
Relationship-Based Access Control:
Its Expression and Enforcement Through Hybrid Logic

ABSTRACT
Access control policy is typically defined in terms of at-
tributes, but in many applications it is more natural to de-
fine permissions in terms of relationships that resources, sys-
tems, and contexts may enjoy. The paradigm of relationship-
based access control has been proposed to address this issue,
and modal logic has been used as a technical foundation.

We argue here that hybrid logic – a natural and well-
established extension of modal logic – addresses limitations
in the ability of modal logic to express certain relationships.
Also, hybrid logic has advantages in the ability to efficiently
compute policy decisions relative to a relationship graph.

We identify a fragment of hybrid logic to be used for
expressing relationship-based access-control policies, show
that this fragment supports important policy idioms, and
study its expressiveness. We also capture the previously
studied notion of relational policies in a static type system.

Finally, we point out that use of our hybrid logic removes
an exponential penalty in existing attempts of specifying
complex relationships such as “at least three friends”.

1. INTRODUCTION
Access control is typically specified and enforced in terms

of attributes: authenticated properties that the resource,
its system or context must possess in order to grant an ac-
cess request. For example, one may express and enforce an
access-control policy that, during weekends, managers may
read company email whilst being connected through a vir-
tual private network outside of company premises.

But there are many applications in which the decision of
granting access should not primarily be based on attributes
(e.g. whether a VPN connection is on or off) but rather
on relationships that resources, systems, and contexts may
enjoy. For example, a teenager may want to share pictures
from a concert only with friends who actually went to the
event. Expressing such policies through attributes is hard
to do even within a monolithic and closed system, and is
simply not feasible in distributed and open systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The paradigm of relationship-based access control [15, 12,
10] has been proposed to address this shortcoming of at-
tributes. This research gives us a first understanding of
appropriate semantic notions for relationship-based access
control (see e.g. [10]). Yet, despite the initial progress re-
ported in [12], it is less clear what appropriate syntactic
counterparts these policies should have.

Ideally, a policy language for relationalship-based access
control should be

• expressive enough to capture important policy idioms

• not so expressive as to make reasoning intractable

• intuitive for expressing and enforcing access control,

• formal, to support policy analysis, implementation,
and optimization, and

• based on robust mathematical foundations.

Recent work [12] has proposed the use of modal logics
as such a mathematical foundation. We entirely agree with
the spirit of that proposal: a policy should be specified as a
formula of some logic. But the work in [12] already recog-
nized that modal logic alone cannot express some pertinent
relationships. Features that appear to be lacking include:

• the ability to bind a node to a principal in a relation-
ship graph

• graded variants of modalities, e.g.,“at least four friends”

• the ability to evaluate sub-policies from the perspec-
tive of a named principal, and

• the ability to efficiently compute a policy decision by
evaluating a formula on a relationship graph.

The latter point is crucial, since existing attempts to re-
alize the aforementioned features appear to do so at the
expense of losing efficieny of policy evaluation.

We argue here that a natural and well-established exten-
sion of modal logic – hybrid logic [5] – can overcome these
shortcomings and provide a robust mathematical foundation
for relationship-based access control.

A key contribution of this paper is the demonstration
that hybrid logic has fragments well-suited to the needs of
relationship-based access control, and that established re-
sults from the theory of hybrid logic are relevant and useful
in their application to relationship-based access control.

t ::= n x

φ ::= t p ¬φ φ1 ∧ φ2 〈i〉φ 〈−i〉φ
@t φ ↓xφ

Figure 1: The syntax of a simple hybrid logic HL,
where n ranges over Nom, x ranges over Var, p ranges
over AP , and i ranges over I.

The other principal contribution of this paper is that our
proposed hybrid logic eliminates a known exponential penalty
incurred in expressing important policy idioms such as “at
least two colleagues”in existing modal logics for relationship-
based access control [10, 12].

As further evidence of the utility of hybrid logic, we also
devise a fragment of this hybrid logic that gives rise only
to policies whose access-control decisions depend only on
the connectedness structure between the owner and the re-
quester of a resource in a network graph.

Outline of paper.
We present a hybrid logic suitable for access control in Sec-

tion 2. We explain, in Section 3, how this hybrid logic can be
used for an access-control model based on relationships. Sec-
tion 4 is devoted to example policies written in this hybrid
logic, and to useful policy idioms. A local model-checking
algorithm for policy decisions is given in Section 5. In Sec-
tion 6, we map known fragments of hybrid logic into our
context and study their expressiveness. In Section 7, a type
system is developed for a fragment of our hybrid logic and
it is shown that type-safe such formulas determine so-called
relational policies. A discussion of issues not fully developed
in this paper is found in Section 8, related work is reflected
upon in Section 9, and the paper concludes in Section 10.
The appendix, Section A, contains selected proofs at the
discretion of reviewers.

2. HYBRID LOGIC
We define the syntax and semantics of hybrid logic, with a

view towards its application in policy-based access control.

Syntax.
We take as given a set Nom of nominal symbols, an infinite

set Var of variable symbols, a set I of label symbols, and a
set AP of propositional symbols. Nominals and variables
allow us to bind nodes in relationship graphs to principals.
Labels represent the different relationships present in that
graph. Using these sets of symbols, we define formulas of
a hybrid logic HL in Fig. 1. Other logical symbols can be
derived in the usual way. For example,

[i]φ
def
= ¬〈i〉¬φ φ ∨ ψ def

= ¬(¬φ ∧ ¬ψ)

⊥ def
= p ∧ ¬p > def

= p ∨ ¬p

express a must modality for label i, disjunction, falsity, and
truth (respectively).

Semantics.
We define models for HL, which express relationship graphs

for access control, as well as valuations, which map variables
to nodes in relationship graphs.

M, s, g |= x
def
= s = g(x)

M, s, g |= n
def
= V (n) = {s}

M, s, g |= p
def
= s ∈ V (p)

M, s, g |= ¬φ def
= M, s, g 6|= φ

M, s, g |= φ1 ∧ φ2
def
= M, s, g |= φ1 and M, s, g |= φ2

M, s, g |= 〈i〉φ def
= M, s′, g |= φ for some (s, s′) ∈ Ri

M, s, g |= 〈−i〉φ def
= M, s′, g |= φ for some (s′, s) ∈ Ri

M, s, g |= @n φ
def
= M, s∗, g |= φ where V (n) = {s∗}

M, s, g |= @x φ
def
= M, g(x), g |= φ

M, s, g |= ↓xφ def
= M, s, g[x 7→ s] |= φ

Figure 2: Satisfaction relation M, s, g |= φ specifying
that formula φ of hybrid logic HL is true in node s
of model M under valuation g.

Definition 1. 1. A model M of HL is a triple

(S, {Ri ⊆ S × S | i ∈ I}, V) (1)

where S is a non-empty set of nodes, Ri a binary re-
lation on S for all i ∈ I, and V : (Nom ∪ AP)→ 2S a
total function with V (n) a singleton for all n in Nom.

2. A valuation g : Var → S is a total function. For some
such g, we write g[x 7→ s] for the valuation that maps
x to s, and maps t to g(t) if t 6= x.

The intuition behind function V is that V (p) is the set of
nodes at which p is true, and that V (n) is the set containing
the unique node in the relationship graph of M “named”
n by V . Valuations g are total functions from variables to
nodes. Note that attributes of principals can be expressed
in models of HL through propositions in set AP .

The meaning of formulas in HL is defined by a satisfaction
relation M, s, g |= φ, defined inductively in Figure 2.

Each nominal and variable is true at a single node. The
meaning of nominals is specified through function V ; the
meaning of variables through valuation g. Propositions, on
the other hand, are true at zero, one, or more nodes.

The meanings of conjunction and negation are standard,
as is the meaning of the modalities. Formula 〈i〉φ holds at s
if there is some Ri-successor s′ of s such that φ holds at s′.
Dually, 〈−i〉φ holds at s if there is some Ri-predeccesor s̃ of
S such that φ holds at s̃.

