
An Executable Specification of a Formal

Argumentation Protocol

Alexander Artikis a, Marek Sergot b, Jeremy Pitt c

aInstitute of Informatics & Telecommunications, NCSR “Demokritos”,
Athens, 15310, Greece

bDepartment of Computing, Imperial College London, SW7 2AZ, UK
cDepartment of Electrical & Electronic Engineering, Imperial College London,

SW7 2BT, UK

Abstract

We present a specification, in the action language C+, of Brewka’s reconstruction
of a theory of formal disputation originally proposed by Rescher. The focus is on
the procedural aspects rather than the adequacy of this particular protocol for the
conduct of debate and the resolution of disputes. The specification is structured in
three separate levels, covering (i) the physical capabilities of the participant agents,
(ii) the rules defining the protocol itself, specifying which actions are ‘proper’ and
‘timely’ according to the protocol and their effects on the protocol state, and (iii)
the permissions, prohibitions, and obligations of the agents, and the sanctions and
enforcement strategies that deal with non-compliance. Also included is a mechanism
by which an agent may object to an action by another participant, and an optional
‘silence implies consent’ principle. Although comparatively simple, Brewka’s proto-
col is thus representative of a wide range of other more complex argumentation and
dispute resolution procedures that have been proposed. Finally, we show how the
‘Causal Calculator’ implementation of C+ can be used to animate the specification
and to investigate and verify properties of the protocol.

Key words: argumentation, disputation, protocol, norm, multi-agent system,
specification, action language

Email addresses: a.artikis@acm.org (Alexander Artikis), mjs@doc.ic.ac.uk
(Marek Sergot), j.pitt@imperial.ac.uk (Jeremy Pitt).

Preprint submitted to Elsevier October 2006

1 Introduction

One of the main tasks in the formal specification and analysis of (open) multi-
agent systems (MAS) is the representation of the protocols and procedures for
agent interactions, and the norms of behaviour that govern these interactions.
Examples include protocols for exchanging information, for negotiation, and
for resolving disputes.

It has been argued that a specification of systems of this type should satisfy
at least the following two requirements: first, the interactions of the mem-
bers should be governed by a formal, declarative, verifiable and meaningful
semantics (Singh, 2000); and second, to cater for the possibility that agent be-
haviour may deviate from what is prescribed, agent interactions can usefully
be described in terms of permissions and obligations (Jones and Sergot, 1993).

We have been developing a theoretical framework for the executable specifi-
cation of open agent systems that addresses the aforementioned requirements
(Artikis et al., 2003; Artikis, 2003; Artikis et al., 2006). We adopt the perspec-
tive of an external observer, thus taking into account only externally observ-
able behaviours and not the internal architectures of the individual agents,
and view agent systems as instances of normative systems (Jones and Ser-
got, 1993) whereby constraints on agents’ behaviour (or social constraints)
are specified in terms of their permissions, their institutional power to effect
changes and bring about certain states of affairs, and their rights and obli-
gations to one another. We employ an action formalism to specify the social
constraints governing the behaviour of the members and then use a computa-
tional framework to animate the specification and investigate its properties.
For the action formalism, we have employed the Event Calculus (Kowalski and
Sergot, 1986), the action language C+ (Giunchiglia et al., 2004), and an ex-
tended form of C+ specifically designed for modelling the institutional aspects
of agent systems (Sergot, 2004a,b; Sergot and Craven, 2006).

In this paper we demonstrate how the theoretical and computational frame-
works can be used with the language C+ to specify and execute an argu-
mentation protocol based on Brewka’s reconstruction (Brewka, 2001), in the
Situation Calculus (Reiter, 2001), of a theory of formal disputation originally
proposed by Rescher (1977). We presented a preliminary formulation in an
earlier paper (Artikis et al., 2003). This present paper is a refined and much
extended version.

We are focussing here on the procedural aspects of the protocol rather than on
the underlying logic of disputation employed by Brewka or on the adequacy
of this particular protocol for the conduct of debate and the resolution of
disputes. The features of Brewka’s protocol are representative of a wide range

2

of other more complex argumentation and dispute resolution procedures that
have been proposed in the literature, and to which the methods of this paper
can be similarly applied.

The specification of the argumentation protocol is structured into three sepa-
rate levels, covering:

(i) the physical capabilities of the participant agents (in the present context,
the messages/utterances each agent is actually capable of transmitting);

(ii) the rules defining the protocol itself, specifying which actions are ‘proper’
and ‘timely’ according to the protocol and their effects on the protocol state;

(iii) the permissions, prohibitions and obligations of the agents, and the sanc-
tions and enforcement strategies that deal with non-compliance.

In any given implementation of the protocol, it may or may not be permitted
for an agent to perform an action that is not proper or timely; conversely, there
may be protocol actions that are proper and timely but that are nevertheless
not permitted under certain circumstances, because, for instance, they lead to
protocol runs with undesirable properties. The rules comprising level (ii) of the
specification correspond to constitutive norms that define the meaning of the
protocol actions. Levels (i) and (iii), respectively, can be seen as representing
the physical and normative environment within which the protocol is executed.
We have also been concerned with the concept of social role. Briefly, a role is
associated with a set of (role) preconditions that agents must satisfy in order
to be eligible to occupy that role and a set of (role) constraints that govern
the behaviour of the agents once they occupy that role. We will not discuss
role assignment in this paper. For the example in this paper, we will assume
for simplicity that the participant agents are already assigned to certain roles,
and that these roles do not change during an execution of the protocol.

A note on terminology In the earlier version of this paper (Artikis et al.,
2003), and in the treatment of other examples, we defined a protocol by spec-
ifying the conditions under which an action was said to be ‘valid’ according
to the protocol. Here, we have employed a finer structure, further classify-
ing ‘valid’ actions as proper or timely, in line with suggestions that have also
been made by Prakken et al. (Prakken, 1998; Prakken and Gordon, 1999). A
‘valid’ action in our earlier terminology is one that is both proper and timely.
Other terminology in common use employs the term ‘successful’ where we say
‘valid’: one then distinguishes between an action, such as an utterance or the
transmission of a message of a certain form, which is an ‘attempt’ to make
a claim, say, and the conditions under which the attempt to claim is ‘suc-
cessful’ (sometimes, ‘effective’). We prefer to avoid the term ‘successful’ since
even an unsuccessful ‘attempt’ can have effects on the protocol state. We also
avoid use of the term ‘legal’ for ‘valid’ or ‘successful’ since it is ambiguous

3

as to whether it refers to the constitutive element of the protocol (level (ii)
of our specification) or the normative environment in which the protocol is
executed (level (iii)). Also related is the concept of institutional (or ‘institu-
tionalised’) power (sometimes, ‘competence’ or ‘capacity’). This refers to the
characteristic feature of institutions — legal systems, formal organisations, or
informal groupings — whereby designated agents, often when acting in spe-
cific roles, are empowered to create or modify facts of special significance in
that institution — institutional facts in the terminology of Searle (1969). (See
e.g. (Makinson, 1986; Jones and Sergot, 1996) for further discussion and ref-
erences to the literature.) Thus in the present example it is natural to say
that, under certain circumstances, an agent acting in a certain role has power
(competence, capacity) to declare the dispute resolved in favour of one or other
of the protagonists; or that in certain circumstances an agent has power to
object to an action by one of the other participants; or more generally, that
the argumentation protocol defines the conditions under which an agent has
the power to perform one of the argumentation actions. We will not refer ex-
plicitly to power in the specification of the argumentation protocol presented
here. The classification of actions into proper and timely already provides a
more detailed specification.

In this paper we use the language C+ to formulate the specification. An ad-
vantage of C+, compared with other action formalisms, is that it can be given
an explicit semantics in terms of transition systems. This enables us to anal-
yse and prove properties of the protocol. The concluding sections of the paper
present some illustrative examples.

The paper is structured as follows. First, we briefly describe the C+ language.
Second, we present the ‘Causal Calculator’ software implementation, a com-
putational framework for executing specifications formalised in C+. Third, we
summarise Brewka’s reconstruction of Rescher’s theory of formal disputation.
Fourth, we specify, prove properties of, and execute (a form of) Brewka’s ar-
gumentation protocol with the use of C+ and the Causal Calculator. Finally,
we discuss related research, summarise the presented work, and point out
directions for further investigations.

2 The C+ Language

C+, as mentioned above, is an action language with an explicit transition sys-
tems semantics. We describe here the version of C+ presented in (Giunchiglia
et al., 2004).

4

2.1 Basic Definitions

A multi-valued propositional signature is:

• a set σ of symbols called constants, and
• for each constant c ∈ σ, a non-empty finite set dom(c) of symbols, disjoint

from σ, called the domain of c.

For simplicity, in this presentation we will assume that every domain contains
at least two elements.

An atom of signature σ is an expression of the form c = u where c ∈ σ and
u ∈ dom(c). A Boolean constant is one whose domain is the set of truth values
{t, f}. When c is a Boolean constant we often write c for c = t and ¬c for c = f.
A formula ϕ of signature σ is any propositional combination of atoms of σ.
An interpretation I of σ is a function that maps every constant in σ to an
element of its domain. An interpretation I satisfies an atom c = u if I(c) = u.
The satisfaction relation is extended from atoms to formulas according to the
standard truth tables for the propositional connectives. A model of a set X of
formulas of signature σ is an interpretation of σ that satisfies all formulas in
X. If every model of a set X of formulas satisfies a formula ϕ then X entails
ϕ, written X |= ϕ.

2.2 Syntax

The representation of an action domain in C+ consists of fluent constants and
action constants.

• Fluent constants are symbols characterising a state. They are divided into
two categories: simple fluent constants and statically determined fluent con-
stants. Simple fluent constants are related to actions by dynamic laws (that
is, laws describing a transition from a state si to its successor state si+1).
Statically determined fluent constants are characterised by static laws (that
is, laws describing an individual state) relating them to other fluent con-
stants. Static laws can also be used to express constraints between simple
fluent constants. Static and dynamic laws are defined below.

• Action constants are symbols characterising state transitions.

An action signature (σf, σa) is a non-empty set σf of fluent constants and a
non-empty set σa of action constants. An action description D in C+ is a
non-empty set of causal laws that define a transition system of a particular
type. A causal law can be either a static law or a dynamic law. A static law

5

is an expression

caused F if G (1)

where F and G are formulas of fluent constants. In a static law, constants in
F and G are evaluated on the same state. A dynamic law is an expression

caused F if G after H (2)

where F , G and H are formulas such that every constant occurring in F is a
simple fluent constant, every constant occurring in G is a fluent constant, and
H is any combination of fluent constants and action constants. In a transition
from state si to state si+1, constants in F and in G are evaluated on si+1, fluent
constants in H are evaluated on si and action constants in H are evaluated on
the transition itself. F is called the head of the static law (1) and the dynamic
law (2).

The full C+ language also provides action dynamic laws, which are expressions
of the form

caused α if H

where α is a formula containing action constants only and H is a formula of
action and fluent constants. We will not use action dynamic laws in this paper
and so omit the details in the interests of brevity.

The C+ language provides various abbreviations for common forms of causal
laws. For example, a dynamic law of the form

caused F if > after H ∧ α

where α is a formula of action constants is often abbreviated as

α causes F if H

In the case where H is > the above abbreviation is expressed as follows:

α causes F

When presenting the argumentation protocol specification, we will often em-
ploy the causes abbreviation to express the effects of the agents’ actions. We
will also employ the C+ abbreviation

default F

which is shorthand for the static law

caused F if F

expressing that F holds in the absence of information to the contrary.

6

When it aids readability, we will write

F iff G

as a shorthand for the pair of static laws

caused F if G

and
default ¬F

Two further abbreviations that we will employ are nonexecutable and inertial;
a dynamic law of the form

caused ⊥ if > after α ∧H

where α is a formula containing only action constants and H is a formula
containing only fluent constants is abbreviated as:

nonexecutable α if H

In the case where H is > the abbreviation can be written as follows:

nonexecutable α

The inertia of a fluent constant c over time is represented as:

inertial c

This is an abbreviation for the set of dynamic laws of the form (for all values
u ∈ dom(c)):

caused c = u if c = u after c = u

As already mentioned, a C+ action description is a non-empty set of causal
laws. Of particular interest is the sub-class of definite action descriptions. A
C+ action description D is definite if:

• the head of every causal law of D is an atom or ⊥, and
• no atom is the head of infinitely many causal laws of D.

The C+ action description in this paper will be definite.

2.3 Semantics

It is not possible in the space available here to give a full account of the C+
language and its semantics. We trust that the C+ language, and especially

7

its abbreviations, are sufficiently natural that readers can follow the presen-
tation of the case study in later sections. Interested readers are referred to
(Giunchiglia et al., 2001, 2004) for further technical details. For completeness,
we summarise here the semantics of definite action descriptions ignoring (as
we are) the presence of action dynamic laws (and assuming that the domain
of every constant contains at least two elements). We emphasise the transition
system semantics, as in (Sergot, 2004a).

