
Program Verification with Interacting
Analysis Plugins
Nathaniel Charlton
Department of Computing, Imperial College London

Abstract. In this paper we propose and argue for a modular framework for interprocedural program anal-
ysis, where multiple program analysis tools are combined in order to exploit the particular advantages of
each. This allows for “plugging together” such tools as required by each verification task and makes it easy
to integrate new analyses. Our framework automates the sharing of information between plugins using a first
order logic with transitive closure, in a way inspired by the open product of Cortesi et al..

We describe a prototype implementation of our framework, which performs static assertion checking on
a simple language for heap-manipulating programs. This implementation includes plugins for three existing
approaches — predicate abstraction, 3-valued shape analysis and a decidable pointer analysis — and for a
simple type system. We demonstrate through a detailed example the increase in precision that our approach
can provide. Finally we discuss the design decisions we have taken, in particular the tradeoffs involved in
the choice of language by which the plugins communicate, and identify some future directions for our work.

Keywords: abstraction, software verification, plugins, open product

1. Introduction

Finite-state model checking is a widely used method of formal verification in which one creates a finite model
of some system’s behaviour and then establishes properties of that system by exhaustively exploring the
model’s state space. Because all reachable states are examined, model checking gives very strong assurances
of correctness compared to conventional testing techniques. Efficient “symbolic” model checking algorithms,
based on BDDs, can now handle systems with upwards of 1020 states [BCM+92]. Traditional targets for
model checking have been control systems and communication protocols.

Applications programs written in everyday programming languages tend to be infinite-state, and so
model checking is not immediately applicable, but with the size, complexity and prevalence of such pro-
grams increasing all the time, methods of ensuring their reliability are of paramount importance. Thus it is
unsurprising that recent work has explored the application of the technique to infinite-state software written

Please cite this document as “Nathaniel Charlton. Program Verification with Interacting Analysis Plugins. Technical Report
2006/11, Department of Computing, Imperial College London, United Kingdom, ISSN 1469-4174, September 2006.”

2 N. Charlton

in languages such as Java. The key to this is the process of abstraction: from the source program we pro-
duce an approximate, abstract program, which omits some of the detail of the original, but has finite-state
behaviour and is therefore amenable to model checking.

To obtain meaningful results, we insist that our abstract program be a conservative approximation, or
simulation, of the original, i.e. that all execution paths in the real program are possible in the abstract system
(and possibly more). This ensures that safety properties checked on the abstract system “carry over” to the
concrete one [BG03]. Abstract Interpretation [CC92] provides the necessary theoretical framework to show
that such analyses are correct.

Checking software in this way has achieved some success: for example, communication protocols, garbage
collectors and libraries implementing data structures have been verified (e.g. [HS96, DDP99, MS01] re-
spectively). Well-known abstraction methods include polyhedral analysis e.g. [CC04], predicate abstraction
[BR01], shape analysis [LAMS04] and various pointer analyses e.g. [MS01]. But although each of these
methods works well for particular classes of programs and properties, all have “blind spots” where they
are ineffective. Therefore it remains the case that “real” (applications) programs as written by ordinary
programmers are beyond the scope of verification. The problem is that designing abstraction schemes is
difficult: retaining too much irrelevant information results in high computational cost, but if relevant facts
are thrown away it will not be possible to verify the desired property.

Contributions: Our aim in this paper is to introduce and argue for a modular framework for abstract-
ion-based program verification, in which multiple program analysis tools are combined in order to exploit
and amplify the particular advantages of each. This allows different subsets of the analyses to be “plugged
together” as required by each verification task and makes it easy to integrate new ones.

As it runs, a program analysis tool produces intermediate results describing possible program states; these
results are usually thought of as belonging to a lattice of abstract values. Because the intermediate results
produced by different analyses are in general not independent, in theory such analyses can benefit from
using each others’ findings. But these interactions can be subtle and hence difficult and time-consuming
to implement. The key aspect of our framework is that we seek to take advantage of such interactions
automatically: inspired by the open product [CLCVH00] of Cortesi et al. we allow our plugins to exchange
information using a first order logic with transitive closure. In [CLCVH00] the open product is applied to
the detection of shallow properties of logic programs, for the purposes of optimisation; here we rework the
idea in the context of verifying behavioural specifications of imperative programs.

We have produced a prototype implementation of a static assertion checker, which targets a simple lan-
guage with imperative and (limited) object-oriented features. We allow recursion, but in order to make the
verification problem more manageable we do not deal with inheritance, exceptions or concurrency, all of
which introduce subtle difficulties.

Rest of paper: The rest of the paper is structured as follows:

• Section 2 provides a brief account of the relevant background to our work, and the motivation for our
new framework.

• In section 3 we define our framework precisely. We give syntax and semantics to the simple programming
language we analyse, define the notion of an analysis plugin which is central to our work and describe
the mechanism by which these plugins cooperate. We give our algorithm for plugin-based interprocedural
analysis, and sketch our proofs of termination and soundness results.

• In section 4 we describe our prototype implementation of an assertion checker, which includes plugins for
three existing techniques: predicate abstraction, 3-valued shape analysis and a decidable pointer analysis
(as in [BR01, LAMS04, MS01] respectively).

• In section 5 we work through an example verification which demonstrates the increase in precision which
our framework can provide.

• Finally section 6 presents the thinking behind the various design decision we have taken, and the tradeoffs
involved, and suggests future work.

This paper revises and extends the material from our workshop paper [Cha06]. Several aspects of our work,
including the syntax and semantics of the programming language we target (subsections 3.1 to 3.4), and
our algorithm for plugin-based analysis (subsection 3.6), are recounted more formally (based in fact on our
formalisation of these aspects in the proof assistant Isabelle). New sections address the use of type systems as

Program Verification with Interacting Analysis Plugins 3

0+ − even odd

Fig. 1. The sign and parity abstraction lattices

plugins (subsection 4.4), and discuss our choice of intermediate language (subsection 6.1). When discussing
our TVLA plugin (subsection 4.2) we now present explicitly the translations between our common logic and
TVLA’s logic.

2. Background

2.1. Abstract Interpretation and verification

The theory of Abstract Interpretation [CC92] is a general formal treatment of abstraction. It sets out
conditions that an abstraction scheme ought to meet, and provides an assortment of results and algorithms
that apply whenever these are satisfied.

To illustrate, consider a program with a single integer variable. The state of the program at any point
of execution is an element of Z, and the set of possible states reachable at any particular program point is
an element of the complete lattice P(Z) (the set of subsets of the integers, ordered by inclusion). Finding
the set of reachable states for each program point requires an iterative, least-fixed-point calculation, but this
may never terminate because P(Z) is infinite. Abstract Interpretation tells us to approximate P(Z) with a
finite (or finite-height) lattice L, where we will have guaranteed termination.

One such lattice is the sign abstraction lattice Lsign shown in Figure 1 (left).
The idea is that the elements {+, 0,−} retain the sign of the integer variable while throwing away its

exact value. The parity lattice on the right of Figure 1 is similar, recording only whether the integer is even
or odd. The top element > represents no information about the integer variable, and the bottom element
represents inconsistent information (and should only occur for unreachable program points). Precise meaning
is given to the elements of the abstract lattice by giving a concretisation function γ, in this case a function
of type Lsign → P(Z):
The set γ(a) is the set of concrete states represented by the abstract value a. From γ we define the abstraction
function α : P(Z) → Lsign which maps each concrete state set to its best abstract overapproximation (or
conservative approximation, or safe approximation). For instance, both > and + conservatively approximate
the concrete state set {1, 2}, because γ(>) = Z ⊇ {1, 2} and γ(+) = {n : n > 0} ⊇ {1, 2}, but we take
α({1, 2}) = + because + is more precise. On the other hand, for {0, 1, 2} the only available conservative
approximation is >, so α({0, 1, 2}) = >.

Program statements such as assignments can be given meaning through a transfer function on the concrete
state space. For example, the transfer function f : Z→ Z associated with x := x - 1 is f(n) = n− 1. With
each such f we associate an abstract transfer function f# which operates on the abstract lattice and mimics
the effect of f . For x := x - 1, we could have

f#(+) = > f#(0) = − f#(>) = >
f#(−) = − f#(⊥) = ⊥

Note that there is a kind of information loss in the above f#, at +: since 1 and 3 are both represented
by +, and f(1) = 0 and f(3) = 2, the best we can safely do is to set f#(+) = >. These abstract transfer
functions generate an abstract transition system which (under appropriate safety conditions on γ and the
f#s) is a conservative approximation or simulation of the program’s real behaviour, so that for every real
execution path in the program there is a corresponding path in the abstract system (but not necessarily
vice versa). Now we can search the abstract transition system for paths leading to “bad” or error states. If
no such paths exist, we can conclude that executing the original program never leads to an error state. In

4 N. Charlton

particular we can do assertion checking, by transforming each assertion into code which tests the asserted
condition and jumps to a special error label when it fails to hold.

Having seen the general setting, we now consider some specific instances of abstraction schemes.

2.2. Predicate abstraction

The idea of predicate abstraction is to group the concrete program states into equivalence classes based on
the values they give to a finite collection of predicates. We choose abstraction predicates P1, . . . , Pn, and
then abstract each state s to the formula Ψ , Ψ1 ∧ . . . ∧Ψn where

Ψi ,
{

Pi if Pi is true in s
¬Pi if Pi is false in s

(Throughout, we use , for meta-equality when we wish to distinguish this from the equality predicate inside
a logic, which is always written =.) Such formulae are called monomials. The meaning of the monomial
Ψ , Ψ1 ∧ . . . ∧ Ψn, i.e. the concretisation γ(Ψ), is simply the set of states in which the formula Ψ holds.
Each monomial over n abstraction predicates can be succinctly represented as a vector of n bits, where the
ith bit records the polarity of Pi.

Transitions between these abstract states can be calculated using a satisfiability checker for the logic
in which the Φis are written. Hence, predicate abstraction combines model checking with verification by
theorem proving.

Example 2.1. Returning to our statement x := x - 1 in a program with a single integer variable, let us
choose two abstraction predicates P1 , x2 = 1 and P2 , x > 0. Using x0 to denote the value of the variable x
before executing the statement, the formula x = x0−1 expresses the statement’s effect. There is a transition
from P1 ∧ P2 to ¬P1 ∧ ¬P2 because the formula

(P1 ∧ P2))[V \V0] ∧ (¬P1 ∧ ¬P2) ∧ x = x0 − 1

, x0
2 = 1 ∧ x0 > 0 ∧ ¬x2 = 1 ∧ ¬x > 0 ∧ x = x0 − 1

is satisfiable, by the concrete states x0 = 1 and x = 0. (We write [V \V0] for substitution of every free
variable v by its “initial” counterpart v0.) On the other hand, a transition to ¬P1 ∧ P2 is not possible, since
the following is unsatisfiable.

(P1 ∧ P2))[V \V0] ∧ (¬P1 ∧ P2) ∧ x = x0 − 1

, x0
2 = 1 ∧ x0 > 0 ∧ ¬x2 = 1 ∧ x > 0 ∧ x = x0 − 1

SLAM [BR01] (now the basis of Microsoft’s Static Driver Verifier [Mic04]) and the similar BLAST
[HJMS02] implement predicate abstraction for C programs. Recursion is handled properly by constructing
a summary of each procedure, which is then shared across all call sites.

These tools work well for checking (control-dominated) interface usage properties of device drivers, and
require no provision of invariants by the user, but are ineffective when it comes to programs manipulating
linked data structures such as linked lists and trees. To treat such structures effectively, we need to reason
about reachability in an object graph: when inserting a node n into a list, for instance, the postcondition
may state that “n is reachable from program variable v by following a sequence of ‘next’ pointers”. It is
well known that first order logic (FO), on which SLAM and BLAST are based, is unable to express such
properties.

In the next subsection we look at one approach to describing object graphs, namely using logics with
reachability operators. Others include graph grammars [FM97] and using judiciously chosen local invariants
and “ghost fields” [MN05].

Program Verification with Interacting Analysis Plugins 5

2.3. Describing object graphs – logics with reachability constructs

We can add reachability to first order logic by allowing transitive closure formulae of the form

TC[a,b] [Φ(a, b)] (x, y)

which are true just when there is some finite sequence of points starting at x and ending at y, and such
that for each point a in the sequence the point b following it satisfies Φ(a, b). The resulting logic is called
first order logic with transitive closure, or FO(TC) (e.g. [Imm87]). FO(TC) is desirable because it is very
expressive; we can write conditions like

Only objects transitively reachable from x by f fields have had their g fields modified (recall that v0 denotes
the previous value of v):

∀o g(o) 6= g0(o) → TC[a,b] [f(a) = b] (x, o)

Although there exists no complete proof procedure for FO(TC), recent work [LAIR+05] suggests that
one can do effective reasoning for FO(TC) using a first order theorem prover, by heuristically selecting a set
of first order axioms which soundly describe transitive closure. Alternatively, one can play the customary
game of carefully restricting the logic and/or the class of models, hoping to find a logic which is decidable
yet sufficiently powerful to be worthwhile. A variety of decidable logics with reachability are known, such as

• WS2S, essentially a weak second order logic for trees [KM01], can only handle tree-like models and
has high complexity, but is very expressive. The Pointer Assertion Logic Engine (PALE) discussed in
subsection 2.4 is based on WS2S.

• ∃∀(DTC+[E]), a decidable subset of FO(TC) where one is allowed to take the transitive closure of a single
binary relation symbol E, has the main advantage that it can describe data structures more general than
trees [IRR+04].

