
UKAIRO: Internet-Scale Bandwidth Detouring

Thom Haddow
Imperial College London

Sing Wang Ho
Imperial College London

Cristian Lumezanu
Georgia Tech

Moez Draief
Imperial College London

Peter Pietzuch
Imperial College London

Abstract

The performance of content distribution on the Internet is
crucial for many services. While popular content can be
delivered efficiently to users by caching it using content
delivery networks, the distribution of less popular con-
tent is often constrained by the bandwidth of the Internet
path between the content server and the client. Neither
can influence the selected path and therefore clients may
have to download content along a path that is congested
or has limited capacity.

We describe UKAIRO, a system that reduces Internet
download times by using detour paths with higher TCP
throughput. UKAIRO first discovers detour paths among
an overlay network of potential detour hosts and then
transparently diverts HTTP connections via these hosts
to improve the throughput of clients downloading from
content servers. Our evaluation shows that by perform-
ing infrequent bandwidth measurements between 50 ran-
domly selected PlanetLab hosts, UKAIRO can identify
and exploit potential detour paths that increase the me-
dian bandwidth to public Internet web servers by up
to 80%.

1 Introduction

Bandwidth is a critical performance metric for many
Internet services. Operating system vendors that push
large patch files to customers [28], video sharing sites
like YouTube, and HD streaming services such as iTunes
and Netflix require high-bandwidth Internet paths to send
content quickly to users. In addition, as cloud computing
applications become popular, access to high-throughput
paths between their users and the cloud data centre be-
comes crucial for efficient operation [2].

Historically, the “last-mile” network path to the user
was the bandwidth bottleneck. However, the recent
widespread deployment of faster access technologies
such as ADSL+ [34], DOCSIS 3 [8] and fibre-to-the-kerb

means that the bottleneck is shifting away form the edge
towards the core of the network [22]. As a consequence,
obtained bandwidth depends on the capacity and conges-
tion of the traversed Internet path, which is determined
by routing protocols such as OSPF [15] and BGP [30].
These protocols select paths based on the financial gain
and performance of the Internet service providers (ISPs)
rather than directly using user-based performance met-
rics such as available bandwidth. This often results in
paths for clients with unnecessarily low bandwidth to
certain destinations.

Existing solutions to improve content distribution
performance include the use of content delivery net-
works (CDNs) such as Akamai, Amazon CloudFront [7]
and Coral [10]. CDNs replicate content and place it at
locations “closer” to the clients to which they have high
bandwidth paths. Since they require substantial storage
and network resources, their usage is cost-effective only
for popular content; content providers must find other
solutions to handle the long tail of less popular con-
tent [3]. Downloading content along multiple paths us-
ing Bittorrent [4], Bullet [19], SplitStream [5] or mul-
tipath TCP [13] also increases download bandwidth but
requires modifications to clients and content servers and
may be less efficient due to the transfer of redundant
data. More radical proposals such as content-centric net-
working [16] require changes to the Internet architecture,
which are difficult given the existing investment in net-
work equipment.

In contrast, we propose to enable users to select In-
ternet paths with higher bandwidth by “detouring” traffic
via a set of third-party nodes. Researchers have shown
that detour routing [31] can reduce path latencies [23, 14]
or increase availability [1, 11] without requiring changes
to Internet routing protocols or content servers. An open
challenge, however, is how to discover detour paths that
have higher bandwidth than the direct path while keeping
the measurement overhead low [12].

We provide a practical solution to this problem that

1

relies on the observation that a small number of good de-
tour nodes on the Internet is sufficient to provide substan-
tial bandwidth increases to a set of clients for a major-
ity of destinations. Based on experiments on the global
PlanetLab test-bed, we show that 50 randomly chosen
detour nodes can provide 71.4% of the relative band-
width improvement obtained by using a larger set of
150 PlanetLab nodes. In addition, a client can get al-
most all of the detouring benefit by strategically selecting
5 good detour nodes from this set of 50 detour nodes.

We describe the design and evaluation of UKAIRO1,
a system that allows web clients to exploit detour paths
with higher TCP throughput on the Internet. UKAIRO
maintains an overlay network of detour nodes that act
as SOCKS proxies for TCP connections. The system re-
lays TCP connections of external clients through a detour
node for improved bandwidth.

The UKAIRO system operates in two separate phases:
detour discovery and client detouring. In the detour dis-
covery phase, the system collects all-pairs bandwidth
measurements between a set of overlay nodes that can
act as potential detour nodes and finds bandwidth detours
among them. It then ranks the overlay nodes according to
their average relative bandwidth improvement when act-
ing as detour nodes. To combine good detouring perfor-
mance with load-balancing of detour nodes, each client
is assigned a small client-specific subset of detour nodes
from the ranked overlay node list through biased random
sampling.

In the second phase, a client finds a detour for a given
destination by probing each of its client-specific detour
nodes and selecting the path that results in the highest
bandwidth when compared to the direct path. This path
selection is done by performing a short parallel HTTP
download until each path is likely to have reached steady-
state bandwidth. Over time, a client can refine its client-
specific detour node set by discarding detour nodes that
do not perform well and replacing them with fresh ones
from the ranked overlay node list.

The results from deployment of UKAIRO on PlanetLab
show that it can increase the median bandwidth of routes
to public webservers by 80%. Its load-balanced detour
selection scheme can support simultaneous users, and
the bandwidth measurement overhead can be reduced to
40% of all-pairs measurements in the overlay network.

In summary, the contributions of the paper and the out-
line of its remainder are:

1. an empirical study of bandwidth detours on Planet-
Lab, demonstrating that a small number of detour
nodes can provide the bulk of achievable bandwidth
improvement (Section 2);

1Japanese romaji for “detour”

2. a practical approach for bandwidth detouring on the
Internet by discovering good detours among a set of
overlay nodes and using them for third-party clients
through path selection (Section 3); and

3. an evaluation of the UKAIRO system on PlanetLab
with external web servers that shows the feasibility
of bandwidth detouring system (Section 4).

2 Bandwidth Detouring

In this section, we provide evidence that bandwidth de-
touring is both effective and feasible. First, we study the
properties of bandwidth detours and show that they pro-
vide significant bandwidth improvement and are stable.
Second, we show that only a small number of carefully
selected detour nodes is necessary to improve bandwidth
significantly to most destinations.

2.1 Detour properties
To study the properties of detours, we measure the band-
width of all network paths between 201 nodes on Planet-
Lab [35], a global test-bed for networking research, on
26 Oct, 2010. We include only one PlanetLab node per
site and ensure that each node participates in at most one
concurrent measurement. To measure bandwidth, we use
iperf, a standard tool for observing TCP throughput
of a path by creating an elastic TCP transfer between
two hosts [36]. We use iperf because it is accurate and
provides fast measurements [12]. Note that we use the
terms bandwidth and TCP throughput interchangeably
throughout the paper.
Benefit. We first show the potential benefit of detouring
for bandwidth. A path (i, j) between the two nodes i

and j benefits from detouring through a node l if b̂ilj ,
the minimum of the bandwidth of the two legs of the
detour bil and blj , is larger than the bandwidth bij of the
direct path, i.e.,

b̂ilj = min (bil, blj) > bij .

