
The Knife Change Minimization Problem

De�nition, Properties, Heuristsics

April 26, 1996

1 Introduction

We de�ne formally the Knife Change Minimization Problem, we prove some properties which
reduce the search space, and then describe some heuristsics.

At one of the last stages of the paper construction process customer widths have to be
cut out of jumbo reels. For example, the widths 50,40,60,40, 30,50,50,50 and 60,40,40,40 may
have to be cut out of three jumbo reels of width 200. The collections of indivdidual wdths
(e.g. 50-40-60-40) are called patterns.

The order in which to consider the patterns (i.e. the route) can be arbitrary, and the order
in which to cut each pattern is arbitrary as well. Each di�erent solution involves a di�rerent
number of knife changes, e.g. the solution from above involves 12 knife changes, whereas the
solution 50-40-40-60, 5-4-4-4 and 50-50-50-30 involves only 7 knife changes. The objective is
to �nd the solution with the minimal number of knife changes, or, because the search space is
immense, to approximate such a solution.

We �rst give some auxiliary de�nitions describing operations on sequences, bags and sets.
We then de�ne formally the problem, the solution space and the cost function in terms of
the above. We prove some properties which reduce the search space, and then we describe
heuristsics.

1.1 Sequences

Sequences, the cardinality the inverse of a sequence, the di�erence of two sequences are de�ned
as follows:

A sequence:
type seq (�) == empty ++ �:: seq (�);

The number of elements in a sequence:
fun card : seq (�) �! int ;
| card empty = 0;
| card x::xs = 1 + card (xs);

Appending an element, or appending a sequence
fun append : seq (�) � � �! seq (�);
| append empty a1 = a1::empty ;
| append a::as a1 = a :: append (as, a1)
fun append : seq (�) �seq (�) �! seq (�);
| append as empty = as;
| append as b::bs = append (append (as, b), bs);

Prepending an element to sequence of sequences
fun pre�x : � � seq (seq (�)) �! seq (seq (�));

1

| pre�x a1 empty = empty;
| pre�x a1 as::ass = (a1::as) :: pre�x (a1, ass);

Inverting a sequence
fun inverse : seq (�) �! seq (�);
| inverse empty = 0;
| inverse a::as = append (inverse (as), a);

Whether an element appears in a sequence
fun isIn : seq (�) � � �! int

| isIn empty x = 0;
| isIn y::ys x = (if x=y then 1 else 0) +isIn (ys,x);

1.2 Sets

Sets, the cardinality of a set, the di�erence and the union of two sets are de�ned as follows:

A set:
type set (�) == empty ++ � :: set (�);

The number of elements in a set:
fun card : set (�) �! int ;
| card empty = 0;
| card x::xs = 1 + card (xs);

Whether an element appears in a set
fun isIn : set (�) � � �! bool

| isIn x empty = false;
| isIn x y::ys = if x=y then true else isIn (ys, x);

The di�erence of two sets
fun minus : set (�) � set (�) �! set (�)
| minus empty xs = empty;
| minus x::xs ys = if isIn (x,ys) then minus (xs,ys) else x::minus (xs, ys);

1.3 Multisets or Bags

Multisets, or bags may contain an element more than once; they are de�ned as follows:

A bag:
type bag (�) == empty ++ (� � int) :: bag (�); 1

The number of elements in a bag:
fun card : bag (�) �! int ;
| card empty = 0;
| card (x,i)::xs = i + card (xs);

Whether an element appears in a bag
fun isIn : bag (�) � � �! bool

| isIn empty x= false;
| isIn (y,i)::ys x = if x=y then i else isIn (ys,x);

Removing an element, or another bag
fun minus : bag (�) � � � int �! bag (�);
| minus empty a1 k = empty
| minus (a1,i)::as a1 k = if i-k>0 then (a1,i-k)::as else as
| minus (a2,i)::as a1 k= (a2,i)::add (as,a1,k)
fun minus : bag (�) � bag (�) �! bag (�)

2

| minus as empty =xs;
| minus as (a1,k)::bs = minus (min(as,a1,k), bs)

1.4 Permutations

The permutations of the elements of a set:
fun allPerms : set (�) �! set (seq (�))
| allPerms s = f t j and 8a2 �: isIn(t,a)=1 i� isIn(s,a) g

Notice that card (allPerms (s))=card (s)!
The permutations of the elements of a bag:

fun allPerms : bag (�) �! set (seq (�))
| allPerms b = f t j and 8a2 �: isIn(t,a)=isIn(b,a) g

Notice that for a bag=(a1:i1)::...::(an::in)::empty, card (allPerms (bag))=(i1+i2+....+in)!/(i1!*i2!*...in!)

