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Abstract

Access control to IT systems increasingly relies on the ability to compose policies. There
is thus benefit in any framework for policy composition that is intuitive, formal (and so “an-
alyzable” and “implementable”), expressive, independent of specific application domains, and
yet able to be extended to create domain-specific instances. Here we develop such a framework
based on Belnap logic. An access-control policy is interpreted as a four-valued predicate that
maps access requests to either grant, deny, conflict, or unspecified – the four values of the Bel-
nap bilattice. We define an expressive access-control policy language PBel, having composition
operators based on the operators of Belnap logic. Natural orderings on policies are obtained by
lifting the truth and information orderings of the Belnap bilattice. These orderings lead to a
query language in which policy analyses, e.g. conflict freedom, can be specified. Policy analysis
is supported through a reduction of the validity of policy queries to the validity of propositional
formulas on predicates over access requests. We evaluate our approach through firewall policy
and RBAC policy examples, and discuss domain-specific and generic extensions of our policy
language.

1 Introduction

By access control one understands methods or mechanisms that decide whether requests to access
some resource should be granted or denied. For example, operating systems need to control which
users and applications can read, write or delete which files; networks need to govern which packets
can pass through a physical or logical perimeter; and managers need to control which employees can
perform which workflows within an organization.

Regardless of whether such control is enforced by machines or humans, policies have emerged as
a popular and effective tool for capturing and enforcing the control of access. An organization, e.g.,
may have a policy on its information security. Or a firewall may have a policy detailing when which
packets can pass the firewall.

A main requirement for a policy language is support for policy composition. Policy writing was
once a kind of “programming in the small”, as policies were collections of policy rules with local
focus. Today’s IT systems increasingly rely on distribution and virtualization, e.g., in server farms
and cloud computing. Correspondingly, the control of these systems needs distributed policies. A
policy language should therefore support expressive “programming in the large” in which a composed
policy has as its decision the composition of the decisions of its sub-policies. Furthermore, the
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composition operators of a policy language should be shown to be a “complete” in an appropriate
sense.

Early forms of policies, e.g. access-control matrices, allowed one to specify only the access requests
to be granted. Other access requests were then denied. This approach prevents a policy writer from
explicitly asserting access rights as well as prohibitions. For example, a policy writer may want to
express access rights through exceptions to a general rule. A policy language should support the
ability to explicitly express both access rights and prohibitions.

Policies are often expressed as a collection of rules. When more than one rule applies to an access
request, these rules may yield conflicting decisions. When no rule applies, the policy may contain
a gap in its definition. A policy language should facilitate the detection of such gaps and conflicts,
ideally by static analysis.

Historically, policy languages were conceived for specific application domains; firewall rule files
being a good example. This led to the duplication of effort in policy language design and to a whole
plethora of policy languages in academic research and in real systems. A policy language should
therefore support an abstraction layer that encapsulates domain-specific structure, assumptions or
knowledge. Its composition mechanisms should be orthogonal to specifics of application domains,
and should so facilitate the applicability of policy patterns across application domains.

We here present a policy language PBel (pronounced “Pebble”) that meets these requirements.
The language, including its policy combinators, are derived from Belnap’s four-valued logic. A PBel
policy maps access requests to one of the truth values of Belnap logic: “grant” (t), “deny” (f),
“conflict” (>), and “gap” (⊥).

What makes Belnap logic especially suitable for analyzable policy composition is the two different
lattices that are associated with the logic’s truth values. Figure 1 depicts these truth values and
the two orderings. In the knowledge order, x ≤k y means that y contains all and possibly more
information than x contains. So conflict > is the greatest element as it contains the information t
and f . A gap ⊥ is the least element as it contains no information. But the truth ordering x ≤t y
says that y is as least as permissive as x; now t is the greatest and f the least element.

Policy composition in PBel works by combining the results of policies using the operators of
Belnap logic. For example, one can combine policies by “summing” the information content of their
outcomes. Then, if one policy yields t in response to a request, and another yields ⊥, the combined
policy yields t.

The basic policies of PBel, consist of a “request predicate” and a result value in {t, f}. A basic
policy maps an access request satisfying the request predicate to the result value, and otherwise
maps the access request to ⊥.

We now revisit the requirements listed above. Most important is support for analyzable policy
composition. PBel is functionally complete for policy composition over the four values of Belnap logic
in the same sense in which Boolean negation and conjunction are complete for Boolean functions.
Furthermore, the semantics of PBel policies is fully compositional. This means that PBel’s policy
combinators can serve as an analyzable “glue language” to combine any kind of policies that yield
values contained in Belnap logic. Also, PBel can be used for writing policies in the small as well as
in the large: PBel’s combinators can be used to combine simple policy rules or entire large policies.
PBel’s combinators can be used, e.g., to define the run-time merging of outputs from distinct access-
control systems.

PBel achieves generality by abstracting application-specific details using request predicates. PBel
supports both positive and negative statements, as PBel’s basic policies can yield both t and f . The
two lattices of Belnap logic are central for deriving static policy analyses for PBel. One such analysis,
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Figure 1: Belnap bilattice (with synonyms for access-control decisions in parentheses).

e.g., is whether one policy is “more defined” than another within a scope of access requests. This
means that the result from one policy is always at least as great in the information ordering as the
result from the other policy for requests within that scope.

The design of PBel uses the “core language” approach, in which ones defines a small core language
and then compiles additional language features into it. Thus PBel is expressive without sacrificing the
simplicity desired in language implementation and analysis. The non-core PBel features described
in this paper include: logical operators over request predicates, an attribute language for requests,
derived policy operators, and a feature known as “closure” in the literature.

The paper is organized as follows. In Section 2 we review Belnap’s four-valued logic. In Section
3 we define the core PBel language, and in Section 4 we present operators derivable from the core
language. In Section 5 we look at salient sublanguages of PBel. In Section 6 we represent idiomatic
policy compositions in PBel. After determining the expressiveness of PBel in Section 7, we present
a method for the analysis of PBel policies in Section 8. In Section 9 we describe various extensions
to PBel; for example, how to explicitly handle role-based access control (RBAC). In Section 10
we present a few sample PBel policies for several application domains. We discuss related work in
Section 11 and conclude in Section 12. Selected proofs are listed in an appendix.

2 Belnap Logic

The set of four elements with two orderings, depicted in Figure 1, was developed by Belnap as the
basis for a four-valued logic [4]. It is a bilattice, a notion defined by Ginsberg [16]. A bilattice
consists of a set of elements with two orderings and a negation operator, such that both orderings
form lattices and the negation operator interacts with the two orderings in a particular way.

Definition 1 A bilattice is a structure (A,≤t,≤k,¬), where A is a non-empty set, and ≤t and ≤k
are partial orders on A such that (A,≤t) and (A,≤k) are complete lattices, ¬ maps from A to A,
and these conditions must hold:

x ≤t y ⇒ ¬y ≤t ¬x x ≤k y ⇒ ¬x ≤k ¬y ¬¬x = x

(The form of this definition of bilattice comes from [15].) The first two conditions say that negation
inverts truth, but does not affect knowledge.

The Belnap bilattice (4,≤t,≤k,¬) is the simplest non-trivial bilattice, where 4 = {t, f ,>,⊥}. It
is shown in Fig. 1. We often refer to 4 as the “Belnap space”. We write ∧ and ∨ for the meet and
join operations of the lattice formed by the truth ordering ≤t, and we write ⊗ and ⊕ for the meet
and join operations of the lattice formed by the information ordering ≤k. The truth negation ¬
swaps t and f and leaves > and ⊥ fixed. It is common to also define a negation operator relative to
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rp ::= Request Predicate
a Atomic
true Truth
false Falsity

p, p′ ::= Policy
b if rp Basic policy
> Conflict
¬p Logical negation
p ∧ p′ Logical meet
p ⊃ p′ Implication

Figure 2: Syntax of the core PBel policy language, where a ranges over a finite or infinite set AP of
atoms and b is in {t, f}.

the information ordering. It is written − and called “conflation”. As expected it inverts knowledge,
but does not affect truth:

x ≤k y ⇒ −y ≤k −x and x ≤t y ⇒ −x ≤t −y

The Belnap bilattice can be used as the basis for a four-valued logic. The values t and f capture the
standard logical notions of truth and falsity. Value ⊥ means “no information”, and value > means
“conflict” or “too much information”.

Logical conjunction and disjunction can be interpreted as meet and join operators of 4. Think of
conjunction and disjunction in ordinary two-valued logic as the meet and join operators in a lattice
of only two values, with t as the top element and f as the bottom element. One can generalize
two-valued to many-valued logics by using a larger lattice of truth values. In particular, one can
form a four-valued logic from the Belnap bilattice, interpreting conjunction as ∧, disjunction as ∨,
and negation as ¬. One can then develop other logical concepts, like logical consequence, in this
four-valued setting (see [4, 2]).

Also, one can define an implication operator ⊃ by a ⊃ b = b if a ∈ {t,>}, and a ⊃ b = t
otherwise. This operator extends classical implication to 4. Unlike implication for Boolean logic,
⊃ can’t be defined in terms of conjunction and negation. Furthermore, the operators implication,
conjunction, and negation are not a functional complete set of operators in Belnap logic. But adding
constants ⊥ and > is enough to obtain functional completeness [2].

Belnap logic has been used in the field of artificial intelligence, along with other paraconsistent
and non-monotonic logics, to capture human-reasoning processes [4, 16]. It has also been successfully
applied in developing a semantics for logic programs [14].

3 Core PBel Policy Language

The abstract syntax for the core PBel language is defined in Fig. 2. Policies are built out of request
predicate symbols (rp), which are either atomic symbols (a) from a finite or infinite set AP of such
symbols, the constant true for truth, or the constant false for falsity. The intuition of a request
predicate symbol rp is that its semantics provides a mapping from a set R of requests to {f , t}. For
example, set R may consist of triples of form (role, object, action) and atomic request predicate a
may be interpreted such that a applied to (role, object, action) returns t iff “role is a sub-role of role
manager, object is a budget planning document, and action is either delete, create or write”.

Subsequently, we will often write rp to denote either that symbol or its meaning as a map from
requests to responses. Context will resolve this ambiguity. We state the intended meaning of the
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policy constructors of PBel, shown in Fig. 2.
Policy (b if rp) responds with b when rp maps the request to t, and responds with ⊥ when rp

maps the request to f . So (t if rp) never denies, and grants only if rp maps a request to t. Also,
(f if rp) never grants, and denies only if rp maps a request to t. The if operator is the only PBel
operator not found in Belnap logic.

Policy ¬p responds with ¬x, where x is the response of policy p. In particular, ¬p grants when
p denies, and vice versa.

Policy p∧q takes the responses x and y of p and q, respectively, and responds with element x∧y.
For example, p∧ q grants if both p and q grant, and denies if at least one of p and q deny. Similarly,
policy p ⊃ q responds with element x ⊃ y when the responses of p and q are x and y, respectively.

The expression p ⊃ q is less intuitive. It grants if p does not grant or q does grant, and it denies
if p grants and q denies. Policy > always reports a conflict. Context will determine whether > refers
to this policy or to the corresponding element of 4. The importance of operators > and ⊃ is not
directly in policy writing, but in securing the functional completeness of PBel. Other more intuitive
operators can then be expressed in PBel as “syntactic sugar”.

We could have designed our core language so that its logical operations are defined over the
knowledge ordering, not over the truth ordering. The formal development of that core and its
extensions would then proceed in a very similar fashion. But since policy writers do not need to
know the core language itself, it does not matter which order we use as the basis for its design.

Core PBel abstracts away domain-specific aspects by having policies handle requests only indi-
rectly, through the “interface” of request predicates. For example, imagine that financial analyst
Jane wishes to read a file concerning HSBC bank. A PBel policy to enforce a Chinese Wall might
take the form (t if ChW ), where request predicate ChW holds just if the requestor is a financial
analyst who has never accessed a file concerning a competitor of HSBC. This policy does not depend
on the structure of access requests in the analyst’s organization. Request predicates can also capture
contextual information. For example, policy (t if ChW ) ∧ (t if WeekDay) ∧ (t if AutomatedLogs)
grants iff the policy (t if ChW ) grants and, additionally, the request occurs on a week-day and au-
tomated transaction logs are enabled. This implicit handling of requests is common to many policy
languages.

We now give a formal semantics to PBel, beginning with the notion of model.

Definition 2 An access-control model (or “model” for short)M is a non-empty set RM of requests,
with a predicate rpM ⊆ RM for every request predicate, such that trueM = RM and falseM = {}.

This is a standard model of first-order logic, where the signature has a set of unary predicates:
the atoms a in AP, and true and false which are interpreted uniformly in all models. Intuitively,
a model M provides a meaning for each of the request “symbols” in the set RM. In other words,
rather than defining a fixed structure for requests, we treat them abstractly as symbols. A model
M shows how each request “behaves” with respect to the request predicates.