• The guarded fixed point logic µGF [GW99] (which includes the modal µ-calculus) can also handle more
general data structures, but can only express limited kinds of reachability.

An issue not explored here is that in some of these logics we can derive weakest preconditions for program
statements, and in some we cannot.

Yet a third approach is to avoid theorem proving and decision procedures altogether and take a model-
based approach, using 3-valued models to represents sets of 2-valued ones. This is how the TVLA system
discussed in subsection 2.5 works.

2.4. PALE

The Pointer Assertion Logic Engine (PALE) [MS01] is used to verify that procedures manipulating graph
type data structures preserve their consistency. A graph type data structure [MS01] consists of some acyclic
tree backbones augmented by some well-behaved “extra” pointers governed by a datatype invariant. A linked
list where each node has a pointer to the last node is a graph type, as is a binary tree where the leaves are
threaded into a cyclic list.

Graph type stores can be encoded conveniently as models of the tree logic WS2S because the tree structure
needed to handle the backbones is already built in. PALE accepts programs in a C-like language, ignoring
arithmetic statements. The programmer must provide loop invariants and a special graph type declaration
for each type used, such as the one for linked lists in Figure 2.

The ‘next’ fields form the backbone, and the ‘prev’ fields are extra pointers, constrained by the declaration
pointer prev:Node[this^Node.next={prev}] to be the inverses of the ‘next’ fields (^ is the “backwards”
operator, so this^Node.next denotes starting at this and going one step backwards along field Node.next).
PALE generates verification conditions in WS2S and sends them to the MONA tool [KM01] which decides
them using tree automata. Thus – within its limited domain of application – the shape analysis of PALE is
utterly precise.

6 N. Charlton

type Node = {
bool value;
data next:Node;
pointer prev:Node[this^Node.next={prev}];

}

Fig. 2. An example of a graph type declaration for the PALE tool. Here we declare nodes to contain a boolean data field
value and pointer fields ‘next’ and ‘prev’, which we constraint to be inverses of each other with the declaration pointer
prev:Node[this^Node.next={prev}]. (Here ^Node.next indicates a backward step along the ’next’ field.)

head next

next

next

v

Fig. 3. An abstract heap, representing a linked list of length ≥ 3, with v pointing to the first or second element, or null

2.5. TVLA

TVLA [LAMS04], the Three-Valued Logic Analyser, is similar to PALE in that it is a system for tracking
the shapes of object graphs, abstracting away data fields such as integers. TVLA gives only approximate
results whereas PALE is fully precise, but on the other hand it can handle arbitrary object graphs and can
infer loop invariants so that these need not be provided.

TVLA treats an object graph as a model of a predicate logic with unary and binary predicates. The
domain of interpretation represents the set of allocated objects. For each (object-typed) program variable
v there is a unary predicate V which holds only at the object pointed to by v. Similarly, pointer fields are
represented by binary predicates.

To give the semantics for a statement S one provides an update rule for each predicate that S changes.
These rules express the values of the predicates after execution of S in terms of their values beforehand and
can use transitive closure. For instance v := u.f has the update rule V (o) = ∃p(U(p) ∧ F (p, o)).

Abstraction is achieved by moving to a 3-valued logic, where there is an extra truth value Unknown (or
½) in addition to the usual True and False. In abstract states, such as the one in Figure 3, predicates may
take the value Unknown, which is depicted as a dashed line. Summary nodes, drawn with a double circle,
represent a whole group of one or more concrete nodes. The abstract heap in Figure 3 represents all linked
lists of length three or more starting at ‘head’ and where v points to the first or second element or is null.
Sound abstract transfer functions are obtained automatically simply by interpreting the update rules over
three truth values rather than two.

2.6. Combinators for abstractions

This section outlines research on defining and implementing combinations of abstractions, properly called
products. The general situation is that one has two abstract lattices L1, L2 with concretisation functions
γ1, γ2 and abstraction functions α1, α2. For the sake of illustration we consider the product of the sign and
parity lattices in Figure 1.

The simplest kind of product is the direct product [CC79, CMB+95], where one takes as elements of the
product lattice all the pairs (a, b) ∈ A×B. The concretisation of (a, b) is simply γ1(a)∩γ2(b). Unfortunately
this may introduce many redundant elements. What does (odd, 0) mean? Since the intersection of the odd
integers and {0} is empty, it means the same as (⊥,⊥). The latter is more precise when taken one component
at a time, so we want to use it instead whenever we see (odd, 0). Similarly (>, 0) should be reduced to (even, 0).
Removing the redundant elements in this way gives the desirable and well-behaved reduced product [CC92].

How should we construct the abstract transfer functions on the reduced product? One possibility is to
simply apply pointwise the transfer functions provided by A and B, giving (a, b) 7→ (f#

1 (a), f#
2 (b)). For x

:= x - 1 we have f#
1 (even) = odd and f#

2 (0) = −, and hence (even, 0) 7→ (odd,−). This amounts (almost)
to running the two analyses in parallel with no interaction between them.

Program Verification with Interacting Analysis Plugins 7

We can do better, however, if we allow A and B to interact cooperatively. The pointwise method gives
(even, +) 7→ (odd,>). But we know that if an integer n is even and n > 0, then n ≥ 2. Therefore n− 1 must
be positive and odd, and the more precise (even, +) 7→ (odd, +) is preferable. Such cooperation is formalised
by intersecting the concretisations from the underlying lattices A and B, that is, by defining

(a, b) 7→ (
α1(S), α2(S)

)
where S = f(γ1(a) ∩ γ2(b))

The key question is how to implement such cooperation. The preceding definition does not tell us how –
it is written in terms of operations on the concrete lattices and in general we cannot compute with these.
Implementing the transfer functions directly is difficult and non-modular:

• The implementor must have complete knowledge of the structures of all the lattices, of which there may
in general be n > 0

• The constraints encoded by elements of the various lattices may interact in subtle ways, making the
implementation hard to get right

• The implementation needs to be re-done every time we change the combination of analyses used.

2.7. Open products

The open product [CLCVH00] attempts to combine abstractions automatically and modularly, which the
reduced product does not, while still allowing cooperation between them.

The fundamental idea is to allow abstraction schemes to exchange information via a system of queries.
We fix a set Q of queries about the program state. Each lattice L is now endowed with a query-answering
function I : Q × L → {True,Unknown,False} where I(q, a) can be True (resp. False) if the query q is true
(resp. false) in all concrete states represented by a, and is Unknown otherwise. Abstract transfer functions
now take the query-answering function provided by the other lattice as an extra argument, and may use it to
produce more precise results. In the example of the previous subsection, if the abstract transfer function f#

2
of the sign analysis was able to send the query “Is it possible that x is 1?” to the parity analysis, we would
get the desired result f#

2 (+) = +. In [CLCVH00] open products are applied to the (shallow) optimisation of
logic programs, but it appears that they have not been used with imperative programs, or for verification.

2.8. Related work

The Hob project [KLZR05] also employs multiple analysis plugins for verification, applying each where it
is needed. It shares some of the goals of our work, such as making the best use of analysis techniques with
narrow domains of applicability (e.g. PALE). The analyses in Hob also exchange information using a common
logic, but using the theory of boolean algebra with Presburger arithmetic [KNR05] instead of FO(TC).

An important difference, however, is that in Hob exactly one plugin is used for each “module” of the
source program, and interaction occurs only at the module boundaries and not for each program statement.
The authors strive to “decouple” the analyses whereas we seek to integrate them more tightly, to increase
precision. Similar themes are found also in [NEFE03, CL05, Hub03, SYY03].

3. Formal framework for interactive plugin-based analysis

In this section we define our interactive analysis framework precisely. We begin by specifying the class
of programs we target. We provide small-step operational semantics for these programs, which we have
formalised in the higher order logic (HOL) proof assistant Isabelle [NPW02].

We then introduce the notion of an analysis plugin, including the interface which plugins must implement,
and requirements on plugins which will give rise to a sound analysis (we have also formalised these in
Isabelle/HOL). We define a combination operator on plugins, which makes them work cooperatively, sharing
information using FO(TC).

To complete the development we present our algorithm for plugin-based interprocedural analysis, and
sketch our proofs of termination and soundness results.

8 N. Charlton

static method Fact(n)
{

vars i, f;

i := n;
f := 1;

while (i > 0)
{

f := f * i;
i := i - 1;

}

assert f >= 1;

return f;
}

3

1

0

4

2 6

7

−1 ε

return f

ε

5 i := i − temp

temp := 1

f := f * i

f := 1

i := n

true
true

true

true

true

ε

i>0

not i>0

f >= 1

not f>=1

true

Fig. 4. An example method, for calculating factorials. The left part shows the method as it might be represented in source
code, annotated with a behavioural assertion; the right part shows the control flow graph which we work with.

3.1. Representation of programs

Here we define precisely the kind of programs to be analysed in our framework. Rather than dealing with
source code and its associated nuisances, we shall simply define programs in terms of their flow control
graphs.

Fix once and for all countably infinite disjoint sets VarNames, FieldNames, MethodNames and ClassNames,
and a distinguished element this ∈ VarNames.

Definition 3.1. A statement has one of the following forms:

• u := v (variable copying)
• u := n (assign integer constant)
• u := v1 ⊗ v2 (arithmetic)
• u := v.f (field read)
• u.f := v (field write)
• u := New c (object creation)

• u := v.m(p1, . . . , pn) (method call)
• return v (method return)
• ε (do nothing)

where u, vi, pi ∈ VarNames, m ∈ MethodNames, c ∈ ClassNames and throughout the paper ⊗ ∈ {+,−,×}.
We call the first six forms above assignment statements.

Definition 3.2. A control flow graph is a graph as in Figure 4. Ordinary nodes are numbered and labelled
with statements, and edges are labelled with guards, which are formulae of the program logic L (whose
definition we defer to a later subsection 3.3). Nodes labelled with return statements must have no out-edges,
and those labelled with call statements must have one out-edge labelled with True. Other nodes can have
either a single out-edge with guard True, or two out-edges, one labelled with some condition P and the other
with ¬P . A special error node is always numbered −1, labelled with ε and has a self-loop.

Program Verification with Interacting Analysis Plugins 9

For a control flow graph G, the notation G 3 n1, s
Φ−→ n2 will denote that in the graph G there is an

edge with guard Φ from a node numbered n1 and labelled with statement s to a node numbered n2. (We
will omit s when we aren’t interested in the label.)

The left of Figure 4 shows a small example program, written in a Java-like syntax that would be given
to a compiler, and annotated with a behavioural assertion. The right hand side shows the corresponding
control flow graphs which we work with. These are close to what a compiler would produce internally from
the source code. Because our control flow graphs may contain only a minimal set of statement forms, there
is not necessarily an exact correspondence between statements in the source code and those in the graph.
Note also how edge guards are used to encode both control statements and assertions, the latter by means
of guarded edges to the error node.

Definition 3.3. A method is a 4-tuple M = (m, [p1, . . . , pj], [l1, . . . , lk], G) where: m ∈ MethodName is the
method’s name, pi ∈ VarNames are the formal parameters, li ∈ VarNames are its local variables and G is
its control flow graph.

We will use appropriately named projection functions when dealing with tuples: the functions ΠM
Name,

ΠM
Formals, ΠM

Locals and ΠM
Graph will project the respective components of a method.

Definition 3.4. A class is a 3-tuple C = (c, [f1, . . . , fj], [M1, . . . , Mk]) where: c ∈ ClassNames is the class’
name, fi ∈ FieldNames are its fields and Mi are its methods.

The corresponding projection functions are ΠC
Name, ΠC

Fields and ΠC
Methods.

Definition 3.5. A program is a list of classes. We will write Methods(P) for the set of all methods in all
classes of P .

In order to be able to define the semantics of programs fully precisely, which use of the proof assistant
Isabelle (and good taste, generally) requires us to do, we define fourteen healthiness conditions which make
a program well-formed. In the main these conditions are unsurprising (a program cannot contain two classes
with the same name, statements cannot refer to variables which don’t exist in the current scope, etc.) and
are already met by programs accepted by compilers.

However, one condition deserves special mention: Since we have chosen not to address inheritance and
subtyping of classes, we insist that no two distinct classes declare methods or fields of the same name.

On a point of notation, since classes and methods are uniquely named in a well-formed program, we shall
afford ourselves the liberty of writing c when we really mean “the class whose name is c”, and m in place of
“the method whose name is m”.

3.2. Representation of program states

Definition 3.6. An environment is a function from VarNames to Z. Let Env be the set of all environments.

Definition 3.7. A stack frame is a triple (m,n, env) where m ∈ MethodNames names the current method,
n ∈ N∪ {−1} is the node number of the current control location (or −1 which is the special error location),
and env is the environment. A stack is a non-empty list of stack frames whose head is taken to be the top
of the stack. We name the respective projections ΠF

Method, ΠM
Location and ΠM

Env.

Definition 3.8. An object record is a pair (c, F) where c ∈ ClassNames says which class the object is an
instance of, and F is a partial function from FieldNames to Z giving values to the fields of the object. Let
ObjRec be the set of all object records. We name the respective projections ΠO

Class and ΠO
Fields.

Definition 3.9. A heap is a partial function from N>0 to ObjRec. We use 0 as the null address (and will
use 0 and null interchangeably from now on). Let Heap be the set of all heaps.