In the remainder of the paper, we denote by b̂ilj the band-
width of the path between i and j when detoured via l as
given by min (bil, blj). This assumes that the bandwidth
of a detour path is determined by the bottleneck link [12].
We also denote by dl(i, j) the percentage of (or relative)
bandwidth increase if the path (i, j) uses node l as a de-
tour, i.e.,

dl(i, j) =
max

(
b̂ilj − bij , 0

)
bij

, (1)

and we set dl(i, i) = 0.

2

Based on our bandwidth measurement dataset de-
scribed above, we associate with each path (i, j) the best
detour node, i.e., the node l with the highest value of
dl(i, j). We find that 80.2% of the 35,240 paths mea-
sured benefit from an increase of at least 20% and 1 Mbps
of their bandwidth with one-hop detours. We restrict our
analysis to one-hop detours because adding more hops
yields little additional improvement, as observed previ-
ously [12].

Longevity. Detour longevity, or the time for which a de-
tour persists, is crucial for the feasibility of bandwidth
detouring. Measurements to discover detours take a
significant amount of time and bandwidth to perform.
Long-lasting detours reduce the overhead of the system.

We study how detours evolve on PlanetLab. We
measure paths between 100 randomly chosen PlanetLab
nodes at 4am (GMT) everyday between Dec 9, 2010
and Jan 5, 2011 (except for Dec 18, 2010 due to a fail-
ure). For each set of measurements, we exhaustively
search for the detours for each path and validate the de-
tours’ improvement, dl(i, j), on a later dataset. We find
that 79.6% of the discovered detours are still valid af-
ter one day, providing a 53.2% median increase in band-
width. The improvement provided by a discovered de-
tour decreases over time—the median increase reduces
to 34.3% by the 14th day. After 28 days, 71.1% of de-
tours still exist but the increase has dropped to 31.4%.

We conclude that measurements for detour discovery
have to be repeated roughly every 2 weeks in order to
avoid substantially stale data. This bodes well for the
practical use of detour nodes in a real deployment. In
fact, a relatively high measurement overhead to discover
detour nodes can be amortised over the lifetime of an ap-
plication because detour paths, once discovered, remain
effective for a prolonged period of time.

2.2 Finding detours scalably

We showed that bandwidth detours can provide signifi-
cant and lasting improvements. However, to operate ef-
fectively, a system exploiting these detours must discover
them quickly and with as little measurement overhead as
possible, in particular, without relying on all-to-all path
measurements. Next, we investigate the effectiveness of
three techniques to reduce the number of measurements
required to discover detours yet preserve their quality.

2.2.1 Using latency detours instead

Existing proposals for detouring to reduce latency use
network coordinate embedding [24] or AS path similar-
ity [14] to discover latency detours with low measure-
ment overhead. Ideally, we could use such approaches to

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
b

a
n

d
w

id
th

 i
n

c
re

a
s
e

Number of detour nodes

Figure 1: Percentage of bandwidth improvement suffers
from diminishing returns as the size of the detour node
set increases

find latency detours and use them to improve path band-
width.

However, as we show in Section 4 and as confirmed
by previous results [23], latency detours do not improve
bandwidth. We also found that the use of bandwidth de-
tours does not necessarily reduce latency, as measured
using the ping tool. In our dataset, only 15.6% of
paths experience lower latency when detoured via the
best detour node, i.e., the detour l that maximises the
ratio dl(i, j) for the path (i, j). The median latency in-
creased by 10.9 ms or 8.3% when detouring through the
best bandwidth detour.

2.2.2 Reducing the number of detour nodes

Another way to lower the number of required bandwidth
measurements is to restrict the number of detour nodes
in the system. To evaluate whether this preserves good
detours, we divide our n PlanetLab nodes into a detour
set D containing k nodes, chosen uniformly at random,
and a client set C containing the remaining n− k nodes.
For each path between a pair of nodes i and j in the client
set C, we find the best detour node lij in the detour setD,
i.e., the one with the largest improvement as given by

dlij (i, j) = max
l∈D

dl(i, j) .

In this setting, we let the bandwidth of a path (i, j),
i, j ∈ C, be the maximum between b̂ilijj and bij . In
other words, we fall back to using the direct path when
no better bandwidth detour exists.

To understand how the size of the detour set affects the
quality of detours, we consider the average percentage of
improvement over all paths between nodes in the client

3

set C, given by

1
|C| (|C| − 1)

∑
i,j∈C

dlij (i, j) . (2)

as a function of the size of the detour set D. We repeat
the experiment 1000 times, each time selecting a fresh
set of detour nodes at random.

Figure 1 shows that increasing the size of the de-
tour set D offers diminishing returns beyond a certain
point. For example, for a detour set of 50 nodes, we pre-
serve 71.4% of the optimal bandwidth improvements ob-
tained from the all-to-all measurements described in Sec-
tion 2.1. Therefore, a key insight is that even a limited
number of randomly chosen nodes that act as potential
detour nodes can achieve the bulk of the improvement
from bandwidth detouring.

2.2.3 Choice of detour nodes

To reduce the number of path measurements required
when searching for a good detour node, clients can first
try detour nodes that are more likely to provide good de-
tours. We analyse two strategies for ranking the nodes
in the detour set D, with the goal of identifying detour
nodes that are more likely to lead to high detouring band-
width: a client-oblivious and a client-specific strategy.
Client-oblivious ranking. In this strategy, the rank of a
detour node does not depend on the client that uses it.

Given a set P of measured paths, we define dl(P),
the score of node l ∈ D, as the average improvement
generated if we used l as the only detour for all paths in
P , i.e.,

dl =
1
|P|

∑
(i,j)∈P

dl(i, j) . (3)

Here we assume that we have measurements for all the
paths between nodes inD, i.e., P = {(i, j) ∈ D×D, i 6=
j}. The nodes in D are then ranked in decreasing order
of their score dl. We define Dm as the set consisting of
the first m nodes from this ranked list.
Client-specific ranking. In the client-specific ranking
strategy, we compute the average improvement of each
node l ∈ D, for each client i ∈ C. In this case, the score
of node l ∈ D, given a set Pi of measured paths between
node i and some other client nodes in C is defined by

dl(i) =
1
|Pi|

∑
j:(i,j)∈Pi

dl(i, j) . (4)

Here we assume that we have measurements for all nodes
in D, i.e., Pi = {(i, j) , j ∈ D, j 6= i}. Similarly to the
client-oblivious strategy, each client i ranks the nodes in
D in decreasing order of their dl(i) scores and then uses
the first m nodes from this list as potential detours.