Every action description D of C+ defines a labelled transition system, as
follows:

• States of the transition system are interpretations of the fluent constants
σf. It is convenient to identify a state s with the set of fluent atoms satisfied
by s (in other words, s |= f = v if and only if f = v ∈ s for every fluent
constant f).

Let Tstatic(s) denote the heads of all static laws in D whose conditions are
satisfied by s:

Tstatic(s) =def {F | static law (1) is in D, s |= G}

For a definite action description D, an interpretation s of σf is a state of
the transition system defined by D (or simply, a state of D for short) when

s = Tstatic(s) ∪ Simple(s)

where Simple(s) denotes the set of simple fluent atoms satisfied by s. (So
s−Simple(s) is the set of statically determined fluent atoms satisfied by s.)

• Transition labels of the transition system defined by D (also referred to as
events or actions) are the interpretations of the action constants σa.

A transition is a triple (s, ε, s′) in which s is the initial state, s′ is the
resulting state, and ε is the transition label (or event). Since transition labels
are interpretations of σa, it is meaningful to say that a transition label ε
satisfies a formula α of σa: when ε |= α we sometimes say that the transition
(s, ε, s′) is of type α.

• Let E(s, ε, s′) denote the heads of all dynamic laws of D whose conditions
are satisfied by the transition (s, ε, s′):

E(s, ε, s′) =def {F | dynamic law (2) is in D, s′ |= G, s ∪ ε |= H}

For a definite action description D, (s, ε, s′) is a transition of D (or in
full, a transition of the transition system defined by D) when s and s′ are
interpretations (set of atoms) of σf and ε is an interpretation of σa such
that:
· s = Tstatic(s) ∪ Simple(s) (s is a state of D)
· s′ = Tstatic(s

′) ∪ E(s, ε, s′)

8

For any non-negative integer m, a path or history of D of length m is a sequence

s0 ε0 s1 . . . sm−1 εm−1 sm

where (s0, ε0, s1), . . . , (sm−1, εm−1, sm) are transitions of D.

3 The Causal Calculator

The Causal Calculator (Ccalc) is a computational framework designed and
implemented by the Action Group of the University of Texas for representing
action and change in the C+ language and performing a range of computa-
tional tasks on the resulting formalisations. Ccalc has been applied to several
‘challenge problems’ (see, for example, (Akman et al., 2004; Lifschitz, 2000;
Lifschitz et al., 2000)).

A detailed account of Ccalc’s operation and functionality may be found in
(Giunchiglia et al., 2004). This section describes the way we use prediction,
planning and postdiction queries to execute the specification of the social con-
straints (or protocol rules) of an open agent system. In each type of query,
Ccalc has as input a definite C+ action description Dsoc expressing the spec-
ification of social constraints. We refer to the states of the transition system
defined by Dsoc as social states (or protocol states). In other words, a social
state is an interpretation (with some further properties) of the fluent con-
stants of Dsoc. These constants express, amongst other things, which actions
are physically possible, proper, timely, permitted or obligatory, and whether
an agent has been sanctioned for performing forbidden actions or not comply-
ing with its obligations.

• Prediction queries. The computation of an answer to this type of query
involves: (i) an initial social state expressing, amongst other things, which
actions are initially physically possible, proper, timely, permitted or oblig-
atory, and the initial sanctions of the agents (an initial social state may be
partial or complete), and (ii) a narrative, that is, a description of temporally-
sorted externally observable events of the system (a narrative is expressed
as a sequence of transitions). The outcome of a prediction query (if any) is
the current social state, that is, the state resulting from the events described
in the narrative, expressing, amongst other things, which actions are cur-
rently physically possible, proper, timely, permitted or obligatory, and the
current sanctions of the agents (see Figure 1). Computing answers to pre-
diction queries may be performed at run-time to inform the members of a
system, at any time during the execution of the system, of their permissions,
obligations, sanctions and so on.

• Planning queries. Agents may issue planning queries to Ccalc: (i) at design-

9

COMPUTATIONAL
FRAMEWORK

SOCIAL CONSTRAINTS
the logical, causal and deontic

constraints that govern the
behaviour of the members

NARRATIVE
the externally

observable (time-
stamped) events

RESULTING SOCIAL STATE
which actions are currently
physically possible, proper,

timely, permitted, obligatory,
which are the current
sanctions of the agents

INITIAL SOCIAL STATE
which actions are initially physically possible,
proper, timely, permitted, obligatory, which are

the initial sanctions of the agents

Fig. 1. Executing the Specification of an Open Agent System: Prediction Queries

time in order to generate plans that will facilitate them in avoiding run-time
conflicts (say), and (ii) at run-time in order to update their plans.

• Postdiction queries. New members of a system may seek to determine the
past states of that system. Similar information may be requested by agents
that have ‘crashed’ and resumed their operation. Such information can be
produced via the computation of answers to postdiction queries.

The computation of answers to queries may be additionally used to prove prop-
erties of the social constraints’ specification; in Section 8 we employ Ccalc
to prove properties of the argumentation protocol specification.

4 Rescher’s Theory of Formal Disputation

We describe, specify, prove properties of, and animate an argumentation pro-
tocol — a procedure for the resolution of a dispute — based on Brewka’s recon-
struction (Brewka, 2001) of Rescher’s Theory of Formal Disputation (RTFD)
(Rescher, 1977). We have picked this example because (i) in defining a set
repertoire of possible moves for each participant, and their effects, it is typi-
cal of the kind of protocols that are encountered in the multi-agent systems
(MAS) field, (ii) it provides a concrete and comparatively simple example of
a formal procedure for the resolution of disputes, and (iii) Brewka’s formal-
isation in the Situation Calculus provides a natural starting point and basis
for comparison. This section briefly presents RTFD. Sections 5 and 6 present
Brewka’s reconstruction and our variation of RTFD respectively.

According to RTFD, argumentation may be viewed as a three-player game:
the proponent claims a particular thesis and the opponent may question this
thesis. The determiner decides whether the proponent’s thesis was successfully

10

defended or not. The main actions that the participants may perform are the
following (p, q below are logical formulas):

• Categorical assertions. These are assertions of the form ‘p is the case’ and
are performed by the proponent.

• Cautious assertions. These are assertions of the form ‘p is the case for all
you have shown’ and are performed by the opponent.

• Provisoed assertions. These assertions are performed by either the propo-
nent or the opponent and are expressed as follows: ‘p generally obtains
provided that q’. A provisoed assertion of this form is accompanied with
either a categorical assertion or a cautious assertion about q.

The argumentation commences with a categorical assertion by the proponent
regarding the topic of the argumentation, say p. The opponent may question
the topic by either a challenge of the form ‘¬p is the case for all you have
shown’ or by a provisoed denial of the form ‘¬p generally obtains provided
that q’ and ‘q is the case for all you have shown’. The argumentation continues
in this manner until the topic has been ‘accepted’ by both the proponent and
opponent (the precise meaning of ‘accepting’ a formula will be presented in
the following section), in which case the determiner declares the proponent
the winner, or the proponent itself does not accept the topic any more, in
which case the determiner declares the opponent the winner. If neither of these
alternatives take place and the participants cannot perform any additional
reasonable actions, or if a deadline occurs, then the determiner decides about
the winner “based on the plausibility of the proponent’s claims that were not
conceded by the opponent” (Brewka, 2001, p.271). Rescher’s theory exhibits
the silence implies consent principle. According to this principle, an agent
that does not explicitly challenge a claim performed by the other is assumed
to concede to the claim.

5 Brewka’s Reconstruction of RTFD

An argumentation system, according to (Brewka, 2001, Definition 4.9), in-
cludes as core components a logic of disputation and an argumentation con-
text. In Brewka’s reconstruction, the logic of disputation is preferential default
logic (Brewka and Eiter, 1998) and the argumentation context is formalised
with the use of a Situation Calculus dialect (Reiter, 2001). The main actions
of the protocol are the following: claiming, conceding to, retracting, and deny-
ing propositions and default rules, declaring the winner of the argumentation,
and objecting to actions performed by the other participants.

11

The semantics of the protocol actions are given in terms of the premises 1 held
by the proponent and opponent. The premise(ag , q , s) fluent expresses the
formulas q that ag holds explicitly. The related fluent accepts(ag , q , s) is used
to represent the formulas that ag holds implicitly: accepts(ag , q , s) expresses
that q follows in the logic of disputation L from the premises explicitly held
by agent ag in argumentation record s:

accepts(ag , q , s) iff {p | premise(ag , p, s)} `L q (3)

An argumentation record is a situation (in the terminology of the Situation
Calculus) and so includes the history of the protocol.

The semantics of a claim action, for example, of a proposition or a default
rule, are given by the following Situation Calculus effect axiom:

premise(ag , q , do(claim(ag , q), s)) (4)

Expression (4) states that the successor situation following the performance
of a claim action by ag includes a premise about the claimed proposition (or
default). In expression (4) q represents either a proposition or a default rule
of the form n :: a : b/c where n is a label associated with the default rule,
a is the prerequisite, b is the justification and c is the consequent of the rule
(Brewka, 2001).

Brewka distinguishes between ‘possible’ and ‘legal’ actions. Possible actions
are specified by means of Situation Calculus possibility axioms. Consider the
following possibility axiom of the retract action:

poss(retract(ag , q), s) ↔ premise(ag , q , s) (5)

The above axiom states that it is ‘possible’ for an agent to retract a proposition
(or a default) q if and only if that agent has a premise about that proposition
(or default). The conditions that determine whether an action is possible or
not are specified in a protocol-independent manner.

‘Legal’ actions, in contrast to possible actions, are specified in a protocol-
dependent manner. Consider the following example of a legal action:

legal(declare(det , pro), s) → accepts(pro, topic, s) (6)

The above expression states that declaring the proponent ‘pro’ as the winner
is legal only if the proponent accepts the topic of the argumentation.

1 In work on argumentation protocols and dialogue games the term ‘commitment’
is often used where we say ‘premise’. We will not use the term ‘commitment’ here
partly to keep the link with Brewka’s account, but also because ‘commitment’ has
another meaning related to obligation which might cause confusion in later sections
of the paper.

12

A point of departure of Brewka’s reconstruction from Rescher’s theory is the
introduction of the ‘object’ action. The participants of an argumentation pro-
tocol may perform illegal actions; the effects of an illegal action are the same
as if the action were a legal one — provided that no other participant ob-
jects to the illegal action. If some participant objects immediately (that is, no
other action takes place between the illegal action and the objection), then
the effects of the illegal action are ‘cancelled’.

The ‘object’ mechanism is not a new idea in the field of argumentation pro-
tocols. Prakken points out that an object mechanism of this type is part of
Robert’s Rules of Order (RRO): “[t]he general rule is that anything goes until
any member objects, after which RRO must be strictly applied” (Prakken,
1998, p.10). One can find similar mechanisms in most procedures for the con-
duct of formal debates and disputes.

Enabling agents to object to other agents’ actions can lead to a more flexible
argumentation protocol. In Brewka’s modification of RTFD, for example, the
proponent might choose not to object to an illegal action performed by the
determiner because it (the proponent) calculates that the illegal action will
serve its benefit better than having the illegal action ruled out. However, it can
be argued that Brewka’s object mechanism is too simplistic, if it is a model
of how argumentation processes are actually conducted, and too rigid, if it
is a model of how argumentation processes ought to be conducted. Consider
for example the case where an agent, say the determiner, repeatedly performs
illegal actions. The proponent and opponent have to object to every illegal ac-
tion performed by the determiner because if they do not object, they implicitly
accept the illegal actions as legal ones. In the formalisation to be presented in
the following sections, we propose a way to address this issue.

Note that according to Brewka’s treatment, an objection will ‘undo’ the effects
of an illegal action if and only if the objection takes place immediately after
the illegal action. If for some reason an agent fails to object immediately to
an illegal action (say, another action took place between the illegal action and
the objection) then it will be considered that this agent does not object and
so implicitly agrees to the treatment of the illegal action as a legal one. One
way of overcoming this limitation is by specifying that one may effectively
object to Act at the latest n time-points after Act ’s performance. Such a
specification, however, would raise several complications, such as the following.
Assume that Act takes place at time t and an agent objects to this action at
t′ (t < t ′ < t + n). The effects of the objection may include: (i) undoing the
effects of all actions that took place between t and t′ (therefore, it would be
necessary to keep track of a protocol history fragment), (ii) undoing the effects
of Act , and (iii) (possibly) applying the effects of all actions that took place
between t and t′. We expect that such an object mechanism would be practical
only when n is small — in any setting, computerised or not. For this reason

13

we will follow Brewka and assume that objections can only be made to the
immediately preceding action. We will allow, however, for the possibility that
more than one participant objects to the last action. Further discussion of
alternative object mechanisms is beyond the scope of the paper.

Finally, Brewka’s reconstruction formalises Rescher’s ‘silence implies consent’
principle as follows: an agent, say the proponent, is assumed to have an explicit
premise about a proposition, if the opponent has an explicit premise about
this proposition, and as long as it (the proponent) does not deny or retract
the proposition.

