
Multiparty Symmetric Sum Types

Lasse Nielsen
DIKU, University of Copenhagen

lnielsen@diku.dk

Nobuko Yoshida
Imperial College London

yoshida@doc.ic.ac.uk

Kohei Honda
Queen Mary, University of London

kohei@dcs.qmul.ac.uk

This paper extends the multiparty asynchronous session types to symmetric sumtypes, which can
type non-deterministic orchestration choice behaviours. While the original branching in the session
types requires one participant to decide how to proceed by sending a label, with symmetric sumtypes
the choice can be made in a non-deterministic way by synchronisation between the participants in a
multiparty session. The motivation for synchronisation comes from natural and concise modelling
of social interaction and cooperation in healthcare scenarios in the Process Matrix. The behaviour of
synchronisation is represented by a new synchronise process constructor, which is typed by symmet-
ric sumtypes. Finally we show that symmetric sumtypes can be erased into the original branching
types with the help of conductor processes, preserving typability and operational semantics.

1 Introduction

Social interactions [1] are interactions among people as well as human organisations, as opposed to inter-
actions among computer processes. Social interactions include workflow models and various cooperation
models, and serve as a basis of many application-level protocols in computing such as healthcare and fi-
nancial protocols. Just like their computer counterparts, social interactions are often highly structured,
coming from the underlying social, economic and legal concerns. There is richness in social interaction
structures, stemming from diverse collaborative patterns human and human organisations can exhibit.
One of such patterns is for multiple participants in an interaction to collectively decide on one of the pos-
sible choices, as found in many implicit and explicit group-based agreement. Essence of this interaction
pattern is, inside a conversation, there is a phase when a group of participants collectively wish to decide
on one of the possible choices, and when they decide, they collectively commit to one option. One might
call such an interaction pattern, symmetric synchronisation.

Motivated by examples from practice, this paper aims to distill the essence of such a symmetric
synchronisation as an interaction primitive extending the π-calculus, and explores its properties using
the type theory of the π-calculus. Our starting point is formal modelling, specification and verification
of social interaction patterns in the healthcare domain, Clinical Practice Guideline (CPG) [11], a detailed
description of medical treatment procedures, practised globally with variations. The CPG instance which
motivated the present study is the specification called Process Matrix [12], where a workflow uses notions
of actions on shared information storage, with different types of execution restrictions. In a close look, it
includes a subtle form of collaborative actions, where users cooperate in order to complete all the actions.
To explain its central structure, we give a simple example of a workflow from the Process Matrix.

This example consists of three participants: A doctor (D), a nurse (N) and a patient (P). The doctor
and the nurse need to register and inspect the patient, therefore they need to perform three actions: Obtain
the patient data (Data), schedule a time for the doctor to inspect the patient (Schedule) and for the doctor
to actually inspect the patient (Inspect). The actions can be split in four different ways between the doctor
and the nurse as illustrated in Figure 1. In Case 1, the doctor performs all the actions. In Case 2, the

2 Multiparty Symmetric Sum Types

Figure 1 Cases in the cooperation example

Actions
Data Schedule Inspect

Case 1 D D D
Case 2 N D D
Case 3 D N D
Case 4 N N D

D: Doctor
N: Nurse
P: Patient

Data: Obtain patient data
Schedule: Schedule inspection
Inspect: Perform inspection

nurse obtains the patient data and the doctor schedules and performs the inspection. In Case 3 the doctor
obtains the date, the nurse schedules the inspection and the doctor performs the inspection. In Case 4
the nurse obtains the data and schedules the inspection, so the doctor only has to perform the inspection.
Notice that only the doctor is allowed to inspect the patient, but both the nurse and the doctor can get the
data and schedule the inspection.

In this way, each participant need to perform a different combination of actions depending on which
case is chosen: thus all participants need to agree on this choice, in order to make the cooperation work.
If we encode this behaviour with asymmetric choice where one party selects which option is chosen
(as found in branching/selection primitives [10, 4]) then it is necessary to let, for example, the doctor
make the choice, who in turn tells the nurse and the patient to follow that choice using branch selection.
Unfortunately this does not faithfully represent the target situation, since in practice, both the nurse and
the patient will be able to influence the decision. Therefore, to model such a behaviour formally as a
process, we introduce a symmetric form of synchronisation which allows us to represent situations where
a decision is made collectively.

Our aim is to accurately capture practical collaboration scenarios such as CPG so that the resulting
models serve as a basis of computer-based assistance of such a procedure with static validation. For this
purpose we incorporate this primitive as part of typed multiparty sessions, in the sense of [2, 5]. In this
framework, different groups of principals will participate in different threads of multiparty sessions, con-
sisting of both standard asymmetric communications and symmetric synchronisations. These sessions
are abstracted as types, enabling type-based validation leading to type and communication safety.

The use of types also enables us an organised analysis of this primitive. In particular we show this
primitive can be embedded into an asymmetric form of branching/selection as in the original multiparty
sessions [2, 5] preserving types and dynamics. While the idea of the encoding is intuitive, the whole
translation procedure is non-trivial, requiring a generation of processes from a global type and deli-
cate embeddings from symmetric sum types to branching types respecting global interaction structures,
crucially exploiting the type structure. The representation makes use of a conductor process for each ses-
sion, which conducts the synchronisations by receiving synchronisation input from each participant and
sends the chosen case back. The resulting translation for the conductor introduces exponentially more
branching cases (e.g. 83 more for the running example), demonstrating the usefulness of the symmetric
sum types for compact and efficient multiparty symmetric synchronising session communications.

There are existing studies on self-synchronisations and broadcast synchronisations [3, 9], and en-
codability results of untyped asymmetric, directed sums [7, 6], but the symmetric sums we study are
different because they are type driven and allow all the participants to influence the choice equally, and
we know of no study on session-based formalisations of a symmetric choice primitive, its type discipline,
or type-directed encodings of it. The non-encodability of the mixed-choice π-calculus in the separate-

L. Nielsen, N. Yoshida & K. Honda 3

Figure 2 The process language

P ::= a[2..n](s̃).P
| a[p](s̃).P
| s!〈ẽ〉;P
| s?(x̃);P
| s!〈〈s̃〉〉;P
| s?((s̃));P
| s/ l;P
| s.{l : Pl}l∈L
| if e then P else Q
| P|Q
| 0
| (νn)P
| def D in P
| X〈ẽs̃〉
| s : h̃
| syncs̃,n{l : Pl}l∈L

session request
session acceptance

value sending
value reception

session delegation
session reception

label selection
label branching

conditional
parallel composition

inaction
hiding

recursion
process call

message queue
synchronisation

e ::= v
| rand{vi}i∈I
| e and e′

| not e
| ...

D ::= {Xi(x̃is̃i) = Pi}i∈I

v ::= a
| true
| false

h ::= l
| ṽ
| s̃

values
random selection

boolean conjunction
boolean negation
other expressions

declaration

channels
boolean true

boolean false

label in-transit
value in-transit

session in-transit

choice (asymmetric, uni-directed sum) π-calculus in [8] may not directly relate to our translation result
since the target sum is of a different kind and the result in [8] is proved in the untyped calculi (though
our translation does use an extra agent, thus not fulfilling the restriction set out in [8]).

This paper reports the formalisation of the syntax, semantics and typing of the described synchroni-
sation and define a type-directed and semantics-preserving encoding of the symmetric synchronisation
primitive in the π-calculus with multiparty sessions. The main results are Subject reduction (Theo-
rem 3.2) which attests the consistency of our type theory, and Type and Semantic preservation of the
encoding (Theorem 4.4 and Corollary 4.6) demonstrating the feasible implementability and significance
of the new primitive. The example outlined above is used throughout the subsequent sections to illustrate
the syntax, semantics, typing system and synchronisation erasure mapping of the new primitive.

In the rest of the paper, Section 2 introduces the syntax and semantics of the new synchronisation
primitive. Section 3 defines the types and the typing system. Section 4 studies the synchronisation
encoding. Section 5 concludes with future work. Appendix lists the omitted definitions and proofs.

2 Processes with Synchronisation

This section introduces a new communication primitive, sync, which represents the symmetric form
of synchronisation reflecting the specific form of social interaction where a common decision is made
among two or more parties. We extend the calculus with asynchronous multiparty sessions developed in
[5]. Due to the space limitation, we omit explanations for the part of syntax, semantics and types that are
identical with [5].

Syntax The entire process language is defined in Figure 2. The new constructor syncs̃,n{l : Pl}l∈L is
interpreted as the process participating in a plenum decision between all the n processes in the session
s̃ reaching a common decision h for some h ∈ L. Afterwards the process proceeds as described in Ph.
This means that all the processes in each session must have a sync constructor and they will each use

4 Multiparty Symmetric Sum Types

Figure 3 Small step semantics of process language

Link ` a[2..n](s̃).P1|a[2](s̃).P2| . . . |a[n](s̃).Pn→ (ν s̃)(P1|P2| . . . |Pn|s1 : /0| . . . |sm : /0)

Send
` ẽ ↓ ṽ

` s!〈ẽ〉;P|s : h̃→ P|s : h̃ · ṽ Deleg ` s!〈〈t̃〉〉;P|s : h̃→ P|s : h̃ · t̃ Label ` s/ l;P|s : h̃→ P|s : h̃ · l

Recv ` s?(x̃);P|s :˜̃v ·h→ P[ṽ/x̃]|s : h̃
SRec ` s?((t̃));P|s : t̃ ·h→ P|s : h̃

Brach
j ∈ I

` s.{li : Pi}i∈I |s : l j ·h→ Pj|s : h̃
IfT

` e ↓ true
` if e then P else Q→ P

IfF
` e ↓ false

` if e then P else Q→ Q
Def

` ẽ ↓ ṽ ` X〈x̃s̃〉= P ∈ D
` def D in X〈ẽs̃〉|Q→ def D in P[ṽ/x̃]|Q

Scop
` P→ P′

` (νn)P→ (νn)P′
Par

` P→ P′

` P|Q→ P′|Q Defin
` P→ P′

` def D in P→ def D in P′

Str
` P≡ P′ ` P→ Q ` Q≡ Q′

` P′→ Q′
Sync

h ∈
⋂n

i=1 Li
syncs̃,n{l : P1l}l∈L1 | ... | syncs̃,n{l : Pnl}l∈Ln → P1h | ... | Pnh

the same branch, even though the chosen branch may vary between executions or even between syncs
in each execution.

