
An Approach to Improve Accuracy in Probabilistic Models
using State Refinement

Paulo H. Maia, Jeff Kramer,
Sebastian Uchitel

Department of Computing
Imperial College London

180 Queen’s Gate
London SW7 2AZ, UK

{pmaia,su2}@doc.ic.ac.uk,
j.kramer@imperial.ac.uk

Nabor C. Mendonça
Metrado em Informática Aplicada

Universidade de Fortaleza
Av. Washington Soares, 1321

60811-905 Fortaleza, CE, Brazil
nabor@unifor.br

ABSTRACT
Probabilistic models are useful in the analysis of system be-
haviour and non-functional properties. Reliable estimates
and measurements of probabilities are needed to annotate
behaviour models in order to generate accurate predictions.
However, this may not be sufficient, and may still lead to
inaccurate results when the system model does not properly
reflect the probabilistic choices made by the environment.
Thus, not only should the probabilities be accurate in prop-
erly reflecting reality, but also the model that is being used.
In this paper we propose state refinement as a technique
to mitigate this problem, showing that it is guaranteed to
preserve or increase the accuracy of the initial model. We
present a framework for iteratively improving the accuracy
of a probabilistically annotated behaviour model with re-
spect to a set of benchmark properties through iterative
state refinements.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software / Program Veri-
fication—model checking, statistical methods, verification.

General Terms
Design, Languages, Theory, Verification.

Keywords
Probabilistic model checking, behaviour model, accuracy, re-
finement.

1. INTRODUCTION
Behaviour modelling is a powerful technique which allows

developers to describe abstractly and reason about the in-
tended behaviour of a software system. It has the benefit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

of easing the understanding and analysis of how software
systems are expected to behave at runtime, thereby proving
useful in uncovering flaws at design time [17]. In addition,
behaviour models provide the basis to mechanically check
whether a system satisfies some desired set of properties [8,
6].

While most existing approaches for behaviour analysis
have been focused on the validation of functional features
(for instance, verifying safety properties), there is a grow-
ing interest in the integration of quantitative validation into
the analysis process to meet non-functional requirements or
to quantify the likelihood of properties [14, 3]. In order to
allow quantitative evaluation behaviour models have to be
augmented with features such as real-time delays [1, 23],
cost and reward [16], and probabilities [5, 4, 20, 9].

System behaviour is often modelled using a finite state
machine based formalism, such as Labelled Transition Sys-
tems (LTS) [13], where each model refers to a system com-
ponent which interacts with the other components through
shared events. Probabilistic models can extend the classical
LTS formalism, or variations of it, with probabilistic transi-
tions. Formal verification of such models typically involves
checking quantitative properties, defined using a temporal
logic language, such as PCTL, and can be carried out via
simulation, numerical analysis or by using a probabilistic
model checker, such as PRISM [15]. Examples of success-
ful applications of probabilistic model-checking in different
domains using PRISM can be found in [16].

There is a significant body of work on probabilistic mod-
elling formalisms, their properties and efficient algorithms
for analysing them. However, the problem of constructing
probabilistic behaviour models has received less attention.
To aid engineers in building probabilistic behaviour models,
some approaches (e.g., [7, 19, 21, 2]) assume the existence
of a non-probabilistic behaviour model and develop tech-
niques that annotate transitions with probabilities based on
additional information such as operational profiles [18], ex-
ecution traces, and probability estimations. Such kinds of
approaches have been used to probabilistically reason about
system behaviour in a number of software-related activities,
including system reliability prediction [7, 19], model-based
testing [21], and information retrieval[2].

Regardless of the annotation techniques, these approaches
consider the quality of the information (or lack thereof) used
to generate the annotations as the main threat to the accu-

racy of the resulting annotated model. For instance, the reli-
ability of estimations and the size of the execution trace sam-
ple space will impact the accuracy of the annotated model.

However, in this paper we show that even when we use
an accurate information source to compute probabilities for
annotations, and have a model that captures precisely the
non-probabilistic behaviour of the system, inaccurate results
can be obtained due to the structure of the non-probabilistic
model being annotated. The essence of the problem is that
the annotation processes are heavily influenced by the struc-
ture of the model being annotated and may produce different
results when annotating non-probabilistic behaviour models
that are behaviourally equivalent but structurally different.
In summary, the structure of the model to be annotated
matters, since the probabilistic information may be misrep-
resented after the annotation is completed, which may cause
the analysis to produce inaccurate predictions (false positive
or false negative results on probabilistic properties)

In particular, we show that the notion of state refinement
can explain the phenomenon of inaccurate probabilistically
annotated behaviour models from accurate probabilistic in-
formation and that it can be used to mitigate this problem.
We show that state refinement is guaranteed to preserve or
increase the accuracy of the initial annotated model. Based
on this, we present a framework for iteratively improving the
accuracy of a probabilistically-annotated behaviour model
with respect to a set of benchmark properties through iter-
ative state refinement of the model-to-be-annotated.

The rest of the paper is organised as follows. Section 2
introduces the motivating system that will be used through-
out the paper to illustrate our concepts and techniques. Sec-
tion 3 contains some definitions of the mathematical founda-
tion we use. The concept of state refinement and its proper-
ties is presented in Section 4. Section 5 describes how succes-
sive refinements produce an accurate model, while Section 6
presents our proposed framework. A case study conducted
using the framework is shown in Section 7. Section 8 com-
pares our work to other related approaches. Finally, conclu-
sions and future work are presented in Section 9.

2. MOTIVATING EXAMPLE
Assume we have a set of traces that we will use as infor-

mation for annotating a provided behaviour model. These
traces may have come from a simulation or the observation
of the use of an existing system. In this section, we are going
to show that depending on the structure of the behaviour
model that will be annotated, the result of annotating and
model checking may be different from the actual count in
the traces.