0.0

0.2

0.4

0.6

0.8

1.0

 0 20 40 60 80 100

C
D

F
 o

f P
at

hs

Bandwidth (Mbps)

direct
random-5

client-oblivious-5
client-specific-5

best

Figure 2: Comparison of the effectiveness of different
ranking strategies to reduce the set of detour nodes to be
considered by clients

We now evaluate the strategies by considering their de-
touring improvement. For each path (i, j) between nodes
in C, we associate the highest bandwidth that can be ob-
tained by detouring through one of the detour nodes pro-
vided by a given ranking strategy, or set it to bi,j if none
beats the direct path.

Figure 2 shows the results in terms of the distribu-
tion of bandwidths of obtained detour paths, based on
our PlanetLab dataset. We compare this to the band-
width distribution of the direct paths (direct), the best
out of 5 randomly chosen detour paths (random-5) and
the best possible by exhaustively considering all detour
nodes in D (best).

The curve labeled client-oblivious-5 represents the dis-
tribution of bandwidth between nodes in C using the
client oblivious ranking of D5, as described above. We
observe that a value of m = 5 ensures enough diversity
of detour nodes while keeping the size of the set small.
Although the detour nodes are ranked based on their per-
formance on the set D, according to Equation (3), they
offer good detours between the nodes in the set C.

Similarly, the curve labeled client-specific-5 shows the
bandwidth for the client-specific strategy with m = 5.
Its improvement is close to the one obtained through
best. Bandwidth is also higher than for client-oblivious-5,
which illustrates that, by selecting detours based on their
suitability for specific client nodes, we get improvements
similar to the ones obtained through an exhaustive search
for the best detour nodes.

2.3 Summary

We showed, using real world bandwidth measurements
on PlanetLab, that bandwidth detours can provide signif-
icant and lasting improvements between Internet hosts.

4

Figure 3: Overview of the UKAIRO system architecture

Discovering such detours does not require all-to-all mea-
surements and most benefit can be recovered by restrict-
ing to detours through a small subset of detour nodes se-
lected based on their average bandwidth improvement.
These findings are crucial for providing a scalable and
efficient service for bandwidth detouring on the Internet.

3 Ukairo Architecture

Next we describe UKAIRO, an Internet service for scal-
able bandwidth detouring using a set of overlay nodes.
UKAIRO provides two main mechanisms: detour dis-
covery and client detouring. Detour discovery identifies
which nodes can act as bandwidth detours (Section 3.1),
while client detouring enables clients to relay their traffic
through these detour nodes (Section 3.2.1).

Figure 3 presents an overview of our system. UKAIRO
consists of an overlay network of detour nodes, D,
which provide higher bandwidth paths to clients, and a
detour oracle, which is responsible for discovering good
detour nodes. The detour oracle collects bandwidth mea-
surements between the nodes in the overlay using a mea-
surement scheduler and ranks them based on their de-
touring potential (i.e., the average percentage of band-
width increase that they provide). To take advantage of
UKAIRO, users install detour clients which query the or-
acle to obtain a set of candidate detours for a given des-
tination. Using on-demand measurement, detour clients
then choose the best detour out of all candidates.

3.1 Detour discovery

Next we describe the detour discovery part of UKAIRO
in detail. It is based on the observation that discovered
detours through a smaller set of overlay detour nodes can
be used effectively for detouring traffic of external clients

and destinations.
At the heart of the detour discovery process are two

components: a measurement scheduler and a detour or-
acle. The measurement scheduler periodically collects
bandwidth measurements between the overlay nodes by
instructing nodes to measure the bandwidth of paths. The
detour oracle then uses the collected measurements to
rank the detour nodes based on their estimated potential
for bandwidth detouring.

3.1.1 Measurement Scheduler

The goal of the measurement scheduler is to col-
lect bandwidth measurements among the set of detour
nodes D. The measurement scheduler can instruct de-
tour nodes to measure bandwidth to other nodes using the
iperf tool. Nodes report back successfully completed
measurements to the scheduler, which records them in
a database. Because measuring all-to-all bandwidth in-
curs significant overhead, the scheduler uses a two-phase
heuristic to reduce the number of measurements. First,
it collects the measurements needed to determine the de-
touring potential of each node. Once it acquires sufficient
data, it continues to perform measurements with prefer-
ence for paths that traverse nodes with high detouring
potential. We describe the two phases in detail next (Al-
gorithm 1).

In the first phase, the scheduler iteratively measures a
set of paths to gather partial information about the nodes’
detouring potential (lines 4–8). At each step, it picks the
node with the lowest number of measured paths. In other
words, it finds the node l with the smallest count of mea-
sured paths (a, b) where (a, l) and (l, b) are both mea-
sured. Next, two other nodes i, j are chosen at random
from the detour node set D and the scheduler measures
all six paths between them.

The second phase starts as soon as each node l in D

5

Algorithm 1: Measurement scheduler

D := measurement set1

p := target percentage of paths to measure2

t := min. frequency before entering second phase3

while min{∀l ∈ D Freq. l } < t do4

l← NodeWithLowestFrequency5

i← RandomNodeThatIsNot(l)6

j ← RandomNodeThatIsNot(l, j)7

MeasureAllSixPathsBetween(i, l, j)8

while Proportion of Measured Paths < p do9

R← RankDetoursIn(D)10

RemoveFullyMeasuredNodes(R)11

l← NodeWithHighestRankIn(R)12

i← RandomNodeThatIsNot(l)13

j ← RandomNodeThatIsNot(l, j)14

MeasureAllSixPathsBetween(i, l, j)15

collects values of dl(i, j) for t distinct paths (i, j) in
the set of measured paths P . The scheduler then ranks
each detour node in decreasing order of their scores given
by Equation (3). Subsequently, it selects nodes accord-
ing to their rank and, for each node, measures detour
paths that traverse the node and have not yet been mea-
sured (lines 9–15).

The measurements stop after a fraction p of the paths
was measured. The value of p depends on the cost
of measuring an overlay path and the benefits of a
more accurately measured overlay—we evaluate differ-
ent choices of p in Section 4.3.

3.1.2 Detour Oracle

The detour oracle has access to the bandwidth measure-
ments collected by the measurement scheduler. Each
client queries the oracle to receive a small set of can-
didate detour nodes. The oracle determines these sets by
ranking the detour nodes based on the available band-
width measurements. It implements two different strate-
gies for returning candidate detour node sets to clients.

Client-oblivious ranking. The aim of this strategy is to
benefit from the properties of detour nodes highlighted
in the analysis of client-oblivious-5 in Section 2.2.3. For
each detour node l ∈ D, the oracle computes its score
according to Equation (3) where P corresponds to the
proportion p of paths measured by the scheduler. Nodes
are then ranked in a list L in decreasing order of this
metric.