It can be discussed if each process must use the same set of labels in the sync, but this is not enforced
as it results in a richer process language. This is also mentioned in the example at the end of this section.
Of course the processes cannot perform the synchronisation if they do not all share a common label, in
which case the processes will be stuck. Therefore the type system will ensure that this does not occur.

The semantic properties that are required for sync is that all the processes must participate in the
sync, and if they step all must use the same label. This is obtained by letting all the processes step at
the same time in a synchronous way, ensuring that all the properties can be checked during the step and
therefore avoiding extra environment clutter. This approach results in the stepping rule:

Sync
h ∈

⋂n
i=1 Li

syncs̃,n{l : P1l}l∈L1 | ... | syncs̃,n{l : Pnl}l∈Ln → P1h | ... | Pnh

Notice that we need to know how many participants are in the session in order to know when the syn-
chronisation can step. This is done by including the number of processes in the syntax of sync, so it
can be used in the stepping rule, and verified by the type system. Adding the above stepping rule to the
existing calculi results in the small-step semantics in Figure 3. For explanations of the rest of the syntax
and operational semantics, see [5].

Healthcare Cooperation Example We motivate the new communication primitive through a simple
example. Recall the cooperation example from Introduction. There were four ways to divide the actions
to be performed between the doctor and the nurse, as illustrated in Figure 1.

We first explain the problem when representing the same situation without using sync. As we can
see from the example, there is no rigorous way to decide which of the four cases will occur, as well as
who will be the principal decision maker: we could let the doctor decide between the cases, and then
we get the processes in Figure 4, if we only use the language from [5]. We could also let the nurse
or even the patient decide between the cases, but none of these implementations captures the nature of

L. Nielsen, N. Yoshida & K. Honda 5

Figure 4 Healthcare Example without sync

PD = a[2](p1, p2,d,n).
if ... then p1/ case1;

d?(data); p1!〈eschedule〉;
p1!〈eresult〉;0

else if ... then p1/ case2;
p1!〈eschedule〉; p1!〈eresult〉;0

else if ... then p1/ case3;
d?(data).p1!〈eresult〉;0

else p1/ case4;
p1!〈eresult〉;0

PN = a[3](p1, p2,d,n).n.{
case1 : 0,
case2 : n?(data);0,
case3 : p2!〈eschedule〉;0,
case4 : n?(data);

p2!〈eschedule〉;0
}

PP = a[2,3](p1, p2,d,n).p1.{
case1 : n/ case1;d!〈edata〉;

p1?(schedule); p1?(result);0,
case2 : n/ case2;n!〈edata〉;

p1?(schedule); p1?(result);0,
case3 : n/ case3;d!〈edata〉;

p2?(schedule); p1?(result);0,
case4 : n/ case4;n!〈edata〉;

p2?(schedule); p1?(result);0}

the cooperation between the doctor and the nurse where they reach a common decision, because it is
impossible to know who takes the initiative. It will also be a problem to write the unspecified parts of PD

as it is meant to describe a human decision, thus it is necessary to use non-deterministic expressions as
random.

We now express the same example using the new synchronisation constructor sync. This constructor
can be used to select one of the four cases for all the processes, resulting in the processes in Figure 5.
This means that we have not violated the intent of the cooperation, but it also means that the decision has
not been specified. The choice can however be further specified, by letting the participants narrow the
choices depending on some conditions. For example we could rewrite the nurse process to the process in
Figure 6 to represent more fine-grained behaviours with conditionals. It is, however, necessary to ensure
that each sync has at least one shared label for all the participants in order to avoid a stuck state.

3 Symmetric Sum Types

This section introduces a new type constructor for symmetric synchronisation, which we call symmetric
sum types, enabling type-checking of processes using the sync constructor.

Types We start by defining the global types G in Figure 7, which are used to describe session proto-
cols among session participants. each communication constructor apart from symmetric synchronisation

Figure 5 Healthcare Example using sync

PD = a[2](p1, p2,d,n).
sync(p1,p2,d,n),3{
case1 : d?(data); p1!〈eschedule〉;

p1!〈eresult〉;0,
case2 : p1!〈eschedule〉;

p1!〈eresult〉;0,
case3 : d?(data); p1!〈eresult〉;0,
case4 : p1!〈eresult〉;0}

PN = a[3](p1, p2,d,n).
sync(p1,p2,d,n),3{
case1 : 0,
case2 : n?(data);0,
case3 : p2!〈eschedule〉;0,
case4 : n?(data);

p2!〈eschedule〉;0}

PP = a[2,3](p1, p2,d,n).sync(p1,p2,d,n),3{
case1 : d!〈edata〉; p1?(schedule);

p1?(result);0,
case2 : n!〈edata〉; p1?(schedule);

p1?(result);0,
case3 : d!〈edata〉; p2?(schedule);

p1?(result);0,
case4 : n!〈edata〉; p2?(schedule);

p1?(result);0}

6 Multiparty Symmetric Sum Types

Figure 6 Example of Partially Specialised Nurse Process

PN = a[3](p1, p2,d,n).if busy
then sync(p1,p2,d,n),3{ case1 : 0, case2 : n?(data);0, case3 : p2!〈eschedule〉;0}
else syncp1,p2,d,n{ case2 : n?(data);0, case3 : p2!〈eschedule〉;0, case4 : n?(data); p2!〈eschedule〉;0}

describes a single communication action with the given type from one sender to one receiver. This is the
same as in the original system [5] except for two changes: We have removed the constructor for parallel
protocols, as it does not affect the expressiveness of the types, and the symmetric sum type constructor
{l : Gl}l∈L;L′ is added. The symmetric sum type is similar to the branch type & and its dual, selection
type ⊕, but there is no sender, receiver or channel given in the constructor. The sum type represents
a synchronisation where the labels are taken from L and L′. The labels in L are optional, but the la-
bels in L′ are mandatory and will be underlined when concrete types are written. For example the type
{l : Tl}l∈{l1};{l2} = {l1 : Tl1, l2 : Tl2}. To ensure that the synchronisation can step we require that L′ 6= /0.
The global types use the message types U and simple types S which are also defined in Figure 7. The
only difference from the definition of U and S in [5] is that U now includes information about the number
of session channels m and the number of session processes n in a local type T .

The local types T are defined in Figure 7. They describe the communication performed by a single
process. Therefore the “from process to process on channel” syntax is simply changed to sending or
receiving on a channel. The difference from [5] is that the symmetric sum type constructor {l : Tl}l∈L;L′

is added. The symmetric sum type is similar to the branch type, but no channel is given in the constructor.
The sum type represents a synchronisation between all the processes in the session, where the labels are
taken from L and L′. Like in the global types, the labels in L are optional, but the labels in L′ are
mandatory and will be underlined when concrete types are written just like global types. Like global
types, local types uses S and U from Figure 7 for the domain of simple and message types.

The projection from global types to local types can be found in Figure 8. The differences from the
definition in [5] is that we have added a case for the symmetric sum type. Another key extension is the
projection of the branching types where more cases are defined using the subtyping from [5, § 5] defined
in Figure 16 in the appendix. In the original version of the projection, each branch had to be the same for
all processes except the sender and receiver. In this version we only require that the common subtypes
of all the projected branches have a maximum element with respect to the branching subtyping relation
≤sub from [5, § 5] defined in Figure 16 in the appendix. This is fulfilled whenever all the branches have
a common subtype, but the projection is only defined when there is the maximum element.

Figure 7 The Domains used for Global and Local types

(Global Types)
G ::= p→ p′ : k〈U〉.G′

| p→ p′ : k{li : Gi}i∈I
| µt.G
| t
| end
| {l : Gl}l∈L;L′ (L′ 6= /0)

(Message Types)
U ::= S̃

| T @(p,m,n)

(Simple Types)
S ::= bool

| int
| ...
| 〈G〉

(Local Types)
T ::= k!〈U〉;T

| k?〈U〉;T
| k⊕{l : Tl}l∈L
| k &{l : Tl}l∈L
| µt.T
| t
| end
| {l : Tl}l∈L;L′

L. Nielsen, N. Yoshida & K. Honda 7

Figure 8 Projection from Global to Local Types

(p0→ p1 : k〈U〉.G′)�p =

 m!〈U〉;(G′�p) if p = p0 and p 6= p0
m?〈U〉;(G′�p) if p = p1
G′�p if p 6= p0 and p 6= p1

(p1→ p2 : k{l j : G j} j∈J)�p =

 k⊕{l j : (G j�p)} j∈J if p = p1 6= p2
k&{l j : (G j�p)} j∈J if p = p2 6= p1
max≤sub{T ′ | ∀ j ∈ J.T ′ ≤sub (G j�p)} if p 6= p1 and p 6= p2

({l : Gl}l∈L;L′)�p = {l : (Gl�p)}l∈L;L′

(µt.G)�p = µt.(G�p) t�p = t end�p = end

Note that since all the users of a session must participate in each synchronisation, there are no extra
linearity or coherence constraints. The definitions just need to be updated. Thus all the branches of a
symmetric sum must be linear and coherent.

