elim-

ination and bracket absorption rules.

Example 3.3.3 In the following examples consider N to be atomic. Then,

• [ [[ [ ]N1, N2 ]], N3 ] simplifies to [ [ ] N3 ] and then to [[ ]]

• [ N1, [ [ ] N3 ] ] simplifies to [ N1, [[ ]] ] and then to [N1 ]

Bracket simplification rules are usually immediately applied since they reduce formula

depth and size.

Formula Reduction

When defining the formula simplification rules for NAND we were initially inspired by the

IF-normal form of OBDDs [15]. The reduction theorem of IF basically says that once a

variable has been evaluated to > (or ⊥), then any subsequent occurrence of that variable

can be replaced by > (or ⊥). NAND also deals with Boolean logic, and the same type of

reasoning can be reproduced.

Theorem 3.3.4 (> - Reduction Rule) Consider the NAND formula N = [N1, · · · , Nn],

where each Ni is a NAND formula itself, not necessarily atomic. Then every occurrence of

Ni as a sub-formula of Nj (j 6= i) can be removed.

Theorem 3.3.5 (⊥ - Reduction Rule) Consider the NAND formula N = [ N1, · · · ,

[ Np ], · · · , Nn ] where each Ni is a NAND formula itself, not necessarily atomic. Then

every occurrence of Np as a sub-formula of Ni (i 6= p) can be replaced by [ ]. In particular,

if Np is a proper sub-formula of Ni then Ni can be removed from N .
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Proof (>) Without loss of generality, because NAND expressions are commutative,

take i = 1 , j = 2 and N1 a sub-formula of N2. A trivial case is when N1 = N2 . In this

case the theorem is a simple re-write rule or duplicate removal, and is proved. The other

case is when N1 is a proper sub-formula of N2. We first note that the act of deleting a

sub-formula is equivalent to replacing it by [[ ]] (ie, >), since double brackets are self-

eliminating. So what we need to show is that, given N = [ N1, N2, · · · ], the replacement

N1 by [[ ]] inside N2 preserves equivalence to N . Two separate situations may arise,

depending on the semantic value of N1:

i) If N1 ⇔> then the expression N ′
2 that results from N2 by replacing all occurrences of

N1 by > is equivalent to N2. Likewise, having N2 ⇔ N ′
2 and N ′ = [ N1, N ′

2, · · · ]
leads to N ⇔N ′.

ii) On the other hand, when N1 ⇔ ⊥ we no longer obtain N2 ⇔ N ′
2, where N ′

2 is the

same as in case i). However, we now have the equivalence N ⇔N ′′, in which

N ′′ = [ [ ], N2, · · · ]. Through the absorption rule N ′′ reduces to [[ ]]. But so does

the expression [ [ ], N ′
2, · · · ], which is this time equivalent to N ′. Thus at the end

we still obtain N ⇔N ′, and the fact that N2 < N ′
2 has vanished completely.

What we have shown is that, in every circumstance, the >-reduction rule preserves equiv-

alence to the original expression. Therefore, it is itself and equivalence rule.

(⊥) The proof for the ⊥ reduction rule follows similar steps and will be skipped. ¤

Example 3.3.6 Consider the NAND expression N = [ a, [ b ], [ a, b, c ] ]. Application of

the >-rule on a reduces it to [ a, [ b ], [ b, c ] ]. Furthermore, application of the ⊥-rule on

b reduces it to [ a, [ b ], [ [ ], c ] ], which finally becomes [ a, [ b ] ] by the absorption rule.

Example 3.3.7 Consider the NAND expression N = [ [ a, b ], [ [ a, b ], c ] ]. Application of

the >-rule on [ a, b ] reduces it to [ [ a, b ], [ c ] ].

Example 3.3.8 Consider now the NAND expression [ [[ a, b ]], [ [ a, b ], c ] ]. Application

of the ⊥-rule on [ a, b ] will reduce it to [ [[ a, b ]], [ [ ], c ] ]. At this point, the absorption

rule transforms it into [ [[ a, b ]] ] and the double bracket elimination further simplifies it to

[ a, b ].

In practice, application of the ⊥-rule over compound subformulas never takes place,

even if example 3.3.8 seems to use it. The only situation where it can happen is when

the target sub-formula is of type [[ N1, · · · , Nn ]]. However, in these cases double bracket
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elimination will have caused it to be merged with the other neighbouring subformulas

before we get a chance to apply our rule. There is absolutely no problem about this because

the rule can still be applied on each of the immediate subformulas N1, · · · , Nn that have

just been exposed. Retaking example 3.3.8, the initial formula [ [[a, b ]], [ [ a, b ], c ] ] gets

immediately simplified to [ a, b, [ [ a, b ], c ] ] through double bracket elimination. Now the

>-rule can be applied independently on a and b to obtain [ a, b, [ [ ], c ] ] which again

reduces to [ a, b ].

Whereas the IF reduction rules only apply to atoms, we see that in NAND we can

apply them to compound subformulas as well. IF-normal form expressions are always fully

distributed over each atom in a Shanon expansion 1 way, so that the >-⊥ replacements

are focussed at the atomic level. This is not the case with the NAND structure which does

not necessarily rely on atomic Shanon expansion.

Reduction rules are extremely effective in decreasing the formula size. It turns out

that many examples can be solved by recursive application of these rules, without ever

needing to go into tree expansion techniques or even make use of any other simplification

rules. All three examples presented before show this since each formula reaches a state

of maximum compactness where no more simplifications can take place. What we mean

by maximum compactness is that each different atom only appears once and thus formula

size is minimal. Nevertheless, there are examples which are more tricky and for which

the >-⊥ reduction rules are not enough. Take, for instance, the formula [ [a, b ] [ a, b, c ] ]

corresponding to the logical expression (a ∧ b) ∨ (a ∧ b ∧ c). It is clear that the left term

a∧ b subsumes the right term a∧ b∧ c, so that the whole formula is equivalent to a∧ b or,

in bracket notation, [[ a, b ]]. Unfortunately, the >-reduction rule does not automatically

detect it unless the initial formula is given as [ [ a, b ], [ [ [ a, b ] ], c ] ]. In this case we would

be able to >-eliminate the term [ a, b ] on the right to get [ [ a, b ], [ [ ], c ] ] and consequently

[[a, b ]]. Since this is usually not the case, in particular due to double bracket elimination,

we must deal with [ [ a, b ] [ a, b, c ] ] as it stands.

Theorem 3.3.9 (Subsumption Rule) A NAND expression N = [ N1, · · · , Nn ] sub-

sumes another NAND expression S = [ S1, · · · , Sn, · · · , Sp ] that is a proper sub-

formula of the immediate ancestor (parent) of N , occurring at any relative depth level

depth N (S) ≥ 1. The subsumed formula S can be removed.

The proof of the theorem is contained in the paragraph immediately preceding it, and

relies on surrounding the sequence N1, · · · , Nn by double brackets and then applying the

>-rule.
1Shanon expansion is defined at the end of this section.
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So in the end is the subsumption rule a reduction rule or is it the converse? It so

happens that reduction rules provide an abstraction to other well known deduction rules

like tautology removal, subsumption and unit resolution. The subsumption rule itself is

one example.

To see how this works, building an analogy with CNF will be helpful. Imagine we were

given the following NAND expression:

[ N1 [ N2 [ N3 [N4 [N5 [ N6 [ N7 · · · ] ] ] ] ] ] ] (3.3.10)

where, for simplicity, each Ni is assumed to be a literal. The indexes marking the Ni’s

represent the relative depth levels, ie, N1 has depth level 1, N2 has depth level 2, etc.. To

make things even simpler we will abstract the outermost bracket pair and re-interpret it

as a container for the set of (conjuncted) immediate subformulas. The motivation behind

this arises from recalling that NAND will be used as a refutation procedure. In practice,

the initial set of sentences will be negated, and therefore an extra pair of external brackets

will be added. Or, if you prefer, the existing pair can be retracted. Furthermore, and

most importantly, it is perfectly admissible to ignore the higher level context on which

this formula occurs because our reduction rules are re-write rules, not one-way inferences.

In other words, we can just plug in the external brackets at any later time.

So, returning to our line of though, we want to convert the NAND expression above

into clausal form. It is clearer if we do it by steps, starting from a smaller example and

progress from there to the generalisation.

Take the expression that goes up to level 3, [ N1 [N2 [N3 ] ] ]. Ignoring the external

brackets it reads N1 ∧ ¬ (N2 ∧ ¬N3), which has the CNF representation

CNF (3) = N1 ∧ (¬N2 ∨N3) (3.3.11)

Going up to level 4 we must replace [N3] by [N3 [N4 ] ], meaning that in (3.3.11) N3

becomes (N3 ∧ ¬N4). The new full expression is thus N1 ∧ (¬N2 ∨ (N3 ∧ ¬N4)) and its

CNF equivalent is given by

CNF (4) = N1 ∧ (¬N2 ∨N3) ∧ (¬N2 ∨ ¬N4) (3.3.12)

Adding yet another level one obtains,

CNF (5) = N1 ∧ (¬N2 ∨N3) ∧ (¬N2 ∨ ¬N4 ∨N5) (3.3.13)
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and so on and so forth. As the depth level keeps increasing, one soon recognises the

following pattern:

N1 (3.3.14)

∧
¬N2 ∨N3

∧
¬N2 ∨ ¬N4 ∨N5

∧
¬N2 ∨ ¬N4 ∨ ¬N6 ∨N7

...

The first thing to notice is that each odd level term gives rise to a new independent sen-

tence, while even level terms are progressively concatenated onto each clause. Therefore,

we can interpret odd levels as of conjunctive type, and even levels as disjunctive. Note as

well that each even level term becomes negated when transposed to clausal form. That is

how the bracket operator is able to metamorphose between the conjunctive operator and

the disjunctive operator — it pushes negations inwards as the nesting deepens.

If it is the case that the Ni’s can be unified, then we observe the following:

1. odd levels can resolve with even levels

2. odd levels can create tautologies with even levels

3. odd levels can subsume other odd levels

4. even levels can be factored

For example,

(1) Under the unification N2 = N1, we have that, in (3.3.14), the sentence composed of

the isolated term N1 can be unit-resolved with each of the other sentences, because

they all contain the negated literal ¬N2 = ¬N1. In the >-reduction rule this would

amount to deleting N2 from (3.3.10):

[ N1 [ N1 [ N3 [ N4 [N5 [N6 [ N7 · · · ] ] ] ] ] ] ]

(>-reduction rule on N1) l

[ N1 N3 [N4 [ N5 [ N6 [ N7 · · · ] ] ] ] ]

(3.3.15)
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giving the same CNF expression as after the unit-resolution steps:

N1 ∧ N3 ∧ (¬N4 ∨N5) ∧ (¬N4 ∨ ¬N6 ∨N7) ∧ . . . (3.3.16)

For this particular example there seems to be an advantage of the >-reduction rule

for NAND over clausal form, because a single deletion operation achieves the same

as a series of unit-resolution steps.