We now discuss the hybrid operators of HL. Intuitively,
@t φ jumps to the node named by t, whereas ↓ xφ binds
the current node to variable x. Formally, formula @t φ says
that φ holds at the unique node identified by t with respect
to function V (if t is a nominal) or valuation g (if t is a
variable). Formula ↓xφ holds at node s if φ holds at s, but
where now valuation g is updated so that x identifies s.

Notational conventions.
Operator ↓x is a binding operator with the usual notions

of free and bound variables. We fix some notation for satis-
faction checks.

Definition 2. Let φ be a formula of HL.
1. If φ contains no free variables, we write M, s |= φ for

any M, s, g |= φ, as the latter is independent of the
choice of valuation g.

2. If φ contains only free variables x1, . . . , xn, we write
M, s, [x1 7→ s1, . . . , xn 7→ sn] |= φ for any M, s, g[x1 7→
s1, . . . , xn 7→ sn] |= φ, as the latter is again indepen-
dent of the choice of g.

3. If φ is the Boolean combination of formulas of the form
@t ψ, we write M, g |= φ, as then either M, s, g |= φ is
true at all nodes s or false at all nodes s.

We now use our hybrid logic HL to define an access-control
model, focusing on the policy-decision point of such a model.

3. ACCESS-CONTROL MODEL
We outline here an archetypical model for relationship-

based access control that uses hybrid logic for expressing
access-control policies.

Protection state.
A protection state is simply a model M of HL in which the

elements of S denote principals. The binary relations Ri rep-
resent interpersonal relations tracked by the access-control
system. Each label i in I identifies one type of relation-
ship (e.g., “parent”), such that (s1, s2) is in Ri iff principals
s1 and s2 participate in a relationship of type i. In short,
(S, {Ri | i ∈ I}) represents a directed, poly-relational so-
cial network. The valuation V specifies attributes of the
principals. Each propositional symbol p in AP denotes an
attribute. If a principal s in S has the attribute p, then
s is in V (p). Similarly, globally significant principals (e.g.,
trusted authorities) are identified by nominals via V .

Fragment of HL for specifying access-control policies.
Principals own resources and seek access on resources.

One associates with each object obj a formula φ in HL that
expresses a relationship between two parties: the owner and
the requester. Then the requester is permitted access to obj
if the owner and requester are in the relationship specified
by φ. This approach has been suggested in [10] already, for a
different logic, and it is what makes the access-control model
relationship-based.

We propose to use two distinguished variables own and req
to denote the principal who is the owner and the requester
of the implicit object, respectively.

Definition 3. Let HL(own, req) be the set of formulas of
HL that
• contain at most own and req as free variable, and
• are Boolean combinations of formulas of form @own φ

and @req ψ.

We refer to formulas of HL(own, req) as policies. A com-
mon policy pattern is a conjunction

@own φ ∧@req ψ (2)

Sub-policy @own φ represents the owner’s perspective, while
@req ψ represents the requester’s perspective. Note that (2)
is consistent with using only one such perspective. For ex-
ample, dropping the second conjunct amounts to choosing
ψ to be > and so the righthand conjunct is redundant.

Authorization decision.
The access control system arrives at an authorization de-

cision as follows. Given a protection state (i.e., a model) M ,
a requesting principal r has permission to access an object

obj in Obj that is controlled by principal o according to a
policy pol in HL(own, req) iff the following condition holds:

M, [own 7→ o, req 7→ r] |= pol (3)

Intuitively, the only free variables own and req of formula
pol of HL(own, req) get bound to the principals named by
the owner and requester, respectively, and this formula is
then evaluated with those bindings.

Thus, checking whether an access is granted amounts to
checking the satisfaction of a HL(own, req) formula with re-
spect to a valuation. We discuss a local model-checking
algorithm for HL(own, req) below.

Policy functions.
Through the semantics of hybrid logic, which has been de-

fined as a satisfaction relation, every policy φ in HL(own, req)
induces a policy function, which maps protection states to
binary permission relations.

Definition 4. 1. A policy function P is a total func-
tion M = (SM , . . .) 7→ P (M) from models M to binary
relations P (M) ⊆ SM × SM .

2. The policy function induced by a policy φ of HL(own, req),
written p[φ], is defined as follows:

p[φ] = {(o, r) ∈ SM×SM |M, [own 7→ o, req 7→ r] |= φ}

The intuition behind policy functions is that a requester r
can access an object of owner o in protection state M if (o, r)
is in P(M) – and is denied access if (o, r) is not in P(M).
Note that a policy function maps a collection of relations
(plus a mapping for nominals and propositions) over a set of
principals to a single permission relation over the same set.

Below we will investigate what sort of policy functions are
induced by formulas in HL(own, req).

Discussion.
The above access-control model can easily be generalized.

For example, the OASIS standard XACML allows for mul-
tiple subjects [16] (i.e., requesters) in a single access. In
hybrid logic, we could use such an idea to model, for exam-
ple, a threshold scheme for access so that multiple requesters
are required, with specified relationships in place; e.g.

M, g |= @own (〈friend〉req1∧〈parent〉req2)∧@req1 ¬Bob (4)

might model an access request where a permission requires
two requesters: a friend who is not Bob, and a parent.

We mention these possibilities as expressiveness results
should ideally not depend on how the logic might interface
with the access-control model. That is to say, our implemen-
tation of a policy-decision point should readily support such
extensions without a need for major modifications. We will
revisit such issues below and will also see that our approach
does indeed accommodate this flexibility.

4. EXAMPLE POLICIES
We now provide example policies, starting with basic ones.

Basic policies.
If the owner of an object defines the policy to be

@own 〈friend〉req (5)

then every friend of the resource owner is granted access to
that resource. Note that this policy specifies no constraints
from the perspective of the requester. Similarly, the formula

@own 〈friend〉(req ∨ 〈friend〉req) (6)

captures a“friend or a friend of a friend”policy. The formula

@own (〈teammate〉req ∧ 〈friend〉req) (7)

specifies that all friends who are teammates get access. This
example already hints at the usefulness of hybrid logic. The
use of the variable req allows us to refer to some principal
who is both a teammate and a friend of the owner.

If req behaved like a normal proposition that could be true
at zero or more nodes, then we could not capture this seman-
tic conjunction in the logic; the existential quantification of
〈i〉 does not distribute through conjunction.

In a similar vein we can specify formulas

@own 〈parent〉〈parent〉req (8)

@own 〈sibling〉(req ∧ [spouse]⊥) (9)

@own 〈child〉req ∧ [child]req (10)

which express the respective policies “grant access to grand-
parents”, ”grant access to unmarried siblings”, and ”grant
access if requester is sole child of the owner” (respectively).

The policies we have specified so far are variants or adap-
tations of policies written the logic E of [12]. To see the true
benefits of using HL, we write more complex policies next.

More complex policies.
Consider a teacher who wants to confine access to her

picture to friends who are teachers, but who also wants to
grant access to only those friends of such friends who are
not taught by friends. This is hard to express in English,
but there is a true case of an English teacher who had to
resign because her picture could be seen by student friends
of friends – unbeknownst to her. Hybrid logic can express
such a policy unambigiously. One possible formula is

@own (〈friend〉(req ∧ isTeacher) ∨ (11)

〈friend〉(isTeacher ∧ 〈friend〉req ∧ ¬〈student〉req))

Note that this formula in indeed in HL(own, req). The first
disjunct specifies that access is granted if the requester is a
friend who is a teacher, where isTeacher is in AP . The sec-
ond disjunct specifies that access is granted if the requester
is a friend of a teacher friend of the owner, but where the
requester is also not a student of that teacher friend.

We point out that this policy does not prevent the scenario
where access is granted to some student of a teacher friend,
since the may modality is an existential quantification.

This policy also illustrates the utility of propositions (at-
tributes), as we here want to express that a friend is some
teacher, not necessarily the teacher or student of the owner
or requester. This property could be expressed through
〈teacher〉>, someone is a teacher if they teach someone. But
such an encoding becomes ackward for unary relations such
as isDiabetic, so we do include propositions in our logic HL.