We then define the global environment Γ containing the global types for shared channels and process
variables, and the local type environment ∆ containing the remaining session communication.

Γ ::= /0 | Γ,u : 〈G〉 | Γ,X : S̃T̃ ∆ ::= /0 | ∆, s̃ : T @(p,n)

The Typing Judgement We are now ready to introduce the typing judgement which extends the typing
from the original article[5] with symmetric sum types.

The typing rules are given in Figure 17 in the appendix. The rules are the same as the original type
system from [5], except the rule for synchronisation and the local types now carry information about the
number of participants n and channels. The number of participants n for synchronisation and local types
are determined when we type the session initialisation.

Mcast
Γ ` a : 〈G〉 Γ ` PB∆, s̃ : (G�1)@(1,n) |s̃|= max(sid(G)) n = max(pid(G))

Γ ` a[2..n](s̃).PB∆

where sid(G) denotes channels that appear in G and pid(G) denotes the participants that appear in G.
Then the main Sync rule is defined as follows:

Sync
∀l ∈ L′′ : Γ ` PlB∆, s̃ : Tl@(p,n) L′′ ⊆ L∪L′ L′ ⊆ L′′

Γ ` syncs̃,n{l : Pl}l∈L′′B∆, s̃ : {l : Tl}l∈L;L′@(p,n)

This rule allows all the labels in L and L′, but only requires the mandatory labels L′.

Healthcare Cooperation Example We now go back to the example from Section 2, and explain how
the types describe and verify social interaction and cooperation in a healthcare scenario. Recall the
processes from Figure 5. To type PD | PN | PP, we need a matching type-environment first. The processes
uses the public channel a to create a session, so the environment must be of the form Γ = a : 〈G〉 for
some global type G.

We will start by finding the type describing the interactions in Case 2. First the patient sends the data
to the nurse, then the doctor schedules the inspection, so he sends the appointment to the patient. Finally

8 Multiparty Symmetric Sum Types

Figure 9 The Global Type G and its Projections for Healthcare Cooperation Example

G ={case1 : 1→ 2 : 3〈S̃data〉;
2→ 1 : 1〈S̃schedule〉;
2→ 1 : 1〈S̃result〉;
end

case2 : 1→ 3 : 4〈S̃data〉;
2→ 1 : 1〈S̃schedule〉;
2→ 1 : 1〈S̃result〉;
end

case3 : 1→ 2 : 3〈S̃data〉;
3→ 1 : 2〈S̃schedule〉;
2→ 1 : 1〈S̃result〉;
end

case4 : 1→ 3 : 4〈S̃data〉;
3→ 1 : 2〈S̃schedule〉;
2→ 1 : 1〈S̃result〉;
end}

G�1 ={case1 : 3!〈S̃data〉;
1?〈S̃schedule〉;
1?〈S̃result〉;
end

case2 : 4!〈S̃data〉;
1?〈S̃schedule〉;
1?〈S̃result〉;
end

case3 : 3!〈S̃data〉;
2?〈S̃schedule〉;
1?〈S̃result〉;
end

case4 : 4!〈S̃data〉;
2?〈S̃schedule〉;
1?〈S̃result〉;
end}

G�2 ={case1 : 3?〈S̃data〉;
1!〈S̃schedule〉;
1!〈S̃result〉;
end

case2 : 1!〈S̃schedule〉;
1!〈S̃result〉;
end

case3 : 3?〈S̃data〉;
1!〈S̃result〉;
end

case4 : 1!〈S̃result〉;
end}

G�3 ={case1 : end
case2 : 4?〈S̃data〉;

end
case3 : 2!〈S̃schedule〉;

end
case4 : 4?〈S̃data〉;

2!〈S̃schedule〉;
end}

the doctor inspects the patient, thus he sends the result to the patient. When the patient has id 1, the
doctor has id 2 and the nurse has id 3 the described communication for Case 2 is described by the type

1→ 3 : 3〈S̃data〉;2→ 1 : 1〈S̃schedule〉;2→ 1 : 1〈S̃result〉;end

Performing the same reasoning for Case 1, Case 3 and Case 4 and combining the result in a symmetric
sum type results in the global type G in Figure 9. We underline the mandatory label, case2, in the global
and local types. Notice that the global type clearly represents the protocol described in the matrix in
Figure 1. We can then find the projections of G to find the local type for each process which is also given
in Figure 9.

Proposition 3.1 (Example is well-typed). a : 〈G〉 ` PD | PN | PPB /0.
PROOF: To show this we will need to type each case of each process with the matching case of the local
type.

First the derivation for PCase1 and PCase3 (denoted by D(PCase1) and D(PCase3), respectively) are given
as:

Send
Γ ` edata : S̃data

Rcv

Rcv

Inact
Γ,schedule : S̃schedule, result : S̃result ` 0B (p,d,n) : end@(1,3)

Γ,schedule : S̃schedule ` p?(result);0B (p,d,n) : 1?〈S̃result〉;end@(1,3)
Γ ` p?(schedule); p?(result);0B (p,d,n) : 1?〈S̃schedule〉;1?〈S̃result〉;end@(1,3)

Γ ` d!〈edata〉; p?(schedule); p?(result);0B (p,d,n) : 2!〈S̃data〉;1?〈S̃schedule〉;1?〈S̃result〉;end@(1,3)

and then D(PCase2) and D(PCase4) are given as

Send
Γ ` edata : S̃data

Rcv

Rcv

Inact
Γ,schedule : S̃schedule, result : S̃result ` 0B (p,d,n) : end@(1,3)

Γ,schedule : S̃schedule ` p?(result);0B (p,d,n) : 1?〈S̃result〉;end@(1,3)
Γ ` p?(schedule); p?(result);0B (p,d,n) : 1?〈S̃schedule〉;1?〈S̃result〉;end@(1,3)

Γ ` n!〈edata〉; p?(schedule); p?(result);0B (p,d,n) : 3!〈S̃data〉;1?〈S̃schedule〉;1?〈S̃result〉;end@(1,3)

Once we have proved the sub-result for each case, we can collect them using the Sync inference rule for
P′ to derive D(P′) as follows:

Sync
DPCase1 DPCase2 DPCase3 DPCase4

Γ ` syncp,d,n{case1 : d!data.p?schedule.p?result.0, ... case4 : n!data.p?schedule.p?result.0}B (p,d,n) : (G�1)@(1,3)

L. Nielsen, N. Yoshida & K. Honda 9

Figure 10 Communication structures

(a) Choice without sync (b) Choice using sync (c) Choice after sync-erasure

Then we can type PP using the Mcast rule as a : 〈G〉 ` PPB /0. The derivations for PD and PN are found
similarly except that the Macc rule is used in stead of Mcast. Finally the derivations for each process are
collected using the Conc rule twice which gives us that a : 〈G〉 ` PN | PD | PPB /0. �

Subject Reduction We will now prove Subject reduction. To do that we will use the runtime typing
syntax from [5] and we need to add a rule to the type reduction from [5] matching the sync case

s̃ : {{l : Tp, . . .}@(p,n)}p∈{1..n}→ s̃ : {Tp@(p,n)}p∈{1..n}.

Theorem 3.2 (Subject Reduction). Γ ` P .s̃ ∆ and ∆ coherent and P→ P′ implies Γ ` P′ .s̃ ∆′ where
∆ = ∆′ or ∆→ ∆′.
PROOF: Induction on the derivation of P→ P′. See Appendix A.1.

4 From Symmetric Sumtypes to Conducted Branching

This section studies the erasure of symmetric synchronisation, which we hereafter simply call erasure.
The erasure removes all occurrences of the sync constructor while preserving static and dynamic se-
mantics, i.e. typability and reduction. The erasure works by inserting a conductor process and replaces
all synchronisations with branching selected by the conductor process.

We will explain the basic idea using Figure 10, which shows the communication structure of three
sets of processes involving a symmetric synchronisation. Figure 10(a) shows the communication between
the processes without using sync in Figure 4, where the doctor chooses the case, sends the result to the
patient who forwards it to the nurse. Figure 10(b) shows the communication between the processes using
sync in Figure 5, where no messages are sent, but the synchronisation ensures that both the patient,
doctor and nurse use the same case. Figure 10(c) shows the communication in the processes where the
synchronisation has been removed in Figure 14, where first the patient, the doctor and the nurse sends
the cases they can accept to the conductor, who chooses a common case and sends the selected case to
the patient who forwards it to the doctor who forwards it to the nurse. Based on this idea, we translate
the synchronisation and symmetric sumtypes into the original system [5], step by step as follows.

Step 1: Process Erasure Only well-typed processes are eligible for erasure, because conductor pro-
cesses are generated from global types. Therefore the erasure E is defined by induction on the type
derivation and the result is the final process. The erasure E is defined in Figure 11. There are three cases
of special interest in the definition of E .