(2) Now, for instance, having N5 = N7 would cause (¬N4 ∨ N5) to subsume (¬N4 ∨
¬N6 ∨N7). Again, this would have amounted to deleting N7 from (3.3.10). But we

see now that despite the fact that this is a similar >-reduction operation as before,

the outcome is different when transposed to clausal form.

(3) If instead we have N5 = N4, then the sentence (¬N4 ∨N5) becomes a tautology.

(4) Finally, for N4 = N6, the expression (¬N4∨¬N6∨N7) produces the (ground) factor

(¬N4 ∨N7), which then subsumes it1.

The above examples try to give an idea of how our reduction rule simulates some

common inference rules. Note, however, how a general resolution step never actually

occurs, although, for instance, setting N5 = N6 may seem to indicate it:

(¬N4 ∨N5), (¬N4 ∨ ¬N6 ∨N7)

(¬N4 ∨N7)
(3.3.17)

In fact, since the term ¬N4 is present in both premises, what we have is

¬N4 ∨ (N5 ∧ (¬N6 ∨N7))

and we are simply applying unit-resolution on the left argument of the main disjunction.

This is of course consistent with the fact that reduction rules are equivalence preserving

while general resolution is sound but only refutation complete, so that the two could never

be compared.

We should point out the fact that, up to here, we have been interpreting each Ni as

a positive literal, so that only the >-reduction rule was being applied. If literals happen

to be negative then the words “odd” and “even” would possibly need to be interchanged

to obtain the correct correspondences between the reduction rules and the resolution, fac-

toring and subsumption operations. Nevertheless, the main structure of the sentences on
1Ground factoring is commonly referred to as merging because it is based on the application of the

idempotency law: N ∨N ' N .
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scheme (3.3.14) would still prevail, with negations being switched on and off where appro-

priate. Clausal form representation of NAND expressions is thus determined by the depth

levels of its subformulas measured up to literals. More precisely, given the expression

[ a, [ b ], [ c, d ] ], it is more useful to say that both a and [ b ] have depth level 1 and c and

d have depth level 2, rather than saying that a has depth level 1 while b, c and d have

depth level 2.

We have seen so far various types of formula simplifications. Soon it will be important

to have a proper distinction between NAND expressions and simplified NAND expressions,

and to know exactly what we mean by that. With that in mind, we introduce below our

standard notion of formula simplification.

Definition 3.3.10 (Simplified Formula) A NAND expression is said to be simplified if

it is bracket simplified and the >-⊥ reduction rules have been applied, at least at the literal

level.

So our general simplification procedure is not fully extended. That is, the subsumption

rule may not have been applied yet nor the >-⊥ reduction rules that act on compound

subformulas (of which the subsumption rule is a special case). In situations where we

wish to point out that simplification is extended to compound subformulas as well, we

shall sometimes use the term compound-simplified. Any other cases shall be referred to

explicitly.

We are now ready to return to our distributivity rule and on the way present Shanon

expansion in the context of NAND. We shall see that distributivity is a special case of

Shanon expansion.

Shanon Expansion

When all other things fail, we can always rely on Shanon expansion... Objectively, when-

ever there are no conditions to directly apply any of the previous rules — >-⊥ reduction,

subsumption or distributivity — we may try to apply Shanon expansion. In fact, all of

those rules end up being special cases of localised Shanon expansion for which the formula

is guaranteed to reduce in size. The definition of Shanon expansion we present here is

adapted for NAND expressions, but it is obviously equivalent to the usual definition also

given in [11]:

Definition 3.3.11 (Shanon Expansion) Given a NAND expression N and an atom p,

the Shanon expansion of N with respect to p, denoted SE(N, p), is given by the following
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transformation:

SE(N, p ) = [ [ p N>/p ] [ [ p ] N⊥/p ] ] (3.3.18)

where N>/p and N⊥/p are the expressions obtained from N after replacing every occurrence

of p by > or ⊥, respectively. In practice, > means [[ ]] and ⊥ means [ ].

First of all, we should point out a few things: i) Shanon expansion does not impose

any pre-conditions on N ; ii) It is perfectly possible to extend its definition so that p is

not necessarily an atom (basically, we just have to omit that one condition in the former

definition, all the rest being kept the same); iii) Application of the >−⊥ reduction rules

on [ [ p N ] [ [ p ] N ] ], restricted to act on p and [ p ] only, gives exactly SE(N, p); iv) Last,

but not least, N and SE(N, p) are logically equivalent.

Our final remark is straightforward, but perhaps easily understood if we take a look

at the corresponding classical logical representation:

SE(N, p) = ( p ∧ N>/p ) ∨ (¬ p ∧ N⊥/p ) (3.3.19)

This should need no more explanations.

With respect to the first remark, even when p is not a sub-formula of N , Shanon

expansion can still be applied (although, unless required by a specific procedure, we would

probably be reluctant to do so since it would just duplicate the formula size). Usually,

it will be combined with the former simplification rules to produce the best results. The

following example shows step by step how this can be achieved.

Example 3.3.12 Let N = [ [ p [ q [ s ] ] ] , [ q [ p s ] ] ]. Neither distributivity nor the >-⊥
reduction rules can be applied on N . However, we have:

N>/p = [ [ [[ ]] [ q [ s ] ] ] , [ q [ [[ ]] s ] ] ]

= [ q, [ s ] , [ q [ s ] ] ] ( double bracket elimination )

= [ q, [ s ] , [ q ] ] ( >-rule on [ s ] )

= [ q, [ s ] , [ ] ] ( >-rule on q )

= [[ ]] ( bracket absorption rule )

and

N⊥/p = [ [ [ ] [ q [ s ] ] ] , [ q [ [ ] s ] ] ]

= [[ q ]] ( bracket simplification )
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so that

SE( N, p ) = [ [ p, [[ ]] ] [ [ p ], [[ q ]] ] ]

= [ [ p ] [ [ p ] q ] ] ( bracket simplification )

= [ [ p ] [ q ] ] ( >-rule on [ p ] )

This example was a good illustration of how the simplification techniques can be very

effective. The size of N decreased to less than half its original size. Also note how the

s has disappeared in SE(N, p). Whenever this happens we say that s was a redundant

variable in N , because the logical value of N did not depend on s. Generalising, whenever

two equivalent expressions do not agree on their variable sets, any variable that does not

belong to the intersection of both sets is redundant.

The next example will show how the distributivity law can be obtained by using Shanon

expansion.

Example 3.3.13 Consider the following NAND expression N = [ [ p, q ] [ p, r ] [ p, s ] ]. The

atom p is a common element of each immediate sub-formula of N , so that the distributivity

rule yields N = [[ p [ [ q ] [ r ] [ s ] ] ]]. Now Shanon expansion of N with respect to p will

give:

N>/p = [ [ [[ ]] q ] [ [[ ]] r ] [ [[ ]] s ] ]

= [ [ q ] [ r ] [ s ] ] ( double bracket elimination )

N⊥/p = [ [ [ ] q ] [ [ ] r ] [ [ ] s ] ]

= [ ] ( bracket simplification )

Due to N⊥/p = [ ], the [ p ] term of SE(N, p) is absorbed and we get:

SE(N, p) = [[ p [ [ q ] [ r ] [ s ] ] ]]

In the previous examples the variable used to factor on, ie p, was given. This is usually

the case in automated procedures where a specific variable ordering is pre-defined —

like in computing unique representations of logical expressions, as is the case of OBBD’s

[15] or OFNNF’s [11]. However, blind choice of variables will not generally lead to the

most compact representation. If the main goal is decreasing the formula size, then the

expansion should be focused on particular subformulas and on carefully chosen variables
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(either a priori or a posteriori) where the compactness effect can be maximal. Shanon

expansion has also wide application in knowledge compilation problems like DNNF’s [8]

and path dissolution [17]. In [8] they define a pair of transformations denoted conjoining

and conditioning which can be combined to reproduce Shanon expansion. And in [17],

the path dissolution technique used to build full dissolvents (weaker versions of DNNF’s)

and DNNF’s is based on semantic factoring (another name for Shanon expansion) and the

Prawitz Rule (a special case of Shanon expansion).

The NAND simplification rules along with Shanon expansion are enough to derive a

proof or a model for a ground theory. But the NAND system can also be implemented as

a tableaux method, provided extension rules are appropriately defined for BNNF. This is

what will be described in the next section.

3.4 Tree Expansion

The sentential language (alias NAND) introduced by Sandqvist [23] was originally implied

in the building of a proof system in the style of tableaux methods — the Cs-system. Here,

we will couple the simplification rules defined in the previous section with the original

Cs-rules. As a remark on notation, through the rest of the text we shall indistinguishably

use the terms NAND -tree and Cs-tree. We will also use the term Cs-proof to indicate that

a theorem has been proved by means of a Cs-tree.

A NAND tree is a finite branching tree whose nodes are NAND expressions. The tree is

extended by means of a single extension rule Es:

[ N1, . . . , Nn ] N1 . . . Nn

(3.4.1)

where Ni (i = 1, . . . , n) is an arbitrary atom or compound BNNF formula. When an Es

extension is applied to a branch, the n + 1 new nodes featured in (3.4.1) are added below

the leaf node of that branch:

Es

[ N1, . . . , Nn ] N1 . . . Nn

Q
Q

Q
QQ

XXXXXXXXXXXX

PPPPPPP

aaaaaa

We also refer to Es as the split rule, where [N1, . . . , Nn ] is called the major component

of the split. The minor components are its immediate subformulas N1, . . . , Nn. When
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we say a “split on φ”, we mean a split with major component φ, and when we write “a

split [ψ1, . . . , ψn ]” we identify a split with components (major and minor) ψ1, . . . , ψn.

Figure 3.1 illustrates a NAND tree with root [ a [ b c ] ] that has been extended by a split

on [ c ] followed by a split on [ a b ] rooted at node c:

[ a [ b c ] ]

[ c ] c

[ a b ] a b

Z
ZZ

@
@

HHHH

Figure 3.1: Cs-tree for [ a [ b c ] ] extended by two splits.

Note that, for n = 1 and for atomic N1, the Es extension rule becomes equivalent to

the PB rule of KE-tableaux and the atomic cut of FNNF-tableaux. Moreover, the Es-rule

also replaces both the α and β rules of analytic tableaux when the major component of

the split is an immediate subformula of any of the nodes along the branch. As we shall see

further on, this is due to the intrinsic structure of BNNF formulas and the dual nature of

the bracket operator.