The listL is then made available to client nodes, which
can then choose their detours from it. If some detour
nodes are particularly effective for a large number of
paths, then they may be exploited by too many paths at

once resulting in a degradation of their detouring capabil-
ity. Next, we propose a load balancing strategy to avoid
overloading individual detour nodes.

Load-balanced ranking. Our modified strategy sup-
ports load-balancing of detour nodes when used concur-
rently by many clients to avoid overloading particularly
effective detour nodes. The oracle ranks detour nodes
as in the client-oblivious strategy. It then only provides
clients with a small subset of detour candidates. These
candidates are chosen uniformly at random from a trun-
cated list containing the first half of detour nodes in the
ranked list L.

3.2 Client detouring

The detour oracle supplies clients with a set of candidate
detour nodes that are more likely to provide bandwidth
improvement to any destination. The goal of the client
detouring mechanism is to decide which of the candidate
detour nodes the client should use for a specific destina-
tion. Next we describe how clients choose a detour node
and how the overlay carries traffic across the detour path
to the destination.

3.2.1 Path selection

Each client host participating in the UKAIRO system runs
a detouring client component. The detouring client inter-
cepts HTTP connections from an application, such as a
web browser or a file downloader, and transparently de-
tours them through an appropriate detour node. After
acquiring a list of candidate detour nodes, the detouring
client must perform path selection, i.e., choose the best
detour node for the given destination, or fall back to the
direct path if no better detour is found.

Path selection requires predicting the bandwidth to a
destination through a set of detour nodes. To preserve
the performance benefits of bandwidth detouring, path
selection must be fast, transparent to applications, and
have little overhead. However, even when a client is re-
stricted to choosing from a small set of detour nodes, it is
still difficult to accurately and quickly predict which de-
tour node to use for a particular path. Previous work [27]
has attempted to use latency or jitter as inexpensive pre-
dictors for path bandwidth. However, we have found that
these methods tend to be too unpredictable or resource-
intensive to be of practical use on PlanetLab nodes.

UKAIRO performs path selection by starting parallel
HTTP transfers on each candidate path and simultane-
ously measuring their bandwidth to select the best path.
Figure 4 shows how clients perform path selection on the
candidate detour set obtained from the oracle. Path selec-
tion has two phases: a sampling phase, in which the best

6

Figure 4: A client performs a parallel path selection download to choose the best path from the supplied detours.

available path is discovered by performing a limited con-
tent download, and a completion phase, in which the best
detour path is used for the rest of the download.

In the sampling phase, given s candidate detour nodes
and a content size N , the parallel path-selecting HTTP
downloader allocates a chunk of size N/(s + 1) to each
potential detour path and the direct path using the HTTP
“range” header [9]. HTTP as a protocol is particu-
larly suited for this because of its idempotent operation
semantics—downloads can be terminated and restarted
on different paths as required.

UKAIRO downloads each chunk in parallel until a
timeout of 5 seconds is reached or the chunk is com-
pleted. This is based on an empirical observation that
most paths achieve TCP steady-state behaviour within
5 seconds. The path with the fastest download rate is
then used to download the remainders of any incomplete
chunks by constructing a multiple-range final HTTP re-
quest in the completion phase. If none of the detour paths
have higher bandwidth than the direct path, the download
completes using the direct path.

To reduce load on the detouring overlay and to avoid
an unfair advantage on congestion due to multiple TCP
flows, we want to minimise the amount of time that paral-
lel downloading occurs. We observe that, due to the short
timeout period and the TCP slow startup, the combined
parallel rate in the short sampling phase rarely exceeds
the serial rate of the completion phase. This suggests
that the sampling phase has a limited negative influence
over competing flows.

3.2.2 Adaptive detour selection

Clients can improve their choice of detour nodes over
time by taking advantage of additional measurements
collected during path selection. In this way, the list of
client-oblivious nodes provided by the oracle becomes
client-specific. We have already shown in Section 2.2.3
that detour nodes specific to clients provide better perfor-
mance than client-oblivious ones.

Algorithm 2: Adaptive detour selection

Li := ranked detour list1

`i := candidate detour set2

li := test detour3

run parallel path selection with `i, li as detours4

Li ← RankDetoursUsingAvailableMeasurements5

`i ← get top-s detours from Li6

if bilij < bij then7

li ← RandomlySelectNodeUsing(Li)8

We describe how a client can incrementally improve
its choice of detours in Algorithm 2. Initially, each
client i downloads the ranked list of detour nodes to-
gether with their scores from the oracle; the detour nodes
are based on the client-oblivious strategy described in
Section 3.1.2. We refer to this list as Li. After each
download that client i performs, it updates the list Li to
incorporate the new measurements that it acquired with
the goal of customising its choice of candidate detour
nodes, as follows.

Given an instance of the list Li, client i draws a set `i

consisting of s distinct candidate detour nodes from Li

where each node is chosen with probability proportional
to its current score. In addition to the set `i, the client
chooses a distinct test detour li from Li with a probabil-
ity proportional to its score. The idea behind adding a
test node is to speed up the convergence of our set `i to
the set of client-specific detours (cf. Section 2.2.3).

Before downloading from some node j, client i runs
the sampling phase of parallel path selection on paths
through the candidate detour nodes in `i, the test de-
tour li, and the direct path. As a by product, the list Li is
updated to incorporate the new measurements acquired
by running parallel path selection. More precisely, the
score of each detour node l is recalculated by averaging
its current score with the new value dl(i, j) that it ac-
quired. The nodes are then re-ranked in decreasing order
of these new scores to obtain a fresh list Li (lines 5–6).

7

A fresh detour candidate set `i is drawn, and if detour-
ing through li does not beat the direct path, a new test
detour li is chosen (lines 7–8).

The random procedure above of drawing the set `i and
the node li ensures that the set of candidate detour nodes
quickly converges, as we perform more and more down-
loads, to the set of client-specific detours as illustrated in
Section 4.1.2.

3.2.3 Detouring

To carry traffic from clients to destinations on detour
paths, detour nodes relay TCP connections on demand,
which is illustrated in Figure 4. This is done using the
standard SOCKS protocol [21], as implemented by the
lightweight srelay SOCKS server [37]. SOCKS is es-
sentially an application-layer protocol for proxying the
standard “network socket” programming interface via a
remote host over TCP. From an application perspective,
SOCKS provides a similar interface to that of the stan-
dard sockets API and lightweight wrappers are easily de-
ployed to make it completely transparent to applications.