Definition 3.10. Finally, a program state is a pair (s, h) where s is a stack and h is a heap. Let State be
the set of all program states. We name the respective projections ΠS

Stack and ΠS
Heap.

As with programs, we require that states satisfy additional conditions to be well-formed. These conditions
are parametrised by the program P , and include for example, for the heap h: If h(a) = (c, F) then P includes
a class C with name c whose fields are exactly dom(F). We have formalised these conditions in Isabelle, but
as they are somewhat tedious we don’t reproduce them here.

10 N. Charlton

term ::= v (program variable)
| v0 (“initial” program variable)
| X (logical variable)
| n (integer constant)
| null (integer zero)
| term ⊗ term (arithmetic)
| term • field (field lookup)
| term • field0 (initial field lookup)

literal ::= term = term | term < term | Allocdc(term) | Allocdc
0(term)

Φ ::= literal | True | ¬Φ | Φ ∧ Φ | ∃X Φ | TC[A,B] [Φ(A,B)] (term, term)

Fig. 5. Grammar of the logic L which describes program states. L is a first order logic with a transitive closure operator TC.
Here c ∈ ClassNames.

3.3. Our logic for program states

We now present the logic L which is used to describe program states. In fact, L will do triple duty, being
used to express:

• conditional statements in programs,

• assertions about desired program behaviour and

• information exchanged between cooperating analysis plugins.

We have chosen to use a first order logic with transitive closure, or FO(TC). This important design decision
will be discussed in subsection 6.1. The syntax of the logic is given in Figure 5. We reserve the right to use
standard abbreviations e.g. ∀XΦ for ¬∃X¬Φ.

Formulae are interpreted over pairs of states, each consisting of an “earlier” and “later” state. This allows
us to express the effect of a program statement by relating the state after its execution to the state before.
Program variables subscripted with 0 refer to the earlier state, and those without to the later one. Similarly
the Allocdc(x) predicate, which expresses that an object of class c is allocated at memory address x, comes
in two versions. (Given a particular program, we will also write Allocd(x) as shorthand for the disjunction
of Allocdc(x) over all classes c.) Quantification is allowed only over logical variables which are kept separate
from program variables and capitalised. Informally, the transitive closure operator TC works as follows:
TC[A,B] [Φ(A,B)] (t1, t2) says that from t1 we can “reach” t2 via some path of intermediate points, such that
for each point A in the path the point B following it satisfies Φ(A,B).

Figure 6 defines the semantics J−K. Rather than defining JΦK on State× State as might be expected, we
first define it on (Env×Heap)× (Env×Heap), since formulae can only describe local variables in the current
scope and the heap. Local variables further up the stack cannot be described, nor can the control location.
We then lift the semantics to full states in the obvious way.

Now, (s0, s) ∈ JΦKρ means that Φ is true of the pair of states (s0, s) where ρ gives values to the logical
variables. When Φ contains no free variables we omit ρ. In some situations, such as when evaluating a guard
Φ of a conditional statement, we have only one state to consider, and Φ will be free of 0-subscripts. In such
cases we write simply s ∈ JΦK.

3.4. Small-step program semantics

We define the semantics for each node of the program P as a binary relation on states: for a node in a method
named m, numbered n and labelled with statement s, the relation nodeSem(P,m, n, s) ⊆ State×State relates
states before execution at that node with the corresponding states afterwards. For example,

Example 3.11. The rule for applying an arithmetic operator ⊗ ∈ {+,−,×} is:

Program Verification with Interacting Analysis Plugins 11

Interpretation of terms:

I((env0, h0), (env, h), ρ, v) = env(v)
I((env0, h0), (env, h), ρ, v0) = env(v0)
I((env0, h0), (env, h), ρ,X) = ρ(X)
I((env0, h0), (env, h), ρ, n) = n

I((env0, h0), (env, h), ρ, null) = 0
I((env0, h0), (env, h), ρ, t1 ⊗ t2) = I((env0, h0), (env, h), ρ, t1)⊗ I((env0, h0), (env, h), ρ, t2)

I((env0, h0), (env, h), ρ, t • f) =
{(

ΠO
Fields (h (x))

)
(f) if x ∈ dom(h) and f ∈ dom

(
ΠO

Fields (h (x))
)

arbitrary otherwise

where x = I((env0, h0), (env, h), ρ, t)

I((env0, h0), (env, h), ρ, t • f0) =
{(

ΠO
Fields (h0 (x))

)
(f) if x ∈ dom(h0) and f ∈ dom

(
ΠO

Fields (h0 (x))
)

arbitrary otherwise

where x = I((env0, h0), (env, h), ρ, t)

Semantics of formulae:

((env0, h0), (env, h)) ∈ Jt1 = t2Kρ iff I((env0, h0), (env, h), ρ, t1) = I((env0, h0), (env, h), ρ, t2)
((env0, h0), (env, h)) ∈ Jt1 < t2Kρ iff I((env0, h0), (env, h), ρ, t1) < I((env0, h0), (env, h), ρ, t2)

((env0, h0), (env, h)) ∈ JAllocdc(t)Kρ iff ∃o s.t. h (I((env0, h0), (env, h), ρ, t)) = o and ΠO
Class(o) = c

((env0, h0), (env, h)) ∈ JAllocdc
0(t)Kρ iff ∃o s.t. h0 (I((env0, h0), (env, h), ρ, t)) = o and ΠO

Class(o) = c

((env0, h0), (env, h)) ∈ J¬ΦKρ iff ((env0, h0), (env, h)) /∈ JΦKρ
((env0, h0), (env, h)) ∈ JΦ1 ∧ Φ2Kρ iff ((env0, h0), (env, h)) ∈ JΦ1Kρ ∩ JΦ2Kρ
((env0, h0), (env, h)) ∈ J∃XΦKρ iff ∃n ∈ Z s.t. ((env0, h0), (env, h)) ∈ JΦKρ⊕{X 7→n}

((env0, h0),(env, h)) ∈ JTC[A,B] [Φ(A,B)] (t1, t2)Kρ
iff for some n1, . . . , nk ∈ Z:

I((env0, h0), (env, h), ρ, t1) = n1, I((env0, h0), (env, h), ρ, t2) = nk

and for i = 1 . . . k − 1, (s0, s) ∈ JΦKρ⊕{A 7→ni,B 7→ni+1}

Fig. 6. Semantics of the logic L which describes program states. Formulae of L are interpreted over pairs of states, an “earlier”
state and a “later” state, and thus can describe the effects of atomic statements. The operator ⊕ denotes function override.

nodeSem(m, n1, u := v1 ⊗ v2, P) := {((m,n1, e1) : xs, h) , ((m,n2, e2) : xs, h) |
1. ΠM

Graph (m) 3 n1
g−→ n2

2. e2 = e1 ⊕ {u 7→ e1(v1)⊗ e1(v2)}
3. (e2, h) ∈ JgK

}

12 N. Charlton

Informally, this rule states that:

1. the control flow graph for the current method m contains an edge from the current location n1 to the
next location n2, with guard g,

2. the new environment e2 is the same as the old one, except it has been updated at the variable assigned
to, u, with the result of the arithmetic operation, and

3. the guard g is met in the new state.

The heap h, the stack frames further up the stack, xs, and the current method m all remain unaffected.

The full set of rules is given in Figures 7 and 8. Transitions to error states occur only for field reads and
writes, i.e. statements u = x.f and x.f = v, when the variable x either does not point to any allocated
object, or points to an object for which the field f is not defined. Successful terminations are given self-loops
for convenience; because the error node also has a self-loop, this frees us from considering terminating runs
without changing the reachable states of the program.

The (small step) semantics of the entire program, semantics(P) ⊆ State× State is just the union

semantics(P) :=
⋃

m,n,s

nodeSem(P, m, n, s)

taken over all nodes in the program.
We show in Isabelle that the semantics semantics(P) of a well-formed program P relates each well-formed

state to exactly one state, which is also well-formed. Thus semantics(P) is in effect a function on and into
well-formed states. We find it cleaner to have this functionality as something which we prove from relational
definitions, rather than assume from the outset, because this reassures us that our definitions are reasonable,
and fits better with a formalisation in Isabelle/HOL.

Definition 3.12. A trace in program P is a pair (p0, p) in the transitive closure semantics∗(P) where p0 is
well-formed. (It follows automatically that p is well-formed).

Here we represent traces with their first and last states. This differs slightly from the standard represen-
tation of traces as sequences of states, but we find it more convenient, and one can always conjour up the
intermediate states where necessary by appealing to the definition of transitive closure.

Definition 3.13. A (Φ,m)-trace in P is a trace (p0, p) where ΠS
Stack (p0) = [(m, 0, e)] for some environment

e, and p0 ∈ JΦK. (Informally, the trace starts with an invocation of method m in a state described by Φ.)
Additionally we say the trace is to state p.

3.5. Our interface for analysis plugins

In this subsection we present and discuss the notion of an analysis plugin which is central to our work.
Intuitively an analysis plugin is a program analysis tool which has been appropriately wrapped for integration
into our system.

We wish our plugins to do analysis in a local fashion, i.e. to transform abstract values based on a single
statement at a time. We enforce this discipline by not giving plugins access to the global program, just
the current statement and a limited amount of global information, which we call the context and define as
follows:

Definition 3.14. The context of a node n in the program P comprises:

1. the name of the method containing n

2. a list of the classes in the program and their fields
3. a list of the methods in each class, and their formal parameters and local variables

We use Context to indicate the set of all contexts.

Definition 3.15. An analysis plugin is a module implementing the interface of Figure 9. Informally the role
of each interface component is as follows (we will ignore the type Config and the function χ for now):

Program Verification with Interacting Analysis Plugins 13

nodeSem(m,n, ε, P) := {((m,n, e) : xs, h) , ((m,n, e) : xs, h)}

nodeSem(m,n1, u := v, P) := {((m,n1, e1) : xs, h) , ((m, n2, e2) : xs, h) |
1. ΠM

Graph (m) 3 n1
g−→ n2

2. e2 = e1 ⊕ {u 7→ e1(v)}
3. (e2, h) ∈ JgK

}

nodeSem(m,n1, u := n, P) := {((m,n1, e1) : xs, h) , ((m, n2, e2) : xs, h) |
1. ΠM

Graph (m) 3 n1
g−→ n2

2. e2 = e1 ⊕ {u 7→ n}
3. (e2, h) ∈ JgK

}

nodeSem(m,n1, u := v1 ⊗ v2, P) := {((m,n1, e1) : xs, h) , ((m, n2, e2) : xs, h) |
1. ΠM

Graph (m) 3 n1
g−→ n2

2. e2 = e1 ⊕ {u 7→ e1(v1)⊗ e1(v2)}
3. (e2, h) ∈ JgK

}

nodeSem(m,n1, u := v • f, P) := {((m,n1, e1) : xs, h) , ((m, n2, e2) : xs, h) |
There exists o ∈ ObjRec s.t.

1. ΠM
Graph (m) 3 n1

g−→ n2

2. h (e1 (v)) = o

3. f ∈ dom
(
ΠO

Fields (o)
)

4. e2 = e1 ⊕
{
u 7→ (

ΠO
Fields (o)

)
(f)

}

5. (e2, h) ∈ JgK
}⋃

{((m,n1, e) : xs, h) , ((m,−1, e) : xs, h) |
e (v) /∈ dom (h) or there exists o ∈ ObjRec s.t.

h (e (v)) = o and f /∈ dom
(
ΠO

Fields (o)
)

}

Fig. 7. Small-step semantics of programs. The meaning of each program statement is expressed as a binary relation on the set
of concrete states. The remainder of the rules are shown in Figure 8.

14 N. Charlton

nodeSem(m,n1, u • f := v, P) := {((m,n1, e) : xs, h1) , ((m,n2, e) : xs, h2) |
There exist o1, o2 ∈ ObjRec s.t.

1. ΠM
Graph (m) 3 n1

g−→ n2

2. h1 (e (u)) = o1

3. f ∈ dom
(
ΠO

Fields (o1)
)

4. h2 = h1 ⊕ {e (u) 7→ o2}
5. ΠO

Class (o1) = ΠO
Class (o2)

6. ΠO
Fields (o2) = ΠO

Fields (o1)⊕ {f 7→ e (v)}
7. (e, h2) ∈ JgK

}⋃

{((m,n1, e) : xs, h) , ((m,−1, e) : xs, h) |
e (u) /∈ dom (h) or there exists o ∈ ObjRec s.t.

h (e (u)) = o and f /∈ dom
(
ΠO

Fields (o)
)}

nodeSem(m,n1, u := New c, P) :={((m,n1, e1) : xs, h1) , ((m,n2, e2) : xs, h2) |
There exist o ∈ ObjRec and a s.t.

1. ΠM
Graph (m) 3 n1

g−→ n2

2. a > 0
3. a /∈ dom (h1)

4. ∀a′, if 0 < a′ < a then a′ ∈ dom (h1)
5. h2 = h1 ⊕ {a 7→ o}
6. e2 = e1 ⊕ {u 7→ a}
7. ΠO

Class (o) = c

8. ΠO
Fields (o) is defined exactly at ΠC

Fields (c) and is constantly 0 there
8. (e2, h2) ∈ JgK

}

nodeSem(m1, n1,

u := v.m2(p1, . . . , pk), P) := {((m1, n1, e1) : xs, h) , ((m2, 0, e2) : (m1, n1, e1) : xs, h) |
1. j = k

2. e2 (x) =

e1 (pi) if x = fi

e1 (v) if x = this

0 otherwise.

where [f1, . . . , fj] = ΠM
Formals (m2)

}

nodeSem(m1, n1, return r, P) := {((m1, n1, e1) : (m2, n0, e0) : xs, h) , ((m2, n2, e2) : xs, h) |
1. ΠM

Graph (m2) 3 n0, (u = v.m (p1, . . . , pk))
g−→ n2 for some v, m, p1, . . . , pk

2. e2 = e0 ⊕ {u 7→ e1 (r)}
3. (e2, h) ∈ JgK

}⋃
{(([(m1, n1, e)], h) , ([(m1, n1,e)], h))}

Fig. 8. The remaining rules of the small-step semantics of programs (continues from Figure 7).