A tree grows downwards as splits are successively added to leaf nodes. Levels increase

by one at each extension, with the root node at level 0. So, in Figure 3.1, the tree has

three levels, with [c] and c at level 1 and [ a b ], a and b at level 2.

The node at the origin of a split is also called a parent node relative to the split

components, which are themselves its immediate descendants. In relation to a given node,

the nodes above it that lie on the same branch are its ancestors, while the nodes below

it are its descendants. The immediate descendants of a node are also said to be siblings,

as well as the subtrees descending from them. And it seems the family is complete! So,

back to Figure 3.1, we see for example that b has c and the root as its ancestors but has

no descendants, while c has three descendants.

A tree will stop growing if all its branches are closed. The closure of a branch is

specified by the following closure rule.

Definition 3.4.1 (Closure Rule) A branch of a Cs-tree is closed if it contains two

nodes ni and nj such that ni ≺ nj . The levels at which the nodes occur is indifferent, ni

may be a descendant or an ancestor of nj. A tree is closed if all its branches are closed.

Otherwise, if it contains at least one open branch, the tree is said open.
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Recall that ni ≺ nj means that ni is an immediate subformula of nj . Therefore,

in Figure 3.1, the branch ending at leaf node a is closed because a ≺ [ a [ b c ] ]. That is

why it has been underlined. Closed branches are marked with underlines to indicate they

cannot be extended.

The smallest open tree is the single root node [ ] . This tree can never be closed. The

formal proof of this statement is entailed by the soundness of the Cs-system which will be

later demonstrated. For the moment, we might accept the following intuitive argument.

Suppose we extend it with a split on [N ] . Then two open branches with leafs [N ] and

N are created. To close [N ] we must extend it with a split that has an N component. It

is useless to add another split on [N ] because we would be left with the same problem.

Therefore, a split on [M N ] , for example, could be added, producing the immediate

descendants [M N ] , N and M . The branch marked with N would get indeed closed,

but at the cost of generating two other open branches. No matter how we choose the

splits, new open branches will continue to be generated!

On the other hand, the smallest closed tree is the one with root node [ [ ] ]:

[ [ ] ]

�
[ ]

(3.4.2)

Since [ ] has no immediate subformulas, the split is unary. We conclude that the tree

with root node ⊥ is open, while the tree with root node > is closed. This is a hint on how

the Cs-proof system works — that valid formulas have closed trees and the others have

open trees.

The closure rule is motivated by the following argument, which also explains how to

read a NAND tree. Each node that is added to the tree is assumed false. Nodes along

a branch are conjoined, while sibling nodes or sibling subtrees are disjoined. Explicitly,

suppose F = [N1 . . . Nn ] is a node of the tree being extended by a split S with major

component SM = [φ1 . . . φp ] and minor components φ1, . . . , φp, as depicted in Figure 3.2.

[ N1, . . . , Nn ]

[φ1 . . . φp ] φ1 . . . φp

Q
Q

Q
QQ

XXXXXXXXXXXX

PPPPPPP

aaaaaa

Figure 3.2: Cs-split on SM = [ φ1 . . . φp ], rooted at F = [ N1, . . . , Nn ].
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Then what we must read is:

¬F ∧ ( ¬SM ∨ ¬φ1 ∨ . . . ∨ ¬φp )

m
[[ N1, . . . , Nn, [ SM , φ1, . . . , φp ] ]]

Therefore, we are adding to the assumption ¬F the new assumption S = [SM , φ1, . . . ,

φp ]. But S itself is, by construction, a tautology, so each split as a whole is not really an

assumption. To see that S is indeed a tautology it is enough to apply to it the >-reduction

rule on each φi:

S = [ SM , φ1, . . . , φp ] (3.4.3)

≡ [ [ φ1 . . . φp ] φ1, . . . , φp ]

= [ [ ] φ1, . . . , φp ]

= [[ ]]

This ensures that the only real assumption made in the tree is the one that the root

node is false. The root node was not originated by a split, it is a premise.

By distributing over each branch, the branches can be analysed independently of each

other. Below, each conjoined set of terms corresponds to a branch, and the p+1 branches

are disjoined:

(¬F ∧ ¬SM ) ∨ (¬F ∧ ¬φ1 ) ∨ . . . ∨ (¬F ∧ ¬φp )

m
[ [ [F ] [SM ] ] [ [F ] [ φ1 ] ] . . . [ [F ] [φp ] ] ]

Along a single branch each new node inputs an assumption that is no longer tautologous

in relation to that branch. For example, along the branch with nodes F and φ1, we

are making the assumption ¬F and ¬φ1. Consider now the case were φ1 = N1, such

that φ1 ≺ F . If φ1 = false, then N1 = false. But we have also assumed that F =

false, which means that each Ni must be true. This contradicts the assumption on this

branch that φ1 = N1 = false. Therefore, whenever in a given branch a node φ1 is an

immediate subformula of another node F , a conflict arises that creates an inconsistency.

The branch is thus closed. If all branches are inconsistent, then it must be the case that

¬F ∧ ( ¬SM ∨ ¬φ1 ∨ . . . ∨ ¬φp ) is also inconsistent. But since the split as a whole

is a tautology, it is ¬F that must be inconsistent, meaning that F is valid.

Corollary 3.4.2 (Soundness and Completeness) Let F be a NAND expression. A

closed Cs-tree for F , denoted Cs(F) ` ⊥, exists iff F is a valid (tautologous) formula.

Where Cs(F) refers to a Cs-tree with root F .
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Therefore, if a BNNF formula F is a contingency or a contradiction, Cs (F) is always

an open tree. The above corollary translates the soundness and completeness of the Cs-

system. Its proof entailed by Theorems 3.4.12 and 3.4.13 that will be demonstrated later

on. To convince ourselves for the moment, here is an example of two distinct Cs-proofs

for the same valid logical expression.

Example 3.4.3 Consider the valid logical expression F = ((p ∨ q) ∧ (p⇒ q)) ⇒ q with

BNNF (F) = [ [ [ p ] [ q ] ] [ p [ q ] ] [ q ] ]. Two possible Cs-proofs for F are shown in

Figures 3.3 and 3.4.

[ [ [ p ] [ q ] ] [ p [ q ] ] [ q ] ]

[ [ p ] [ q ] ] [ p ] [ q ]

[ p [ q ] ] p [ q ]

XXXXXXX
b

bb

PPPPPP
b

bb

Figure 3.3: Strongly analytic Cs-proof for F .

[ [ [ p ] [ q ] ] [ p [ q ] ] [ q ] ]

[ p ] p

[ p [ q ] ] p [ q ] [ [ p ] [ q ] ] [ p ] [ q ]

``````````

PPPPP
```````̀

PPPPP
HHH

Figure 3.4: Weakly analytic Cs-proof for F .

We can also read the tree in, for example, Figure 3.3 as follows. We start by assuming

that the root node is false. This means that each of its immediate subformulas ψi must

be true. We will test one at a time. First, we pull down formula ψ1 = [ [ p ] [ q ] ] and

assume it is false. Naturally, as we said, ψ1 must be true and so that branch is closed

by inconsistency. But if ψ1 is true, than at least one of its immediate subformulas φi

must be false. Here we consider φ2 = [ q ] first, and assume it to be false. Since it is an

immediate subformula of the root, we have already seen that it must be true. Again, this

branch closes. The other possibility is for φ1 = [ p ] to be false. This assumption does not

explicitly conflict with any of the previous assumptions, so the branch stays open with the

assignment φ1 = [ p ] = false. Next, we pull down ψ2 = [ p [ q ] ]. Again, we assume it to
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be false and obtain an inconsistency that immediately closes that branch. The process is

repeated. For ψ2 to be true, at least one of its immediate subformulas must be false. But

neither p or [ q ] can be false because we already have [ p ] = false and [ q ] = true. All the

branches are now closed, which means that the initial assumption was wrong.

There is a particularity about the Cs-trees of Figures 3.3 and 3.4 which is the fact

that each split was constructed using subformulas of nodes above the split. This is not

imposed by the extension rule but it is sensible that we do so in a refutation proof. A

categorisation of Cs-trees according to the type of extensions they allow is accomplished

by the following definitions.

Definition 3.4.4 (Strong Analyticity) An application of the Es extension rule on a

leaf node φ of an open branch θ is strongly analytic if its major component is an immediate

subformula of any of its ancestor nodes. That same extension will not be repeated again

below φ. If all applications of Es are strongly analytic, then the Cs-tree is also strongly

analytic.

Definition 3.4.5 (Weak Analyticity) An application of the Es extension rule on an

open branch θ is weakly analytic if any one of the following two conditions holds:

• If the major component of the split is a proper subformula of any of its the ancestor

nodes;

• Or if the split has major component [ ψ ] and ψ is a proper subformula of any of

its ancestor nodes.

When all applications of Es are weakly analytic then the Cs-tree is also said to be weakly

analytic.

Under these definitions, a strongly analytic Cs-tree is also weakly analytic. The Cs-

tree of Figure 3.4 is not strongly analytic because on the first split, [ [ p ] p ], the major

component [ p ] is not an immediate subformula of the root node, its only ancestor. But it

satisfies the condition of weak analyticity: the major component [ p ] is a proper subformula

of the root. In fact, the second condition is also satisfied because p is also a proper

subformula of the root. But, of course, satisfying one of the two conditions would have

been enough. Note as well how in a strongly analytic tree the major component of each

split is immediately closed.

Analyticity is important for deciding when to stop growing a tree. A tree that is closed

immediately guarantees that the root is a valid formula. However, even if the root node

is valid, it is still possible to keep extending the tree indefinitely. All we have to do is
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to choose totally unrelated splits, and that will easily prevent the closure rule form being

applied to all or at least some of the branches. Therefore, some degree of connectivity

between the nodes is required to achieve closure, if one exists.

To that purpose, the following properties are defined.

Definition 3.4.6 (Saturated Branch) A branch of a Cs-tree is saturated if all possible

strongly analytic extensions have been applied to it.

Definition 3.4.7 (Complete Cs-tree) A Cs-tree is complete if it is closed or if all its

open branches are saturated.

Completeness alone does not exclude non-analytic extensions. But it guarantees that

if some node N of an open tree contains an immediate compound subformula S, then S

must explicitly appear in the subtree rooted at N as a major component of a split. Below,

we state in advance the completeness theorem for the Cs-system that will be proved and

restated as Theorem 3.4.13.

Theorem 3.4.8 If an open Cs-tree is complete, then its root node is either a contingency

or a contradiction.

A simple example of a complete open Cs-tree for the contingent logical expression

p⇒ (p ∧ q) is shown in Figure 3.5.

[ p [ p q ] ]

[ p q ] p q

HHHH
PPPPPP

Figure 3.5: Complete strongly analytic open Cs-tree.