Fig. 3 gives the formal semantics of policies of our core language relative to a modelM. A policy
is interpreted as a mapping [[p]]M from requests to elements of the Belnap space. When the model is
evident from context, we sometimes write simply [[p]]. As mentioned above, the policy operators ¬,
∧, and ⊃ are just the pointwise extensions of the operators on 4 with the same names and arities.
That is to say, we compose policies by composing their responses.

In the policy semantics of Fig. 3, the meaning of a policy on a request depends only on what the
model M says about that request. To formalize this statement, we can define the “projection” of
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[[b if rp]]M(r) =
{
b if r ∈ rpM
⊥ otherwise [[>]]M(r) = >

[[¬p]]M(r) = ¬[[p]]M(r) [[p ∧ q]]M(r) = [[p]]M(r) ∧ [[q]]M(r)
[[p ⊃ q]]M(r) = [[p]]M(r) ⊃ [[q]]M(r)

Figure 3: The meaning [[p]]M of a PBel expression p relative to a model M is a mapping from
requests r in RM to elements of Belnap space 4.

t = t if true ⊥ = t if false
f = ¬t p if rp = p⊗ ((t if rp)⊕ (f if rp))
p ∨ q = ¬(¬p ∧ ¬q) p⊗ q = (p ∧ ⊥) ∨ (q ∧ ⊥) ∨ (p ∧ q)
p⊕ q = (p ∧ >) ∨ (q ∧ >) ∨ (p ∧ q) −p = (¬p ⊃ ⊥)⊕ (¬(p ⊃ ⊥))
p[f 7→ q] = p ∨ (¬(p ∨ −p) ∧ q) p[t 7→ q] = p ∧ (¬(p ∧ −p) ∨ q)
p[⊥ 7→ q] = p⊕ (−(p⊕ ¬p)⊗ q) p[> 7→ q] = p⊗ (−(p⊗ ¬p)⊕ q)
p↓ = p[> 7→ f ][⊥ 7→ f ] p↑ = p[> 7→ t][⊥ 7→ t]

Figure 4: Some policy operators, derived in terms of operators of core PBel.

M onto a request r as a propositional model. Propositional models map a set of request predicates
to {t, f}.

Definition 3 Let M be a model, r a request in RM, a an atomic request predicate, and aM its
interpretation in model M. Then the propositional model ρMr is defined by ρMr (a) = t if r ∈ aM,
and ρMr (a) = f if r 6∈ aM.

Now the statement above can be formalized by saying that, ρMr = ρM
′

r implies [[p]]M(r) =
[[p]]M′(r), for every policy p, modelM andM′, and request r in RM ∩RM′ . A propositional model
can be thought of as a request that carries its own meaning with it. Such models will be seen again
in later sections of the paper.

4 Extensions to Core PBel

We now define extensions of that core language that can be used by policy writers. These extensions
concern additional policy operators and richer languages in which to express conditions on access
requests.

4.1 Derived Policy Operators

We define derived policy operators as “syntactic sugar” of PBel. For example, the join p ∨ q of
policies p and q can be defined as ¬(¬p ∧ ¬q). Therefore, policy p ∨ q grants if p or q grants, and it
denies if both p and q deny. Fig. 4 depicts the definition of several derived operators within PBel.
Some of these definitions are provided by Arieli and Avron in [2] for the Belnap space; we have
merely lifted them from formulas of Belnap logic to operators of PBel.
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cp, cp′ ::= Composite Request Predicate
a Atomic
true Truth
false Falsity

¬cp Negation
cp ∧ cp′ Conjunction
cp ∨ cp′ Disjunction

Figure 5: The abstract syntax of composite request predicates. We refer to this propositional logic
built up from request predicates as PLr.

[| a |]M = aM [| true |]M = RM
[| false |]M = {} [| ¬cp |]M = RM \ [| cp |]M

[| cp ∧ cp′ |]M = [| cp |]M ∩ [| cp′ |]M [| cp ∨ cp′ |]M = [| cp |]M ∪ [| cp′ |]M

Figure 6: The meaning of composite request predicates over model M.

In this figure the remaining constant policies, one for each value in {t, f ,⊥}, are defined through
basic policies, ∧, and ¬. The definitions of ⊕ and ⊗ as policy operators nicely reveal their duality.
Having defined the operator −, which provides negation in the knowledge ordering, we can define
four operators p[v 7→ q], one for each value v in 4. The intuition is that p[v 7→ q] acts like an
if-statement or an exception handler: if p responds with a value other than v, this response is the
overall response. Otherwise, the overall response is that of q. The operator for the case of v = ⊥
is so important that we abbreviate it as p > q = p[⊥ 7→ q] which encodes a priority composition
between p and q.

The expression (p if rp) generalizes basic policies such that a request that satisfies predicate rp
is responded to just as p would, and otherwise is responded to with ⊥. Finally, the unary operators
↓ and ↑ function as “wrappers” that turn policies into policies that give only conclusive responses
(i.e. t or f). Policy p↓ is like p except that every ⊥ or > response is re-interpreted as f . Dually, p↑
re-interprets responses ⊥ or > made by p as t.

4.2 Request Predicates with Logical Connectives

In core PBel, request predicates are either truth constants or atomic request predicates. We can
extend PBel by allowing request predicates to be written using logical operators. For example,
the request predicate “Manager ∧ OnDuty ∧ ¬Weekend” specifies those requests that are issued
during a working day by subjects who are managers and currently on duty. Fig. 5 defines PLr, a
propositional logic over request predicates. Each modelM is naturally also a model for these richer
request predicates, as depicted in Fig. 6. We write r |=M cp if request r is in the set [| cp |]M of
requests denoted by cp.

By plugging this richer class of request predicates into the grammar for PBel we obtain the
language PBelcp. Its formal semantics is that of PBel in Fig. 3 verbatim. However, PBelcp is no
more expressive than PBel. As Fig. 7 shows, every PBelcp expression can be translated into PBel.
For example, (t if rp1 ∧ rp2) translates to (t if rp1) ∧ (t if rp2). The translations for basic policies
with negated request predicates make use of the negation operator ¬ and the implication operator ⊃.
The translations of conjunction and disjunction are compositional, and exploit that policy operator
∧ grants if both policies grant, and denies if one of them denies. A routine induction shows that
these translations, as PBel expressions, have the same meaning as the expressions they translate, in
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T (t if ¬cp) = T (t if cp) ⊃ ⊥ T (f if ¬cp) = ¬(T (t if cp) ⊃ ⊥)
T (t if cp ∧ cp′) = T (t if cp) ∧ T (t if cp′) T (f if cp ∧ cp′) = ¬(T (t if cp) ∧ T (t if cp′))
T (t if cp ∨ cp′) = ¬(T (f if cp) ∧ T (f if cp′)) T (f if cp ∨ cp′) = T (f if cp) ∧ T (f if cp′)

Figure 7: Translation T (b if cp) ∈ PBel of basic policies (b if cp), with b ∈ {t, f} and cp a composite
request predicate. The translation for clauses already in PBel is the identity, and thus not shown.

ap, ap′ ::= Request Predicate on Attributes
true Truth
t = t′ Term Equality
¬ap Negation
ap ∧ ap′ Conjunction

t, t′ ::= Attribute Term
a Attribute
k Constant

Figure 8: Predicates on the attributes of requests are expressed in a propositional logic over attribute-
term equations.

all models. We are therefore justified in using propositional connectives on request predicates within
PBel, without any special privisos. For example, we can now write a more succinct and clear policy

(t if (Manager ∧OnDuty ∧ ¬Weekend ∧ ReadPDF)) > f

This policy grants read access of PDF documents during the week to those managers who are on
duty, and it denies all other requests.

4.3 Request Predicates on Request Attributes

In this section we further enrich the language of request predicates by allowing “attributes” of
requests to be used.

One can regard requests as n-tuples, with the value of each tuple element ranging over some
domain. The ith position of the tuple can be called an “attribute” and given a name. For example,
requests may be triples with attributes “subject”, “object”, and “action”. A request predicate on
attributes is then a propositional formula built up from equalities over attribute values. Fig. 8
gives the abstract syntax of these predicates ap, where a is an attribute name, k is the syntactic
representation of a (constant) value in the value domain for some attribute, and t is the abstract
syntax for attribute terms, which denote attribute values. Expressions ap∨ap′ and t 6= t′ abbreviate
¬(¬ap ∧ ¬ap′) and ¬(t = t′), respectively.

As an example, if requests are regarded as triples of the form (subject, action, object), then one
can write the following two PBel basic policies:

t if subject = Doctor ∧ action = read ∧ object = patient-record

t if subject = Alice ∧ action = write ∧ object = file22

To interpret a request predicate ap, we need to alter our notion of policy model so that it provides
values for request attributes, rather than values of atomic request predicates. Let Attr be a collection
of attributes, and Doma be the value domain of attribute a in Attr. An attribute model M over
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r |=M true holds [| a |]M(r) =M(r)(a)
r |=M t = t′ iff [| t |]M(r) = [| t′ |]M(r) [| k |]M(r) = kM

Figure 9: The meaning of request predicates and attribute terms over attribute model M. The
propositional connectives have their standard meaning, so we omitted these definitional clauses.

p, q ::=
b if rp
⊥
¬p
p ∧ q
r ⊃ q
p ∨ q
p⊗ q

r[> 7→ p]
p[v 7→ q]
p if rp
p : q
r↓
r↑

p, q ::=
b if true
>
¬p
p ∧ q
r ⊃ q
p ∨ q
r⊕ q

p⊕ r
r[⊥ 7→ p]
p[v 7→ q]
p if true
r↓
r↑

p, q ::=
b if true
¬p
p ∧ q
r ⊃ q
p ∨ q

p[v 7→ q]
p if true
r↓
r↑

Figure 10: Policy languages PBelCf (left), PBelGf (middle), and PBel2 (right). Expression r stands
for any PBel expression and (b if rp) is defined as for PBel in Fig. 2. Value v ranges over {t, f ,⊥}
for PBelCf, over {t, f ,>} for PBelGf, and over {t, f} for PBel2.

attribute term set Attr is a non-empty set RM of requests, an element kM for each constant k in
Attr, and a function attrM that maps a request r and an attribute a in Attr to the value attrM(r)(a)
in Doma for that attribute. We usually write M itself to stand for the mapping attrM when we
work with attribute models.

Fig. 9 shows the meaning of request predicates and terms relative to attribute model M. We
write [| ap |]M for the set of requests satisfied by request predicate ap in modelM, and write [| t |]M
for the value of term t in model M.

In Section 4.2 we saw that policies written in an extended version of PBel with composite request
predicates can be translated to policies in core PBel (see Fig. 7). A similar translation could be
used to eliminate the propositional connectives in request predicates on attributes. Note also that
we could extend the language of attribute request predicates by allowing other relations on terms
besides equality and inequality. For example, in a domain in which some attributes are set-valued,
it would be convenient to allow operations such as set membership. A rule for access to email might
say (f if (action = write) ∧ (author ∈ bcc-list)), which prohibits the writing of an email in which
the author’s identifier appears in the blind-copy list.

5 Safe Sublanguages of PBel

An important question to ask of a policy is whether it might respond to some request with >,
or ⊥. Formally, a policy p in PBel is conflict-free (respectively, gap-free) iff there is no model M
and request r in RM such that [[p]]M(r) equals > (respectively, ⊥). A policy is conclusive iff it is
conflict-free and gap-free.

In Figure 10, three sublanguages of PBel are presented: language PBelCf yields only conflict-free
policies, language PBelGf yields only gap-free policies, and language PBel2 yields only conclusive
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policies. The grammar rules for these languages can be seen as sound, static typing rules for
preventing undesired behavior. For example, r ⊃ q for PBelCf states that the truth implication of
any PBel policy r with a conflict-free policy q from PBelCf renders another conflict-free policy.

All three languages are useful. Writing policies in PBelCf enures the absence of conflicts but
allows the presence of gaps, a useful feature in compositional policy writing where sub-policies which
focus on different aspects are likely to contain gaps in the global policy space. Writing policies in
PBelGf ensures the absence of gaps but allows for the presence of conflicts, which may result from
the merging of distributed policies. Finally, writing a policy in PBel2 ensures that this policy is
implementable as stated since it has neither gaps nor conflicts.

These languages are not only sound but also complete (in a sense formalized and proved in
Corollary 1 and Theorem 4). For example, any n-ary policy composition operator that returns only
conflict-free decisions can be expressed in PBelCf.

Theorem 1 All policies p ∈ PBelCf are conflict-free. All policies p ∈ PBelGf are gap-free. And all
policies p ∈ PBel2 are conflict-free and gap-free.

(Proofs of selected theorems, including this one, can be found in the Appendix.)

6 Idioms of policy composition

We illustrate, through small examples, how various notions of policy composition are expressed in
PBel.