Program Verification with Interacting Analysis Plugins 15

datatype T (* type of abstract values *)
datatype Config (* type of the settings to configure the plugin *)

consts

(* concretisation function: gives meaning to abstract values - never actually implemented *)
γ : Context× T → P(Env×Heap)

(* characteristic function of configurations - says which abstract values go with a given configuration *)
χ : Config → P(T)

(* ‘share’ provides information for other plugins, about the execution of a given statement *)
(* ‘succ’ computes abstract successors for the execution of a given statement *)
share : Config× Context× T × Statement → L
succ : Config× Context× T × Statement×L → P(T)

(* These are like ‘share’ and ‘succ’ but for method calls. The parameters are
1. configuration in calling method
2. context of calling method
3. abstract state at call point
4. variable on which the method is invoked
5. name of called method
6. actual parameters
(7. formula of information shared by other plugins)
(8. configuration at called method) *)

shareC : Config× Context× T ×VarNames×MethodNames×VarNames list → L
succC : Config× Context× T ×VarNames×MethodNames×VarNames list ×L × Config → P(T)

(* These are like ‘share’ and ‘succ’ but for method returns. The parameters are
1. configuration in called method
2. context of called method
3. abstract state at return point
4. variable whose value is returned
5. configuration in calling method
6. name of calling method
7. abstract state at call point
8. variable used to store result in calling method
(9. formula of information shared by other plugins)

shareR : Config× Context× T ×VarNames× Config×MethodNames× T ×VarNames → L
succR : Config× Context× T ×VarNames× Config×MethodNames× T ×VarNames×L → P(T)

(* generate possible abstract states at start of execution *)
init : Config× Context×L → P(T)

Fig. 9. The interface which analysis plugins must implement in order to be integrated into our system. The role of each
component is discussed more fully in Definition 3.15.

16 N. Charlton

• The datatype T is the type of the abstract values used by the plugin.
• The (notional) concretisation function γ gives meaning to the abstract values (elements of T), just as it

did in subsection 2.1.
• Calling share(cf, ctxt, a, s) asks the plugin to share an L -formula Φ which is valid in all concrete states

represented by the abstract state a (i.e. Φ is entailed by a) and might be useful to other plugins when
computing successors for the statement s.

• Calling succ(cf, ctxt, a, s, Φ) computes the set of abstract states the program may reach by executing the
assignment statement s in a concrete state represented by a and satisfying the formula Φ. In practice Φ
will be the information gathered from the other plugins by share. (Thus succ is similar to the abstract
transfer functions f# of subsection 2.1.)

• The functions shareC and succC fulfill the same purpose as share and succ, except that they handle
method calls instead of assignments, and take parameters describing the call.

• Returning from a method call is again treated similarly, by shareR and succR, except that two abstract
values must be supplied instead of one: one describing the callee’s state at the return point, and one
describing the caller’s state when the call was made. Approximately, constraints on the heap after the
return are taken from the first, whereas constraints on the caller’s local variables are taken from the
second.

• init is used to start off the analysis; init(cf, ctxt, Φ) returns abstract values representing the possible initial
states of the program, when it is started in context ctxt in a state satisfying Φ.

Note that plugins abstract only the current environment and the heap; the values of local variables
further up the stack (i.e. in calling contexts) are not abstracted (and cannot be accessed by formulae of L)
because they do not influence execution in the current method. This approach allows us to use procedure
summarisation (as in [BR00]) to analyse programs with recursive methods.

In general, plugins may be “reconfigurable” or “tunable”. For predicate abstraction, for example, we may
choose any finite set of abstraction predicates. Thus we make each plugin’s functions parametric in a set
Config of configurations; these are set on a per-method basis. The function χ is the “characteristic function”
of configurations: it interprets a configuration to the subset of abstract values which are appropriate for that
configuration.

Example 3.16. To illuminate the preceding definition we show how to frame the monomial predicate ab-
straction technique mentioned in subsection 2.2 as a plugin. All the plugin’s components are collected in
Figure 10.

A configuration for predicate abstraction is just a choice of n abstraction predicates P1, . . . , Pn. The
plugin’s abstract datatype contains all formulae which are conjunctive at the top level:

T := {Ψ | Ψ is a conjunction of L − formulae}
but for each configuration, only formulae made from that configuration’s predicates are allowed:

χ({P0, . . . , Pn}) := {Ψ0 ∧ . . . ∧Ψn | each Ψi is Pi or ¬Pi}
Concretisation is easy: since the abstract values are formulae of L , we map each to the set of states where
it is true:

γ(ctxt, Ψ) := JΨK
Defining share is likewise simple - we simply share the entire abstract value (replacing each variable v with
the corresponding initial variable v0, to indicate that we are describing the state before statement execution):

share(cf, ctxt, Ψ, s) := Ψ[V \V0]

Transitions between monomials are computed with a satisfiability checker as usual in predicate abstraction
(see Example 2.1). To see whether executing statement s in a state described by Ψ might leave us in a state
described by Θ, i.e. to see whether Θ1 ∧ . . . ∧Θn ∈ succ(cf, ctxt, Ψ, s, Φ), we check the satisfiability of

Program Verification with Interacting Analysis Plugins 17

T := {Ψ | Ψ is a conjunction of L − formulae}

χ({P0, . . . , Pn}) := {Ψ0 ∧ . . . ∧Ψn | each Ψi is Pi or ¬Pi}

γ(ctxt, Ψ) := JΨK

init({P0, . . . , Pn}, ctxt,Φ) := {Ψ , Ψ0 ∧ . . . ∧Ψn | Ψ ∧ Φ is satisfiable and each Ψi is Pi or ¬Pi}

share(cf, ctxt, Ψ, s) := Ψ[V \V0]

succ({P0, . . . , Pn}, ctxt, Ψ, s, Φ) :=
{Ψ′ , Ψ′0 ∧ . . . ∧Ψ′n | Ψ′ ∧ Φ ∧ Post(s, ctxt) is satisfiable and each Ψ′i is Pi or ¬Pi}

shareC(cf, ctxt, Ψ, v, m, [p1, . . . , pk]) := Ψ[V \V0]

succC({P0, . . . , Pn}, ctxt, Ψ, v, m, [p1, . . . , pk], Φ, {P ′0, . . . , P ′j}) :=
{Ψ′ , Ψ′0 ∧ . . . ∧Ψ′j | Ψ′ ∧ Φ ∧ PostC(v, m, [p1, . . . , pk], ctxt) is satisfiable and each Ψ′i is P ′i or ¬P ′i}

shareR({P0, . . . , Pn}, ctxt, Ψcallee, vcallee, {P ′0, . . . , P ′j},mcaller,Ψcaller, vcaller) := (Ψcallee ∧Ψcaller)[V \V0]

succR({P0, . . . , Pn}, ctxt,Ψcallee, vcallee, {P ′0, . . . , P ′j}, mcaller, Ψcaller, vcaller, Φ) :=
{Ψ′ , Ψ′0 ∧ . . . ∧Ψ′j∧ | Ψ′ ∧ Φ ∧ PostR(vcallee, vcaller,mcaller, ctxt) is satisfiable and each Ψ′i is P ′i or ¬P ′i}
Fig. 10. How to wrap the predicate abstraction technique from section 2.2 as a plugin. See Example 3.16 for explanation.
([V \V0] indicates substitution of every free variable v by its “initial” counterpart v0.)

(Ψ1 ∧ . . . ∧Ψn)[V \V0] ∧ Post(s) ∧Θ1 ∧ . . . ∧Θn ∧ Φ

The formula Post(s, ctxt) expresses the effect of statement s in context ctxt; e.g. if ctxt has only the variables
x and y in scope,

Post (x := x + 2, ctxt) , x = x0 + 2 ∧ y = y0

Method calls and returns are treated similarly. For calls, the PostC formula connects the actual and formal
parameters, and for returns PostR connects the value returned in the callee to the variable waiting to receive
it in the caller. For example, if a method declared by method m(a, b) is called by m(x, 10) the Post
formula will be a = x0 ∧ b = 10. Recall that satisfiability of FO(TC) formulae is undecidable. However, we
can still obtain a safe analysis, by assuming that formulae are satisfiable when we cannot show otherwise.
This means that, when we cannot determine whether a given transition exists, we assume that it does.

When we come to apply our plugins to programs, we will need to address two concerns:

1. Will our analysis always terminate?
2. Will our analysis deliver sound results?

We now present conditions on plugins that will guarantee these desirable properties.
One way to ensure termination is to insist that the type T be finite, but we consider this to be too

restrictive. Consider predicate abstraction: because there are infinitely many possible abstraction predicates,
there are infinitely many monomials that can be formed from them. But given any particular choice of
n abstraction predicates, there are only finitely many monomials (in fact 2n of them), so termination is
assured. Hence, we require χ to produce only finite subsets. Of course, we must make associated restrictions
to ensure that the plugin’s functions only return abstract values which are appropriate for the configuration;
the condition for the succ function is

∀cf ∈ Config, ctxt ∈ Context, a ∈ T, s ∈ Statement, Φ ∈ L : succ(cf, ctxt, a, s, Φ) ⊆ χ(cf)

18 N. Charlton

For all cf, cf1, cf2 ∈ Config, ctxt ∈ Context, a, a1, a2 ∈ T , v, v1, v2 ∈ VarName, m ∈ MethodName and
Φ ∈ L :

1. χ(cf) is finite
2. init(cf, ctxt, Φ) ⊆ χ(cf)
3. succ(cf, ctxt, a, s, Φ) ⊆ χ(cf)
4. succC(cf1, ctxt, a, v, m, params,Φ, cf2) ⊆ χ(cf2)
5. succR(cf1, ctxt, a1, v1, cf2,m, a2, v2, Φ) ⊆ χ(cf2)

Fig. 11. Finiteness axioms for plugins. These ensure termination of our plugin-based analysis.

Figure 11 gives these finiteness axioms in full.
We now turn our attention to soundness. Recall that the analyses carried out by our plugins will in

general be approximate but conservative, rather than precise. In definition ?? we had conditions relating f#
i

and 4; here these are paralleled by the soundness axioms listed in Figure 12. We now illustrate those for
assignment statements.

Suppose our analysis has reached a node n labelled with an assignment statement s, with context
Context and configuration cf, and the abstract state is a ∈ T . Let c be any concrete state that a rep-
resents, i.e. let (env, h) ∈ γ(a) where env and h are the current environment and heap in c (that is,
env = ΠF

Env(head(ΠS
Stack(c))) and h = ΠS

Heap(c)). (Recall that only the heap and the environment in the
top stack frame are abstracted.) Let (c, c′) ∈ semantics(P), where state c′ has environment env ′ and heap
h′.

Firstly we need to be sure that the formula exported by the plugin, via share, really does describe the
execution of s, i.e. we require

((env, h) , (env ′, h′)) ∈ Jshare(cf, ctxt, a, s)K
This is condition B in Figure 12. Secondly, we need to know that, provided the formula imported from the
other plugins is correct, the new abstract states computed by succ conservatively model the effect of the
statement s:

If ((env, h) , (env ′, h′)) ∈ JΦK then for some a′ ∈ succ(cf, ctxt, a, s, Φ) we have (env ′, h′) ∈ γ(a′)

This is condition E. The conditions for calls, returns and initialisation are similar. (Although the soundness
axioms are expressed in terms of states with minimal-depth stacks, of length one or two, we can effectively
add in arbitrarily many extra stack frames, because the program semantics only refers to the top one or
two.)

The machinery built up in this section does not include a treatment of ghost fields which are a popular
means of specifying and reasoning about class behaviour (as in [MN05]). We intend to rectify this in future
work, allowing each plugin to add ghost fields to classes.

3.6. Our worklist algorithm for interprocedural plugin-based analysis

Figures 13 and 14 give the worklist algorithm we use for interprocedural analysis. Based on [BR00] we use
summarisation to handle recursive methods without requiring that methods be annotated with pre- and
post-conditions. In the next subsection we will give a combination operator on plugins which makes them
cooperate; thus it suffices here to present the algorithm with a single plugin.

The abstract states used in the analysis are of the form (m,n, a0, a) where: the method name m ∈
MethodName and node number n ∈ Z give the control location and a ∈ T is one of the plugin’s abstract
values, representing the heap and environment. Abstract states also carry with them a very limited part of
their history: the value a0 ∈ T records how the heap and environment looked when the current method was
entered. This allows calls and returns to be matched up.

As the analysis proceeds, a set A of abstract states which approximates the reachable concrete states is
built up and explored, using the worklist to keep track of which abstract states still need to be visited.

When finding the abstract successors of a method call (from line 21), it may be the case that A already

Program Verification with Interacting Analysis Plugins 19

A If (env, h) ∈ JΦK then ∃a ∈ init(cf, ctxt, Φ) s.t. (env, h) ∈ γ(ctxt, a).

