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Abstract. Graphical choreographies, or global graphs, are general multiparty ses-
sion specifications featuring expressive constructs such as forking, merging, and
joining for representing application-level protocols. Global graphs can be directly
translated into modelling notations such as BPMN and UML. This paper presents an
algorithm whereby a global graph can be synthesised from asynchronous buffered
behaviours represented by communicating finite state machines (CFSMs). Our re-
sults include: a sound and complete characterisation of a subset of safe CFSMs from
which global graphs can be synthesised; a synthesis algorithm to translate CFSMs
to global graphs; a time complexity analysis; and an implementation of our theory,
as well as an experimental evaluation.

1 Introduction
Context Choreographies, models of interactions among software components from a
global point of view, are becoming a paramount conceptual and practical tool to tackle
the complexity of designing, analysing, and implementing modern applications (see
e.g., [4, 8, 12, 22, 28]). As described in [12], not only a global perspective of the coor-
dination of applications is useful to develop and test single components that conform
to it, but also a global specification can be projected so to obtain the local behaviour
of components. This is a distinctive element of choreographies and it appeals to in-
dustry [12, 28] since it enables the developers of a component to check it against the
corresponding projection of the choreography.

One limitation of choreography-based development is its inherently uni-directional
approach to software development life cycle (SDLC). Distributed service architectures
envisage software as a provision made available, through a public interface that hides
implementation details, to be searched by and composed with other similar software.
Hence having a fixed set of choreographies for the whole life cycle of an applica-
tion is not adequate. A challenge is to provide an automatic composition of interfaces
(specifications) of such distributed pieces of software, which can then be compared to
the original specification (if any) and be used to enforce desired safety properties. To
tackle this problem, we develop an algorithm to synthesise choreographies from a set of
behavioural specifications of components that interact by exchanging messages asyn-
chronously. Our synthesis algorithm can generate expressive choreographies which re-
semble modelling notations used in industry, equipped with forking, merging, and join-
ing constructs for controlling general flows of interactions. The synthesis now enables a
bi-directional SDLC based on choreographies: a developer can visualise a global view-
point of the interactions within a distributed applications via our synthesis algorithm;
thus, when the synthesised choreography is not the expected one, either existing com-
ponents or the global specification may be refined. If the synthesised choreography is
modified, it can be projected again so to be compared with the original projections.
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Fig. 1. Communicating System Sre (left) and its Global Graph Gre (right)

Our approach We adopt communicating finite state machines (CFSMs) as suitable
behavioural specifications of distributed components for the synthesis. CFSMs are a
conceptually simple model, based on asynchronous FIFO message-passing communi-
cation, and are well-established for analysing properties of distributed systems. They
are also widely used in industry tools and can be seen as end-point specifications.

We define an algorithm that, given a set of CFSMs, yields a choreography expressed
as a global graph [14], which are closely related to BPMN 2.0 Choreography, advocated
as a suitable notation for services [7]. The system Sre on the left of Fig. 1 will be our
running example to illustrate our approach; Sre consists of four CFSMs that realise a
protocol of a fictive game where:

1. Alice (A) sends either bwin to Bob (B) or cwin to Carol (C) to decide who wins
the game. In the former case, A fires the transition AB!bwin whereby the message
bwin is put in the FIFO buffer AB from A to B, and likewise in the latter case.

2. If B wins (that is the message bwin is on top of the queue AB and B consumes it by
taking the transition AB?bwin), then he sends a notification (close) to C to notify her
that she has lost. Symmetrically, C notifies B of her victory (blose).

3. During the game, C notifies Dave (D) that she is busy.
4. After B and C have been notified of the outcome of the game, B sends a signal (sig)

to A, while C sends a message (msg) to A.
5. Once the result is sent, A notifies D that C is now free and a new round starts.

The protocol above shows that CFSMs capture many coordination constructs: (i) in
step 1 A (non-deterministically) chooses the winner; (ii) in step 2 B has a sequential
behaviour; (iii) in step 3 the parallel behaviour of C is rendered with the interleaving of
transition CD!busy; (iv) in step 4 and 5 threads join and finally the protocol loops.

Understanding the protocol of our running example from the CFSMs is not easy.
A much clearer specification is given by the global graph Gre (synthesised by our al-
gorithm) on the right of Fig. 1. There, the choreography of the four components is
much more evident: initially A and C send messages in parallel to B and D respectively,
A chooses the winner, etc. The global graph is synthesised through a transformation
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of the CFSMs into a safe Petri net. The transformation preserves the original CFSMs,
which can be recovered by projecting the global graph.

Analysing properties of CFSMs is computationally hard. Is Sre deadlock-free? Will
any sent message be eventually consumed? Will each participant eventually receive any
message s/he is waiting for? Answering such questions is generally undecidable and not
immediate even for the simple scenario in Fig. 1. We establish a decidable condition,
called generalised multiparty compatibility that characterises a set of systems for which
the three questions can be efficiently decided. Our synthesis algorithm can produce a
global graph from any set of generalised multiparty compatible CFSMs. We implement
a tool and evaluate it with protocols from the literature.
Synopsis § 2 reviews CFSMs. § 3 defines generalised multiparty compatibility (GMC),
analyses its complexity (Prop. 3.1 and Prop. 3.2), and its soundness (Th. 3.1). § 3.3 dis-
cusses how our condition can be used to suggest amendments to fix non-GMC systems.
The synthesis algorithm, its complexity (Prop. 4.1), and its completeness (Th. 4.1) are in
§ 4. Related work and conclusions are in § 5. The tool and experimental evaluation are
also in § 5 and available from [17]. Proofs and omitted definitions are in the appendix.

2 Communicating Finite State Machines
Fix a finite set P of participants (ranged over by p, q, r, s, etc.) and a finite alphabet A.
The set of channels is C def

“ tpq
ˇ

ˇ p,q PP and p‰ qu while Act def
“ Cˆt!,?uˆA is the

set of actions (ranged over by `), A˚ (resp. Act˚, ranged over by ϕ) is the set of finite
words on A (resp. Act). Also, ε is the empty word, |ϕ| denotes the length of ϕ, and ϕϕ1

is the concatenation of ϕ and ϕ1 (we overload these notations for words over A˚).

Definition 2.1 (CFSM). A communicating finite state machine is a finite transition sys-
tem given by a 4-tuple M “ pQ,q0,A,δq where Q is a finite set of states, q0 P Q is the
initial state, and δ Ď QˆActˆQ is a set of transitions. ˛

The transitions of a CFSM are labelled by actions; label sr!a represents the sending of
message a from machine s to r and, dually, sr?a represents the reception of a by r. We
write LpMq Ď Act˚ for the language on Act accepted by the automaton corresponding
to machine M where each state of M is an accepting state. A state q P Q with no outgo-
ing transition is final; q is a sending (resp. receiving) if all its outgoing transitions are
labelled with sending (resp. receiving) actions, and q is a mixed state otherwise.