Note how the atom p at the root node has not been extended — the extension rule is

only defined for wffs. If we do want to split on an atom p, then the major component must

be [ [ p ]], instead of p, but which is nonetheless equivalent to p . The minor component

would then be [ p ]. Otherwise, we may always split on [ p ] and obtain p as a minor

component. This produces a semantically equivalent split but is preferable because p as

depth level 0 while [[ p ]] has depth level 2.

Another example of a complete (strongly analytic) open tree is illustrated in Figure

3.6. The branches ending at the leaf nodes [ p ] and s are open and saturated.

The example shown before in Figure 3.1 depicts an incomplete tree because the im-

mediate subformula [ b c ] at the root node has not been extended. The tree is also not
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[ q [ p [ r s ] ] [ [ p ] s ] ]

[ p [ r s ] ] p [ r s ]

[ [ p ] s ] [ p ] s [ [ p ] s ] [ p ] s

````````̀
b

b
bb

XXXXXX
HHHH@@

©©©

Figure 3.6: Complete open Cs-tree for the logical expression
q⇒ ((p ∧ (¬ r ∨ ¬ s)) ∨ (¬ p ∧ s)).

analytic because [ a b ] , the major component of the second split, is not a proper subfor-

mula of any of the nodes above it.

When a complete analytic Cs-tree for F is open, the counter models for F can be

extracted. A counter model for F is an interpretation over the atoms of F that falsifies

F . The following steps indicate how to obtain the counter models for F :

Step 1. Assign to each atomic node in an open branch the value ⊥;

Step 2. Assign to each atom that is an immediate subformula of a node in an open branch

the value >;

Step 3. For each open branch, conjoin all the assignments made in steps 1 and 2, ;

Step 4. Disjoin all the conjoined sets from step 3.

where > = true and ⊥ = false. Atoms that have not been assigned in steps 1 and 2 for

a given branch are redundant in that branch and can be assigned either > or ⊥.

Under steps 1 to 3, each branch yields a distinct counter model for F . When all

counter models are gathered, by step 4, a DNF model for ¬F results. If a tree for F is

closed than it has no counter models and DNF (¬F) = [ ]. Recall from equation (3.4.3)

that each split S = [SM S1, . . . Sn] that is added to F is a tautology. Conjoining node

F with the split is equivalent to ¬F ∧ (¬SM ∨ ¬S1 . . . ∨ ¬Sn), which is of course still

equivalent to ¬F . Therefore, no matter how many splits we add, we always end up with

an expression that is equivalent to ¬F . Distributing over all ∨’s, which is what we do by

looking first along each branch and then across all branches, produces a DNF, which must

be DNF (¬F). Closed branches are not considered because they represent inconsistent

paths in the DNF. Since a DNF is a set of disjunctions, the inconsistent symbol false is

absorbed by the other disjuncts.
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Example 3.4.9 In Figure 3.5 there is only one open branch with nodes [ p [ p q ] ] and q .

By step 1, q = ⊥ and, by step 2, p = >. Following step 3 we have the conjunction p∧¬ q.

Since there are no more open branches, the only counter model for F = [ p [ p q ] ] is p∧¬ q.

We can see that this is also equivalent to ¬F = [[ p [ p q ] ]] once the >-reduction rule is

applied on p to give ¬F = [[ p [ q ] ]] ≡ p ∧ ¬ q.

Example 3.4.10 In Figure 3.6 there are two open branches. The left most contains the

two atomic nodes p and s and the atom q which is an immediate subformula of the root.

Therefore, p = s = ⊥ and q = >, such that the first counter model is [[ q [ p ] [ s ] ]] (i.e.,

q ∧ ¬ p ∧ ¬ s ). The other open branch contains p, r, s and q all of which are immediate

subformulas of their nodes. Therefore we have p = q = r = s = > which, by step 3,

corresponds to the counter model [[ p q r s ]] (i.e., p ∧ q ∧ r ∧ s). Hence, by step 4, the

disjunction of the counter models is given by [ [ p q r s ] [ q [ p ] [ s ] ] ] = DNF(¬F).

Remark that this is indeed the DNF representation of ¬F . To confirm it, we shall apply

to ¬F = [[ q [ p [ r s ] ] [ [ p ] s ] ]] a Shanon expansion on p followed by simplification:

¬F> / p = [[ q [[ r s ]] [ [ ] s ] ]] (3.4.4)

= [[ q r s ]]

¬F⊥ / p = [[ q [ [ ] [ r s ]] [ [[ ]] s ] ]]

= [[ q [ s ] ]]

SE (¬F , p) = [ [ p ¬F> / p ] [ [ p ] ¬F⊥ / p ] ]

= [ [ p [[ q r s ]] ] [ [ p ] [[ q [ s ] ]] ] ]

= [ [ p q r s ] [ [ p ] q [ s ] ] ]

= DNF (¬F)

Steps 1 and 2 derive from and are equivalent to assigning each node of an open branch

to false. However, because the tree is complete, all compound subformulas have been

split into smaller components, recursively, up to the literal level. Consequently, all atoms

in that branch are also present as either a node or as an immediate subformula of a node.

Therefore, it is enough to look at those atomic assignments. If an atom p is a node, it

is assigned ⊥. If it is an immediate subformula of a node N , and since N must be

assigned ⊥, then p must be assigned >. Remember that for an arbitrary BNNF formula

[N1, . . . , Nn] to be false, each immediate subformula Ni must be true. The fact that these

assignments do not conflict with each other is guaranteed by the closure rule. Whenever
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two nodes ni, nj appear in the same branch and are connected by ni ≺ nj , then obviously

they cannot both be assigned ⊥. And in that case the branch is closed. The formal proof

of these arguments is given as part of the proof for theorem 3.4.13. In that proof, the

following definition will be used.

Definition 3.4.11 (⊥-Inconsistency) Two nodes in an open branch of a Cs-tree are

⊥-inconsistent if they cannot be simultaneously interpreted as ⊥. Otherwise, they are ⊥-

consistent.

We can see that the NAND -tree differs from general tableaux in the sense that in a

tableaux each node of an open branch has a truth interpretation, while in NAND it has a

false interpretation. But that is why a NAND -tree is closed if the root node is valid, while

a tableaux closes when it is unsatisfiable. And that is also why a tableaux for F gives a

DNF representation of F , while a Cs-tree for F yields a DNF representation of ¬F .

In fact, any NNF analytic tableaux for F is equivalent to a strongly analytic NAND -tree

for ¬F . Figure 3.7 shows two partial trees. A NAND-tree on the left and an NNF tableaux

on the right. For the NAND -tree, the node at the origin of the split is ¬F = [ N1, . . . , Nn ],

and the major component of the split is M = [φ1, . . . , φp ]. The equivalent origin node

on the tableaux is marked with F = N1 ∧ . . . ∧ Nn, and the β-rule is also applied on

M = ¬φ1 ∨ . . . ∨ ¬φp. If we wish, we can make M = N1 or just assume that M appears

as an immediate subformula of an ancestor node of ¬F in order to guarantee analyticity.

Similarly, for the tableaux, we can also assume that M appears rootwards of F .

[N1 . . . Nn ] N1 ∧ . . . ∧ Nn

|
N1 (α-rule)
...

...

Nn (α-rule)

[φ1 . . . φp ] φ1 . . . φp ¬φ1 . . . ¬φp (β-rule)

@
@

@
@

@
@

@
@@

A
A
A
A
A
A
A
AA

S
S

S
S

S
S

@
@
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¡
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Figure 3.7: NAND vs. Tableaux.

If, for example, N2 = φ1, than the branch marked with φ1 on the NAND -tree would

be closed because φ1 = N2 ≺ [N1 . . . Nn ], and they cannot all be false at the same time.
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But, in that case, the branch ending at ¬φ1 on the tableau would also close because N2

appears above ¬φ1, and ¬φ1 is incompatible with N2 = φ1. Since the major component

of the split in the NAND -tree is closed by construction, that branch can be discarded. The

branches that are left match the branches in the tableau, provided each node is negated.

As a consequence, a strongly analytic Cs-split with major component S = [N1 . . . Nn] is

equivalent to an α and β-rule on S on an NNF analytic tableaux (assuming the α-rule

was indeed required). If S = [N1], then the split is only equivalent to an α-rule, because

there is only one literal. For the NAND -tree, α-rules are usually implicit as each node

[ N1, . . . , Nn ] is treated as a list of formulas.

3.4.1 Branch Reductions

Simplifications can be added during the construction of a NAND tree. They have the effect

of subsuming unnecessary extensions and produce earlier closure of the branches. This

usually accelerates the proof procedure.

We have already seen that, along a branch, the complement of each node should be con-

joined with the other nodes in that branch. Therefore, if along a branch we have the set of

nodes {N1, . . . , Nn}, then we are assuming that, in that branch, H1 = [[ [ N1 ], . . . , [ Nn ] ]]

holds (i.e., H1 = ¬N1 ∧ . . . ∧ ¬Nn). If we add another node P to that branch, then its

complement [P ] can also be conjoined with H1 to give H2 = [[ [N1 ], . . . , [ Nn ] [ P ] ]].

Basically, at this point, H2 is our full assumption. It is perfectly possible to replace H2

with an equivalent assumption without altering the semantic content of the tree. Ideally,

the new assumption should be syntactically simpler then H2. This can be achieved if we

apply the simplification rules on H2.

Consider the complete Cs-tree for F = [ q [ p [ r s ] ] [ [ p ] [ s ] ] ] shown in Figure 3.8.

The counter models of F are M1 = [[ q [ p ] s ]], M2 = [[ q r s p ]] and M3 = [[ q r s s ]]. Each

model corresponds to one open branch according to steps 1 to 3 of previous section.

[ q [ p [ r s ] ] [ [ p ] [ s ] ] ]

[ p [ r s ] ] p [ r s ]

[ [ p ] [ s ] ] [ p ] [ s ] [ [ p ] [ s ] ] [ p ] [ s ]
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Figure 3.8: Complete open Cs-tree for the logical expression
q⇒ ((p ∧ (¬ r ∨ ¬ s)) ∨ (¬ p ∧ ¬ s)).
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With relation to the three models we may observe the following: i) Model M3 should

have been reduced to [ q r s ]; ii) Model M3 subsumes M2. When we conjoin all the models

together we obtain:

DNF (¬F) = [ [ q [ p ] s ] [ q r s p ] [ q r s s ] ] (3.4.5)

= [ [ q [ p ] s ] [ q r s p ] [ q r s ] ] (Duplicate removal)

= [ [ q [ p ] s ] [ q r s ] ] (Subsumption rule)

Therefore, the rightmost split on [ [ p ] s ] was redundant. Its only effect was to replace

model [ q r s] that already existed up to node [ r s ] with the two more specific models

[ q r s s ] or [ q r s p ]. Well, [ q r s ] is the same as [ q r s s ], and [ q r s ] is more general than

[q r s p ]. Hence [ q r s ] is more general then the other two together and subsumes them.

Redundant (or subsumed) extensions are those for which one of the split components,

Si, is already present in that branch. In those cases, the siblings of Si will only produce

subsumed models.

When simplifications are added at each split, by conjoining the complement of the new

node with the set of previous assumptions and simplifying them, the alternative tree of

Figure 3.9 follows.

[ q [ p [ r s ] ] [ [ p ] [ s ] ] ]

[ p [ r s ] ] p [ r s ]

[ s ]

XXXXXXX
b

b
bb

Figure 3.9: Complete open Cs-tree with branch reduction.

It is quite clear that this tree directly yields the same models as the simplified DNF (¬F)