B If:

1. (([m,n0, env0], h0) , ([m,n, env], h)) ∈ semantics(P)

2. in program P the method named m contains an edge n0, s
True−−−→ n with s an assignment statement

3. (env0, h0) ∈ γ(ctxt, a)

then ((env0, h0), (env, h)) ∈ Jshare(cf, ctxt, a, s)K

C If:

1. (([m,n, env], h) , ([(m′, 0, env ′), (m,n, env)], h)) ∈ semantics(P)
2. in program P the method named m contains a node numbered n and labelled with u :=

v.m′(p1, . . . , pn)
3. (env, h) ∈ γ(ctxt, a)

then (env, h), (env ′, h)) ∈ JshareC(cf, ctxt, a, v,m′, [p1, . . . , pn])K

D If:

1. (([(m,n, env), (m′, n′, env ′′)], h) , ([(m′, n′′, env ′)], h) ∈ semantics(P)
2. in program P the method named m contains a node numbered n and labelled return r

3. in P the method named m′ contains an edge n′, s True−−−→ n′′ where s has form u := v.m(p1, . . . , pn)
4. (env, h) ∈ γ(ctxt, a)
5. (env ′, h) ∈ γ(ctxt′, a′)

then ((env, h), (env ′′, h)) ∈ JshareR(cf, ctxt, a, r, cf ′,m′, a′, u)K

E If:

1. (([m,n0, env0], h0) , ([m,n, env], h)) ∈ semantics(P)

2. in program P the method named m contains an edge n0, s
True−−−→ n with s an assignment statement

3. (env0, h0) ∈ γ(ctxt, a0)
4. ((env0, h0), (env, h)) ∈ JΦK
then ∃a ∈ succ(cf, ctxt, a0, s, Φ) s.t. (env, h) ∈ γ(ctxt, a).

F If:

1. (([m,n, env], h) , ([(m′, 0, env ′), (m,n, env)], h)) ∈ semantics(P)
2. in program P the method named m contains a node numbered n and labelled with u :=

v.m′(p1, . . . , pn)
3. (env, h) ∈ γ(ctxt, a)
4. ((env, h), (env ′, h)) ∈ JΦK
then ∃a′ ∈ succC(cf, ctxt, a, v, m′, [p1, . . . , pn], Φ, cf ′) s.t. (env ′, h) ∈ γ(ctxt′, a′).

G If:

1. (([(m,n, env), (m′, n′, env ′)], h) , ([(m′, n′′, env ′′)], h) ∈ semantics(P)
2. in program P the method named m contains a node numbered n and labelled return r

3. in P the method named m′ contains an edge n′, s True−−−→ n′′ where s has form u := v.m(p1, . . . , pn)
4. (env, h) ∈ γ(ctxt, a)
5. (env ′, h) ∈ γ(ctxt′, a′)
6. ((env, h), (env ′, h)) ∈ JΦK
then ∃a′′ ∈ succR(cf, ctxt, a, r, cf ′, m′, a′, u, Φ) s.t. (env ′′, h) ∈ γ(ctxt′, a′′).

Fig. 12. Soundness axioms for plugins. These ensure that our plugin-based analysis gives correct results.

20 N. Charlton

. P is the well-formed program to check. m0 is the “main” method from which analysis starts.
. The formula Φ0 constrains the initial state. S configures the plugin (on a per-method basis).

procedure ANALYSE(P : Program, m0 : MethodName, Φ0 : L , S : MethodName → Config)
5:

vars worklist, A : P(MethodName× Z× T × T)

let I = {(m0, 0, a, a) | a ∈ init (S (m0) , ctxt (P, m0) , Φ0)} in
worklist := I

10: A := I

while worklist 6= ∅ do
let

w ∈ worklist
15: (m, n, a, a0) = w

in
worklist := worklist− {w}

case (statement labeling node n of method m) of
20:

method call: u := v.mc(p1, . . . , pn) ⇒
let

callSuccessors = succC (S (m) , ctxt (P, m) , a, v, mc, [p1, . . . , pn],True, S (mc))
in

25: if callSuccessors = ∅ then
A := A− {w}

else
let

nr is the number of the return statement, return vr, in mc

30: n′ is the target of the out-edge from node n in m
existingReturns = {â | ∃â0 ∈ callSuccessors s.t. (mc, nr, â, â0) ∈ A− worklist}
returnSuccessors =S

â∈existingReturns
{(m, n′, a′, a0) | a′ ∈ succR (S (m) , ctxt (P, m) , a, u, S (mc) , m, â, vr,True)}

in
35: worklist := worklist ∪ ({(mc, 0, â0, â0 | â0 ∈ callSuccessors} ∪ returnSuccessors−A)

A := A ∪ {(mc, 0, â0, â0 | â0 ∈ callSuccessors} ∪ returnSuccessors

method return: return v ⇒
let

40: callerPoints =
n
(m̄, n̄, n̄′, u) | Graph(m̄) 3 n̄, u := v̄.m(p1, . . . , pn)

True−−−→ n̄′ for some v̄, p1, . . . , pn

o

callerStates = {(m̄, n̄, ā, ā0, n̄′, u) | (m̄, n̄, n̄′, u) ∈ callerPoints, (m̄, n̄, ā, ā0) ∈ A, and
a0 ∈ succC (S (m̄) , ctxt (P, m̄) , ā, u, m, [p1, . . . , pn],True, S (m))}

successors =S
(m̄,n̄,ā,ā0,n̄′,u)∈callerStates

{(m̄, n̄′, a′, ā0) | a′ ∈ succR (S (m) , ctxt (P, m) , a, v, S (m̄) , m̄, ā, u,True)}
45: in

worklist := worklist ∪ (successors−A)
A := A ∪ successors

...continued...
50:

Fig. 13. The pseudocode for our interprocedural plugin-based analysis algorithm, using a worklist and summarisation. Continues
in Figure 14.

contains a complete abstract trace through the called method (resulting from invocation from another call
site), in which case the resulting returns are processed straight away.

Unlike the algorithm in [BR00], A does not quite grow monotonically: when an abstract state is visited it
may be found to be inconsistent (like the state (odd, 0) from subsection 2.1), and can then be safely removed
from A. The tests on lines 25, 57 and 68 detect this: if no abstract successors are generated, then there are
no concrete successors (by the soundness axioms), and because we have already observed that the semantics
are functional, the initial abstract state must be inconsistent. (This does not apply to successors of returns,
because these are calculated from two abstract states — one in the caller and one in the callee — and it
could just be that the corresponding caller state is not generated yet.)

Program Verification with Interacting Analysis Plugins 21

field read or write statement s on variable v (potentially dangerous) ⇒
let

edges =
n
(n′, Φ) | Graph(m) 3 n

Φ−→ n′
o

successors =
S

(n′,Φ)∈edges

{(m, n′, a′, a0) | a′ ∈ succ (S (m) , ctxt (P, m) , a, s, Φ ∧Allocd0(v0))}

55: memErrorSuccessors = {(m,−1, a′, a0) | a′ ∈ succ (S (m) , ctxt (P, m) , a, ε,¬Allocd0(v0))}
in

if successors ∪memErrorSuccessors = ∅ then
A := A− {w}

else
60: worklist := worklist ∪ ((successors ∪memErrorSuccessors)−A)

A := A ∪ successors ∪memErrorSuccessors

any other statement s ⇒
let

65: edges =
n

(n′, Φ) | Graph(m) 3 n
Φ−→ n′

o

successors =
S

(n′,Φ)∈edges

{(m, n′, a′, a0) | a′ ∈ succ (S (m) , ctxt (P, m) , a, s, Φ)}
in

if successors = ∅ then
A := A− {w}

70: else
worklist := worklist ∪ (successors−A)
A := A ∪ successors

return A

Fig. 14. The (rest of the) pseudocode for our interprocedural plugin-based analysis algorithm, using a worklist and summarisa-
tion. Continues from Figure 13. Procedure summaries are implicit in the set A which is built to over-approximate the reachable
(concrete) states. Here ctxt(P, m) and Graph(m) give the context (Definition 3.14) and control flow graph respectively of the
method named m in program P .

We deal with potentially dangerous memory accesses by splitting our analysis into two branches, one
branch where the memory access succeeds (line 54), which we distinguish by allowing the plugin to assume
Allocd0(v0), and another branch where the memory access fails (line 55). In this second branch we give the
plugin the formula ¬Allocd0(v0), whereupon the plugin must try to close this branch by establishing that
¬Allocd0(v0) contradicts the plugin’s abstract state.

The following two theorems show that the algorithm terminates, and that when it does so, the set A
which has been built “covers” or over-approximates the set of reachable concrete states.

Theorem 3.17. Termination: The algorithm in Figure 13 always terminates.

Proof (sketch): First we augment the code with an auxilliary variable B which is updated in the same
way as A except that inconsistent states are not removed, and thus B grows monotonically. Define

N := |P | ×
(

max
m in P

|χ (S (m))|
)2

where |P | is the number of nodes (i.e. control locations) in P . It can be seen that N is an upper bound for
|B|. On each iteration, B increases or remains unchanged. When B stays the same, no new abstract states
are generated and therefore the worklist becomes smaller (because one element was removed from it, and no
new ones were added). Therefore the ranking function

f(B,worklist) := (N − |B|, |worklist|)
for the standard lexicographic ordering of N2 shows termination.

Theorem 3.18. Soundness: Let c = ((m,n, env) : xs, h) be a concrete state such that there exists a
(Φ,m0)−trace to a c in P . Then, once the analysis has terminated, for some a, a0 ∈ T we have (m,n, a0, a) ∈
A and (env, h) ∈ γ(a).

Proof (sketch): Let (c0, c) be a (Φ, m0)-trace in P . By the definition of transitive closure, there exists a

22 N. Charlton

sequence c1, c2, . . . , cn = c such that for 0 < i ≤ n, (ci, ci+1) ∈ semantics(P). We proceed by induction on
the length n of this sequence.

If n = 1, then c must have the form ([(m, 0, e)], h), and (e, h) ∈ JΦ0K. By the soundness axiom for init,
there exists a ∈ init (S (m0) , ctxt (P, m0) , Φ0) such that (env, h) ∈ γ(a). We see that the algorithm adds
(m0, 0, a, a) to A (and will not remove it, because it is consistent since its concretisation contains at least
c1), so we are done.

Now let n > 1. Let cn−1 = ((m,n, e) : xs, h). Our induction hypothesis gives us w = (m, n, an−1, a0) ∈ A
such that (e, h) ∈ γ(a). There are now three cases, depending on what kind of statement labels the node
numbered n in the method named n:

• Case 1 - Assignment statement s:
Because the worklist is finally empty, at some iteration w was removed from the worklist. At this stage,
by the soundness axiom for succ, an abstract state has been generated to “cover” cn. Furthermore, this
covering state will never be removed, because it is not inconsistent (it’s concretisation includes at least
cn) and only inconsistent states are removed.

• Case 2 - Call statement: same reasoning as for case 1, using the soundness axiom for succC instead of for
succ.

• Case 3 - Return statement:
By going back through the sequence of concrete states, matching up calls and returns, we find the concrete
state ck, with k ≤ n−1, at which the call is made from which the present statement returns. By applying
the induction hypothesis to ck, we obtain w′ ∈ A which abstracts the call state ck. Both w and w′ are
eventually removed from the worklist; there are two subcases: A. the removal of w happens later, and B.
the removal of w′ happens later. In both situations the soundness axiom for succR produces a covering
an, as in cases 1 and 2.

In particular the previous theorem shows:

Corollary 3.19. If {(m′,−1, a0, a) ∈ A} = ∅ then executing m0 in a state satisfying Φ never leads to an
error.

We are currently working on mechanizing these proofs in Isabelle. This, together with proofs that our
plugins meet the soundness axioms, opens up the possibility of generating machine-checkable proofs of
program correctness from successful runs of the analyser (as in [SYY03], but using higher order logic instead
of first order).

3.7. Combining analysis plugins

The following definition explains how to combine two plugins, to make them cooperate using FO(TC) as
a common language; the result is another plugin, which can be combined again, or used in the analysis
algorithm.

