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Abstract—Software systems are constantly evolving, with
new versions and patches being released on a continuous basis.
Unfortunately, software updates present a high risk, with many
releases introducing new bugs and security vulnerabilities.

We tackle this problem using a simple but effective multi-
version based approach. Whenever a new update becomes
available, instead of upgrading the software to the new version,
we run the new version in parallel with the old; by carefully
coordinating their executions and selecting the behavior of the
more reliable version when they diverge, we create a more
secure and dependable multi-version application.

We have implemented this technique in a prototype system
targeting multicore processors, and show that it can be applied
successfully to several security-critical applications, such as
lighttpd and redis.

Keywords-software updates, multi-version execution, security
vulnerabilities

I. INTRODUCTION

The last decade has seen the emergence of new computing
platforms, ranging from multicore processors to large-scale
data centers, which provide an abundance of computational
resources and a high degree of parallelism. These platforms
are already being successfully used to increase the per-
formance of certain classes of applications, through data-
processing systems such as MapReduce [12], Hadoop [30]
or Dryad [14]. However, relatively little attention has been
payed to exploiting this abundance of resources to improve
the safety, reliability and security of software systems,
especially in the case of code with limited or no inherent
parallelism.

In this paper, we propose a novel technique that takes
advantage of the resources made available by these platforms
(e.g., idle processor time) to increase the reliability and secu-
rity of software systems. Our approach targets the software
update process. Software updates are an integral part of the
software life-cycle, but present a high failure rate, with many
users and administrators refusing to upgrade their software
and relying instead on outdated versions, which often leaves
them exposed to critical bugs and security vulnerabilities.
For example, a recent survey of 50 system administrators
has reported that 70% of respondents refrain from installing
a software upgrade, regardless of their experience level [11].

One of the main reasons for which users hesitate to install
updates is that a significant number of them result in failures.
It is only too easy to find examples of updates that fix a bug
or a security vulnerability only to introduce another problem

in a different part of the code. Our goal is to improve the
software update process in such a way as to encourage users
to upgrade to the latest software version, without sacrificing
the stability of the older version.

Our proposed solution is simple but effective: whenever
a new update becomes available, instead of upgrading the
software to the newest version, we run the new version
in parallel with the old. Then, by selecting the output of
the more reliable version when their executions diverge, we
can increase the overall reliability of the software; in effect,
our goal is to have the multi-version software system be at
least as reliable as each individual version by itself. As new
versions arrive, we execute them in parallel with the existing
ones, until all available resources have been exhausted, or a
user-specified threshold has been reached. At that point, we
can either discard the oldest versions, or we can use more
sophisticated replacement strategies.

In this paper, we present a prototype targeting multicore
processors, and a relatively small number of versions. How-
ever, our approach can be extended to work with several
different platforms, handle a large number of versions,
and balance conflicting requirements such as performance,
reliability and energy consumption.

The rest of this paper is organized as follows. Section II
gives an overview of our approach, by walking the reader
through an example usage scenario (§II-A), discussing the
main goals and challenges of our approach (§II-B), and
defining its scope (§II-C). Then, Section III presents a
protype implementing our safe updates approach in the
context of multicore processors and Section IV presents our
experience applying it to several real applications. Finally,
Section V discusses related work and Section VI concludes.

II. OVERVIEW

A. Example Scenario

To motivate our approach, we present a real scenario
targeting lighttpd, which is representative of one type of
applications which could benefit from our approach, namely
server applications with stringent security and availability
requirements.
lighttpd1 is a popular open-source web-server that

achieves high-scalability, without sacrificing standards-
compliance and security. As a result, lighttpd is used by

1http://www.lighttpd.net/
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Figure 1. Crash bug #2169 from lighttpd.

several high-traffic websites such as YouTube, Wikipedia,
and Meebo.

Despite its popularity, crash bugs are still a common
occurrence in lighttpd, as evident from its bug tracking
database2. Below we discuss one such bug, which our
approach could successfully eliminate.

In April 2009, a patch was applied3 to lighttpd’s code
related to the HTTP ETag functionality. An ETag is a unique
string assigned by a web server to a specific version of a
web resource, which can be used to quickly determine if
the resource has changed. The patch was a one-line change,
which discarded the terminating zero when computing a hash
representing the ETag. More exactly, line 47 in etag.c:
for (h=0, i=0; i < etag->used; ++i) h = (h<<5)ˆ(h>>27)
ˆ(etag->ptr[i]);

was changed to:
for (h=0, i=0; i < etag->used-1; ++i) h = (h<<5)ˆ(h>>27)
ˆ(etag->ptr[i]);

This correctly changed the way ETags are computed,
but unfortunately, it broke the support for compression,
whose implementation depended on the previous compu-
tation. More exactly, lighttpd’s support for HTTP com-
pression uses caching to avoid re-compressing files which
have not changed since the last compression. To determine
whether the cached compressed file is still valid, lighttpd
uses ETags. Unfortunately, the code implementing HTTP
compression did not consider the case when ETags are
disabled. In this case, etags->used is 0, and when the
line above is executed, etag->used-1 underflows to a
very large value, and the code crashes while accessing
etag->ptr[i]. Interestingly enough, the original code was
still buggy (it always returns zero as the hash value, and
thus it would never re-compress the files), but it was not
vulnerable to a crash.