To conduct these experiments, we took a probabilistic
model of a system and generated the set of traces using sim-
ulation. More specifically, our behaviour analysis process, il-
lustrated in Figure 1, consists of picking a system behaviour
model (BM), which is correct in that it does model the ac-
tual behaviour of the system under analysis, and the set of
traces generated by a simulation of the system. The simula-
tion is fed by an environment probabilistic behaviour model
(EPBM). The traces are input to an algorithm, called Anno-
tator, which annotates the occurrence probabilities of each
transition, as observed from the simulation traces, on the
provided BM, and generates as output a probabilistically
annotated behaviour model (PABM). This PABM is then
analysed with respect to a set of desired properties using the

PRISM model checker [15]. The process also relies on an-
other algorithm, called Counter, which calculates the proba-
bility of each property holding by counting the total number
of simulation traces that satisfy that property. Finally, the
results obtained with PRISM are compared against those
produced by Counter, with their differences, referred to as
∆, indicating the accuracy of the initial BM.

Figure 1: Behaviour analysis process used in the
motivating experiments.

The running example used in this paper is based on an
application called TeleAssistance (TA), a distributed sys-
tem for medical assistance, originally described in [11]. It
consists in a web service process for remote assistance of
patients. Once the process is started by the patient, it of-
fers three choices: sending the patient’s vital parameters,
sending a panic alarm by pressing a button and stopping the
application. The first message contains the patient’s vital
parameters that are forwarded to the Medical Laboratory
service (LAB), where the data will be analysed. The LAB
replies by sending one of the following results: change drug,
change doses or send an alarm. The latter message trig-
gers the intervention of a First-Aid Squad (FAS) composed
of doctors, nurses, and paramedics, whose task is to attend
to the patient at home in case of emergency. To alert the
squad, the process sends an alarm to the FAS. When the
patient presses the panic button, the application also gen-
erates an alarm sent to the FAS. Finally, the patient may
decide to stop the TA service. TA can fail in the follow-
ing situations: sending an alarm to the FAS, receiving the
data analysis from the LAB, or sending a change dose or
change drug message to the patient. In all cases, the system
goes to a final state indicating that a failure has occured.
Figure 2(a) depicts the TA behaviour model.

Let us suppose we are interested in validating the following
properties with respect to the TA application:1

R1: The probability that no failures ever occurred is greater
than 0.7

R2: After a changeDrug or changeDose has occurred, the
probability that the next message received by the TA
generates an alarm which fails is less then 0.015

R3: The probability that no failures ever occurred and the
user has sent the vital parameters or pressed the panic
button at least once is greater than 0.65

Our experiment uses two validation scenarios: one using
the original TA behaviour model and the other using a be-
haviourally equivalent but structurally different one. For
each scenario we conduct two different validation experi-
ments, as described below.

1The first two properties presented here were also originally
described in [11], while the third one is an adaptation of
other properties described therein.

Figure 2: BM for the TeleAssistance application (a) and the EPBMs used in Experiments 1 and 3 (b), 2
and 4 (c).

Table 1: Probabilities of the environment controlled
actions in the PABMs of Experiments 1 and 2

Action Experiment 1 Experiment 2

vitalParamMsg 0.6 0.30
pButtonMsg 0.3 0.37
stopMsg 0.1 0.33

2.1 Using the Provided Behaviour Model
Experiment 1. This experiment used the BM shown in

Figure 2(a), which is the same one used in [11]. The EPBM
is also the same used in that work and it is depicted by
Figure 2(b). In that environment model, the user always
chooses each of the options provided by the system with the
same probability at each interaction cycle. As we can see
from Table 1, the probabilities of the environment controlled
actions (vitalParamsMsg, pButtonMsg, and stopMsg) in the
PABM generated for this experiment represents the same
probabilistic choices made by the user.

Table 2 shows the analysis results for this first experi-
ment. We can see that ∆ is small for all three properties
analysed, which indicates that the provided BM is accurate
with respect to that particular EPBM.

Experiment 2. This experiment is similar to the first
one, with the exception that we used a different EPBM,
shown in Figure 2(c). In that model, the user chooses each
option with different probabilities in each of three interac-
tions with the system. We can see from Table 1 that this
time the probabilities of the environment controlled actions
in the generated PABM are not consistent with the environ-

Table 2: Results for Experiment 1

Property PRISM COUNTER ∆

R1 0.75299 0.753 0.00001
R2 0.01595 0.016 0.00005
R3 0.64400 0.630 0.01400

Table 3: Results for Experiment 2

Property PRISM COUNTER ∆

R1 0.92899 0.929 0.00001
R2 0.01500 0.031 0.01600
R3 0.59500 0.821 0.22600

ment probabilistic choices.
Table 3 shows the analysis results for this experiment.

Here we can see that ∆ has increased for properties R2 and
R3, specially the latter, when compared to the results ob-
tained in the first experiment. In addition, according to
this experiment, PRISM indicates that property R2 is valid,
while R3 is violated. However, the Counter indicates that
both these results are false, and in fact R2 is violated, while
R3 is valid. Therefore, this experiment has generated both
a false positive and a false negative.

2.2 Using a Behaviour Model with Improved
Accuracy

Experiment 3. In this experiment we used the same
EPBM used in Experiment 1, but a different BM. The BM

Table 4: Results for Experiment 3

Property PRISM COUNTER ∆

R1 0.75299 0.753 0.00001
R2 0.01599 0.016 0.00001
R3 0.62999 0.630 0.00001

Table 5: Results for Experiment 4

Property PRISM COUNTER ∆

R1 0.92899 0.929 0.00001
R2 0.02500 0.031 0.00600
R3 0.82099 0.821 0.00001

used here is a behaviourly equivalent model of the one used
in the previous experiments, but structurally different, with
the transition cycle representing the user choosing between
sending vital parameters, pressing the panic button and
stopping the system being unfolded twice.

The analysis results for this third experiment are shown
in Table 4. Compared to the results of Experiment 1, which
used the same EPBM, we can see that in this experiment
there has been a significant improvement in the accuracy of
properties R2 and R3, with all three properties presenting a
small ∆.