In our architecture, we utilise the libcurl HTTP li-
brary [32] to interface with the remote SOCKS server.
HTTP connection attempts are first relayed to the de-
tour node over the TCP-based SOCKS protocol. The
detour then establishes a new TCP connection to the in-
tended destination server. Since two separate sequential
TCP handshakes must be performed to complete this pro-
cess, connecting via SOCKS typically doubles the con-
nection setup time. From the perspective of the desti-
nation server, the connection appears as a regular HTTP
connection, except that it comes from the detour node
rather than the original client node.

Since detouring results in two TCP connections, the
system benefits from the split-TCP effect [18]. The TCP
throughput of a long IP path can be improved by split-
ting the connection into two independent TCP connec-
tions. Each split TCP connection becomes more re-
sponsive to packet loss due to its lower round-trip time,
and thus has higher throughput. However, split-TCP
alone does not account for the improvement due to band-
width detouring—many bandwidth detours have inter-
mediate leg latencies that are larger than the direct path
latency [12].

Another approach for redirecting traffic is IP detour-
ing: tunneling IP packets to the detour nodes, which
in turn redirect them to the corresponding destination.
However, as we showed in our earlier work [12], IP de-
touring is not viable when detour nodes are at the edge
of the Internet. The longer paths to edge nodes (in terms
of IP hops) incur higher loss rates and therefore exhibit
lower bandwidth

However, TCP detouring, as opposed to IP detouring,

is less transparent to destinations because TCP connec-
tions appear to originate from the wrong source IP ad-
dress. As this is a common side effect of many Internet
systems such as HTTP proxies or gateway NATs, we be-
lieve that it is an acceptable restriction.

4 Evaluation

We evaluate UKAIRO using realistic bandwidth-intensive
HTTP workloads on the PlanetLab test-bed. The goal is
to demonstrate that UKAIRO can improve download per-
formance for bulk HTTP downloads for many destina-
tions, while exhibiting acceptable overheads.

First, we evaluate the download performance of a
single client in isolation, from both PlanetLab nodes
and public Internet web servers, using various detouring
strategies (Section 4.1). Second, we present performance
results from multiple clients utilising the system con-
currently to observe the impact of load balancing (Sec-
tion 4.2). Finally, we explore the bandwidth measure-
ment overhead of the system (Section 4.3).

Experimental setup. We consider a population of
geographically-dispersed 201 PlanetLab nodes, such that
there are no two nodes from the same PlanetLab site. We
choose 50 nodes at random to act as the UKAIRO detour
nodes and configure a machine at our university as the
detour oracle.

We select two independent sets of 30 nodes each to
act as detour clients and destination web servers. The
destination nodes run the lightweight thttpd HTTP
server [29] serving pre-generated random binary files.
We choose a download file size of 40 MB to obtain sta-
tistically significant results on high bandwidth paths. To
avoid measuring low bandwidth paths, we limit any sin-
gle serial HTTP transfer to 20 seconds.

Since we have observed that we cannot sustain detour
connections over 40 Mbps reliably on PlanetLab, we at-
tempt to find detours only for direct paths with band-
width below this rate. This restricts us to around the 85th

percentile of Internet paths, as shown in Figure 2.
The client nodes download a predefined list of URLs

as follows. First, clients download each URL via the
direct path (i.e., without any detouring). Clients then
attempt to download each URL via a detour path with
higher bandwidth than the direct path by obtaining a can-
didate list from the oracle (Section 3.1.2) and performing
path selection (Section 3.2.1).

4.1 Single-client detouring

Our first experiment shows that the bandwidth improve-
ment due to detouring using the two oracle ranking
strategies, client-oblivious-5 and load-balanced-5, with

8

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 1.5 2

C
D

F
 o

f P
at

hs

Relative Bandwidth Improvement (logscale)

peerwise
load-balanced-1
load-balanced-5
client-oblivious-1
client-oblivious-5

Figure 5: Detouring improves bandwidth on the majority
of lower-bandwidth Internet paths

5 candidate detour nodes for each client (cf. Sec-
tion 3.1.2). To demonstrate the benefits of having more
candidate detours, we also compare to similar strategies
that use only one detour node (client-oblivious-1 and load-
balanced-1). The 10 client, 25 destination, and 50 de-
tour nodes are all located on PlanetLab. We run client
benchmarks serially to avoid interactions between mea-
surements.

In addition, we compare to an approach, in which
bandwidth detours are chosen based on latency. To test
this, we use PeerWise [23] to discover latency detours
from clients to destinations and return the detour node
that provides largest latency reduction. These detours
are validated without using the parallel path selection
mechanism. We resort to the scalable network coordi-
nate based mechanism of PeerWise to find latency de-
tours, and not to less scalable all-to-all measurements,
because it better matches the overhead constraints of a
real deployment.

In Figure 5, we show the distribution of detouring path
performance expressed as a fraction of the direct path
bandwidth on a logscale. Results to the right of the verti-
cal line at 1 indicate an improvement in detoured down-
load performance. The points to the left of 1 represent
paths that appear to be good detours based on measure-
ments, but which in fact have lower throughput than the
direct path, due to measurement noise causing mistakes
in path selection and the detouring overhead. The re-
sults are based on around 200 path measurements, in
which around 75% of the direct path bandwidths are un-
der 40 Mbps. During the parallel path selection down-
load, we observed that the overall rate of the parallel
sampling phase was on average only 3% faster than the
completion phase, suggesting the parallel aspect of the
downloading does not gain an unfair share of the network
resources.

When each client uses the same set of 5 highest-ranked
detour nodes (client-oblivious-5), the median bandwidth
improvement is around 1.4× that of the direct path. 65%
of paths see no reduction in bandwidth, while 40% of
paths are improved by at least 50%. The load-balanced-
5 strategy leads to a smaller bandwidth improvement—
the median improvement is 1.2× compared to the direct
path. However, it still provides at least as much band-
width as the direct path on the majority (60%) of detours.

The performance of the client-oblivious-1 strategy
shows the impact that a single well-chosen detour node
can have on general Internet end-to-end bandwidth. It
provides a median improvement of around 20% over all
paths and has a significant 50% improvement on around
30% of paths. The load-balanced-1 approach demon-
strates that any single detour can provide a few signifi-
cant gains—e.g., at least some improvement on half of
the paths tested. However, its relatively poor perfor-
mance in comparison to client-oblivious-1 highlights the
importance of a good choice of detour node.

Both path selection strategies with single detour
nodes, namely client-oblivious-1 and load-balanced-1,
perform reasonably well because the probability of se-
lecting the wrong detour path is lower with only two
(direct and single detour) paths to choose from. All the
path-selection strategies show similar performance when
they fail to provide a detour path with higher bandwidth
than the direct path. This suggests that any reduction
in performance is then independent of the detour node
given by path selection, and is more likely due to gen-
eral overheads, such as the increased connection set-up
time and limitations in the forwarding capacity of detour
nodes.

