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Abstract

DNA sequencing using the fluoresence based Sanger method comprises
interpretation of a sequence of signal peaks of varying size whose colour
indicates the presence of a base. We have established that the ability
to predict the variations effectively makes available novel error correction
information which will improve sequencing efficacy. Our experiments so
far have used basic models of the Sanger reaction chemistry and machine
learning techniques. These have enabled us to make base calls just using
context information, specfically ignoring the peak data at the base call-
ing position. The 80% success rate of our blind experiments is striking,
and will be improved by a more accurate model of trace behaviour. To
this end, and to integrate the information into mainstream basecalling,
we wish to develop an enzyme kinetics model susceptible to calibration of
its component rates such that trace data can be accurately predicted. We
describe DNA sequencing trace data, outline the trace prediction problem
requirements on the model, and discuss model construction and calibra-
tion issues.

1 Introduction

This technical report extends the brief working paper presented to the PASTA
2006 workshop [1] with more detail and initial sketches of the modelling struc-
tures which we intend to explore as part of the next phase of research into
Sanger and Pyrosequencing modelling.

DNA sequencing is achieved using two main methods. The Sanger method [2]
was invented in the late 70s, improved with fluorescent rather than radioactive
instrumentation a decade later [3], and commonly reads of the order 1000 bases
per sample. The Pyrosequencing approach [4] is more recent, with enormous
throughput, but shorter read lengths currently of the order 100 bases. We have
proposed an approach to interpreting DNA sequencing data which improves
accuracy and read length by leveraging a unique source of information encoded
in the behaviour of the signals [5].

Signal intensity in both methods varies in a repeatable, sequence-dependent
manner. This leads to base calling errors later in the data where noise levels
are higher and separation less clear. We suggest abduction of the base sequence
through hypothesis of sequence composition for subsequent rejection if the pre-
dictable data does not agree with the target data as well as other hypotheses.
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Hypotheses remaining after the competition are then regarded as plausible in-
terpretations of the data. This process requires a model which can predict the
trace data expected from a sample of DNA with any given base sequence. Mod-
elleing trace data behaviour in sufficient detail is an on-going research issue.
We have performed machine learning work in which the behaviour is exploted
through a classifier, resulting in a clear demonstration of the presence of con-
textual information by calling bases using the context without reference to the
signal at the calling position [6]. In this paper, we focus on the Sanger reac-
tion, but note that the pyrosequencing reaction will be susceptible to similar
but conveniently simpler analysis. Svantesson provides a basic model and initial
parameterizations [8] which approximately simulates Pyrograms as a system of
ordinary differential equations produced from a simplified model of polymerase
action.

Our Sanger models to date, while operable in validation experiments, have
been approximate, and mimic rather than simluate the system. That is, the
model is designed to reproduce the observable characteristics of the data, rather
than fundmentals of the system producing it. Analysis of DNA polymerases in
the biochemistry literature has reached a level of maturity and coherence which
we can realistically work to adopt into a computation framework. In particular,
a framework model for DNA polymerase activity recently produced [12] can be
rewritten as a Markov chain or Petri net, or in a stochastic process algebra for
subsequent manipulation.

Recentdevelopments in the modeling of biochemical systems by members of
the process algebra research community offer a means for pursuing the next stage
of modeling research in which the true biochemical interactions and structural
dynamics will be modelled in a formal context. We are particularly interested
in the developing approach of Calder, Gilmore and Hillston, of which we see an
example in [9]. In this approach using the PEPA [10] language and associated
tools, dual viewpoints on the system are formulated, allowing some freedom in
manipulation, which will assist the analysis of some of the parameters we need
to calibrate.

This working paper introduces the motivation for our model of the Sanger
reaction kinetics, and some of the main issues which will influence the form
of the model. Personal communication with the authors of [9] has highlighted
the representation of inhibition of enzyme action as an interesting issue. The
Sanger reaction exhibits substrate substitution and sequestering, and allosteric
modulation of enzyme activity, which correspond to inhibition.

2 The sanger method

The Sanger method [2] allows us to identify the base sequence of a sample of
DNA by copying all the DNA molecules in the sample starting at the same
location, but ending at stochastically selected locations with a label indicating
that final base. When we electrophorese these fragments, they are sorted into
order of size, and imaging them allows the sequence to be read off according to
the labels. In figure 1 we see a sequence of clear peaks which are read off to
give the base sequence shown as letters over the trace.