Dual policies.
The last example illustrates that we can compose negative

and positive permissions. For example, the policy

@own 〈friend〉(req ∧ ¬Alice) (12)

says access is granted to all friends, except to Alice, a princi-
pal that is a nominal in Nom. Note that this policy makes no
assumption about whether or not Alice is actually a friend.

The policy expressed in (12) serves also as an example for
how one might “dualize” a policy written from the perspec-
tive of one of the principals into an equivalent one written
from the perspective of the other principal. The policy

@req (〈−friend〉own ∧ ¬Alice) (13)

is intuitively equivalent to that in (12), but of form @req φ.

Graded modalities.
Another nice feature of hybrid logic is that it allows us

to express so called graded may modalities [5] as syntactic
sugar of the logic. To see this in HL, let n be a positive
natural number, and let 〈i〉n be the corresponding graded
may modality for label i. The intuition of 〈i〉nφ is then that
it holds in node s iff there are at least n many Ri-successors
of s at which φ holds.

For example, a policy that grants access if there are at
least 3 friends of the owner who satisfy φ can be specified as

@own 〈friend〉3φ (14)

To see that 〈i〉nφ is expressible in HL, take n + 1 many
variables x, y1, y2, . . . yn that do not occur in φ and define

〈i〉nφ
def
= ↓x 〈i〉 ↓y1 (φ ∧ (15)

@x 〈i〉 ↓y2 (¬y1 ∧ φ ∧
@x 〈i〉 ↓y3 (¬y1 ∧ ¬y2 ∧ φ ∧
. . .

@x 〈i〉 ↓yn (¬y1 ∧ ¬y2 ∧ · · · ∧ ¬yn−1 ∧ φ)) . . .)

This standard encoding says that at the current node,
named x, there is some Ri-successor y1 of x that satisfies φ,
and there is some Ri-successor y2 of x that is different from
y1 and satisfies φ, and so on. This clearly renders the desired
semantic effect of having at least n many Ri-successors of
the currrent node that satisfy φ.

This encoding is complex, but that complexity is of no
genuine concern to policy specifiers, as they would only see
and use the syntactic sugar 〈i〉n.

Graded modalities give us the ability to count exactly as
well. To specify that there are exactly n Ri-successors that
satisfy φ, we may write

〈i〉=nφ
def
= 〈i〉nφ ∧ ¬〈i〉n+1φ (16)

One can model a rudimentary trust level in a network of
friends by asking whether the requester is connected to the
owner by a path of friend labels of length at most k.

We can specify such policies inductively for k ≥ 1 as

depth[friend, 1]
def
= 〈friend〉req (17)

depth[friend, k + 1]
def
= depth[friend, k] ∨

〈friend〉depth[friend, k]

We can combine this trust mechanism with graded modal-
ities to express a policy that grants access if there are at least
two colleagues who have sufficient trust in the requester:

@own 〈colleague〉2depth[friend, 3] (18)

Next, let us now consider a policy cfk based on common
friends. It grants access to the owner, to his friends, and to

those who have at least k > 0 common friends. Through
graded may modality, we can express this in HL(own, req) as

cfk
def
= @own (req∨ 〈friend〉req∨ 〈friend〉k〈friend〉req) (19)

The leftmost disjunct specifies that the owner has access,
the second disjunct says that friends of the owner have ac-
cess, and the third disjunct says that access is granted to
requesters who have at least k many friends in common with
the owner. The encoding assumes that Rfriend is symmetric.
If not, the last modality should be an inverse one.

Here is an example policy of HL(own, req) that has non-
dual subpolicies from the perspective of owner and requester:

@own (〈friend〉req ∧ 〈friend〉3>) ∧@req 〈friend〉5¬own (20)

This policy grants access if the requester is a friend of the
owner, the owner has at least three friends (counting or not
counting the requester), and if additionally the requester
has at least five friends other than the owner. Intuitively,
in order to express this policy in HL(own, req) we seem to
require both operators @req and @own as the policy involves
a form of counting in both nodes named by own and req.

5. LOCAL MODEL CHECKING
Given a model M with node set S, a valuation g, and a

formula φ of HL, we can compute the set of all nodes s in S
for which M, s, g |= φ holds. This is known as global model
checking. For hybrid logics, such global model checking al-
gorithms have been developed [13]. For HL, these algorithms
are linear in the size of the model and the formula.

But global model checking is often ill suited for our access-
control model, as its protection state may be huge whereas
only a small portion of it may be needed to make an access-
control decision. Linear complexity, e.g., will not help if one
wants to evaluate the entire Facebook relationship graph.

In our setting, we are given a model M as protection state,
and a policy pol in HL(own, req) as specification of access
control. We then wish to decide whetherM, [own 7→ o, req 7→
r] |= pol for specified nodes o and r.

This form of evaluation is a kind of local model check-
ing. The term “local” is used because the intuition is that
the model M is explored only as needed from the nodes of
interest, those named by own and req.

Local model checking is a better fit for our needs as only
those portions of the model that are potentially needed to
make an access-control decision are explored.

Description of algorithm.
We now describe our local model-checking algorithm for

HL(own, req). Its pseudo-code is depicted in Figure 3. The
model M is implicit but its structure and local nodes and
valuations are explicit in the code.

The algorithm MC has as argument a local node s, a valu-
ation g, and a formula φ of HL. Its body is a case analysis
of the top-level operator of φ. We assume that V (n) and
V (p) are implemented as lists, that isElem is a membership
test for such lists, that hd returns the first element of a non-
empty list, and that areEqual can check for node equality.

The algorithm does a recursive decent until it encounters
formulas that are variables, nominals, or propositions. The
cases of the forward and backward modalities require a call
to a sub-routine MCmay.

MC(s,g,φ) {
case {
φ is x : return (areEqual(s,g(x)));
φ is n : return (isElem(s,V (n)));
φ is p : return (isElem(s,V (p)));
φ is ¬ψ : return (!MC(s,g,ψ));
φ is ψ1 ∧ ψ2 : return (MC(s,g,ψ1) && MC(s,g,ψ2));
φ is 〈i〉ψ : return MCmay(s,g,ψ,i,fwd);
φ is 〈−i〉ψ : return MCmay(s,g,ψ,i,bwd);
φ is @n ψ : let t = hd(V (n)) in return MC(t,g,ψ);
φ is @x ψ : let t = g(x) in return MC(t,g,ψ);
φ is ↓xψ : let h = g[x 7→ s] in return MC(s,h,ψ);
}

}

MCmay(s,g,φ,i,direction) {
if (direction == fwd) { X = [s′ | (s, s′) in Ri];
} else { X = [s′ | (s′, s) in Ri]; }
for (all s′ in X) {

if (MC(s′,g,φ)) { return true; }
}
return false;

}

policyDecision(o,r,φ) { // φ in HL(own, req)
let g = [own 7→ o, req 7→ r] in {

return MC(o,g,φ);
}

}

Figure 3: Local model checking algorithm for HL.

Routine MCmay first computes the set of all Ri-successors
or predecessors of node s, where that choice is decided by
an inspection of a parameter value that indicates whether
the modality is a forward one 〈i〉 or a backward one 〈−i〉.

It then iterates through all these nodes until one of them
makes the formula true, in which case it does return true.
If no such node makes the formula true, it returns false.

A genuine implementation of algorithm MC would not pre-
compute the sets X, but would generate new elements of X
on demand until either a witness for truth has been found,
or all elements of X are revealed not to be such witnesses.
Also, to make this efficient each reached node would keep a
hash table of subformulas it has already evaluated so that
each subformula is evaluated at most once in each node.

We can use that local model-checking algorithm to imple-
ment a policy decision point in policyDecision. It takes as
input a node o representing the owner of the object, a node
r representing the requester of that object, and a formula φ
of HL(own, req) representing the access-control policy. Then
it creates the valuation that binds own and req to o and r,
respectively. Finally, it returns the result of the local model
check on φ under valuation g.