A CFSM M “ pQ,q0,A,δq is deterministic if for all states q P Q and all actions
` P Act, if pq, `,q1q,pq, `,q2q P δ then q1 “ q2.1 A CFSM M is minimal if there is no
machine M1 with fewer states than M such that LpMq “ LpM1q. Hereafter, we only
consider deterministic and minimal CFSMs.

Definition 2.2 (Communicating system). Given a CFSM Mp “ pQp,q0p,A,δpq for
each p PP, the tuple S “ pMpqpPP is a communicating system (CS). A configuration
of S is a pair s“ p~q;~wq where ~q“ pqpqpPP with qp P Qp and where ~w“ pwpqqpqPC with
wpq PA˚; component~q is the control state and qp PQp is the local state of machine Mp.
The initial configuration of S is s0 “ p~q0;~εq with ~q0 “ pq0pqpPP. ˛

1 Sometimes, a CFSM is considered deterministic when pq,sr!a,q1q P δ and pq,sr!a1,q2q P δ then a“ a1

and q1 “ q2. Here, we follow a different definition [11] in order to represent branching type constructs.
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Hereafter, we fix a machine Mp “ pQp,q0p,A,δpq for each participant p P P and let
S“ pMpqpPP be the corresponding system.

Definition 2.3 (Reachable states and configurations). A configuration s1 “ p~q1;~w1q is
reachable from another configuration s“ p~q;~wq by firing the transition `, written s `ÝÑs1

(or s ÝÑ s1), if there is a P A such that either: (1) ` “ sr!a and pqs, `,q1sq P δs and (a)
q1p“ qp for all p‰ s; and (b) w1sr“wsr.a and w1pq“wpq for all pq‰ sr; or (2) `“ sr?a
and pqr, `,q1rq P δr and (a) q1p “ qp for all p‰ r; and (b) wsr “ a.w1sr and w1pq “ wpq for
all pq‰ sr.

The reflexive and transitive closure of Ñ is Ñ˚. We write s1
`1 ¨ ¨ ¨`mÝÝÝÝÑsm`1 when,

for some s2, . . . ,sm, s1
`1ÝÑs2 ¨ ¨ ¨sm

`mÝÑsm`1. A sequence of transitions is k-bounded if no
channel of any intermediate configuration on the sequence contains more than k mes-
sages. The k-reachability set of S is the largest subset RSkpSq of RSpSqwithin which each
configuration s can be reached by a k-bounded execution from s0. The set of reachable
configurations of S is RSpSq “ ts

ˇ

ˇ s0 Ñ
˚ su. ˛

Condition (1-b) in Def. 2.3 puts a on channel sr, while (2-b) gets a from channel sr.
Note that, for every integer k, the set RSkpSq is finite and computable.

We now give several definitions about communicating systems S and their config-
urations s “ p~q;~wq. We say that s is a deadlock configuration [11, Def. 12] if ~w “~ε,
there is r PP such that pqr,sr?a,q1rq P δr, and for every p PP, qp is a receiving or
final state, i.e., all machines are blocked waiting for messages. Also, s is an orphan
message configuration if all qp P ~q are final but ~w ‰~ε, i.e., there is at least a non-
empty buffer and no machine is in a sending state. Finally, s is an unspecified reception
configuration [11, Def. 12] if there exists r PP such that qr is a receiving state, and
pqr,sr?a,q1rq P δr implies that |wsr| ą 0 and wsr R aA˚, i.e., qr is prevented from re-
ceiving any message from buffer sr. We say that S is safe if for each s P RSpSq, s is not
a deadlock, an orphan message, nor an unspecified reception configuration.

The following definitions are new and instrumental for § 3 where we characterise
a subset of safe CS from which a global graph can be synthesised. Given q,q1 P Q,
write actpq,q1q def

“ t`
ˇ

ˇ pq, `,q1q P δu and define ˛ Ď δˆ δ and ˛ Ď δˆ δ as the smallest
equivalence relations that respectively contain the relations ˛ and ˛ where

pq1, `,q2q˛pq11, `,q
1
2q ðñ ` R actpq1,q11q “ actpq2,q12q ‰H

and pq1, `,q2q˛pq11, `,q
1
2q when pq1, `,q2q˛pq11, `,q

1
2q and for all pq, `,q1q P rpq1, `,q2qs

˛,
actpq1,qq “ actpq2,q1q ^ actpq11,qq “ actpq12,q

1q. We let rpq, `,q1qs˛ denote the equiv-
alence class of pq, `,q1qwrt ˛. Intuitively, two transitions are ˛-related if they refer to the
same action up-to interleaving. For example, in Fig. 1, pC0,AC?cwin,C1q˛pC2,AC?cwin,C4q

since both transitions represent the same action interleaved with CD!busy. In each ma-
chine in Fig. 1, a set of transitions pq, `,q1q with the same label ` forms a ˛-equivalence
class, e.g., in Alice, tpA1,CA?msg,A3q,pA2,CA?msg,A4qu is a ˛-equivalence class la-
belled by CA?msg.
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3 CFSMs Characterisation of Global Graphs
3.1 Synchronous transition system
Systems amenable to be synthesised into global graphs are identified through their syn-
chronous transition system (cf. Def. 3.2) where nodes consist of a vector of local states
and transitions are labelled by elements in the set of events E def

“
Ť

s,rPP Qs ˆQr ˆ

tps,rquˆAu. Intuitively, an event pqs,qr,s,r,aq P E (pqs,qr,sÑr :aq for short) indi-
cates that machines s and r can exchange message a when they are respectively in state
qs and qr. Indexing events with the local states of the machines permits to distinguish
two occurrences of the same communication at two different points in a global graph.
To single out parallelism at the machine level, we introduce an equivalence relation over
events that identifies events whose underlying local transitions are ˛-equivalent.

Definition 3.1 (E-equivalence). The event equivalence is the relation ’
def
“’s X’rĎ

EˆE where, for pq1,sr!a,q3q,pq11,sr!a,q4q P δs and pq2,sr?a,q5q,pq12,sr?a,q6q P δr,

pq1,q2, sÑr :aq’s pq11,q
1
2, sÑr :aq ðñ pq1,sr!a,q3q˛pq11,sr!a,q4q

pq1,q2, sÑr :aq’r pq11,q
1
2, sÑr :aq ðñ pq2,sr?a,q5q˛pq12,sr?a,q6q

We let res denote the ’-equivalence class of event e. ˛

For example (cf. Fig. 1), we have pC5,A2,CÑA : msgq ’ pC5,A1,CÑA : msgq since
the underlying transitions of A are ˛-equivalent, i.e., pA1,CA?msg,A3q˛pA2,CA?msg,A4q,
and the underlying transition of C is the same for both events, i.e., pC5,CA!msg,C0).