6 A Variation of Brewka’s Reconstruction of RTFD

Although it is our general aim in this paper to present a reconstruction of
Brewka’s account of RTFD we make the following adjustments to Brewka’s
version. We have in mind a setting where autonomous software agents in a
MAS engage in the argumentation as part of a negotiation or dispute resolu-
tion process. In this setting, the protocol actions would be transmissions of
messages. During the argumentation, the proponent, opponent and determiner
must perform their chosen actions by specified deadlines (timeouts). Without
this feature there is no practical way of controlling the exchanges, of deter-
mining whether a participant has ‘spoken’, because otherwise one might have
to wait indefinitely for messages to arrive over the communication channels.
For similar reasons, it is also necessary to impose a limit on the number of
exchanges, or on the total elapsed time for the argumentation process. (Al-
though Brewka states that the argumentation regarding a proposition may
terminate due to a deadline, he provides no further details about how this
would work and how such deadlines would affect the argumentation process.)
Having introduced deadlines, it is necessary to express the conditions in which
an action can be said to be timely, that is, whether a participant has ‘spoken’
by the specified deadline, and so on.

We further refine Brewka’s distinction between ‘possible’ and ‘legal’ actions.
We consider not only what kinds of actions are proper (one possible interpre-
tation of the Situation Calculus predicate poss — see, for example, axiom (5))
but also which of these actions each agent will be practically able to perform
at each stage of a given implementation. Moreover, we express the conditions
in which an action can be said to be permitted (one possible interpretation of
Brewka’s ‘legal’ actions) or even obligatory. We specify enforcement strategies
to deal with the performance of forbidden actions and non-compliance with
obligations.

Finally, even though we depart from Brewka’s reconstruction of RTFD in the

14

aforementioned points, we maintain (a form of) the object mechanism.

Here then is our variant of Brewka’s reconstruction of RTFD. We will refer to
it as RTFD*. The argumentation commences when the proponent claims the
topic of the argumentation — any other action does not count as the com-
mencement of the protocol. The protagonists (proponent and opponent) then
take it in turn to perform actions. Each turn lasts for a specified time period
during which the protagonist may perform several actions (send several mes-
sages) up to some specified limit. After each such action the other participants
are given an opportunity to object within another specified time period. In
other words, Ag ’s action Act is followed by a time period during which Ag may
not perform any actions and the other participants may object to Act . The
determiner may declare the winner only at the end of the argumentation, that
is, when the specified period for the argumentation elapses. (Other specifica-
tions of the protocol’s terminating conditions are possible — for instance, the
argumentation may end earlier than the specified time period if a protagonist
concedes to the other’s arguments.) If at the end of the argumentation both
the proponent and opponent have accepted the topic of the argumentation,
then the determiner may only declare the proponent the winner. If, however,
the proponent does not accept the topic then the determiner may only declare
the opponent the winner. Finally, if the proponent accepts the topic and the
opponent does not, the determiner has discretion to declare either of them
the winner. It may also have an obligation to decide one way or the other,
depending on which version of the protocol we choose to adopt.

7 Specifying RTFD*

We present a C+ action description DRTFD* that expresses the specification
of RTFD*. Table 1 shows a subset of the action signature (σf, σa) of DRTFD*.
Variables are written with an upper-case first letter and constants start with
a lower-case letter. The intended reading of the constants of (σf, σa) will be
explained during the presentation of the RTFD* specification.

There are three roles in the argumentation protocol: proponent, opponent,
and determiner. Although our specification does not rely on the assumption
that there is at most one agent occupying a role in any given execution of
the protocol, in the concrete example presented we will deal with the usual
case where there are three agents, one in each role. In the protocol presented
agents do not change role. We will call pro the agent that occupies the role of
the proponent, opp the agent that occupies the role of the opponent and det
the agent that occupies the role of the determiner. Accordingly, the example

15

Table 1
A Subset of the Action Signature of DRTFD*

Variables: Domain:
Ag ,Ag ′ {pro, opp, det}
Protag ,Protag ′ {pro, opp}
Det {det}
P ,Q a finite set of propositions/default rules
Act {claim(Protag ,Q), concede(Protag ,Q), retract(Protag ,Q),

deny(Protag ,Q), declare(Det ,Protag)}

Rigid Constants: Domain:
role of (Ag) {proponent , opponent , determiner}
topic a finite set of propositions
implies(P ,Q) Boolean

Simple Fluent Constants: Domain:
turn {proponent , opponent , determiner}
premise(Protag ,Q) {t, f, u}
initialState, sanctioned(Ag) Boolean
winner {pro, opp, none}

Statically Determined Fluent Constants: Domain:
proper(Act), timely(Act), per(Act), obl(Act),
objectionable(Act), accepts(Protag ,Q), fair Boolean
winning {pro, opp, none}

Action Constants σact (Boolean):
claim(Protag ,Q), concede(Protag ,Q), retract(Protag ,Q),
deny(Protag ,Q), declare(Det ,Protag)

Action Constants σaobj (Boolean):
objected(Ag)

action description contains the following three static laws 2 :

role of (pro) = proponent if >
role of (opp) = opponent if >
role of (det) = determiner if >

The role of (Ag) fluent constants are thus ‘rigid’, in the sense that their values
are the same in all states (the Ag variable ranges over the participants pro, opp
and det). In other versions of the protocol, we might introduce other roles, for
instance that of an ‘observer’ who does not participate in the argumentation

2 For brevity, we will omit in the remaining of the paper the keyword caused which
appears at the beginning of static and dynamic laws in the original presentation of
C+ (Giunchiglia et al., 2004).

16

proper but could be allowed to object to actions made by the protagonists.
We do not show that variation here.

Other rigid constants are topic, whose value is a proposition expressing the
topic of the argumentation, and Boolean fluent constants implies(P, Q), used
to represent the underlying logic of disputation, as described in a following
section.

Each simple fluent constant of DRTFD* is inertial, that is to say, its value
persists by default from one state to the next. The constraint that a fluent
constant f is inertial is expressed in C+ by means of the causal law abbrevi-
ation

inertial f (7)

C+ abbreviations were presented in Section 2.

The action constants σa of DRTFD* are partitioned into two sets, σact and σaobj .
The set σact includes the main actions (claim, concede, retract, deny, declare)
of the argumentation, as summarised in Table 1. For convenience, we specify
that exactly one action from σact takes place at each state transition. This is
done by means of the following C+ laws:

nonexecutable αi ∧ αj, for all αi, αj ∈ σact, αi 6= αj (8)

together with

nonexecutable ¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αn (9)

where α1, α2, . . . , αn are the action constants of σact. The restriction expressed
by laws (8) and (9) simplifies the RTFD* specification, and is also convenient
when analysing executions of the protocol (see Sections 8 and 9).

The action constants of σaobj are Boolean constants of the form objected(Ag)
used to represent that an objection has been made by agent Ag . In the spec-
ification presented in this paper we have abstracted away details of how an
objection is transmitted within the specified deadline (recall that every action
Act is followed by a time period during which no action may take place apart
from an objection to Act). Instead, every transition of the transition system
defined by DRTFD* corresponds to a claim, concede, retract, deny, or declare
action by one of the participants together with an indication of whether that
action was objected to by one or more of the others. For example, a transition
satisfying the action formula

claim(pro,Q) ∧ objected(opp) ∧ objected(det)

represents a transition in which a claim that Q by pro is followed by objections

17

by both opp and det. Similarly, a transition satisfying

claim(pro,Q) ∧ ¬objected(opp) ∧ ¬objected(det)

expresses a claim that has not been objected to. We could have produced
a more elaborate C+ action description expressing the objection mechanism
and its associated deadlines but the details are rather fiddly and we do not
present them here so as not to distract attention from the main points of
the paper. Notice that because of laws (8) and (9), the objected(Ag) action
constants do not need to specify which action has been objected to since there
is exactly one such action at each state transition. We do find it useful to
specify the agent who objected, and to allow for the possibility that more than
one agent objected within the deadline. Other versions of the specification may
be constructed that do not include laws (8) and (9) but the representation of
objections is then more intricate. We omit the details.

We begin by specifying the well-formed actions of the RTFD* protocol. A
claim(Ag ,Q) action, for example, is well-formed only if Ag is an agent occu-
pying the role of the proponent or that of the opponent. There are two ways
of specifying the well-formed actions. The simpler method, and the one we
choose here, is to specify this in the action signature. For instance, the ac-
tion signature summarised in Table 1 contains action constants of the form
claim(Protag ,Q) where Protag ranges over the two protagonists, pro and opp.
The alternative method is to include ill-formed actions in the action signature
and specify explicitly that they are ‘non-executable’, as in the following ex-
ample:

nonexecutable claim(Ag,Q) if role of(Ag) = determiner

According to the above law, there is no transition in the transition system
defined by DRTFD* corresponding to a claim made by an agent occupying the
role of determiner. This latter way of dealing with ill-formed actions results
in a more generic and flexible specification that would require fewer changes
to accommodate participants’ changing roles (assuming protocol versions in
which this was possible), new agents participating in the protocol, and so on.
The former way (which we choose here) results in a specification with simpler
laws (they have fewer conditions) and is thus easier to follow.

An objection is not well-formed if an agent objects to its own actions. Accord-
ingly, we include laws of the following form

nonexecutable claim(Protag,Q) ∧ objected(Protag) (10)

and similarly for the other action constants in σact. We do not support objec-
tions to objections since they are of little practical or theoretical interest.

We now present a number of causal laws expressing when a well-formed pro-

18

tocol action of RTFD* is physically (practically) possible, proper, timely, per-
mitted or obligatory, and what the effects of an action are.

7.1 Physical Capability

The system events of the RTFD* specification are the timeouts — these are
issued by a global clock. (To avoid clutter, several constants of the action sig-
nature of DRTFD*, including those representing timeouts, are not presented in
Table 1.) A type of timeout event is used to denote the turn of each partici-
pant. When RTFD* commences (this happens when the proponent claims the
topic of the argumentation) a global clock starts ‘ticking’. The first timeout
signals the end of the proponent’s turn and the beginning of the opponent’s
turn to ‘speak’, by setting turn = opponent . The next timeout signals the end
of the opponent’s turn and the beginning of the proponent’s turn, by setting
turn = proponent , and so on.

The remaining actions of the RTFD* specification are those performed by
the protocol participants. We have chosen to specify that any protagonist is
always capable of signalling a claim, concede, retract, deny, and object action,
and the determiner is always capable of signalling a declare and object action
(except that no agent is capable of objecting to its own actions). The effects
of these actions are presented next.

At the initial state of the protocol the protagonists have no premises, that
is, the value of every premise(Protag ,Q) fluent constant is f. The variable Q
ranges over the formulas (propositions and default rules) that the two protag-
onists may claim, concede to, retract, and deny (see Table 1). We assume that
a finite number of such formulas can be identified and specified at the outset.
This is necessary for implementation in C+ and the Ccalc system, though
not necessarily in other formalisms.

The protocol commences with the proponent’s claim of the topic. The effects
of a claim action are expressed as follows:

claim(Protag ,Q) causes premise(Protag ,Q) = t if
premise(Protag ,Q) = f ∧
¬objected(pro) ∧ ¬objected(opp) ∧ ¬objected(det)

(11)

The above expression is an abbreviation for the C+ fluent dynamic law:

premise(Protag ,Q) = t if > after
claim(Protag ,Q) ∧ premise(Protag ,Q) = f ∧
¬objected(pro) ∧ ¬objected(opp) ∧ ¬objected(det)

Law (11) expresses that Protag ’s claim of Q leads from a state in which Protag

19

has no explicit premise that Q (that is, premise(Protag ,Q) = f) to a state in
which it does have an explicit premise that Q (that is, premise(Protag ,Q) = t),
on condition that no (other) agent, pro, opp, or det , objects to the claim. An
objection is only effective in blocking the effects of the claim action if it is well-
founded (in a sense to be specified below). If the objection is not well-founded
then it does not block the effects of the claim action (though it might have
other effects, such as exposing the objecting agent to sanctions). We therefore
add to law (11) the further constraint that:

claim(Protag ,Q) causes premise(Protag ,Q) = t if
premise(Protag ,Q) = f ∧
¬objectionable(claim(Protag ,Q))

(12)

Boolean fluent constants objectionable(Act) are used to represent that an ob-
jection to Act is well-founded.

When is an objection to an action Act ‘well-founded’, that is to say, when
is objectionable(Act) true? In general, whenever Act is not a proper and
timely action of the protocol. However, we find it adds flexibility to define
objectionable separately. Not all improper or untimely actions need to be ob-
jectionable. As we explain in the next section, sometimes improper or un-
timely actions have no effect on the state of the argumentation, and in those
circumstances the protocol can be simplified by ignoring objections to them.
Specification of the proper, timely, and objectionable actions in RTFD* will
be given in the next section.