Top-level policy wrappers Consider the library example of [17]. Suppose a city has two libraries
and wants to create a single, uniform library policy by combining the libraries’ policies. Consider
a request to access the coatroom by the public. One library’s policy may grant such a request;
the other may deny it because that library has no coatroom (using the “when in doubt, deny”
approach). The city-wide policy will then be to deny the request, again using the “when in doubt,
deny” approach. Let lib1 and lib2 be the policies of the two libraries, and let r be the coatroom
request. Then we have [[lib1]]M(r) = t and [[lib2]]M(r) = ⊥. We can “wrap” each of the policies, e.g.,
with ↓, and then lib1 ↓ and lib2 ↓ are free of gaps and conflicts. However, conflict then arises in the
composition lib1 ↓ ⊕ lib2 ↓, because [[lib1 ↓ ⊕ lib2 ↓]]M(r) = [[lib1 ↓]]M(r) ⊕ [[lib2 ↓]]M(r) = t ⊕ f = >.
If the composite policy is again wrapped with ↓ to eliminate the conflict, the overall response is f ,
although intuitively the correct response is t. This example shows that it may be better to resolve
conflict at a policy’s top level. If done so here the response [[(lib1 ⊕ lib2)↓]]M(r) of the wrapped
composite policy is t, not f . A dual example would show that the same issue arises with wrapper ↑.

Exceptions Consider the roles Cardiologist and Physician. Intuitively, cardiologists should be
permitted to engage in any action that a physician is allowed to engage in. After all, a cardiologist
is a kind of physician. On the other hand, as noted in [13], there may be tasks that a physician
frequently performs but that are rather alien to cardiologists, who therefore should not be permitted
to perform them. These exceptions to permissions – specified in a request predicate rpexc – will
break the normal flow of permissions associated with the specialization of roles. We can enforce
those exceptions by retrofitting the original policy p for Cardiologist, which inherits permissions
from Physician, to policy (f if rpexc) > p. This modified policy denies all requests flagged as being
exceptional, and applies original policy p to all other requests.

10



α β α AND β α OR β NOT α
t t t t f
f t f t t
⊥ x x x ⊥
t f f t
f f f f
x ⊥ x x

Figure 11: Truth table for SPL’s three-valued policy composition operators.

Absolute rights and absolute prohibitions Bonatti et al. [6] state that policy languages need
to support explicit prohibitions. In PBel, we can specify access prohibitions for a set of requests rp2

by (f if rp2). We think support for explicit access rights is equally important; the right to a set of
requests rp1 is expressed by the policy (t if rp1). Now, given any policy p – which may have been
the result of repeated policy compositions – we can enforce these rights and prohibitions as absolute
ones for p by using the idiom ((t if rp1)⊕ (f if rp2)) > p.

Encoding SPL in PBel SPL [34] is an access-control policy language with features for policy
composition that are roughly analogous to those in PBel. Here we briefly describe SPL and sketch a
translation from SPL to PBel. Our aim is to show the conceptual and technical simplicity achieved
by using Belnap logic for policy composition.

We focus on those parts of SPL related to policy composition. A basic SPL policy is a “rule”,
which has the form domain-expression :: decision-expression, where each of these expressions
are two-valued predicates on requests. For example (borrowing from Fig. 5 of [34]):

OwnerRule: ce.target.owner = ce.author :: true;

This expression states that if the target of the request is owned by the author of the request, then
the request is granted. The symbol ce (“current event”) stands for the current request.

The SPL policy composition operators are AND, OR, and NOT, which are three-valued operators
lifted to policies. In [34], these operators are defined by the three-valued truth table shown in
Fig. 11, where x stands for any element in {⊥, t, f}. Operators AND and OR extend two-valued
conjunction and disjunction, but do not conform to standard three-valued logical operators, such as
the operators of Kleene’s strong three-valued logic [20]. For example, ⊥ OR f results in f , not ⊥.
Unlike the corresponding operators in 4, AND and OR are not monotonic in knowledge; e.g., f ≤k f
and ⊥ ≤k t, but f OR ⊥ 6≤k f OR t.

We now sketch a translation from SPL to PBel. An SPL rule of the form ap :: t translates to
(t if ap), and similarly for other kinds of SPL rules. More interesting is the translation of the SPL
policy combinators. Let function S be the mapping of SPL expressions to PBel expressions. Then:

S(p1 AND p2) = (S(p1)⊕ S(p2))[> → f ]

S(p1 OR p2) = (S(p1)⊕ S(p2))[> → t]

S(NOT p) = ¬S(p)

Thus, SPL’s p1 AND p2 simply joins the results of p1 and p2, and then treats conflicts as denials,
while OR does the same but treats conflicts as grants. The nature of SPL’s combinators – which at
first glance seem to be operators of an unusual three-valued logic with somewhat obscure technical
properties – becomes clear when expressed in Belnap logic.

11



7 Expressiveness of PBel

There are two questions one can ask about the expressive power of the PBel language. First, because
PBel expressions are interpreted as functions from requests to responses, one may ask which of these
functions can be expressed. Second, one may ask which compositions of policies from sub-policies
can be expressed. For example, given sub-policies p1, p2, and p3, can one write a PBel expression p
having all three pi as sub-expressions such that p responds with t if at least two of these pi respond
with t? For the latter question, a composed policy can be understood as a mapping from a collection
of responses (the responses of the sub-policies) to a single response (that of the composition).

7.1 Expressing policy functions

We first examine the kinds of policies that can be expressed in PBel. To this end, let us define policy
functions.

Definition 4 1. A policy function f for model M is a function f : RM → 4 from the set of
requests of M into the Belnap space.

2. A policy function f for model M is expressible in PBel iff there is some p ∈ PBel such that
[[p]]M = f .

The key issue in understanding the ability of PBel to express policy functions is that PBel
policies refer to requests only indirectly via request predicates. Because of this, a PBel policy
cannot distinguish between requests that are indistinguishable in terms of the request predicates of
the policy. For example, policy

(t if ChW ) ∧ (t if RegisteredAnalyst) > f

has two request predicates, ChW (for “Chinese Wall”) and RegisteredAnalyst. Therefore, there
are at most four types of requests for this policy, and the policy will have the same response for
requests of the same type. If a request makes ChW and RegisteredAnalyst true, e.g., then the
request is granted by the policy; otherwise, it is denied. Policies are therefore “data-independent”
in a sense loosely borrowed from databases: a policy’s behavior depends on the values of its request
predicates, and only indirectly on the requests that determine such values.

The gist of what we shall now show is that PBel can express any policy function, up to the
distinguishability of requests that is possible through the request predicates of a model.

Definition 5 Let R be a subset of AP.

1. On each model M we define equivalence relation ≡RM to be {(r, r′) ∈ RM × RM | ∀a ∈ R : r ∈
aM iff r′ ∈ aM}.

2. A policy function f : RM → 4 is data-independent for R inM iff r ≡RM r′ implies f(r) = f(r′).

3. We write PBelR for the set of PBel policies that contain only atoms from R. In particular,
PBel AP equals PBel.

Equivalence relation ≡RM identifies those requests that are indistinguishable in modelM through
the “observations” a in R. (Note that ≡RM identifies all elements of RM if R is empty.) Similarly,
policy functions f forM that are data-independent in R have the same output behavior for requests
that are indistinguishable through observations from R inM. PBel policies that contain only request
predicates from R express exactly those functions that are data-independent for R in M.
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p = pt ⊕ pf
pt =

∑
r∈RM | t≤kf(r)

pr pf =
∑

r∈RM | f≤kf(r)

¬pr

pr = (
∧

a∈R | r∈aM

t if a) ∧ (
∧

a∈R | r 6∈aM

(t if a) ⊃ ⊥)

Figure 12: Policy p for policy function f that is data-independent for R in M. We write
∑

for the
n-ary versions of ⊕, and

∧
for n-ary versions of ∧.

Theorem 2 Let R be a subset of AP and let M be a model. Then we have:

1. For each p in PBelR, policy function [[p]]M is data-independent for R in M.

2. Conversely, let f be a policy function that is data-independent for R in M for finite set RM.
Then there is some p in PBelR with f = [[p]]M.

Theorem 2 says that every PBel policy is a data-independent policy function for the atoms from
which it is built, and on all models. This informs us that the meaning of policies gives rise only
to such functions. That theorem also states a kind of converse, that every policy function that is
data-independent for a set of request predicates can be expressed by a policy built from that set, if
the model is finite – as described in Fig. 12. This says, over finite models, that all data-independent
functions are actually the formal meaning of a policy in PBel. Note that the construction of policy
p in Fig. 12 requires all operators of core PBel.

We can now customize these results to the safe sublanguages PBelCf, PBelGf, and PBel2. The-
orem 1 states that the meanings of these sublanguages do not contain the disallowed outputs for
these fragments. For example, [[p]]M does not have > in its image when p ∈ PBelCf. Conversely, the
corresponding data-independent policy functions can be expressed as meanings of policies in these
safe sublanguages:

Corollary 1 Let R be a subset of AP and let M be a model with finite set RM.

1. Let f be data-independent for R in M such that > is not in the image of f . Then there is
some p ∈ PBelRCf with f = [[p]]M.

2. Let f be data-independent for R in M such that ⊥ is not in the image of f . Then there is
some p ∈ PBelRGf with f = [[p]]M.

3. Let f be data-independent for R in M such that neither > nor ⊥ is in the image of f . Then
there is some p ∈ PBelR2 with f = [[p]]M.

7.2 Expressing policy compositions

We now ask what types of policy compositions PBel and its safe sublanguages support. As already
stated, we seek composition operators such that the response of a composed policy is the composition
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of the responses of its sub-policies. Mathematically, the composition operators G we are interested in
are induced by functions g : 4n → 4 as follows: given n policies pi, the response from the composed
policy G(p1, . . . , pn) on request r is g(v1, . . . , vn) where vi is the response from pi on r.

We show that all such composition operators are expressible in PBel. To that end, let V be
a countable set of variables X1, X2, . . . and consider the free algebra A generated over V and the
algebraic operations {>,¬,∧,⊃}. For term t in that algebra, containing only variables X1, . . . , Xn,
we write t(p1, . . . , pn) for the PBel expression that replaces all occurrences of Xi in t with given pi
in PBel. For example, ¬(¬X1 ∧ ¬X2) is such a term t in algebra A, and then t(>, (t if rp)) equals
¬(¬>∧¬(t if rp)) ∈ PBel. We formulate the technical result, which follows from the expressiveness
results contained in [2]:

Theorem 3 Let n ≥ 0 and g ∈ 4n → 4. Then there is a term tg ∈ A such that

[[tg(p1, . . . , pn)]]M(r) = g([[p1]]M(r), . . . , [[pn]]M(r)) (∀pi ∈ PBel,M, r ∈ RM)

We illustrate this theorem and its proof through examples. The first shows how the composition
defined by Belnap operator ⊕ can be expressed in PBel. The second shows how a majority vote
on three policies can be expressed. Similar majority vote operators are expressible in PBel for any
number n > 2 of policies.

Example 1 Let n = 2 and consider g to be ⊕ : 42 → 4. We have that tg equals ¬(¬(X1 ∧ >) ∧
¬(¬((> ∧ X2) ∧ ¬(X1 ∧ X2)))). This can be derived, e.g., from the encoding of ⊕ in Fig. 4. The
composition, >⊕(f if rp1), e.g., would result in the PBel expression ¬(¬(>∧>)∧¬(¬((>∧(f if rp1))∧
¬(> ∧ (f if rp1))))).

Example 2 (Majority vote) Let p1, p2, p3 be three policies in PBel. Then:

G(p1, p2, p3) = (p1 ∧ p2) ∨ (p1 ∧ p3) ∨ (p2 ∧ p3)

forms a majority vote of these three input policies. For any modelM, decision v = [[G(p1, p2, p3)]]M(r)
satisfies t ≤k v iff there are at least two input policies pi1 and pi2 with t ≤k [[pij ]]M(r) for j in
{1, 2}. Dually, decision v satisfies f ≤k v iff there are at least two input policies pi1 and pi2 with
f ≤k [[pij ]]M(r) for j in {1, 2}.

Syntactic sugar, e.g. named expressions, can be added to PBel to represent such majority votes
for larger values of n. For each n, majority vote is symmetric in Belnap logic and so efficiently
representable as two symmetric Boolean functions.

We customize this result to the safe sublanguages PBelCf, PBelGf, and PBel2. Let L range over
these three sublanguages. For each sublanguage L we define a subset 4L of 4, and AL, a free algebra
generated from V and a set of Belnap operators.

• if L = PBelCf, then 4L = {t, f ,⊥} and the operators of AL are {¬,∧,⊃,⊗, f}.

• if L = PBelGf, then 4L = {t, f ,>} and the operators of AL are {¬,∧,⊃,⊕, f}.

• if L = PBel2, then 4L = {t, f} and the operators of AL are {¬,∧,⊃, f}.

Every function g : 4nL → 4L gives rise to a composition operator on PBelL where G(p1, . . . , p2)
responds with g(v1, . . . , vn) to request r if policies pi ∈ PBelL respond with vi to r. We state and
prove the analogues to Theorem 3.
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φ, φ′ ::= Query
p ≤t q Policy refinement in truth ordering
p ≤k q Policy refinement in information ordering
φ ∧ φ′ Conjunction

Figure 13: Query language R for phrasing policy analyses based on refinement checks: expressions
p and q range over PBel.