We let n,n1, . . . denote vectors of local states and nrps denote the state of p PP in n.

Definition 3.2 (Synchronous transition system). Given a system S “ pMpqpPP, let

N def
“ t~q

ˇ

ˇ p~q;~εq PRS1pSqu (ranged over by n), δ̂
def
“ tpn,e,n1q

ˇ

ˇ pn;~εq sr!a
ÝÝÑ

sr?a
ÝÝÑpn1;~εq and e“

pnrss,nrrs, sÑr : aqu, and E def
“ te

ˇ

ˇ Dn,n1 P N : pn,e,n1q P δ̂u Ď E . The synchronous
transition system of S is TSpSq “ pN, n0, E{ ’,Ùq where n0 “ ~q0 is the initial state,

and n
res
Ù n1 ðñ pn,e,n1q P δ̂. We fix a set Ê of representative elements of each ’-

equivalence class (i.e., Ê Ď E and @e P E D!e1 P Ê : e1 P res) and write n
e1
Ù n1 for n

res
Ù n1
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when e1 P resX Ê. Sequences of events are ranged over by π and we extend the notation
on ÝÑ in Def. 2.3 to Ù (e.g., if π“ e1 ¨ ¨ ¨ek, n1

π
Ù nk`1 iff n1

e1
Ù n2

e2
Ù ¨ ¨ ¨

ek
Ù nk`1). ˛

Definition 3.3 (Projections). The projection of an event pqs,qr,sÑr :aq onto partici-
pant p, denoted by pqs,qr,sÑr:aqçp, is defined as: (1) pr!a if p“ s; (2) sp?a if p“ r;
and (3) ε otherwise (this definition is extended to sequence of events π in the obvious
way). The projection of TSpSq “ pN,n0, Ê,Ùq onto participant p, written TSpSqçp, is
the automaton pQ,q0,A,δqwhere (i) Q“N, (ii) q0 “ n0, and (iii) δĎQˆActYtεuˆQ
is defined as pn1,eçp,n2q P δ ðñ n1

e
Ù n2. ˛

For n P N, TSpSqxny is the transition system TSpSq where the initial state n0 is re-
placed by n. We write LTpS,n,pq for LpTSpSqxnyçpq.

3.2 Generalised multiparty compatibility

We introduce generalised multiparty compatibility (GMC) as a sound and complete
condition for synthesising global graphs. Hereafter, we fix a system S “ pMpqpPP with
TSpSq “ pN,n0, Ê,Ùq. Basically, GMC relies on two conditions, (1) representability
(cf. Def. 3.4): for each machine, each trace and each choice are represented in TSpSq
and (2) branching property (Def. 3.5): whenever there is a choice in TSpSq, a unique
machine takes the decision and each of the other participants is either made aware of
which branch was chosen or not involved in the choice. For a language L , hd pLq returns
the first actions of L (if any).

hd pLq def
“ t`

ˇ

ˇ Dϕ P Act˚ : ` ¨ϕ P Lu hd ptεuq def
“ tεu

Definition 3.4 (Representability). System S is representable if for all p PP, (i) LpMpq“

LTpS,n0,pq and (ii) @q P Qp Dn P N : nrps “ q ^
Ť

pq,`,q1qPδp
t`u Ď hd pLTpS,n,pqq. ˛

Condition (i) in Def. 3.4 is needed to ensure that each trace of each machine is
represented in TSpSq; while condition (ii) is necessary to ensure that every choice in
each machine is represented in TSpSq.

Proposition 3.1. Given a system S “ pMpqpPP, checking whether S satisfies the repre-

sentability condition is computable in Op
ř

pPP 2|N|`|Qp|q time, with |N|“
ś

pPP
∣∣Qp

∣∣.
In the worst case, the time complexity of checking the representability of S is expo-

nential. This is solely due to the language equivalence check (condition (1) in Def. 3.4)
between each machine and its projection from TSpSq. However, as observed in [6], in
practice algorithms for language equivalence behave very efficiently. In addition, we
can remove some states from the projection of TSpSq, e.g., those that are on chains of
ε-transitions only, while preserving its language, thus reducing the exponent |N|.

We give a few auxiliary definitions before formalising the branching property. For
n‰ n1 PN, we define nă n1 iff nÙ˚ n1 and for all paths n0 Ù n1 Ù . . .Ù nk´1 Ù nk “ n
in TSpSq, if 0ď i {“ j ď k^ni {“n j then @0ď hď k : n1 ‰ nh. Intuitively, n ă n1 holds if
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n1 is reachable from n and no simple path from n0 to n goes through n1; note that ă is
not a preorder in general. The last nodes reachable from n P N with e1 ‰ e2 P Ê are

lnpn,e1,e2q
def
“ tpn1,n2q

ˇ

ˇ Dn1 PN : @i P t1,2u : nÙ˚ n1
ei
Ù ni^@n1Ù n2 :  pn1ă n2

ei
Ùqu

If pn1,n2q P lnpn,e1,e2q, then ni is a
ei
Ù-successor (i “ 1,2) of a node n1 on a path

from n whose successors are either not able to fire both e1 and e2 or not ă-related to
n1. In Fig. 2, we have lnppA0,B0,C0,D0q,pA0,B0,AÑB : bwinq,pA0,C0,AÑC : cwinqq “
tppA1,B1,C2,D1q,pA1,B0,C4,D1qqu, note that pA0,C2,AÑC:cwinq’ pA0,C0,AÑC:cwinq.

For an event e“ pqs,qr,sÑr :aq P E , let ιpeq “ sÑr :a and define a dependency
relation CĎ E ˆE on events:

eC e1 ðñ ιpeq “ sÑr :a ^ pιpe1q “ sÑr :a1 _ ιpe1q “ rÑr1 :a1q

Intuitively, e and e1 are C-related if there exists a dependency relation between the two
interactions, from the point of view of the receiver. We define a relation eđe1 in π if
there is a C-relation between e and e1 in π, i.e.,

eđe1 in π ðñ

#

peC e2^ e2đe1 in π1q_ eđe1 in π1 if π“ e2 ¨π1

eC e1 otherwise

also, deppιpeq,π, ιpe1qq iff π has the form π1 ¨ e ¨π2 ¨ e1 ¨π1 and

p , , ιpeqq R π1 ^ p , , ιpe1qq R π2 ùñ eđe1 in π2

which checks whether there is a dependency between two interactions on a path π (if
these interactions do appear in π). Below we give the second condition for GMC.