Note that the argument for the node supplied to this local
model check does not matter as the evaluation of a formula
of HL(own, req) is independent of a given node (although it
will be evaluated at local nodes as demanded by occurrences
of @t and ↓x within the formula). We simply named that
object o as algorithm MC requires a value for this parameter.

Beyond local model checking.
As already discussed, the local approach to model check-

ing seems preferrable to the global one.
But our algorithm policyDecision does not really exploit

that the formula to be checked is from HL(own, req): it dele-
gates the check to the algorithm MC, which “forgets” this fact

a ::= n own req

φ ::= a p ¬φ φ1 ∧ φ2 〈i〉φ 〈−i〉φ @a φ

Figure 4: The syntax of the fragment HL(@, own, req)
of HL(own, req) that bans operator ↓x .

and assumes that the formula is any from HL.
It would therefore be of interest to determine whether

knowledge that a formula is in HL(own, req) can be exploited
in model checking. One idea is to combine a forward search
from own with a backwards search from req so that only rel-
evant portions of the overall set of nodes are ever explored.

6. POLICY EXPRESSIVENESS
Our proposal to use hybrid logic for the specification and

enforcement of relationship-based access control warrants
looking into the kinds of properties that policies written in
HL enjoy, especially properties that shed light on the expres-
siveness of fragments of HL.

Binder-free policies and hybrid bisimulation.
Figure 4 gives the definition of the fragment HL(@, own, req)

of HL. This fragment consists of policies not containing the
binding operator ↓x . We call such policies binder-free poli-
cies. Policies of HL(@, own, req) do not contain the graded
modalities, as their encoding relies on additional variables
x and the operator ↓ x . However, all our policy examples
so far that do not use graded modalities were written in
HL(@, own, req).

So what sort of policies can actually be expressed in the
fragment HL(@, own, req)? To understand this better, we
use an equivalence relation on models that was adaped from
modal logic. We will ask whether a policy will make the
same access decisions on any two equivalent models.

Definition 5. Let M = (SM , {RMi ⊆ SM × SM | i ∈
I}, VM) and N = (SN , {RNi ⊆ SN × SN | i ∈ I}, VN) be
models of hybrid logic with respective valuations g and h.

1. A relation ρ ⊆ SM × SN is a forward hybrid bisimu-
lation between M and N iff
nom for all n in Nom, (VM (n), VN (n)) is in ρ
forth if (s, t) is in ρ, then for all i and (s, s′) in RMi ,

there is some (t, t′) in RNi where (s′, t′) is in ρ
back if (s, t) is in ρ, then for all i and (t, t′) in RNi ,

there is some (s, s′) in RMi where (s′, t′) is in ρ
2. Such a relation ρ is a hybrid bisimulation between M

and N iff it additionally satisfies
-forth if (s, t) is in ρ, then for all i and (s, s′) in RM−i,

there is some (t, t′) in RN−i where (s′, t′) is in ρ
-back if (s, t) is in ρ, then for all i and (t, t′) in RN−i,

there is some (s, s′) in RM−i where (s′, t′) is in ρ
3. A pair of nodes (s, t) is bisimilar (eliding adjective “hy-

brid”) iff (s, t) is in ρ for some hybrid bisimulation ρ.
4. We write M, s, g ∼Xρ N, t, h if ρ is a hybrid bisimula-

tion over M and N with (s, t) ∈ ρ and (g(x), h(x)) ∈ ρ
for all x in variable set X.

5. We say that M, g and N,h are bisimilar for a set of
variables X iff M, s, g ∼Xρ N, t, h for some ρ.

Forward bisimulations allow only forward moves in the
graph, whereas bisimulations also allow backward moves.

M : req m //own
p //•

N : req m //own
p //• •moo

Figure 5: Two models M and N bisimilar in the
forward sense, but not in the backwards sense.

In Figure 5 we see models M and N and valuations g and
h such that M, g and N,h are forward bisimilar for the set
of variables {own, req}. Model N has an additional node
over M , but this does not affect forward bisimulation, as
its additional node is unreachable from any variable (req or
own) or nominal (there are none here).

However, if we use full bisimulation, M, g and N,h are
no longer bisimilar for {own, req}. For, assume, by way of
contradiction, that (s, t), defined as (g(own), h(own)), is in a
hybrid bisimulation. By condition -forth, we have (s, s′) in
RM−m where s′ is the one such m-predecessor not named by
req. Bisimulation therefore would require some t′ in N such
that (t, t′) is in RN−m and where (s′, t′) are bisimilar. But
this is impossible, as (t, t′) in RN−m implies that t′ is named
by req. But s′ is not named by req, a contradiction.

We can use bisimilarity to help understand the expressive-
ness of HL(@), the fragment of HL without the binder ↓ x .
Clearly, HL(@) contains HL(@, own, req). Do bisimilar mod-
els satisfy the same formulas of HL(@)? If so, only features
of models that are “observed” by bisimilarity are expressible
by policies of HL(@). We now define this idea precisely.

Definition 6. Let X be the set of free variables in a for-
mula φ of HL. Then φ is closed under bisimulation if, for
all models M,N , nodes s, t of M and N , and valuations g
and h

M, s, g ∼Xρ N, t, h implies (M, s, g |= φ iff M, t, h |= φ).

A fragment of HL is closed under bisimulation if every for-
mula in the fragment is.

A standard result is that HL(@) is closed under bisimu-
lation. In fact, more is known: if a pair of nodes is not
bisimilar, then there is some formula of HL(@) that holds
in one of these nodes and not the other. To connect this to
our example, such a formula is @own [−m]req, as M satisfies
it but N does not. Because HL(@) is closed under bisimu-
lation, and HL(@, own, req) is a fragment of HL(@), policies
of HL(@, own, req) are also closed under bisimulation.

Let us move from closing policies under bisimulation to
closing policy functions under bisimulation. We shall write
M, (oM , rM) ∼ρ N, (oN , rN) if ρ is a hybrid bisimulation
between M and N such that (oM , oN) ∈ ρ and (rM , rN) ∈ ρ.

Definition 7. A policy function P is closed under bisim-
ulation if, for all models M and N

M, (oM , rM) ∼ρ N, (oN , rN) implies
P (M)(oM , rM)iff P (N)(oN , rN).

Since formulas of HL(@, own, req) are closed under hybrid
bisimulation, the policy functions induced by such formulas
are as well.

Proposition 1. Binder-free policies are closed under hy-
brid bisimulation.

It is natural to ask whether a converse of this fact also
holds – can every policy function closed under hybrid bisim-
ulation be expressed by a binder-free policy? We cannot
expect this in general. Indeed, the policy function may not
even be expressible in first-order logic (of which HL and so
also HL(@, own, req) are essentially a fragment).

However, every first-order logic formula closed under hy-
brid bisimulation is semantically equivalent to a formula of
hybrid logic HL(@) (see, e.g., Theorem 4.14 in [3] and The-
orem 14 in [4]).

Policies and their generated submodels.
It is well known that HL corresponds syntactically to the

bounded fragment of first-order logic (see, e.g., Corollary 6.4
in [3] and Theorem 18 in [4]). The latter restricts existential
quantifications to the form ∃x : (Ri(s, x) ∧ ·), and universal
quantification to the form ∀x : (Ri(s, x)→ ·) where s is any
term distinct from x.

There is also a semantic characterization of this fragment
of first-order logic, and therefore of HL. This involves the
notion of generated submodel. Intuitively, a generated sub-
model is a model that is reduced by eliminating elements of
the model not relevant to the variables in a given set.

Definition 8. Let M = (S, {Ri | i ∈ I}, V) be a model
with set of nominals Nom. Let X be a set of variables and
g a valuation for M . The submodel of M, g generated by X,
denoted by 〈M, g〉X
• has as set of nodes SX those nodes that are reachable

from set {V (n) | n ∈ Nom} ∪ {g(x) | x ∈ X} via
relation

S
i∈I(Ri ∪R−i)

• as total function V X , the restriction of V to set SX

• as binary relation RXi the restriction Ri ∩ (SX × SX)
of Ri onto SX .