The segfault was diagnosed and reported in March 20104

and fixed at the end of April 20105, more than one year
after it was introduced. The history is depicted graphically
in Figure 1. The bottom line is that for about one year,
users affected by this bug essentially had to decide between
(1) incorporating the new features and bug fixes added to the
code, but being vulnerable to this crash bug, and (2) giving

2http://redmine.lighttpd.net/issues/
3http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2438
4http://redmine.lighttpd.net/issues/2169
5http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2723

up on these new features and bug fixes and using an old
version of lighttpd, which is not vulnerable to this bug.
Note that this is particularly true for the eleven-month period
between the time when the bug was introduced and the time
it was diagnosed, since during this time most users would
not know how to change the server’s configuration to avoid
the crash.

In our proposed approach, when a new version arrives,
instead of replacing the old version, we run both versions
in parallel. As more versions arrive, we execute them in
parallel with the existing ones, until all available resources
have been exhausted, at which point we discard some of the
versions according to some strategy.

In our example, consider a system that is running a version
of lighttpd from March 2009. When the buggy April 2009
version is released, our system runs it in parallel with the
old one. As the two versions run, the system checks that
their external behavior is identical (e.g., they write the same
values into the same files, or send the same data over the
network). When the two versions diverge, the divergence
is resolved in the favor of the more reliable version. In
particular, if one of the two versions crashes, the behavior
of the non-crashing version is used, and the other version
is transparently modified to survive the crash. If the system
cannot determine which behavior is correct, a simple heuris-
tic can be used, such as always preferring the behavior of the
newer version. In our example, this effectively eliminates the
bug in Figure 1, while still allowing users to use the latest
features and bug fixes of the recent versions.

B. Goals and Challenges

There are a number of challenges that need to be ad-
dressed to make the proposed approach work in practice,
which we group into four main categories.

Multi-execution environment: To be able to run multi-
ple versions of a single application in parallel, a specialized
execution environment is needed. The main goal of this
execution environment is to allow multiple software versions
to act as one to external users. To achieve this goal, the
execution environment has to mediate any interactions with
the outside world (e.g., so that a web-server does not send
duplicate responses to clients), synchronize the execution of
different versions (so that they perform similar actions at
the same time), resolve any divergences in their behavior in
favor of the correctly-executing version (so that the overall
application exhibits greater security and reliability), and
allow the other versions to survive the divergence. Note
that the last point is of key importance, as the success of
our technique depends on having all versions running at all
times.

Reasonable performance overhead: To be practical,
this mechanism has to incur minimal overhead on top of
native execution. In addition, we need to ensure that the
overall system is able to scale up and down the number

http://redmine.lighttpd.net/issues/
http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2438
http://redmine.lighttpd.net/issues/2169
http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2723


of software versions run in parallel in order to balance
conflicting requirements such as performance, reliability,
security and energy consumption.

Support for native applications: While not an abso-
lute requirement, we believe that to be usable in practice,
our system should operate directly on application binaries
without access to the target application source code. While
such a requirement poses many implementation challenges,
it makes it easy to integrate our approach with existing
software package managers (e.g., apt, yum) and has the
additional advantage that it doesn’t require separate support
for different programming languages and runtime environ-
ments.

Deployment strategy: While our approach eases the
decision of applying a software update— as incorporating a
new version would never decrease the security and reliability
of the overall multi-version application—the number of
versions that can be run in parallel is limited, being dictated
by the number of available resources (e.g., the number of
available CPU cores). As a result, we need a deployment
strategy to decide what versions are run in parallel. For
example, we could always run the last n released versions
(where n is the number of available resources), or we could
always keep a one-year old version, etc. This paper focuses
on techniques for allowing multiple versions to successfully
coordinate their parallel execution, but in future work we
plan to explore deployment strategies in more detail.

C. Scope

The success of our approach depends on two important
assumptions: the change in external behavior between the
versions run in parallel has to be relatively small, and there
must be a way to decide on the correct behavior when the
versions diverge. We discuss each of them below.

Small changes in external behavior: First, the behavior
of the versions that are run in parallel has to be similar
enough to allow us to synchronize their execution. Moreover,
we expect versions to re-converge to the same behavior after
any given divergence. To this end, our approach is particu-
larly suitable for consecutive software versions, which have
relatively small differences in behavior. Our empirical study
in Section IV-A shows that changes to externally observable
behavior of an application are often minimal. Note that
the key insight here is that we are only concerned with
externally observable behavior, and are oblivious to the way
the external behavior is generated. As a trivial example,
given two versions of a routine that outputs the smallest
element of an array, our approach considers them equivalent
even if the first version scans the array from the first to the
last element, while the other scans it in reverse order.

Types of applications and code changes: As mentioned
above, our system relies on the assumption that versions re-
converge to the same behavior after any given divergence.

This places certain restrictions on both the type of applica-
tions and the type of code changes. For example, we believe
our approach is very suitable to the kind of applications that
perform a series of mostly independent requests, such as
network servers. These applications are usually structured
around a main dispatch loop, which provides a useful re-
convergence point. Similarly, our approach is most suit-
able to local code changes, which have small propagation
distances, which ensures that the different versions will
eventually re-converge to the same behavior.

Resolving divergences: While detecting divergences
between different versions is relatively easy, deciding which
behavior to use when multiple ones are available is much
more difficult. In fact, we recognize that in the general
case it is impossible to determine which software version
is the “correct” one, without having access to a higher-level
specification. Instead, in this paper we focus on surviving
generic bugs, such as those that result in a segmentation
fault. For all other divergences, our approach is to favor
the latest software version. Thus, if we run a version v1 in
parallel with a more recent version v2, we always choose
v2’s behavior when the two versions disagree, unless v2’s
behavior results in a crash, in which case we use v1 to
survive the crash, and restart v2 after the crash point using
v1’s state (see §III for details).