Definition 3.5 (Branching property). System S has the branching property if for all
n P N and for all e1 ‰ e2 P Ê such that n

e1
Ù n1 and n

e2
Ù n2, then we have that

1. either there is n1 P N such that n1
e2
Ù n1 and n2

e1
Ù n1, or

2. for each pn11,n
1
2q P lnpn,e1,e2q, let Li

p
def
“ hd

` 

eiçp ¨ϕ
ˇ

ˇ ϕ P LTpS,n1i,pq
(˘

with i P
t1,2u and p PP, conditions (2a), (2b), and (2c) below hold.
(a) @p PP : either (i) L1

pXL2
p Ď tεu and ε P L1

p ðñ ε P L2
p, or

(ii) Dn1 P N : n11
π1
Ù n1^n12

π2
Ù n1^pe1 ¨π1qçp“ pe2 ¨π2qçp

(b) D!s PP : L1
sXL2

s “H^Dsr!a P L1
sYL2

s

(c) @r PP : L1
rXL2

r “H ùñ @s1r?a1 P L1
r,@s2r?a2 P L2

r :
@i‰ j P t1,2u : n1i

πi
Ùùñ deppsiÑr :ai, ei ¨πi, s jÑr :a jq ˛

Def. 3.5 ensures that every branching either is (1) the concurrent execution of two
events; or, for each participant p, (2a-i) the first actions of p in two different branches
are disjoint or p terminates before n; or (2a-ii) p is not involved in the choice, i.e., the
branches merge and p can exhibit the same behaviour in both branches; (2b) there is
a unique participant s making the decision; and (2c) for each participant r involved in
the choice, there cannot be a race condition between the messages that r can receive.
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Note that if a machine r receives all its messages from a same sender, then there is a
C-relation between all its actions.

In system Sre, case (1) of Def. 3.5 applies to all branching nodes except n0 “

pA0,B0,C0,D0q and n “ pA0,B0,C2,D1q, highlighted in Fig. 2, for which case (2) ap-
plies since, for e1 “ pA0,B0,AÑ B : bwinq and e2 “ pA0,C0,AÑ C : cwinq, we have
lnpn0,e1,e2q “ lnpn,e1,e2q “ tppA1,B1,C2,D1q,pA1,B0,C4,D1qqu. Hence, case (2a) holds
for n0 iff it holds for n. Following (2a), we check that every participant satisfies ei-
ther (i) or (ii): A executes different (sending) actions in both branches (AB!bwin and
AC!cwin), B executes different (receiving) actions (AB?bwin and CB?blose), C executes
different (receiving) actions (AC?cwin and BC?close), hence case (i) applies to A, B, and
C. While case (ii) applies to D since there is a node n1 “ pA1,B2,C5,D1q such that D
does not execute any action on either path from n to n1 (through nodes pA1,B1,C2,D1q

and pA1,B0,C4,D1q, respectively). Also, condition (2b) is satisfied since A is the unique
sender that executes different actions in both branches e1 and e2. Condition (2c) is sat-
isfied for B and C due to the existence of dependency chains from AB?bwin to CB?blose
(and vice-versa) and from AC?cwin to BC?close (and vice-versa). For instance, the de-
pendency chain BÑC:closeCCÑA:msgCAÑC:cwin prevents C to delay the reception
of close (sent by B) until she can receive message cwin (sent by A); C must send a mes-
sage msg (to A) before she can receive the outcome of a new round of the game. Finally,
lnpn0,e1,e2q ensures that checking the branching between e1 and e2 at node n0 is de-
layed until the interaction CÑ D : busy does not interfere with the choice. Hence, the
behaviours of C and D are checked only once they have exchanged the busy message.

Proposition 3.2. Given a system S“ pMpqpPP, checking whether S satisfies the branch-

ing property is computable in time O
´

|Ù|2ˆ |Ù|!ˆ
ř

rPP

´

|δr|2
¯¯

.

Checking the branching property is factorial in the size of TSpSq because it requires
the enumeration of paths of TSpSq (cf. (2a)(ii) and (2c) of Def. 3.5). We remark that the
above is a rather coarse approximation obtained under worst case assumptions oblivious
of the typical structure of TSpSq; our experiments show good performances (cf. § 5).

Definition 3.6 (Generalised multiparty compatibility). A system S is generalised
multiparty compatible (GMC) if it is representable and has the branching property. ˛

Example 3.1. We show the interplay between the representability and branching prop-
erties by giving examples of unsafe systems violating one property but not the other.
Consider the following machines:

AB!a

AC!c1

BA?b

AB!y

AC!c

BA?b

AB!a

BA?x

AB?a

CB?d1

BA!b

AB?y

CB?d

BA!b

AB?a

AB!x

AC?c AC?c1

CB!d

AC?c AC?c1

CB!d CB!d1

AC?c1AC?c

CB!d CB!d1

A B C1 C2 C3

(1) System S1 “ pA,B,C1q with d “ d1 is not safe: whenever the left-hand side branch
of A and the right-hand side branch of B are taken in a same execution, S1 will reach
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an orphan message configuration where messages x and y are never consumed. In fact,
S1 is not GMC because there is a branching node from which B can execute, as first
actions, either AB?a or CB?d, and there is no dependency between the reception of a and
that of d1 in the left-hand side branch, i.e.,  pAÑB :aCAÑC :c1CCÑB :d1q. Thus the
branching property does not hold.
(2) System S2 “ pA,B,C2q is not safe: as before, whenever the left-hand side branch of A
and the right-hand side branch of B are taken in a same execution this system reaches an
orphan message configuration. These two branches are not mutually exclusive since C2
can receive c1 then send d. This system is not GMC since there is no node in TSpS2q such
that actions CB!d and CB!d1 are the first actions executed by C. Hence the representability
condition does not hold.
(3) System S3 “ pA,B,C3q is safe and is GMC. In S3, the left-hand side branch of A and
the right-hand side branch of B are always mutually exclusive, while in S1 and S2 they
are only mutually exclusive in synchronous executions.

Theorem 3.1 (Soundness). If S is GMC, then it is safe, i.e., free from orphan message,
deadlock and unspecified reception configurations.

The proof (in appendix) requires to show that, for each branching node n, the func-
tion lnpn,e1,e2q allows enough branches to be verified against the branching property.

3.3 Amending communicating systems

When a system is not GMC, our approach naturally suggests different ways of trans-
forming it, so to validate the condition. By Def. 3.6, we first note:

Proposition 3.3. If a system S satisfies all but condition (i) in Def. 3.4, then the system
consisting of the projections of TSpSq is GMC.

This means that, in such a case, a new safe system may be automatically obtained
from the projections of TS. For instance, the system S2 in Ex. 3.1 is not GMC because
(i) in Def. 3.4 does not hold. However, the system corresponding to the projections of
TSpS2q is exactly the system S3, which is GMC. In case the projections of TS does not
provide a viable alternative, then the language equivalence check allows to highlight
which transitions (or paths) of each machine are not represented in TSpSq. Similarly, for
condition (ii) in Def. 3.4, local states and transitions violating it can be highlighted.