of equation (3.4.5). The tree was constructed as follows. When the split on S1 = [ p [ r s ] ]

is applied, S1 can be removed from the root node. In this case the reason is because S1

is closed and must be true, which means it can be replaced by > in the root node. This

also means that S1 will not be used for another split. And, in general, that is why the

same extension is never made twice on the same branch. The assumptions that are left

are H = [[ q [ [ p ] [ s ] ] ]]. We now look at the middle branch. When p is added to the

tree, we are making the assumption that p is false, i.e., [ p ] = >. We add this assumption
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to the existing set and obtain:

H1 = [[ q [ p ] [ [ p ] [ s ] ] ]] (3.4.6)

= [[ q [ p ] [ [ s ] ] ]] (>-reduction on [ p ])

= [[ q [ p ] s ]] (Bracket simplification)

The simplified H1 no longer contains [ [ p ] [ s ] ] but only the atom s survives. The act

of removing [ p ] form [ [ p ] [ s ] ] is a shortcut to closing the branch with split component

[ p ] that appears in Figure 3.8. The resulting s can be directly added to the model without

extensions because it is already a literal. We see in Figure 3.9 that the node [ s ] alone as

been added below p to indicate that s it is part of the model.

In relation to the other sibling [ r s ], the same method is used. except now we must

add r and s to the set of assumptions:

H2 = [[ q r s [ [ p ] [ s ] ] ]] (3.4.7)

= [[ q r s [ [ p ] [ ] ] ]]

= [[ q r s [ [ ] ] ]]

= [[ q r s ]]

We recognise in H2 the model M3 after duplicate removal. We also see that the

extension [ [ p ] [ s ] ] has been subsumed by the assumption s. Therefore, it is not necessary

to perform that split and that branch ends at leaf [ r s ].

When this type of branch reductions is be translated into tableaux rules we discover the

Massacci’s rules mentioned earlier in Chapter 2, Section 2.2.4, with relation to FNNF’s.

φ

(ψ[φ ])

ψ[ true/φ ]

¬ p

(ψ[ p ])

ψ[ false/p ]
(3.4.8)

where p is an atom, ψ and φ are now BNNF expressions and ψ[ true/φ ] represents ψ

after the replacement of φ by true . Similarly for ψ[ false/p ] . We also recognise that

they are the >−⊥ reduction rules for NAND .

In NAND trees we apply them thoroughly to each assumption set, in a recursive way,

and not only to recently added assumptions. We have seen in the section describing

the simplification rules that each application of the > − ⊥ reductions may induce new

formulas and atoms to drive new simplification opportunities. But, of course, it is each

new assumption that triggers a new set of simplifications. Note as well that p or φ are not

restricted to be at depth level 1 in a BNNF formula. The rules can be applied starting at

any depth level.
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When extensions are weakly analytic and restricted to splits whose major component is

a literal of the form [ p ], (i.e., atomic cut) this method resembles the FNNF tableaux. The

main difference is that FNNF works with NF formulas while NAND interprets BNNF’s.

And, as mentioned in the context of FNNF’s, the atomic cut plus simplifications also

resembles the splitting rule of DPLL.

3.4.2 Soundness and Completeness

Soundness and completeness in a formal logic system is concerned in guaranteeing: i)

that every syntactic derivation X ` Y is semantically valid X |= Y ; ii) that if Y is a

semantic consequence of X, X |= Y , than a syntactic derivation X ` Y can be found in

that system. In the NAND tree expansion method soundness and completeness are ensured

by the following two theorems.

Theorem 3.4.12 (Soundness) Let N be a wff. If a closed tree for N exists, then N is

semantically valid:

Cs(N) ` ⊥ ⇒ ² N

The next theorem states the converse.

Theorem 3.4.13 (Completeness) Let N be a wff. If N is semantically valid then

every complete tree for N is closed:

² N ⇒ CCs(N) ` ⊥

There are two independent approaches for working out the proof of these theorems.

The first one is the (more abstract) formal proof by mathematical induction on the tree

depth. The second is based on showing that, by construction, the model generated by

a complete Cs-tree for N yields an equivalent DNF representation for ¬N . Thus, since

the model obtained from a closed tree is the empty model ⊥, we have that ¬N ⇔ ⊥ or,

equivalently, N ⇔ >.

The induction proofs presented here are adapted from of the tableau method proofs

described by Smullyan in [25] and by Sandqvist in [23].

Proof of Theorem 3.4.12 Showing that

Cs(N) ` ⊥ ⇒ ² N

is the same as showing

2 N ⇒ Cs(N) 0 ⊥
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ie, that if N is not valid than any Cs-tree for N will be open.

By construction, a Cs-tree for N starts at the root node marked with N and is grown

downwards by adding tautologies at each split, through the law of excluded middle:

>
[ [ N1 . . . Nn ] N1 . . . Nn ]

(3.4.9)

meaning that at least one of the n + 1 nodes — [ N1 . . . Nn ], N1, . . . , Nn —

generating n + 1 new branches must be false.

So, including the root node, each node added to the tree is independently assumed

false. The tree only closes if, along each branch, two nodes (not necessarily distinct)

are ⊥-inconsistent. Intuitively, closure can only occur if the inconsistency is caused

at the root node, since each extension is tautologous as a whole and falsifying the

root was the sole real assumption made.

Suppose then that there is an interpretation I under which every node along a given

(open) branch β of a Cs-tree for N is falsifiable. We say in this case that the Cs-tree

is falsifiable. We want to show that by extending this tree at least one branch will

still remain open. The only way β can be closed is by adding new nodes along to

make it ⊥-inconsistent. But nodes can only be added through the split rule and the

split rule is itself a tautology, so that at each split at least one of the descendent

nodes must be false. Let’s name it Γ. As a consequence, the branch β′ that is

obtained from β by adding Γ to it is still open.

What we have shown so far is that an immediate extension of a falsifiable Cs-tree

under a given interpretation I is still falsifiable under I. This means that if the

origin of a Cs-tree is false under the interpretation I, then that Cs-tree must also

be falsifiable under I.

We know that a closed Cs-tree cannot be falsifiable under any interpretation by

definition of branch closure. Therefore, if a tree is closed at level K, the level K − 1

cannot be falsifiable either. Because if it were, by what we just proved, at least

one branch at level K would be open. Therefore, progressing inductively until level

k = 0 we conclude that a closed tree must have a root that is not falsifiable under

any interpretation, which means the root node must be true. This concludes the

proof. ¤

Proof of Theorem 3.4.12 We wish to show

² N ⇒ CCs(N) ` ⊥
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which is equivalent to showing its contraposition

CCs(N) 0 ⊥ ⇒ 2 N

Suppose we have found a complete Cs-tree for N , which we name CCn, that is not

closed. Then there must be a (saturated) branch β ∈ CCn such that along β every

node has been successfully assigned the value false. Consequently, no two nodes Γi

and Γj belonging to β can be linked by any one of the relations Γi ≺ Γj or Γj ≺ Γi.

The next step of the proof is to show that, for any saturated open branch, the node

at the origin — the root node — is falsifiable. In fact, we shall prove something

stronger: that each node Γi ∈ β is falsifiable under some interpretation I.

Assign each atom l that is a node ∈ β the value ⊥. For all other atoms that are

not nodes of β, but are subformulas of some nodes of β, assign >. Since no positive

and negative occurrences of the same literal can simultaneously appear as nodes of

β, otherwise l ≺ [ l ] would hold, the atomic assignments are consistent with each

other.

Suppose now that we have a compound formula at a node Γm = [ Υ1 · · · Υp ] ∈ β.

In order for Γm to be false, each Υi ≺ Γm, i = 1, . . . , p, must be true. Let us choose

an arbitrary Υi and then do the same for all of the rest. If Υi is atomic, then it has

already been assigned the value >, and we are done. Otherwise, we may assume the

non-atomic Υi = [ γ1 · · · γr ].

Because β is saturated, then, for each Υi, exactly one of Υi or of any of its immediate

subformulas γk ≺ Υi must be in β. It cannot be Υi since the relation Υi ≺ Γm

between the two nodes has, by hypothesis, been excluded. Therefore, we must have

a node γk ∈ β for exactly one k ∈ {1, . . . , r}.
Now, for Υi to be true, it is enough that γk is made false. If γk is an atom, then it

has already been assigned the value ⊥ at the start and indeed one gets Υi = >. On

the other hand, if γk is another compound formula, then the same reasoning that

has been used for Γm can be repeated for γk, and recursively thereafter.

For each individual node Γm this procedure is bound to terminate if the degree of

Γm is finite, which we assume to be the case. Note that

deg(Γm) = 1 +
p∑

i=1

deg(Υi)

As we have seen, each Υi introduces into the branch at most one new node γk of

degree deg(γk) < deg(Υi). Unless deg(Υi) = 0, in which case no node is added.
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Therefore, our new set of waiting tasks has overall degree

D <
s∑

i=1

deg(Υi), for s ≤ p, deg(Υi) > 0

where s is the number of Υi’s for which deg(Υi) > 0 holds. Remark that we can

similarly write

deg(Γm) = 1 +
s∑

i=1

deg(Υi) for s ≤ p, deg(Υi) > 0

from which the following inequality arises:

D < deg(Γm)− 1

Given that at each step we are replacing a task Γm by a strictly smaller set of tasks

D, we will eventually reach the convergence point D = 0.

We therefore have shown that each node along a saturated open branch β is falsifiable

under the interpretation I that assigns each atom along β the value ⊥ and all other

atoms the value >. Thus, the node N at the root must also be falsifiable under I.

If the initial tree was not complete, ie if some branches were not saturated, all we

need to do is extended until every branch becomes saturated. If the tree remains

open, the previous proof applies (we are not interested in the case in which the tree

closes). ¤

3.5 Application to Propositional Logic

The formalism and the techniques described in the previous section can be globally applied

to propositional theories without restrictions. They can be used as refutation procedures

or for knowledge compilation. Some additional strategies like the usage of lemmas can be

added to accelerate or optimise the process. This is described in the Section 3.5.1 where

DNNF compilation is performed using NAND trees.

3.5.1 Compiling NAND into DNNF

Like other proof systems, NAND can also be used as a compilation tool. Either by com-

bined application of the simplification rules — Shanon expansion, distributivity, > − ⊥
reduction and subsumption — or through tree expansion. We shall concentrate here on

tree expansion. Due to its structure, a DNNF model for any theory is always guaranteed,

even without adopting any strategic refinements.
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In Section 3.4 we have seen that BNNF is isomorphic to NNF and is able to simulate