Experiment 4. Finally, in this last experiment we used
the same BM of Experiment 3 and the EPBM of Experi-
ment 2. We ran the process again and obtained the results
shown in Table 5. Similarly to what happened in Experi-
ment 3, in this fourth experiment the probabilities computed
for all three properties were also more accurate when com-
pared to the results of Experiment 2, which used the same
EPBM. In addition, the problem of having false predictions
did not occur.

2.3 Discussion
The above experiments show that if we use a behaviour

model that properly represents the probabilistic choices made
by the environment, this model is accurate and, consequently,
we can expect more accurate predictions. This was observed
in Experiments 1, 3 and 4. On the other hand, using a be-
haviour model that does not take into account all the dif-
ferent probabilistic choices made by the environment may
result in inaccurate predictions, as it happened for Experi-
ment 2.

Therefore, in order to obtain accurate predictions, it is
necessary that the system behaviour model has a represen-
tative structure. By representative we mean that the struc-
ture of the behaviour model has to accurately reflect and be
consistent with the probabilistic choices made by the envi-
ronment.

3. FORMAL BACKGROUND
In this section, we formalise the notions of structure, be-

haviour and probabilistic behaviour model used in the pre-
vious section and that will be referred to throughout the
paper.

To describe system behaviour, we use the notion of La-
belled Transition Systems [13], as formalised below:

[Definition 1. LTS] A labelled transition system (LTS)

is a structure P=(S, A, Γ, q) where:

– S is a finite set of states;
– A = α(P) is a set of labels that denotes the communicat-
ing alphabet of P;
– Γ ⊆ (S × A × S) defines the labelled transitions between
states;
– q ∈ S is the initial state;

If s,t ∈ S and a ∈ A, we write s
a→ t if (s,a,t) ∈ Γ.

Equivalence relations provide a semantic framework for
constructing and comparing the behaviour represented by
LTSs. They can also be used when reducing the state space
of LTSs to simplify model analysis. We use the bisimulation
relation to identify LTSs with the same branching structure.

[Definition 2. Bisimulation] A binary relation < on
the states of an LTS P=(S, A, Γ, q) is a bisimulation if
whenever s < t and a ∈ A then the following holds:

– if s
a→ s’, there exists t’ such that t

a→ t’ and s’ < t’ ;
– if t

a→ t’, there exists s’ such that s
a→ s’ and s’ < t’ ;

Two states s and t are said to be bisimular, denoted by s
≈ t, in case (s, t) is contained in some bisimulation <. Given
two LTSs P and Q, we write P ≈ Q whenever α(P)=α(Q)
and there is a bisimulation between the states of P and states
of Q.

Let <(s) be the set of all the elements t ∈ S such that (s,
t) ∈ <. Hence, we write <−1(t) to describe the set of all
elements s ∈ S such that (s, t) ∈ <.

One of the strongest equivalence relations is isomorphism.
Two LTSs are isomorphic if their structure is exactly the
same. To compare, trace equivalence preserves a minimal
amount of structure: only the order in which actions can
occur is preserved. Bisimilarity, on the other hand, also pre-
serves the branching structure.

[Definition 3. Isomorphism] Two LTSs P = (S, A, Γ,
q) and Q = (S’, A’, Γ’, q’) are isomorphic if, and only if,
there exists a bijection f : S → S’ such that f(q) = q’ and s
a→ s’ iff f(s) → f(s’).

Effectively, this means that isomorphic LTSs are only al-
lowed to differ in their labelling of states. Given two LTSs P
and Q, we write P is structurally equivalent to Q whenever
α(P)=α(Q) and there is a isomorphism between P and Q,
and P is structurally different from Q otherwise.

Probabilistic LTSs extend the ordinary LTS formalism by
augmenting all transitions of the original LTS with a prob-
abilistic choice for the possible target states, rather than a
unique target state as it is the case in LTSs. That is, in
the probabilistic setting, the transitions are of the form s
a→ µ where s is the starting state, a an action label and µ

a transition probability function on the state space which
specifies the probabilities µ(t), 0≤p≤1, for any possible suc-
cessor state t.

[Definition 4. Probabilistic LTS] A probabilistic LTS
(PLTS) is a structure M = (S, A, Γ, q, µ), where:

– (S, A, Γ, q) is an LTS;
– µ: (S × A × S) → [0,1] is the transition probability func-
tion which assigns a positive real number less or equal to 1

for each transition such that the sum of the probability of
all transitions leaving the same state is 1.

We write Pµ for an LTS P annotated with the transition

probability function µ. If s,t ∈ S and a ∈ A, we write s
a[p]→

t if (s,a,t) ∈ Γ and a occurs with probability 0≤p≤1.
As in the LTS setting, there are different notions of equiv-

alence for probabilistic LTSs, such as probability trace and
failure equivalence. The behavioural equivalence we shall
consider in this paper is probabilistic bisimulation, defined
as:

[Definition 5. Probabilistic bisimulation] An equiv-
alence relation < over the states of a PLTS M=(S, A, Γ, q,
µ) is a probabilistic bisimulation whenever s < t, then the
following holds:

– ∀ a ∈ A, for all equivalence classes C of <, s
a[p]→C ⇔

t
a[p]→C.

Two states s and t are said to be probabilistically bisim-
ular, denoted by s ≡ t, in case (s, t) is contained in some
probabilistic bisimulation. Given two PLTSs P and Q, we
write P ≡ Q whenever α(P)=α(Q) and there is a proba-
bilistic bisimulation between the states of P and the states
of Q.

Based on the previous definitions, we can formalise the
problem that we are addressing as:

Remark 1. Let P and Q be two LTSs such that P ≈
Q and P is structurally different from Q. Let µ to be a
transition probability function over the states of P. Then ∃
a transition probability function θ, θ 6= µ, such that Qθ ≡
Pµ.