When the branching property (Def. 3.5) is violated, then our analysis permits to
give precise information on where the problem occurs. If condition (2a) is violated,
then a safe system may be obtained simply by renaming some messages in the origi-
nal machines. These renamings can be automatically suggested while checking for the
branching property. If condition (2b) is violated, we can highlight the node in which the
problem occurs and the offending machines (i.e., the set of machine sending messages
at this branching node) and a synchronous execution that leads to it. Finally, if condition
(2c) is violated, then we can highlight on which messages a race condition may occur
(for specific machines); and suggest to add an acknowledgement message between the
two corresponding actions.
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CFSMs

Def. 2.2

Build
TSpSq

Def. 3.2

GMC
Check

Def. 3.6

Petri Net

step (1)

One-
Source Net

step (2)

Joined Net

step (3)

Pre-Global
Graph
step (4)

Global
Graph
Def. 4.1

Fig. 3. Work-flow of the synthesis

4 Synthesising Global Graphs

In § 3, we construct the synchronous transition system TSpSq of a communicating sys-
tem S, and check whether it is GMC. We now describe the synthesis algorithm and its
properties; Fig. 3 summarises the work-flow of the transformations.

The algorithm to synthesise a global graph G from a synchronous transition sys-
tem TSpSq consists of the following steps: (1) we apply the algorithm of Cortadella et
al. [13] to synthesise a Petri net N from TSpSq; (2) we transform N so that its initial
marking consists of exactly one place; (3) we join transitions whenever possible, so to
make joins and forks explicit; (4) we transform the net of (3) into a pre-global graph;
finally, we “clean-up” the pre-global graph of any unnecessary vertexes so to obtain a
global graph. For the sake of space and because the transformations are rather mechan-
ical, we only explain them through our running example. The formal definitions of the
transformations and additional results are given in appendix.

For (1), it is enough for the reader to know that the algorithm in Cortadella et al. [13]
is based on the theory of regions [2] and transforms a transition system into a safe and
extended free-choice labelled Petri net; basically, this algorithm transforms events of
TSpSq into transitions of N while the places are built out of regions, i.e., sets of states
having a uniform behaviour wrt events. We assume in this section that each TSpSq is
self-loop free, i.e., @n,n1 P N : n Ù n1 ùñ n‰ n1.2 The algorithm of [13] is applicable
on a self-loop free TSpSq, since every event e P Ê has an occurrence in TSpSq, by con-
struction, and every state n is reachable from n0, by GMC. The Petri net obtained from
TSpSreq in Fig. 1 is given in Fig. 4 (top left).

In step (2), we transform a Petri net obtained from Cortadella’s algorithm into a Petri
net whose initial marking consists of exactly one place. This allows us to construct a
global graph that has a unique starting point. In our running example, the Petri net at
the top left of Fig. 4 is transformed by adding a fresh place (p0), initially marked, and a
fresh (silent) transition (t0) connected to places p1 and p2.

In step (3), a transformation ensures that parallel gates are used “as much as pos-
sible” in the graph (instead of mixing choice and parallel gates). In fact, the transfor-
mation joins sets of places that have the same preset or postset to minimise the number
of choice gates. The Petri net at the bottom left of Fig. 4 is the net obtained from the
top left-hand side net after applying step (2) and (3). In the second transformation, we
add (i) t1 and p11 so to join p1 and p2 which have the same preset, i.e., t0 and the tran-
sition with label pA4,D1,AÑD : freeq; and (ii) we add t2 and p10 so to join p5 and p6
which have the same preset, i.e., the transitions with labels pC1,B0,CÑB : bloseq and
pB1,C0,BÑC :closeq. Both t1 and t2 are silent transitions.

2 In TSpSq, if an event e self-loops, then any transition labelled by e is a self-loop. Hence, we can easily lift
the self-loop free assumption by decomposing each self-loop into two (pointed) transitions in TSpSq and
recompose them once the global graph is synthesised.

10



p1

A0,B0,AÑB :bwin

p3

B1,C0,BÑC :close

p5

B2,A1,BÑA :sig

p7

A0,C0,AÑC :cwin

p4

C1,B0,CÑB :blose

p6

C5,A1,CÑA :msg

p8

A4,D1,AÑD : free

p2

C0,D0,CÑD :busy

p9

p1

A0,B0,AÑB :bwin

p3

B1,C0,BÑC :close
p10

t2p5

B2,A1,BÑA :sig

p7

A0,C0,AÑC :cwin

p4

C1,B0,CÑB :blose

p6

C5,A1,CÑA :msg

p8

A4,D1,AÑD : free

p2

C0,D0,CÑD :busy

p9

t1

p11

t0

p0

p1

A0,B0,AÑB :bwin

p3

B1,C0,BÑC :close

p10

t2

p5

B2,A1,BÑA :sig

p7

A0,C0,AÑC :cwin

p4

C1,B0,CÑB :blose

p6

C5,A1,CÑA :msg

p8

A4,D1,AÑD : free

p2

C0,D0,CÑD :busy

p9

t1

p11

t0

p0

Fig. 4. Synthesised net (top left), net after transformations (bottom left), and pre-global graph

Lemma 4.1. Given two Petri nets N and N1, and their respective reachability graphs T
and T 1, we write T « T 1 if they are weakly bisimilar, i.e., they are bisimilar up-to silent
transitions. If T (resp. T 1) is the reachability graph of the Petri net N obtained after step
(1) (resp. (3)), then T « T 1.

We now define global graphs (a superclass of the generalised global types of [14]
where each gate may be connected to more than two predecessors or successors).

Definition 4.1 (Global graph). A global graph (over P and A) is a labelled graph
xV,A,Λy with set of vertexes V , set of edges AĎV ˆV , and labelling function Λ from
V to t , , , uYtsÑr : a | s,r PP ^ a P Au such that, Λ´1p q is a singleton, and
for each v P V , if Λpvq is of the form sÑr : a then v has unique incoming and unique
outgoing edges, and if Λpvq P t , u, v has at least one incoming and one outgoing edge
while v has no outgoing edges if Λpvq “ . ˛

Label sÑ r : a represents an interaction where machine s sends a message a to
machine r. A vertex with label represents the source of the global graph, represents
the termination of a branch or thread, indicates forking or joining threads, and
marks vertexes corresponding to branch or merge points, or to entry points of loops.

In step (4), a pre-global graph is obtained from the Petri net obtained after step (3)
via a transformation which consists in creating a vertex in the global graph for each
place, transition, and element of the flow relation. These vertexes are then connected
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via gates: a source vertex is connected to a vertex without predecessor, a sink vertex
is connected to any vertex without successors, while transitions (resp. places) are con-
nected to -gate (resp. -gate) if they have more than one predecessors or successors.
Each component of the graph is then connected by merging “ports” corresponding to
element of the flow relation. The pre-global graph for Fig. 1 is given in Fig 4 (right).