For convenience we introduce a special abbreviation, writing

Act p causes F if G

(for ‘provisionally causes’) as shorthand for the pair of causal laws of the form

Act causes F if G ∧ ¬objected(Ag1) ∧ · · · ∧ ¬objected(Agn)

Act causes F if G ∧ ¬objectionable(Act)

where Ag1, . . . , Agn are the participants in the argumentation (pro, opp, and
det in the present example). When G is > we write

Act p causes F

The laws (11) and (12) stating the effects of a claim can thus be written
succinctly as follows:

claim(Protag ,Q) p causes premise(Protag ,Q) = t if
premise(Protag ,Q) = f

(13)

Suppose that protagonist Protag claims a proposition Q. Opponent Protag ′

20

may respond to Protag ’s claim by conceding to, or denying the claim. If Protag ′

does neither then we say that Protag ′ has an ‘unconfirmed’ premise that Q,
denoted by premise(Protag ′,Q) = u. The value of a premise fluent constant is
set to ‘unconfirmed’ as follows, for every pair of distinct protagonists Protag
and Protag ′:

claim(Protag ,Q) p causes premise(Protag ′,Q) = u if
premise(Protag ,Q) = f ∧
premise(Protag ′,Q) = f

(14)

In other words, Protag ’s claim of Q leads (subject to possible objections)
to a state in which Protag ′ has an unconfirmed premise that Q, provided
that Protag ′ does not already have a premise that Q (that is, provided that
premise(Protag ′,Q) = f). If Protag ′ already has a premise that Q (that is,
premise(Protag ′,Q) = t) then its premise does not become unconfirmed, and
it does not need to respond to Protag ’s claim.

Responding to a claim, that is, conceding to or denying a claim, can be ex-
pressed as follows:

concede(Protag ,Q) p causes premise(Protag ,Q) = t if
premise(Protag ,Q) = u

(15)

deny(Protag ,Q) p causes premise(Protag ,Q) = f if
premise(Protag ,Q) = u

(16)

A claim may be retracted. The effects of a retraction are twofold:

retract(Protag ,Q) p causes premise(Protag ,Q) = f if
premise(Protag ,Q) = t

(17)

retract(Protag ,Q) p causes premise(Protag ′,Q) = f if
premise(Protag ,Q) = t ∧
premise(Protag ′,Q) = u

(18)

for every pair of distinct protagonists Protag and Protag ′. According to law
(17), Protag ’s retraction of its claim that Q results in premise(Protag ,Q) = f;
according to law (18) this retraction also removes the unconfirmed premise
held by the other protagonist, Protag ′. If Protag ′ responded to Protag ’s claim
before Protag retracted it then the value of premise(Protag ′,Q) would not be
unconfirmed, and in that case Protag ’s retraction will not affect the premise
held by Protag ′.

The effects of laws (13)–(18) for a single proposition Q, and assuming no
objections, are summarised in Figure 2. Notice that, because the premise
fluent constants are inertial, claim, concede, deny , and retract actions have no
effect on the argumentation state if the pre-conditions in laws (13)–(18) are

21

p(Pr)= t
p(Pr ′)= f

p(Pr)= t
p(Pr ′)= u

p(Pr)= f
p(Pr ′)= f

p(Pr)= t
p(Pr ′)= t

p(Pr)= u
p(Pr ′)= t

p(Pr)= f
p(Pr ′)= t

claim(Pr)

retract(Pr)

claim(Pr ′)

retract(Pr ′)

claim(Pr ′)
retract(Pr ′)

claim(Pr)
retract(Pr)

deny(Pr ′)

deny(Pr)

concede(Pr ′)

concede(Pr)

retract(Pr)

retract(Pr ′)

Fig. 2. Effects of claim, concede, deny , retract actions. The proposition Q is omitted
for clarity. Pr , Pr ′ are shorthands for Protag , Protag ′ respectively. Similarly, p(Pr),
p(Pr ′) are shorthands for premise(Protag ,Q) and premise(Protag ′,Q). Actions that
do not change the protocol state are not shown in the diagram.

not satisfied. Transitions corresponding to such actions are omitted from the
diagram for clarity.

At the end of the argumentation the determiner may declare the winner —
the effects of this action can be expressed as follows:

declare(Det ,Protag) p causes winner =Protag (19)

Det represents the agent occupying the role of the determiner. The fluent
constant winner =Protag expresses that the winner of the argumentation is
Protag . The use of p causes here again deals with the possibility that some
agent other than Det objects to the declaration.

Laws (13)–(19) express the effects of the main protocol actions. Suppose that
a protagonist claims a proposition Q when it already has a premise that Q,
or that it sends a retract(Protag ,Q) message when it has no premise that Q.
Such actions are not proper, according to the protocol. Moreover, an action
may be untimely, as when, for instance, a protagonist speaks out of turn. Some
improper or untimely actions have no effects on the state of the argumentation.
Others do have effects — however, their effects may be blocked by objections.
In the next section we specify when a protocol action is proper and timely,
and we specify when an action is objectionable.

22

Table 2
Proper and Timely Actions in DRTFD*

Action proper timely

claim(Protag ,Q) premise(Protag ,Q) = f (¬initialState ∨
topic =Q) ∧

turn = role of (Protag)

concede(Protag ,Q) premise(Protag ,Q) = u ¬initialState ∧
turn = role of (Protag)

retract(Protag ,Q) premise(Protag ,Q) = t ¬initialState ∧
turn = role of (Protag)

deny(Protag ,Q) premise(Protag ,Q) = u ¬initialState ∧
turn = role of (Protag)

declare(Det ,Protag) winner 6=Protag ∧ turn = role of (Det)
(winning =Protag ∨

winning =none)

7.2 Proper and Timely Actions

The second column of Table 2 shows the conditions in which the main pro-
tocol actions are said to be proper. A claim(Protag ,Q) action, for exam-
ple, is proper if and only if Protag does not have a premise that Q, that is,
premise(Protag ,Q) = f:

proper(claim(Protag ,Q)) iff premise(Protag ,Q) = f (20)

In other words, a claim(Protag ,Q) action is improper when:

• premise(Protag ,Q) = t; it is improper to make repeated claims, that is,
claim something one has a premise about.

• premise(Protag ,Q) = u; this signifies that the other protagonist Protag ′ has
claimed Q (see law (14)). A proper response to the other’s claim is either a
concession or a denial (see Table 2).

A retract(Protag ,Q) action is proper if and only if premise(Protag ,Q) = t;
otherwise there is nothing to retract.

The reader may have noticed that the conditions for proper claim, concede,
deny , and retract actions coincide with the premise(Protag ,Q) pre-conditions
in the laws (13)–(18). This is a feature of Brewka’s version of RTFD (or
rather, our chosen formulation of some of its details) and will not necessarily
be the case in other examples. In other argumentation and dialogue protocols
it is common, for example, to say that a claim by Protag is not proper if it is
inconsistent, in the underlying logic of disputation, with the premises currently
held by Protag . This is easily added in our formulation but is not a feature

23

of Brewka’s RTFD. Other formulations of proper actions will be discussed in
Section 10.

We now turn to declarations. A declaration is proper when the following con-
ditions are satisfied:

proper(declare(Det ,Protag)) iff
winner 6= Protag ∧
(winning =Protag ∨ winning = none)

(21)

In words: declaring Protag the winner of the argumentation is proper if and
only if:

• Protag has not already been declared winner, and
• Protag is currently ‘winning’, that is, the conflict is resolved in favour of

Protag , or no protagonist is ‘winning’, that is, the conflict is unresolved.

The statically defined fluent constant winning is defined as follows:

winning =Protag if
role of (Protag) = proponent ∧
role of (Protag ′) = opponent ∧
topic = Q ∧
accepts(Protag ,Q) ∧
accepts(Protag ′,Q)

(22)

winning =Protag ′ if
role of (Protag) = proponent ∧
role of (Protag ′) = opponent ∧
topic = Q ∧
¬accepts(Protag ,Q)

(23)

default winning = none (24)

Laws (22) and (23) express a resolved dispute. An accepts(Protag ,Q) fluent
constant states that Q follows, in the logic of disputation, from Protag ’s ex-
plicit premises. (A discussion of the logic of disputation is presented in Section
7.5.) Law (22) deals with the case that both protagonists accept the topic Q
of the dispute; law (23) deals with the case where the proponent no longer
accepts the topic Q. Law (24) corresponds to an unresolved dispute; in the ab-
sence of information to the contrary (that is, laws (22) and (23)), the dispute
is unresolved.

Even if proper, an action may not be in compliance with the protocol spec-
ification — for example, it may be untimely. The third column of Table 2
shows the conditions in which the main protocol actions are said to be timely.
At the initial state of the protocol, expressed by the simple fluent constant
initialState, only the proponent’s claim of the argumentation topic is timely

24

Table 3
Objectionable Actions in DRTFD*

Action objectionable

claim(Protag ,Q) proper(claim(Protag ,Q)) ∧ ¬timely(claim(Protag ,Q))

concede(Protag ,Q) proper(concede(Protag ,Q)) ∧ ¬timely(concede(Protag ,Q))

retract(Protag ,Q) proper(retract(Protag ,Q)) ∧ ¬timely(retract(Protag ,Q))

deny(Protag ,Q) proper(deny(Protag ,Q)) ∧ ¬timely(deny(Protag ,Q))

declare(Det ,Protag) ¬(proper(declare(Det ,Protag)) ∧
timely(declare(Det ,Protag))) ∧ winner 6=Protag

(at the initial protocol state turn = proponent). At the other protocol states
a protagonist’s claim, concession, retraction, or denial is timely if it is the
protagonist’s turn to ‘speak’. A timely claim, for instance, is expressed in C+
as follows:

timely(claim(Protag ,Q)) iff
(¬initialState ∨ topic = Q) ∧
turn = role of (Protag)

(25)

Declarations are defined to be timely as follows:

timely(declare(Det ,Protag)) iff turn = role of (Det) (26)

A declaration is timely if and only if it is the determiner’s turn to ‘speak’ —
this happens when the argumentation time elapses.

In this version we do not allow for early declarations, in the case where both
protagonists accept the argumentation topic, or the proponent does not accept
it, before the argumentation time elapses; this can be easily adjusted.

What about improper declarations? Or untimely actions? Some of these ac-
tions do have effects on the protocol state — however, these effects may be
blocked by a well-founded objection. Table 3 presents the conditions in which
an objection to Act is well-founded, that is, when Act is objectionable. In
the present example a claim is objectionable if and only if it is untimely and
proper:

objectionable(claim(Protag ,Q)) iff
proper(claim(Protag ,Q)) ∧ ¬timely(claim(Protag ,Q))

(27)

According to the protocol specified above, improper claims do not have effects
on the protocol state. It is therefore not necessary to object to them. Similarly,
a concession, retraction or denial is objectionable if and only if it is untimely
and proper.

A declare(Det ,Protag) action is objectionable if and only if: (i) it is not
proper and timely, and (ii) winner 6=Protag (see Table 3). Notice that if

25

winner =Protag at the time of a declare(Det ,Protag) action then this action
will not have any effects on the value of the winner fluent constant. Accord-
ingly, we choose to say that an improper or untimely declare(Det ,Protag)
action is objectionable only when winner 6=Protag at the time of the declara-
tion.

We presented the conditions in which an action is considered proper or timely,
and the consequences of the performance a proper/improper, timely/untimely
action. In the following section we focus on a separate issue: the circumstances
in which a protocol participant is permitted or even obliged to perform a par-
ticular action. In Section 7.4 we discuss potential consequences of the perfor-
mance of forbidden actions and non-compliance with obligations.

7.3 Permitted Actions

In Section 5 we identified a side-effect of the object mechanism: Ag ’s repeated
performance of objectionable actions requires repeated objections from some
other participant Ag ′ otherwise the effects of Ag ’s objectionable actions are
not blocked. One way of addressing this issue is to say that the performance
of repeated objectionable actions is not permitted. Consider the following ex-
ample specification of permission:

per(concede(Protag ,Q)) iff
¬objectionable(concede(Protag ,Q)) ∨
objActions(Protag) < 10

(28)

Here, there is an upper limit (10 in the example) on the total number of
objectionable actions a protagonist Protag is permitted to make. The per flu-
ent constants express permission; the simple fluent constants objActions(Ag)
record the number of objectionable actions issued by Ag . The formulation of
C+ laws to maintain the objActions(Ag) fluent constants is very straightfor-
ward and we omit the details. Laws similar to (28) express the permission
to claim, retract, deny and declare (we may impose a lower threshold for the
permitted objectionable declarations). In the present example, an objection is
never objectionable; therefore, an objection is always permitted.

In another formulation, objActions(Ag) could express the number of objec-
tionable actions issued by Ag to which well-founded (successful) objections
have been made by other participants. In this case, Ag would be permitted to
perform objectionable actions until the number of successful objections issued
by the other participants to Ag ’s actions has reached the specified limit.

We could formulate further permission laws to classify as not permitted other
kinds of exchanges, such as repeated claims and retractions by the protagonists

26

(‘yes it is’; ‘no it isn’t’; ‘yes it is’; ‘no it isn’t’; . . .). Although such an exchange
could be both proper and timely according to the protocol, it may nevertheless
be undesirable – it does not progress the resolution of the dispute.