M |= p ≤k q iff for all r ∈ RM we have [[p]]M(r) ≤k [[q]]M(r)
M |= p ≤t q iff for all r ∈ RM we have [[p]]M(r) ≤t [[q]]M(r)
M |= φ ∧ ψ iff M |= φ and M |= ψ

Figure 14: The satisfaction relation |= between models M and queries φ ∈ R.

Theorem 4 Suppose L ∈ {PBelCf,PBelGf,PBel2}, n ≥ 0, and g : 4nL → 4L. Then there is a term
tg in AL such that tg(p1, . . . , pn) ∈ L if pi ∈ L (for 1 ≤ i ≤ n), and

[[tg(p1, . . . , pn)]]M(r) = g([[p1]]M(r), . . . , [[pn]]M(r)) (∀pi in L,M, r ∈ RM)

The above majority vote is definable in all three safe sublanguages of PBel.

8 Policy analysis

The languages PBelCf, PBelGf, and PBel2 provide intuitive and safe mechanisms for writing policies
that are conflict-free, gap-free or both. As such, they elegantly circumvent the need for gap and
conflict analysis, which aim to determine whether a policy contains any gaps or conflicts. But there
still is a need for static policy analysis. A given policy, e.g., may not belong to a safe sub-language
or we may want to know whether one policy is more permissive than another within a given scope
of requests. Such analyses can be phrased in a query language (see Fig. 13).

8.1 A Policy Query Language

The query language R (for “policy Refinement”) is very simple. Queries are conjunctions of atomic
queries. Atomic queries come in two types: atomic query p ≤t q asks whether policy p is everywhere
less than or equal to policy q in the truth ordering, whereas atomic query p ≤k q asks the same
question for the information ordering. We can evaluate these queries φ over models M through a
satisfaction predicate M |= φ, specified in Fig. 14. This predicate interprets policy refinement as a
constraint that applies to all requests of a model.

In Fig. 15 we list some example queries to motivate the language and demonstrate its utility. A
simple query such as p′ ≤t p may appear to have limited practical use, but it could be helpful if
p were revised to p′, with the intention that the revisions would strictly reduce permissions. The
query (p if rp) = (p′ if rp) could be used after revising policy p to p′, with the intention that the
changes would affect only requests not satisfying rp.

We say that a query φ is valid iff it is satisfied in all models. Validity is the right notion for policy
analyses. To illustrate, the query (p ≤t q) ∧ (q ≤t p) of Fig. 15, abbreviated as p = q, is valid iff p
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policy p has no gaps: p ≤t p[⊥ 7→ f ]
policy p has no conflicts: p ≤k p[> 7→ f ]
policy q is more defined and more permissive than p: (p ≤k q) ∧ (p ≤t q)
policies p and q are equivalent (written p = q subsequently): (p ≤t q) ∧ (q ≤t p)
policies p and q are equivalent over requests satisfying rp: (p if rp) = (q if rp)

Figure 15: Examples of important policy analyses, expressible as queries in query language R.

p ∨ q = q ∨ p p > (q > r) = (p > q) > r
(p if rp)⊕ (q if rp) = (p⊕ q) if rp p↑↑ = p↑
p↑↓ = p↑ > = t⊕ f

Figure 16: Some valid equations for policy expressions in PBel over our formal semantics.

and q have the same meaning in all models. This follows since the truth ordering is antisymmetric.
Fig. 16 lists some valid equations to illustrate that one may use equational reasoning to simplify a
given policy, or to prove the equivalence of two policy expressions.

Two important instances of query validity capture gap and conflict analysis:

Theorem 5 For all p ∈ PBel we have:

1. Policy p is gap-free iff query p ≤t p[⊥ 7→ f ] is valid.

2. Policy p is conflict-free iff query p ≤k p[> 7→ f ] is valid.

8.2 Reducing Queries to Propositional Logic

We have just shown that important policy analyses can be reduced to checks of the validity of
queries. We now demonstrate that these query validity checks can in turn be reduced to validity
checks for the propositional logic PLr, defined in Fig. 5.

The reduction of queries proceeds in two steps. In the first we generate, for each PBel policy p
and b in {t, f}, a formula p⇑b of PLr that captures the exact condition for p to respond with some
value v satisfying v ≥k b. In Fig. 17 these conditions are defined as “constraints” cp in PLr over the
atoms a occurring in p.

In the second step, we use the constraints p⇑ b to encode the meaning of atomic queries p ≤k q
and p ≤t q. The conjunction of queries is treated compositionally. Thus each query φ in R has a

(b′ if rp)⇑b =
{
rp if b = b′

false otherwise
>⇑b = true (¬p)⇑b = p⇑¬b
(p ∧ q)⇑ f = p⇑ f ∨ q⇑ f (p ∧ q)⇑t = p⇑t ∧ q⇑t
(p ⊃ q)⇑ f = p⇑t ∧ q⇑ f (p ⊃ q)⇑t = ¬(p⇑t) ∨ q⇑t

Figure 17: Constraint p⇑b in PLr for PBel expression p and b in {f , t}. In all models M, request r
satisfies p⇑b iff b ≤k [[p]]M(r).
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C(p ≤t q) = (q⇑ f → p⇑ f) ∧ (p⇑t→ q⇑t)
C(p ≤k q) = (p⇑ f → q⇑ f) ∧ (p⇑t→ q⇑t)
C(φ ∧ ψ) = C(φ) ∧ C(ψ)

Figure 18: Constraint C(φ) ∈ PLr for query φ ∈ R. Constraint C(φ), as a formula of propositional
logic PLr, is valid iff query φ is valid over all models M.

corresponding formula C(φ) in PLr as defined in Fig. 18. It then remains to prove that query φ is
valid iff formula C(φ) is.

Before stating correctness formally, we note that correctness of the second part of the reduction
depends on the following characterization of the truth and information orderings. The structure of
these formulas mirrors those used in the definition of C(p ≤k q) and C(p ≤t q) in Fig. 18.

Lemma 1 For all x, y in 4, we have:

1. x ≤t y iff (y 6≥k f or x ≥k f) and (x 6≥k t or y ≥k t)

2. x ≤k y iff (x 6≥k f or y ≥k f) and (x 6≥k t or y ≥k t)

For correctness of the first part of the reduction we show that constraint p⇑ b correctly models
that the meaning of p in M is above b in the information ordering. For correctness of the second
part we show that our encoding of the orderings interacts correctly with the constraints p⇑ b, and
in all models.

Proposition 1 For all M, r in RM, b in {t, f}, ∗ in {k, t}, and p in PBel:

1. For ρMr from Def. 3 we have ρMr |= p⇑b iff b ≤k [[p]]M(r)

2. For ρMr from Def. 3 we have ρMr |= C(p ≤∗ q) iff [[p]]M(r) ≤∗ [[q]]M(r)

We can now prove the correctness of the overall reduction.

Theorem 6 Suppose φ ∈ R. Then query φ is valid iff C(φ) is valid as a formula of propositional
logic PLr.

Example 3 Let p and q be simplistic file server policies, where q retrofits p:

p = (t if rd)⊕ (f if wr) q = p[> 7→ f ]

Policy p grants read requests and denies write requests. Policy q does the same but treats conflict as
denial. Let us decide the validity of constraint C(p = q). Since p and q differ only by q’s “wrapper”
[> 7→ f ], proving C(p = q) would show the wrapper is superfluous. Query p = q is shorthand for
(p ≤t q) ∧ (q ≤t p), so C(p = q) is C(p ≤t q) ∧ C(q ≤t p).

Let us compute C(p ≤t q). From the definition of ⇑b we can show

p⇑b = (t if rd)⇑b ∨ (f if wr)⇑b q⇑b = p⇑b ∧ (¬(p⇑¬b) ∨ f ⇑b)
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From this we compute:

p⇑t = rd ∨ false = rd p⇑ f = false ∨ wr = wr

q⇑t = p⇑t ∧ (¬(p⇑ f) ∨ f ⇑t) = rd ∧ (¬wr ∨ false) = rd ∧ ¬wr
q⇑ f = p⇑ f ∧ (¬(p⇑t) ∨ t⇑t) = wr ∧ (¬rd ∨ true) = wr

and therefore

C(p ≤t q) = (q⇑ f → p⇑ f) ∧ (p⇑t→ q⇑t) = (wr → wr) ∧ (rd→ (rd ∧ ¬wr))

This formula simplifies to rd → ¬wr, which is not valid (e.g., when rd and wr are both true) so
C(p = q) is not valid either. (End of example.)

We summarize the obtained method for checking the validity of queries:

1. Given a query φ in language R, expand all policy expressions appearing in φ according to the
translations in Fig. 4 so that the modified query φ′ contains only policy expressions of the core
language PBel. Then φ is valid iff φ′ is.

2. Compute formula C(φ′) ∈ PLr according to the translations in Fig. 18.

3. Submit C(φ′) to a validity checker for propositional logic. If the checker determines validity, we
know that the original query φ is valid. Otherwise, the checker may produce a counterexample
ρ so that ρ 6|= C(φ′).

We remark that our policy analysis is coNP-complete: it is in coNP as the length of formula
C(φ) is linear in the length of φ; for hardness, the query > ≤t T (t if φ) is valid iff the formula φ of
propositional logic is valid for the translation T in Fig. 7.

We stress that this method for validity checking of queries can be made completely automatic, so
that one need only specify the query φ and its constituent policies. For validity checking one could use
SAT solvers, for example. We continue Example 3 to illustrate the potential use of counterexamples.

Example 4 In Example 3, the propositional model ρ, in which ρ(rd) = ρ(wr) = t, is a counterex-
ample to the validity of the query p ≤t q. So a counterexample is any model M for which there is
some request r such that r ∈ (rdM ∩ wrM).

Using the queries for gap and conflict-freedom we can apply C(φ) to get constraints for typical
composition patterns, shown in Fig. 19. The line for p1 ⊕ · · · ⊕ pn in Fig. 19, e.g., shows that a gap
does not occur if some pi gives at least t or f .

One may also do validity checks that are symbolic. We have defined atomic queries of the form
p ≤∗ q, where p, q are PBel expressions. But what if we want to prove that p ≤k (p > q) for all p, q
in PBel? A solution is to interpret the expressions p⇑b not as formulas but as atomic propositions.
Then C(φ) is a formula of propositional logic with atoms pi⇑b and qi⇑b, where pi ≤∗ qi are all the
atomic queries occurring in φ. This propositional formula is valid iff φ holds in all models and for
all policies. The proof is a mere adaptation of the proof for the non-symbolic case. We illustrate
this approach with an example.

Example 5 Let φ be p ≤k (p > q) with p and q interpreted symbolically. For b in {t, f} we have
(p > q)⇑b = p⇑b ∨ (¬(p⇑¬b) ∧ q⇑b). Therefore, we compute C(φ) to be (p⇑ f → (p⇑ f ∨ (p⇑t ∧ q⇑
f)) ∧ (p⇑ t → (p⇑ t ∨ (p⇑ f ∧ q ⇑ t)))). This formula has atomic propositions p⇑ b and q ⇑ b (where
b ∈ {t, f}), and is clearly valid.
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policy gap-freedom conflict-freedom

p p⇑t ∨ p⇑ f ¬(p⇑t) ∨ ¬(p⇑ f)

p1 ⊕ · · · ⊕ pn

Wn
i=1(pi⇑t ∨ pi⇑ f) ¬(

Wn
i=1 pi⇑t) ∨ ¬(

Wn
i=1 pi⇑ f)

p1 > · · · > pn

Wn
i=1(pi⇑t ∨ pi⇑ f)

Vn
i=1D(n, ~p, i)

p1 ∧ · · · ∧ pn (
Vn

i=1 pi⇑t) ∨ (
Wn

i=1 pi⇑ f) ¬(
Vn

i=1 pi⇑t) ∨ ¬(
Wn

i=1 pi⇑ f)

Figure 19: A policy in the first column is gap-free iff the constraint given in the second column
is valid, and similarly for conflict-freedom and the third column. Expression D(n, ~p, i) denotes
¬(pi⇑ f) ∨ ¬(pi⇑t) ∨

∨i−1
j=1(pj ⇑ f ∨ pj ⇑t)).

Similarly, analysis can be performed on “hybrid policies”, in which the policy combinators of
PBel are used to combine policies not written in PBel. Each such policy would be written as a
policy variable p, and translation of a query φ to a constraint C(φ) would yield a propositional
formula with atomic propositions of the form p ⇑ f and p ⇑ t. Another notion of hybrid policy is
a PBel expression in which request predicates are expressed in a non-PBel language. Analysis is
again possible; in this case a query φ and its derived constraint C(φ) interpret non-PBel request
predicates occuring in both φ and C(φ) as abstract Boolean predicates.