As illustrated by our example in Section II-A, our ap-
proach targets the common situation in which the newly re-
leased version fixes an existing bug or security vulnerability,
or adds some new desired functionality, but at the same time
introduces a new failure. In such cases, our approach often
allows the user to benefit from the positive changes in the
new version, without sacrificing the stability of the old one.

III. PROTOTYPE SYSTEM

We have implemented our approach in a prototype system
called Mx, targeted at multicore processors running Linux.
Currently, our prototype fully works with only two applica-
tion versions, but we are working on adding support for a
larger number of versions.

Figure 2 shows a platform running Mx, on which con-
ventional (i.e., unmodified) applications and multi-version
(MV) applications run side by side. The key property that
must hold on such a platform is that without purposely
trying to do so, applications should not be able to distinguish
between conventional and MV applications running on the
platform. case. In particular, the multiple versions of an
MV application should appear as one to any other entity
interacting with them (e.g., user, operating system, other
machines). Furthermore, MV applications should be more
reliable and secure than their component versions, and their
performance should not be significantly degraded.

To achieve these goals, our prototype Mx employs several
different components, as shown in the architectural overview



Figure 2. A platform running both conventional and multi-version
applications.

of Figure 3. The input to Mx consists of the binaries of two
versions of an application, which we’ll refer to as the old
version—the one already running on the system), and the
new version—the one newly released.

These two binaries are first statically analyzed by the SEA
(Static Executable Analyzer) component, which constructs
a mapping from the control flow graph (CFG) of the old
version to the CFG of the new version (§III-C). The two ver-
sions are then passed to MXM (Multi-eXecution Monitor),
whose job is to run the two versions in parallel, synchronize
their execution, virtualize their interaction with the outside
environment, and detect any divergences in their external
behavior (§III-A). Once a divergence is detected, it is
resolved by REM (Runtime Execution Manipulator), which
selects between the available behaviors, and resynchronizes
the two versions after the divergence (§III-B).

The system prototype has been implemented in C with
a small amount of assembly, and the current version has
approximately 28,200 source lines of code. The implemen-
tation currently supports Linux 2.6.39 and above, running
x86 and x86-64 architectures.

The rest of this section describes the main Mx system
components and their implementation in more detail, and
discusses how they work together to support safe software
updates.

A. MXM: Multi-eXecution Monitor

One of the main components of our multi-version ex-
ecution environment is the MXM monitor. MXM’s main
jobs are to run the two versions concurrently, mediate
their interaction with the outside world, synchronize their

Applications
Versions Binaries MX

SEA

MXM

REM

Analyze

Execute Monitor

Manipulate

Multi-version
Application

Linux Kernel

Figure 3. System architecture for multicore processors.

executions based on their external behavior, and detect any
divergences in their external behavior.

We define the external behavior of an application as its
sequence of system calls, which are the only mechanism
for an application to change the state of its environment.
Therefore, MXM works by intercepting all system calls
issued by each application version, and manipulating them to
ensure that the two versions are executed in a synchronized
fashion and that they act as one to the outside world.

MXM is implemented using the ptrace interface pro-
vided by Linux kernels. This interface, often used for
application debugging, allows simple deployment (without
any need for compile-time instrumentation) and makes the
monitor itself lightweight since it is running as a regular un-
privileged process. MXM is similar in operation to previous
monitors whose goal is to synchronize applications at the
level of system calls, in particular that implemented by the
Orchestra project [25].

MXM runs each version in a separate child process,
intercepting all their system calls. When a system call is
intercepted in one version, MXM waits until the other version
also performs a system call. With a pair of system calls in
hand (one executed by the old version, and one by the new
version), MXM compares their types and arguments. If they
differ, MXM has detected a divergence and invokes the REM
component to resolve it (§III-B).

Otherwise, if the two versions perform the same system
call with the same arguments, MXM mediates their inter-
action with the environment. If the operation performed by
the system call is idempotent (e.g., sysinfo), MXM allows
both processes to execute it independently. Otherwise, MXM
executes the system call on their behalf and copies its results
into the address spaces of both versions.

There are several challenges that we encountered while
implementing MXM. First, MXM must partly understand
the semantics of system calls. For example, many system
call parameters use complex (often nested) structures with



complicated semantics to pass values to the operating system
kernel, as in the case of ioctl or futex. In order to be
able to compare the parameters of these system calls and
to copy back their results, MXM needs to understand the
semantics of these structures. However, there are only a
small number of system calls in Linux, and once they are
implemented they can be reused by any application that uses
them. MXM currently implements 102 system calls (out of
the 306 provided by Linux-x64 2.6.39), which was enough
to allow us to run Mx on our benchmarks (§IV).

Second, the arguments of a system call are often passed
through pointers, which are only valid in the application
address space, which is not directly available to MXM.
Therefore, MXM needs to copy the content pointed to by
these structures to its own address space in order to perform
their comparison.

Third, because the structures passed as arguments to
system calls often have variable-size, MXM also needs a
fast way to allocate and deallocate memory for them in
order to minimize the overall overhead imposed by our
system. For this purpose, MXM uses a region-based memory
allocator [24], namely the obstack library6.

Finally, a particular challenge arises in the context of
multi-process and multi-threaded applications. Using a sin-
gle monitor instance to intercept both versions and their child
processes (or threads) can cause significant delays in han-
dling their system calls, which eliminates any advantage that
these applications derive from using concurrency. Therefore,
to avoid the bottleneck of a single monitor instance, MXM
uses a new monitor thread for each set of child processes (or
threads) spawned by the monitored versions. For instance,
if the old and new versions each have a parent and a child
process, then MXM will use two threads: one to monitor the
parent processes, and one to monitor the child processes in
each version.