In our setting, formulas of HL(own, req) have at most req
and own as free variables, so X will be a subset of {own, req}.
A standard result then implies that such formulas are invari-
ant under submodels generated by {own, req}.

Theorem 1. All formulas φ of HL(own, req) are invari-
ant under submodels generated by {own, req}, i.e., for all
models M and valuations g, we have

M, g |= φ iff 〈M, g〉X , g |= φ (21)

Consider the model M in Figure 6. The generated sub-
model 〈M, g〉X for X = {own, req} is obtained from M by
removing the 3-clique of “anonymous” friends. We cannot
remove nodes that are named by own, req, or any nominal
in M (here Alice). Therefore, all relationships between these
nodes are preserved. The 3-clique disappears as none of its
nodes is reachable from a named node.

If M were to be modified so that one of the 3-clique nodes
had a nominal, say Bob, as name, then 〈M, g〉X would equal
M , as then the other two nodes in that 3-clique would also
be reachable from a named node.

It is of interest to determine whether one can benefit
from this invariance result in the derivation of improved lo-
cal model-checking algorithms. In particular, these benefits
may turn out to be considerable for formulas written in the
logic HL(own, req). We leave the investigation of this for
future work.

•OO
friend

��
M : own oo friend // req teacher // Alice • oo friend // •��

friend

__????????

Figure 6: A model M whose valuation g maps own
and req to the indicated nodes.

7. RELATIONAL POLICIES
Previous work [2, 12] has noted that what distinguishes

relationship-based access control from traditional access-con-
trol paradigms is its extensive use of relational policies. In-
tuitively, a relational policy is one in which the authorization
decision is based solely on how the owner and the requester
are connected to one another (e.g., friend, friend-of-friend,
etc). Therefore, a relational policy does not base its autho-
rization decision on the requester’s identity (e.g., John can
access), attributes (e.g., managers can access), or social po-
sitions (e.g., those who have at least 100 friends can access).

The goal of this section is to identify a syntactic fragment
of the logic HL(own, req) that captures relational policies.
This then allows policy developers to efficiently verify that
their policy specifications determine relational policies.

Relational policies.
We begin by formalizing what it means for a policy func-

tion to be relational. We first define some auxiliary concepts
that use only the binary relations Ri of models.

Definition 9. Let M and N be models.
1. These models are isomorphic via a bijection f : SM →
SN , if, for all i ∈ I : (s, t) ∈ RMi iff (f(s), f(t)) ∈ RNi .

2. Nodes s, t of SM are connected, written s
M
! t, if

either s = t, or inductively, there is an s′ in SM with

(s, s′) ∈ RMi ∪ (RMi)−1, for some i ∈ I, and s′
M
! t.

3. The shared component of nodes s, t in M , written
SC(M, s, t), is the relational structure (S, {Ri ⊆ S ×
S | i ∈ I}) defined as follows:

S
def
= {s, t} ∪ {s′ ∈ SM | s

M
! s′ ∧ s′

M
! t}

Ri
def
= RMi ∩ (S × S)

There are two parts to what it means to be a relational
policy function. First, the policy function must be“topology-
based”: it must consume neither attribute information (i.e.,
valuations are not considered) nor “identity information”
(i.e., isomorphic labeled graphs cannot be distinguished)
when an authorization decision is made.

Definition 10. A policy function P is topology-based if,
for all models M and N , and all bijections f : SM → SN ,
whenever M and N are isomorphic via f , then P (N) =
{(f(s), f(t) | (s, t) ∈ P (M)}.

Second, the policy function must be “local”: changes in
permission to a model must reflect a change in connectivity
between the owner and requester.

Definition 11. A policy function P is local iff, for all
models M and N , and all s, t ∈ SM ∩ SN , if

SC(M, s, t) = SC(N, s, t) implies P (M)(s, t) = P (N)(s, t).

ψ ::= > ⊥ x ¬ψ ψ1 ∧ ψ2 ψ1 ∨ ψ2

〈i〉ψ 〈−i〉ψ [i]ψ [−i]ψ @x ψ ↓xψ
φ ::= > ⊥ @own ψ @req ψ ¬φ φ ∧ φ φ ∨ φ

Figure 7: Syntax of candidate formulas for a rela-
tional fragment of HL(own, req), with x from Var.

The definition of “local” demands that any change in an
access decision must imply that either (a) s and t have gone
from being disconnected to being connected (or vice versa),
or (b) the shared component of s and t have been altered.

Such a requirement ensures that any change of authoriza-
tion decision is not caused merely by the social positions of
the requester or the owner (i.e., where exactly they are in
the relational structure).

As Proposition 3 in Appendix A shows, this definition of
local-ness is equivalent to the one given in [12].

Example. The following formulas express local policies:

@own (〈child〉req ∧ [child]req) (22)

@own 〈friend〉(req ∧ 〈spouse〉>) (23)

Formula (22) demands the requester to be the only child
of the owner. Formula (23) requires the requester to be a
married friend of the owner.

The following formulas express policies that are not local:

@req 〈spouse〉> (24)

@own [child]req (25)

Formula (24), which is a relaxation of (23), requires the
requester to be married. It is not local because a change
of authorization decision only requires the introduction (or
elimination) of a spouse edge in the neighbourhood of the
requester, which may otherwise be disconnected from the
owner.

Formula (25), which is a relaxation of (22), grants access
either if the owner has no child, or if the requester is the only
child. The following explains why it is not a local policy.
Suppose we start with a model M in which the owner has
no child, and the requester is disconnected from the owner.
The requester has access in M . Now the owner gives birth
to a child, resulting in a new model N , in which the owner
is incident to a child edge. The requester loses its access in
protection state N , but the owner and the requester remain
disconnected. (End of Example.)

We can now define the technical notion of relational policy.

Definition 12. A policy function is relational iff it is
both topology-based and local.

A relational fragment of HL(own, req).
It is easy to show that every formula in HL(own, req) ex-

presses a topology-based policy. To obtain relational poli-
cies, the challenge is to ensure that formulas are constructed
to express only local policies. To better appreciate the na-
ture of this challenge, observe the following:

Proposition 2. The family of local policies contains p[>]
and p[⊥] and is closed under boolean combinations.

Thus complex local policies can be built up from primitive
ones using the boolean connectives offered by HL(own, req).
It is the modal operators 〈i〉 and 〈−i〉 that may break local-
ness of policies. The reason is that, in general, local-ness is
not preserved by relational composition. Suppose P1 and P2

are policy functions. We write P1 ◦ P2 to denote the policy
function P such that P (M) = {(s, t) ∈ SM × SM | ∃s′ ∈
SM : (s, s′) ∈ P1(M), (s′, t) ∈ P2(M)}. Even though policy
functions P1 and P2 may both be local, P1 ◦P2 need not be
local. An example is when P2 is p[>]. Thus 〈i〉ψ may not be
local even if ψ is local. This is illustrated by formula (24).

We define a relational fragment of HL(own, req) to ensure
that modal operators preserve local-ness. This relational
fragment is obtained in two steps. First, we constrain the
syntax of HL(own, req) by the grammar in Figure 7. Second,
we impose a type system (Figure 8) to further constrain for-
mula construction, such that only properly typed formulas
belong to the fragment.

Definition 13. The hybrid logic fragment HLrel contains
those formulas φ as defined in Figure 7 such that:
• For all subformulas @own ψ of φ, we have ψ : Local(req).
• For all subformulas @req ψ of φ, we have ψ : Local(own).

We now explain the two steps of restricting HL(own, req) in
turn. First, the syntax of φ in Figure 7 reiterates the require-
ment of HL(own, req), that policy formulas are boolean com-
binations of subformulas of the form“@own ψ”or“@req ψ”. As
long as these subformulas express local policies, then Propo-
sition 2 ensures that φ is local.