When choosing bandwidth detours based on latency
(peerwise), the overall performance drops, with more
than half of the paths showing a substantial reduction in
bandwidth when detoured. That the peerwise strategy
performs worse means that, as described in Section 2.2,
using latency to find bandwidth detours without a means
of verifying the suggested path is not a viable solution.

4.1.1 Detouring to public web servers

To explore the potential of bandwidth detouring on a
more realistic subset of the Internet, we run an exper-
iment that uses public Internet web servers as detour-
ing destinations. We use around 100 software mirror
sites hosting the Linux kernel source archive, which is
around 40 MB in size. The majority of mirror servers are
hosted at commercial sites. We use 50 detour nodes and
10 client nodes on PlanetLab. To minimise any nega-
tive impact of our experiment on the web servers, each
client requests the file from a single site and we use
only the client-oblivious-5 detouring strategy, which per-

9

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 1 2 4

C
D

F
 o

f
P

a
th

s

Relative Bandwidth Improvement (logscale)

client-oblivious-5

Figure 6: Detouring improves bandwidth even on arbi-
trary public Internet paths

formed best in our previous experiments.
Figure 6 shows the bandwidth detouring potential ex-

pressed as relative download improvement over the di-
rect path. The detouring performance results are signif-
icantly better than those for the previous experiment us-
ing just PlanetLab destinations: the median bandwidth
improvement factor is around 1.8×, and we manage to
improve bandwidth successfully on 80% of paths. Sig-
nificantly, 30% of paths find their bandwidth doubled or
better. A possible explanation is that the performance of
bandwidth detouring in the previous experiment is con-
strained by the destination web servers running on over-
loaded PlanetLab nodes.

4.1.2 Adaptive detour selection

By using adaptive detour selection, clients can improve
upon the client-oblivious ranking of detours provided by
the oracle to create client-specific sets. We evaluate our
adaptive detouring selection process by having clients
randomly download from our set of PlanetLab destina-
tions using adaptive detouring (cf. Section 3.2.2). Each
client performs up to 100 file downloads to customise
the rank list Li. To test the improvement that adaptive
detouring provides, we randomly choose 5 PlanetLab
web servers as destination and observe the detouring im-
provement after an increasing number of file downloads
per client. We use the top-5 detours from Li to evaluate
the performance of our adaptive selection detour mecha-
nism in improving the bandwidth between the clients and
the web servers.

In Figure 7, we plot the median improvement from
the testing phase for 10 clients. The median relative im-
provement observed increases with the number of down-
loads performed. It reaches about 1.48× the direct path
bandwidth after 100 downloads; without adaptive detour-

1.0

1.1

1.2

1.3

1.4

1.5

 0 20 40 60 80 100

M
e

d
ia

n
 R

e
la

ti
v
e

 I
m

p
ro

v
e

m
e

n
t

o
f

A
ll

C
lie

n
t

P
a

th

Number of Downloads per Client

Figure 7: Adaptive detouring improves the quality of the
detour set selection over time

ing the client would expect just a 12% increase. We also
find that, eventually, our adaptive detouring strategy con-
verges and provides the set of client-specific detours of
Section 2.2.3.

4.2 Load balancing

The previous experiments have evaluated the perfor-
mance of UKAIRO with a single client at a time. This
gives a baseline view of the detouring potential on the
Internet but it is not a realistic usage model. Next, we in-
vestigate how UKAIRO supports multiple detour clients
simultaneously and load-balances between detour nodes.

We run between 1 and 20 simultaneous clients,
which use 20 PlanetLab nodes as destinations, al-
ways testing all possible paths. We evaluate both
the client-oblivious (client-oblivious-5) and the load-
balanced (load-balanced-5) detour ranking strategies and
plot the average relative bandwidth improvement across
all paths in Figure 8.

The client-oblivious-5 approach initially performs bet-
ter than the load-balanced-5 strategy, confirming our
first experiment. As we increase the number of paral-
lel clients there is, however, a clear downward trend in
its performance. With 16 simultaneous clients, it fails to
offer any performance improvements through detouring.

The performance of load-balanced-5 remains rela-
tively stable over the tested range of parallel down-
loads, consistently representing a moderate average per-
formance improvement. This matches our intuition that
any ranking strategy that focuses on a small set of good
detour nodes would suffer from limited scalability due
to hot-spots, even with a small number of simultaneous
clients.

We restricted ourselves to detouring paths of less than
40 Mbps because we found that only few of our de-

10

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 r
el

at
iv

e
ba

nd
w

id
th

im
pr

ov
em

en
t o

ve
r

al
l c

lie
nt

 p
at

hs

Number of parallel clients

client-oblivious-5
load-balanced-5

Figure 8: A diversified detour strategy can be effective
for many clients simultaneously

tour nodes are capable of forwarding connections at a
faster rate, regardless of the path being measured. This
suggests that any given detour node has a maximum
throughput, which is likely to be the limiting factor when
attempting to service higher numbers of clients simul-
taneously. This does imply that it should be possible
to support greater numbers of parallel clients by adding
more detouring nodes at popular locations, such as Inter-
net peering points, subject to network capacity.

4.3 Measurement overhead

Measurements across the Internet consumes both band-
width and time. In Section 3.1.1, we described a biased
measurement approach to reduce the number of measure-
ments within the overlay. To evaluate the performance
of this measurement strategy, we deploy k = 50 de-
tour nodes and compare the performance of the measure-
ment scheduler with t = 25 to the following random ap-
proach. Given the set P of paths already measured, we
uniformly choose a node i that is the end-point of a path
in P and randomly choose a new path (i, j) to measure
such that (i, j) is not in P .

In both strategies, we calculate, after each measure-
ment, the score dl for each detour node to create the
client-oblivious ranking. We then pick the top-5 de-
tours from the ranked list of detour nodes to form the
set of candidate detour nodes D5. We then perform par-
allel path selection on the 151 client nodes that download
from each other. The bandwidth of a given path (i, j) is
set to be the maximum of bij and b̂ilj for all l ∈ D5.

In Figure 9, we show the median relative improvement
due to bandwidth detouring as a function of the percent-
age of all paths measured between detour nodes. Without
any measurement, both strategies begin with an unranked
list of detours, thus each client behaves as if randomly

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 0 20 40 60 80 100

M
e

d
ia

n
 b

a
n

d
w

id
th

 i
n

c
re

a
s
e

Percentage of paths measured

Measurement strategy
biased

random

Figure 9: The biased measurement scheduler requires
fewer measurements to achieve a given bandwidth in-
crease

selecting a detour. This still provides a 20% increase in
a client’s median bandwidth. However, reaching a 50%
increase requires the measurement of 30% of paths if us-
ing our biased strategy and 70% with the random strat-
egy. More significantly, the biased strategy provides a
measurement set that achieves good bandwidth detour-
ing with only approximately 40% of all-to-all measure-
ments.