1.5 The Problem

We now de�ne the problem:

type Width = int ;
type Pattern = bag (Width);
type Problem = set (Pattern);

Notice, that a pattern is a bag of widths, i.e. repetition is possible.
The problem is tepresentedby a set of patterns; if there is repetiton, this can be detected, and removed.

type CutInstr = seq (Width);
type Solution = seq (CutInstr);

A particular solution consists of a sequence of Cut Instructions.
Cut Instructions express in which order to cut the various items in a pattern.

The solution space is described by:
fun allSolutions : Problem �! set (Solution);
| allSolutions problem = allCutInstrs (allRoutes (problem));

A route describes an order in which to consider the patterns
type Route = seq (Pattern) ;

Any permutation of the patterns in the problem is a possible route
fun allRoutes : Problem 0 �! set (Route);
| allRoutes pr = f r j r 2 allPerms (pr) g

The cut instructions corresponding to one pattern are all possible permutations of the widths
in this pattern

fun allCutInstrs : Pattern �! set (CutInstr);
| allCutInstrs pa = f c j c 2 permutations(pa) g

For a given route the sequence of cut instruction consists of a cut instruction per pattern
in the order they appear in the route

fun allCutInstrs : Route �! set (Solution);
| allCutInstrs pa1::pa2 ... ::pan = f c1::c2 ... ::cn j ci 2 allCutInstrs (pai), for i=1,..n g;

3

1.6 The Objective, and Cost of a Solution

The aim of the Knife Change Minimization Project is to �nd a solution with minimal cost ,
i.e. for a given pr2Problem , to �nd a s2allSolutions (pr), such that:

8 s'2allSolutions (pr): cost (s) � cost (s')

The cost of a solution is de�ned as the number of necessary knife (re-)positionings.
fun cost : Solution �! int ;
| cost empty = 0;
| cost p::ps = card (p) + costAux (ps,p)

The cost of one solution
fun cost : Solution �! int ;
| cost empty = 0;
| cost p::ps = card (p) + costAux (ps,p)
fun costAux : Solution � CutInstr �! int ;
| costAux empty p = 0;
| costAux p1::ps p2 = knifeChanges (p1, p2) + costAux (ps, p2);

The number of knife changes necessary from one cut instruction to another
fun knifeChanges : CutInstr � CutInstr �! int ;
| knifeChanges p1 p2 = card (minus (knifePosns (p2), knifePosns (p1)));

The positions at which knives need to be placed in order to cut a cut instruction:
type Positions = seq (Width);
fun knifePosns : CutInstr �! Positions ;
| knifePosns p = knifePosnsAux p 0 where
fun knifePosnsAux : CutInstr � Width �! Positions ;
| knifePosnsAux empty k = empty;
| knifePosnsAux i::is k = (i+k)::knifePosnsAux (is, i+k);

2 Properties

2.1 Inverse-Lemma

The following lemma says that a solution and its inverse have the same cost. This cuts the
search space by a half.

Lemma: For any s 2 Solution :

cost (s) = cost (inverse (s))

Proof:

A. Observe that for a solution s=i1::i2::...in:

cost (s)=card (l1)+card (minus (l2,l1))+... card (minus (ln,ln�1))

where lj=knifePosns (ij). The above holds by application of the de�nition of cost , and also,
because for any cut instruction i, card (i)=card (knifePosns (i)).
B. Also, observe that for any two sequences l, l':

card (l)+card (minus (l',l)) = card (l')+card (minus (l,l'))

4

which can be proven by induction over the number of elements in sequence l'. (Basically, both
sides of the expression represent the cardinality of l and l'.)
C: We now show, that for any sequence of sequences l1,... ln:

card (l1)+card (minus (l2,l1))+...card (minus (ln,ln�1))=
card (ln)+card (minus (ln�1,ln))...card (minus (l1,l2))

which we can prove by induction over the number n.
Base case: n=1, C vacuuously true.
Induction step: from n to n+1:

card (l1)+card (minus (l2,l1))+...card (minus (ln+1,ln)) = (expand)
card (l1)+card (minus (l2,l1))+...card (minus (ln,ln�1)) + card (minus (ln+1,ln)) = (I.H.)
card (ln)+card (minus (ln�1,ln))+...card (minus (l1,l2)) +card (minus (ln+1,ln)) = (rearrange)
card (minus (ln+1,ln))+card (ln) +card (minus (ln�1,ln))+...card (minus (l1,l2)) = (B)
card (ln+1)+ card (minus (ln,ln+1) +card (minus (ln�1,ln))+...card (minus (l1,l2)) =(fold)
card (ln+1)+card (minus (ln+1,ln))+...card (minus (l1,l2)). q.e.d

D: Combining A and C:

cost (s) = cost (inverse (s))