Second, the inference rules in Figure 8 involve two type
judgments of form “ψ : Local(x)” and “ψ : OC(x)”, where x
is typically either own or req. Intuitively, the derivation of
judgment ψ : Local(own) means ψ can be used within @own

to form a local policy. The interpretation of Local(req) is
similar. The judgment based on label OC(x) is for typing
subformulas ψ that are “owner-checkable (OC)” as defined
in [12]. Although OC formulas are not local, they can be
combined with local formulas in a conjuction to yield local
formulas. The definition of OC policies and its use in our
proof of the next theorem can be found in the appendix.

Theorem 2 (Type Soundness). If ψ :Local(req), then
p[@own ψ] is a local policy. Similarly, if ψ : Local(own), then
p[@req ψ] is a local policy.

To see an application of this theorem, consider the policy
in (23) of form @own ψ. The first conjunct type checks as
Local(own), the second one as OC(own). So their conjunc-
tion and also ψ both type check as Local(own). Theorem 2
ensures the policy itself is local. The policy in (22) can be
type checked in a similar fashion.

An attempt to type check the policy of form @req ψ in (24),
however, fails: our type system can assign type OC(req) to
ψ but this cannot be lifted to type Local(req). Policy (25)
fails to type check to Local(own) for a similar reason.

The encoding of graded modalities 〈i〉nφ given in (15) will
type check to Local(x) so long as φ type checks to Local(x).

Our typing rules can also type check the depth-first search
tree encoding of finitary relational policies [12, Appendix A].

In summary, we have identified a relational fragment HLrel

via a grammar and a type system. This allows policy devel-
opers to efficiently verify whether the policy formula under
development is indeed relational.

ψ : Local(x)

ψ : OC(x)
(O-Sub)

> : OC(x)
(O-Top)

⊥ : OC(x)
(O-Bot)

y : OC(x)
(O-Var)

ψ : OC(x)

¬ψ : OC(x)
(O-Not)

ψ1 : OC(x) ψ2 : OC(x)

ψ1 ∨ ψ2 : OC(x)
(O-Or)

ψ1 : OC(x) ψ2 : OC(x)

ψ1 ∧ ψ2 : OC(x)
(O-And)

ψ : OC(x)

〈i〉ψ : OC(x)
(O-May)

ψ : OC(x)

[i]ψ : OC(x)
(O-Mus)

ψ : OC(x) y 6= x

@y ψ : OC(x)
(O-At)

ψ : OC(x) y 6= x

↓y ψ : OC(x)
(O-Dow)

⊥ : Local(x)
(L-Bot)

x : Local(x)
(L-Var)

ψ1 : Local(x) ψ2 : Local(x)

ψ1 ∨ ψ2 : Local(x)
(L-Or)

ψ1 : OC(x) ψ2 : Local(x)

ψ1 ∧ ψ2 : Local(x)
(L-And1)

ψ1 : Local(x) ψ2 : OC(x)

ψ1 ∧ ψ2 : Local(x)
(L-And2)

ψ : Local(x)

〈i〉ψ : Local(x)
(L-May)

ψ : Local(x) y 6= x

@y ψ : Local(x)
(L-At)

ψ : Local(x) y 6= x

↓y ψ : Local(x)
(L-Dow)

Figure 8: A type system for formulas from Fig. 7, identifying polices that are local. The typing rules for
inverse modalities 〈−i〉 and [−i], which closely parallel O-May, O-Mus and L-May, are omitted for brevity.

8. DISCUSSION
We now briefly discuss some issues, alternatives, and ideas

not fully developed in this paper. We will not repeat here
issues already identified for future work.

Heterogeneous protection state.
The approach to relationship-based access control taken

in this paper identifies nodes of a model with principals who
may be owners or requesters of resources. So nodes model
subjects. But it may be beneficial to let nodes model ei-
ther subjects or objects, so that relationships can also be
expressed between subjects and objects.

One idea is to partition the set of nodes S into Sobj and
Ssubj so that variables that denote subjects, such as own and
req can only be bound to nodes in Ssubj whereas variables
that denote resources can only be bound to nodes in Sobj .

An example of the sort of policy one could then write is

@req 〈sameF loor〉resc ∧@own 〈collaborator〉req ∧
@resc isPrinter ∧@file isPDF

This policy says that a print job should be granted to req
if req is on the same floor as the resource resc, if the resource
resc is a printer, if the file file to be printed is in PDF format,
and if the owner own is a collaborator of the requester req.

One interesting thing this policy illustrates is the question
of whether the ownership is about the file or the printer.
Ideally, we want to be able to differentiate such ownership
and express it in policy.

One idea is therefore to express ownership also as a binary
relation between objects and subjects. In this approach, ob-
jects might well have joint ownership. We now could amend

the above policy to

@req 〈sameF loor〉resc1 ∧@own2 〈collaborator〉 ∧
@resc1 (isPrinter ∧ 〈ownedBy〉own1) ∧
@resc2 (isPDF ∧@resc2 〈ownedBy〉own2)

This policy now has two resources, one printer and one
file, and each has a possibly different owner. The policy still
has the same intent as before, but it also verifies that the
file is owned by own2 whereas the printer is owned by own1.

Our local model-checking algorithm for HL, and indeed
our approach of viewing a policy as a mapping from an ob-
ject to a formula of HL, are agnostic to, and so directly sup-
port, such extensions. Algorithm MC works for any formula
written in HL. In particular, it works for a fragment

HL(owni, resci, reqi)

that generalizes HL(own, req) to allow any positive number
of owners, resources, and requesters – we already mentioned
that the XACML standard allows multiple requesters.

The type of the induced policy function then also changes:
each model now has a k-ary relation where k is the number
of free variables in the formula that specifies the policy.

Policy composition.
One may think of policies written in HL as just one as-

pect of control to resources. Different aspects of controlling
access could then be combined. For example, in [10] there
is a mechanism for determining an appropriate context for
evaluating a policy function, where the context is an appro-
priate model for that policy. Since policies φ in HL determine
policy functions as well, one can readily use the protection
model of [10] with our hybrid logic.

Another example is when we have an attribute-free lan-

guage, e.g. HL with empty AP . Then we may treat each HL
policy as a“rule”, and then combine rules in a PBel style pol-
icy composition language [6], perhaps with rules from other
policy languages that refer to attributes.

9. RELATED WORK

Modal logics for access control.
Access control logics for distributed systems can be in-

terpreted as modal logics, with Kripke-style, possible-world
semantics. In ABLP [1], every principal is a modality, and
states in a model are epistemic states. ICL and its vari-
ants [14] can be compiled into formulas in the modal logic
S4. Following [10, 12], HL(own, req) formulas are interpreted
against models that capture principal attributes and social
networks. The nodes of a model denote principals, modali-
ties correspond to relationship types, and accessibility rela-
tions express interpersonal relations.

Modal logics for relationship-based access control.
In [12], a modal logic E for relationship-based access con-

trol was developed as an extension and improvement of a
similar modal logic B. So we focus our discussion on E here.

Its abstract syntax is given by

φ ::= > | p | ¬φ | φ1∧φ2 | 〈i〉φ | 〈−i〉φ | ↓p φ | φ1⊗φ2

where p ranges over a set of propositional symbols with a re-
served symbol a, and i ranges over a set of labels. In [12], the
operator ↓p is actually written @p but we chose the former
notation here, as it will aid our comparative discussion.

The models for E are similar to those for HL. Semantically,
propositions are treated in E like nominals in hybrid logic:
they are true in exactly one node. Symbol a represents the
requester of an access. The semantics of the ↓p operator is
actually that of the ↓n operator in hybrid logic, except that
↓ aφ is interpreted as ⊥. Intuitively, ↓ p φ identifies p with
the owner of the object.

Lastly, operator φ⊗ψ holds if one can separate model M
into two parts of node sets that only overlap for the owner
and requester, and where φ holds in one of these parts and ψ
holds in the other one. This operator crucially increased the
expressiveness of B so that, e.g., thresholds on the number of
specific successors of a node can be expressed. Since one can
encode graded modalities and similar counting mechanisms
in HL, we do not need to add such an operator to our logic.