4.4 Discussion

We showed that a bandwidth detouring system can im-
prove bandwidth to popular Internet destination. Due
to the small number of required detour nodes and the
longevity of detours, the bandwidth measurement over-
head to discover good detour nodes for any client is ac-
ceptable. Parallel path selection among candidate detour
nodes allows clients to choose the best detour path as part
of an ongoing HTTP download. Our approach for load-
balancing across a wider set of good detour nodes shows
that it can alleviate hot-spots created by popular detour
nodes.

Our system is not without its limitations. First,
to achieve fast path selection by parallel downloads,
UKAIRO handles exclusively HTTP traffic. We are cur-
rently looking into ways of scalably detouring more
types of traffic. Second, using PlanetLab for our evalua-
tion may raise concerns about the validity of the results.
Because clients connect to a commercial site through
PlanetLab, they may discover detours that would not be
available had the detour node been on the commercial
network. However, our measurements show that Planet-
Lab paths are not bandwidth optimal: we were able
to discover bandwidth detours even between PlanetLab
nodes.

11

Finally, an open question is what impact wide-spread
UKAIRO deployment would have on the Internet as a
whole. Detour routing disregards network-level routing
policies because AS customers provide transit, which
is forbidden in inter-domain routing. While this may
seem undesirable at first, we already witness applications
based on the overlay networks such as peer-to-peer file
sharing systems [4] and CDNs [10] that follow a similar
philosophy.

In the future, overlay networks are even more likely to
make more intelligent path decisions taking path proper-
ties such as bandwidth into account. As a consequence,
it is important for network operators to understand the
implications of such decisions and provide mechanisms
to handle their effects. Recent proposals for oracle ser-
vices [38] operated by network providers that help peer-
to-peer applications make ISP-friendly peer selection de-
cisions are a first step towards a practical solution and
could also be adopted for bandwidth detouring systems.

5 Related Work

Detouring was first proposed by Savage et al. [31]. They
experimentally verify that detour paths with lower la-
tency exist on the Internet due to violations of the triangle
inequality in Internet routing. They outline an overlay ar-
chitecture based on IP tunneling between edge nodes to
redirect connections over such lower latency paths.

Another proposal for improving path properties us-
ing an overlay network is OverQoS [33]. OverQoS pro-
vides quality-of-service guarantees on network paths by
changing the trade-off between bandwidth and packet
loss. Instead of discovering alternate paths with desired
properties, as done in our approach, it modifies the be-
haviour of the direct path through packet encoding.

Internet path measurement. Substantial effort has
gone into the measurement of Internet path metrics. Sev-
eral overlay networks aim to inform clients of the cur-
rent condition of the Internet. Madhyastha et al. [25]
propose iPlane, an Internet service that uses continuous
network measurements from many vantage points to con-
struct a global topology map of the Internet. iPlane uses
this map to provide clients information about network
path metrics such as latency, loss, and bandwidth. iPlane
nano [26], a decentralised version of iPlane, partitions
the map across multiple clients. Both systems leave it up
to clients to decide how to use this information.

Detouring for availability. The Resilient Overlay Net-
work (RON) [1] uses detour routing to improve the avail-
ability of Internet paths. The authors show that us-
ing an overlay network to route around Internet fail-
ures is practical for improving reliability. However, they
discover detour paths through all-to-all measurements,

which does not scale to larger system sizes. Gummadi et
al. [11] make detouring for availability scalable by se-
lecting detour nodes at random. However, their approach
does not work for other path metrics such as latency or
bandwidth.

Detouring for latency. Most successfully, detour rout-
ing can reduce Internet path latencies. Peerwise [24] dis-
covers latency detours based the path embedding error
in a network coordinate system. Users benefit from mu-
tually advantages detours in exchange for their partici-
pation in the system and becoming detour nodes them-
selves. In our earlier work [14], we describe how the
similarity of network-level AS paths can be exploited to
discover detour paths with reduced latency. None of the
latency detouring approaches work well for discovering
bandwidth detours [24, 12].

Detouring for bandwidth. Recent work has investi-
gated the use of overlay networks for improving path
bandwidth. Jain et al. [17] use a technique for avail-
able bandwidth estimation to select paths for detouring
in a video streaming application. To reduce measurement
overheads, they describe a method for implicitly gather-
ing measurements from the shape of traffic in a video
stream. The Bandwidth-Aware Routing Overlay Net-
work (BARON) [20] uses capacity measurements of net-
work paths to discover good bandwidth detours. How-
ever, the effectiveness of this has not been evaluated ex-
perimentally as part of a deployed Internet system.

Su et al. [6] minimise the overhead of detour discovery
by taking advantage of on-going measurements of Inter-
net CDNs. While this approach works well in practice,
it relies on the proprietary decision-making by commer-
cial CDN operators without any control over properties
of detour paths. In contrast, UKAIRO performs its own
measurements and discovery of detour paths, operating
transparently to clients.

6 Conclusions

UKAIRO is a bandwidth detouring system that reduces
web download times by sending traffic along overlay
paths with higher TCP throughput. UKAIRO operates
in two phases: it first discovers detour paths among an
overlay network of potential detour nodes and then it
transparently diverts HTTP connections from its clients
to their destinations via these detour nodes. Our evalua-
tion on the PlanetLab test-bed shows that UKAIRO can
provide paths of increased bandwidth to simultaneous
Internet users who download content from popular web
servers. UKAIRO discovers detours quickly and with lit-
tle measurement overhead by keeping the set of potential
detour nodes small and employing intelligent strategies,
such as parallel path selection, for choosing the best de-

12

tour for each client.
An Internet bandwidth detouring system can help con-

tent providers that do not posses the resources to pay
for a professional CDN. By shifting content delivery
costs to the operators of detour nodes, it is possible to
imagine a cooperative deployment of a bandwidth de-
touring service—in a similar spirit to the PeerWise sys-
tem [23]—in which clients contribute resources by act-
ing as detour nodes. In addition, by providing path di-
versity, UKAIRO may offer content providers more con-
trol in circumventing censorship (e.g., avoiding paths
that cross certain geographic regions or autonomous sys-
tems), while still providing good download performance.

References
[1] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F.,

AND MORRIS, R. Resilient Overlay Networks. In SOSP
(Chateau Lake Louise, Banff, Canada, Oct. 2001).

[2] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R. H., KONWINSKI, A., LEE, G., PATTERSON, D. A.,
RABKIN, A., STOICA, I., AND ZAHARIA, M. Above the
Clouds: A Berkeley View of Cloud Computing. Internet draft,
EECS University of California at Berkeley, Feb. 2009.

[3] BEAVER, D., KUMAR, S., LI, H. C., SOBEL, J., AND VAJGEL,
P. Finding a Needle in Haystack: Facebook’s Photo Storage. In
OSDI (Vancouver, BC, Oct. 2010).