8.3 Assume-guarantee reasoning

Examples 3 and 4 motivate the use of assume-guarantee reasoning for checking the validity of queries.
The application domain for a file access policy may simply demand that no file access is both a read
and a write access, so the query p ≤t q should be valid over all models consistent with that application
domain. We can capture such reasoning with generalized query ¬(rd ∧ wr) ⇒ (p ≤t q), where the
antecedent is a propositional formula in PLr and the consequent is a query in R. Intuitively, query
¬(rd ∧ wr) ⇒ (p ≤t q) is valid if p ≤t q holds of every model for which ¬(rd ∧ wr) holds of
every request in that model. The addition of such domain-specific assumptions requires only very
minor modifications to our query language R and its analysis. We therefore refrain from formally
redeveloping that analysis and merely describe the required adjustments.

First, we add a clause α⇒ φ to the grammar of R to express that query φ holds conditional on
assumption α. Let us call R⇒ the resulting query language.

Second, we extend the satisfaction relation for that clause by settingM |= α⇒ φ iff [| α |]M 6= RM
or M |= φ. Thus, α ⇒ φ is valid iff φ holds of every model M for which φ holds of all requests in
RM. In other words, models not satisfying assumption α need not satisfy query φ.

Third, we extend the definition of C(·) to clause α⇒ φ by setting C(α⇒ φ) = α→ C(φ). This
means that the domain-specific assumption α gets compiled into an antecedent of an implication in
propositional logic.

We can show the correctness of this encoding in stages. We first establish a characterization
of the satisfaction relation for the models ρMr (see Def. 3), which has a straightforward proof by
induction on the structure of α.

Lemma 2 Let M be a model, r ∈ RM, and α ∈ PLr. Then ρMr |= α iff r |=M α.

It is now a routine matter to adjust the techniques used for validity checking of R to the validity
checking of R⇒.
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Theorem 7 A query φ in R⇒ is valid iff formula C(φ) in PLr is valid.

Example 6 Let query ψ be ¬(rd∧wr)⇒ (p ≤t q), where p and q are as in Example 3. This query
is valid if q is more permissive than p in every model having no request that is both a read and a
write request. Then C(ψ) = ¬(rd ∧ wr) → C(p ≤t q). In Example 3, we computed C(p ≤t q) to be
(rd→ wr)∧ (rd→ rd∧¬wr). Therefore C(ψ) is equivalent to rd∨wr∨ ((¬rd∨wr)∧ (¬rd∨¬wr))
which is valid. So query ψ is valid.

The interpretation of query α⇒ φ is not that α⇒ φ holds of a model iff φ holds for every request
in the model satisfying α. In fact, we have not even defined the meaning of a query φ with respect to
individual requests, but the idea for that meaning should be clear. Suprisingly, this interpretation
and the one we actually use are interchangeable with respect to validity. In other words, query
α ⇒ φ is valid iff, for all models M, query φ holds on the requests of M that satisfy α. In terms
of the example above, this means that if query ¬(rd ∧ wr) ⇒ (p ≤t q) is valid, then in all models
M, condition [[p]](r) ≤t [[q]](r) holds for every request r in M that is not both a read and a write
request.

The language PLr is rich enough to specify interesting domain-specific assumptions α about re-
quest predicates pi. Several such assumptions can simply be conjoined with ∧ to obtain α. Individual
conjuncts may be instances of what we would call assumption patterns. For example, ¬(rpi ∧ rpj)
states that rpi and rpj are disjoint; rpi → rpj states that predicate rpj subsumes predicate rpi; and
rpi → ¬rpj states that predicate rpi is inconsistent with predicate rpj .

9 Language extensions and alternatives

We sketch some language extensions for PBel as well as possible alternative design choices for it.
Thinking of PBel as a core programming language, several important, orthogonal design principles
can extend that core [36, 27].

Alternative atomic policies Instead of basic policies of form (b if rp) one could use a set
of atomic policy symbols (Ai)i∈I where symbols Ai are interpreted as functions from requests to
elements of 4. The changes to the formal development of PBel are then minor. Policy analysis,
e.g., turns into the symbolic version we already described: Ai ⇑ t and Ai ⇑ f are then independent
Boolean variables.

Methods and interface specifications One such principle is to name language expressions,
leading to parameterized methods, e.g.

pol delegatesExceptions(P : pol,Q : pol) { P [⊥ 7→ Q][> 7→ Q] }

This declares a method named delegatesExceptions with two parameters P and Q of type pol as
input. Type pol denotes our four-valued policies. The body of the method provides the “program”
for composing input policies P and Q: the composed policy makes all conclusive decisions of P , but
delegates all requests for which policy P makes inconclusive decisions (⊥ and >) to policy Q.

Methods facilitate modular policy development, reuse, and maintenance. They also can document
assumptions and guarantees, leveraging assume-guarantee reasoning to such language extensions.
For example,
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[[p〈f〉]]M = [[p]]M〈f〉

M〈α→ f〉(r)(a) =
{
M〈f〉(r)(a) if r ∈ αM
M(r)(a) otherwise

M〈a := t〉(r)(a′) =
{

[| t |]M(r) if a = a′

M(r)(a′) otherwise
M〈f1; f2〉(r)(a) = (M〈f1〉)〈f2〉(r)(a)

Figure 20: Semantics of the request mapping extension of PBel, whereM is an attribute model and
[| t |]M is defined in Fig. 9.

@requires conflict-free(P);

@ensures conflict-free(output);

pol foo(P : pol, Q : pol) { ... }

declares a method and its interface specification, in a style reminiscent of interface specification
languages such as Eiffel [26]. The intent of this interface specification is that method foo produces
a conflict-free output policy if its input policy P is conflict-free.

Request mappings In [38], Woo and Lam list as a requirement that a policy language should
support “closure”, which means informally that the result of a policy on a request can depend on
the result of a sub-policy on another request. For example, a policy for document access may state
that a document is readable by a user if it is writable. To accommodate this feature in PBel, we
add a policy expression of the form p〈f〉, where f is a “request mapping”. Informally, policy p〈f〉
treats request r just as p treats f(r). If f maps every read request on a document to a write request
on the same document, p〈f〉 will grant read requests if p grants write requests. Using the same f ,
the response of policy p⊕ p〈f〉 on a read request will be greater or equal in the knowledge ordering
to that of policy p.

We now give a syntax and semantics for request mappings. A request mapping f has the following
abstract syntax, where α is a request predicate on attributes and t is an attribute term (see Fig. 8).

f, f ′ ::= a := t | α→ f | f ; f ′

A request mapping can be thought of as a sequential program without iteration, in which the
left-hand side of an assignment must be an attribute. Using this syntax we can write a policy that
treats a read request as policy p treats write requests:

p〈(action = read)→ (action := write)〉

Fig. 20 defines what it means to apply a request mapping to a policy. This is done by also
defining what it means to apply a request mapping to a model.

Request mapping may appear to be a powerful policy operator, but it does not extend the power
of PBel: every policy containing request mappings can be translated to a policy without them.
Fig. 21 gives the definition of “policy transformer” wp, which maps a policy p and request mapping
f to a policy wp(p, f). The aim is that the behavior of policy wp(p, f) on a modelM will be identical
to behavior of policy p on model M〈f〉.

Function wp is so named because it is much like the weakest preconditions of program verification.
For example, the bottommost clause on the left of Fig. 21 says that the effect of applying update
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wp(b if α, f) = b if wp(α, f)
wp(>, f) = >
wp(¬p, f) = ¬wp(p, f)

wp(p ∧ q, f) = wp(p, f) ∧ wp(q, f)
wp(p ⊃ q, f) = wp(p, f) ⊃ wp(q, f)

wp(k, a := t) = k

wp(a, a′ := t) =
{
t if a = a′

a otherwise

wp(α, β → f) = (β → wp(α, f)) ∧ (¬β → α)
wp(α, f1; f2) = wp(wp(α, f2), f1)
wp(t1 = t2, f) = wp(t1, f) = wp(t2, f)
wp(α1 ∧ α2, f) = wp(α1, f) ∧ wp(α2, f)

wp(¬α, f) = ¬wp(α, f)
wp(true, f) = true

Figure 21: Definition of function wp, which transforms policies, request predicates, and request
terms relative to request mappings. The intent is that wp(p, f) behaves on M as p does on M〈f〉.

a′ := t to a model can be “simulated” by replacing occurrences of attribute a′ with term t. This is
much like Dijkstra’s weakest precondition rule for assignment statements (see [11]).

Lemma 3 For all a, t, t′, α, f , M, and r as above we have:

1. [| wp(t, a := t′) |]M = [| t |]M〈a:=t′〉

2. r |=M wp(α, f) iff r |=M〈f〉 α.

We can now state the correctness of the encoding of request mappings in PBel.

Theorem 8 Let p be a PBel policy, f be a request mapping, and M be an attribute model. Then
[[p]]M〈f〉 = [[wp(p, f)]]M.

A corollary of Theorem 8 is that [[p〈f〉]]M = [[wp(p, f)]]M, saying that policy transformer wp,
when applied to p and f , yields a policy that behaves like p〈f〉.

Bilattices Another way to enrich our semantic framework for PBel would be to use a bilattice
more complex than the Belnap space. A balance would have to be drawn between the increased
benefit of such a generalization and the overhead such complexity would bring to those who write
and compose policies. One bilattice that might be used is the seven-valued bilattice used by Ginsberg
[16] to capture default reasonong. Default reasoning has being studied in the context of composing
policies that negotiate parameters for security protocols [21]. A bilattice might also be used as an
alternative to the D-algebra used in [30] for the formalization of XACML policies (see Section 11).

10 Applications

We demonstrate how the policy composition language PBel and the analysis tools we have developed
for it can be used to explore and validate policies in two application domains: firewalls and role-based
access control.
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srcIP, destIP ∈ IpAddress (source, destination IP addresses)
srcPort, destPort ∈ Integer (source, destination ports)
protocol ∈ Protocol (protocol; e.g., TCP, UDP, ICMP)
trustedIp ∈ Pow(IpAddress) (trusted IP addresses)
direction ∈ {in, out} (packet direction)
isValid ∈ {true, false} (true iff a “valid” packet)
ICMPType ∈ Integer (ICMP packet type)
destIpHistory ∈ Pow(IpAddress) (dest. IP addresses of previously sent packets)

Figure 22: Attributes for requests in a firewall application, and their value domains.

10.1 Firewall policy analysis

Firewall policies are used to control traffic into or out of a private network. Our formal model of
firewall policies is based on the extended access lists of Cisco’s IOS firewall [37], used in Cisco routers
and other products. In a firewall policy, a request is a packet, and various attributes of the packet
are examined in making a policy decision. Typical attributes include host and target IP address,
port number, and service (such as the FTP protocol).

Let us assume the packets treated by a firewall policy have the attributes and associated value
domains shown in Fig. 22. We use the language of request predicates described in Fig. 8, which
allows the use of attributes. An example request predicate is (direction = out) ∧ isV alid.

A firewall policy pfw is then defined to be a priority sequence of “rules” ri:

pfw = r1 > . . . > rn (1)

where each ri has the form ri = (bi if
∧
j api,j), with bi either t or f and api,j a basic request

predicate on attributes (see Fig. 8). In other words, each api,j is either true or has form t = t′ or
t ∈ t′, where t,t′ are request attribute terms.

Fig. 23 depicts the English description of a simple firewall policy, and its encoding as a PBel
policy. This is a default firewall policy from a committee report of the Department of Computing
Science, University of Alberta. Our formalization of that policy in PBel takes some liberties in
interpreting that report, e.g., in formalizing what it means for an incoming packet to be “related to
outgoing packets”.

We now examine whether pfw is conflict-free and gap-free. Conflict-freedom is true by construc-
tion. This can be established in two ways. The first way is to observe that the PBel semantics
tell us that basic policies are conflict-free, and that the priority composition operator > preserves
conflict-freedom. The second way is to consider the reduction of the firewall policy to core PBel,
using the rules of Fig. 6 to eliminate conjunctions from the right-hand side of rules, and the material
of Section 4.1 to eliminate the priority operator >. One is left with a policy in the language PBelCf,
which by Theorem 1 is guaranteed to be conflict-free.

However, one may want to know whether the priority composition does in fact resolve any
conflicts, which may represent policy errors. In other words, are conflicts possible in pfw⊕, defined as
r1⊕ . . .⊕ rn? For example, rules r5 and r6, are in conflict when the direction is in and the source IP
is a trusted IP. Figure 19 tells us that pfw⊕ is conflict-free iff the formula ¬[

∨n
i=1 ri⇑t]∨¬[

∨n
i=1 ri⇑ f ]

is valid.
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1. All valid outgoing packets are let through regardless of their type.
2. All valid incoming packets related to the outgoing packets are allowed.
3. All incoming TCP connections to port 22 (ssh) are allowed.
4. All incoming ICMP packets of types 0 (ping response), 3 (MTU), 8 (ping)

and 11 (TTL exceeded) are allowed.
5. All incoming packets from a trusted machine are allowed.
6. All other (incoming) packets are blocked.

r1 = t if (direction = out ∧ isValid)
r2 = t if (direction = in ∧ isValid ∧ srcIP ∈ destIpHistory)
r3 = t if (direction = in ∧ destPort = 22 ∧ protocol = TCP)
r4 = t if (direction = in ∧ ICMPType ∈ {0, 3, 8})
r5 = t if (direction = in ∧ srcIP ∈ trustedIP)
r6 = f if direction = in

Figure 23: Rules of a university firewall policy and their encoding in PBel. The rules are quoted from
the document at www.cs.ualberta.ca/doc/Policy/firewall.pdf and then encoded in PBel extended
with an appropriate attribute language.