Remark 1 is a typical assumption that other researchers
take when probabilistically annotating an existing non prob-
abilistic behaviour model and that may lead to inaccurate
property prediction. We will show that this remark is false.
To do so, we can take as an example the models P1 and P2 of
Figure 3 representing the behaviour of a read-only variable.
Suppose we apply to P1 a transition function probability
µ={(wait,0.1), (open,0.9), (read,0.3), (close,0.7)}. By hy-
pothesis, we cannot apply the same transition probability
function to P2, then even if we repeat the probabilities of µ
on the respective transitions of P2, transitions read and close
from state 2 would have to have different probabilities from
the transitions with the same labels from state 1, prevent-
ing the probabilistic model of P2 from being probabilistically
bisimilar to P1µ. Therefore, whatever θ we choose, we will
never be able to produce probabilistically bisimilar models.

4. STATE REFINEMENT
As described in Section 2, there can be benefit to be gained

from refining behaviour models whose structure is not con-
sistent with the probabilistic model of the environment. In
this section, we describe the concept of state refinement,
which has a key impact on the property prediction accuracy.
We also demonstrate that by state refining a model we will
always improve the model accuracy or, at least, produce a
model as accurate as the previous one.

4.1 Concepts
Refinement is the process by which abstract specifications

are transformed into more realistic designs or concrete im-

plementations. This concept is frequently used, for example,
in model-driven software development, where the process of
development starts with an abstract model, which is refined
in later design phases. The main usefulness of refinement is
that the complex task of implementing a system that satis-
fies a given specification is made easier by gradually refining
the abstract specification until finally a (concrete) imple-
mentation is obtained [12].

We define state refinement as the process by which a be-
haviour model is transformed into a bisimilar model by ex-
panding a particular state, i.e., by introducing in the new
model a copy of that state and its transitions such that we
obtain two bisimilar states. The effect of it is a partition on
the state set of the refined model such that each partition is
abstracted by one state in the abstract model. Consequently,
the refined and the abstract models are not isomorphic, since
the former has a different structure from the latter. The
aim of state refinement is to find a behaviourally equiva-
lent model that improves the structure of the model being
refined, making it more realistic with respect to the real
system behaviour. We refine the states of a model based on
substitutability, i.e., the replacement of the abstract model
by its refinement cannot be observed. Formally, we define
this process as:

[Definition 6: State refinement.] Given two LTSs P1

and P2, we write P1 is state refined by P2, denoted by P1

v P2, if ∃ bisimulation < between P1 and P2 such that if s
< t, then |<(s)| > 1.

In section 2, the teleAssistance behaviour model used in
Experiments 3 and 4 is a state refinement of the original
model used in Experiments 1 and 2. Note that our concept of
state refinement does not take into account the probabilities
annotated on each model. In this way, our work differs from
others in the probabilistic refinement field, such as [10].

Another important concept is the notion of abstract state,
defined as:

[Definition 7. Abstract state] Given two LTSs P1=(S,
A, Γ, q) and P2=(S’, A’, Γ’, q’), P1vP2, we say that a state
s of P1 is an abstract state if ∃t ∈ S’, s < t, such that
|<(s)|>1.

To illustrate this concept, consider the models shown in
Figure 3. We have that P1 v P2 and P2 v P3. State 1 of
model P1 is an abstract state, since it is abstracting states 1
and 2 of P2. We say that a state refinement is valid if it
refines an abstract state. Hence, P2 is a valid refinement
of P1. On the other hand, P3 is an invalid state refinement
of P2, since it refines state 1 of P2 and it is not an abstract
state, given that |<(state 1 of P2)|=1. In the rest of the
paper, whenever we refer to a state refinement, we assume
that it is a valid refinement.

Although the state refinement process is carried out in the
non-probabilistic model, it is necessary to annotate proba-
bilities on the refined model in order to verify whether it is
accurate or not. Thus, we introduce the concept of Annota-
tor, which is responsible for inserting the probabilities into
the respective transitions of a behaviour model, yielding its
probabilistic counterpart. Formally, we define the Annotator
as:

[Definition 8: Annotator.] Given an LTS P and a tran-
sition probability function µ for P, we define Annotator(P,µ)
an algorithm that receives P and µ and produces a PLTS

Pµ by annotating the probabilities from µ on the respective
transitions of P.

We assume that whenever a model is state refined, its re-
spective transition probability function is also refined in a
sense that it will always provide the best transition prob-
ability function for each state of the new model, i.e., the
probabilities are as accurate as possible for those transitions.
Although this is a strong assumption, we argue that this is
what happens in the real world, since the probabilistic in-
formation that was misrepresented in the first model can be
more properly represented in the new model.

Given a property ϕ, we denote by ∆P µ the absolute dif-
ference between the result of the probabilistic verification
of ϕ against the annotated model Pµ and the result of the
probabilistic verification of ϕ against the real probabilistic
system behaviour model.

4.2 Properties of State Refinement
Here we present the state refinement properties that guar-

antee that accuracy is always preserved or increased when
refining a behaviour model and that after successive refine-
ments we will find a model that is accurate and for which
no more refinements are needed.

Transitivity : This property states that if P1 v P2, and
P2 v P3, then P1 v P3. This is true because if one state
of P1 abstracs two states of P2, and one of these states of
P2 abstracts two more states of P3, then it means that the
initial abstract state of P1 also abstracts those three states
of P3, thus by definition of state refinement, we have that
P1 v P3. For example, in Figur 3, model P1 is refined by
model P2, that is refined by model P4. By this property, we
have that model P1 is also refined by model P4.