DNA is copied by using a DNA polymerase and providing it with nucleotides
to add to a complementary primer sequence. The peaks in the trace data arise
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from imaging the bodies of fragments resulting from copying the DNA template
by adding deoxynucleotides (or dNTP) from a given position, but terminating
when a modified terminator or dideoxynucleotide (ddNTP) is incorporated. The
terminators are labelled according to which type of base they represent, and
when the fragments are sorted by size through electrophoresis, these labels can
be imaged to give a trace of which an example excerpt is shown in figure 1.

3 Sanger sequencing trace data

C C A G G T C C A G A T G A A G C T
200 210

G C A G C T G C A G CG C A G C TG C A G C T

Figure 1: Sequencing trace data excerpts. Each peak indicates a base in the
sequence. Samples with the same base sequence appear substantially identical.

The peak patterns from one sample of DNA appear substantially identical
to those from another sample with the same base sequence. Figure 1 indicates
that the peak heights vary widely. Later in the data, noise levels worsen, peak
spacing becomes more erratic, and small peaks are sometimes submerged. If we
know what size the peaks should be, then we can detect the features of interest.
This is the goal of our modeling research.

4 An early modelling approach - the bulk se-
quential model

Begninning with a similar premise to [13], we wrote down a description of the
production of extension fragments which expresses sequence dependent action
of the polymerase1. We refer the reader to [5] for details.

Each polymerase begins by copying at the first base position after the end
of the primer. The probability of termination at that point is the probability

1Which we propose independently in [5], but recently learn was suggested – but not mod-
elled or leveraged – in [7]
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of incorporating a terminator. Constant factors indexed on the DNA sequence
forming the footprint of the polymerase express the dependency of the extent to
which the polymerase discriminates against terminators. We suggest that this
is an allosteric, or shape dependent effect. Terminators are unnatural, and hard
to incorporate as part of the copying process. This is an important point which
we will discuss later when summarizing the detailed enzyme kinetic model we
wish to build.

This model gives an overall exponential decay, with local detail in the peak
heights provided by the sequence dependent terminator discrimination fators R.
It can predict in the region of 80% of the variation in peak sizes, which is enough
to apply abductive basecalling. The sequence footprint affecting polymerase
activity covers about three positions to the left, and one to the right [7], so five
peak heights are directly affected by each base position, and many more are
indirectly affected by the change in number of template molecules still copying
after them.

We have tried a simplified representation of the biochemistry, and machine
learning methods, and each approach has demonstrated that the data encodes
redundant information in the peak heights and spacing. This enables error cor-
rection, and a range of interpretive capabilities previously thought impossible
using standard sequencing equipment. Currently, we capture approximately
80% of the variation in peak heights with either of these approaches. We be-
lieve that the variation we have missed results from inhibition of processes in
the Sanger reaction through allosteric effects, sequestering of substrate, and
subsitution of incorrect substrate. Ssubstrate availability effectively links the
otherwise independent polymerase activity on the template DNA molecules.

4.1 Calibration

The bulk sequential model requires values for the preference of the polymerase
for normal nucleotides over terminators. In [5] we derive a basic numerical
analysis approach which seeks to minimize the error between predictied ratios
of neighbouring peak heights against ratios in real trace data. This places con-
straints on the sequence composition of the trace data, which led us to build
bespoke DNA molecules for the purpose. While the ability to swiftly calibrate
the models from a small set of DNA molecules is desirable, practical barriers
have motivated the formulation of a description of the fit which allows calibra-
tion from existing data by applying an information theoretic approach. Essen-
tially, the error function to be minimized comprises the variance in estimates of
a given sequence dependent terminator discrimination factor (Rk in section 4)
as observed at different locations in the calibration data. We refer the reader
to [5] for details.

5 Abduction sequencing

Using the bulk sequential model, if we ignore the peak size at the position we’re
trying to call, and hypothesize A, C, G or T for the basecall, the hypothesis
which leads to the best fit peaks for the neighbourhood is the correct basecall on
78% of occasions. We can beat this by a small margin using machine learning
techniques as we describe below in section 6, and if our model were perfect,
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we might expect close to 100%. This theme of base calling through hypothesis
testing, first suggested in [5] motivates the development of predictive models of
peak size in trace data.

The most successful model so far predicts about 80% of the detailed variation
in peak sizes. We have used this in a peculiar blind basecalling experiment in
which we predict the peaks in the context of the hypothesized basecall, but ig-
nore the data at the calling position. This is succeeds for just under 78% of base
calls, which compares to the approximately 25% we would expect from random
guessing. In the particular data set we used, we could have predicted the base on
almost 30% of occasions looking at the surrounding sequence because of a biased
base composition. We found this as part of classification experiments in which
neural nets responding to contextual bases, peak sizes and spacing achieved a
blind calling rate of just under 80%. We expect the abductive blind calling rate
to approach 100% in traditionally “good” data with a full model of the system.
This will allow implementation of a basecaller to sequence traditionally “bad”
data by using all the information available.