10 Multiparty Symmetric Sum Types

Figure 11 Erasure of Synchronisation from Typing-Derivation

E


Mcast

Γ ` a : 〈G〉 D1
Γ ` PB∆, s̃ : (G�1)@(1,n)

|s̃|= max(sid(G))
n = max(pid(G))

Γ ` a[2..n](s̃).PB∆

= C 〈s̃,n〉(G) | a[2..n,n+1](s̃,cs̃1, . . .cs̃n).E (D1)

E


Macc

Γ ` a : 〈G〉 D1
Γ ` PB∆, s̃ : (G�p)@(p,n) |s̃|= max(sid(G))

Γ ` a[p](s̃).PB∆

= a[p](s̃,cs̃1, . . .cs̃n).E (D1)

E


Branch

∀l ∈ L :
Dl

Γ ` Pl B∆, s̃ : Tl@(p,n)
Γ ` sk .{l : Pl}l∈LB∆, s̃ : k?{l : Tl}l∈L@(p,n)

= sk .{l : cs̃p / l;E (Dl)}l∈L

E


Sync
∀l ∈ L′′ :

Dl
Γ ` Pl B∆, s̃ : Tl@(p,n) L′′ ⊆ L∪L′ L′ ⊆ L′′

Γ ` syncs̃,n{l : Pl}l∈L′′ B∆, s̃ : {l : Tl}l∈L;L′,n@(p,n)

=
{

cs̃p / casesL′′ ;cs̃p .{l : cs̃(p +1) / l;E (Dl)}l∈L′′ if p 6= n
cs̃p / casesL′′ ;cs̃p .{l : E (Dl)}l∈L′′ if p = n

The other cases are defined monomorphic

The first case is the session request which results in a session request on the same channel. The
number of participants in the new session is increased by one, to make room for the conductor process
as the n+1-th participant, and one new session channel cs̃p is added for each participant p. This channel
is used by that participant to communicate with the conductor. The conductor process C 〈s̃,n〉(G) is
inserted in parallel with the session requesting process to make sure it is available.

The next case is the synchronisation, where we find some of the key ideas for the erasure. The
resulting process starts by sending the labels it accepts to the conductor on the new session channel, and
receives the chosen label on the same channel. This label is propagated through the processes, therefore
when the label is received it is sent to the next process before proceeding, except when it is received by
the last process. In this way the conductor only needs to send the chosen label to the first process and
thereby avoiding multicast branching which is not in the system. If there are three participants in the
original session as in Figure 10(c), then a synchronisation would start by the three participants sending
their labels to the conductor, the conductor would send the chosen label to the first process, the first
process would send the label to the second process, and the second process would send the label to the
third process. The third process has no need to send the label, as all the processes have received the
chosen label at this point.

Finally the case for branching results in a branching, but the receiver forwards the received label to
the conductor before proceeding. This is done in order to avoid coherence problems for projection in the
presence of the conductor.

Step 2: Conductor Generation The conductor process C 〈s̃,n〉(G) was inserted in parallel with the
session requests by the process erasure. The definition of the conductor processes C is in Figure 12.
Notice that C 〈s̃,n〉 is only a wrapper for C ?〈s̃,n〉 which prefixes the session acceptance. In C 〈s̃,n〉(G)
the input s̃ is the session channels in the original session, n is the number of participants in the original
session, and G is the type of the original session.

The conductor process generated from a branch receives the chosen label from the receiver of the
branch, before proceeding by conducting the chosen branch. The conductor process generated from
a synchronisation collects the accepted labels from each participant before sending the selected label

L. Nielsen, N. Yoshida & K. Honda 11

Figure 12 Conductor Process Generation from a Global Type

C 〈s̃,n〉(G) = a[n+1](s̃,cs̃,1, . . . ,cs̃,n).C ?〈s̃,n〉(G)

C ?〈s̃,n〉(p1→ p2 : k〈U〉.G′) = C ?〈s̃,n〉(G′)
C ?〈s̃,n〉(p1→ p2 : k{l : Gl}l∈L) = cs̃,p2 .{l : C ?〈s̃,n〉(Gl)}l∈L

C ?〈s̃,n〉({l : Gl}l∈L;L′) = cs̃1 .{casesL1∪L′ : . . . : cs̃n .{casesLn∪L′ :

case rand(
n⋂

i=1

Li∪L′) of {l : cs̃,1 / l;C ?〈n, s̃〉(Gl)}l∈
⋂n

i=1 Li∪L′}Ln⊆L . . .}L1⊆L

C ?〈s̃,n〉(µt.G′) = def Xt(s̃,cs̃1, . . . ,cs̃n) = C ?〈s̃,n〉(G′) in Xt〈s̃,cs̃1, . . . ,cs̃n〉
C ?〈s̃,n〉(t) = Xt〈s̃,cs̃1, . . . ,cs̃n〉

C ?〈s̃,n〉(end) = end

back. The case rand({li}i∈{1..n}) of {li : Pi}i∈{1..n} constructor used in the synchronisation case of C ? is
syntactic sugar written with a nested conditional. The macro case rand({li}i∈{1..n}) of {li : Pi}i∈{1..n} is
defined as:

(νa)(a[2](s).s!〈rand({1..n})〉;0 | a[2](s).s?x.if x = 1 then P1 else . . . if i = n−1 then Pn−1 else Pn)

Notice that the random expression is sent over a session because it is non-deterministic, and this way we
can ensure that the same value is used for all the conditional branches.

Step 3: Type Translations To preserve typablity of the erasure, first we define transformations on
global types, local types and message types to describe the types of the new process. This is defined in
Figure 13, but we will explain some key cases.

The translation G (G) of global types is just a wrapper for G ?〈n,m〉(G) where n is the number of
participants, and m is the number of session channels in the original type. The branching type is translated
to the original branching type where in each branch, the receiver sends the received label to the conductor
before proceeding with the selected branch. The synchronisation is translated to nested branchings,
where each participant sends the accepted labels to the conductor, then the conductor sends the selected
label to the first participant who forwards it to the second participant until the n-th participant receives
the label from the n-1-st participant.

In the translation T 〈n,m,p〉(T) of local types, n is the number of participants, m is the number of
session channels and p is the participant of the original type T . The result of a branch type is a branch
type, where the received label is sent to the conductor before proceeding with the selected branch. In
the result of a synchronisation the accepted labels are sent to the conductor, then the selected label is
received, and unless the process is the last process in the session, the received label is sent to the next
process before proceeding.

Next we extend these transformations to the global- and local type environments in Figure 13.

Type-Preservation Theorem We will now prove that the synchronisation erasure preserves typability.
The first lemma intuitively states that the generated conductor process can be typed with the communi-
cation of the n+1-th participant of the translated type. Therefore it has the type of the conductor.
Lemma 4.1. If n≥max(pid(G)) and |s̃| ≥max(sid(G)) then

/0 ` C ?〈s̃,n〉(G)B s̃,cs̃1, . . . ,cs̃n : ((G ?〈n, |s̃|〉(G))�(n+1))@(n+1,n+1)

12 Multiparty Symmetric Sum Types

Figure 13 Global, Local, Message and Environment Types Erasure Mappings

Global Type Translation

G (G) = G ?〈max(pid(G)),max(sid(G))〉(G)

G ?〈n,m〉(p0→ p1 : k〈U〉.G′) = p0→ p1 : k〈U (U)〉.G ?〈n,m〉(G′)
G ?〈n,m〉(p0→ p1 : k{l : Gl}l∈L) = p0→ p1 : k{l j : p1→ (n+1) : (m+p1){l : G ?〈n,m〉(Gl)}}l∈L

G ?〈n,m〉({l : Gl}l∈L;L′) = 1→ n+1 : (m+1){casesL1∪L′ : . . .

n→ n+1 : (m+n){casesLn∪L′ :
n+1→ 1 : (m+1){l :
1→ 2 : (m+2){l : . . .

n-1→ n{l : G ?〈n,m〉(Gl)} . . .}}l∈
⋂n

i=0 Li∪L′}Ln⊆L . . .}L1⊆L

G ?〈n,m〉(µt.G′) = µt.G ?〈n,m〉(G)
G ?〈n,m〉(t) = t

G ?〈n,m〉(end) = end

Local Type Translation

T 〈n,m,p〉(k!〈U〉;T ′) = k!〈U (U)〉;T 〈n,m,p〉(T ′)
T 〈n,m,p〉(k?〈U〉;T ′) = k?〈U (U)〉;T 〈n,m,p〉(T ′)

T 〈n,m,p〉(k⊕{l : Tl}l∈L) = k⊕{l : T 〈n,m,p〉(Tl)}l∈L

T 〈n,m,p〉(k&{l : Tl}l∈L) = k&{l : (m+p)⊕{l : T 〈n,m,p〉(Tl)}}l∈L

T 〈n,m,p〉(µt.T ′) = µt.T 〈n,m,p〉(T ′)
T 〈n,m,p〉(t) = t

T 〈n,m,p〉(end) = end

T 〈n,m,p〉({l : Tl}l∈L;L′) ={
(m+p)⊕{casesL′′∪L′ : (m+p)&{casel : (m+p+1)⊕{casel : T 〈n,m,p〉(Tl)}}l∈L′′∪L′}L′′⊆L if p 6= n
(m+p)⊕{casesL′′∪L′ : (m+p)&{casel : T 〈n,m,p〉(Tl)}l∈L′′∪L′}L′′⊆L if p = n

Message Type Translation

U (S̃) = S̃

U (T @(p,m,n)) = T 〈n,m,p〉(T)@(p,m+1)

Global Environment Translation

Gmap(/0) = /0
Gmap(Γ,u : 〈G〉) = Gmap(Γ),u : 〈G (G)〉
Gmap(Γ,X : S̃∆) = Gmap(Γ),X : S̃Tmap(∆)

Local Environment Translation

Tmap(/0) = /0
Tmap(∆, s̃ : T @(p,n)) = Tmap(∆),(s̃,cs̃1, . . . ,cs̃n) : T 〈|s̃|,p〉(T)@(p,n+1)

L. Nielsen, N. Yoshida & K. Honda 13

PROOF: By structural induction on G. See Appendix A.2. �

The following theorem states that the conductor process can be typed with the translated type.