We view this fact as a big advantage of using HL instead
of E. For φ⊗ ψ incurs a seemingly unavoidable exponential
penalty, since there are exponentially many partitions of the
set of nodes that need to be considered in its evaluation. The
evaluation of HL over models, however, is linear in the size
of the model and formula with appropriate caching in place.

Another advantage of HL is the greater flexibility of atomic
formulas: HL offers nominals, variables, and propositions
(i.e. attributes). Further, the operator @t is very useful as
it specifies where a policy should be evaluated. In fact, by
promoting HL(own, req) we suggest most policies would be
Boolean combinations of policies of form @t ψ.

Hybrid logics for access control.
We are not aware of much other work on using hybrid logic

for access control. But in [7], a logical framework is used
to design an authorization logic for time-dependent access-

control decisions. The logic contains a variant of the @t

operator, A@I, which allows the relativization of the truth
of proposition A to the time interval I.

Local-ness in ReBAC policies.
Local-ness ensures that change of authorization decision is

due to a change in “connectivity” between the owner and the
requester of an object. The notion was originally formulated
in [2] (an extension of [11]), in which a local policy is one
such that, if there is a change of authorization decision due
to the introduction of one new edge, then the new edge must
be connected to both the owner and the requester. The
definition was based on social networks that are undirected
graphs, with no edge labels.

In [8], the definition was generalized to account for the
introduction of “one or more” edges. The two definitions
can be shown to be equivalent. In [12], the definition was
adapted to account for social networks that are directed and
poly-relational, such that the definition in [8] is merely a spe-
cial case. In this work we adopt a formulation of local-ness
that makes explicit the kind of graph structures that local
policies cannot distinguish. The new formulation is equiva-
lent to that of [12] (Proposition 3). The definition of i-local
policies in the Appendix A is again a “backward compatible”
generalization that accounts for policies of arbitrary arity.

The notion of properly local policies was originally formu-
laed in [9] (an extension of [8]).

10. CONCLUSIONS
In this paper we have proposed the use of hybrid logic for

the specification and enforcement of access-control decisions
in the relationship-based approach to access control.

Concretely, we presented a fragment of hybrid logic that is
customized to the needs of relationship-based access control.
We demonstrated that the models of that hybrid logic are
appropriate as models of protection states in relationship-
based access control. We showed how the semantics of hy-
brid logic on such models gives meaning to access-control
policies written in that logic.

Then we discussed how this semantics can be implemented
as a policy-decision point, via a local model-checking algo-
rithm. Next, we featured numerous examples of policies and
showed how they can be elegantly specified in our hybrid
logic. Importantly, we showed how it can express graded
modalities such as “at least three friends”.

We then transferred results from hybrid logic to our set-
ting, showing that all policies written in our hybrid logic are
invariant under so called generated sub-models, and that
binder-free policies from our hybrid logic are invariant un-
der hybrid bisimulation.

To understand better connections with related work, we
identified an attribute-free fragment of our hybrid logic, via
a static type system, in which only policies can be specified
that are relational in a technical sense from the literature.

We also stressed that the scope of our approach is not
confined to having sole owners, resources, and requesters.
We finally concluded the paper with a discussion of related
work and of how our approach improves on it.

11. REFERENCES
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.

A calculus for access control in distributed systems.

ACM Transactions on Programming Languages and
Systems, 15(4):706–734, Sept. 1993.

[2] M. Anwar, Z. Zhao, and P. W. L. Fong. An access
control model for Facebook-style social network
systems. Technical Report 2010-959-08, Department of
Computer Science, University of Calgary, July 2010.
Submitted for review.

[3] C. Areces. Logic Engineering. The Case of Description
and Hybrid Logics. PhD thesis, Institute for Logic,
Language and Computation, University of
Amsterdam, Amsterdam, The Netherlands, October
2000.

[4] C. Areces and B. ten Cate. Hybrid logics. In
P. Blackburn, F. Wolter, and J. van Benthem, editors,
Handbook of Modal Logics. Elsevier, 2006.

[5] C. Areces and B. ten Cate. Hybrid logics. In
P. Blackburn, J. van Benthem, and F. Wolter, editors,
Handbook of Modal Logic. Elsevier, 2007.

[6] G. Bruns and M. Huth. Access control via Belnap
logic: Intuitive, expressive, and analyzable policy
composition. ACM Trans. Inf. Syst. Secur., 14(1):9,
2011.

[7] H. DeYoung. A logic for reasoning about
time-dependent access control policies. Senior
Research Thesis CMU-CS-08-131, School of Computer
Science, Carnegie Mellon University, 20 May 2008.

[8] P. W. L. Fong. Preventing Sybil attacks by privilege
attenuation: A design principle for social network
systems. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy (S&P’11), pages 263–278,
Oakland, CA, USA, May 2011.

[9] P. W. L. Fong. Preventing Sybil attacks by privilege
attenuation: A design principle for social network
systems. Technical Report 2011-995-07, Department of
Computer Science, University of Calgary, Mar. 2011.

[10] P. W. L. Fong. Relationship-based access control:
protection model and policy language. In CODASPY,
pages 191–202, 2011.

[11] P. W. L. Fong, M. Anwar, and Z. Zhao. A privacy
preservation model for Facebook-style social network
systems. In Proceedings of the 14th European
Symposium on Research In Computer Security
(ESORICS’09), volume 5789 of LNCS, pages 303–320,
Saint Malo, France, Sept. 2009.

[12] P. W. L. Fong and I. Siahaan. Relationship-based
access control policies and their policy languages. In
SACMAT, pages 51–60, 2011.

[13] M. Franceschet and M. de Rijke. Model checking
hybrid logics (with an application to semistructured
data). J. Applied Logic, 4(3):279–304, 2006.

[14] D. Garg and M. Abadi. A modal deconstruction of
access control logic. In FOSSACS’2008, volume 4962
of LNCS, pages 216–230, 2008.

[15] C. E. Gates. Access control requirements for web 2.0
security and privacy. In Proc. of IEEE Web 2.0
Privacy and Security Workshop (W2SP’07), Oakland,
California, May 2007.

[16] T. Moses. extensible access control markup language
(XACML) version 2.0. Technical report, OASIS
Standard, 1 February 2005. Specification document.

APPENDIX
A. PROOF OF TYPE SOUNDNESS

This appendix sketches the proof of Theorem 2.
The introduction of variables (x) causes an authorization

decision to depend on the relationship not only between the
owner and the requester, but also among other individuals
represented by variables. To accommodate this, we general-
ize the notion of a semantic policy as follows.

Definition 14. For k ≥ 2, a k-ary policy function P is
a family (P (M))M of k-ary relations, indexed by models M ,
where P (M) ⊆ (SM)k.

Note that our ultimate goal is to express binary policies.
Given (s0, s1, . . . , sk) in (SM)k+1, we interpret s0 to be one
end of the binary relation (e.g., the owner). We call this end
the source. The other k components correspond to individ-
uals named by variables (x). One of the named individuals
will be selected to represent the other end of the binary rela-
tion (e.g., the requester). We call this other end the target.
The other k − 1 individuals are called bridges.

We write x̄ to denote a sequence of distinct variables
x1, . . . , xk. We write ψ(x̄) to denote the coupling of a for-
mula ψ with the sequence x̄, such that every free variable of
ψ appears in x̄. Without loss of generality, we assume that
every binder ↓x binds a distinct variable in ψ.

Definition 15. Given a formula ψ as defined in Figure
7, a variable sequence x̄ = x1, . . . , xk such that freevars(ψ) ⊆
{x̄}, the policy function policy[ψ(x̄)] is defined as follows:

policy[ψ(x̄)](M)
def
= {(s0, s1, . . . , sk) ∈ (SM)k+1 |

M, s0, [x1 = s1, . . . , xk = sk] |= ψ}

We present here an alternative but equivalent formulation
of local policies, in preparation for further generalization.