Due to limitations of the ptrace interface (which was
not designed to be used in a multi-process/multi-threaded
environment), handing the control of any child processes
being spawned by the application over to a new monitoring
thread is somewhat complicated. In MXM we adopt the
solution described in [25]. When new child processes are
spawned, we let the parent monitoring thread to supervise
their execution until the first system call. Then, we replace
this system call with a pause system call, disconnect the
parent monitor (which causes a continue signal to be sent
to all new child processes), and spawn a new monitoring
thread which immediately reconnects to the new child pro-
cesses, restores their original system calls, and resumes their
execution.

Limitations and future work: The main limitation of
MXM is related to its performance (see §IV-E). In future
work, we plan to improve performance in several ways.

6http://www.gnu.org/software/hello/manual/libc/Obstacks.html

First, we plan to replace the ptrace interface with the faster
pread and pwrite interfaces, which allow direct access
to the address space of child processes. Second, we plan
to synchronize versions at a coarser granularity, by using
an window/epoch approach [29], and by performing certain
synchronizations at the level of shared library calls. Finally,
we could explore the possibility of not intercepting system
calls in certain pieces of code that were previously shown
to be safe and do not need to be replicated across multiple
versions, using a binary translation approach.

We also plan to improve the precision with which we
detect divergences. The current implementation considers
two versions to be equivalent as long as they perform
the same system calls with the same arguments. While
this covers a large class of software updates, there are
certain refactorings which may affect the order of system
calls, without changing the overall application behavior.
We plan to explore approaches similar to some compiler
optimizations, such as peephole optimization [1], and adapt
them to work on the level of kernel and library calls.

B. REM: Runtime Execution Manipulator

At the core of our approach lies the REM component of
Mx, which is invoked by MXM whenever a divergence is
detected. REM has two main jobs: (1) to decide whether
to resolve the divergence in favor or the old or the new
version; and (2) to allow the other version to execute through
the divergence and resynchronize the execution of the two
versions after the divergence. As discussed in Section II-C,
in this paper we restrict our attention to surviving crash
errors, so the key challenge is to allow the crashing version
to survive the crash. This is essential to the success of our
approach, which relies on having both versions be alive at
all times, so that the overall application can survive any
crash bugs that happen in either the old or the new version
(although of course, not in both).

Suppose that one of the versions has crashed between the
execution of system call s1 and the execution of system call
s2. Then, in many common scenarios, the code executed
between the two system calls is responsible for the crash
(e.g., the old version crashes because it doesn’t incorporate
a bug fix present in the new version, or the new version
crashes because its code was patched incorrectly). Therefore,
our strategy is to use the code of the non-crashing version
to execute over this critical point in the crashing version.

Our exact recovery mechanism is illustrated in Figure 4.
At each system call, Mx creates a lightweight checkpoint of
each version. This is implemented using the clone system
call in Linux, which internally uses a copy-on-write strategy.

As shown in Figure 4, suppose that the crash happens
in version v2, between system calls s1 and s2. Then, REM
first restores v2 at point s1, copies v1’s code into v2’s code
segment, executes over the critical point using v1’s code

http://www.gnu.org/software/hello/manual/libc/Obstacks.html


Figure 4. REM’s recovery mechanism uses the code of the non-crashing
version to run through the critical section.

(but note that we are still using v2’s memory state), and
then restore v2’s code at point s2.

There are several challenges in implementing this func-
tionality. First, REM needs the ability to read and write the
application code segment. In the current implementation, we
bypass this by linking together the two application versions
after renaming all the symbols in one of the versions using
a modified version of the objcopy tool7. However, in the
future we plan to implement this transparently by using the
pread and pwrite interface to directly read and write the
process memory via the proc file system.

Second, REM needs to modify the contents of the stack
in v2. This is necessary because the return addresses on the
stack frames of v2 still point to v2’s original code, which
was now replaced by v1’s code. Without also modifying v2’s
stack, any function return instruction executed between s1
and s2 would most likely veer execution to an incorrect
location, since function addresses are likely to be different
across different versions. Thus, after REM replaces v2’s
code, it also updates the return addresses on v2’s stack with
the corresponding return addresses in v1, which are obtained
via static analysis (§III-C). Because system calls are invoked
via wrapper functions in libc, this ensures that when v2
resumes execution, it will immediately return to the code in
v1.

To implement this functionality, REM makes use of the
libunwind library8, which provides a portable interface
for accessing the program stack, for both x86 and x86-64
architectures. To actually modify the execution stack of v2,
REM uses again the ptrace interface.

Unfortunately, updating the stack return addresses is not

7http://sourceware.org/binutils/docs/binutils/objcopy.html
8http://www.nongnu.org/libunwind/

sufficient to ensure that v2 uses v1’s code between s1 and s2,
as v2 may also use function pointers to make function calls.
To handle such cases, REM inserts breakpoints to the first
instruction of every function in v2’s original code. Then,
when a breakpoint is encountered, REM is notified via a
SIGTRAP signal, and redirects execution to the equivalent
function in v1’s code (which is obtained from the SEA
component) by simply changing the instruction pointer.