Theorem 4.2. If Γ ` a : 〈G〉 and n = max(pid(G)) and |s̃|= max(sid(G)) then Gmap(Γ) `C 〈s̃,n〉(G)B /0
PROOF: Since Γ` a : 〈G〉we have Gmap(Γ)` a : G (G). Now G (G)=G ?〈max(pid(G)),max(sid(G))〉(G)
and therefore Lemma 4.1 gives us that /0 ` C ?〈s̃,n〉(G)B s̃,cs̃1, . . . ,cs̃n : ((G (G))�(n+1))@(n+1,n + 1)
because |s̃|= max(sid(G)) and n = max(pid(G)). Then by applying Macc, we conclude the proof. �

The next lemma states that projecting the translated type is the same as translating the projected type.

Lemma 4.3. If p≤ n, n≥max(pid(G)) and m≥max(sid(G)) then G ?〈m,n〉(G)�p = T 〈m,n,p〉(G�p).
PROOF: Structural induction on G. See Appendix A.3. �

We are now ready to prove the desired theorem which states that the result of the erasure can be typed
in the translated environments.

Theorem 4.4 (Type Preservation). If
D

Γ ` PB∆
then Gmap(Γ) ` E (D)BTmap(∆)

PROOF: Induction on the type derivation D . See Appendix A.4.

Semantics-Preservation Theorem Next we prove that the operational semantics is preserved by the
synchronisation erasure. In order to express and prove this, it is necessary to extend the erasure to
runtime processes. If we extend the erasure monomorphically there would be a problem with the open
sessions. This is because erasure of the starting point of a link step generates a conductor process, and
therefore erasure of the result of a link step will have to generate the same conductor process. This is
best explained by a small example.
Consider the process

P1 = a[2](s).syncs,2{l1 : s!〈1〉;0, l2 : 0} | a[2](s).syncs,2{l1 : s?(x);0, l2 : 0}

The erasure of any type-derivation of this process will be

P2 = a[3](s,c1,c2).C | a[2,3](s,c1,c2).c1 / casesl1,l2 ;c1 .{l1 : c2 . l1;s!〈1〉;0, l2 : c2 . l2;0}
| a[2](s,c1,c2).c2 / casesl1,l2 ;c2 .{l1 : s?(x);0, l2 : 0}

for some conductor C. When the process P2 steps we get

P′2 = (ν s̃,c1,c2)(C | c1 / casesl1,l2 ;c1 .{l1 : c2 . l1;s!〈1〉;0, l2 : c2 . l2;0}
| c2 / casesl1,l2 ;c2 .{l1 : s?(x);0, l2 : 0})

However, if we instead start by stepping from P1 we get

P′1 = (ν s̃)(syncs,2{l1 : s!〈1〉;0, l2 : 0} | syncs,2{l1 : s?(x);0, l2 : 0})

and if the erasure is extended monomorphically the erasure of any type-derivation of P′1 will be

P′′2 = (ν s̃)(c1 / casesl1,l2 ;c1 .{l1 : c2 . l1;s!〈1〉;0, l2 : c2 . l2;0}
| c2 / casesl1,l2 ;c2 .{l1 : s?(x);0, l2 : 0})

Hence the conductor process is missing. Therefore we need to recover the partial constructors from the
local types when session channels are hidden to show an operational correspondence.

We solve this by extending the erasure to runtime processes monomorphically except for the rule
CRes where the erasure is defined in the following way

14 Multiparty Symmetric Sum Types

E


CRes

D1

Γ ` PBt̃ ∆, s̃ : {G�p@(p,n)}p∈{1..n}
s̃⊆ t̃ G coherent

Γ ` (ν s̃)PBt̃\s̃ ∆


= (ν s̃,cs̃1, . . . ,cs̃n)(C ?〈s̃,n〉(G) | cs̃1 : /0 | . . . | cs̃n : /0 | E (D1))

With this definition, the semantics is preserved by the erasure, when ∆ = /0, but in order to prove the
theorem we have to generalise it in the following way. In the Cres rule, the session types are moved from
∆ to the syntax, and therefore there is a problem using the induction hypothesis in the Scop case. In
order to solve this we define PC as the set of possible partial conductor processes generated from ∆, and
generalise the theorem to include these processes. This only works when ∆ holds all the projections of
the global type, and therefore we need the following definitions.

/0 complete, and
∆ complete implies ∆, s̃ : {Tp@(p,n)}p∈{1..n} complete.

PC(/0) = {0}
PC(∆′, s̃ : {Tp@(p,n)}p∈{1..n})

=
⋃

P′C∈PC(∆′){C
?〈s̃,n〉(G)|P′C|cs̃1 : /0| . . . |cs̃n : /0 | G�p = Tp ∀p ∈ {1..n}}

Now we are ready to express the semantics preservation theorem in a provable way.

Theorem 4.5.
If

D
Γ ` PBt̃ ∆

, P→ P′, ∆ coherent, ∆◦∆◦ complete and PC ∈ PC(∆◦∆◦)

then there is a derivation
D ′

Γ ` P′Bt̃ ∆′
and a P′C ∈ PC(∆′ ◦∆◦) where ∆ = ∆′ or ∆→ ∆′

such that E (D)|PC→? E (D ′)|P′C.
PROOF: Induction on the derivation of P→ P′. See Appendix A.7.

Now the semantic preservation is proved by applying Theorem 4.5 to each step in an evaluation.

Corollary 4.6 (Semantic Preservation).

If
D

Γ ` PB /0
and P→? P′ then there is a derivation

D ′

Γ ` P′B /0
such that E (D)→? E (D ′).

PROOF: Induction on number of steps in P→? P′. See Appendix A.8.

Healthcare Cooperation Example In this section we have demonstrated how we can translate a well-
typed process using the sync constructor to a well-typed process with no occurrences of sync in a type-
directed manner. The translation preserves typability, following the translation of types. As a example,
the result of the erasure on the healthcare example from Section 3 is shown in Figure 14.

Proposition 4.7 (Example is well-typed). a : 〈G (G)〉 ` PC | PD | PN | PPB /0.
Since we have showed that the processes from the synchronisation example in Figure 5 is well-typed in
Proposition 3.1 we can apply Theorem 4.4 which proves this proposition. �

As this example illustrates, the result of the erasure does not capture the nature of the situation
in the same way, as it introduces a conductor process, which is not a natural part of the situation. It
is not compact either, as the conductor process has 83 cases. This can be improved by using a less
straightforward erasure algorithm, but it will still not be as compact as the representation using sync
— removing the syncs is at the cost of a natural and direct representation of such a cooperative action.

L. Nielsen, N. Yoshida & K. Honda 15

Figure 14 Example Processes after Erasure

PC = a[4](p1, p2,d,n,cp,cd,cn).
cp.{

cases{1,2,3,4} : cd .{
cases{1,2,3,4} : cn.{

cases{1,2,3,4} :
case (rand{1,2,3,4}) of

1 : cp/ case1;0,
2 : cp/ case2;0,
3 : cp/ case3;0,
4 : cp/ case4;0,

end case,
cases{2,3,4} : ...,
...,
cases{2} : ...}

cases{2,3,4} : ...,
...,
cases{2} : ...}

cases{2,3,4} : ...,
...,
cases{2} : ...}

PD = a[2](p1, p2,d,n,cp,cd,cn).cd / cases{1,2,3,4}.cd .{
case1 : cn/ case1;d?(data); p1!〈eschedule〉; p1!〈eresult〉;0
case2 : cn/ case2; p1!〈eschedule〉; p1!〈eresult〉;0
case3 : cn/ case3;d?(data); p1!〈eresult〉;0
case4 : cn/ case4; p1!〈eresult〉;0}

PN = a[3](p1, p2,d,n,cp,cd,cn).cn/ cases{1,2,3,4}.cn.{
case1 : 0
case2 : n?(data);0
case3 : p2!〈eschedule〉;0
case4 : n?(data); p2!〈eschedule〉;0}

PP = a[2,3,4](p1, p2,d,n,cp,cd,cn).cp/cases{1,2,3,4}.cp.{
case1 : cd/case1;d!〈edata〉; p1?(schedule); p1?(result);0
case2 : cd/case2;n!〈edata〉; p1?(schedule); p1?(result);0
case3 : cd/case3;d!〈edata〉; p2?(schedule).p1?(result);0
case4 : cd/case4;n!〈edata〉; p2?(schedule).p1?(result);0}

Further we lose an accurate type abstraction of the dynamics of symmetric synchronisation, since from
the encoded type structure, it is not clear whether it is just a sequence of asymmetric branching actions
or the (intended) atomic multiparty synchronisation, since some of the key operational structures of the
encoding (e.g. random selection) is lost in the encoded type. On the other hand, type-directed translation
suggests the existence of a well-disciplined implementation of symmetric synchronisation through the
standard asynchronous, asymmetric two-party communication primitives.