In some cases it is meaningful to say that the determiner is not only permit-
ted, but obliged to declare a protagonist the winner of the dispute. Such an
obligation will arise when the following conditions hold:

obl(declare(Det ,Protag)) iff
turn = role of (Det) ∧
winner 6=Protag ∧
winning =Protag

(29)

(The obl fluent constants express obligation.) According to law (29), it is
obligatory to declare Protag the winner of the dispute if and only if: (i) it is
the determiner’s turn to ‘speak’, (ii) Protag has not already been declared the
winner, and (iii) Protag is currently ‘winning’ the dispute, that is, the dispute
is resolved in favour of Protag .

Given expression (29), it is necessary to represent explicitly the relationship
between the permission and obligation to declare the winner. For instance, the
protocol should never reach a state in which both obl(declare(Det ,Protag))
and per(declare(Det ,Protag ′)) are true for Protag 6= Protag ′. One way is to
add the following laws, for every pair of distinct protagonists Protag and
Protag ′:

per(declare(Det ,Protag)) if
obl(declare(Det ,Protag))

(30)

per(declare(Det ,Protag)) if
¬obl(declare(Det ,Protag ′)) ∧
¬objectionable(declare(Det ,Protag))

(31)

per(declare(Det ,Protag)) if
¬obl(declare(Det ,Protag ′)) ∧
objActions(Det) < 10

(32)

default ¬per(declare(Det ,Protag)) (33)

According to laws (30)–(33), if the determiner is obliged to declare Protag
the winner then is it is also permitted to declare Protag , but not Protag ′.
When there is no obligation on the determiner, at most ten objectionable
declarations are permitted (that is, the permission to declare is expressed as
the permission to perform any other protocol action).

It is not meaningful to associate obligations with the remaining protocol ac-
tions; therefore, we do not need to update the specification of permitted claims,
concessions, retractions, denials or objections. Table 4 presents the conditions
in which a main protocol action is permitted or obligatory. Clearly, different

27

Table 4
Permission and Obligation in DRTFD*

Action per obl

claim(Protag ,Q) ¬objectionable(claim(Protag ,Q)) ∨ ⊥
objActions(Protag) < 10

concede(Protag ,Q) ¬objectionable(concede(Protag ,Q)) ∨ ⊥
objActions(Protag) < 10

retract(Protag ,Q) ¬objectionable(retract(Protag ,Q)) ∨ ⊥
objActions(Protag) < 10

deny(Protag ,Q) ¬objectionable(deny(Protag ,Q)) ∨ ⊥
objActions(Protag) < 10

declare(Det ,Protag) obl(declare(Det ,Protag) ∨ turn = role of (Det) ∧
(¬obl(declare(Det ,Protag ′)) ∧ winner 6=Protag ∧

(¬objectionable(declare(Det ,Protag)) winning =Protag
∨
objActions(Det) < 10))

specifications are possible. One may forbid, for instance, repetitive improper
claims, concessions, retractions, and denials, and ill-founded objections (ob-
jections to Act when Act is not objectionable). Although these actions have no
effects on the protocol state and thus are not objectionable, they may neverthe-
less be forbidden (not permitted) in order to deter participants from perform-
ing ‘meaningless’ actions, to decrease network traffic. In (Artikis et al., 2003)
we presented an RTFD* specification in which all retractions were forbidden,
whether proper/improper, timely/untimely, objectionable/non-objectionable.
Furthermore, the obligation to declare the winner could arise even in the case
of an unresolved dispute.

Note that it is practically possible for an agent to perform forbidden actions
and not comply with its obligations. We introduce enforcement strategies as a
way of dealing with this type of behaviour. Such strategies are presented next.

7.4 Enforcement Strategies

We want to reduce or eliminate:

• The protagonists’ performance of forbidden actions, repeated objectionable
actions in this example.

• The determiner’s non-compliance with the obligation to declare the win-
ner of the dispute. (To simplify the presentation, we will not address the
determiner’s forbidden declarations.)

28

We employ the simple fluent constants sanctioned to identify the aforemen-
tioned types of behaviour. Protag ’s forbidden claim, for example, results in
initiating sanctioned(Protag):

claim(Protag ,Q) causes sanctioned(Protag) if
¬per(claim(Protag ,Q))

(34)

One way of reducing the performance of forbidden actions and non-compliance
with obligations is by penalising such behaviour. For example: if at the close
of the argumentation the dispute is unresolved, we could say that declaring
Protag the winner is objectionable if Protag performed some forbidden actions
but Protag ′ did not. In this case, the penalty Protag pays for its forbidden
actions is that it will not win an unresolved dispute if Protag ′: (i) does not
perform forbidden actions, and (ii) objects to a potential declare(Det ,Protag)
action. (This does not necessarily imply that Protag ′ will win the dispute.)
The specification of this example sanction may expressed by updating the
definition of objectionable declarations as follows (for every pair of distinct
protagonists Protag and Protag ′):

objectionable(declare(Det ,Protag)) if
¬proper(declare(Det ,Protag)) ∧
winner 6=Protag

(35)

objectionable(declare(Det ,Protag)) if
¬timely(declare(Det ,Protag)) ∧
winner 6=Protag

(36)

objectionable(declare(Det ,Protag)) if
winning = none ∧
winner 6=Protag ∧
sanctioned(Protag) ∧
¬sanctioned(Protag ′)

(37)

default ¬objectionable(declare(Det ,Protag)) (38)

Laws (35), (36) and (38) express the definition of objectionable declarations
presented in Table 3; law (37) expresses the protagonists’ sanctions. When
turn = determiner (the argumentation has ended), winning = none (the dis-
pute is unresolved) and winner = none (no protagonist is declared winner),
declaring Protag would be proper, timely and non-objectionable. If, however,
Protag is sanctioned and Protag ′ is not, declaring Protag would be proper,
timely but objectionable. (If both protagonists are sanctioned then objection-
able declarations are defined only by laws (35), (36) and (38), that is, proper,
timely declarations are non-objectionable.)

Similarly, we could have expressed the protagonists’ sanctions in terms of ob-
jectionable claims, concessions, retractions, and so on. For example, we could
have specified that the retractions of a sanctioned protagonist are objection-

29

able, even if proper and timely, and therefore, their effects could be blocked
by objections.

In addition to dealing with the protagonists’ forbidden actions, we want to
reduce the possibility that the determiner will not comply with its obligation.
Assuming that the determiner is obliged to declare Protag the winner of the
dispute (see law (29)), the determiner may:

• declare Protag ′ the winner (more precisely, the last declaration before the
last protocol timeout concerns Protag ′),

• make no declaration, or
• declare Protag the winner.

In the third case the obligation is (temporarily) discharged. New evidence,
however, may arise after the declaration (and before the last protocol timeout),
such as an untimely retraction by Protag , obliging the determiner to declare
Protag ′ the winner (by setting winning =Protag ′) and this obligation may not
be discharged.

Notice that the employed object mechanism is inadequate for ensuring a ‘fair’
result in the three aforementioned scenarios. (A ‘fair’ result implies that Protag
is declared winner if the dispute is resolved in its favour.) In the first case, a
well-founded objection to the action declare(Det ,Protag ′) will block the effects
of the declaration but will not force winner =Protag . In the second case there
is no declaration to object to, and in the third case the declaration was not
objectionable at the time.

What sanctions should be enforced in these cases? There are a number of
possibilities. We may specify, for instance, that a sanctioned determiner is
disqualified from acting as a determiner in future argumentations, for a spec-
ified time period perhaps. If the argumentation takes place in the context
of a computational system including several protocols, such as a system of
negotiation or deliberative assemblies, a sanctioned determiner may have re-
stricted permissions or its actions may be objectionable when participating in
the remaining protocols, possibly occupying other roles. In addition, we may
specify that it is proper and timely to initiate proceedings against a sanctioned
determiner (assuming the existence of an adjudicating authority) in order to
enforce compliance with the determiner’s obligation, not as a ‘punishment’ to
the determiner but as a way of discouraging it to avoid complying with the
protocol rules and ensuring ‘fairness’.

Sanctions are one means by which the performance of forbidden actions and
non-compliance with obligations may be addressed. Another possible strategy
is to devise physical controls that will force agents to comply with the pro-
tocol rules. For instance, repetitive objectionable actions may be physically
blocked (since, in the present example, they are forbidden). The general strat-

30

egy of designing mechanisms to force compliance and eliminate non-permitted
behaviour is what Jones and Sergot (1993) referred to as regimentation. Regi-
mentation devices have often been employed in order to eliminate ‘anti-social’
behaviour in computational systems (see, for instance, (Klein et al., 2003;
Minsky and Ungureanu, 2000; Rodriguez-Aguilar et al., 1998)). It has been
argued (Jones and Sergot, 1993), however, that regimentation is rarely desir-
able (it results in a rigid system that may discourage agents from entering it
(Prakken, 1998)), and not always practical. In any case, violations may still
occur even when regimenting a computational system (consider, for instance,
a faulty regimentation device). For all of these reasons, we have to allow for
sanctioning and not rely exclusively on regimentation mechanisms.

7.5 Additional Considerations

We presented a formalisation of the RTFD* protocol rules. In order to perform
computational experiments (such as those presented in Section 9), we need to
code up (fragments of) the logic of disputation. The following law, for example,
states that a protagonist accepts all (classical) logical implications of each of
its premises:

accepts(Protag ,Q) iff
premise(Protag ,P) = t ∧ implies(P ,Q)

(39)

The implies here are simply suitably chosen rigid constants. In a similar man-
ner, we may specify the acceptance of propositions as a result of the conjunc-
tions of an agent’s premises and of premises regarding default rules.

We have formalised only a small fragment of the logic of disputation, enough
to conduct simple experiments. The focus of this paper lies on the protocol
rules rather than the logic of disputation (that, we assume, does not neces-
sarily have to be prioritised default logic as in Brewka’s version). Moreover, a
complete formalisation of the logic of disputation (on top of a formalisation of
the protocol rules) would substantially increase the number of DRTFD* laws,
thus significantly increasing Ccalc’s time of computing answers to queries
(regarding DRTFD*). These complications could be addressed by employing
alternative action languages. We discuss this issue in Section 11.

Brewka, in his reconstruction of RTFD, places emphasis on the formalisation
of the ‘silence implies consent’ principle: a protagonist that does not explicitly
challenge a claim by the other protagonist is assumed to concede to the claim.
We may incorporate this principle in RTFD* by modifying the formalisation

31

of the logic of disputation as follows:

accepts(Protag ,Q) iff
(premise(Protag ,P) = t ∨ premise(Protag ,P) = u) ∧
implies(P ,Q)

(40)

Recall that premise(Protag ,P) = u expresses that Protag has an unconfirmed
premise that P , that is, Protag has not responded to a claim that P made
by the other protagonist. In a protocol adopting the ‘silence implies consent’
principle, a protagonist accepts all logical implications of each of its explicit
and unconfirmed premises.

Note that if we do not want to incorporate the ‘silence implies consent’ prin-
ciple then we disregard unconfirmed premises in the logic of disputation, by
using law (39) instead of (40).

8 Proving Properties of RTFD*

The explicit transition systems semantics of the C+ language enables us to
prove various properties of the presented RTFD* specification (which is ex-
pressed by means of the definite action description DRTFD*). We may prove,
for example, that as long as the determiner complies with its obligations the
protocol result will be ‘fair’. Suppose we specify ‘fairness’ as follows:

fair iff winning = none ∨ winner =winning (41)

The statically determined fluent constant fair holds in a protocol state if and
only if the dispute is unresolved (winning = none) or the dispute is resolved
in favour of the declared winner (winner =winning). We want to examine
whether or not a protocol result is ‘fair’, that is, whether or not the fluent
constant fair is true in the final state of a protocol execution.

Proposition 1 The protocol result will be ‘fair’ if and only if in the final
protocol state there is no obligation on the determiner to declare.

PROOF. First we will prove that if in the final protocol state there is no
obligation on the determiner then the protocol result will be ‘fair’. Assume a
final protocol state s in which there is no obligation on the determiner and
the result is not ‘fair’:

s 6|= obl(declare(det ,Protag)), for any Protag

s |= winning 6= none ∧ winner 6=winning ∧ turn = role of (det)

32

(Recall that role of (det) = determiner is ‘rigid’. Moreover, in a final protocol
state turn = determiner .) s |= winning 6= none iff s |= winning =Protag for
some protagonist Protag , and so:

s |= winning =Protag ∧ winner 6=Protag

Since s is a state of DRTFD*, it is an interpretation of σf such that

s = Tstatic(s) ∪ Simple(s)

Tstatic(s) =def {F | static law ‘F if G’ is in DRTFD*, s |= G} and Simple(s) de-
notes the set of simple fluent atoms satisfied by s (see Section 2.3). From law
(29) and the fact that

s |= turn = role of (det) ∧ winning =Protag ∧ winner 6=Protag

we have that

obl(declare(det ,Protag)) ∈ Tstatic(s)

According to our initial assumption, however, there is no obligation on the
determiner in s, which implies that s 6= Tstatic(s) ∪ Simple(s). Therefore, s is
not a state of DRTFD*.