a tableau style proof through tree expansion. Regularity is ensured by the set of simpli-

fication rules that can be combined with the extension rule to remove subsumed nodes

or branches. As with regular tableaux, the model constructed form the open branches is

in DNF and is decomposable — thanks to regularity, no atom appears twice in the same

open branch. An important detail to remember is that a complete analytic Cs-tree for T
returns a DNNF model not for T , but for ¬T , ie a counter model. Therefore, if we want

a model for T , we must derive a Cs-tree of ¬T .

Although the normal form representation of any model T obtained by tree expansion

is only DNF, better space efficiency may be achieved by regrouping some of the common

terms through application of the distributivity rule. Additional strategies may also be

implemented, like avoiding to either split or even extend disconnected DNNF subformulas

— a subformula is connected if it shares atoms with other subformulas, disconnected oth-

erwise. First of all, these are formulas that make no contribution towards branch closure.

Being DNNF, they are individually satisfiable; and being disconnected and individually

satisfiable makes them globally satisfiable. Secondly, they would end up being regrouped

by distributivity, for they would never be subsumed and would appear in every open

branch. Although in this way the resulting tree may be incomplete, the unfulfilled formu-

las still participate in the final DNF model because they are at least attached to the root

node, hence to every branch.

Another interesting idea is to include a generalisation of lemma extensions borrowed

from model elimination (ME) tableaux. The typical usage of lemmas works as follows.

When a branch rooted at node N has been closed, then each of its unprocessed siblings1,

Si, can be extended by ¬N . Or, equivalently, ¬N can be added as an ancestor node of

Si. As a consequence, if a node marked with N occurs somewhere below Si, it may be

automatically closed by conflict with ¬N without the need to reprocess it. This shortcut is

self-consistent because the nodes Si share the same ancestors as N , and all the information

that was used for refuting N the first time is still available. Although in ME-tableau the

information is only transmitted if N has been previously closed, we show here that it still

works for open branches. Under this generalisation, inclusion of lemmas at the atomic

level partially simulates the atomic cut rule.

The following example illustrates a Cs-tree for a DNNF compilation using some of the

strategies described above.
1A branch rooted at S is a sibling of N if S and N have the same parent.
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Example 3.5.1 Consider once more the theory

T = { (F ∨ G), (¬F ∨ H), (G ∨ H) } (3.5.1)

and its NAND representation:

¬T = [ [ [F ] [ G ] ], [ F [ H ] ], [ [ G ] [H ] ] ] (3.5.2)

Distinct Cs-trees for ¬T are possible upon variation of sentence orderings and choice of

simplification strategies.

[ [ [ F ] [ G ] ], [ F [ H ] ], [ [ G ] [ H ] ] ]

[ [ F ] [ G ] ] [ F ] [G ]

[ H ] [F [H ] ] F [H ]

´
´

´
´PPPPPPPPP

Z
Z

Z
Z

S
S

S

Figure 3.10: Analytic Cs-compilation without lemmas.

In Figure 3.10 a complete analytic Cs-tree of ¬T is presented. The formulas were

selected in the order they are stored, from left to right. Three counter models for ¬T are

found, one for each open branch, leading to the following DNF representation of T .

DNF(T ) = [ [F H ], [ G [ F ] ], [ GH ] ] (3.5.3)

= (F ∧ H) ∨ (G ∧ ¬F ) ∨ (G ∧ H)

Since the node [ G ] is shared by the two right most open branches, distributivity can be

applied

[[ [ G [ F ] ] [GH ] ]] = [ G [F [H ] ] ] (3.5.4)

to obtain a more compact DNNF

DNNF(T ) = [ [F H ], [ G [ F [H ] ] ] ] (3.5.5)

Simplification rules have been applied to the selective sets at each node, automatically

subsuming the immediate subformula [ [ G ] [ H ] ] from the root. Note how this formula
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never reached to be selected. However, under this strategy, the model [GH ], matching

the right most branch, which should have also been subsumed has failed to be identified as

such.

A possible solution is to add lemmas, as shown in Figure 3.11. As soon as node [F ]

[ [ [F ] [ G ] ], [F [ H ] ], [ [ G ] [H ] ] ]

[ [F ] [G ] ] [F ] [G ]

| |
[ H ] F (lemma)

´
´

´
´PPPPPPPP

Figure 3.11: Analytic Cs-compilation using lemmas,
equivalent to a split on [ F [ F ] ].

is extended, its sibling [G ] is also extended with the complement of [ F ], which is F . The

presence of F in the branch immediately subsumes [ F [H]]. The final compiled model is

thus

DNNF (T ) = [ [F H ] [ G [ F ] ] ] (3.5.6)

which can be recognised as be the same optimal model displayed in (2.2.27) that was found

by using decomposition trees.

Inclusion of lemmas is only a partial approximation of the atomic cut. It is systemat-

ically done from left to right, across siblings, which makes it very sensitive to the order

of literals inside the extended formulas, assuming the order is kept. But this is required

to preserve equivalence. Note how G, the complement of [G ], has not been added to the

branch rooted at [F ].

The tree in Figure 3.11 is indeed equivalent to the tree that would be obtained by

starting with an atomic split on F and [F ]. However, if the subformula [ [F ] [ G ] ] was

reordered as [ [G ] [ F ] ], then it would instead be equivalent to a split on G and [ G ],

producing the different result seen in Figure 3.12.

Under an actual split on [ G [ G ] ], the branch marked with [G ] would simplify to

[ G, [ [ F ] [ G ] ], [ F [ H ] ], [ [ G ] [H ] ] ]

m
[ G [F [ H ] ] ]

(3.5.7)
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[ [ [ G ] [ F ] ], [ F [H ] ], [ [ G ] [H ] ] ]

[ [ G ] [ F ] ] [G ] [F ]

| |
[ F [H ] ] F [ H ] G (lemma)

|
[ H ]

©©©©©©PPPPPPPP

HHH©©©

Figure 3.12: Analytic Cs-compilation using lemmas,
equivalent to a split on [ G [ G ] ].

by the >−⊥ reduction rules. Similarly, the branch marked with G would reduce to:

[ [ G ], [ [ F ] [ G ] ], [ F [ H ] ], [ [ G ] [H ] ] ]

m
[ [ G ], F, [ F [ H ] ], H ]

m
[ [G ] F H ]

(3.5.8)

It is quite clear that, after regrouping common terms, the reduced models (3.5.7) and

(3.5.8) match the open branches of the tree in Figure 3.121.

Upon comparison with Figure 3.10, we realise that the lemma has added the spurious

term [G ] to the model: instead of [F H ], like in (3.5.5), we now have [ [G ] F H ], as seen

in (3.5.8) and in the right most branch of Figure 3.12. The reason is that lemma G does

not bring any useful information that can be used to subsume nodes or branches below

node [F ], [F ] alone suffices. Based on this observation, we should stick to the following

general principle. In Cs-compilations, lemmas should not be added to branches where

their presence is transparent; in Cs-proofs, however, where the size of the final model is

not important, they are usually helpful, just like atomic splits.

Sticking to this principle, the tree from Figure 3.12 may be replaced by the alternative

tree illustrated in Figure 3.13, where lemma G has been removed. In addition, lemma [F ]

has been added to the mid branch by virtue of its sibling node F , to its left. Having done

that, the mid branch composed of the node set { [ G ], [H ], [F ] } is subsumed by the
1This is true for this particular theory, but, in general, lemmas are more restrictive than atomic cuts
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[ [ [ G ] [ F ] ], [ F [ H ] ], [ [ G ] [H ] ] ]

[ [ G ] [ F ] ] [ G ] [F ]

| |
[F [ H ] ] F [ H ] [H ]

|
[ F ] (lemma)

©©©©©©PPPPPPPP

HHH©©©

Figure 3.13: Analytic Cs-compilation by adequate usage of lemmas.

right most branch:

DNNF (T ) = [ [ G [ F [ F H ] ] ], [ F H ] ] (3.5.9)

= [ [ G [ F ] ], [ F H ] ]

obtained through application of the >-reduction rule on [F,H ].

The relevance of DNNF normal form has been discussed Section 2.2.2. It basically

resides in the fact that decomposability ensures independence between subformulas, which

allows tests like satisfiability to be decided in linear time relative to the size of the formula.

At the same time, any DNNF is also satisfiable on its own by virtue of the same property.

It is actually interesting to analyse this under a different perspective. By compiling a

theory T into DNNF, we are removing from it all the paths that would systematically lead

to a dead end in satisfiability tests. Rephrasing, if T is not DNNF, then a Cs-proof for

T ² S, for some query S, may contain branches that will be closed or subsumed not due

to the conjunction T ∧ ¬S, but to T alone. We can see how this is a waste of time. In a

series of queries Si, the same branches would keep being extended and inevitably discarded

each time, independently of Si. The DNNF compilation cleans the tree from superfluous

computations. In fact, each time a Cs-tree for [ T [S ] ] (ie, T ⇒ S ) is performed, T is

recompiled.

Let us consider at the theory T = ¬ (A⇔ B) with the BNNF/NNF representation

given below:

T = [[ [ [A ] [B ] ] [AB ] ]] (3.5.10)

= (A ∨ B) ∧ (¬A ∨ ¬B)
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and its equivalent DNNF compilation

DNNF (T ) = [ [ [A ]B ] [ A [ B ] ] ] (3.5.11)

= (¬A ∧ B) ∨ (A ∧ ¬B)

We have chosen this example because both theories have the same size, not to influence the

result that follows. The variables A and B can be any complicated compound formulas.

A Cs-proof for [ T [S ] ], where the original (non DNNF) representation of T is used, is

partially derived in Figure 3.14.

[ [ [A ] [ B ] ] [A B ] [S ] ]

[ [ A ] [B ] ] [ A ] [B ]

[ AB ] A B [ AB ] A B

©©©©©©PPPPPPPP

@
@

@

½
½

½½

@
@

@

HHHHHH

Figure 3.14: Incomplete Cs-tree of [ T [S ] ].

The external double brackets surrounding T in the root node disappear upon merging

with [S ]. Furthermore, no simplifications have been applied so that closed or subsumed

branches get explicitly represented in the tree. And since we are not interested in the actual

query S, the tree is left incomplete and only terms related to T have been extended. As

it stands, ignoring the unfulfilled formula [S ] at the root, the tree represents as well a

complete Cs-tree for [ T ], or a compilation for T , and the open branches reproduce the

DNNF model in (3.5.11).

Next, in Figure 3.15, the alternative Cs-tree for [ DNNF(T ) [S ] ] is illustrated.

It is evident how the DNNF theory encloses two independent sub-theories that can be

directly combined with [S ] without much effort. On the contrary, the original theory

T hides two closed branches that do not contribute to the satisfiability test and requires

extension steps up to level 2. This appears to be partly explained by the fact that T ’s

main connection is a conjunction, while in DNNF (T ) we find a disjunction. But one

should not be misled because the problem with T is the lack of independence between

its clauses. If they were decomposable, they could be individually tested against S, no

matter what the main connection was. The fact that it is a conjunction only means that