5 Future Work

The short term goal of this paper is to provide a basis for representation and specification of the Clinical
Practice Guidelines [11] modelled by the Process Matrix [12] using the π-calculus. The long term goals
are to allow representation and specification of a wider range of Clinical Practice Guidelines and other
Healthcare Processes, and to model a wide range of structured social interactions [1] in the π-calculus.

In the present study, we have chosen to ensure progress by making the type system force the partic-
ipants to agree in each synchronisation, so they always share a common label. Another possibility is to
allow the option for disagreement, so no labels are accepted. This would mean that the synchronisation
is unable to step. Therefore it will be necessary to introduce some kind of disagreement handling unless
progress is sacrificed. This approach can be represented by the current extension simply by introducing
a partial order on the labels, and force the synchronisation to proceed with a maximal element of the
shared labels. In this way a disagreement would be handled if only the bottom element label was shared.

Another extention is to formalise synchronisation between any subset of the participants in a session.
This would introduce new linearity and coherence problems which would have to be dealt with.

Finally using sync we can avoid the linearity check in [5] in the following way. Consider the process:

s!〈e〉;0 | s?(x);s?(y);0 | s!〈e〉;0.

16 Multiparty Symmetric Sum Types

This process does not satisfy the linearity because there is a racing condition at s. To avoid this problem
[5] uses the linearity checking for global types. However, interestingly, we can avoid this directly by
inserting sync primitives between the two messages like this:

s!〈e〉;syncs,3{l : 0} | s?(x);syncs,3{l : s?(y);0} | syncs,3{l : s!〈e〉;0}.
Now the racing condition has been eliminated. It should be investigated how this method can avoid
racing conditions so the linearity check can be removed or relaxed.

References
[1] Wikipedia on Social Interactoins. Available at http://en.wikipedia.org/wiki/Social_interaction.
[2] Eduardo Bonelli & Adriana B. Compagnoni (2007): Multipoint Session Types for a Distributed Calculus. In:

TGC, LNCS 4912. Springer, pp. 240–256.
[3] Tony Hoare (1985): Communicating Sequential Processes. Prentice Hall.
[4] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disciplines for

Structured Communication-based Programming. In: ESOP’98, LNCS 1381. Springer-Verlag, pp. 22–138.
[5] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty Asynchronous Session Types. In:

POPL’08. ACM, pp. 273–284.
[6] Uwe Nestmann (2000): What is a ”Good” Encoding of Guarded Choice? Inf. Comput. 156(1-2), pp. 287–

319.
[7] Uwe Nestmann & Benjamin C. Pierce (2000): Decoding Choice Encodings. Inf. Comput. 163(1), pp. 1–59.
[8] Catuscia Palamidessi (2003): Comparing The Expressive Power Of The Synchronous And Asynchronous

Pi-Calculi. Mathematical Structures in Computer Science 13(5), pp. 685–719.
[9] K.V.S. Prasad (2001): Broadcast Calculus Interpreted in CCS upto Bisimulation. In: Electronic Notes in

Theoretical Computer Science, 52. Elsevier, pp. 83–100.
[10] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.

In: PARLE’94, LNCS 817. Springer-Verlag, pp. 398–413.
[11] Silvia Miksch Annette ten Teije & Peter Lucas (2008): Computer-based Medical Guidelines and Protocols:

A Primer and Currend Trends. Studies in Health Technology and Informatics. IOS Press.
[12] Karen Marie Lyng Thomas Hildebrandt & Raghava Rao Mukkamala (2009): From Paper Based Clinical

Practice Guidelines to Declarative Workflow and Linear-time Temporal Logic .

http://en.wikipedia.org/wiki/Social_interaction

L. Nielsen, N. Yoshida & K. Honda 17

A Appendix

Figure 15 Process Congruence

P|0≡ P P|Q≡ Q|P P|(Q|R)≡ (P|Q)|R
(νn)P|Q≡ (νn)(P|Q) if n /∈ fn(Q) (νnn′)P≡ (νn′n)P (νn)0≡ 0
def D in 0≡ 0 (νs1..sn)Πisi : /0≡ 0
def D in (νn)P≡ (νn)def D in P if n /∈ fn(D)
(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0
def D in def D′ in P≡ def D and D′ in P if dpv(D)∩dpv(D′) = /0

Figure 16 Subtyping for Local Types

The subtyping for local types from [5, § 5], denoted T ≤sub T ′ is the greatest fixed point of the function S that
maps each binary relation R on local types as regular trees to S(R) given as

If T RT ′ then k!〈U〉;T S(R) k!〈U〉;T ′ and k?〈U〉;T S(R) k?〈U〉;T
If TiRT ′i , for each i ∈ I ⊆ J then k⊕{li : Ti}i∈I S(R) k⊕{l j : T ′j} j∈J and k&{l j : Tj} j∈J S(R) k&{li : T ′i }i∈I

and {li : Ti}i∈I S(R) {li : T ′i }i∈I

A.1 Proof of Theorem 3.2[Subject Reduction]

We prove

Γ ` P.s̃ ∆ and ∆ coherent and P→ P′ implies Γ ` P′ .s̃ ∆′where ∆ = ∆′ or ∆→ ∆′.

By induction on the derivation of P→ P′. We only have to consider the case Sync, as the other cases are
proved in [5]. Assume

Sync
h ∈

⋂n
i=1 Li

syncs̃,n{l : P1l}l∈L1 | ... | syncs̃,n{l : Pnl}l∈Ln → P1h | ... | Pnh

In this case the typing Γ` synct̃,n{l : P1l}l∈L1 | ... | synct̃,n{l : Pnl}l∈Ln .s̃ ∆, t̃ : {{l : Tli}l∈L;L′@(i,n)}i∈{1..n}
must start with n−1 applications of the Conc rule each containing one application of the Sync rule. This
gives us the subderivations:

Sync

Dil

Γ ` PilBs̃i ∆i, t̃ : {Tli@(i,n)} ∀l ∈ Li

Γ ` {l : Pil}l∈LiBs̃i ∆i, t̃ : {l : Tli}l∈L′;L@(i,n)
for i=1..n such that s̃i∩ s̃ j = /0 for all i 6= j in 1..n,

⋃n
i=1 s̃i = s̃ and ∆1 ◦ (∆2 ◦ (. . .◦∆n)) = ∆.

Since each of these subderivations starts with the Sync rule we get that
Dih

Γ ` PihBs̃i ∆i, t̃ : {Thi@(i,n)} for i = 1..n

Now we can apply Conc n−1 times to create a derivation of Γ`P1h | . . . |PnhBs̃ ∆, t̃ : {Thi@(p,n)}p∈{1..n}.
Then we have ∆, t̃ : {{l : Tli}l∈L;L′@(i,n)}i∈{1..n}→ ∆, t̃ : {Thi@(i,n)}i∈{1..n}, concluding the proof for
the Sync rule. �

18 Multiparty Symmetric Sum Types

Figure 17 The typing rules

Name
Γ,a : S ` a : S

Subs
Γ ` PB∆ ∆≤ ∆′

Γ ` PB∆′

Sync
∀l ∈ L′′ : Γ ` PlB∆, s̃ : Tl@(p,n) L′′ ⊆ L∪L′ L′ ⊆ L′′

Γ ` syncs̃,n{l : Pl}l∈L′′ B∆, s̃ : {l : Tl}l∈L;L′@(p,n)

Mcast
Γ ` a : 〈G〉 Γ ` PB∆, s̃ : (G�1)@(1,n) |s̃|= max(sid(G)) n = max(pid(G))

Γ ` a[2..n](s̃).PB∆

Macc
Γ ` a : 〈G〉 Γ ` PB∆, s̃ : (G�p)@(p,n) |s̃|= max(sid(G)) n = max(pid(G))

Γ ` a[p](s̃).PB∆

Send
∀ j.Γ ` e j : S j Γ ` PB∆,s : T @(p,n)

Γ ` sk!〈ẽ〉;PB∆, s̃ : k!〈S̃〉;T @(p,n)

Rcv
Γ, x̃ : S̃ ` PB∆,s : T @(p,n)

Γ ` sk?(x̃);PB∆, s̃ : k?〈S̃〉;T @(p,n)

Deleg
Γ ` PB∆, s̃ : T @(p,n)

Γ ` sk!〈〈t̃〉〉;PB∆, s̃ : k!〈T ′@(p’, |t̃|,n′)〉;T @(p,n), t̃ : T ′@(p’,n′)

Srec
Γ ` PB∆, s̃ : T @(p,n), t̃ : T ′@(p’,n′)

Γ ` sk?((t̃));PB∆, s̃ : k?〈T ′@(p’, |t̃|,n′)〉;T @(p,n)
Sel

Γ ` PB∆, s̃ : T @(p,n) h ∈ L
Γ ` sk /h;PB∆, s̃ : k⊕{l : Tl}l∈L@(p,n)

Branch
∀l ∈ L : Γ ` PlB∆, s̃ : Tl@(p,n)

Γ ` sk .{l : Pl}l∈LB∆, s̃ : k?{l : Tl}l∈L@(p,n)