Deriving the building blocks ri⇑t and ri⇑ f of this formula, we get:

(t if
V

j api,j)⇑t =
V

j api,j (f if
V

j api,j)⇑t = f

(t if
V

j api,j)⇑ f = f (f if
V

j api,j)⇑ f =
V

j api,j

A violation of conflict-freedom will thus involve a “granting” rule ri1 and a “denying” rule ri2 such
that all propositional atoms of both rules are true.

Next we consider the property of gap-freedom. In this case, by Fig. 19, pfw is gap-free just iff
pfw⊕ is iff

∨n
i=1(ri⇑t∨ ri⇑ f) is valid. This means simply that it must be guaranteed that some rule

will grant or deny. A counterexample is a model in which every rule fails to grant or deny – or in
other words that some atom in each rule fails to hold. Policy pfw is not gap-free: every rule has at
least one atom that is false when inV alid is false and direction = out. In other words, the policy
has nothing to say about invalid, outgoing packets.

An alternative approach to gap-freedom is to use assume-guarantee reasoning to convince our-
selves that gaps only arise in “unreasonable” models. Let α be (direction = in ∨ direction = out) ∧
(direction = out → isValid), which captures the assumption that all packets are either incoming
or outgoing, and that outgoing packets are valid. Under this assumption we can verify that pfw is
gap-free, since α→

∨6
i=1(ri⇑t ∨ ri⇑ f) is indeed valid.

Our investigation of Cisco IOS firewall policies was inspired by the work of Capretta et al. in
[9]. They present a conflict-detection method for IOS policies, and develop an efficient and correct
OCaml program for detecting policy conflicts.
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10.2 RBAC policy analysis

In Role-Based Access Control (RBAC, [12, 13]), permissions are granted or denied on the basis of
roles, which can be understood as sets of users or principals. The roles in a medical application, e.g.,
might include physicians, surgeons, cardiologists, nurses, and administrators. Furthermore, roles
can be arranged in hierarchies. Cardiologists and surgeons, e.g., might lie below physicians in the
role hierarchy, as they are special kinds of physicians. Surgeons might then be expected to have all
permissions that physicians have. We now explore this issue and show how RBAC policies can be
written in PBel.

In using PBel for RBAC we use predicates on request attributes (see Section 4.3). We assume
the attributes “role”, “operation”, and “object”. Thus a request specifies that a principal in a role
wishes to perform an operation on an object. (The nature of the association between roles and
principals is not discussed here, as it is irrelevant to our purpose.) A PBel policy concerning the
rights to prescribe medicine might read:

(t if role = Physician and operation = prescribe)
⊕ (f if role = Surgeon and operation = prescribe and object = coughMedicine)

This simple policy states that physicians may prescribe any medicine, but that a surgeon may not
prescribe cough medicine.

We formalize a role hierarchy [13] as a partial order ≺ ⊆ Role×Role in which greater elements
correspond to more general roles. For example, Surgeon ≺ Physician. We assume “single inheri-
tance”: if rl ≺ rl′ and rl ≺ rl′′ then rl′ ≺ rl′′ or rl′′ ≺ rl′. Also, we extend the ordering ≺ from
roles to requests in the following way: r ≺ r′ if role(r) ≺ role(r′) but the “operation” and “object”
attributes of r and r′ are equal.

To define the interpretation of a policy relative to a role hierarchy we need one more concept.
Suppose ≺ is a finite role hierarchy. Given a request r and an attribute modelM, we write A(r) for
the longest sequence 〈r1, . . . , rn〉 of requests from M such that r1 = r and ri ≺ ri+1 and ri 6= ri+1.
For example, suppose we have only roles Surgeon and Physician, Surgeon ≺ Physician, and rs and
rp are requests in M that are identical except that role(rs) = Surgeon and role(rp) = Physician.
Then A(rs) = 〈rs, rp〉, and A(rp) = 〈rp〉.

Given A(r) = 〈r1, . . . , rn〉, two possible interpretations for p relative to ≺ are:

[[(p,≺)]]1(r) = [[p]](r1)⊕ · · · ⊕ [[p]](rn)

[[(p,≺)]]2(r) =


[[p]](ri) if i is least value in [1..n] s.t. [[p]](ri) 6= ⊥
⊥ if no such i exists

In the first interpretation both positive and negative permissions are inherited through the role hi-
erarchy. Under this interpretation, if a surgeon requests to prescribe cough medicine, then the policy
result is >. In the second interpretation the “most specific rule wins” (and it is this interpretation
that requires single inheritance). Under this interpretation, the response to the surgeon’s request is
f .

It is possible to characterize both of these interpretations directly in PBel. Letting A(r) again
be 〈r1, . . . , rn〉, we have:

[[(p,≺)]]1(r) = [[p〈role := r1〉 ⊕ · · · ⊕ p〈role := rn〉]](r)
[[(p,≺)]]2(r) = [[p〈role := r1〉 > · · · > p〈role := rn〉]](r)
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Theorem 8 says that expressions such as p〈role := r1〉 can be expressed in core PBel. Using this
theorem, we have that pdoc〈role := Surgeon〉 is equal to:

f if operation = prescribe and object = coughMedicine

and that pdoc〈role := Physician〉 is equal to:

t if operation = prescribe

If r is a surgeon’s request to prescribe cough medicine, then by the first interpretation, [[(pdoc,≺)]]1(r)
= [[pdoc〈role := Surgeon〉 ⊕ pdoc〈role := Physician〉]](r) = f⊕t = >. If instead the second interpre-
tation is used, then [[(pdoc,≺)]]2(r) = [[pdoc〈role := Surgeon〉 > pdoc〈role := Physician〉]](r) = f > t
= f .

11 Related work

The problem of access control is ubiquitous: it is needed not only in computer applications and
systems of all kinds, but also outside the realm of computing. This ubiquity accounts for the large
body of work on access control, and suggests that no language or other technical approach can hope
to solve every access control application. PBel, like all existing work, is necessarily only a partial
solution.

Broad features of access-control policy languages include distributed trust management (e.g.,
[1, 5, 18, 22]), policy composition (e.g., [6, 30, 3]), negative permissions (e.g., [19]), roles and groups
(e.g., [12]), object hierarchies (e.g., [19]), support for tractable analysis (e.g., [22]), and policy
administration (e.g., [35, 23]). Our work focuses on analyzable policy composition.

In the large body of work on distributed trust management, the focus is on the structure of
principals, and how trust passes from principal to principal, for example in the act of delegation.
Our work does not address the flow of trust between principals, and more generally does not concern
requests that can modify the access control state. Conversely, work on trust management has little
to say about policy composition.

We now look at work on policy composition and multi-valued approaches to access control. We
start with composition of policies expressed in classical two-valued logic. Halpern and Weissman [17],
e.g., define policies using a stylized form of first-order logic. A policy φ is a formula, and the decision
on whether to grant a request is made by checking the validity of the formula φ→ Permitted(t, t′),
where t and t′ are terms representing a subject and action, respectively. A decision on whether
to deny a request is made by checking the validity of φ → ¬Permitted(t, t′). Because a classical
two-valued logic is used, it is essential that the policy be consistent, and so a request cannot be both
granted and denied. On the other hand, a request can be neither granted nor denied in a consistent
policy. In short, this framework allows a kind of three-valued attitude towards accesses. But these
values cannot be used in composition, as they result from a validity check that can only occur at
the “top-level” of policy processing.

Other policy formalisms are three-valued. For example, the result values “grant”, “deny”, and
“undefined” are used in the default logic-based formalism of Woo and Lam [38], and SPL [34]. The
values “grant”, “deny”, and “conflict” are used in [25], where the outcomes depend on the provability
of formulas in defeasible logic.

In [32], Rao et al. present a set of operators for composing policies that yield values corresponding
to t, f , and ⊥. This set of operators is shown to be complete for these three values in the sense
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of Section 7.2. An algorithm is given to translate the composition of base policies expressed as
MTBDDs into XACML, but no analysis is supported. Since PBel subsumes the composition of
three-valued policies, PBel is strictly more expressive when seen as a composition algebra.

XACML [29] uses four values that correspond to “grant”, “deny”, and “undefined”, plus a value
“indeterminate” that may indicate a processing error. XACML has separate “algorithms” for rule
and for policy composition. Its four main policy-composition algorithms operate on policy sets but
can be expressed as binary policy operations. In that interpretation, if XACML’s “indeterminate”
is understood as >, then XACML’s “permit-overrides” algorithm on policies p and q can be written
in PBel as (p⊕ q)[> 7→ f ], its “first-applicable” algorithm can be written p > q, and its “only-one-
applicable” algorithm can be written (p⊕ q)⊕ ((p⊕¬p)⊗ (q ⊕¬q)). However, it seems more likely
that XACML’s “indeterminate” should sometimes be treated as ⊥ and sometimes as >, depending
on circumstance.

In [24], Li et al formalize a policy-composition language in XACML. Policy composition that
supports errors and obligations is provided through binary policy operators and constraints on
policy sets. Only negative expressiveness results are shown. Neither expressive completeness nor
policy analysis are discussed. The approach has been integrated with Sun Microsystem’s XACML
implementation.

Polymer [3] provides six policy result values. Polymer is not a policy algebra but rather a
Java-based access-control language for untrusted Java applications. A Polymer policy is a class
that implements a query method, which returns one of six values in response to a request from an
application to execute code. These values include the PBel-like responses irrelevant (like ⊥), OK
(like t), and exception (like f), as well as halt (deny and halt the requesting application), insert (base
the policy response on code to be executed), and replace (grant but compute the return value from
specified code rather than the code of the request). Policies are composed by having one policy’s
query method call the query methods of other policies. Built-in policies provide for common kinds
of composition. Polymer’s dominates and irrelevant policies are similar to the > operator of PBel.
The conjunction policy is like the ⊕ operator of PBel, but uses a “semantic impact” ordering on
policy response values, with irrelevant being least and halt being greatest. Policy authors can also
implement query methods with arbitrary code.

In [30], Ni et al. define D-algebras and show they can be used as policy algebras. A D-algebra is
a set of values, including a “bottom” value 0, equipped with operators ⊕, ¬, and ⊗ (not interpreted
as in Belnap logic) satisfying properties that include x⊕0 and ¬(¬x⊕y)⊕y = ¬(¬y⊕x)⊕x. They
also show how to formalize XACML by letting its result space be all subsets of the XACML policy
results “permit”, “deny”, and “indeterminate”. A D-algebra can be defined on this policy result
space. The functional completeness of D-algebra means that any policy composition operator on
this space can be defined in D-algebra. But the D-algebra approach offers little explanation about
where policy result spaces come from, and provides little structure on these spaces.

In some policy languages, composition is structural rather than denotational. For example, a form
of policy inheritance is supported in the Cisco Management Center for Firewalls [10]. A hierarchy of
pairs of access lists is created; a firewall policy is assembled by forming a single access list from the
pairs along a path in the hierarchy from a leaf to the root. Another example is the policy language
of Lee et al. [21] where a policy is a pair of theories of defeasible logic, each theory consisting of rules
and a rule ordering. These rules, as in default logic [33], allow tentative or definite conclusions to
be inferred. Composition takes an ordered set of policies and produces a single policy by unioning
the rules of defeasible theories and updating the ordering among the rules of each theory.

There is a fairly large body of work on policy conflict analysis (e.g., [28]) and the management
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of inconsistencies in distributed systems (e.g., [31]). In [31] it is argued for a need to make inconsis-
tencies (i.e. conflicts) explicit and to manage them through monitoring, diagnosing, and resolution.
The approach taken in this paper is consistent with such a view.

Use of Belnap logic in access control has been proposed in [7], and its analysis support has been
developed in [8] but not for validity.

Finally, we can say something about the practical application of PBel. In PBel we make no
commitment to the form of requests or of principals. Therefore, applying PBel requires instantiating
it by providing a language of request predicates. An illustration of such an instantiation was given
in Section 4.3. Alternatively, another two-valued access-control policy language could itself serve as
a language of request predicates. Such an approach would be a means to extend another language
with features such as negative permissions and flexible composition.

12 Summary and Discussion

We have defined a language for policy composition based on Belnap’s four-valued logic, and shown
that it neatly handles common problems in policy composition. We have further defined policy
refinement relations, and built a query language on top of such refinement checks that is suitable for
policy analysis. This analysis was shown to reduce to validity checks in propositional logic and we
support it with assume-guarantee reasoning. We have shown how the use of our language can help
in the analysis of attribute-based firewall policies and of policies for RBAC. We have also discussed
possible extensions or alternatives to our policy language.