Finally, after executing through the critical code, REM
performs the same operations in reverse: in redirects execu-
tion to v2 original code, changes the return addresses on the
stack to point to v2’s functions, and disables all breakpoints
inserted in v2’s code. The one additional operation that is
done at this point is to copy all the global data modified
by v1’s code into the corresponding locations referenced by
v2’s code. This is to a large extent an artifact of our current
implementation (which links together the two versions as
discussed above), so we do not provide a detailed description
of this step.

Limitations and future work: Furthermore, our recovery
mechanism only works when the two versions have rela-
tively small changes in their external behavior, as discussed
in more detail in Section II-C. Our initial case study in
Section IV-A is encouraging, indicating that the external
behavior of an application changes slowly over time, but
this is still an important limitation of our approach.

Furthermore, we acknowledge that our approach of using
the code of the non-crashing version to survive failures in
the crashing one may leave the application in an inconsistent
state, and thus may not be applicable for application in which
absolute correctness and a fail-fast approach is more impor-
tant than allowing the application to survive errors. However,
Mx is usually able to discover most inconsistencies, since
it regularly checks if the two versions have the same the
external behavior.

REM’s recovery mechanism also cannot handle major
modifications to the layout of the data structures used by
the code, including individual stack frames. While this still
allows us to support several common software update scenar-
ios, in future work we plan to improve REM with the ability
to perform full stack reconstruction (which would allow it
to support changes to stack layout), and with algorithms for
inferring basic data structure changes in binaries [10], [18].

REM currently imposes a high performance overhead by
creating a checkpoint after the execution of each system call
in each version. To decrease this overhead, in future work
we plan to perform these checkpoints at a lower frequency,
and record the external behavior since the last checkpoint,
so that it can be successfully replayed during recovery (e.g.,
as in [21]).

C. SEA: Static Binary Analyzer

The SEA component statically analyzes the binaries of
the two versions to obtain information needed at runtime by

http://sourceware.org/binutils/docs/binutils/objcopy.html
http://www.nongnu.org/libunwind/


the MXM and REM components. SEA is invoked only once,
when the multi-version application is assembled from its
component versions. As mentioned in §III-B, we currently
link together the two application versions after renaming all
the symbols in one of them using a modified copy of the
objcopy tool, although in the future we plan to do this
linking dynamically by directly changing the code segment
in each version.

The main goal of SEA is to create several mappings from
the code of one version to the code of the other. First,
SEA extracts the addresses of all function symbols in one
version and maps them to the addresses of the corresponding
functions in the other version. This mapping is used by REM
to handle calls performed via function pointers (§III-B).

Second, SEA computes a mapping from all possible
return addresses in one code to the corresponding re-
turn addresses in the other code. In order to allow for
code changes, this mapping is done by computing an or-
dered list of all possible return addresses in each func-
tion. For example, if function foo in v1 performs call
instructions at addresses 0xabcd0000 and 0xabcd0100,
and function foo in v2 performs call instructions at ad-
dresses 0xdcba0000 and 0xdcba0400, then SEA will
compute the mapping {0xabcd0005 → 0xdcba0005,

0xabcd0105 → 0xdcba0405} (assuming each call in-
struction takes 5 bytes). This mapping is then used by REM
to rewrite return addresses on the stack.

To construct these tables, SEA first needs to extract the
addresses of all function symbols and then disassemble the
code for each individual function in order to locate the call
instructions within these functions. The implementation is
based on the libbfd and libopcodes libraries, which are
part of the GNU BINUTILS suite9. To obtain the addresses
of all function symbols defined by the program, SEA uses
libbfd to extract the static and dynamic symbol tables
and relocation tables. To disassemble individual functions,
SEA uses the libopdis library10, a wrapper on top of
libopcodes, which was modified to properly handle shared
libraries, dynamic symbols and symbol relocations.

Limitations and future work: Like REM, SEA cannot
handle major changes between the code of the two versions.
In particular, SEA ignores any function whose name has
changed from one version to the other, as well as more
complex refactorings that involve splitting a function or
merging together several different functions. If any of these
functions are involved during recovery, the recovery process
fails. Similarly, SEA can only handle cases where both
versions perform function calls in the same order (although
the code in-between these calls may change). If code in
which the order of function calls has changed is involved
during recovery, the recovery process similarly fails. In the

9http://www.gnu.org/software/binutils/
10http://mkfs.github.com/content/opdis/

Figure 5. Source code differences across 164 versions of lighttpd.

future, we plan to use clone detection techniques [15], [17]
to identify changes to function names and to sequences of
function calls.

IV. EVALUATION

To evaluate our prototype, we start by presenting a study
focusing on how the external behavior of a real application
evolves in practice (§IV-A). We then discuss our experience
applying Mx to two real applications, redis (IV-B) and
lighttpd (IV-C). We then examine the question of how
far apart can be the versions run by Mx, and discuss Mx’s
performance overhead (§IV-E)

A. Evolution of External Behavior

Our approach is based largely on the assumption that
during software evolution, changes to the externally observ-
able behavior of an application (i.e., kernel system calls)
are relatively small. To verify this assumption, we have
compared 164 successive revisions of the lighttpd web
server, namely revisions 2379–2635, which were developed
and released over a span of approximately ten months, from
January to October 2009. To understand the amount of code
changes in these versions, we computed the number of lines
of code (LOC) that have changed from one version to the
next. Figure 5 summarizes these differences. This graph
shows that patches in lighttpd are relatively small, most
of them affecting less than 30 LOC.

To compare the external behavior of each version, we
have traced the system calls made by these versions using
the strace11 tool, while running all the test cases from the
lighttpd regression suite targeting the core functionality
(a total of seven test cases, but each test case contains a
large number of HTTP requests). All tests were executed on
a machine running a Linux 2.6.40.6 x86-64 kernel and the
GNU C library 2.14.