Preservation or improvement of the accuracy : This
property states that by state refining a model we always im-
prove the accuracy or we do not obtain worse predictions.
To prove this property, consider the following theorem:

[Theorem 1.] Let P1 and P2 be two LTSs, µ1 and µ2 be
two transition probability functions and ϕ be a property. If
P1 v P2, Annotator (P1,µ1) = P1µ1 and Annotator (P2,µ2)
= P2µ2, then ∆ P 1µ1(ϕ) ≥ ∆ P 2µ2(ϕ)

In the worst case, we have µ1 = µ2, i.e., Annotator will re-
peat the same transition probability function for each transi-
tion leaving bisimilar states in both models. Then we obtain
probabilistically bisimilar models, which means that we have
∆P 1µ1(ϕ) = ∆P 2µ2(ϕ). However, as P2 is a refinement of
P1, then by the assumption that Annotator always gener-
ates the best probabilistic model, we have that µ2 is more
accurate than µ1. Hence, Annotator generates a probabilis-
tic model with more accurate probabilities, which implies in
∆P 1µ1(ϕ) > ∆P 2µ2(ϕ). Therefore, ∆P 1µ1(ϕ) ≥ ∆P 2µ2(ϕ).

Convergence: This property states that there is at least
one sequence of refinement steps that always generates an
accurate model and that, at a certain point, no more refine-
ment will be necessary. One model can have several refine-
ments, since it can have many abstract states. Furthermore,
the same abstract set can be refined in different ways. Then,
by the previous property, at least one of the refined models
will be more accurate than the abstract one. If we choose
the most accurate refined model and refine it, then it will

generate a more accurate model yet. By repeating the pro-
cess successively, we will always obtain a better model until
we reach a model that produces results as accurate as the
real probabilistic system behaviour model. At that moment,
no more refinement is necessary and an accurate model is
obtained.

Therefore, there is a real gain in accuracy when applying
state refinement to a model. Then, we have to work out
how to choose the best refinement at each refinement step
such that we obtain an accurate model at the end. The next
section discusses this issue.

Figure 3: Examples of state refinement.

5. OBTAINING AN ACCURATE MODEL
In the previous section, we introduced the concept of ab-

stract state. An inaccurate model has at least one abstract
state. In addition, by transitivity, we have that the same ab-
stract state, refined many times, will generate many refined
models. Thus, we have that an abstract state abstracts a
set of states with respect to a further refined model. As a
model can have different abstract states, we have the notion
of abstract state set, defined as:

[Definition 9. Abstract state set] Given two LTSs
P1=(S, A, Γ, q) and P2=(S’, A’, Γ’, q’), P1vP2, the Ab-
stract state set of P1 with respect to P2, denoted by Abs(P1,P2),
is the set of pairs (s,t), where s ∈ S, t ∈ S’, such that s is
an abstract state and s < t.

For example, consider the models shown in Figure 3. We
have that P1 v P2, P1 v P4 and P1 v P5. We also have that
Abs(P1,P2)= {(1,1),(1,2)}, Abs(P1,P4)= {(1,1),(1,2),(1,3)},
and Abs(P1,P5)= {(0,0),(0,2)}.

Now assume that model P4 of Figure 3 is the real system
behaviour model and model P1 is the original (provided) be-
haviour model. Note that Abs(P1,P2) ⊂ Abs(P1,P4), while
Abs(P1,P5) is not a subset of Abs(P1,P4). This shows that
P2 decreased the number of abstract states of P1 with re-
spect to P4. In addition, we can see that P2 has a structure
closer to P4 than P5 does. Therefore, there is a relation
between the abstract state set of a model and the distance
of that model to the real system model: the more abstract
states a model has with respect to the real model, the larger
the distance to that model is, and the less accurate the model
is.

Given P1, P2, and P3 three LTSs, if P1vP2, P2vP3, we
write that P2 is closer to P3 than P1 is if Abs(P1,P2) ⊂
Abs(P1,P3). Hence, among the possible refinements of a
model, the more accurate is the one for which the abstract
state set with respect to the real model is a subset of the

abstract state set of the abstract model with respect to the
real model.

Although useful, this concept of distance assumes that
the real system behaviour model is provided. In the real
world, it is unlikely that that model will be known before-
hand, since we may not have any information about the real
probabilistic choices of the environment. However, we can
show that among several refined models, the closest one to
the real model is the one that decreases ∆ with respect to
the given set of properties.

[Theorem 2.] Let P1, P2, and P3 be three LTSs such
that P1vP2, P2vP3. Let ϕ be a property and µ be a tran-
sition probability function such that Annotator(P1,µ)=P1µ

and Annotator(P2,µ)=P2µ. If Abs(P1,P2) ⊂ Abs(P1,P3)⇒
∆P 1µ(ϕ) > ∆P 2µ(ϕ).

As P1vP2, by Theorem 2 we have that ∆P 1µ(ϕ)≥∆P 2µ(ϕ).
However, as P2 is closer to P3 than P1 is, P2 has less abstract
states than P1. This way, Annotator(P2,µ) should produce
a better model than Annotator(P1,µ), which implies that ∆
between P1 and P2 cannot be equal. Therefore, ∆P 1µ(ϕ) >
∆P 2µ(ϕ).

Hence, we have shown that choosing the best refinement
means selecting the model that has the smallest ∆. Finally,
we have to show that after successive refinements we will
obtain an accurate model.

[Theorem 3.] Let P1, P2 be two LTSs and let µ be a
transition probability function. If P1 ≈ P2, P1 6= P2 and
Abs(P1,P2) = ∅, then Annotator(P1,µ) ∼= Annotator(P2,µ).

The fact that Abs(P1,P2) = ∅ means that P1 is not ab-
stracting any states of P2. In this way, if we apply the same
transition probability function to both models we will obtain
that the bisimilar states will have their transitions annotated
with the same probabilities. Hence, P1µ

∼= P2µ.
Therefore, when state refining an abstract model, if we

always choose the refined model that produces the smallest
∆ for the given set of properties, and successively refine it,
we will obtain an accurate model.