Definition 16. Let M and N be models.
1. We write M ⊆ N if SM ⊆ SN and, for all i ∈ I,
RMi ⊆ RNi .

2. We write N −M for the binary relation on SN defined
by {(s, t) ∈ SN × SN | ∃i ∈ I : (s, t) ∈ RNi \RMi }.

Proposition 3. A binary policy function P is local iff the
following holds: for all models M and N such that M ⊆ N ,
and all (s, t) ∈ SM × SM , if P (M)(s, t) 6= P (N)(s, t) then

there is (s′, t′) ∈ N −M such that s
N

! s′ and t′
N

! t.

The condition stated in this proposition is in fact the defi-
nition of local policies in [12]. The following generalization
of local policies is based on this formulation.

Definition 17. A (k+1)-ary policy P is i-local (1 ≤ i ≤
k) iff the following holds:

For all models M , N with M ⊆ N , and all (s0, s1, . . . ,

sk) ∈ (SM)k+1, if s0
M
! sj for every j ∈ {1, . . . , k}\

{i}, then P (M)(s0, s1, . . . , sk) 6= P (N)(s0, s1, . . . , sk)
implies that there is a pair (s′, t′) ∈ N −M such

that s0
N

! s′ and t′
N

! si.

Note that a binary policy P is local iff P is 1-local.
This definition of i-local policy generalizes the previous

definition of local policy in two ways. First, the index i

essentially identifies target of the binary relation (recall s0 is
the source). The rest of the components sj (where 1 ≤ j ≤ k
and j 6= i) are bridges. Second, the definition defines a
notion of “conditional” local-ness. Under the condition that
the bridges are connected to the source, the requirements of
local-ness apply.

To address the issue that local-ness is not preserved by
relational composition, we need to strengthen the notion of
local-ness. The additional requirement is captured in the
following definition, which generalizes a similar definition
given in [9] – which focuses on monotonic policies.

Definition 18. 1. A (k + 1)-ary policy P is i-proper
(1 ≤ i ≤ k) iff the following holds: For every model

M , and every (s0, s1, . . . , sk) ∈ (SM)k+1, if s0
M
! sj

for every j ∈ {1, . . . , k}\{i}, then P (M)(s0, s1, . . . , sk)

implies s0
M
! si.

2. A policy P is i-properly local iff P is both i-local and
i-proper.

Properly local policies form a family that is closed under
both relational composition and positive boolean combina-
tions. Also, no properly local policy is semantically equiva-
lent to p[>].

One important observation is that the conjunction of a
properly local policy with a so-called “owner-checkable pol-
icy” [12] results in a policy that is also properly local. This
provides a rich mechanism for composing properly local poli-
cies out of components that need not be properly local.

Definition 19. A (k + 1)-ary policy P is i-owner-
checkable (i-OC) (1 ≤ i ≤ k) iff the following holds:

For all models M , N such that M ⊆ N , and all

(s0, s1, . . . , sk) ∈ (SM)k+1, if s0
M
! sj for every

j ∈ {1, . . . , k} \ {i}, then P (M)(s0, s1, . . . , sk) 6=
P (N)(s0, s1, . . . , sk) implies that there is a pair

(s′, t′) ∈ N −M such that s0
N

! s′.

The definition of an OC policy is a weakening of the defini-
tion of local policy. When there is a change in authorization
decision between the owner and the requestor, a local policy
ensures that the change must be due to the introduction of
an edge that connects both the owner and the requestor.
An OC policy requires less: it only ensures that the edge is
connected to the owner1.

Proposition 4. Suppose x̄ = x1, . . . , xk, and 1 ≤ i ≤ k.
1. If policy[ψ(x̄)] is i-OC, and {x̄} ⊆ {ȳ} such that xi =
yj, then policy[ψ(ȳ)] is j-OC.

1Our definition of 1-OC policy is a minor generalization of
the definition of OC policy in [12]. The latter is restricted
to topology-based policies. Our definition relaxes this re-
striction. The definition of [12] (without the topology-based
requirement) is the following: A binary policy function P is
OC iff, for all models M and N , and all s, t ∈ SM ∩ SN , if
C(M, s, t) = C(N, s, t), then P (M)(s, t) = P (N)(s, t). Here,
C(M, s, t) is the relational structure (S, {Ri ⊆ S×S | i ∈ I})
with the components below:

S
def
= {s, t} ∪ {s′ ∈ SM | s

M
! s′}

Ri
def
= RMi ∩ (S × S)

Using an argument similar to the proof of Proposition 3, one
can show that the definition above is equivalent to 1-OC.

2. Every i-properly local policy is also i-OC.
3. The policies policy[>(x̄)], policy[⊥(x̄)] and policy[y(x̄)]

are i-OC.
4. If both policy[ψ1(x̄)] and policy[ψ2(x̄)] are i-OC, then

policy[(¬ψ1)(x̄)], policy[(ψ1 ∨ ψ2)(x̄)] and
policy[(ψ1 ∧ ψ2)(x̄)] are i-OC.

5. If policy[ψ(x̄)] is i-OC, then policy[(〈i〉ψ)(x̄)],
policy[(〈−i〉ψ)(x̄)], policy[([i]ψ)(x̄)] and
policy[([−i]ψ)(x̄)] are i-OC.

6. If policy[ψ(x̄)] is i-OC, and j 6= i, then policy[(@xj ψ)(x̄)]
is i-OC.

7. If policy[ψ(x̄, y)] is i-OC, then policy[(↓y ψ)(x̄)] is i-
OC.

The above proposition can be succinctly summarized in two
points. First, properly local policies are OC. Second, the
syntactic construction of ψ in Figure 7 mostly preserves
owner-checkability, so long as the variable y in @y and ↓ y
is not the target variable.

Proposition 5. Suppose x̄ = x1, . . . , xk, and 1 ≤ i ≤ k.
1. If policy[ψ(x̄)] is i-properly local, and {x̄} ⊆ {ȳ} such

that xi = yj, then policy[ψ(ȳ)] is j-properly local.
2. The policies policy[⊥(x̄)] and policy[xi(x̄)] are i-properly

local.
3. If both policy[ψ1(x̄)] and policy[ψ2(x̄)] are i-properly lo-

cal, then policy[(ψ1 ∨ ψ2)(x̄)] is i-properly local.
4. If policy[ψ1(x̄)] is i-properly local, and policy[ψ2(x̄)] is i-

OC, then both policy[(ψ1 ∧ ψ2)(x̄)] and
policy[(ψ2 ∧ ψ1)(x̄)] are i-properly local.

5. If policy[ψ(x̄)] is i-properly local, then policy[(〈i〉ψ)(x̄)]
and policy[(〈−i〉ψ)(x̄)] are i-properly local.

6. If policy[ψ(x̄)] is i-properly local, and j 6= i, then
policy[(@xj ψ)(x̄)] is i-properly local.

7. If policy[ψ(x̄, y)] is i-properly local, then
policy[(↓y ψ)(x̄)] is i-properly local.

The only base cases in the above proposition are ⊥ and
the positive testing of the target variable x. One of the
most important highlights in the above proposition is that a
conjunction is properly local so long as one of its conjuncts
is properly local, and the other conjunct can simply be OC.
Yet, for a disjunction to be properly local, both disjuncts
must be properly local. A second important highlight is that
〈i〉 and 〈−i〉 preserves proper local-ness. This addresses the
crux of the problem of relational composition. Lastly, the
variable y in @y and ↓y must not be the target variable if
proper local-ness is to be preserved.

Theorem 2 is a corollary of the following result, which in
turn follows directly from Propositions 4 and 5.

Theorem 3. Suppose x̄ = x1, . . . , xk, and 1 ≤ i ≤ k.
1. If ψ : OC(xi), then policy[ψ(x̄)] is i-OC.
2. If ψ : Local(xi), then policy[ψ(x̄)] is i-properly local.