To eliminate possible sources of non-determinism, we
have disabled address-space randomization while running
the tests. To further ensure the absence of non-deterministic

11http://sourceforge.net/projects/strace/

http://www.gnu.org/software/binutils/
http://mkfs.github.com/content/opdis/
http://sourceforge.net/projects/strace/


Figure 6. Correlation of differences in post-processed system call traces
with differences in source code across 164 revisions of lighttpd.

behavior, we have repeated the tracing three times for each
test case and compared the resulting traces across runs.

The system call traces were further normalized and post-
processed. During normalization, we first split the original
trace on a per-process basis, so that the trace of each
different process used by lighttpd was stored in an
individual file. We then normalized all differences caused
by timing (and which would not affect Mx’s operation), e.g.,
we collapsed all sequences of accept-poll system calls,
which represent repeated polling operations.

Trace files were then post-processed by eliminating indi-
vidual system call arguments and return values. This post-
processing step might reduce the precision of our compari-
son, but we performed it because many system calls accept
as arguments addresses of data structures residing in the
process memory space, and these addresses may differ across
versions (but Mx handles this while mediating the effect of
system calls as described in §III-A).

Finally, we concatenated the traces of all lighttpd

processes spawned by each version. In the end, we ended
up with one trace for each run of a lighttpd version
on a test case in the regression suite. For each test case,
we compared the traces of consecutive lighttpd versions
using the Damerau-Levenshtein edit distance.

Our results are shown in Figure 6, which correlates the
differences in post-processed system call traces with the
source code changes. The graph shows that while the code
changes continuously across versions, changes in externally
observable behavior occur only sporadically. In fact, 156
versions (which account for around 95% of all versions
considered) introduce no changes in external behavior. In
particular, the revision which introduced the bug described in
detail in Section II-A, is one of the versions that introduces
no observable differences in system call traces, yet this
revision is responsible for a critical crash bug.

We believe this initial study supports our original assump-
tion, and is encouraging for the viability of our approach. We
next discuss our experience applying Mx to redis (§IV-B)
and lighttpd (§IV-C).

B. Redis

redis is an advanced key-value data structure server12,
often refered to as one the most popular NoSQL databases.
Due to its high-performance and low-resource requirements,
redis is being used by many well-known services such as
GitHub, Digg or Flickr.

Because the whole dataset is held in memory, reliability is
critically important. However, like any other large software
system, redis is often subject to crash bugs. Issue 34413

is one such example. This issue causes redis to crash
when the HMGET command is used with a wrong type. The
bug was introduced during a code refactoring applied in
revision 7fb16bac. The original code of the problematic
hmgetCommand function is shown in Listing 1, while the
(buggy) refactored version is shown in Listing 2.

In the original code, if the key is found (line 1), but
the type is not REDIS_HASH (line 9), the function returns
after reporting an incorrect type (lines 10–11). However,
in the refactored version (Listing 2), the return statement
is missing, and after reporting an incorrect type (line 4),
the function continues execution and crashes inside the
hashGet function invoked on line 8. This is a critical bug,
which may result in loosing some or even all of the stored
data. The bug was introduced on April 13, 2010, diagnosed
and reported only half a year later on October 12, 2010, and
fixed on October 27, 2010.

Below, we describe how Mx can survive this bug while
running in parallel the redis revision a71f072f (the old
version, just before the bug was introduced) with revision
7fb16bac (the new version, just after the bug). Mx first
invokes SEA to perform a static analysis of the two binaries
and construct the mappings described in Section III-C. Then,
Mx invokes the MXM monitor, which executes both versions
as child processes and intercepts their system calls.

When the new version crashes after issuing the problem-
atic HMGET command, MXM intercepts the SIGSEGV signal
which is being sent to the application by the operating
system. At this point, REM starts the recovery procedure.
First, REM sends a SIGKILL signal to the new version to
terminate it. It then takes the last checkpoint of the new
version, which was taken at the point of the last invoked
system call, which in this case is an epoll_ctl system call.
Then, REM uses the information provided by SEA to rewrite
the stack of the new version, as detailed in Section III-B. In
particular, REM replaces the return addresses of all functions
in the new version with the corresponding addresses from the
old version. REM also adds breakpoints at the beginning of
all the functions in the code of the new version (to intercept
indirect calls via function pointers), and then finally restores
the original processor registers of the checkpointed process
and restarts the execution of the (modified) new version.

12http://redis.io
13http://code.google.com/p/redis/issues/detail?id=344
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1 robj *o = lookupKeyRead(c->db, c->argv[1]);
2 if (o == NULL) {
3 addReplySds(c, sdscatprintf(sdsempty(), "*%d\r\n", c

->argc-2));
4 for (i = 2; i < c->argc; i++) {
5 addReply(c, shared.nullbulk);
6 }
7 return;
8 } else {
9 if (o->type != REDIS_HASH) {

10 addReply(c, shared.wrongtypeerr);
11 return;
12 }
13 }
14 addReplySds(c,sdscatprintf(sdsempty(),"*%d\r\n",c->

argc-2));

Listing 1. Original (correct) version of the hmgetCommand function in
redis

1 robj *o, *value;
2 o = lookupKeyRead(c->db, c->argv[1]);
3 if (o != NULL && o->type != REDIS_HASH) {
4 addReply(c, shared.wrongtypeerr);
5 }
6 addReplySds(c, sdscatprintf(sdsempty(), "*%d\r\n", c->

argc-2))
7 for (i = 2; i < c->argc; i++) {
8 if (o != NULL && (value = hashGet(o, c->argv[i])) !=