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[ [ [ [A ] B ] [ A [B ] ] ] [S ] ]

[ [ [A ] B ] [A [B ] ] ] [ [A ]B ] [ A [ B ] ]

HHHHHH

XXXXXXXXXXXX

Figure 3.15: Incomplete Cs-tree for [ DNNF(T ) [S ] ].

Table 3.3: Runtime statistics (milliseconds)

TPTP Problem Theorem NAND LeanTap

NewGRA001-1 yes 10 10

NewLCL181-2 yes 0 0

NewLCL230-2 yes 0 0

NewMSC007-1.008 no - -

NewNUM285-1 no 140 34720

NewPUZ004-1 yes 0 10

NewPUZ009-1 yes 10 30

NewPUZ013-1 yes 0 8140

NewPUZ014-1 yes 20 8340

NewPUZ015-2.006 yes 27570 -

NewPUZ016-2.005 yes 1820 -

NewPUZ030-2 yes 580 -

NewPUZ033-1 yes 10 300

entailment holds if and only if the test is satisfiable for each immediate subformula of [T ],

while with a disjunction this is a sufficient condition, and it is only necessary that one

immediate subformula of T entails S.

3.5.2 Testing

The propositional NAND system has been tested against an analytic tableau method. Since

NAND is implemented in Prolog, we have chosen to compare it against another Prolog

program. For that purpose we selected LeanTap [3, 27], a well known Prolog algorithm

that implements NNF analytic tableaux as a refutation procedure.
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Table 3.4: Runtime statistics (continued)

TPTP Problem Theorem NAND LeanTap

NewSYN001-1.005 yes 240 -

NewSYN003-1.006 yes 10 -

NewSYN008-1 yes 0 0

NewSYN011-1 yes 0 0

NewSYN028-1 yes 0 0

NewSYN029-1 yes 0 0

NewSYN030-1 yes 0 0

NewSYN032-1 yes 10 10

NewSYN040-1 yes 0 0

NewSYN041-1 yes 0 0

NewSYN044-1 yes 0 0

NewSYN045-1 yes 0 0

NewSYN046-1 yes 0 0

NewSYN047-1 yes 0 0

NewSYN085-1.010 yes 0 10

NewSYN086-1.003 no 10 0

NewSYN087-1.003 no 30 0

NewSYN089-1.002 yes 0 10

NewSYN090-1.008 yes 190 -

NewSYN091-1.003 no 60 10

NewSYN092-1.003 no 120 10

NewSYN093-1.002 yes 20 620

NewSYN094-1.005 yes - -

NewSYN097-1.002 yes 50 590

NewSYN098-1.002 yes 1120 -

NewSYN302-1.003 no 170 10
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What we expect is that, thanks to simplifications and branch reduction, NAND will

perform better than LeanTap. The only simplifications that are being used for NAND

here are the >−⊥ reduction rules that act upon literals. These are applied to the initial

theorem and then during the tree expansion, whenever new nodes are added. Neither the

compound simplification nor the subsumption rule is being used.

Both procedures were set to stop after the first counter model was found. A single

counter model is enough to invalidate a theory. That means that as soon as the first open

branch is found, the search stops. However, if the theorem is valid, all branches must be

searched in order to be closed.

In order to perform the tests a set of propositional theorems was selected from the

TPTP Problem Library1 [28]. The results are shown in Tables 3.3 and 3.4. The first

column contains the TPTP theorem identification. The second column indicates whether

the theorem is valid (“yes”), or if is has counter models (“no”). The last two columns refer

to the runtime statistics for each program (NAND or LeanTap). Times were obtained with

Prolog predicate statistics/2 under the key ‘runtime’, with units in milliseconds. Timeouts

are marked with ‘-’, and correspond to times over 100 seconds.

As suspected, NAND performs better or equally better in most of the problems. Nev-

ertheless, we do find a few cases were LeanTap wins. These seem to be linked to invalid

theorems, which have open trees. In principle these trees terminate faster than the closed

ones because we are only looking for one model. Therefore, it is likely that the effect of

simplifications is less significant and does not compensate for the overhead it causes.

3.6 Application to First-Order Logic

First order logic, also known as first order predicate logic, generalises propositional logic

through the introduction of the universal and existencial quantifiers

∀x ≡ for all x (3.6.12)

∃x ≡ there exists an x (3.6.13)

and of sets function symbols and predicates of variable arity2 P (x1, . . . , xn). Predicates are

the atomic sentences used to reason about individuals, which are the variables. The pred-

icate symbol may represent an attribute associated with a variable or a relation between

its variable arguments. If a predicate has arity 0, it becomes equivalent to a propositional

sentence.
1I would like to thank Driss for lending me his TPTP Prolog converter code, which was quite helpful.
2Arity is defined as the number of arguments in a predicate or function. P (x1, . . . , xn) has arity n.
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Quantifiers act upon variables. An infinite variable set U = {x1, x2 . . . } is usually

considered, such that

∀x P (x) ≡ P (x1) ∧ P (x2) ∧ . . . (3.6.14)

∃x P (x) ≡ P (x1) ∨ P (x2) ∨ . . . (3.6.15)

The NAND system can be extended to predicate logic by replacing the propositional

sentences by predicates and translating the quantifiers into BNNF in the way suggested

by Sandqvist [23]:

∀x P (x) ­ [[x, P (x) ]] (3.6.16)

∃x P (x) ­ [x [ P (x) ] ] (3.6.17)

This representation is based on the interpretation given in (3.6.14) and (3.6.15). The

variable x appearing at the beginning of the BNNF formulas represents the quantification.

If we explicitly enumerate the variables in U and drop the quantifiers we obtain the

equivalent BNNF for (3.6.14) and (3.6.15):

∀x P (x) ­ [[ p(x1), p(x2) . . . ]] (3.6.18)

∃x P (x) ­ [ [ p(x1) ] [ p(x2) ] . . . ] (3.6.19)

Note that the BNNF quantifiers still obey the De Morgan laws

¬ (∀x P (x) ) ' ∃x ¬P (x) (3.6.20)

¬ (∃x P (x) ) ' ∀x ¬P (x) (3.6.21)

by virtue of bracket simplification or introduction

[ [[x, P (x) ]] ] ' [ x [ [ P (x) ] ] ] (3.6.22)

[ [ x [ P (x) ] ] ] ' [[ x [P (x) ] ]] (3.6.23)

The example below shows some first order logical formulas and their equivalent repre-

sentation in BNNF.

Example 3.6.1

(∀x P (x) ) ∧ (∃y Q(y) ) ­ [[ x, P (x) [ y [ Q(y) ] ] ]] (3.6.24)

∃x ( P (x) ⇒ ∀y P (y) ) ­ [ x [[ P (x) [ y P (y) ] ]] ] (3.6.25)

∀x, y ( R(x) ⇒ ∃z S(y, z) ) ­ [[ x, y, [ R(x) [[ z [ S(y, z) ] ]] ] ]] (3.6.26)

∀x ∃y P (x, y) ­ [[ x [ y [P (x, y) ] ] ]] (3.6.27)

Inner double brackets can be removed and allow subformulas to be merged.
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With the quantifiers inside the formulas simplification is not at all straightforward.

To deal with these expressions a type of skolemisation must be applied. A “just in time”

skolemisation can be used during the construction of a strongly analytic Cs tree, in the

style of free variable tableaux [3, 25]. The BNNF first order rules are the following.

[[ x, F (x) ]]

F (x1)

[ x, F (x) ]

[ F (b) ]

[ x, F (x, y, . . .) ]

[ F (f1(y1, . . .), y1, . . .) ]
(3.6.28)

(∀−E) (∃−E) (Skolem Function)

Formulas on the top correspond to quantified immediate subformulas that can be

selected from the set of ancestor nodes along a given branch. The subformulas on the

bottom represent the major component of the split generated by selecting the formulas on

the top. Minor components are not represented in this rules for the sake of clarity. It is

implicit that they are to be extracted in the way dictated by the ground Es extension rule

that was defined in Chapter 3, Section 3.4. The F ’s represent any BNNF formulas. The

first rule (∀−E) corresponds to the universal elimination inference rule, where the universal

variable x is replaced by a fresh new variable x1 and the quantifier is removed. Rule (∃−E)

is the existential elimination rule that projects the existential quantified variable x into

a constant b. b is also called a Skolem constant. The last rule on the right is necessary

to introduce the Skolem functions. It applies when y is a variable that is universally

quantified in an ancestor node of [ x, F (x, y, . . .) ]. The dots indicate that y may not

be the only universally quantified variable in that situation, and that any other variables

should also be included in the Skolem function. In practice, the Skolem function is only

really used if there are predicates within with F with arity> 1 that relate y and x. Each

Skolem constant or function must be unique.

Furthermore, as in a normal skolemisation process, there should not be two quantifiers

acting on a variable with the same name, for this generates confusion. Therefore all

duplicate quantified variables should be renamed along with the predicates within their

scope:

(∀x P (x) ) ∧ (∃x Q(x) ) ­ [[ x, P (x) [ x [ Q(x) ] ] ]]

↓ ↓ (3.6.29)

(∀x P (x) ) ∧ (∃y Q(y) ) ­ [[ x, P (x) [ y [ Q(y) ] ] ]]

The next example shows a Cs-proof for equation (3.6.25) taken from Example 3.6.1

that applies the first order logic (FOL) BNNF rules that we have just defined.
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Example 3.6.2 The formula F ≡ (∃x ( P (x) ⇒ ∀y P (y) ) ) is a tautology. If there is an

x such that P (x) is false, then we choose it and the formula holds. If there is no x that

makes P (x) false, then it means that ∀y P (y) is true, and the formula is again satisfied.

Now that we are convinced of that, we shall verify that the Cs-tree for BNNF (F) is closed

using the first order logic (FOL) BNNF rules in (3.6.28). This is depicted in Figure 3.16,

after removal of double brackets from BNNF (F).

[ x P (x) [ y P (y) ] ]

[ y P (y) ] P (b) (∃−E)

(x = b)

HHHHHH

Figure 3.16: An FOL Cs-proof.

The tree is interpreted as follows. The existentially quantified formula [ y P (y) ] is

selected. Application of the (∃−E) rule transforms it into [P (b) ]. We simply keep the

original formula in the major component to know for ourselves what formula has been

selected. But the minor component reveals that the (∃−E) rule has indeed been applied.

Then, the branch with node P (b) is closed by unifying P (b) with the universally quantified

immediate subformula P (x) at the root.

Unification with or selection of universally quantified formulas in ancestor nodes is

always made by taking a copy of the formula before the unification. This guarantees that

the original formula does not get bound. This is necessary because universally quantified

formulas can be selected any number of times, since the supply of variables is unlimited.

Therefore, an unbound copy must always exist.

Suppose now that there is a tree that does not close. In propositional logic the formulas

are only selected once along each branch, which means that at some point the tree is

complete and we know that the theorem is not valid. In FOL, however, the universal

formulas can be continually selected. This may pose the problem of an infinite tree, which

is usually associated with redundant extensions taking place. Therefore, to prevent the

tree from growing forever, one must check for subsumed nodes along a branch. If a node

that already exists in a branch is to be repeated by a new extension, then the extension

should not be performed.
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Example 3.6.3 Consider the formula F = ( (∀x P (x) ) ∧ (∃y Q(y) ) ) with BNNF(F) =

[[ x, P (x) [ y [ Q(y) ] ] ]]. Its open Cs-tree is presented in Figure 3.17

[[ x, P (x) [ y [ Q(y) ] ] ]]

[ x, P (x) [ y [Q(y) ] ] ] P (b) [ y1 [Q(y1) ] ]

|
[Q(y2) ] Q(y2)

|
[Q(y3) ] Q(y3)

HHHHHH