Definition 3.20. Given plugins 01 and 02, we construct their combination 01 ¦ 02 as:

• T := T1 × T2

• Config := Config1 × Config2

• γ ((cf1, cf2) , (a1, a2)) := γ1 (cf1, a1) ∩ γ2 (cf2, a2)
• χ((cf1, cf2)) := χ1(cf1)× χ2(cf2)

• init(P, (cf1, cf2), ctxt,Φ) := init1(cf1, ctxt, Φ)× init2(cf2, ctxt,Φ)

• share((cf1, cf2), ctxt, (a1, a2), s) := share1(cf1, ctxt, a1, s) ∧ share2(cf2, ctxt, a2, s)

• succ((cf1, cf2), ctxt, (a1, a2), s, Φ) := succ1(cf1, ctxt, a1, s, Θ)× succ2(cf2, ctxt, a2, s, Θ)
where Θ , Φ ∧ share((cf1, cf2), ctxt, (a1, a2), s)

Program Verification with Interacting Analysis Plugins 23

• shareC((cf1, cf2), ctxt, (a1, a2), v, m, [p1, . . . , pj]) :=
shareC1(cf1, ctxt, a1, v,m, [p1, . . . , pj]) ∧ shareC2(cf2, ctxt, a2, v,m, [p1, . . . , pj])

• succC((cf1, cf2), ctxt, (a1, a2), v,m, [p1, . . . , pj], Φ, ctxt′) :=
succC1(cf1, ctxt, a1, v, m, [p1, . . . , pj],Θ, ctxt′)× succC2(cf2, ctxt, a2, v,m, [p1, . . . , pj], Θ, ctxt′)
where Θ , Φ ∧ shareC((cf1, cf2), ctxt, (a1, a2), v,m, [p1, . . . , pj])

• shareR((cf1, cf2), ctxt, (a1, a2), r, (cf ′1, cf
′
2),m, (a′1, a

′
2), u) :=

shareR1(cf1, ctxt, a1, r, cf ′1,m, a′1, u) ∧ shareR2(cf2, ctxt, a2, r, cf ′2,m, a′2, u)

• succR((cf1, cf2), ctxt, (a1, a2), r, (cf ′1, cf
′
2),m, (a′1, a

′
2), u, Φ) :=

succR1(cf1, ctxt, a1, r, cf ′1,m, a′1, u, Θ)× succR2(cf2, ctxt, a2, r, cf ′2,m, a′2, u, Θ)
where Θ , Φ ∧ shareR((cf1, cf2), ctxt, (a1, a2), r, (cf ′1, cf

′
2),m, (a′1, a

′
2), u)

When asked to share a formula, 01 ¦ 02 asks each of 01 and 02 for a formula, and conjoins the results.
When generating successors, 01 and 02 are given each others’ shared formulae, as well as the incoming

formula Φ, and asked to generate their own sets of successors. All pairs of these are then returned. We do
not try to eliminate inconsistent pairs here, because this happens in a later iteration of the analysis anyway,
when the pairs have their own successors generated.

Remark 3.21. If 01 and 02 satisfy the finiteness and soundness axioms, then so does their combination
01 ¦ 02.

Intuitively, it seems from Definition 3.20 that, when combining n > 1 plugins with ¦, it doesn’t matter
in which order or which way round we combine them. We believe that it is possible to give an appropriate
notion of equivalence between plugins, whence our combination operator ¦ can be shown to be commutative,
associative and idempotent, thereby making the space of plugins into a semilattice. Further, we suspect that
the ordering in this semilattice coincides with a natural notion of refinement, where plugins which are higher
in the refinement order produce tighter analysis results.

4. Description of Prototype Implementation

We have realised the framework just described as a prototype static assertion checker, which we report on
in this section. The checker accepts programs written in a Java-like syntax and annotated with assertions,
translates them to a control flow graph-based representation as in subsection 3.1, and analyses them with
the algorithm of Figure 13. The user may give a constraint on the state at the beginning of execution,
corresponding to the environment in which the code will be run.

The checker looks for assertion violations and memory errors (reading or writing a field using an address
that is not allocated, or is allocated to an object of the wrong class). The outcome is either success, in which
case the program is error-free, or an abstract counterexample trace. Such an abstract trace may correspond
to a real error trace in the program, or may be infeasible.

By studying an infeasible trace, the user can try to work out where the abstraction is lacking, reconfigure
the plugins accordingly and run the checker again. Improving the abstraction is called abstraction refinement,
and the whole process is the abstract-check-refine cycle (e.g. [BR02, HJMS02]). Each plugin may be enabled
or disabled, and enabled plugins are configured on a per-method basis. Plugins will guess configurations
where they are not given, to serve as a reasonable starting point for the abstract-check-refine cycle.

Presently there is no support for automatic abstraction refinement (see future directions in subsection 6.2).
However, to aid in the understanding of abstract traces, they can be output hierarchically in XML format.
At the top level, the tree contains the sequence of abstract states making up the trace. Within each abstract
state, one can see the formulae exchanged and the values of each of the plugins. At the lowest level, one
can see exactly the execution of the underlying analyses, such as the invocations of the theorem prover
for predicate abstraction. Thus the user may collapse irrelevant parts of the trace and focus on interesting
features. Some screenshots are included in section 5 (Figures 19 and 20).

The prototype is implemented in Standard ML (which is very close to the language used by Isabelle,

24 N. Charlton

nextnext

next

Class[C]

next

Class[D]

NullField[data]?

v

Fig. 15. Two abstract (3-valued) heaps from the TVLA plugin. The heap on the right abstracts exactly the three-colourable
heaps of size ≥ 3, a class which cannot be defined in FO(TC) unless NL = NP. The question mark postfixed to a unary predicate
indicates it has the unknown truth value, or ½.

making the gap between the implementation and the formalisation small). Currently there are four plugins,
three of them based on existing software:

1. predicate abstraction plugin, using an existing theorem prover
2. 3-valued shape analysis using TVLA
3. graph-type pointer analysis using PALE
4. a plugin based on a simple type system

We will spend the rest of this section describing the existing plugins and the analyses they provide, as
well as how they are implemented.

4.1. Predicate abstraction plugin

Using the theorem prover Simplify [Nel80] this plugin provides predicate abstraction as set out in Exam-
ple 3.16. The default configuration (i.e. set of abstraction predicates) for each method is taken to be the set
of guards appearing on edges in that method (except True, and including only one of P and ¬P) and can
be added to by manually reconfiguring the plugin. Transitive closure is provided for with a few simple first
order axioms in the style of [LAIR+05].

4.2. TVLA plugin

As explained in subsection 2.5, TVLA represents heaps as models of a three-valued logic with unary and
binary predicates. Our models use the following “core” predicates:

• For each program variable v, the nullary predicate NullVar[v] indicates that the variable v is null, and
the unary predicate Var[v](o) indicates that v points to the object o.

• For each field f , the unary predicate NullField[f](o) indicates that the field f is null in object o, and the
binary predicate Field[f](o1, o2) indicates that the f field of object o1 points to object o2.

• For each class C, the unary predicate ClassC(o) indicates that object o is an instance of C.

The NullV ar[v] predicates are necessary because a variable which does not point to some object is not
automatically null - perhaps the variable is being used for arithmetic, for instance.

Figure 15 shows two examples. The 3-valued heap on the left represents any heap containing exactly one
object of class C, pointed to by the variable v and whose next field may not point to any object other than
itself, and one or more objects of class D, whose data fields may not point to any object. The question mark
postfixed to a unary predicate indicates it has the unknown truth value, or ½.

The abstract heap on the right in Figure 15 represents all three-colourable heaps of size ≥ 3, a class
which cannot be defined in FO(TC) [Imm99] unless NL = NP. We include it to emphasize that although
communication between plugins must be in FO(TC), the (private) abstract values which each plugin uses
are unrestricted and may, as here, express constraints which cannot be translated exactly into FO(TC).

Configurations for the TVLA plugin include:

1. instrumentation predicates, which make the abstraction more precise by tracking additional properties
(often reachability and heap-sharing properties) [SRW02],

Program Verification with Interacting Analysis Plugins 25

2. sharing patterns (which we discuss shortly)

The update rules for handling program statements are much the same as in the standard TVLA examples,
so we concentrate here on how shared information expressed in L can be translated for use by TVLA and
vice versa. In fact, since TVLA’s logic is also a first order logic with transitive closure, formulae of L are
nearly in the right form already. The two difficulties are that:

1. The universes over which the logics are interpreted are different. In L variables range over Z, whereas
in TVLA’s logic they range over (just) the allocated objects.

2. Fields are encoded with functions in L but with relations in TVLA.

However, for formulae in which variables are suitably “guarded” by the Allocd predicates the problem of
differing universes goes away, so these formulae can be translated in a largely structural fashion. Let Φ be a
first order formula built from the following grammar (a subset of L):

e ::= 0 | v | X | f(e)

Φ ::= e = e
| True | ¬Φ | Φ ∧ Φ
| ∃X (Allocdc(X) ∧ Φ)
| TC[A,B] [Allocdc(A) ∧Allocdc(B) ∧ Φ(A,B)] (e, e)

Apart from the cases of equality and transitive closure, the translation is by structural recursion:

(¬Φ)† , ¬(Φ†)
(Φ1 ∧ Φ2)† , (Φ†1) ∧ (Φ†2)
(∃X (Allocdc(X) ∧ Φ))† , ∃X (

Classc(X) ∧ Φ†
)

Translating equalities is more involved due to both of the difficulties identified above. There are exactly three
situations in which e1 = e2 holds:

• both e1 and e2 are null
• both e1 and e2 contain the address of the same allocated object
• neither e1 nor e2 is null or contains the address of an allocated object, but they are nevertheless equal

For each expression e we define two formulae: Ne which holds when e evaluates to null, and Re(o) which
holds when e evaluates to the address o of an allocated object. In full:

N0 := True Nv := NullVar[v]
R0(o) := False Rv(o) := Var[v](o)

NX := False Nf(e) := ∃o. (Re (o) ∧NullField[f] (o))
RX(o) := X = O Rf(e)(o) := ∃o′. (Re (o′) ∧ Field[f] (o′, o))

(Recall that Ne and Re are not exhaustive, corresponding to the third situation above: perhaps e refers to
a variable used for arithmetic, or gets an arbitrary value, such as when performing a field read on null). We
can now translate e1 = e2 soundly as:

(e1 = e2)† , (Ne1 ∧Ne2) ∨ ∃o (Re1 (o) ∧Re2 (o)) ∨ (¬ (Ne1 ∨Ne2 ∨ ∃oRe1 (o) ∨ ∃oRe2 (o)) ∧ ½)

The presence of ½ here is unavoidable: because our TVLA plugin only tracks integers which are 0 or point
to some object, we cannot distinguish between integers for which this is not the case.

26 N. Charlton

Example 4.1. Translation of ¬(v = 0) from L to TVLA’s logic.

(¬ (v = 0))†

, ¬ (v = 0)†

, ¬ ((Nv ∧N0) ∨ ∃o (Rv (o) ∧R0 (o)) ∨ (¬ (Nv ∨N0 ∨ ∃oRv (o) ∨ ∃oR0 (o)) ∧ ½))

Fill in the right values for Nv, N0, Rv and R0:

, ¬ ((NullVar[v] ∧ True) ∨ ∃o (Var[v] (o) ∧ False) ∨ (¬ (NullVar[v] ∨ True ∨ ∃oVar[v] (o) ∨ ∃oFalse) ∧ ½))

This trivially simplifies, using the relationships between ∧,∨ and True,False, to:

, ¬ (NullVar[v] ∨ (¬ (NullVar[v] ∨ True ∨ ∃oVar[v] (o) ∨ ∃oFalse) ∧ ½))

, ¬NullVar[v]

It remains to say how to translate transitive closure.

(
TC[A,B] [Allocdc(A) ∧Allocdc(B) ∧ Φ(A,B)] (e1, e2)

)†

, ∃x1x2.Re1(x1) ∧Re2(x2) ∧ TC[A,B]

[
Classc(A) ∧ Classc(B) ∧ Φ(A,B)†

]
(x1, x2)

The succ operations make use of the translated formulae Φ† by adding them to the TVLA model as con-
sistency rules. This causes TVLA to reject abstract heaps incompatible with the formula. Additionally,
sometimes we can cause TVLA to sharpen a value from ½ to a definite value (True or False) by first using
Φ† as a focus formula (see [SRW02]); the focus operation effectively splits an abstract heap where Φ† has
value ½ into the cases where it is definitely true or definitely false.1 Formulae which are not in the required
form for translation, but include top-level conjuncts which are, will be partially translated.

For example, running the no-operation statement ε on the heap in the left of Figure 15 with next(v) = null
will cause the heap to be rejected, whereas instead using next(v) = v will sharpen the dashed line for the
next field to a solid one.

The translation given above can be reused to induce transfer of information in the other direction, when
running share, shareC and shareR. Configurations for TVLA specify patterns of L -formulae for potential
sharing. For example, the default configurations contain the following sharing patterns:

• V = null,
• V 6= null,
• U = V , and
• U 6= V

where U, V stand for any variables in scope.
For each candidate Φ, we form the translation Φ† and check whether ¬Φ† is consistent with the TVLA

model. If not, then Φ is “entailed” by the TVLA model, and becomes a conjunct in the formula exported by
share. We have not yet explored a direct translation from TVLA to L .

Even though the TVLA system doesn’t “understand” an integer constraint such as data(x) < data(y), it
is in principle possible to draw inferences useful to TVLA from them: for instance data(x) < data(y) tells us
that x and y cannot be equal. We don’t currently use such inferences, and we do not know whether a most
precise translation exists from L to TVLA’s logic.

4.3. PALE plugin

Recall from subsection 2.4 that the PALE tool analyses only graph type heaps (those based around a tree
backbone), for which a declaration must be given, saying which fields form the backbone and how additional

1 Focusing cannot be performed for every Φ†; this is discussed in [SRW02].

Program Verification with Interacting Analysis Plugins 27

fields must behave. Thus each configuration for the PALE plugin contains such a declaration (Figure 2 is an
example). The other component of configurations is a set of sharing patterns; as for the TVLA plugin we
identify a subset of L constraints that we can translate into PALE’s logic, and also use that to induce a
translation in the other direction.

The abstract values T = {Good,All} for PALE simply record whether the graph type declaration given has
been respected. The value Good concretises to the set of heap-environment pairs which meet the declaration,
whereas All concretises to all heap-environment pairs (and so conveys nothing). A considerable limitation
is that for the PALE plugin to do any analysis, the target program’s entire heap must be a graph type. If
only a part of the heap is of the right form, we would like to apply PALE to only this part, but currently
we cannot.