NULL) {
9 addReplyBulk(c, value);

10 decrRefCount(value);
11 } else {
12 addReply(c, shared.nullbulk);
13 }
14 }

Listing 2. Refactored (buggy) version of the hmgetCommand function
in redis

Since the checkpoint was performed right after the execu-
tion of system call epoll_ctl, the first thing that the code
does is to return from the libc wrapper that performed this
system call. This in turn will return to the corresponding
code in the old version that invoked the wrapper, since all
return addresses on the stack have been rewritten. From
then on, the code of the old version is executed (but in
the state of the new version), until the first system call is
intercepted. In our example, the old and the new versions
perform the same system call (and with the same arguments),
so REM concludes that the two processes have re-converged,
and thus restores back the code of the new version by
performing the steps above in reverse, plus the additional
step of synchronizing their global state (see §III-B). Finally,
the control is handed back to the MXM monitor, which
continues to monitor the execution of the two versions.

C. Lighttpd

To evaluate Mx on lighttpd, we have used two different
crash bugs. The first bug is the one described in detail in
Section II-A, related to the ETag and compression function-
alities. As previously discussed, the crash is triggered by a
very small change, which decrements the upper bound of
a for loop by one. Mx successfully protects the application
against this crash, and allows the new version to survive
it by using the code of the old version. As we discuss in
Section IV-D, Mx allows users to incorporate all the changes
in the next 87 revisions following the buggy commit, while
still protecting the overall application against this crash.

The other crash bug we reproduced14 affects the URL
rewrite functionality. This is also caused by an incorrect
bound in a for loop. More precisely, the line:

for (k = 0; k < pattern_len; k++) ...

should have been

for (k = 0; k + 1 < pattern_len; k++) {

14http://redmine.lighttpd.net/projects/lighttpd/issues/2140

Application/Bug Max distance Time span
lighttpd/2169 87 2 months 2 days
lighttpd/2140 12 2 months 1 day
redis/344 27 6 days

Table I
THE MAXIMUM DISTANCE IN NO. OF VERSIONS AND THE TIME SPAN
BETWEEN THE VERSIONS THAT CAN BE RUN BY MX FOR EACH BUG.

The bug seems to have been present since the initial
codebase. It was reported in December 2009, and fixed one
month later. As a result, we are running Mx using the last
version containing the bug together with the one that fixed
it. While this bug does not fit within the pattern targeted
by Mx (where a newer revision introduces the bug), from a
technical perspective it is equally challenging. Mx is able to
successfully run the two versions in parallel, and help the
old version survive the crash bug.

D. Ability to run distant versions

In the previous sections, we have showed how Mx can
help software survive crash bugs, by running two consecu-
tive versions of an application, one which suffers from the
bug, and one which doesn’t.

One important question is how far apart can the versions
run by Mx be. To answer this question, we determined for
each of the bugs discussed above the most distant versions
that can be run together to survive the bug. Our results are
shown in Table I. The most distant versions for the first
lighttpd bug are approximately two months apart and have
87 versions in-between, while the most distant versions for
the second lighttpd bug are approximately two months
apart and have 12 versions in-between. Finally, the most
distant versions for the redis bug are 27 versions apart
and have 6 days in-between them. Of course, it is difficult
to draw any general conclusions from only these three data
points. Instead, we focus on understanding the reasons why
Mx couldn’t run farther apart versions for these bugs.

For lighttpd issue #2169, the lower bound is defined by

http://redmine.lighttpd.net/projects/lighttpd/issues/2140


a revision in which a pair of geteuid() and getegid()

calls are replaced with a single call to issetugid() in
order to allow lighttpd to start for a non-root user
with GID 0. Mx cannot run this revision together with
the one before it, because it does not support changes
to the order of system calls. However, we believe this
limitation could be overcome by using peephole optimiza-
tions [1], which would allow Mx to recognize that the pair
geteuid() and getegid() could be matched with the call
to issetugid(). The upper bound for lighttpd issue
#2169 adds a read call to the /dev/[u]random, in order
to provide a better entropy source for generating HTTP
cookies. This additional read call changed the sequence of
system calls, which Mx cannot handle.

For lighttpd issue #2140, both the lower and the upper
bounds are caused by a change in a sequence of read()

system calls. We believe this could be optimized by allowing
Mx to recognize when two sequences of read system calls
are used to perform the same overall read.

For the redis bug, the lower bound is given by the revi-
sion in which the HMGET command was first implemented.
Since there was no support for HMGET before that version,
Mx has no way to survive the crash caused by invoking
HMGET with a wrong type (see §IV-B). The upper bound is
defined by a revision which changes the way error responses
are being constructed and reported, which results in a very
different sequence of system calls.

E. Performance Overhead

To measure the performance overhead of our current
implementation, we ran lighttpd and redis on their
standard performance benchmarks. Mx incurs a very large
performance overhead, of two to three orders of magnitude
over native execution. However, our current prototype has
not been optimized at all for performance, and we believe
its overhead can be substantially reduced, as demonstrated
by previous work using similar implementation-level mech-
anisms. For example, as we discuss in related work, our
monitor MXM is very similar to the monitor used by
Orchestra [25], which by employing various optimizations
manages to obtain an average overhead of only about 15%
when synchronizing two program variants at the level of
system calls. In terms of checkpointing, the Rx system [21]
implements a similar approach based on the Linux copy-on-
write mechanism, and which through various optimizations
manages to achieve a performance penalty of less than 5%
when checkpointing every 200 milliseconds.