Conc
Γ ` PB∆ Γ ` QB∆′

Γ ` P|QB∆◦∆′
dom(∆)∩dom(∆′) = /0

If
Γ ` e : bool Γ ` PB∆

Γ ` if e then P else QB∆
Inact

∆ end only
Γ ` 0B∆

Nres
Γ,a : 〈G〉 ` PB∆

Γ ` (νa)PB∆

Var
Γ ` ẽ : S̃ ∆ end only

Γ,X : S̃T̃ ` X〈ẽs̃1...s̃|T̃ |〉B∆, s̃1 : T1@(p1,n1), ..., s̃n : T|T̃ |@(p|T̃ |,n|T̃ |)

Def
Γ,X : S̃T̃ , x̃ : S̃ ` PB s̃1 : T1@(p1,n1), ..., s̃|T̃ | : T|T̃ |@(p|T̃ |,n|T̃ |) Γ,X : S̃T̃ ` QB∆

Γ ` def X(x̃s̃1, ..., s̃|T̃ |) = P in QB∆

A.2 Proof of Lemma 4.1

We prove

If n≥max(pid(G)) and |s̃| ≥max(sid(G)) then
/0 ` C ?〈s̃,n〉(G)B s̃,cs̃1, . . . ,cs̃n : ((G ?〈n, |s̃|〉(G))�(n+1))@(n+1,n+1)

By structural induction on G. The interesting cases Branch and Sync are explained briefly.
Branch: Assume G = p1→ p2 : k{l : Gl}l∈L.
Then the resulting conductor process is: C ?〈s̃,n〉(G) = cs̃p2

.{l : C ?〈s̃,n〉(Gl)}l∈L, and the global type is:
G ?〈n, |s̃|〉(G) = p1→ p2 : k{l : p2→ n+1 : cs̃p2

{l : G ?〈n, |s̃|〉(Gl)}}l∈L. Therefore the resulting local type
is: (G ?〈n, |s̃|〉(G))�(n+1) = max≤sub{T ′ | ∀l ∈ L.T ′≤sub (|s̃|+p2)&{l : G ?〈n, |s̃|〉(Gl)}}= (|s̃|+p2)&{l :
G ?〈n, |s̃|〉(Gl)}l∈L with n+1 > p1 and p2.

L. Nielsen, N. Yoshida & K. Honda 19

By the induction hypothesis, /0 ` C ?〈s̃,n〉(Gl)B s̃,cs̃1, . . . ,cs̃n : (G ?〈n, |s̃|〉(Gl)�(n+1))@(n+1,n+1)
for all l ∈ L, and because of rule Branch we get that /0 ` cs̃p2

. {l : C ?〈s̃,n〉(Gl)}l∈LB s̃,cs̃1, . . . ,cs̃n :
((|s̃|+p2)&{G ?〈n, |s̃|〉(Gl)�(n+1)}l∈L)@(n+1,n+1). Therefore this case is fulfilled.
Sync: Assume G = {l : Gl}l∈L;L′ . In this case the resulting conductor process is: C ?〈s̃,n〉(G) =
cs̃1 .{casesL′′1∪L′ : cs̃2 .{casesL′′2∪L′ : . . .cs̃n .{casesL′′n∪L′ : case rand(L′∪ (L′′1 ∩L′′2 ∩ . . .L′′n)) of
{l : cs̃1 / l;C ?〈s̃,n〉(Gl)}l∈L′∪(L′′1∩L′′2∩...L′′n)}L′′n⊆L . . .}L′′2⊆L}L′′1⊆L, the resulting global type is
G ?〈n, |s̃|〉(G) = 1→ n+1 : (|s̃|+1){casesL′′1∪L′ : 2→ n+1 : (|s̃|+2){casesL′′2∪L′ : . . .

n→ n+1 : (|s̃|+n){casesL′′n∪L′ : n+1→ 1 : (|s̃|+1){l : 1→ 2 : (|s̃|+2){l : . . .
n-1→ n : (|s̃|+n){l : G ?〈n, |s̃|〉(Gl)}}}l∈L′∪(L′′1∩L′′2∩...L′′n)}L′′n⊆L . . .}L′′2⊆L}L′′1⊆L

and therefore the resulting local type is
(G ?〈n, |s̃|〉(G))�(n+1) = (|s̃|+1)&{casesL′′1∪L′ : (|s̃|+2)&{casesL′′2∪L′ : . . .(|s̃|+n)&{casesL′′n∪L′ :

(|s̃|+1)⊕{l : G ?〈n, |s̃|〉(Gl)�(n+1)}l∈L′∪(L′′1∩L′′2∩...L′′n)}L′′n⊆L . . .}L′′2⊆L}L′′1⊆L,
since n+1 > p1 and p2.

We get from the induction hypothesis that
Dl

/0 ` C ?〈s̃,n〉(Gl)B s̃,cs̃1, . . . ,cs̃n : (G ?〈n, |s̃|〉(Gl)�(n+1))@(n+1,n+1)
for all l ∈L∪L′. We can there-

fore construct the type derivation in by n levels of Branch rules on top of which are nested If rules with
a single Sel rule containing Dl for the selected branch l. Therefor this case is fulfilled.

We have now proved the interesting cases therefore the lemma is fulfilled. �

A.3 Proof of Lemma 4.3

We prove

If p≤ n and n≥max(pid(G)) and m≥max(sid(G)) then G ?〈m,n〉(G)�p= T 〈m,n,p〉(G�p).

By the structural induction on G. The interesting cases Branch and Sync are explained briefly.

Branch: G = p0→ p1 : k{l : Gl}l∈L
There are three subcases depending on p.

If p 6= p0 and p 6= p1 then
G ?〈n,m〉(p0→ p1 : k{l : Gl}l∈L)�p

= (p0→ p1 : k{l : p1→ n+1 : m+p1 : {l : G ?〈n,m〉(Gl)}}l∈L)�p
= max≤sub{T | T ≤sub p1→ n+1 : m+p1{l : G ?〈n,m〉(Gl)}�p ∀l ∈ L}
= max≤sub{T | T ≤sub max≤sub{T ′ | T ′ ≤sub G ?〈n,m〉(Gl)�p} ∀l ∈ L}
= max≤sub{T | T ≤sub G ?〈n,m〉(Gl)�p ∀l ∈ L}

and
T 〈n,m,p〉(p0→ p1 : k{l : Gl}l∈L�p)

= T 〈n,m,p〉(max≤sub{T | T ≤sub Gl�p ∀l ∈ L})
(T is monotonic) = max≤sub{T | T ≤sub T 〈n,m,p〉(Gl�p) ∀l ∈ L}

Now the induction hypothesis proves this case.
The cases where p= p0 and p= p1 are proved in the same way, except less rewriting of max expres-

sions are required.
Sync: G = {l : Gl}l∈L;L′

There are two subcases depending on p.
If p 6= n then

G ?〈n,m〉({l : Gl}l∈L;L′)�p

20 Multiparty Symmetric Sum Types

= (1→ n+1 : m+1{casesL′′1∪L′ . . .n→ n+1 : m+n{casesL′′n∪L′ :
n+1→ 1 : m+1{l : 1→ 2 : m+2 : {l : . . .n-1→ n : m+n{l : G ?〈n,m〉(Gl)} . . .}
}l∈L′∪(L′′1∩...L′′n)}L′′n⊆L . . .}L′′1⊆L)�p

(rewriting max) = max≤max{T | T ≤sub m+p⊕{casesL′′p∪L′ : m+p&{l : m+p+1⊕{l :
G ?〈n,m〉(Gl)�p}}l∈L′∪(L′′1∩...L′′n)}L′′p⊆L ∀L′′1 , . . . ,L′′p−1,L

′′
p+1, . . .L

′′
n ⊆ L}

= m+p⊕{casesL′′p∪L′ : m+p&{l : m+p+1⊕{l : G ?〈n,m〉(Gl)�p}}l∈L′∪L′′p}L′′p⊆L
Now this case follows by the induction hypothesis.
The case where p = n is proves in the same way.
We have now proved the interesting cases therefore the lemma is fulfilled. �

A.4 Proof of Theorem 4.4[Type Preservation]

We Prove

If
D

Γ ` PB∆
then Gmap(Γ) ` E (D)BTmap(∆)

By induction on the type derivation D . The interesting cases Mcast and Sync are explained briefly.

Mcast:

D =
Γ ` a : 〈G〉 D1

Γ ` PB∆, s̃ : (G�1)@(1,n)
|s̃|= max(sid(G)) n = max(pid(G))

Γ ` a[2..n](s̃).PB∆

From this we obtain from induction hypothesis and D1 that
D ′1

Gmap(Γ) ` E (D1)BTmap(∆), s̃,cs̃1, . . . ,cs̃,n : T 〈n, |s̃|,p〉(G�1)@(1,n+1)

and therefore Lemma 4.3 gives us that
D ′1

Gmap(Γ) ` E (D1)BTmap(∆), s̃,cs̃1, . . . ,cs̃,n : G ?〈n, |s̃|〉(G)�1@(1,n+1)
.

Now we can create

D ′ = Mcast
Gmap(Γ) ` a : 〈G (G)〉 D ′1 |s̃,cs̃1, . . . ,cs̃n|= n+m = max(sid(G (G))) n = max(pid(G (G)))

Gmap(Γ) ` a[2..n+1](s̃,cs̃1, . . . ,cs̃n).E (D1)BTmap(∆)
.