6. THE FRAMEWORK
Based on the theory of state refinement presented in the

previous section, we propose a framework to iteratively re-
fine a provided behaviour model until we obtain an accurate
model. The framework, shown in Figure 4, is a generali-
sation of the behaviour analysis process used to verify the
accuracy of the models in Section 2 since, in practice, we
may not know how the environment behaves probabilisti-
cally. In addition, it may be the case that the system under
analysis does not exist yet. Hence, we replace the traces gen-
erated by the simulation by a generic source of probability,
which also encloses, for instance, estimates and operational
profiles.

Broadly, our framework is divided into three phases: Phase 1
leverages a system behaviour model and a source of probabil-
ity to obtain a probabilistic behaviour model; Phase 2 takes
the probabilistic model of Phase 1 and verifies its accuracy
with respect to a group of properties; finally, if the model
is not accurate, it is inputted into Phase 3, where it will be
state refined, producing new models. These refined models
then feed Phase 1 and the whole process is carried out again
for each one, when the most accurate model among them is
determined. If it is still inaccurate, then the model is re-

fined. The process terminates when an accurate model is
obtained. The verification is based on a benchmark of prop-
erties, for which a true value is provided by an oracle, and
it is carried out through a comparison between the result
obtained from a probabilistic verification of each property
and the result from the oracle. A model is accurate if the
property prediction generates values similar to those of the
oracle. More details about each phase are provided in the
following sections.

Figure 4: Framework for state refinement.

6.1 Phase 1: Obtaining the Probabilistic Be-
haviour Model

In this phase, we obtain a probabilistic behaviour model
for the system under analysis by annotating the occurence
probability of each transition on the provided system be-
haviour model. We assume that the provided model is cor-
rect in that it does model the actual system behaviour. The
probabilities can come from different sources, such as esti-
mates made by an expert on the system, traces generated by
monitoring the system execution or an operational profile,
as proposed by [18]. We can see the source as a transition
probability function that assigns a number less or equal to
1 for each transition of the model.

We assume that the source of probability is complete with
respect to the model, i.e., it provides probability for each
transition of the model. However, if it is not complete, some
heuristics could be applied, such as annotating the transi-
tions leaving the same state equiprobably. It is out of our
scope to propose a method to generate the source of proba-
bility.

The Annotator is responsible for inserting the probabili-
ties in the behaviour model, yelding a PLTS.

6.2 Phase 2: The Model Accuracy Verifica-
tion Process

After having generated the probabilistic behaviour model,
the accuracy of the model is verified in Phase 2. In this
section we describe the elements involved in the verification
process and explain how we determine whether a model is
accurate or not.

6.2.1 Benchmark of properties
The accuracy of a model is determined with respect to a

group of properties, called the benchmark, which is provided
by the framework user.

In our framework, we use a particular kind of properties to
guide the state refinement process: properties that include

actions representing choices made by the environment. For
instance, all properties used in Section 2 are in that set, since
they involve the probability of the user choosing between
sending the vital parameters, pressing a panic alarm button
and stopping the system. Suppose, for instance, another TA
property described by [11] that says: “assuming that alarms
generated by pButtonMsg have low priority while alarms
generated by analyzeData have high priority, it is required
that the probability that a high priority alarm fails (i.e., it is
not notified to the FAS) is less then 0.012”. Looking at the
model depicted by Figure 2(a), we see that this property
regards only the transitions analyseData and sendAlarm,
which are internal to the system. In this way, whatever the
user does, it does not affect the result of the property. As
this kind of property is never affected by our state refinement
process, it cannot be used in the benchmark to guide the
model refinement process.

Each property is verified using a type of probabilistic ver-
ification, such as numerical analysis or probabilistic model
checking. Given a property ϕ and a PLTS Pµ, we write
prob(ϕ,Pµ) for the probability of the property ϕ holding on
Pµ obtained from a probabilistic verification process.

6.2.2 Oracle
In order to verify whether the probabilistic model is ac-

curate, the framework assumes that an oracle provides the
true value for each property of the benchmark. An oracle
can be, for instance, an expert on the system, such as the
developer or the user, who provides values for each property
based on their knowledge, or a set of traces of the system,
obtained from logging the system execution. Given a prop-
erty ϕ, a PLTS Pµ, and an oracle O, we write prob(ϕ,Pµ,O)
for the probability of the property ϕ holding on P provided
by the oracle O.

There is a concern regarding the reliability of the oracle.
For instance, an oracle based on estimates may be less reli-
able than an oracle based on the system traces. Nonetheless,
even using traces, a small sample set may be less reliable
than a larger one. We address this problem by rating the
oracle with the parameter δ that indicates the imprecision
of the oracle. If δ is high, so the oracle is more likely to
provide an imprecise value. This parameter is provided by
the framework user and works as an acceptable variation on
the measure of the accuracy of the model.

6.2.3 Accuracy verification
The accuracy verification is carried out by comparing the

result obtained from the probabilistic verification to the re-
sult provided by the oracle, regarding the same property.
We define the measure ∆ as:

[Definition 10. Difference between predictions] Given
a PLTS P, an Oracle O, and a property ϕ, the distance of
the predictions (∆) is calculated as: ∆P µ(ϕ) = |prob(ϕ, Pµ,
O) - prob(ϕ,Pµ)|

The accuracy is a subjective measure. For instance, some
users might say that if the difference between the predictions
is less than 0.01, then the result is accurate. On the other
hand, there may be users for whom an accurate result should
be one whose ∆ is less than 0.0001. We call the accuracy
threshold ε the maximal acceptable ∆. The less the thresold
is, the more precise the result will be.

Now, we can define our measure of model accuracy as:

[Definition 11. Model accuracy] A PLTS Pµ is accu-
rate with respect to a property ϕ if ε - δ ≤ ∆P µ(ϕ) ≤ ε +
δ.

Note that we take into account the oracle reliability when
stating the model accuracy. In other words, by considering
this parameter we are extending the accuracy threshold, so it
can vary depending on the precision provided by the oracle.
The more reliable the oracle is, the less the interference from
δ on ε there will be.

Finally, the model is outputted by the framework if it is
accurate. Otherwise, it is inputted into the next phase to
be refined.