A global graph is obtained from a pre-global graph by removing all unnecessary
nodes (i.e., former places and transitions) and relabelling events into interactions (e is
replaced by ιpeq); e.g., the pre-global graph in Fig. 4 becomes the global graph in Fig. 1

Proposition 4.1. Steps (2) to (4) are computable in polynomial time in the size of N.

‘0 ppsig,�2q, busyq

pp�3,�2q, busyq ppsig,�3q, freeq

free

AB!bwin

AC!cwin
BA?sig

CA?msg

CA?msg
BA?sigAD!free

Fig. 5. Projection of Gre onto A

We give the main result regarding the
synthesis of a global graph from CFSMs.
In Th. 4.1, we formalise the relation-
ship between the machines from which
a global graph is synthesised and its pro-
jections. Projecting a global graph G can
be done in two ways: (i) G can be trans-
formed into a Petri net whose reachabil-
ity graph may be projected, similarly to
the projection of TSpSq (cf. Def. 3.3); or

(ii) G can be transformed into an automaton whose states are the nodes of G and each
transition is labelled by psÑr :aqçp if the source state corresponds to a vertex with
label sÑr : a, and by ε otherwise. In order to recover local concurrency, we take the
parallel composition of the automata resulting of the projection of each successor of
a -gate. Finally, the resulting automaton is minimised wrt. language equivalence. We
write Gçp for the projection of G onto p, and give the formal definition in appendix. As
an example, Fig. 5 shows the minimised projection of Gre (cf. Fig. 1) onto A.

Theorem 4.1 (Completeness). Let S“ pMpqpPP be GMC and TSpSq “ pN, n0, Ê,Ùq.
If TSpSq is such that @n,n1 P N : n Ù n1 ùñ n‰ n1, then the projection of the global
graph G synthesised from S is such that S is isomorphic to pGçpqpPP.

The proof of Th. 4.1 is given in appendix. Essentially, it relies on the fact that each
machine is preserved during the synthesis, i.e., (1) the projection of TSpSq onto each
p is language equivalent with Mp, (2) the net obtained from TSpSq via the algorithm
in [13] is bisimilar to TSpSq, (3) each transformation preserves (weak) bisimilarity with
the synthesised net, cf. Lemma 4.1, and (4) the transformation to a global graph is sound
since the net is extended free choice.

5 Conclusions and Related Work
We have introduced a new class of communicating systems, called generalised multi-
party compatible (GMC). We have proved that any system in this class is safe and there
exist efficient algorithms to check GMC. We have given a complete algorithm whereby
one can build (synthesise) a global graph (choreography) from any GMC system. Our
work effectively uses the theory of regions [13], bridging a gap between a set of dis-
tributed uncontrolled behaviours (represented by CFSMs) and well-structured graphical
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session types, while offering a scalable implementation for the synthesis. We are cur-
rently collaborating with the Savara project [28] to apply our framework to support the
software development life cycle with tools based on BPMN 2.0 Choreography [7].

Experimental evaluation. In order to assess the applicability of our work to real-
world protocols, and to evaluate the cost of checking for the GMC condition as well as
synthesising a global graph, we have implemented a prototype tool [17] for our theory.
The tool (implemented in Haskell) takes as input a textual representation of a CS, then
builds a TS on which each part of the GMC condition is checked for, concurrently; then
a global graph is synthesised from the TS. The tool relies on HKC [6] (to check for
language equivalence), Petrify [26] (to synthesise a Petri net from TS), and Graphviz
(to render global graphs).

The benchmarks were executed on a 3.40GHz Intel i7 CPU computer, with 16GB of
RAM. The table below shows, for each protocol, the number of machines, the number
of nodes and transitions in its TS, whether it validates the GMC condition, and the time
it takes to check the condition and render its global graph.

S |P| |N| |Ù| GMC Time (s)
Running Ex. 4 12 19 X 0.169
Bargain 3 4 4 X 0.080
Alternating 2-bit [14] 2 8 12 X 0.134
Alternating 3-bit [14] 2 24 48 X 2.969
TPMContract v2 [19] 2 5 8 X 0.129

S |P| |N| |Ù| GMC Time (s)
Sanitary Agency [27] 4 17 21 X 0.284
Health System [9] 6 10 11 X 0.152
Filter Collaboration [30] 2 3 5 X 0.093
Logistic [7] 4 13 17 X 0.234
Cloud System v4 [18] 4 7 8 X 0.115

Most of the protocols are taken from the literature and all are checked within sec-
onds. Graphical representations of these protocols are given in appendix. We note that
it is slightly more expensive to check the Alternating 3-bit protocol due to larger ˛-
equivalence classes.

Related work. In the context of multiparty session types, [23] first gave a construction
of a global protocol from a set of local session types, up to asynchronous sub-typing.
A typing system which infers a global type [20] from a set of session types is given
in [21]. Recursive constructions are restricted in this work, due to an inherently syntax
driven typing system, and multi-threaded participants are not supported. [15] studies
the synthesis of global types from basic CFSMs, that is deterministic, non-mixed (each
state is either sending or receiving), and directed (for each state, its outgoing transi-
tions are all labelled by an action sending to, or receiving from, the same participant).
The present work covers a much larger set of global protocols than [15, 21, 23]: we
support mixed and non-directed states (hence, multi-threaded participants are allowed),
recursive protocols are no longer restricted by a syntax oriented formalism, and explicit
fork/join constructions may be synthesised.

The first translation from generalised global types into CFSMs was given in [14],
where only sound properties were presented. The generalised global types of [14] are
strictly included in GMC systems (Def. 3.6). The complete characterisation of global
graphs and a synthesis were left as open problems. This paper closed these problems.

The term synthesis of CFSMs has been used to describe the reduction of CS to a
more manageable (and decidable) model, e.g., with partial order approaches (see [25]
for a summary of recent results). The acceptation of the term synthesis in this context is
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to identify a system of CFSMs that realises a protocol described by an incomplete spec-
ification (such as in [3,16,24]). These approaches do not yield a global specification as
instead achieved by our algorithm. Also, our approach enables the verification of trace-
based properties surveyed in [25]. For instance, the closed synthesis of CFSMs can be
reduced to the construction from a regular language L of a machine satisfying certain
conditions related to buffer boundedness, deadlock-freedom, and words swapping.

In [22] a tool chain is given to synthesise an orchestrator (i.e., a message forwarder)
from choreographies envisaged as a set of finite state machines communicating syn-
chronously. This is transformed into a BPMN diagram via a Petri net transformation
based on [13]. The work [29] gives an algorithm to compose several services. Each
service is presented as an automaton and a set of automata are composed by a paral-
lel product. The composite automaton is then transformed into a Petri net, using [13].
In both works, no result regarding safety or preservation of the behaviour of the origi-
nal machines is given. The work [1] studies whether Message Sequence Charts (MSC)
imply unspecified scenarios (where MSCs are implemented by concurrent automata,
but do not necessarily feature order-preserving communications). It gives conditions on
MSCs for their implementation to be deadlock-free and realisable. MSCs are realisable
if no other MSC may be inferable from them. It does not attempt to give an exhaustive
global view of a distributed system, but focus on identifying its possible misbehaviour.