V. RELATED WORK

The idea of concurrently running multiple versions (or
a multi-version execution) of the same application was
first explored in the context of N -version programming, a
software development methodology introduced in the 1970s

in which multiple teams of programmers develop function-
ally equivalent versions of the same program in order to
minimize the risk of having the same bugs in all versions [6].

Recently, N -version programing was explored by Cox
et al. [9], who propose a general framework for increas-
ing application security by running in parallel several
automatically-generated diversified variants of the same
program. The technique was implemented in two prototypes,
one which runs the variants on different machines, and one
which runs them on the same machine and synchronizes
them at the system call level, using a modified Linux kernel.

Within this paradigm, the Orchestra framework [25], [26]
uses a modified compiler to produce two versions of the
same application with stacks growing in opposite directions,
and runs them in parallel on top of an unprivileged user-
space monitor, which synchronizes their execution at the
level of system calls, and raises an alarm if any divergence
is detected, which would have been triggered by a stack-
based buffer overflow attack. Our MXM monitor (§III-A) has
the same goals and a similar implementation to Orchestra’s
monitor.

Besides Orchestra, several other projects have proposed
techniques that fit within the same paradigm. For example,
Berger et al. use address space layout randomization to
generate multiple replicas that are executed concurrently [3]
and Shye et al. use multiple instances of the same application
in order to overcome transient hardware failures [27].

There are two key differences between our approach
and previous work in this space. First, we don’t rely
on automatically-generated variants, but instead propose to
use multi-variant execution as a mechanism for improving
software evolution. This also means that unlike previous
solutions, the variants are not semantically equivalent—this
eliminates the challenge of generating diversified variants
and creates opportunities in terms of recovery from failures,
but also introduces additional challenges in terms of syn-
chronizing the execution of the different versions. Second,
while previous work has focused on detecting divergences,
our main concern is to survive them, in order to increase the
security and availability of the overall application.

Previous work on improving the software update process
has looked at different aspects related to managing and
deploying new software versions. For example, Beattie et
al. has looked at the issue of timing the application of
security updates [2], while Crameri et al. has proposed a
framework for staged deployment, in which user machines
are clustered according to their environment and software
updates are tested across clusters using several different
strategies [11]. In relation to this work, Mx tries to encourage
users to always apply a software update, but it would still
benefit from effective update strategies in order to decide
what versions to keep when resources are limited.

Mx’s main focus in on surviving failures. Previous work
in this area has employed several techniques to accomplish



this goal. Rx [21] proposes an approach that helps programs
recover from software failures by rolling back the program
to a recent checkpoint upon a software failure, and then
to re-executing it a modified environment. Mx similarly
rolls back execution to a recent checkpoint, but instead of
modifying the environment, it uses the code of a different
version to survive the bug. The main limitation of Rx is
that it can only recover from bugs which are (partly) caused
by the interaction with the environment. In comparison,
Mx does not have this drawback, but it places various
limitations regarding the code changes between the two
versions. The two approaches are complementary, and could
be easily combined to support a larger number of errors and
application types.

The Frost system [29] targets race errors, and shares
similarities with both Rx and Mx. Like Rx, it changes the
environment, in this case by using complementary thread
schedules. Like Mx, it runs several versions in parallel
and can survive errors by selecting the more reliable one
according to some strategy. As previous multi-variant based
approaches, Frost uses automatically-generated variants of
the same program, while Mx uses different (manually-
written) program versions.

Failure-oblivious computing [22], [23] helps applications
survive memory errors by simply discarding invalid writes
and fabricating values to return for invalid reads, enabling
applications to continue their normal execution path. Similar
to failure-oblivious computing, executions transactions help
survive software bugs by terminating the function in which
the bug has occurred and continuing on to execute the code
immediately following the corresponding function call [28].
Our approach shares some of the philosophy of these two
techniques, as we cannot always guarantee that the crashing
version will correctly execute through the divergence by
using the other version’s code (see §III-B). However, by
using a previously correct piece of code to execute through
the crash, our approach provides stronger guarantees than
those obtained by fabricating read values or terminating the
function in which the bug occurred.

Research on automatic generation of filters based on
vulnerability signatures [4], [7], [8] or on patch generation
in deployed systems [13], [16], [20] also target applica-
tions with high-availability requirements, and the generated
patches work by installing lightweight input filters or by
changing the values of memory locations at runtime.

Recovery Oriented Computing [19] advocates the re-
engineering of software systems to allow applications to re-
cover from errors. Within this paradigm, microrebooting [5]
proposes building systems out of individually recoverable
components, which can be rebooted to survive bugs, without
disturbing the rest of the application.

VI. CONCLUSION

Software updates are an important part of the software
development and maintenance process. Unfortunately, they
also present a high failure risk, and many users refuse to
upgrade their software, relying instead on outdated versions,
which often leave them exposed to known software bugs and
security vulnerabilities.

In this paper we propose a novel approach designed to
improve the software update process for applications with
high availability and security requirements. Whenever a new
program update becomes available, instead of upgrading the
software to the newest version, we run the new version
in parallel with the old, and carefully synchronize their
execution to create a more secure and reliable multi-version
application.

While our initial proof-of-concept prototype has several
important limitations, our experience applying it to two real
applications, lighttpd and redis, is encouraging, and we
believe our approach can be improved to overcome many
of the current limitations. Our ultimate goal is to enable
users to benefit from the additional features and bug fixes
provided by recent versions, without sacrificing the stability
and security of older versions.
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