Second we will prove that if the protocol result is ‘fair’ then in the final state
there is no obligation on the determiner to declare. Assume a final proto-
col state s in which there is an obligation on the determiner to declare and
the result is ‘fair’. If fair is true in s then either winning = none is in s or
winner =winning is in s. Consider first the case winning = none:

s |= obl(declare(det ,Protag)) ∧ winning = none ∧ turn = role of (det)

for some Protag . Given law (29), we have that

obl(declare(det ,Protag)) /∈ Tstatic(s)

Moreover, since obl are statically determined fluent constants, we also have
that

obl(declare(det ,Protag)) /∈ Simple(s)

Therefore, s 6= Tstatic(s) ∪ Simple(s) and s is not a state of DRTFD*.

The proof that s is not a state of DRTFD* for the case in which winner =winning
is similar.

The obligation to declare might never arise during a protocol execution. Propo-
sition 1 shows that in this case the result will be ‘fair’. If an obligation to

33

declare does arise, however, the protocol result is also guaranteed to be ‘fair’,
as long as the determiner complies with the obligation.

Ccalc provides an automated means for proving properties of a protocol
specification. We express the C+ action description DRTFD* in Ccalc’s input
language and then query Ccalc about DRTFD* to prove properties of the
RTFD* specification. (The types of query that Ccalc computes were pre-
sented in Section 3. Details of Ccalc’s input language may be found in (Lee
et al., 2001; Akman et al., 2004).) Consider the following example:

Proposition 2 A proper, timely concede(Protag ,Q) action always leads to a
state in which Protag has an explicit premise that Q.

We instruct Ccalc to compute all states s′ such that

• (s , ε, s ′) is a transition of DRTFD*,
• s |= proper(concede(Protag ,Q)) ∧ timely(concede(Protag ,Q)), and
• ε |= concede(Protag ,Q).

For every state s′ computed by Ccalc we obtain

s ′ |= premise(Protag ,Q) = t

This is because, briefly, a proper and timely concession is not objectionable in
the presented RTFD* (see Table 3). Therefore, the effects of such an action,
expressed by law (15), cannot be blocked. In other words, even when

ε |= concede(Protag ,Q) ∧ objected(Ag)

the resulting state s′ always includes premise(Protag ,Q) = t.

More details about the computational experiments performed with Ccalc on
DRTFD* are presented in the following section.

We may prove further properties of the RTFD* specification, in the manner
shown above, such as that the effects of any non-objectionable action cannot
be blocked, an objection always blocks the effects of an objectionable action,
there is always a permitted action for a participant when it is its turn to
‘speak’, a protagonist’s performance of a forbidden action always leads to a
sanction, the determiner is never obliged and forbidden to declare the winner,
and so on.

In Section 11 we discuss alternative techniques for proving properties of a
protocol specification.

34

9 Executing RTFD*

Proving properties of a specification can be seen as a design-time activity.
For instance, protocol designers may wish to prove properties of a protocol
specification in order to determine whether or not this specification meets
their requirements. Additionally, agents (or their designers) may wish to prove
various properties of a protocol specification when deciding whether to enter
(deploy their agents in) that protocol.

At run-time, we may execute a protocol specification to provide, amongst other
things, information about the protocol state current at each time. Computa-
tion of such information is a special case of a prediction query (see Section 3).
A protocol state — which actions are proper, timely, objectionable, permitted,
and so on — may be publicised to (a subset of) the protocol participants, or
their designers. (Such run-time services may be provided by a central server or
in various distributed configurations. Further discussion of these architectural
issues is outside the scope of this paper.) Other run-time services include the
calculation of plans, by means of computing answers to planning queries, and
retrieval of past protocol states, by means of computing answers to postdic-
tion queries (as already mentioned in Section 3, plans may be additionally
computed at design-time). We show in this section example prediction and
planning queries on the RTFD* specification, and the results obtained. To
save space, details of postdiction query examples are omitted.

To execute the presented RTFD* protocol, one has to choose specific values
for the following parameters:

• Duration of timeouts; this can be expressed as the maximum number of
messages that can be exchanged in the given communication channel in the
interval defined by any two consecutive timeout events. In our formalisation
a timeout duration is expressed as the maximum number of transitions
that may take place between any two consecutive timeout events (in this
specification a transition is labelled with either a main protocol action,
objected or not, or a timeout event).

• Number of turns for each protagonist.
• Number of permitted objectionable actions (see Section 7.3).

To conduct computational experiments, arbitrary numerical values were cho-
sen for these parameters. For a concrete illustration we will present here ex-
periments in which at most two main protocol actions are physically possi-
ble between two consecutive timeout events (that is, at most two transitions
may take place between two consecutive timeout events), each protagonist has
three turns to ‘speak’, and one objectionable action is permitted. As already
mentioned, the specified logic of disputation is very simple (only classical im-

35

Table 5
A Sample Run of RTFD*

act proper timely obj per obl

cl(pro, q)
cl(Protag , p) cl(pro,Q) cl(opp, p) all none
cn(opp, q) cn(pro,Q) cn(opp, q)
rtr(pro, q) rtr(pro,Q) dn(opp, q)
dn(opp, q) dn(pro,Q) dcl(det ,Protag)
dcl(det , pro)

timeout
cl(Protag , p) cl(opp,Q) cl(pro, p) all none
cn(opp, q) cn(opp,Q) rtr(pro, q)
rtr(pro, q) rtr(opp,Q) dcl(det ,Protag)
dn(opp, q) dn(opp,Q)
dcl(det , pro)

dn(opp, q),
objected(pro)

cl(pro, p) cl(opp,Q) cl(pro, p) all none
cl(opp,Q) cn(opp,Q) rtr(pro, q)
rtr(pro, q) cn(opp,Q) dcl(det ,Protag)
dcl(det ,Protag) dn(opp,Q)

cl(pro, p),
objected(opp)

cl(pro, p) cl(opp,Q) cl(pro, p) cl(pro, q) none
cl(opp,Q) cn(opp,Q) rtr(pro, q) cl(opp,Q)
rtr(pro, q) cn(opp,Q) dcl(det ,Protag) cn(Protag ,Q)
dcl(det ,Protag) dn(opp,Q) rtr(pro, p)

rtr(opp,Q)
dn(Protag ,Q)
dcl(det ,Protag)

plication is allowed). Moreover, for the experiments presented ‘silence implies
consent’ is incorporated in the protocol specification.

We mentioned earlier that the propositions that the two protagonists may
claim, concede to, retract, and deny should also be specified at the outset. (As
will be discussed later, this restriction may be lifted by re-compiling DRTFD*

each time a protagonist claims a new proposition.) In order to keep sample
runs small we will present queries and the computed results concerning only
two propositions: the topic q, and p.

The first column of Table 5 shows a sample run of RTFD*; the information
displayed on the remaining columns, that is, which actions are proper, timely,
objectionable, permitted and obligatory at each state, is produced by com-
puting answers to a number of prediction queries. To save space, in Table 5
claim is written as cl , concede as cn, retract as rtr , deny as dn and declare
as dcl . Terms containing variables Protag and Q stand for all their instances.

36

Consider the following prediction query: at the initial protocol state the pro-
ponent pro claims the topic of the argumentation q; which actions are proper,
timely, objectionable, permitted or obligatory at the resulting state? The an-
swer to this query is displayed in the six rows below the claim(pro, q) action
labelled cl(pro, q).

At the state resulting from claim(pro, q), proponent pro has a premise that q
(see law (13)). Therefore, at that state, it is improper for pro to claim q (see
law (20)). It is proper for pro, however, to claim p because, at that state, pro
does not have a premise that p. The remaining information displayed in Table
5 is computed in a similar manner.

Note that at the state resulting from claim(pro, q) it is timely only for pro to
perform an action. This is so because it is the proponent’s turn to speak (see
Table 2 for the specification of timely actions).

claim(opp, p), concede(opp, q) and deny(opp, q) are objectionable in the state
reached by the performance of claim(pro, q). This is due to the fact that these
actions are untimely and proper. At the same state declaring either pro or
opp is objectionable because in either case the declaration is untimely and
winner = none (see Table 3 for the specification of objectionable actions).

All actions are permitted at the resulting state of the query presented above.
Recall that an action is permitted if it is not objectionable or the specified
limit of objectionable actions has not been reached; in this sample run one
objectionable action per participant is permitted. In the same state, no ac-
tion is obligatory; obligations are associated with declarations and arise when
it is the determiner’s turn to speak. (The specifications of permissions and
obligations were presented in Table 4.)

The next action in the protocol run presented in Table 5 is a timeout that
sets turn = opponent . Consequently, in the following state it is timely only for
opp to perform an action. After the timeout opp denies q while pro objects to
opp’s action. The denial is not objectionable and, therefore, pro’s objection
does not block the effects of opp’s action. The next action in the protocol run,
however, claim(pro, p), is objectionable and thus opp’s objection blocks the
effects of pro’s action.

After the performance of pro’s objectionable claim, pro is no longer permitted
to perform an objectionable action because it reached the specified limit of
permitted objectionable actions. Non-conformance with this prohibition will
sanction pro.

A final remark on the protocol run presented in Table 5 concerns the ‘silence
implies consent’ principle. Due to this principle, at the first two states dis-
played in Table 5 it is proper to declare pro, but improper to declare opp, the

37

Table 6
A Sample Run of RTFD*

act proper timely obj per obl

timeout
cl(Protag ,Q) dcl(det ,Protag) cl(Protag ,Q) cl(Protag ,Q) dcl(det , opp)
dcl(det , opp) dcl(det , pro) dcl(det , opp)

dcl(det , pro)
cl(Protag ,Q) dcl(det ,Protag) cl(Protag ,Q) cl(Protag ,Q) dcl(det , opp)
dcl(det , opp) dcl(det , opp)

dcl(det , opp),
objected(pro)

cl(Protag ,Q) dcl(det ,Protag) cl(Protag ,Q) cl(Protag ,Q) none
dcl(det , pro) dcl(det ,Protag)

argumentation winner. In these states pro is ‘winning’ the dispute because
premise(pro, q) = t and premise(opp, q) = u which imply, due to ‘silence im-
plies consent’ (see law (40)), that both protagonists accept q, the topic of argu-
mentation (the winning fluent constant is defined by laws (22)–(24)). If ‘silence
implies consent’ were not incorporated in the protocol then premise(opp, q) = u
would not imply that opp accepts the topic (see law (39)), and thus no pro-
tagonist would be ‘winning’. In this case, it would be proper to declare either
pro or opp the argumentation winner.

Table 6 presents another sample protocol run of RTFD* and the associated
information produced by computations of query answers. The timeout sets
turn = determiner . The proponent pro does not accept the argumentation
topic and thus the determiner is obliged to declare the opponent opp the win-
ner. Clearly, the next action of the presented run, declare(det , pro), does not
discharge this obligation. The obligation is discharged when declare(det , opp),
although pro objects to this declaration; pro’s objection does not block the
effects of the declaration as the latter action is not objectionable.

In addition to producing the protocol state current at each time, we may
compute plans in order to facilitate agents to achieve their goals. Consider the
following planning query: we are in a state in which: (i) it is the determiner’s
turn to speak, (ii) the dispute is unresolved, that is, no protagonist is ‘winning’,
and (iii) there is no declared winner. Find all paths to a final protocol state,
that is, a state reached after the final timeout, in which the proponent is
declared the winner.

Ccalc finds several solutions to this query. All solutions include the action
declare(det , pro) and the final timeout. Moreover, the declaration is either
not objected, or the proponent is not the only protagonist sanctioned. If the
proponent was sanctioned and the opponent was not, the declare(det , pro)
action would be objectionable (see law (37)) and thus an objection would
block its effects.

38

Here is another planning query: given the initial state of the protocol, is it pos-
sible to reach a state, within the maximum number of transitions of DRTFD*, in
which an agent: (i) has exceeded the limit of permitted objectionable actions
and, (ii) is not sanctioned?

Ccalc finds no solution within the maximum number of transitions of DRTFD*.
Given the chosen values for the number of turns of each protagonist (three),
and the maximum number of transitions that may take place between any two
consecutive timeouts (two), it can be calculated that the maximum number
of transitions of DRTFD*, that is, the number of transitions of the longest path
of DRTFD*, is twenty-one. (Intuitively, in the longest path of DRTFD* the pro-
ponent performs two actions and then a timeout takes place, signalling the
opponent’s turn; the opponent then performs two actions, followed by a time-
out signalling the proponent’s turn. The aforementioned sequence of actions is
repeated three times, that is, the number of turns of each protagonist. Finally,
the determiner performs two actions and the last timeout takes place.) Since
there is no solution within the maximum number of transitions, starting from
the initial protocol state, we will never reach a state in which an agent has
exceeded the limit of permitted objectionable actions and is not sanctioned.

10 Related Work

In Section 6 we discussed the points of departure of our formalisation from
Brewka’s account. Briefly:

• We employed the C+ language to specify the argumentation protocol, in-
stead of the Situation Calculus. Moreover, we executed the protocol spec-
ification with the use of Ccalc, thus providing several design-time and
run-time services to protocol designers, agent designers and agents them-
selves.