Other recent works [4,5,10] study the relationship between global and local specifi-
cations, but do not consider the problem of synthesising global specifications from local
ones. In [5], synchronisable systems are shown to preserve some reachability properties
regardless the communication being asynchronous or synchronous. However, a subtle
difference between our machines and the machines in [5] is that each of the latter ma-
chines has a unique buffer from which it can receive messages. Namely, their model
is not suitable to reason about a CS as the interleaving of several multiparty sessions
(where each participant has different receiving buffers in each session). Observe that the
system pA,B,C1q, from Ex. 3.1, is unsafe in our communication model, but safe in theirs.
In [4], the authors tackle the problem of determining whether a choreography is realis-
able. Essentially, a choreography is realisable if “it is possible to build a distributed sys-
tem that communicates exactly as the choreography specifies”. Choreographies in their
work take the form of conversation protocols, that are finite state machines specifying
the allowable sequence of interactions. A conversation protocol is akin to a global graph
but without explicit construct for concurrent interactions. The realisability condition re-
quires strong properties on message ordering, e.g., the choreography AÑB :a;CÑB :b
is not realisable, however the system consisting of its projection is GMC. Note that the
fundamental difference between this set of work and ours is that the former applies to
global specifications, while GMC applies to local specifications (CFSMs).
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A Appendix: From Petri Nets to Global Graphs
In this section we give the detailed transformations omitted in Section 4. The algorithm
to synthesise a global graph G from a synchronous transition system TSpSq consists
of the following steps: (1) using the algorithm of Cortadella et al. [13], we synthesise
a Petri net N from TSpSq; (2) we transform N so that its initial marking consists of
exactly one place (Transf. A.1 below); (3) we join transitions whenever possible, so to
make joins and forks explicit (Transf. A.2 below); (4) we transform the net of (3) into
a pre-global graph (Transf. A.3 below); finally, we “clean-up” the pre-global graph of
any unnecessary vertexes so to obtain a global graph (Transf. A.4 below).

Definition A.1 (Labelled Net). A labelled Petri net, or net, N is a quadruple pP,T,F,m0q

with P a set of places (ranged over by p), T a set of transitions (ranged over by t),
F Ď pPˆ T qY pT ˆPq the flow relation, and m0 the initial marking. Each transition
t P T is labelled with an event e P Ê, or marker ε (the latter representing a silent transi-
tion). We let x range over elements of PYT . As usual, ‚x (resp. x‚) is the preset (resp.
postset) of x. A net is called safe if no more than one token can appear in all reachable
markings, in which case the reachable markings (including m0) are sets of places. A net
is extended free-choice if @p P P, @t P T : pp, tq P F ùñ p‚tˆ p‚q Ď F . ˛

In the second step (2), we transform a Petri net obtained from Cortadella’s algorithm
into a Petri net whose initial marking consists of exactly one place. This allows us to
construct a global graph that has a unique starting point (source).

Transformation A.1 (One-source net). Given a labelled Petri net N “ pP,T,F,m0q,
the one-source net of N is N1 “ pPYtp0u,T Ytt 1u,F 1,tp0uq such that p0 R P, t 1 R T is
labelled by ε, and F 1 “ FYtpp0, t 1quY

Ť

pPm0
tpt 1, pqu.

Proposition A.1. Transf A.1 is computable in linear time in the size of m0.

The reachability graph of a net N is a transition system whose states are the reach-
able markings of N and there is a transition pm1, labptq,m2q iff t is enabled at marking
m1 and t produces the new marking m2; where labptq returns ε if the label of t is ε,
and returns the label e of t otherwise. Given two reachability graphs T and T 1, we write
T « T 1 if they are weakly bisimilar, i.e., they are bisimilar up-to ε transitions. The
definitions of reachability graphs and weak bisimulation are standard and given in Sec-
tion C. We can now state the following result, formalising the soundness of Transf. A.1.

Lemma A.1. If T is the reachability graph of the Petri net N obtained from TSpSq via
the algorithm in [13], and T 1 is the reachability graph of the Petri net obtained after
applying Transf. A.1, then T « T 1.

Next, Transf. A.2 ensures that parallel gates are used “as much as possible” in the
graph (instead of mixing choice and parallel gates). In fact, Transf. A.2 joins sets of
places that have the same preset or postset to minimise the number of choice gates.

Transformation A.2 (Joined net). The joined net of N “ pP,T,F,m0q is a net N1 “
pP1,T 1,F 1,m0q such that the following transformations are applied repeatedly:
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1. for all maximal X Ď P s.t. |X | ą 1 and @p1, p2 P X : ‚p1 “
‚p2^|

‚p1| ą 1, P1 “
PYtp1u and T 1 “ T Ytt 1u with p1 R P and t 1 R T and labelled by ε; also, chosen
p P X , F 1 “ tpp1, t 1quYp‚pˆtp1uqYptt 1uˆXqYFz

Ť

xPX
‚xˆtxu

2. for all maximal X Ď P s.t. |X | ą 1 and @p1, p2 P X : p1
‚ “ p2

‚^|p1
‚| ą 1, P1 “

PYtp1u and T 1 “ T Ytt 1u with p1 R P and t 1 R T and labelled by ε; also, chosen
p P X , F 1 “ tpt 1, p1quYptp1uˆ p‚qYpXˆtt 1uqYFz

Ť

xPXtxuˆ x‚.

Note that the definition of F 1 above does not depend on the choice of p.

Proposition A.2. Transf. A.2 is computable in polynomial time in the size of N.

Since we are working with safe Petri nets, we have the following result.

Lemma A.2. If T (resp. T 1) is the reachability graph of the Petri net N obtained after
Transf. A.1 (resp. Transf. A.2), then T « T 1.

Definition A.2 (Graph composition). Let Ni “ pPi,Ti,Fi,m0iq with i P t1,2u be two
nets and Gi “ xVi,Ai,Λiy two graphs such that Vi “ PiYTiYFi, i P t1,2u, the composi-
tion of G1 and G2, denoted by G1ZG2 is a graph xV,A,Λy defined as: V “ tv PV1

ˇ

ˇ v P
F1 ùñ v RV2uYtv PV2

ˇ

ˇ v PF2 ùñ v RV1u and A“ppA1YA2qXVˆV qYtpv,v1q
ˇ

ˇ Dv2 P
Fi : pv,v2q P Ai,pv2,v1q P A j^ i‰ j P t1,2uu ˛

Intuitively, the composition of the graphs consists of (1) the union of the two sets
of vertexes, except flow elements pp, tq and pt, pq if they appear in both V1 and V2; and
(2) the union of the two sets of arcs between vertexes in V , and each pair of arcs of the
form pv,px,x1qq ppx,x1q,v1q is replaced by a single arc pv,v1q.