4.4. Making a simple type system into a plugin

In the programming language we target, all variables contain integer values. However, we can broadly classify
variables according to their use: some are used for integer data values (and have arithmetic operators applied
to them) and some are used to store the addresses of objects (and have field reads and writes and method
calls applied to them). If the programmer accidentally mixes these uses, it is likely that running the program
will produce run-time errors (represented, for us, by a transition to the error location).

A standard way to prevent such errors is to type-check the code at compilation time. Here we present a
simple type system which prevents mixing “data” integers with “address” integers. The only types are Int,
used for data integers, and ref(c), used for addresses of objects of class c.

Type := {Int} ∪ {ref(c) | c ∈ ClassName}
A type assignment ∆ for the program P is a triple of the following components:

∆M : MethodName → Type gives a type to the value returned by each method
∆F : Fieldname → Type gives a type to each field
∆V : VarName×MethodName → Type gives a type to a given variable (local variable or formal parameter)

of a given method

The judgement ∆,m ` s means that the statement s appearing in the method named m is correctly typed
by ∆. Figure 16 gives rules for typing the various statement forms. We say that ∆ is valid for P if for every
statement s labeling some node in a method m of P , we have ∆,m ` s.

Definition 4.2. A program state p of program P is said to meet the type assignment ∆ if, informally:

• Variables: For every variable v in scope, if ∆(v) = ref(c) then either v is null, or v contains the address
of an allocated object of class c.

• Objects: For every address a ∈ Z, if a is the address of an allocated object o of class c, f is a field of c
and ∆F (f) = ref(c′) then either the f -field of o is null, or contains the address of an allocated object of
class c′.2

This is expressed precisely in L as:

Ψvariables
m ,

∧

v∈ΠM
Locals(m)

∧

{c∈ClassNames | ∆V (m,v)=ref(c)}
v = 0 ∨Allocdc(v)

Ψobjects ,
∧

c,c′∈ClassNames

∀X
∧

{f∈ΠC
Fields(c) | ∆F (f)=ref(c′)}

Allocdc(X) →
(
f(X) = 0 ∨Allocdc′(f(X))

)

Ψm , Ψvariables
m ∧Ψobjects

2 Strictly it is only necessary to constrain the fields of objects which are reachable from program variables. For simplicity we
don’t do this.

28 N. Charlton

∆V (m, u) = ∆V (m, v)
∆,m ` u := v

∆V (m, u) = ref(c)
∆,m ` u := 0

∆V (m, u) = Int

∆,m ` u := n

∆V (m, u) = ∆V (m, v1) = ∆V (m, v2) = Int

∆,m ` u := v1 ⊗ v2

∆V (m, u) = ∆F (f)
∆V (m, v) = ref(c)

∆ ` u := v.f
f ∈ ΠC

Fields(c)

∆F (f) = ∆V (m, v)
∆V (m,u) = ref(c)

∆ ` u.f := v
f ∈ ΠC

Fields(c)

∆V (m,u) = ref(c)
∆, m ` u := new c

∆V (m,u) = ∆M (m′)
∆V (m, v) = ∆V (m′, this) = ref(c)

for i = 1, . . . , n, ∆V (m, pi) = ∆V (m′, ai)
∆,m ` u := v.m′(p1, . . . , pn)

m′ ∈ ΠC
Methods(c) and [a1, . . . , an] = ΠM

Formals(m
′)

∆V (m, v) = ∆M (m)
∆,m ` return v

∆, m ` ε

Fig. 16. Typing rules for a simple type system (some with side conditions). The judgment ∆, m ` s means that the statement
s appearing in the method named m is correctly typed by the type assignment ∆.

The following theorem shows that for well-typed programs, certain run-time errors can never occur, namely
those where a variable is expected to contain the address of an object of some class C1 but actually points
to one of a different class C2. Therefore, checking for these errors at runtime is unnecessary.

Theorem 4.3. Behaviour of correctly-typed programs: Let ∆ be a valid type assignment for a program
P . Let state p0 meet ∆ and let (p0, p) be a trace in P . Then p meets ∆.

We will now turn this type system into a plugin. We take our configurations to be the type assignments
(insisting that every method of the program receives the same configuration), and our abstract states to be
just Yes(∆), which says that the type assignment ∆ is valid and is in force, and No which says that no type
assignment is in force. Consequently, the concretisation function γ is defined in terms of the appropriate Ψm.

The init operation performs two checks. Firstly, it type-checks the entire program against the given ∆,

Program Verification with Interacting Analysis Plugins 29

γ(ctxt,No) := JTrueK
γ(ctxt,Yes(∆)) := JΨcurrentMethod(ctxt)K

init(∆,m0, Φ) :=
{

Yes(∆) if TypeCheck(P, ∆) and TheoremProver(Φ → Ψm0)
No otherwise.

share(∆, ctxt, a, s) :=
{

v = 0 ∨Allocdc(v) if a = Yes(∆) and s is u := v.f or v.f := u

True otherwise.
succ(∆, ctxt, a, s, Φ) := {a}

shareC(...) := True
succC(∆, ctxt, a, ...) := {a}

shareR(...) := True
succR(∆, ctxt, a, ...) := {a}

χ(∆) := {Yes(∆),No}
Fig. 17. Definition of a plugin based on a simple type system.

using the rules from Figure 163. If the program type-checks, then by Theorem 4.3, executing the program
preserves the property of meeting ∆. However, it remains to be checked that the initial state meets ∆, so
init invokes the theorem prover Simplify to see whether the appropriate Ψ follows from the initial constraint
Φ0. If both checks pass, then init returns Yes(∆), otherwise No.

Functions succ, succC and succR do not have any work to do, because the whole program has been
type-checked right at the beginning; they merely return the same value they are given. The purpose of the
plugin lies in share. Suppose we are in Yes(∆) mode and have reached a (potentially dangerous) field read
u := v.f . Through share the plugin contributes the formula v = 0∨Allocdc(v). As long as another plugin can
produce the fact that the variable is non-null, the analysis will be content that no memory error is possible.
The detailed example in section 5 will show this in action.

We conclude this section with a few remarks.

• This particular type system doesn’t provide anything that can’t be obtained by predicate abstraction,
using the appropriate Ψs above as abstraction predicates. But the type system plugin does work more
efficiently: it performs a cheap static check once, rather than causing the theorem prover to do extra
work at every iteration.

• If a program doesn’t type-check, it doesn’t mean that the program can reach an error state - perhaps
the program is fine, but a more dynamic (expensive) analysis such as predicate abstraction is required
to establish this. For example, using predicate abstraction with the Ψ formulae above allows us to
temporarily break and reestablish the invariant e.g. by x := x + 1; x := x− 1 on an “address” variable x.
We think it makes sense to have both approaches available and cooperating. (Similar comments apply to
constant propagation, which can also be encoded using predicate abstraction.)

• Finally, the above type system is clearly simple and the information it contributes to the analysis is weak.
We would like to work on integrating more interesting type systems, such as the non-null types from the
Cyclone language [JMG+02], and ownership type systems (e.g. [DM05]) which we return to in section
6.2.

5. Detailed example

In this section we trace what happens when we run our analysis tool on the program P in Figure 18. Suppose
we use just the predicate abstraction, TVLA and type system plugins, and as our initial constraint we have

3 Because init has access to the whole program P , what we are constructing here is strictly not a plugin but a family of plugins
parametrised by P .

30 N. Charlton

class C
{
field data;

static method main()
{

vars x, y;

0 x := new C;
1 y := new C;

2 x.data := 10;
3 y.data := 11;

4 assert x.data < y.data;
}

}

Fig. 18. A small program used to demonstrate the benefit of exchanging formulae between plugins.

Φ0 , x = null ∧ y = null ∧ ∀X.(AllocdC(X) → False)

which says that x and y are null, and the heap is empty. We configure the plugins as follows:

• Predicate abstraction: we choose abstraction predicates cfPA := {P1 , data(x) = 10, P2 , data(x) <
data(y)}

• TVLA: we take no instrumentation predicates, and choose our sharing patterns to be the defaults, i.e.
V = null, U = V and their negations.

• Type system: we assign the variables x and y the type ref(C), and give the type Int to the field data. We
will call this type assignment ∆.

When the analysis begins, the first thing that happens is that init is invoked on each plugin. For predicate
abstraction, we have

init(cfPA, ctxt, Φ0)

, {P1 ∧ ¬P2,¬P1 ∧ ¬P2}
, {data(x) = 10 ∧ ¬data(x) < data(y),¬data(x) = 10 ∧ ¬data(x) < data(y)}

The expression data(x) is “undefined” and gets an arbitrary value (as per Figure 6), and so both P1 and
¬P1 are consistent. However, we cannot have P2: because Φ0 says that both x and y are null, P2 ∧Φ0 entails
data(null) < data(null) and is therefore unsatisfiable 4 (and the theorem prover is able to show this).

Now we consider TVLA. Internally, the TVLA plugin generates the two initial heaps h1 and h2:

NullVar[y]?h1: h2:

data

NullVar[y]?

Var[x]

Var[y]
Class[C]

NullField[data]?

NullVar[x]? NullVar[x]?

<empty heap>

4 In L we may state that data(null) = data(null) even though data(null) is “undefined” and thus interpreted as an arbitrary
value (see Figure 6), because whatever that arbitrary value is, it is the same on both sides. While one may certainly have a
debate about the best way to handle partial operations, that is not the purpose of this paper.

Program Verification with Interacting Analysis Plugins 31

which concretise to the empty heap and all non-empty heaps respectively. The plugin translates Φ0 into
TVLA’s logic as:

NullVar[x] ∧NullVar[y] ∧ ∀X(class[C](X) → False)

This translated formula causes the right hand heap h2 to be eliminated, and the left hand heap h1 is
sharpened to

NullVar[x] NullVar[y]h3:

<empty heap>

The type system is able to type-check the program and, since Φ0 tells us that x and y are initially null, is
able to decude that these variables start out with values of the required type. So we have init(∆, ctxt, Φ0) =
{Yes(∆)}. Therefore, the initial worklist is:

{(main, 0, (P1 ∧ ¬P2, h3,Yes(∆)) (P1 ∧ ¬P2, h3,Yes(∆))) , (main, 0, (¬P1 ∧ ¬P2, h3,Yes(∆)) (¬P1 ∧ ¬P2, h3,Yes(∆)))}
Suppose that, at the first iteration of the algorithm, the analyser chooses the first of these, (main, 0, P1 ∧
¬P2, P1∧¬P2), to remove from the worklist and process. The first step for the analyser is to request a shared
formula from each plugin. The predicate abstraction plugin simply shares its entire monomial:

share(cfPA, ctxt, P1 ∧ ¬P2, x := new C)

, P1 ∧ ¬P2

, data(x) = 10 ∧ ¬data(x) < data(y)

The TVLA plugin expands the sharing patterns in its configuration, V = null, U = V and their negations,
into candidates for sharing. For example, V 6= null expands to x 6= null and y 6= null. These are translated
and tested against the heap, resulting in the shared formula

share(cfTV LA, ctxt, h3, x := new C) , x = null ∧ y = null ∧ x = y

Because the statement being executed is not a potentially dangerous memory access, the type system
plugin doesn’t contribute anything:

share(∆, ctxt,Yes(∆), x := new C) , True

Overall the shared information is

data(x) = 10 ∧ ¬data(x) < data(y) ∧ x = null ∧ y = null ∧ x = y ∧ True

In this case, the shared formulae do not bring about any improvement. The abstract successors added to the
worklist are

{ (main, 1, (P1 ∧ ¬P2, h3,Yes(∆)) (¬P1 ∧ P2, h4,Yes(∆))) ,

(main, 1, (P1 ∧ ¬P2, h3,Yes(∆)) (¬P1 ∧ ¬P2, h4,Yes(∆)))}

Class[C]
Var[x]

NullField[data]

NullVar[y]h4:

Observe that this time P1 isn’t generated, only ¬P1, because new objects have their fields initialised to zero.

32 N. Charlton

Now let us skip forward to a more interesting iteration, where sharing makes a crucial difference. Eventually
the analysis will arrive at the following abstract state, about to execute y.data := 11:

(main, 3, (P1 ∧ ¬P2, h3,Yes(∆)) (P1 ∧ ¬P2, h5,Yes(∆)))

Class[C]

NullField[data]?

Class[C]
Var[x]

NullField[data]?

Var[y]

h5:

Field[data]
Field[data]

In order to check for a potential memory error when updating the field data at y, the analyser invokes succ
in two distinct “branches”: one with the formula ¬AllocdC(y) and targeting the error node -1, representing
a memory error, and one with AllocdC(y) and targeting the next node 4, representing safe execution.

The branch representing an error will be closed as follows. The type system will contribute y = null ∨
AllocdC(y) and TVLA will contribute y 6= null. This is not consistent with ¬AllocdC(y), so no successor
states will be generated.

Now, in the other (ordinary) branch, in the next state we will have to validate the assertion data(x) <
data(y) (i.e. P2). TVLA cannot do this alone because it “doesn’t understand” integers. On the other hand,
predicate abstraction alone will produce some states with ¬P2 because it “doesn’t know” that we don’t have
x = y, and therefore “reasons” that the update to y.data may update x.data as well. But the combination
of the two of them works: TVLA shares x 6= y and this allows predicate abstraction to infer that x.data is
unaffected, and so the assertion is established.

The screenshots in Figures 19 and 20 show the counterexample trace produced by our tool if we don’t
use the type system plugin; the analysis cannot determine that the memory access x.data = 10 is safe, and
so produces a successor at the error state.