• We introduced deadlines to cater for realistic multi-agent protocols.
• We refined Brewka’s distinction of possible and legal actions. In our for-

malisation an action can be classified as physically possible, proper, timely,
objectionable, permitted or obligatory.

• We maintained the object mechanism; however, we forbid multiple objec-
tionable actions to avoid having to object to each such action.

• We introduced sanctions in order to discourage participants from performing
forbidden actions and not complying with obligations.

• We retained the ‘silence implies consent’ principle, as an optional feature of
the protocol.

Apart from ‘static’ argument systems, Brewka (2001, Section 6) formalises
‘dynamic’ argument systems, that is, argument systems in which participants

39

can start a meta-level debate, arguing about the protocol rules. ‘Dynamic’
protocol specifications are out of the scope if this paper.

Argumentation protocols have long been studied in the fields of philosophy
and computer science — see (Prakken, 2006) for a recent review. The focus of
this paper was on the procedural part of argumentation, that is, we focused
on the specification of the protocol rules rather than the logic of disputa-
tion. This is in contrast to research in nonmonotonic and uncertain reasoning
argument systems that, as Brewka (2001) mentions, have been used to de-
fine inference systems for existing nonmonotonic logics, or a non-standard
consequence relation for logics based on a notion of argument. (See, for ex-
ample, (Cayrol, 1995; Dung, 1995; Krause et al., 1995; Pollock, 1996; Bon-
darenko et al., 1997; Prakken and Sartor, 1997); Chesñevar et al. (2000), and
Prakken and Vreeswijk (2002) provide two surveys.) Different logics of dispu-
tation are suited to different types of argument. Our protocol formalisation
was not bound to a specific logic of disputation.

Like (Gordon, 1994, 1995; Prakken, 2000, 2005; Brewka, 2001), we adopted a
‘public semantics’ (Prakken, 2006, Section 6), that is, we made no assumptions
about the participants’ internal architectures. This is contrast to approaches
that allow for protocol rules referring to a participant’s internal belief base (for
instance, (Kraus et al., 1998; Amgoud et al., 2000; Parsons and McBurney,
2003; Parsons et al., 2002, 2003a,b)).

A line of research that is closely related to our work is that of (Bodenstaff et al.,
2006). These researchers employ Shanahan’s (1999) ‘full Event Calculus’ to
formalise Prakken’s (2005) dialogue system for argumentation, and Parsons,
Wooldridge and Amgoud’s (2003b) persuasion dialogue. Bodenstaff et al. for-
malise the procedural aspect of argumentation, expressing the ‘legal’ protocol
moves in terms of a ‘reply structure’, distinguishing between ‘attacking’ and
‘surrendering’ replies. In this paper we presented a finer classification of pro-
tocol actions than Bodenstaff and colleagues’ classification of ‘legal’/‘illegal’
actions. Concerning the reply structure, Prakken (2006) notes that it is not
a standard feature of all dialogue systems (see, for example (Fulda, 2001)).
In any case, it is possible to adjust our formalisation in order to express a
reply structure (in this paper our aim was to reconstruct Brewka’s account of
RTFD that did not explicitly include such a structure). This can be done by
adjusting our specification of proper actions.

Apart from research on argumentation, work that has similar objectives to ours
comes from the distributed artificial intelligence literature on norm-governed
systems specification. A few examples are the approaches on ‘artificial so-
cial systems’ (Moses and Tennenholtz, 1992, 1995; Shoham and Tennenholtz,
1992, 1995; Tennenholtz, 1995; Fitoussi and Tennenholtz, 2000), ‘law-governed
interaction’ (Minsky and Ungureanu, 2000), and ‘electronic institutions’ (Es-

40

teva et al., 2000, 2001, 2002b,a; Rodriguez-Aguilar and Sierra, 2002). Close to
our work is Yolum and Singh’s (2002; 2004) work on ‘commitment protocols’.
These researchers formalise, in Shanahan’s ‘full Event Calculus’, a set of op-
erations on commitments such as create, discharge, cancel, release, and so on.
Moreover, they employ an Event Calculus planner (Shanahan, 2000) to facili-
tate the planning of commitment protocol participants. It is important to note
that in Yolum and Singh’s work the term ‘commitment’ refers to a form of
(directed) obligation between agents, and is not used as an alternative term
for ‘premise’. It is difficult to see how an argumentation protocol, or many
other interaction protocols for multi-agent systems (for instance, protocols for
negotiation, voting, performing transactions in electronic marketplaces, and
so on), can be specified simply in terms of commitments in this sense. At the
very least, a specification of a protocol’s constitutive norms is also required.

11 Conclusion

We have focussed in this paper on the formal representation of the proce-
dural aspects of an argumentation protocol, using Brewka’s reconstruction
of Rescher’s theory of formal disputation as a concrete example. We distin-
guished in the specification between the constitutive rules defining the pro-
tocol itself — the protocol actions and their effects on the protocol state —
and the physical environment within which the protocol is executed, and the
normative environment which may place further constraints on what protocol
actions are permitted or obligatory. Although in the simplest cases a protocol
action is permitted if and only if it is both proper and timely, there are many
reasons why this need not always be so. We presented some simple examples
by way of illustration, but it should be clear that there are many other possi-
bilities that we did not discuss. There is also much choice in deciding where to
place the boundary between the constitutive and normative components. For
instance, we chose in the example presented here to say that the claim of Q
by a protagonist who already holds Q as a premise is not proper, has no effect
on the protocol state, but is permitted. We could have chosen to say instead
that such a claim is proper but never permitted. Or that it is not proper, does
have an effect on the protocol state (in that it requires the other protagonist
to concede or deny), but is not permitted. One objective of the present work
is to allow such variations to be specified and examined, and to help evaluate
the effectiveness of proposed sanctioning and enforcement mechanisms.

In an earlier formalisation of Brewka’s protocol (Artikis et al., 2003) we speci-
fied the constitutive elements of the protocol by defining the conditions under
which an agent has institutional power (competence, capacity) to perform
a particular protocol action; we then said that an action is ‘valid’ when it
is performed by an empowered agent. In this paper we have constructed a

41

more structured and detailed specification by defining separately the condi-
tions under which an action is proper and timely, as has also been suggested
by Prakken et al. (Prakken, 1998; Prakken and Gordon, 1999). One aim of the
paper was to see how this additional structure would be reflected in the speci-
fication of a concrete example. A more detailed specification still would define
what exact forms of message or utterance count as expressing a claim, con-
cede, deny, retract, declare, and object action. We have not defined that level
of detail here. It would be an important component in a run-time mechanism
but is not so important if we are primarily interested, as here, in investigating
properties of the specified protocol. We have also found that it adds flexibility
to specify separately which actions are objectionable, though that is perhaps
difficult to demonstrate convincingly in a comparatively simple protocol such
as Brewka’s. Finally, we have shown how the ‘silence implies consent’ principle
can be included straightforwardly as an optional component by marking as un-
confirmed those premises that have not been explicitly conceded or retracted
by the opponent.

In principle, the kind of specifications presented in this paper could also be
expressed in other temporal reasoning formalisms. The C+ language, however,
has a number of important features that have led us to choose it as the basis
for further developments. First, it is a comparatively expressive formalism
with fine control for specifying default persistence of fluent constants. The
availability of static laws moreover means, amongst other things, that complex
specifications can be given structure. For example, most of the rules defining
proper(. . .) and timely(. . .) constants in this paper can be expressed as static
laws with simple conjunctions as their conditions. Additional structure can be
provided by introducing suitably chosen intermediate concepts, such as the
fluent winning used in our example, themselves defined by means of static
laws. This ability is important if large specifications are to be undertaken.

Second, besides its semantics through translation to the formalism of ‘non-
monotonic causal theories’ (Giunchiglia et al., 2004), a C+ action description
has an explicit semantics in terms of transition systems. This is important
because it provides a link to a wide range of other formalisms and tools based
on transition systems. We have been able to devise, for example, an extended
form of C+ specifically designed for representing norms and institutions (Ser-
got, 2004a,b; Sergot and Craven, 2006), including direct support for (a version
of) the ‘counts as’ relation for actions (Jones and Sergot, 1996) and a treatment
of permitted/forbidden states, transitions and runs. The relationship between
permitted and obligatory actions presented in this paper, for instance, which
had to be formulated explicitly in the C+ specification (see Section 7.3), is
built into the semantics of the language in the extended version. We have not
employed the extended form of C+ in this paper because space prevents the
presentation of its additional features.

42

The language C+ (and its derivatives) also has some important limitations.
Most obviously, from a representational point of view, the language inherits
the limitations of transition systems, in particular that the executable actions
(transitions) in any given state s of the system, and their effects, can depend
only on the state s and not on the path or history by which state s was
reached (unless of course we encode the entire history in every state s). The
C+ language itself (though not the underlying formalism of causal theories)
can only express causes relationships between successive states; delayed effects
cannot be expressed directly. This is what makes a detailed formulation of the
object mechanism awkward and fiddly to express in C+, and why we chose
to omit the details from this paper. (But see (Craven and Sergot, 2005) for
a modified form of C+ which can express delayed effects.) In other protocols
where the moves available to a participant might depend on the entire history
of the protocol so far (a participant is restricted on the number of repeated
claims it can make, for instance), these limitations are not so easily overcome.
Extensions to C+ capable of expressing such constraints in a concise manner
are one direction of our current research.

From the point of view of implementation, Ccalc provides an immediate and
convenient means of implementing C+ action descriptions. The execution of
the RTFD* specification, however, confirmed our previous experience regard-
ing Ccalc’s efficiency, and in particular that it does not provide a practical
means for supporting run-time activities. A major limitation, of course, is the
need to encode the underlying logic of disputation, which here we have done by
means of explicit instances of the implies fluent constants. This clearly works
only for small examples. It also requires that we are able to specify at the out-
set the complete set of propositions and default rules that could be claimed
during the argumentation. Whilst it is possible to improve the efficiency of the
Ccalc implementation by pre-compiling this part of the action description
(the implies constants are ‘rigid’), and even in principle re-compiling the action
description every time a protagonist claims a new, unanticipated, proposition,
this is clearly not a practical way of supporting run-time activities. It is only
adequate for conducting computational experiments with the specification of
the kind discussed in Section 9. (The ‘logic of disputation’ for the examples
in that section is trivial but that was chosen deliberately to keep the sample
runs small enough to be presented.)

Ccalc is not the only means by which C+ action descriptions could be exe-
cuted. We have also used versions of the Event Calculus to specify and execute
(an earlier version of) the RTFD* protocol (Artikis, 2003, Sections 6.10–6.12).
Given an instance of the specification and a narrative — a record of what ac-
tions have been performed so far — this (Prolog) implementation allows all
protocol states, including what is permitted and obligatory at each state, to
be queried and computed efficiently. It is not necessary to specify all propo-
sitions in advance, and it is comparatively easy to implement the underlying

43

logic of disputation as another Prolog module to be added to the protocol
specification. The Event Calculus implementation, however, is not well suited
to planning and postdiction tasks. More importantly, we also lose the explicit
transition system semantics which we see as the single most important advan-
tage of the C+ formulation.

Recent work by Craven (2006) has investigated the relationships between
Event Calculus and C+. His EC+ implementation provides an efficient Event
Calculus style of computation of narratives with (a restricted form of) the
C+ language, providing a promising means of supporting run-time activities.
He has also exploited the transition system semantics to connect C+ to model
checking software (specifically NuSMV (Cimatti et al., 2002)). This allows pro-
tocol properties, expressed in Liner Temporal Logic (LTL) and Computation
Tree Logic (CTL), to be verified by means of standard model checking tech-
niques on protocol specifications expressed in the C+ language. Application
of these methods to larger examples is a direction of our current research.

Acknowledgements

This article is an updated and extended version of (Artikis et al., 2003). We
are grateful to the reviewers and the participants of ICAIL’03, who gave us
useful feedback. We should also like to thank Joohyung Lee and Vladimir
Lifschitz for their suggestions regarding the C+ language and Ccalc. The
authors themselves, however, are solely responsible for any misunderstanding
about the use of these technologies.

This work was supported partly by the EU ALFEBIITE Project (IST-1999-
10298) and partly by the EPSRC project ‘Theory and Technology of Norm-
Governed Self-Organising Networks’ (GR S74911 01).

References

Akman, V., Erdogan, S., Lee, J., Lifschitz, V., Turner, H., 2004. Representing
the zoo world and the traffic world in the language of the Causal Calculator.
Artificial Intelligence 153 (1–2), 105–140.

Amgoud, L., Maudet, N., Parsons, S., 2000. Modelling dialogues using argu-
mentation. In: Proceedings of the International Conference on Multiagent
Systems (ICMAS). IEEE Computer Society, pp. 31–38.

Artikis, A., November 2003. Executable specification of open norm-
governed computational systems. Ph.D. thesis, University of London,
retrieved March 6, 2006, from http://www.doc.ic.ac.uk/~aartikis/

publications/artikis-phd.pdf, also available from the author.