2.2 Common Item Property

Lemma: For any l1, l2, l3, l4 2 CutInstr , there exist l5, l6 2 CutInstr , with l52Perms(l1 ++
i::l3), l62Perms(l2++i::l4) such that:

cost (i::l5 ++ i::l6) � cost (l1++i::l3 ++ l2++i::l4)

Proof: By case analysis over

2.3 Shift Property

The following lemma says that there is a simple way of �nding the solution with the best sost,
when considering the m solutions that can be obteined by shifting an original solution

Lemma: Consider any solution s=s=i1::i2::...im, and sj=shift
j(s) for j 20..m-1, For the

k21..m, such that card (ik)-knifeChanges (ik�1ik = minj20::m�1card (ij)+knifeChanges (ij�1ij)

cost (sk)= minj20::m�1cost (sj)

where the operations +, - are modulus m, and ++ is an in�x notation of the append operator.
Proof: Let us de�neM=KnifeChanges(i1,i2)+...KnifeChanges(in�1,in). Then cost (sj)=M+card (ij)-

knifeChanges (ij�1ij), which proves the conjecture.

3 Heuristsics

The heuristsics will try to create initial good solutions which can be used by the genetic algo-
rithms as the inital population. A heuristic will take a problem a return a solution. Intermediate
heuristics produce the route out of a aproblem and others produce a solution out of a given
route.

type Heuristic = Problem �! Solutiontype RouteHeuristic = Problem �! Routetype CutInstrHeuristic = Route �! Solution

5

3.1 Most Common Width

This heuritic �nds w, the width that appears in most patterns. Then it �nds all patterns that
contain this width (We repeat this recursively, until there ar no coomon widths This is based
on the common item property. It is a kind of depth �rst, greedy heuristic.

fun heuristic1 : Problem �! Solution ;
| heuristic1 problem = pre�x (w , heuristic1 (minus (problem1,w)))

:: heuristic1 (problem2);
where w such that: 8 w' nrAppears (w, problem) � nrAppears (w', problem)
problem=problem1::problem2 and 8p isIn(problem1,p) i� isIn(p,w)

Furthermore, the function minus removes from the problem the wirdth w:
fun minus : set (bag (�)) � � �! set (bag (�));
| minus empty a = empty;
| minus b1::bs a = minus (b1,a)::minus (bs,a);

and the function nrAppears counts the number of patterns in which a width appears:
fun nrAppears : set (bag (�)) � � �! int ;
| nrAppears empty a = 0;
| nrAppears b1::bs a = (if isIn (b1,a) then 1 else 0) + nrAppears (bs,a);

For example, the following solution might be the result of heuristic1 :

300 - 250 - 350 - 100
300 - 250 - 350
300 - 250 - 350
300 - 140 - 400
150 - 350 - 350
150 - 200
150 - 400 - 100

Notice, that 350 appears as often as 300, but but 300 was chosen as ythe �rst most common
width (the above de�ntion is non-determinsitc).

The following example of an application of this heuristic:
35 - 20 - 20 - 70 - 55 - 30
35 - 100 - 60 - 20
35 - 92 - 55 - 25
45 - 20 - 20 - 70 - 55 - 30

demonstrates its disadvantages, namely, the solution
20 - 20 - 70 - 55 - 30 - 35
20 - 20 - 70 - 55 - 30 - 45
35 - 100 - 60 - 20
35 - 92 - 55 - 25

would have been much better.

3.2 Largest Common Set

This heurirtic is "breadth �rst": it tries to establish the largest block of widths common to two
neighbouting patterns. The distance of a pair of patterns is the number of widths appearing in
both, divided by the

6

fun heuristic2 : Problem �! Solution ;
| heuristic2 problem = cutInstrHeuristic (routeHeuristic (problem));

for appropriate functions:
fun cutInstrHeuristic : CutInstrHeuristic ;
fun routeHeuristic : RouteHeuristic ;

The distance of two patterns counts the number of items which are not common to the two of them:
fun dist : Pattern � Pattern �! real;
| dist pa1 pa2 = card (add (pa1,pa2)) - card (intersection (pa1,pa2));

This distance can be used for the de�nition of a route heuristic:
| routeHeuristic = attempt to solve a TSP using dist as a distance measure for the patterns

several heuristics possible, nearest neighbour good �rst approximation
| cutInstrHeuristic route = pre�x (w , cutInstrHeuristic (minus(route1,w)))

:: cutInstrHeuristic (route2);
where w, route1, route2 such that:
route=append (route1,route2) and 8 patterns p, isIn (route1,p): appersIn (w,route1)

3.3 Hybrid

fun heuristic3 : Problem �! Solution ;
| heuristic2 problem = append(heuristic1 (problem1), heuristic3 (problem2));

where

pronlem=add (problem1,problem2)
8 patterns p1,p2, totalWidth (p1)=totalWidth (p2)

7