6.3 Phase 3: Refinement
In this phase, the inaccurate model is state refined into a

group of new models. Then, each model goes through the
whole process in order to find which one produces better
predictions. Once we determine that model, we check if it is
accurate. If that model is still inaccurate, then it is refined
again, and the same procedure is performed for the new
refinements.

The state refinement carried out in this phase consists of
choosing a specific abstract state then expanding it. We
consider a state an abstract one if it has more than one
outgoing transition and if it can be reached by following
all possible paths started from that same state. Once we
identify an abstract state, we generate a group of refined
models by expanding it. There are different approaches to
expand a state, but all of them share the process of copying
the state and all further states that are in the branch started
by the abstract state, as well as their respective transitions.
The difference affects how this new branch will be linked to
the rest of the model: if by changing all incoming transitions
of the abstract state to this new branch, or if by linking only
some of those transitions.

7. CASE STUDY
In this section, we describe an application of our frame-

work and discuss the results we obtained. Although we val-
idate our framework through analysing a simulation based
on a real system, the framework is general and can be used
in the case where the system does not yet exist, such as for
predicting system reliability. In this setting, it could be used
as an extension of the approach described in [7].

We focus on the TA system, the same used in section 2,
and specifically on checking property R2. The goal of the
evaluation is to assess the gain in accuracy that the frame-
work introduces, taking into account the number of refine-
ment steps necessary and the size of the final model. We
achieve this goal by instantiating the framework like this:
we used a simulation of the TA, which is consistent with the
provided original system behaviour model, and generated a
set of traces randomly. The traces are our source of proba-
bilities and are used as input to Annotator and Counter, the
same algorithms used in the experiments of section 2, imple-
mented here as Java programs. We assume Counter as being
our Oracle that will provide the accurate result for the target
property. We used PRISM to model-check probabilistically
property R2 against each refined model. Our model refiner
was also implemented as a Java program that produces as
output the possible refined models for a given input model.
Due to space limitations, in this section we only compare
the results of three refinements for each model.

According to our Oracle, R2 occurs with probability 0.038
(hence the property is violated). We assume the value 0.0001
as both our accuracy threshold and the imprecision of the
Oracle, which relies on 1000 traces as the data set. Thus, we
consider that we have an accurate prediction if the result of
the probabilistic model check of R2 is between 0.0378 and
0.0382. Figure 5 depicts the refinement steps taken during
the application of the framework. Each node of that refine-
ment graph represents a behaviour model, where the root is
the provided behaviour model. The probability beside each
node is the result generated by PRISM by model checking
R2 for that model. Each level of the graph represents a re-
finement step taken during the refinement process. For each
model, three refinements were generated and their proba-
bilities compared in order to determine which one was the
more accurate.

From Figure 5, we can see that although the initial be-
haviour model produces neither a false negative nor a false
positive, it generates a very imprecise result if compared to
the accurate model (the right most node of the last level),
for which the R2 probability is more than double the R2
probability of the original model. However, by successively
refining that initial model, we always preserve the previous
probability or increase it, as we can see at each applied re-
finement step, until we reach an accurate model for which
no more refinement is necessary. In this case study, three
refinement steps were needed to obtain an accurate model.

The drawback of our state refinement technique is the
increase of the model state set. In this case study, the final
model is more than eight times larger (w.r.t. the number
of states) than the initial one. This problem may lead to
state space explosion, since the refined model might have
to grow exponentially in order to obtain an accurate model,
depending on how the environment uses the system. On the
other hand, the benefit of having an accurate model gives
us confidence to reason about future properties and new
requirements.

Figure 5: Refinement steps and accuracy results
from the application of the framework.

8. RELATED WORK
Quantitative behaviour analysis has been the focus of in-

tensive research in the last decades, and applied to address
different aspects of software behaviour within different prob-
lem domains [22, 10, 21, 19, 7, 11, 2]. In this section we
discuss some of the existing behaviour analysis approaches
and how they are related to our work.

In [19], the authors describe an approach for predicting

software reliability in which generative probabilistic behaviour
models are synthesised for each system component from sce-
narios annotated with scenario transition probabilities and
component reliability information. The resulting probabilis-
tic models are then composed in parallel and used to pre-
dict the overall system reliability. In that work, scenario
transition probabilities are assumed to come from an oper-
ational profile of the system, while component reliabilities
are simply estimated. A framework specifically aimed at
predicting component reliability at the architectural level is
described in [7], where Hidden Discrete Time Markov chains
are used to model normal and faulty component behaviour.
State and transition probabilities in the Markov chains can
be determined based on a combination of multiple informa-
tion sources, including operational profiles, architectural be-
haviour models, estimates by domain experts, requirements
documents, and simulation, thus avoiding their individual
limitations and inaccuracies. Component reliability is com-
puted by solving the Markov chain model using standard nu-
merical techniques. Finally, a more recent behaviour anal-
ysis approach is described in [11], where the authors also
use Discrete Time Markov chains to model and quantify
non-functional properties. However, in that work behaviour
models are continuously updated with new transition proba-
bilities obtained from the running system, which the authors
claim achieves increasingly better prediction accuracy.

All the above approaches share our goal of using prob-
abilistic behaviour models to quantitatively predict system
(in the case of [19] and [11]) or component (in the case of
[7]) level properties. In addition, they all share our concern
that having accurate models is key to improve prediction
accuracy. However, none of those approaches take into ac-
count the fact that the structure of the target behaviour
model (and not only its state and transition probabilities)
may have a strong influence in the analysis results. As we
have shown in the paper, annotating an existing behaviour
model with probabilistic information, even when using reli-
able information sources, can lead to inaccurate predictions
if the model does not properly represent the choices made
by the environment.