We reiterate two key elements of our work. By basing PBel on Belnap’s four-valued logic,
the properties of conflict-freedom and gap-freedom can be expressed as simple, purely semantic
properties of policies. In contrast, two-valued policies cannot exhibit conflicts or gaps: basic policies
cannot exhibit them, and conflicts will necessarily be resolved through policy composition. Therefore,
conflict-freedom in two-valued policies must be expressed as the absence of disagreement between
sub-policies. This is unsatisfactory, however, because disagreements between sub-policies may or
may not reflect real problems. It may be that these disagreements are anticipated and are resolved
appropriately through composition. With PBel, sub-policies can either be composed in a way that
resolves conflicts (when they are expected), or in a way that allows conflicts to propagate (when
they are unexpected) so that problematic conflicts then can be detected and eliminated.

The second key element is the use of request predicates in PBel, which abstract away from the
specifics of requests and environmental data in an application domain. Request predicates serve as
Boolean observables, and thus provide for generality of the language, for flexibility in the degree of
granularity of requests, and facilitate efficient policy analysis through the use of off-the-shelf SAT
solvers. Request predicates also allow an elegant casting of sets of requests into four-valued policies
(e.g. through (b if rp)) and, conversely, allow for several systematic ways of collapsing four-valued
policies into request predicates (e.g. through p↓ or p⇑b).

PBel is agnostic to the level of granularity a policy writer may wish to impose in the choice of
request predicates. We believe it is better to provide policy writers and implementers such freedom
than to restrict the genericity of our “glue” language PBel; for it should be the specific application
domain and its needs that determine the appropriate level of abstraction.

Finally, we created PBel by paying heed to a central tenet of programming language design:
that all language extensions are translatable into a core language that has formal semantics, and so
language analysis reduces to that of the core.
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A Selected proofs

Proof of Theorem 1. First we show that all policies in PBelCf are conflict-free. This is done
by structural induction on p ∈ PBelCf. Base policies are conflict-free by definition. All remaining
clauses of PBelCf – apart from Implication, Conflict resolution, and the two wrappers – are easily
seen to preserve conflict-freedom as well. We illustrate the correctness argument for these remaining
clauses by looking at the case of Implication. Suppose r ∈ PBel and q ∈ PBelCf. By induction we
know that q is conflict-free (but r may well contain conflicts). Now policy r ⊃ q can only output
either t or whatever q can output. Since q cannot output >, it follows that r ⊃ q cannot output >
either. (And this argument applies to all models M.)

Next we show that all policies p ∈ PBelGf are gap-free. Basic policies of form b if true are gap-free
since trueM = RM in all models M. It is routine to show that each clause of PBelGf that does not
involve r as an argument preserves the gap-freedom of its input policies. We illustrate the argument
for the remaining clauses by looking at the case of Left knowledge join. Policy r ⊕ q outputs the
join of the outputs of r and q in the knowledge ordering. By induction, q cannot output ⊥ and so
r⊕ q cannot output that either since ⊕ is monotone in the knowledge ordering ≤k.

Finally we show that all policies p ∈ PBel2 are gap-free and conflict-free. The proof combines
the arguments made above. For example, let policy q be conflict-free and gap-free and consider any
r ∈ PBel. Then r ⊃ q outputs either what q outputs, or it outputs t. By assumption, q can neither
output > nor ⊥ and so this applies to policy r ⊃ q as well. �

Proof of Theorem 2.

1. This is shown by structural induction on p ∈ PBel:

• For basic policy b if a we have R = {a} and [[b if a]]M is clearly data-independent for {a}
in M. The basic policies b if true and b if false are constant, and so data-independent for
{} in M.

• For constant policy > we have R = {} and so ≡RM equals RM × RM. Thus > is data-
independent for {} in M since it is a constant function.

• For ¬p we have that R is that of p. Therefore this follows by induction on p, since r ≡RM r′

implies [[p]]M(r) = [[p]]M(r′) and so [[¬p]]M(r) = ¬[[p]]M(r) = ¬[[p]]M(r′) = [[¬p]]M(r′)
follows.

• Let p be p1 ◦ p2, where ◦ ∈ {∧,⊃}. Let Ri be the set of request predicates occurring in
pi. Then R is R1 ∪R2. In particular, ≡RM is contained in ≡RiM for i = 1, 2. Let r ≡RM r′.
Then r ≡RiM r′ for i = 1, 2. By induction on pi, we obtain [[pi]]M(r) = [[pi]]M(r′) and so
[[p]]M(r) = [[p1]]M(r) ◦ [[p2]]M(r) equals [[p1]]M(r′) ◦ [[p2]]M(r′) = [[p]]M(r′).

2. Consider policy p defined in Fig. 12, where we write
∑

for the n-ary versions of ⊕, and
∧

for
n-ary versions of ∧. We first establish the meaning of the expression (t if a) ⊃ ⊥:

[[(t if a) ⊃ ⊥]]M(r) =
{

t if r 6∈ aM

⊥ otherwise

• Firstly, let r 6∈ aM. Then [[t if a]]M(r) = ⊥ and so [[(t if a) ⊃ ⊥]]M(r) = t.

• Secondly, let r ∈ aM. Then [[t if a]]M(r) = t and so [[(t if a) ⊃ ⊥]]M(r) = ⊥.
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Now we can prove that [[p]]M = f . For each r ∈ RM, policy pr is such that [[pr]]M(r′) returns
t if r ≡RM r′; and returns ⊥ if r 6≡RM r′. In particular, [[pt]]M has neither f nor > in its image;
and [[pf ]]M has neither t nor > in its image. For r′ ∈ RM, we show f(r′) = [[p]]M(r′) by a case
analysis on the value of f(r′):

• Let f(r′) = ⊥. Then f(r) = ⊥ for all r ≡RM r′ as f is data-independent for R in M. So
none of these r contributes anything to the summands for pt and pf . For all r 6≡RM r′

we have [[pr]]M(r′) = ⊥ and so these r only contribute ⊥ to these summands. In short,
[[p]]M(r′) = [[pt]]M(r′)⊕ [[pf ]]M(r′) = (

∑
⊥)⊕ (

∑
⊥) = ⊥⊕⊥ = ⊥ = f(r′) as desired.

• Let f(r′) = >. Then t = [[pr′ ]]M(r′) ≤k [[pt]]M(r′) and f = ¬[[pr′ ]]M(r′) ≤k [[pf ]]M(r′).
But then > = t⊕ f ≤k [[pt]]M(r′)⊕ [[pf ]]M(r′) = p(r′) implies [[p]]M(r′) = > as desired.

• Let f(r′) = t. Then t = [[pr′ ]]M(r′) ≤k [[pt]]M(r′), which is an equality since [[pt]]M does
not contain > in its image. We claim that [[pf ]]M(r′) = ⊥, from which t = t ⊕ ⊥ =
[[pt]]M(r′) ⊕ [[pf ]]M(r′) = [[p]]M(r′) then follows, as desired. To see that [[pf ]]M(r′) = ⊥,
note that [[¬pr]]M(r′) = ¬⊥ = ⊥ for all r with r 6≡RM r′; and that f ≤k f(r) implies
r 6≡RM r′ since f(r′) = t, f 6≤k t, and since f is data-independent for R in M.

• The case of f(r′) = f is symmetric to the previous case and so we omit its proof.

�

Proof of Corollary 1. Consider any of these three types of f . By Theorem 2, there is some
r ∈ PBel such that [[r]]M = f . We derive a suitable p from r for each of these three cases:

1. Let p = r[> 7→ t]. Then p ∈ PBelCf by definition. Since f = [[r]]M and since f does not contain
> in its image, [[p]]M equals [[r]]M and therefore equals f .

2. Let p = r[⊥ 7→ t]. Then p ∈ PBelGf by definition. Since f = [[r]]M and since f does not contain
⊥ in its image, [[p]]M equals [[r]]M and therefore equals f .

3. Let p = r↓. Then p ∈ PBel2 by definition. Since f = [[r]]M and since f contains neither > nor
⊥ in its image, [[p]]M equals [[r]]M and therefore equals f .

�

Proof of Theorem 3. Let g be given. Arieli and Avron [2] have shown that {>,¬,∧,⊃} gen-
erates all functions of type 4n → 4. Therefore, there is some term tg in A such that tg(v1, . . . , vn) =
g(v1, . . . , vn) for all vi in 4. Let M be a model, r ∈ RM, and let p1, . . . , pn be elements of PBel.
Then [[tg(p1, . . . , pn)]]M(r) equals tg(v1, . . . , vn) for vi = [[pi]]M(r), since all policy operators of PBel
evaluate responses in a pointwise manner. But tg(v1, . . . , vn) equals g([[p1]]M(r), . . . , [[pn]]M(r)) as
desired, by the definition of vi. �

Proof of Theorem 4. For each L, the proof has the same structure and arguments as that of
Theorem 3, with one notable exception: we need tailored arguments for securing the fact that AL
generates all functions g of that type. This follows essentially from Theorem 3.10 in [2], where the
function g is cast into ĝ of type 4n → 4 but its original type constraints are encoded in terms of
three conditions, called I, II, and III in loc. cit. (we won’t need condition I here):

• ĝ with condition II (that ĝ outputs > only if one of its arguments is >) are those functions
generated by {¬,∧,⊃,⊗, f}
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• ĝ with condition III (that ĝ outputs ⊥ only if one of its arguments is ⊥) are those functions
generated by {¬,∧,⊃,⊕, f}

• ĝ with condition II and III (i.e. those functions that are conclusive) are those functions gener-
ated by {¬,∧,⊃, f}.

The claim that tg(p1, . . . , pn) ∈ L if pi ∈ L follows since all operators used in AL are bona fide
operators of L by the definition of these languages in Figure 10. �

Proof of Theorem 5. Let M be any model.

1. We need to show that M |= (p ≤t q) holds iff [[p]]M does not contain ⊥ in its image. Firstly,
let [[p]]M not contain ⊥ in its image. Then M |= (p ≤t q) follows since then [[p]]M equals
[[p[⊥ 7→ f ]]]M and ≤t is reflexive. Conversely, let M |= (p ≤t q) hold. Since ⊥ 6≤t f and
[[p[⊥ 7→ f ]]]M returns f for all r with [[p]]M(r) = ⊥, we infer that there cannot be such r ∈ RM.

2. We need to show that M |= (p ≤k q) holds iff [[p]]M does not contain > in its image. Firstly,
let [[p]]M not contain > in its image. Then M |= (p ≤k q) follows since then [[p]]M equals
[[p[> 7→ f ]]]M and ≤k is reflexive. Conversely, let M |= (p ≤k q) hold. Since > 6≤t f and
[[p[> 7→ f ]]]M returns f for all r with [[p]]M(r) = >, we infer that there cannot be such r ∈ RM.

�

Proof of Lemma 1. We prove (1) by demonstrating that the pairs (x, y) that satisfy the
righthand side are all and only those pairs satisfying x ≤t y. Firstly, all pairs of form (x, x) satisfy
the RHS since ≤k is a (2-valued) predicate. Secondly, all pairs of form (f , y) satisfy the RHS since
t 6≤k f . Thirdly, all pairs of form (x, t) satisfy the RHS since f 6≤k t. Fourthly, we do a case analysis
on the remaining choices for x to demonstrate that we generate all and only pairs (x, y) of ≤t:

• Let x be ⊥. For (x, y) to satisfy the RHS we then need f 6≤k y. Since we already covered pair
(⊥,⊥) above we can only generate the new pair (⊥, t) for this choice of x.

• Let x be >. For (x, y) to satisfy the RHS we then need t ≤k y. Since we already covered pair
(>,>) above we can only generate the new pair (>, t) for this choice of x.

• Let x be t. For (x, y) to satisfy the RHS we then need both t ≤k y and f 6≤k y. This implies
y = > but we already generated the pair (>,>) and so no new pair arises from this choice of
x.

To prove (2) we note that (4,≤k) is a finite, distributive lattice with set of prime elements {t, f}.
Therefore, x ≤k y holds iff all prime elements that are below x are also below y. This is what the
RHS of (2) expresses. �

Proof of Proposition 1.

1. We proceed by structural induction on the policy expression p, simultaneously for both b in
{f , t}. As a shorthand, let [[p]](a) mean [[p]]M(a).

• Let p be b′ if rp. We do a case analysis on whether b′ equals b.
Firstly, let b = b′. Then ρMr |= p ⇑ b′ iff ρMr |= rp iff r |=M rp iff [[b′ if rp]](r′) = b′ iff
b ≤k [[b′ if rp]] as the latter can only be b′ or ⊥.
Secondly, let b 6= b′. Then ρMr 6|= p⇑b′ as the latter equals false. But also b 6≤k [[b′ if rp]](r)
as the latter is either b′ or ⊥.
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• Let p be >. Then ρMr |= >⇑b holds since >⇑b equals true. But also b ≤k [[>]]M(r) holds
since the latter equals >.