[4] BitTorrent. http://www.bittorrent.com/.

[5] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI,
A., ROWSTRON, A., AND SINGH, A. SplitStream: high-
bandwidth multicast in cooperative environments. In SOSP (New
York, NY, USA, 2003), ACM, pp. 298–313.

[6] CHOFFNES, D., AND BUSTAMANTE, F. On the Effectiveness
of Measurement Reuse for Performance-Based Detouring. In IN-
FOCOM (Rio de Janeiro, Brazil, Apr. 2009), pp. 693 –701.

[7] Amazon CloudFront. http://aws.amazon.com/
cloudfront/.

[8] DOCSIS 3.0 Interface. http://www.cablelabs.com/
cablemodem/specifications/specifications30.
html.

[9] FIELDING, R., IRVINE, U., GETTYS, J., MOGUL, J.,
FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-
LEE, T. Hypertext Transfer Protocol – HTTP/1.1 (RFC 2616).

[10] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIÈRES, D.
Democratizing content publication with coral. In NSDI (Berke-
ley, CA, USA, Mar. 2004), USENIX Association, pp. 18–18.

[11] GUMMADI, K. P., MADHYASTHA, H. V., GRIBBLE, S. D.,
LEVY, H. M., AND WETHERALL, D. Improving the Reliability
of Internet Paths with One-hop Source Routing. In OSDI (San
Francisco, CA, 2004).

[12] HADDOW, T., HO, S. W., LEDLIE, J., LUMEZANU, C.,
DRAIEF, M., AND PIETZUCH, P. On the Feasibility of Band-
width Detouring. In PAM (Atlanta, GA, Mar. 2011).

[13] HAN, H., SHAKKOTTAI, S., HOLLOT, C. V., SRIKANT, R.,
AND TOWSLEY, D. Multi-path TCP: a joint congestion con-
trol and routing scheme to exploit path diversity in the internet.
IEEE/ACM Trans. Netw. 14 (Dec. 2006), 1260–1271.

[14] HO, S. W., HADDOW, T., LEDLIE, J., DRAIEF, M., AND PIET-
ZUCH, P. Deconstructing internet paths: An approach for as-level
detour route discovery. In IPTPS (Boston, MA, USA, 04/2009
2009).

[15] J. MOY. OSPF Version 2 (RFC 2328).

[16] JACOBSON, V., SMETTERS, D. K., THORNTON, J. D., PLASS,
M. F., BRIGGS, N. H., AND BRAYNARD, R. L. Networking
named content. In CoNEXT (Rome, Italy, 2009), ACM, pp. 1–
12.

[17] JAIN, M., AND DOVROLIS, C. Path selection using available
bandwidth estimation in overlay-based video streaming. Comput.
Netw. 52 (Aug. 2008), 2411–2418.

[18] JAN, R., AND OTT, T. J. Design and implementation of split
TCP in the Linux kernel. In Globecom (San Franciso, CA, USA,
2006).

[19] KOSTIĆ, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT,
A. Bullet: High Bandwidth Data Dissemination using an Overlay
Mesh. In SOSP (Bolton Landing, NY, 2003).

[20] LEE, S.-J., BANERJEE, S., SHARMA, P., YALAGANDULA, P.,
AND BASU, S. Bandwidth-Aware Routing in Overlay Networks.
In INFOCOM (Phoenix, AZ, 2008).

[21] LEECH, M., GANIS, M., LEE, Y., KURIS, R., KOBLAS, D.,
AND JONES, L. SOCKS Protocol Version 5 (RFC 1928).

[22] LEIGHTON, T. Improving performance on the internet. Commun.
ACM 52 (Feb. 2009), 44–51.

[23] LUMEZANU, C., BADEN, R., LEVIN, D., SPRING, N., AND
BHATTACHARJEE, B. Symbiotic Relationships in Internet Rout-
ing Overlays. In NSDI (Boston, MA, USA, Apr. 2009).

[24] LUMEZANU, C., LEVIN, D., AND SPRING, N. PeerWise Dis-
covery and Negotiation of Faster Paths. In HotNets (Atlanta, GA,
Nov. 2007).

[25] MADHYASTHA, H. V., ISDAL, T., PIATEK, M., DIXON, C.,
ANDERSON, T. E., KRISHNAMURTHY, A., AND VENKATARA-
MANI, A. iPlane: An Information Plane for Distributed Services.
In OSDI (Seattle, WA, Nov. 2006).

[26] MADHYASTHA, H. V., KATZ-BASSETT, E., ANDERSON, T.,
KRISHNAMURTHY, A., AND VENKATARAMANI, A. iPlane
Nano: path prediction for peer-to-peer applications. In NSDI
(Boston, MA, Apr. 2009), USENIX Association, pp. 137–152.

[27] MATHIS, M., SEMKE, J., MAHDAVI, J., AND OTT, T. The
macroscopic behavior of the tcp congestion avoidance algorithm.
SIGCOMM 27 (July 1997), 67–82.

[28] Microsoft Security Updates. http://www.microsoft.
com/security/updates/bulletins/.

[29] POSKANZER, J. thttpd-tiny/turbo/throttling HTTP server, Feb.
2000.

[30] REKHTER, Y., LI, T., AND HARES, S. Border Gateway Protocol
4 (RFC 4271).

[31] SAVAGE, S., ANDERSON, T., AGGARWAL, A., BECKER, D.,
CARDWELL, N., COLLINS, A., HOFFMAN, E., SNELL, J.,
VAHDAT, A., VOELKER, G., AND ZAHORJAN, J. Detour: In-
formed Internet Routing and Transport. IEEE Micro 19, 1 (Jan-
uary 1999), 50–59.

[32] STENBERG, D. libcurl - the multiprotocol file transfer library,
1996.

[33] SUBRAMANIAN, L., STOICA, I., BALAKRISHNAN, H., AND
KATZ, R. H. OverQoS: An Overlay Based Architecture for En-
hancing Internet QoS. In NSDI (San Francisco, CA, Mar. 2004).

[34] TELECOMMUNICATION STANDARDIZATION SECTOR. G.992.5
Annex C, Nov. 2010.

[35] THE PLANETLAB CONSORTIUM. PlanetLab. http://www.
planetlab.org, 2003.

[36] TIRUMALA, A., QIN, F., DUGAN, J., FERGUSON, J., AND
GIBBS, K. Iperf: The TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf/, 2004.

13

[37] TOMO.M. Srelay: A Free SOCKS server for UNIX, 2000.

[38] XIE, H., YANG, Y. R., KRISHNAMURTHY, A., LIU, Y. G., AND
SILBERSCHATZ, A. P4p: provider portal for applications. In
SIGCOMM (Seattle, WA, USA, Aug. 2008), ACM, pp. 351–362.

14