Our work is more closely related to the approach described
in [10], where the authors propose a method to model-check
quantitative properties using behaviour models specified as
Markov Decision Processes. In particular, we share the same
approach of starting from an initial model and gradually re-
fining it until we obtain a satisfactory (i.e., accurate) pre-
diction or no further refinement is possible. However, in
that work the authors apply model refinement to determine
whether the probability of reaching a particular final condi-
tion from any reachable state satisfying a given initial con-
dition is smaller or greater than a given value, while our
purpose is to find a structure that better represents the prob-
abilistic choices made by the environment with respect to a
given set of properties.

9. CONCLUSIONS AND FUTURE WORK
In order to obtain accurate results in probabilistic mod-

elling, we argue that it is important that both the proba-
bilities be accurate and the model itself accurately reflects
reality. We have shown an example which illustrates this,
indicated its consequences, and proposed a framework to ob-
tain accurate models through successive state refinements.

Our contribution is twofold. Firstly, we presented the

state refinement technique to mitigate inaccuracy predic-
tion, and showed that it is guaranteed to preserve or in-
crease the accuracy of the initial annotated model. Secondly,
we provided a working framework for iteratively refining a
model until an accurate model is obtained. We also intro-
duced the concept of benchmarking of properties to guide
our state refinement process.

Currently, we are investigating how to avoid the state
space explosion in case of a large model. In addition, we
are conducting more case studies in order to validate and
improve the framework. Finally, we intend to make the solu-
tion presented in this paper available through an integrated
tool based on LTSA[17].

10. ACKNOWLEDGEMENTS
This research is sponsored by CAPES (Brazil) under grant

no. BEX 4257-05/7.

11. REFERENCES
[1] R. Alur, L. J. Jagadeesan, J. J. Kott, and J. E.

Von Olnhausen. Model-checking of real-time systems:
a telecommunications application: experience report.
In ICSE ’97: Proceedings of the 19th International
Conference on Software Engineering, pages 514–524,
Boston, USA, 1997. ACM.

[2] C. R. Anderson, P. Domingos, and D. S. Weld.
Relational markov models and their application to
adaptive web navigation. In KDD ’02: Proceedings of
the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 143–152,
Edmonton, Canada, 2002. ACM.

[3] C. Baier, F. Ciesinski, and M. Groesser. Quantitative
analysis of distributed randomized protocols. In
FMICS ’05: Proceedings of the 10th international
workshop on Formal methods for industrial critical
systems, pages 2–7, Lisbon, Portugal, 2005. ACM.

[4] C. Baier and M. Kwiatkowska. Model checking for a
probabilistic branching time logic with fairness.
Distrib. Comput., 11(3):125–155, 1998.

[5] A. Bianco and L. de Alfaro. Model checking of
probabilistic and nondeterministic systems. FSTTCS:
Foundations of Software Technology and Theoretical
Computer Science, 15:499–513, 1995.

[6] W. Chan, R. J. Anderson, P. Beame, D. Notkin, D. H.
Jones, and W. E. Warner. Optimizing symbolic model
checking for statecharts. IEEE Trans. Softw. Eng.,
27(2):170–190, 2001.

[7] L. Cheung, R. Roshandel, N. Medvidovic, and
L. Golubchik. Early prediction of software component
reliability. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering,
pages 111–120, Leipzig, Germany, 2008. ACM.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[9] C. Courcoubetis and M. Yannakakis. The complexity
of probabilistic verification. J. ACM, 42(4):857–907,
1995.

[10] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G.
Larsen. Reachability analysis of probabilistic systems

by successive refinements. In PAPM-PROBMIV ’01,
pages 39–56, Aachen, Germany, 2001. Springer-Verlag.

[11] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-time
adaptation. In ICSE ’09: Proceedings of the 31st
International Conference on Software engineering,
Vancouver, Canada, 2009. ACM.

[12] R. Eshuis and M. M. Fokkinga. Comparing
refinements for failure and bisimulation semantics.
Fundam. Inf., 52(4):297–321, 2002.

[13] R. M. Keller. Formal verification of parallel programs.
Commun. ACM, 19(7):371–384, 1976.

[14] M. Kwiatkowska. Quantitative verification: models,
techniques and tools. In ESEC-FSE companion ’07:
The 6th Joint Meeting on European software
engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering,
pages 449–458, Dubrovnik, Croatia, 2007. ACM.

[15] M. Kwiatkowska, G. Norman, and D. Parker. Prism
2.0: A tool for probabilistic model checking. In QEST
’04: Proceedings of the The Quantitative Evaluation of
Systems, pages 322–323, Enschede, The Netherlands,
2004. IEEE Computer Society.

[16] M. Kwiatkowska, G. Norman, and D. Parker.
Probabilistic model checking in practice: case studies
with prism. SIGMETRICS Perform. Eval. Rev.,
32(4):16–21, 2005.

[17] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. Wiley, 2006.

[18] J. D. Musa. Operational profiles in software-reliability
engineering. IEEE Softw., 10(2):14–32, 1993.

[19] G. Rodrigues, D. Rosemblum, and S. Uchitel. Using
scenarios to predict the reliability of concurrent
component-based software systems. In FASE’05 /
ETAPS 2005: 8th International Conference on
Fundamental Approaches to Software Engineering,
pages 111–126, Edinburgh, Scotland, 2005.

[20] M. Y. Vardi. Automatic verification of probabilistic
concurrent finite state programs. In FOCS’85:
Proceedings of the 26th Annual Symposium on
Foundations of Computer Science, pages 327–338,
Baltimore, USA, 1985. IEEE Computer Society.

[21] J. A. Whittaker and M. G. Thomason. A markov
chain model for statistical software testing. IEEE
Trans. Softw. Eng., 20(10):812–824, 1994.

[22] C. Wohlin and P. Runeson. Certification of software
components. IEEE Trans. Softw. Eng., 20(6):494–499,
1994.

[23] S.-H. Wu, S. A. Smolka, and E. W. Stark.
Composition and behaviors of probabilistic i/o
automata. Theor. Comput. Sci., 176(1-2):1–38, 1997.