• Let p be ¬p′. Then ρMr |= ¬p′ ⇑ b iff ρMr |= p′ ⇑ ¬b iff (by induction) ¬b ≤k [[p′]](r) iff
(valid in 4) b ≤k ¬[[p′]](r) iff (definition of [[·]]) b ≤k [[¬p′]](r).
• Let p be p1 ∧ p2 and b = f . Then ρMr |= (p1 ∧ p2) ⇑ f iff ρMr |= (pi ⇑ f) ∨ (p2 ⇑ f) iff
ρMr |= pi⇑ f for some i ∈ {1, 2} iff (by induction) f ≤k [[pi]](r) for some i ∈ {1, 2} iff (valid
in 4) f ≤k [[p1]](r) ∧ [[p2]](r) iff (definition of [[·]]) f ≤k [[p1 ∧ p2]](r).

• Let p be p1 ∧ p2 and b = t. Then ρMr |= p1 ∧ p2 ⇑ t iff ρMr |= (pi ⇑ t) ∧ (p2 ⇑ t) iff
ρMr |= pi ⇑ t for all i ∈ {1, 2} iff (by induction) t ≤k [[pi]](r) for all i ∈ {1, 2} iff (valid in
4) t ≤k [[p1]](r) ∧ [[p2]](r) iff (definition of [[·]]) t ≤k [[p1 ∧ p2]](r).

• Let p be p1 ⊃ p2 and b = f . Then ρMr |= (p1 ⊃ p2) ⇑ f iff ρMr |= p1 ⇑ t ∧ p2 ⇑ f iff
ρMr |= p1⇑t and ρMr |= p2⇑ f iff (by induction) t ≤k [[p1]](r) and f ≤k [[p2]](r) iff (valid in
4) f ≤k ([[p1]](r) ⊃ [[p2]](r)) iff (definition of [[·]]) f ≤k [[p1 ⊃ p2]](r).

• Let p be p1 ⊃ p2 and b = t. Then ρMr |= (p1 ⊃ p2) ⇑ t iff ρMr |= ¬(p1 ⇑ t) ∨ p2 ⇑ t iff
ρMr 6|= p1⇑t or ρMr |= p2⇑t iff (by induction) t 6≤k [[p1]](r) or t ≤k [[p2]](r) iff (valid in 4)
t ≤k ([[p1]](r) ⊃ [[p2]](r)) iff (definition of [[·]]) t ≤k [[p1 ⊃ p2]](r).

2. We have two cases, one for each ∗ in {k, t}.

• Firstly, let ∗ be t. Let r ∈ RM. By Lemma 1(1), [[p]]M(r) ≤t [[q]]M(r) is equivalent to
“(f 6≤k [[q]]M(r) or f ≤k [[p]]M(r)) and (t 6≤k [[p]]M(r) or t ≤k [[q]]M(r))”. By the first
item, this in turn is equivalent to ρMr |= (q ⇑ f → p ⇑ f) ∧ (p ⇑ t → q ⇑ t) but p ≤t q is
defined to be said (q⇑ f → p⇑ f) ∧ (p⇑t→ q⇑t).

• Secondly, let ∗ be k. Let r ∈ RM. By Lemma 1(2), [[p]]M(r) ≤k [[q]]M(r) is equivalent
to “(f 6≤k [[p]]M(r) or f ≤k [[q]]M(r)) and (t 6≤k [[p]]M(r) or t ≤k [[q]]M(r))”. By the first
item, this in turn is equivalent to ρMr |= (p ⇑ f → q ⇑ f) ∧ (p ⇑ t → q ⇑ t) but p ≤t q is
defined to be (p⇑ f → q⇑ f) ∧ (p⇑t→ q⇑t).

�

Proof of Theorem 6. We proceed by structural induction on φ.

• Let φ be p ≤∗ q for any ∗ ∈ {k, t}.

– Firstly, assume that φ is valid. Let ρ be some model of PLr. We have to show that
ρ |= C(p ≤∗ q). If ρ equals ρMr for some model M and r ∈ RM, Proposition 1(2) gives
us ρMr |= C(p ≤∗ q) since φ holds in all models by assumption. Thus it suffices to show
that ρ equals ρMr for some model M and some r ∈ RM. We define such an M and r
as follows: Set RM to be {0, 1} and r to be 1. For each a ∈ AP, define aM to be {1} if
ρ(a) = t, and let aM be {0} if ρ(a) = f . By construction, ρ equals ρMr and we are done.

– Secondly, assume that C(p ≤∗ q) is valid as formula of propositional logic PLr. Let M
be any model. We need to show M |= (p ≤∗ q). By Proposition 1(2), it suffices to show
that ρMr |= C(p ≤∗ q) for all r ∈ RM. But this is the case since C(p ≤∗ q) is valid, and
so holds in all models ρ of propositional logic PLr.
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nf(α, p ≤∗ q) = α⇒ (p ≤∗ q)
nf(α, φ1 ∧ φ2) = nf(α, φ1) ∧ nf(α, φ2)
nf(α, β ⇒ φ) = nf(α ∧ β, φ)

Figure 24: For each φ ∈ R⇒, recursive function nf(true, φ) computes a normal form in R⇒ of φ.
Expressions φ, φ1, and φ2 range over R⇒; p and q over PBel; and α and β over PLr.

• Let φ be φ1∧φ2. Now, φ is valid over all modelsM iff both φ1 and φ2 are valid over all models
M. By induction, each φi is valid over all modelsM iff C(φi) is valid as formula of PLr. Thus
φ is valid over all models M iff C(φ1) ∧ C(φ2) is valid as formula of PLr. But C(φ1) ∧ C(φ2)
is the definition of C(φ).

�

Proof of Theorem 7. Firstly, note that Proposition 1 is still valid and applicable in this setting,
since R⇒ contains the same atomic queries for policy refinement as R.

Next, we argue that we may assume without loss of generality that queries are of a certain normal
form. Such queries can be represented in a normal form∧

i

αi ⇒ (pi ≤∗i qi).

For example, the query α1 ⇒ ((p1 ≤∗1 q1) ∧ (α2 ⇒ (p2 ≤∗2 q2))) has normal form (α1 ⇒ (p1 ≤∗1
q1))∧ ((α1∧α2)⇒ (p2 ≤∗2 q2)). Fig. 24 shows how normal forms can be computed for all queries in
R⇒, where we identify true⇒ φ with φ. An easy structural induction shows that φ and nf(true, φ)
have the same meaning in all models.

Since φ and nf(true, φ) have the same meanings in all models, we may assume that φ is in normal
form, and prove that C(φ) is valid iff φ is. We proceed by structural induction on φ.

• The cases when φ equals p ≤∗ q for some ∗ ∈ {k, t} or equals φ1 ∧ φ2 are proved in the same
way as those cases for the proof of Theorem 6.

• Let φ be α ⇒ ψ. Since φ is in normal form, we have that ψ is of form p ≤∗ q. We have to
show that α⇒ (p ≤∗ q) is valid iff α→ C(p ≤∗ q) is valid.

– Let α → C(p ≤∗ q) be valid. Let M be a model. We do a case analysis on whether
[| α |]M = RM.

∗ Suppose [| α |]M 6= RM. Then we get M |= α⇒ (p ≤∗ q) as desired.
∗ Suppose [| α |]M = RM. Let r be any element of RM. By Lemma 2, we then have
ρMr |= α. Thus ρMr |= α ∧ (α → C(p ≤∗ q)) since α → C(p ≤∗ q) is valid. So
ρMr |= C(p ≤∗ q) follows. By Proposition 1(2), we obtain [[p]]M(r) ≤∗ [[q]]M(r). Since
r ∈ RM was arbitrary, we get M |= (p ≤∗ q) and so M |= α⇒ (p ≤∗ q) as desired.

– Let α⇒ (p ≤∗ q) be valid. Let ρ be any model of propositional logic for α→ C(p ≤∗ q).
Let Mρ be the model defined by RMρ

= {?} and aMρ = {?} iff ρ(a) = t. We then have
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ρ
Mρ
? (a) = t iff ? ∈ aMρ iff aMρ

= {?} iff ρ(a) = t. Therefore, ρMρ
? equals ρ and it suffices

to prove that ρMρ
? |= α→ C(p ≤∗ q). Since α⇒ (p ≤∗ q) is valid by assumption, we have

Mρ |= α⇒ (p ≤∗ q). By Lemma 2, we have ρMρ
? |= α iff ? ∈ [| α |]Mρ

iff (as RMρ
= {?})

[| α |]Mρ
= RMρ . We do a case analysis on whether ρMρ

? |= α:

∗ Let ρMρ
? 6|= α. Then ρ

Mρ
? |= α→ C(p ≤∗ q) as desired.

∗ Let ρMρ
? |= α. Then [| α |]Mρ

= RMρ
and so M |= (p ≤∗ q) follows from M |=

α ⇒ (p ≤∗ q). In particular, we get [[p]]M(?) ≤∗ [[q]]M(?). By Proposition 1(2), this
implies ρMρ

? |= C(p ≤∗ q) and so ρMρ
? |= α→ C(p ≤∗ q) follows as desired.

�

Given an attribute model M over Attr and an attribute a in Attr, we write M[(r, a) := x] for
the model that is like M except that M(r)(a) = x.

Proof of Lemma 3.

1. By case analysis on the structure of t.

Case k: We have [| wp(k, a := t) |]M = [| k |]M by def. of wp, and then [| k |]M = k = [| k |]M〈a:=t〉
by the semantics of terms.

Case a: The proof will use two simple facts about update operations on models: for every
term t, attribute a, and value x,

(a) x = [| a |]M[(r,a):=x](r), and

(b) [| a |]M(r) = [| a |]M[(r,a′):=x], if a′ 6= a.

We perform case analysis on the truth of a = a′. For the first case suppose a = a′. Then

[| wp(a, a′ := t) |]M(r)
= [| t |]M(r) (def. of wp)
= [| a |]M[(r,a):=[|t|]M(r)](r) (model update fact (a))
= [| a |]M〈a:=t〉(r) (def. of 〈a := t〉)
= [| a |]M〈a′:=t〉(r) (since a = a′)

For the second case suppose a 6= a′. Then

[| wp(a, a′ := t) |]M(r)
= [| a |]M(r) (def. of wp)
= [| a |]M[(r,a′):=[|t|]M](r) (model update fact (b))
= [| a |]M〈a′:=t〉(r) (def. of 〈a := t〉)

2. By induction on the structure of f and r, ordered lexicographically so that (f, r) is less than
(f ′, r′) if the f is smaller than f ′ or, f and f ′ have the same size and r is smaller than r′.

We consider the cases of function f .
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Case α→ f . We have

r |=M wp(α, β → f)
⇔ r |=M (β → wp(α, f)) ∧ (¬β → α) (def. of wp)

⇔
{
r |=M wp(α, f) if r |=β M
r |=M α otherwise (case analysis)

⇔
{
r |=M〈f〉 α if r |=β M
r |=M α otherwise (induction)

⇔ r |=M〈β→f〉 α (def. of M〈β → f〉)

Case f1; f2. We have

r |=M wp(α, f1; f2)
⇔ r |=M wp(wp(α, f2), f1) (def. of wp)
⇔ r |=M〈f1〉 wp(α, f2) (induction)
⇔ r |=M〈f1〉〈f2〉 α (induction)
⇔ r |=M〈f1;f2〉 α (def. of 〈f1; f2〉)

Case a := t. We consider subcases based on the structure of the request predicate.
Subcase t1 = t2. We have

r |=M wp(t1 = t2, a := t)
⇔ r |=M wp(t1, a := t) = wp(t2, a := t) (def. of wp)
⇔ [| wp(t1, a := t) |]M(r) = [| wp(t2, a := t) |]M(r) (def. of =)
⇔ [| t1 |]M〈a:=t〉(r) = [| t2 |]M〈a:=t〉(r) (Lemma 3)
⇔ r |=M〈a:=t〉 t1 = t2 (def. of t1 = t2)

Subcase α1 ∧ α2. A straightforward induction that does not use that the request mapping is
a := t.

r |=M wp(α1 ∧ α2, f)
⇔ r |=M wp(α1, f) ∧ wp(α2, f) (def. of wp)
⇔ r |=M wp(α1, f) and r |=M wp(α2, f) (def. of ∧)
⇔ r |=M〈f〉 α1 and r |=M〈f〉 α2 (induction)
⇔ r |=M〈f〉 α1 ∧ α2 (def. of ∧)

Subcase ¬α. Similar to previous case.
Subcases true. Trivial.

�

Proof of Theorem 8. By induction on the structure of policy p. The interesting case is the
one for basic policies.

Case b if α. We have
[[wp(b if α, f)]]M(r)

= [[b if wp(α, f)]]M(r) (def. of wp)

=
{
b if r |=M wp(α, f)
⊥ otherwise (def. of if )

=
{
b if r |=M〈f〉 α
⊥ otherwise (Lemma 3)

= [[b if α]]M〈f〉(r)
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Case >. Trivial
Case p1 ∧ p2. A straightforward induction. [[wp(p1 ∧ p2, f)]]M = [[wp(p1, f)]]M ∧ [[wp(p2, f)]]M =

[[p1]]M〈f〉 ∧ [[p2]]M〈f〉 = [[p1 ∧ p2]]M〈f〉.
Cases ¬p and p1 ⊃ p2. Similar to the previous case.

�

39