Predicting traces involves interaction with the target data, since some pa-
rameters are not known a priori, most importantly the terminator fraction, or
relative concentration of ddNTP molecules in the reaction. For example, if we
use too high a value for the terminator fraction in our prediction, the trace peaks
will die away too quickly. When we have the footprint modulated terminator
discrimination factors, we can numerically estimate the required value with, for
example, the Levenberg marquardt approach, with the four terminator fractions
as free variables.

We therefore propose a sequence composition, find the reaction conditions
which make that hypothesis generate traces which best fit the target data, and
measure the degree of fit. If we propose a set of hypotheses which includes the
correct interpretation, we find our answer as that which fits best.

6 Machine learning

We trained a classification tree taking as its inputs the base sequence and trace
peak sizes around a basecall, to output the base call as its class. When the inputs
include the trace peaks at the basecall position, the classifier did not include any
other measurements in its decision process and produced a base calling error
rate similar to a traditional basecaller. When the peak sizes at the base calling
position were excluded (as in the example we described in section 5), this gave
an error rate of just under 30%. The classification tree made decisions swinging
on peak heights, peak spacing and base composition. These measurements were
used to train a range of neural nets for bagging, which resulted in an error rate
of less than 20%, which we compare with an error rate of 68% using just the
base composition. If the base sequence were truly random, this would be 75%.

7 Enzyme kinetics

We are fortunate to have a general model of polymerase behaviour in copying
DNA, provided by Keller and Brozik [12]. The model focusses on a single
DNA strand with an associated polymerase molecule, and tracks this complex’s
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internal configuration changes and interactions with substrate. We refer the
reader to the second figure in [12], which gives a summary of the incorporation
cycle. Briefly, the polymerase resembles a right hand cradling the DNA template
with the sticky end of the complementary strand at the crook of the thumb and
forefinger. An addition cycle involves the arrival of a nucleotide, the closing of
the fingers, chemical cleaving of the pyrophosphate, opening of the fingers, and
then escape of the pyrophosphate. There are a couple of alternative routes in
this process in which stacking of the template base occurs before or after the
arrival of the nucleotide. In addition, there are some loops of activity off the
main cycle which do not contribute to progress, and may interact with the main
forms of inhibition which we describe below.

To model the Sanger reaction using this description of polymerase activity,
we must explicitly model incomplete interactions with incorrect bases, and pro-
cessing of terminators. We consider it likely that interactions with incorrect
terminators at various stages in the framework model generates some of the
behaviour which cannot be attributed to footprint DNA directly.

The progress of copying DNA is stochastic, and is described in [12] as obey-
ing an approximately Poissonian process because the distribution of times taken
to copy a given length of DNA loooks approximately normal. We suggest that
it more closely resembles the phase-type distribution often used in queueing
theory, since the polymerase goes through a number of steps to achieve a nu-
cleotide incorporation. Each step involves the crossing of an energy barrier or
conjunction of two species, which are commonly regarded as Poisson processes
for the purposes of kinetic modeling.

We include an intial sketch of the states and transitions we will use to model
the polymerase for the Sanger and Pyrosequencing processes. First we show the
same model as given in [12] as a more regular structure for clarity in figure 2.
This is exactly the same model, including the labelling of states according to
z) the position of the polymerase with respect to the free end of the extending
strand (up/down), a) the state of the thumb (open/closed), n) the occupancy
of the active regions of the polymerase (nucleotide,pyrophosphate,empty) and
f) the template base (stacked/unstacked). For the Sanger model, this must
be augmented with terminator incorporation, which results in an absorbing
state per position on the template as shown in figure 3. The distraction states
represented by thumb oscillations are omitted for clarity. This Sanger reaction
component, which represents the states corresponding to polymerase activity at
a given position on the template can then be composed to follow extension of a
DNA strand, as sketched in figure 4.

7.1 Inhibition

The likelihood of incorporation of a terminator is much lower than for a normal
nucleotide. This is intrinsic to the chemical entity, but we are more interested
in what causes such interactions to vary with sequence. A strong source of
sequence dependent inhibition may be allosteric: the polymerase is distorted
differently by each possible base sequence in its footprint.