```````````̀

³³³³

³³³³

Figure 3.17: An open FOL Cs-tree.

We shall analyse Example 3.6.3. After the first existentially quantified extension, the

minor component [ y1 [ Q(y1) ] ] is a universally quantified formula because it is preceded

by the variable y. Remember that we always think of the complement of each node, so

that an extra pair of outer brackets is implied around each node. So our assumption is

in fact [[ y1 [ Q(y1) ] ]]. So now [Q(y1)] can be selected any number of times, each time

with a new fresh variable. But at each new extension the same node is repeated along

that open branch. Although the name of the variable changes from y2 to y3, it still holds

that Q(y2) = Q(y3) because they are free variables. Therefore, these patterns should be

detected and not allowed in the tree. Since there are no more universal formulas besides

[Q(y1)] to be selected, and [Q(y1)] cannot be selected because it is redundant, the tree is

considered complete and open.

Finally, the example that follows shows an application of Skolem functions.

Example 3.6.4 Consider the contingent formula F = ¬ (∀x ¬Q(x, x) ∧ ∀y ∃z Q(y, z)).

We have that BNNF(F) = [ x [Q(x, x) ] y [ z [ Q(y, z) ] ] ]. Its open Cs-tree is

presented in Figure 3.17

The tree in Figure 3.18 is open and complete, in the sense that subsequent extensions

are all redundant. The first split is on [ z [ Q(y, z) ] ], which is existentially quantified on

z. However, Q depends on z and also on y, the later being a universal variable whose

quantifier appears at a higher level then z, in an ancestor node (in this case the root

node). Therefore, variable z has to be replaced by a function that relates it to y. After



82 CHAPTER 3. THE NAND FORMALISM

[ x [Q(x, x)] y [ z [Q(y, z)] ] ]

[ z [Q(y, z) ] ] [ Q( y1, f(y1) ) ]

[Q(x, x) ] Q(x2, x2)

PPPPPP

PPPPPPPP

Figure 3.18: Extension with a Skolem function.

making a copy of y into y1, we replace z with the Skolem function f(y1). When we try

to unify Q(x2, x2) with Q( y1, f(y1) ) to close the branch, the occurs check makes it fail.

To unify these terms we would have to unify both arguments by making x2 = y1 and

x2 = f(y1). But this means that y1 = f(y1) and that y1 = f(f(f . . . f(y1))), indefinitely.

Since unification fails, the branch does not close, as it should not. Without the Skolem

function the unification would have succeeded. If f(y1) was instead a Skolem constant b,

then we could set x2 = y1 and x2 = b, yielding y1 = b as well. The unification would

mistakenly close the branch.

[ [Q(x, x)] Q(y, f(y)) ]

[ Q(x, x) ] Q(x1, x1)

HHHHHHHH

Figure 3.19: Beforehand skolemisation.

Tree expansion in FOL can also be performed with a beforehand skolemisation. In this

case, if we want to prove a theorem T , what we should do is the following:

1. Negate the theorem T into ¬T ;

2. Skolemise it into S = Skolem (¬T ) ;

3. Compute B = BNNF (¬S) ;

4. Derive a Cs-tree for B .
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Doing it this way for the previous example would yield

¬F = ∀x ¬Q(x, x) ∧ ∀y ∃z Q(y, z) (3.6.30)

with skolemisation S = Skolem(¬F)

S = ¬Q(x, x) ∧Q(y, f(y)) (3.6.31)

such that

BNNF (¬S) = [ [Q(x, x) ] Q(y, f(y))] (3.6.32)

The tree expansion is shown in Figure 3.19. Again, Q(x1, x1) cannot be unified with

Q(y, f(y)).
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Chapter 4

Conclusions and Perspectives

We have described a proof system that can handle satisfiability testing more efficiently than

the analytic tableau method. This has been shown upon comparison with the LeanTap

algorithm over a set of propositional problems. This is due to the a set of simplification

rules incorporated in the NAND system that accelerate the proofs by providing branch

reductions. The propositional NAND is proved to be sound and complete. The first order

case is not expected to perform better because the simplifications cannot be freely applied

due to variable binding. A possibility for improvements on the first order NAND may reside

in a relatively recent idea by Martin Giese [10] that uses delayed unification of variables

in order to prevent backtracking.

A few examples of how NAND could be used as a knowledge compilation system have

also been presented. They couple the tree expansion method with lemmas and branch

reduction. NAND has many features closely related to compilation systems. Future studies

could be made on new formula selection strategies, which is always a delicate problem in

knowledge compilation.

Besides of its immediate applications, the NAND system has also shown to be a ver-

satile way of representing logical expressions thanks to its BNNF representation. A next

interesting step could be to try to incorporate the equivalence operator into the NAND

syntax, as it is done with negated form.
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Appendix

The NAND Interface

The implementation of the NAND system is written in Prolog. The accepted symbols and

predicates for using the program are listed below. Unless stated otherwise, they apply to

propositional expressions.

Symbols

Boolean Operators The boolean connectives that can be used to write logical expres-

sions in the NAND program are ‘&’ (and), ‘#’ (or), ‘⇒’ (implication), ‘⇔’ (equiva-

lence) and ‘∼’ (negation)

Constant Symbols The constant symbols ‘tt’ (true) and ‘ff’ (false) are allowed in logical

expressions.

Propositions Propositional letters must be lower case.

Quantifiers The quantified expressions ∀X p(X) and ∃X p(X) are represented by

all(X, p(X)) and exists(X, p(X)), respectively. Variables must be upper case letters

and predicates and functions must be lower case.

Higher level predicates

prove(+Theorem, −Model) Proves a Theorem in the form of a logical expression.

Returns the counter models for the Theorem or an empty model (the empty list) if

the Theorem is valid. Calls itrans/2, ord−simplify/2, model/2 and show/2.

prove−sentence(+FilePath, −Model) Same as prove/2 but the theorem is read from

a file. The theorem must be stored as a dot ended logical sentence.
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verbose/0 The command “assert(verbose).” sets the option to view the evolution of

the proof. Cancel this option with “retract(verbose).”.

lemma/0 The command “assert(lemma).” introduces the option of using lemmas in

the tree expansion. The option is canceled with “retract(lemma).”.

Translation Predicates

itrans(+Logical Expression, −Nand Expression) Translates a boolean logical ex-

pression into a NAND expression. This predicate calls trans/3.

itransimp(+Logical Expression, −Nand Expression) Similar to itrans/2, but also

performs partial simplification of the expression based on the >−⊥ reduction rules.

show(+Nand Expression, −Logical Expression) Translates a NAND expression into

a boolean logical expression.

trans(+Logical Expression, −Nand Expression, ?DiffListTail) This predicate is -

called by itrans/2 to handle the inner level subformulas. Double bracket elimination

on subformulas is done using difference lists, which is the DiffListTail argument of

the predicate. The first time it is called DiffListTail = [ ]. Bracket absorption is

also performed.

Simplification Predicates

simplify(+Nand Expression, −Nand Simplified) Simplifies a NAND expression us-

ing the >−⊥ reduction rules at the literal level. The simplification is recursive over

all depth levels and is performed in several passes by calling the predicate isimp/2.

It does not order nor removes duplicates.

ord−simplify(+Nand Expression, −Nand Simplified) Similar to simplify/2 but

performs recursive ordering of subformulas to remove duplicates.

isimp(+Nand Expression, −Nand Simplified) Performs a one-pass recursive simpli-

fication of a Nand Expression over literals.

compound−simplify(+Nand Expression, −Nand Simplified) Similar to ord-sim-

plify/2, but applies the >−⊥ reduction rules on compound subformulas as well as

literals. Calls compound−isimp/2.
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compound−isimp(+Nand Expression, −Nand Simplified) Similar to isimp/2 but

performs the simplification on compound subformulas as well as literals.

shanon(+Nand Expression, +Atom, −SE) Performs the shanon expansion (SE) of

the Nand expression over the atom Atom.

Tree Expansion Predicates

model(+Nand Expression, −Counter Models) Returns the counter models of a NAND

expression using the tree expansion method.

First Order Logic Predicates

prove−fol(+Theorem, −Proof) Proves a skolemised negated theorem. If the returned

Proof is the empty list, the theorem is valid.

prove−fol−sentence(+FilePath, −Proof) Same as prove−fol/2 but the theorem is

read from a file. The theorem must be stored as a dot ended logical sentence.

model(+NandFOL, −Proof) Generates a tree expansion proof for a skolemised NAND

expression. If Proof is the empty list the expression is valid.

itrans(+FOL, −Nand) Translates a first order logic expression (FOL) into NAND syn-

tax.

skolemise(+FOL, −Skolem) Skolemises a first order logic (FOL) expression.
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