At the top level, the trace features three repeating components:

1. Constraints: These are the abstract states along the execution. When expanded, this shows the abstract
state within each plugin being used; these per-plugin components can themselves be expanded to show
more detail.

2. Statements or conditions: These show the program statements being executed (abstractly), or in the
case of assertion and control structures, the condition being analysed.

3. Product successor computations: When expanded, these show the details of how the analyser gets
from one abstract state to the next.

In Figure 19, we have expanded a successor computation, to show the information being shared by each
plugin (“mpa” stands for monomial predicate abstraction). We can see predicate abstraction sharing an
entire monomial, and the TVLA plugin generating and testing candidate formulae, three of which end up
being shared.

Figure 20 shows the predicate abstraction plugin generating and testing successor states, i.e. monomials.
By expanding one of the prospective successor monomials we can see the corresponding invocation of the
theorem prover Simplify.

6. Discussion and future work

6.1. Choice of intermediate language

The first design issue we considered was whether to have a single intermediate language that all plugins use,
or allow each pair of plugins to have their own private communication mechanism. The latter should allow
more precise and concise exchange of information, particularly between plugins whose abstract values are
already “close together” in expressiveness, but “distant” from the proposed single intermediate language.
However, there is a serious disadvantage in terms of implementation effort: the implementor of a new analysis

Program Verification with Interacting Analysis Plugins 33

Fig. 19. A screenshot of our tool displaying an abstract error trace. Here we have expanded a successor computation to show
the information being shared by each plugin. We can see predicate abstraction sharing an entire monomial, and the TVLA
plugin generating and testing candidate formulae.

may be faced with a large number of languages - one for every other plugin he wishes his to work with - and
this undermines exactly the modularity we are striving to achieve. For us this is decisive.

Having settled on using one intermediate language rather than many, we must of course choose which
language. Our choice of FO(TC) is essentially an educated guess; we offer the following arguments in support
of it:

1. Some notion of reachability is clearly necessary. It has been observed (e.g. [IRR+04, BCO04])
that the ability to express the reachability of data via particular variables and fields is essential for

34 N. Charlton

Fig. 20. A screenshot of our tool displaying an abstract error trace. We have focused on the predicate abstraction plugin
generating and testing successor states, i.e. monomials. By expanding one of the prospective successor monomials we can see
the corresponding invocation of the theorem prover Simplify.

analysing and verifying programs using dynamic data structures5. FO(TC) includes a very general notion
of reachability.

2. Sound FO(TC) reasoning can be done with existing first order provers. By encoding transitive
closure subformulae using first order predicates, sound (but necessarily incomplete) reasoning about
FO(TC) formulae can be done; this allows us to use the wide variety of existing first order provers. This
approach has received attention recently [LAIR+05], but dates back to [Nel83].

3. FO(TC) can express some structural/spatial reasoning. In [BCO04], decidable fragments of sep-
aration logic are given for reasoning about lists and trees. Given the nature of separation logic one might

5 In this light, however, [MN05] is interesting because it shows what can still be said about data structures without using
reachability.

Program Verification with Interacting Analysis Plugins 35

expect these to be “intrinsically second order”, but in fact the decidable fragments from [BCO04] (and
more) can be translated into a decidable fragment of FO(TC) (this fact is briefly mentioned in [YRS+06]).

4. Ownership appears related to transitive closure. Ownership has been proposed as a crucial concept
in making the verification of object-oriented programs scalable. Suppose O1 and O2 are objects at the
top level of a program, and that O2 owns an object P . The owner-as-dominator formulation of ownership
(e.g. [Wre03]) says that P must be unreachable from O1, except along paths which go via O2. This means
that O1 cannot access P without the approval of P ’s owner O2.

In any case, note that our notion of analysis plugin, and our analysis algorithm, use minimal properties of
L : that it can express truth, conjunction and the allocatedness of (the address in) a program variable. Thus
the intermediate language can be changed very freely.

What other languages might we use? Second order logic, or even full higher order logic, spring to mind.
These would certainly allow greater expressiveness, and would (in principle) ease the problem of getting
information from the plugins into the intermediate language; however transfer in the other direction would
become correspondingly more difficult. There appears to be little known about automated theorem proving
in second and higher order logics. Technically, sound reasoning about higher order logics can be encoded in
FO (see e.g. [NR03]) so an analogue of point 2. above applies, but the encodings appear too awkward to use,
whereas the encodings of FO(TC) are quite clean.

In terms of the particular plugins we have so far, we speculate that second order logic might be a better
fit with the PALE tool, but would fit less well with TVLA. With respect to point 3. above, it would be
interesting to see if there is a similar connection between FO(TC) and the heap description formalisms
based on graph grammars.

6.2. Future directions

Efficiency and sharing: Our prototype currently suffers from being rather slow. We suspect this is caused
mainly by plugins sharing formulae when it isn’t necessary: running the analyses together but exchanging
no formulae is no slower than running them separately, and may in fact be faster because execution paths
ruled out by one of the tools need not be considered by the others.

Exchanging information is necessarily more work, but we hope to minimise the additional cost by making
sharing smarter, so that formulae are only propagated to where they are useful. Of course, working out when
sharing is beneficial and when it is unnecessary is a daunting problem. Perhaps we can use an approach
in the spirit of lazy abstraction [HJMS02], which adds abstraction predicates just where they are necessary.
We certainly hope to do better than the current coarse scheme (recall that the predicate abstraction plugin
shares entire monomials, while the TVLA and PALE plugins are given simple templates for properties to
share).

Counterexample-guided abstraction refinement: Our current prototype contains no support for
the CEGAR (counterexample-guided abstraction refinement) paradigm (e.g. [BR02, HJMS02]), in which an
infeasible abstract trace generated by a failed verification is used to refine the abstraction. If verification fails,
the user must manually reconfigure the plugins. Running several analyses together creates a new issue when
automating abstraction refinement: How do we decide which plugin to reconfigure? E.g. we may have the
choice between adding a new predicate to the predicate abstraction plugin, or adding a new instrumentation
predicate to the TVLA plugin. A similar issue is encountered in work on automatically proving termination
[CPR05], where one has to choose whether to refine the choice of abstraction predicates, or refine the set of
relations used to show termination.

Ownership: We pointed out earlier that ownership is related to shape properties of the heap. Therefore
we are interested in using the same trick as in subsection 4.4 with ownership type systems. The one we have
in mind is Universe types ([DM05]). In the Universe type system not every desired ownership property can
be inferred statically, so the programmer sometimes has to override the type system by writing a type cast.
Thus we plan to exploit a two-way exchange with shape analyses, using information from shape analysis
to establish that the programmer’s casts are legitimate, and using ownership information to enhance shape
analysis.

36 N. Charlton

Acknowledgements

Thanks to Dennis Dams for drawing our attention to the work in [CLCVH00], and Michael Huth for many
productive discussions about the contents of this paper.

References

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98:142–170, 1992.

[BCO04] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation logic. In Kamal
Lodaya and Meena Mahajan, editors, FSTTCS 2004: Foundations of Software Technology and Theoretical Com-
puter Science, 24th International Conference, Chennai, India, December 16–18, 2004, Proceedings, volume 3328
of LNCS, pages 97–109. Springer, December 2004.

[BG03] Doron Bustan and Orna Grumberg. Simulation-based minimization. ACM Trans. Comput. Logic, 4(2):181–206,
2003.

[BR00] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean programs. In Proceedings of
SPIN 2000, volume 1885 of LNCS, pages 113–130. Springer Verlag, 2000.

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety properties of interfaces. In SPIN
’01: Proceedings of the 8th international SPIN workshop on Model checking of software, volume 2057 of LNCS,
pages 103–122. Springer Verlag, 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. Generating abstract explanations of spurious counterexamples in C pro-
grams. Technical report, Microsoft, 2002. MSR-TR-2002-09.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In POPL, pages 269–282,
1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic programs. Journal of Logic
Programming, 13(2-3):103–179, 1992.

[CC04] Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. In SAS, pages 312–327, 2004.
[Cha06] Nathaniel Charlton. Verification of java programs with interacting analysis plugins. Electronic Notes in Theoretical

Computer Science, 145, Proceedings of the 5th International Workshop on Automated Verification of Critical
Systems (AVoCS 2005):131–150, 2006.

[CL05] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with alien expressions and heap structures.
In VMCAI’05, volume 3385 of LNCS, pages 147–163. Springer Verlag, 2005.

[CLCVH00] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract domains for logic programming:
Open product and generic pattern construction. Science of Computer Programming, 38(1-3):27–71, August 2000.

[CMB+95] Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria Garcia de la Banda, and Manuel Hermenegildo.
Improving abstract interpretations by combining domains. ACM Trans. Program. Lang. Syst., 17(1):28–44, 1995.

[CPR05] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction-refinement for termination. In Chris Hankin
and Igor Siveroni, editors, Static analysis : 12th International Symposium, SAS 2005, volume 3672 of Lecture Notes
in Computer Science, page 15, London, UK, September 2005. Springer.

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstraction. In Computer Aided
Verification, volume 1633 of LNCS, pages 160–171, 1999.

[DM05] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology (JOT), 4(8):5–32,
October 2005.

[FM97] Pascal Fradet and Daniel Le Métayer. Shape types. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 27–39, New York, NY, USA, 1997. ACM
Press.

[GW99] E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In Proceedings of 14th Annual IEEE Symposium on
Logic in Computer Science, Trento, pages 45–54, 1999.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy abstraction. In Proceedings of
the 29th Annual Symposium on Principles of Programming Languages, pages pp. 58–70. ACM Press, 2002.

[HS96] Klaus Havelund and Natarajan Shankar. Experiments in Theorem Proving and Model Checking for Protocol
Verification. In Marie-Claude Gaudel and Jim Woodcock, editors, FME’96: Industrial Benefit and Advances in
Formal Methods, volume 1051 of LNCS, pages 662–681. Springer-Verlag, 1996.

[Hub03] Engelbert Hubbers. Integrating tools for automatic program verification. In Ershov Memorial Conference, pages
214–221, 2003.

[Imm87] Neil Immerman. Languages that capture complexity classes. SIAM Journal of Computing, 16(4):760–778, 1987.
[Imm99] Neil Immerman. Descriptive Complexity. Springer-Verlage, New York, NY, 1999.
[IRR+04] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. The boundary

between decidability and undecidability for transitive-closure logics. In CSL’04, volume 3210 of LNCS, pages
160–174. Springer Verlag, 2004.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling Wang. Cyclone: A safe
dialect of C. In Proceedings of the USENIX Annual Technical Conference. USENIX, June 2002.

[KLZR05] Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard. Implications of a data structure consistency checking
system. In International Conference on Verifed Software: Tools, Techniques, Experiments, 2005.

Program Verification with Interacting Analysis Plugins 37

[KM01] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Department of
Computer Science, University of Aarhus, January 2001.

[KNR05] Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. An algorithm for deciding bapa: Boolean algebra with
presburger arithmetic. In CADE, pages 260–277, 2005.

[LAIR+05] Tal Lev-Ami, Neil Immerman, Tom Reps, Mooly Sagiv, Siddharth Srivastava, and Greta Yorsh. Simulating reach-
ability using first-order logic with applications to verification of linked data structures. In CADE 2005, volume
3632 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2005.

[LAMS04] Tal Lev-Ami, Roman Manevich, and Shmuel Sagiv. TVLA: A system for generating abstract interpreters. In IFIP
Congress Topical Sessions, pages 367–376, 2004.

[Mic04] Static driver verifier: Finding bugs in device drivers at compile-time. Technical report, Microsoft, April 2004.
[MN05] Scott McPeak and George C. Necula. Data structure specifications via local equality axioms. In CAV 2005, volume

3576 of LNCS. Springer, 2005.
[MS01] Anders Moller and Michael I. Schwartzbach. The pointer assertion logic engine. In PLDI ’01: Proceedings of

the ACM SIGPLAN 2001 conference on Programming language design and implementation, pages 221–231, New
York, NY, USA, 2001. ACM Press.

[NEFE03] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst Ellmer. Flexible consistency checking.
ACM Trans. Softw. Eng. Methodol., 12(1):28–63, 2003.

[Nel80] Greg Nelson. Techniques for Program Verification. PhD thesis, Stanford University, 1980.
[Nel83] Greg Nelson. Verifying reachability invariants of linked structures. In POPL ’83: Proceedings of the 10th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, pages 38–47, New York, NY, USA, 1983.
ACM Press.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[NR03] Karim Nour and Christophe Raffalli. Simple proof of the completeness theorem for second-order classical and
intuitionistic logic by reduction to first-order mono-sorted logic. Theoretical Computer Science, 308(1-3):227–237,
2003.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst., 24(3):217–298, 2002.

[SYY03] Sunae Seo, Hongseok Yang, and Kwangkeun Yi. Automatic construction of hoare proofs from abstract interpreta-
tion results. In Proceedings of the 1st Asian Symposium on Programming Languages and Systems, volume 2895
of Lecture Notes in Computer Science, pages 230–245. Springer-Verlag, 2003.

[Wre03] Alisdair Wren. Inferring ownership. Master’s thesis, Imperial College, London, June 2003. MEng4 Thesis.
[YRS+06] Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer, and Ahmed Bouajjani. A logic of reachable pat-

terns in linked data-structures. In Proc. Foundations of Software Science and Computation Structures (FOSSACS
2006), 2006. To appear.