44

http://www.doc.ic.ac.uk/~aartikis/publications/artikis-phd.pdf
http://www.doc.ic.ac.uk/~aartikis/publications/artikis-phd.pdf

Artikis, A., Sergot, M., Pitt, J., 2003. An executable specification of an argu-
mentation protocol. In: Proceedings of Conference on Artificial Intelligence
and Law (ICAIL). ACM Press, pp. 1–11.

Artikis, A., Sergot, M., Pitt, J., 2006. Specifying norm-governed computa-
tional societies. Tech. Rep. 2006/5, Imperial College London, Department
of Computing, retrieved March 6, 2006, from http://www.doc.ic.ac.uk/

research/technicalreports/2006/DTR06-5.pdf.
Bodenstaff, L., Prakken, H., Vreeswijk, G., 2006. On formalising dialogue sys-

tems for argumentation in the event calculus. In: Proceedings of Workshop
on Non-Monotonic Reasoning.

Bondarenko, A., Dung, P. M., Kowalski, R., Toni, F., 1997. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence 93, 63–101.

Brewka, G., 2001. Dynamic argument systems: a formal model of argumenta-
tion processes based on situation calculus. Journal of Logic and Computa-
tion 11 (2), 257–282.

Brewka, G., Eiter, T., 1998. Prioritizing default logic. In: Festschrift 60th
Anniversary of W. Bibel. Kluwer.

Cayrol, C., 1995. On the relation between argumentation and coherence based
entailment. In: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI). pp. 1443–1448.

Chesñevar, C., Maguitman, A., Loui, R., 2000. Logical models of argument.
ACM Computing Surveys 32 (4), 337–383.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A., 2002. NuSMV Version 2: An OpenSource
Tool for Symbolic Model Checking. In: Proc. International Conference on
Computer-Aided Verification (CAV 2002), Copenhagen, July 2002. LNCS
2404. Springer, see http://nusmv.irst.itc.it.

Craven, R., September 2006. Execution mechanisms for the action language
C+. Ph.D. thesis, University of London.

Craven, R., Sergot, M., 2005. Distant causation in C+. Studia Logica 79 (1),
73–96.

Dung, P. M., 1995. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence 77 (2), 321–358.

Esteva, M., de la Cruz, D., Sierra, C., 2002a. ISLANDER: an electronic in-
stitutions editor. In: Castelfranchi, C., Johnson, L. (Eds.), Proceedings of
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
ACM Press, pp. 1045–1052.

Esteva, M., Padget, J., Sierra, C., 2002b. Formalizing a language for insti-
tutions and norms. In: Meyer, J.-J., Tambe, M. (Eds.), Intelligent Agents
VIII: Agent Theories, Architectures, and Languages. LNAI 2333. Springer,
pp. 348–366.

Esteva, M., Rodriguez-Aguilar, J., Arcos, J., Sierra, C., Garcia, P., 2000. In-
stitutionalising open multi-agent systems. In: Durfee, E. (Ed.), Proceedings

45

http://www.doc.ic.ac.uk/research/technicalreports/2006/DTR06-5.pdf
http://www.doc.ic.ac.uk/research/technicalreports/2006/DTR06-5.pdf

of the International Conference on Multi-agent Systems (ICMAS). IEEE
Press, pp. 381–382.

Esteva, M., Rodriguez-Aguilar, J., Sierra, C., Garcia, P., Arcos, J., 2001. On
the formal specifications of electronic institutions. In: Dignum, F., Sierra,
C. (Eds.), Agent Mediated Electronic Commerce. LNAI 1991. Springer, pp.
126–147.

Fitoussi, D., Tennenholtz, M., 2000. Choosing social laws for multi-agent sys-
tems: minimality and simplicity. Artificial Intelligence 119 (1-2), 61–101.

Fulda, J., 2001. The logic of ‘improper cross’. Artificial Intelligence and Law
8 (4), 337–341.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H., 2004. Nonmono-
tonic causal theories. Artificial Intelligence 153 (1–2), 49–104.

Giunchiglia, E., Lee, J., Lifschitz, V., Turner, H., 2001. Causal laws and multi-
valued fluents. In: Proceedings of Workshop on Nonmonotonic Reasoning,
Action and Change (NRAC).

Gordon, T., 1994. The pleadings game: an exercise in computational dialectics.
Artificial Intelligence and Law 2, 239–292.

Gordon, T., 1995. The Pleadings Game: An Artificial Intelligence Model of
Procedural Justice. Kluwer Academic Publishers.

Jones, A., Sergot, M., 1993. On the characterisation of law and computer
systems: the normative systems perspective. In: Deontic Logic in Computer
Science: Normative System Specification. J. Wiley and Sons, pp. 275–307.

Jones, A., Sergot, M., 1996. A formal characterisation of institutionalised
power. Journal of the IGPL 4 (3), 429–445.

Klein, M., Rodriguez-Aguilar, J., Dellarocas, C., 2003. Using domain-
independent exception handling services to enable robust open multi-agent
systems: the case of agent death. Journal of Autonomous Agents and Multi-
Agent Systems 7 (1–2), 179–189.

Kowalski, R., Sergot, M., 1986. A logic-based calculus of events. New Gener-
ation Computing 4 (1), 67–96.

Kraus, S., Sycara, K., Evenchik, A., 1998. Reaching agreements through ar-
gumentation: a logical model and implementation. Artificial Intelligence
104 (1-2), 1–69.

Krause, P., Ambler, S., Fox, J., 1995. A logic of argumentation for uncertain
reasoning. Computational Intelligence 11 (1), 113–131.

Lee, J., Lifschitz, V., Turner, H., 2001. A representation of the zoo world in
the language of the Causal Calculator. In: Proceedings of Symposium on
Formalizations of Commonsense Knowledge.

Lifschitz, V., 2000. Missionaries and cannibals in the Causal Calculator. In:
Cohn, A., Giunchiglia, F., Selman, B. (Eds.), Proceedings of Conference
on Principles of Knowledge Representation and Reasoning (KR). Morgan
Kaufmann, pp. 85–96.

Lifschitz, V., Mccain, N., Remolina, E., Tacchella, A., 2000. Getting to the
airport: the oldest planning problem in AI. In: Minker, J. (Ed.), Logic-Based
Artificial Intelligence. Kluwer, pp. 147–168.

46

Makinson, D., 1986. On the formal representation of rights relations. Journal
of Philosophical Logic 15, 403–425.

Minsky, N., Ungureanu, V., 2000. Law-governed interaction: a coordination
and control mechanism for heterogeneous distributed systems. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 9 (3), 273–305.

Moses, Y., Tennenholtz, M., 1992. On computational aspects of artificial social
systems. In: Proceedings of Workshop on Distributed Artificial Intelligence
(DAI). pp. 267–284.

Moses, Y., Tennenholtz, M., 1995. Artificial social systems. Computers and
Artificial Intelligence 14 (6), 533–562.

Parsons, S., McBurney, P., 2003. Argumentation-based communication be-
tween agents. In: Communication in Multiagent Systems. LNCS 2650.
Springer, pp. 164–178.

Parsons, S., Wooldridge, M., Amgoud, L., 2002. An analysis of formal inter-
agent dialogues. In: Proceedings of Conference on Autonomous Agents and
Multi-Agent Systems. ACM Press, pp. 394 – 401.

Parsons, S., Wooldridge, M., Amgoud, L., 2003a. On the outcomes of formal
inter-agent dialogues. In: Proceedings of Conference on Autonomous Agents
and Multi-Agent Systems. ACM Press, pp. 616–623.

Parsons, S., Wooldridge, M., Amgoud, L., 2003b. Properties and complexity
of some formal inter-agent dialogues. Journal of Logic and Computation
13 (3), 347–376.

Pollock, J., 1996. Oscar - a general purpose defeasible reasoner. Journal of
applied non-classical logics 6 (1), 89–113.

Prakken, H., 1998. Formalising Robert’s rules of order. Tech. Rep. 12, GMD
– German National Research Center for Information Technology.

Prakken, H., 2000. On dialogue systems with speech acts, arguments, and
counterarguments. In: Proceedings of Workshop on Logics in Artificial In-
telligence. LNAI 1919. Springer, pp. 224–238.

Prakken, H., 2005. Coherence and flexibility in dialogue games for argumen-
tation. Journal of Logic and Computation 15, 1009–1040.

Prakken, H., 2006. Formal systems for persuasion dialogue. Knowledge Engi-
neering Review 21 (2), 163–188.

Prakken, H., Gordon, T., 1999. Rules of order for electronic group decision
making – a formalization methodology. In: Padget, J. (Ed.), Collaboration
between Human and Artificial Societies. LNCS 1624. Springer, pp. 246–263.

Prakken, H., Sartor, G., 1997. Argument-based extended logic programming
with defeasible priorities. Journal of Applied Non-Classical Logics 7 (1),
25–75.

Prakken, H., Vreeswijk, G., 2002. Logics for defeasible argumentation. In:
Gabbay, D., Guenthner, F. (Eds.), Handbook of philosophical logic. Vol. 4.
Kluwer Academic Publishers, pp. 218–319.

Reiter, R., 2001. Knowledge in Action: Logical Foundations for Describing and
Implementing Dynamical Systems. The MIT Press.

Rescher, N., 1977. Dialectics: A Controversy-Oriented Approach to the Theory

47

of Knowledge. State University of New York Press.
Rodriguez-Aguilar, J., Martin, F., Noriega, P., Garcia, P., Sierra, C., 1998.

Towards a test-bed for trading agents in electronic auction markets. AI
Communications 11 (1), 5–19.

Rodriguez-Aguilar, J., Sierra, C., 2002. Enabling open agent institutions. In:
Dautenhahn, K., Bond, A., Canamero, L., Edmonds, B. (Eds.), Socially In-
telligent Agents: Creating relationships with computers and robots. Kluwer
Academic Publishers, pp. 259–266.

Searle, J., 1969. Speech Acts. Cambridge University Press.
Sergot, M., 2004a. (C+)++: An action language for modelling norms and in-

stitutions. Tech. Rep. 2004/8, Department of Computing, Imperial Col-
lege London, retrieved March 6, 2006, from http://www.doc.ic.ac.uk/

research/technicalreports/2004/DTR04-8.pdf.
Sergot, M., 2004b. Modelling unreliable and untrustworthy agent behaviour.

In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (Eds.),
Proceedings of Workshop on Monitoring, Security, and Rescue Techniques
in Multiagent Systems (MSRAS). Advances in Soft Computing. Springer-
Verlag, pp. 161–178.

Sergot, M., Craven, R., 2006. The deontic component of action language nC+.
In: Goble, L., Meyer, J.-J. C. (Eds.), Deontic Logic and Artificial Normative
Systems. Proc. 8th International Workshop on Deontic Logic in Computer
Science (DEON’06), Utrecht, July 2006. LNAI 4048. Springer Verlag, pp.
222–237.

Shanahan, M., 1999. The event calculus explained. In: Wooldridge, M., Veloso,
M. (Eds.), Artificial Intelligence Today. LNAI 1600. Springer, pp. 409–430.

Shanahan, M., 2000. An abductive event calculus planner. Journal of Logic
Programming 44, 207–239.

Shoham, Y., Tennenholtz, M., 1992. On the synthesis of useful social laws for
artificial agent societies. In: Proceedings of Conference on Artificial Intelli-
gence. The AAAI Press/ The MIT Press, pp. 276–281.

Shoham, Y., Tennenholtz, M., 1995. On social laws for artificial agent societies:
off-line design. Artificial Intelligence 73 (1-2), 231–252.

Singh, M., 2000. A social semantics for agent communication languages. In:
Dignum, F., Greaves, M. (Eds.), Issues in Agent Communication. LNCS
1916. Springer, pp. 31–45.

Tennenholtz, M., 1995. On computational social laws for dynamic non-
homogeneous social structures. Journal of Experimental and Theoretical
Artificial Intelligence 7.

Yolum, P., Singh, M., 2002. Flexible protocol specification and execution: ap-
plying event calculus planning using commitments. In: Castelfranchi, C.,
Johnson, L. (Eds.), Proceedings of Conference on Autonomous Agents and
Multiagent Systems (AAMAS). ACM Press, pp. 527–535.

Yolum, P., Singh, M., 2004. Reasoning about commitments in the event cal-
culus: An approach for specifying and executing protocols. Annals of Math-
ematics and Artificial Intelligence 42 (1–3), 227–253.

48

http://www.doc.ic.ac.uk/research/technicalreports/2004/DTR04-8.pdf
http://www.doc.ic.ac.uk/research/technicalreports/2004/DTR04-8.pdf

	1 Introduction
	2 The C+ Language
	2.1 Basic Definitions
	2.2 Syntax
	2.3 Semantics

	3 The Causal Calculator
	4 Rescher's Theory of Formal Disputation
	5 Brewka's Reconstruction of RTFD
	6 A Variation of Brewka's Reconstruction of RTFD
	7 Specifying RTFD*
	7.1 Physical Capability
	7.2 Proper and Timely Actions
	7.3 Permitted Actions
	7.4 Enforcement Strategies
	7.5 Additional Considerations

	8 Proving Properties of RTFD*
	9 Executing RTFD*
	10 Related Work
	11 Conclusion