Other factors which inhibit the progress of the polymerase in its tasks of
copying DNA include restriction of the availability of substrate, and distraction
of the polymerase by incorrect substrate. Consider a single polymerase molecule
which is associated with a DNA molecule with an unoccupied position for an A
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Figure 2: Keller and Brozik’s model laid out for clarity as a regular structure
with common transitions between variant stages in the copying process high-
lighted with dotted lines.

nucleotide or terminator. If an A terminator finds its way to the incorporation
site, it will remain there until it is either incorporated, or it dissociates from
the complex. During this period, it is not available to other complexes, which
therefore experience a lower terminator fraction. This effectively inhibits the
takeup of terminators by other complexes.

As well as enzymes sequestering substrate, we also see substrate sequestering
enzymes. This happens in the Sanger reaction, because all four dNTPs and
ddNTPs are made available, and each of these is free to associate with the
polymerase/DNA complex. If an incorrect nucleotide enters the site, this blocks
other incoming material, thus inhibiting the polymerase copying process. This
could be referred to as transient substitution.

These various inhibitory effects involving common substrate interactions give
rise to cross terms in the set of ODEs describing the system behaviour, which
generates higher order derivatives, and this is a classic opportunity for oscilla-
tion. Our best explanation for the oscillation-like patterns in runs of the same
base are a combination of polymerase footprint effects and emergent dynamic
behaviour.

The framework model suggests that the polymerase alternates its thumb
between open and closed if it is free to do so. This affects progress around
the incorporation cycle, and will interact with the other forms of inhibition to
generate more complex behaviour. This additional behaviour is modelled by in-
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Figure 3: The framework model with an additional termination structure. The
absorbing state is shown as a square. The catalysis transition is shown leading
to another position on the template, since this model is intended to map onto
particular base positions.

cluding the uncoloured states omitted between figures 2 and 3. The behaviour of
this system as a whole will be revealed through experimentation with the models
in simulation, through integration of the corresponding ODEs and subsequent
calibration of rate constants, and model checking.

7.2 Calibration

The natural reaction of a numerical analyst faced with the task of calibrating
a non-linear model is to formulate an expression for the error between a mea-
surable output of the model model and some training data. We then use an
iterative optimization approach – probably Levenberg Marquardt or a close re-
lation – to explore this error space to find a minimum. However, in this case, we
are dealing with an oscillatory system, so techniques from the system identifica-
tion literature are indicated. It is straightforward enough to calibrate a simple
harmonic model, but there may be a number of modes of oscillation in any given
run of bases, so we will have to do some work in the frequency domain.

Our bulk sequential replication model has 1024 parameters to be calibrated,
which are accessible through a relatively simple error expression. The framework
model has potentially many more, but the dominance of the base immediately
before the incorporation position suggests we may be able to begin estima-
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A C G T

Figure 4: Sanger components composed to follow four base positions (left to
right) on a template with sequence TGCA. The terminating fragments end
with complementary bases ACGT respectively

tion using an approximated parameter space. The model will exhibit resonance
modes, as is common in large sets of interacting ODEs. These are necessary to
describe the oscillatory behaviour in homogeneous base runs, e.g. more than
five As, in which the peak sizes oscillate, or drop suddently then seem to os-
cillate to an asymptote. This behaviour varies widely with the length of the
homogeneous run, but is strongly repeatable for the same length of run. With-
out such interactions, we would expect essentially identical peak heights three
bases in to the region, continuing up to a base from the end. We will therefore
calculate relationships between rate constants in the model using the sharing of
substrate in long runs of single bases to constrain the numerical system.

The complement of calibration of the model is profiling of the free variables
for assessment of particular hypotheses in our abduction sequencing approach.
We need to be able to predict peak sizes in the middle of the trace without
explicitly modeling the initial conditions of the reaction. This will require the
approximation of activity during this period, to be polished by reference to the
target data.

8 Conclusions

We have some plausible descriptions of how substrate titre variation creates
interactions between reacting complexes at different positions on the template,
and can affect product titres in the Sanger reaction. The research issues to
be addressed include integration of the DNA polymerase framework model into
a structure which accurately reflects activity in the Sanger reaction, and cal-
ibrating the kinetic rates in that model. This calibration must ensure that
local distractions and inter-complex activity dependencies are expressed with
sufficient accuracy to predict the behaviour in DNA sequencing traces.

This will be pursued through the construction of a process algebraic repre-
sentation of the enzyme and substrate interactions, exploration of this model’s
behaviour through translation to ODEs, with intial approximate calibration of
the model, or calibration of an approximate model, and model checking to ex-
amine the potential for expression of certain behaviours. This research aims to
take fundamental biochemistry results, extend them to an application which can
only be solved using computation principles, leveraging a developing technol-
ogy in computer science to achieve outcomes which feed back to biochemistry,
and enable a DNA sequencing method which will benefit genetic research and
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healthcare.
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