Corollary 4.2 gives us that
D ′2

Gmap(Γ) ` C 〈s̃,n〉(G)B /0

and therefore we can prove the desired by

Conc

D ′2
Gmap(Γ) ` C 〈s̃,n〉(G)B /0

D ′

Gmap(Γ) ` a[2..n+1](s̃,cs̃1, . . . ,cs̃n).E (D1)BTmap(∆)
Gmap(Γ) ` E (D)BTmap(∆)

Sync:

D =
Sync

Dl
Γ ` PlB∆, s̃ : Tl@(p,n)

∀l ∈ L L′′ ⊆ L∪L′ L′ ⊆ L′′

Γ ` {l : Pl}l∈L′′ B∆, s̃ : {l : Tl}l∈L;L′@(p,n)

There are two subcases depending on p. If p = n then we get the type derivation by applying the Branch
rule to the results of the induction hypothesis, and then applying a Sel rule to that. If p 6= n then we first
apply the Sel rule to the results of the induction hypothesis, and then proceeds in the same way.

We have now proved the interesting cases therefore the theorem is fulfilled. �

L. Nielsen, N. Yoshida & K. Honda 21

A.5 Extension of Lemma 5.18 [Permutation] from [5]

(1) If
Subs

Subs

D
Γ ` PBt̃ ∆

Γ ` PBt̃ ∆′

Γ ` PBt̃ ∆′′

then
Subs

D
Γ ` PBt̃ ∆

Γ ` PBt̃ ∆′′
and the result of E is unchanged.

(2) If
Subs

X
D

Γ ` PBt̃ ∆

Γ ` PBt̃ ∆′
and the second last rule-application X is not Sel or Branch then the last two

rule-applications can be permuted and the result of E is unchanged.

PROOF:
(1) Is immediate because ≤sub is transitive and E in both cases reduces to E (D).
(2) I proved for each possible rule X. This is done as in the original proof, where preservation of E is

shown by evaluation since E

(
Subs

D ′

Γ ` PBt̃ ∆′

)
= E (D ′). There is one new case, and we will prove

it now.
Sync: In this case we consider a derivation

Subs

Sync

∀l ∈ L′′
Dl

Γ ` PlBt̃ Tl@(p,n)
Γ ` syncs̃,n{l : Pl}l∈L′′Bt̃ ∆, s̃ : {{l : Tl}l∈L;L′@(p,n)}

Γ ` syncs̃,n{l : Pl}l∈L′′Bt̃ ∆′, s̃ : {{l : T ′l }l∈L;L′@(p,n)}

where Tl ≤sub T ′l for each l ∈ L′′ and ∆≤sub ∆′. We can therefore create

Sync

∀l ∈ L′′
Subs

Dl

Γ ` PlBt̃ Tl@(p,n)
Γ ` {l : Pl}l∈L′′Bt̃ ∆′, s̃ : {T ′l @(p,n)}

Γ ` syncs̃,n{l : Pl}l∈L′′Bt̃ ∆′, s̃ : {{l : T ′l }l∈L;L′@(p,n)}

Now we only need to show that E is the same for both derivations, but this is fulfilled, since

E (Subs
D

Γ ` PBt̃ ∆
) = E (D). �

A.6 Extension of Theorem 5.22(1) from [5]

If P≡ Q and
D1

Γ ` PBt̃ ∆
then there is a derivation

D2

Γ ` QBt̃ ∆
such that E (D1)≡ E (D2).

PROOF: This is proved by ruleinduction on P≡ Q. All the rules are considered in [5], and we get that
E (D1) ≡ E (D2) for the derivations found in the original proof, by moving the conductor processes
around and applying the considered equivalence rule. �

A.7 Proof of Theorem 4.5

This theorem is an extension of Theorem 5.22(2) from [5].
We prove

22 Multiparty Symmetric Sum Types

If
D

Γ ` PBt̃ ∆
, P→ P′, ∆ coherent, ∆◦∆◦ complete and PC ∈ PC(∆◦∆◦)

then there is a derivation
D ′

Γ ` P′Bt̃ ∆′
and a P′C ∈ PC(∆′ ◦∆◦) where ∆ = ∆′ or ∆→ ∆′

such that E (D)|PC→? E (D ′)|P′C.

By induction on the derivation of P→ P′. All cases except Sync are covered by the original proof, where
E (D)|PC→? E (D ′)|P′C can be proved for the found derivation D ′ by selecting P′C using the same global
types as was used to find PC. We will show the case for Link as an example, and prove the new case for
Sync.

Link: Link ` a[2..n](s̃).P1|a[2](s̃).P2| . . . |a[n](s̃).Pn→ (ν s̃)(P1|P2| . . . |Pn|s1 : /0| . . . |sm : /0)
We can assume that the typing derivation D starts with n applications of the Conc rule without changing
E (D) because of the extension of Lemma 5.18. The first Conc rule contains a derivation

Mcast

Γ ` a : 〈G〉 D1

Γ ` P1B∆, s̃ : (G�1)@(1,n)
|s̃|= max(sid(G)) n = max(pid(G))

Γ ` a[2..n](s̃).P1B∆1

and the other Conc rules contain the derivations

Macc

Γ ` a : 〈G〉 Dp

Γ ` PB∆p, s̃ : (G�p)@(p,n)
|s̃|= max(sid(G)) n = max(pid(G))

Γ ` a[p](s̃).PpB∆p

for p= 1..n.

We can now create D ′ as an application of the CRes rule containing 2 ·n applications of the Conc rule
containing Di for i = 1..n, and Dn+1 . . .D2·n which are derivations for the empty queues. D ′ concludes
that

Γ ` (ν s̃)(P1|P2| . . . |Pn|s1 : /0| . . . |sn : /0)B∆.

Now can now use the definition of E to find

E (D)= a[n+1](s̃,cs̃1, . . . ,cs̃n).C ?〈s̃,n〉|a[2..n+1](s̃).E (D1)|a[2](s̃).E (D2)| . . . |a[n](s̃).E (Dn)
E (D ′) = (ν s̃,cs̃1, . . . ,cs̃n)(C (G) | cs̃1 : /0 | . . . | cs̃n : /0 | E (D1)| . . . |E (Dn)|s1 : /0| . . . |sn : /0)

With these choices of D , D ′ the theorem is proved by a single Link step wrapped in a Conc and Str rule
since we can choose PC = P′C.

Sync: Sync
l′ ∈

⋂n
i=1 Li

syncs̃,n{l : P1l}l∈L1 | ... | syncs̃,n{l : Pnl}l∈Ln → P1l′ | ... | Pnl′

We can assume that the typing derivation D starts with n applications of the Conc rule without changing
E (D) because of the extension of Lemma 5.18. The Conc rules contain the derivations

Sync

∀l ∈ L′′ :
Dpl

Γ ` PplB∆p, s̃ : {Tpl@(p,n)} L′′ ⊆ L∪L′ L′ ⊆ L′′

Γ ` syncs̃,n{l : Ppl}l∈L′′B∆p, s̃ : {{l : Tpl}l∈L;L′@(p,n)}
for p = 1..n.

We can now create D ′ as n applications of the Conc rule containing D1l′ , . . . ,Dnl′ . D ′ concludes that
Γ ` P1l′ | ... | Pnl′B∆1, s̃ : {Tpl′@(p,n)}p∈{1..n}.
Let PC ∈ PC(∆) = PC(∆1, s̃ : {{l : Tpl}l∈L;L′@(p,n)}p∈{1..n})

=
⋃

PC1∈PC(∆1){C
?〈s̃,n〉({l : Gl}l∈L;L′ |PC1|cs̃1 : /0| . . . |cs̃n : /0 | Gl�p = Tpl ∀p ∈ {1..n}, l ∈ L∪L′}.

We can now choose P′C = C ?〈s̃,n〉(Gl)|PC1|cs̃1 : /0| . . . |cs̃n : /0.
With these choices of D , D ′, PC and P′C the theorem is proved by performing the communication

which E and PC produces from the synchronisation constructor. �

L. Nielsen, N. Yoshida & K. Honda 23

A.8 Proof of Corollary 4.6 [Semantics Preservation]

This corollary is an extension of Theorem 5.22(3) from [5].
We prove

If
D

Γ ` PB /0
and P→? P′

then there is a derivation
D ′

Γ ` P′B /0
such that E (D)→? E (D ′).

By induction on the number of steps in P→? P′.
If P = P′ then the theorem is trivially fulfilled.
If P→? P′ is of the form P→ P1→? P′ then the extension of Theorem 5.22(2) gives us that there is a

derivation
D1

Γ ` P1B /0
such that E (D)|0→? E (D1)|0, since /0 is coherent and complete and PC(/0) =

{0}. Now we can wrap each step in E (D)|0→? E (D1)|0 with a Str rule to get E (D)→? E (D1).

The induction hypothesis yields that there is a derivation
D ′

Γ ` P′B /0
such that E (D1)→? E (D ′), and

therefore we get that E (D)→? E (D ′) by combining the steps in the two evaluations.
Therefore the theorem is fulfilled. �

	Introduction
	Processes with Synchronisation
	Symmetric Sum Types
	From Symmetric Sumtypes to Conducted Branching
	Future Work
	Appendix
	Proof of Theorem 3.2[Subject Reduction]
	Proof of Lemma 4.1
	Proof of Lemma 4.3
	Proof of Theorem 4.4[Type Preservation]
	Extension of Lemma 5.18 [Permutation] from CHY08
	Extension of Theorem 5.22(1) from CHY08
	Proof of Theorem 4.5
	Proof of Corollary 4.6 [Semantics Preservation]