Transformation A.3 (Pre-global graph). The pre-global graph of N“ pP,T,F,tp0uq

is a tuple xV,A,Λy such that V “ PYT YF , Λ is a labelling function such that Λpvq “ v
if v P PYF or v P T labelled by ε, and Λpvq P ÊYt , , , u otherwise; and A is given
by:

TgpNq “
ě

xPPYT

TipxqZTopxq where, given x P PYT :

Tipxq
def
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if ‚x“H
px1,xq x if ‚x“ tx1u

xpxi,xq

px1,xq

pxk,xq

if ‚x“ tx1, ...,xku

Topxq
def
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if x‚ “H
x px,x1q if x‚ “ tx1u

x px,xiq

px,x1q

px,xkq

if x‚ “ tx1, ...,xku

with k ą 1, “ if x P P, and “ if x P T .

The pre-global graph for Fig. 1 is given in Fig 4 (right). Observe that all the vertexes
of the form px,x1q, corresponding to an element of the flow relation, are removed as part
of the graph composition (Def. A.2).

Proposition A.3. Transf. A.3 is computable in polynomial time in the size of N.
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We define the final transformation which cleans up a graph obtained from Transf. A.3
by removing unnecessary vertexes and arcs.

Transformation A.4. A global graph G“xV,A,Λy is obtained from a pre-global graph
xPYT YF,A1,Λ1y by applying the following transformation: (1) replace each pair of
transition px, pq,pp,x1q PA1 by px,x1q PA; (2) replace each pair of transition px, tq,pt,x1q P
A1, with t labelled by ε, by px,x1q PA; and (3) label each t which is labelled by pqs,qr,sÑ
r :aq in N, by sÑr :a.

Proposition A.4. Transf. A.4 is computable in polynomial time in the size of N.

B Appendix: Projections of Global Graphs
The definition of the projection of a global graph onto a participant, used in Section 4,
is given below.

We first define a parallel composition of automata, which is required to project
global graphs with a participant appearing in different threads. We define the ‹ function
on pair of states: q‹ “ q1 if q“ pq1,q1q and q‹ “ q otherwise; we overload it on sets of
states, i.e., Q‹ def

“
 

q‹
ˇ

ˇ q P Q
(

. We also define:

qŤ q1 ðñ

#

q“ q1, or
q1 “ pq1,q2q^qŤ qi^ i P t1,2u

We write qŰ q1 iff  pqŤ q1) and we overload the operator Ť on set of states such that
qŤ Q ðñ Dq1 P Q : qŤ q1.

Definition B.1 (Parallel composition). The composition of Mi“pQi,qi0,δiq, i P t1,2u,
written M1 ‖ M2, is the automaton ppQ1ˆQ2q

‹, pq10,q
2
0q
‹, δq s.t.

ppq1,q2q‹, `, pq11,q
1
2q
‹q P δ ðñ

#

pqi, `,q1iq P δi if qj “ q1j,qi Ű Qj and i‰ j P t1,2u

pqi, `,q1iq P δi if qi Ť Qj and i‰ j P t1,2u ˛

Notice that ‖ is a commutative and associative operation. Below, we give the definition
of the projection function.

Definition B.2 (Projection). Given G“xV 1,A,Λy and v PV 1, the projection of pG,v,V q
onto p, denoted by pG,v,V qçp, is defined as follows:

pG,v,V qçp“
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xtvu,v,H,Hy if Λpvq “ or v PV

xQYtvu,v,δYtpv, `,v1quy if v1 P v‚, `“ sÑr :açp and xQ,v1,δy “ pG,v1,V Ytvuqçp

xtvuY
ď

v1Pv‚
Qv1 ,v,

ď

v1Pv‚
δv1 Ypv,ε,v

1qy if Λpvq P t , u and xQv,v1,δvy “ pG,v1,V Ytvuqçp

xQ,v,δYpv,ε,v2qy if Λpvq “ and xQ,v2,δy “‖v1Pv‚ pG,v1,V Ytvuqçp

Given a vertex v P V 1 such that Λpvq “ , the projection of G onto p, written Gçp,
is the automaton, minimised wrt. language equivalence, pQ,q0,δ,Aq with pG,v,Hqçp“
xQ,q0,δy. ˛
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The projection of a global graph onto p uses the auxiliary function pG,v,V qçp. The
function takes the following parameter, p: the identifier of the participant onto the pro-
jection is invoked, G: the global graph to be projected, v: a node in G used as an initial
node for the projection, and V : a set of visited nodes.

If v has already been visited or it is a sink node, then a single state automaton is
returned. If v is labelled by sÑr :a, then the projection of it successor is connected to
v by a transition labelled by either pr!a, sp?a, or ε. If v is a choice gate or the source
node, then the projection of each successor of v, connected by an ε transition from v,
is returned. If v is a parallel gate, then the parallel composition of the projections of
its successors are returned, connected to v by an ε transition. The parallel composition
of automata uses Def. B.1, so that state identities are normalised and visited nodes are
comparable with nodes produced by composing automata.

C Appendix: Equivalences between Petri Nets
We give the formal definitions of reachability graph of a Petri net and weak-bisimulation,
which are used in Sections 4 and A.

Definition C.1 (Reachability Graph [13]). Given N“ pP,T,F,m0q, we say that a tran-
sition t P T is enabled at marking m1 if all its input places are marked. An enabled tran-
sition t may fire, producing a new marking m2 with one less token in each input place
and one more token in each output place. We write m1

t
Ñ m2, if m2 is reachable from

m1 by firing t, and writeÑ˚ for the reflexive transitive closure ofÑ.
The reachability graph of N is the transition system RGpNq “ pM,m0, Ê,Ñq such

that (1) M “ tm
ˇ

ˇ m0 Ñ
˚ mu; (2)Ñ“ tpm1, labptq,m2q

ˇ

ˇ m1,m2 PM ^ m1
t
Ñ m2u; and

(3) Ê “ te
ˇ

ˇ Dpm1,e,m2q PÑ ^e ‰ εu; where labptq returns ε if the label of t is ε, and
return the label e of t otherwise.

We write m e
Ñm1 if pm,e,m1q PÑ and m

e
ñm1 if mp ε

Ñq˚
e
Ñ p

ε
Ñq˚m1, with e‰ ε. ˛

In Def. C.23 we give a definition of weak bisimulation between two transition sys-
tems.

Definition C.2 (Weak bisimulation). Let T “ pM,m0, Ê,Ñq be a transition system.
A weak bisimulation on T is an equivalence relation B Ď M ˆM such that for all
pm1,m2q P B , the following holds

– m1
e
Ñ m11 implies that there is m12 such that m2

e
ñ m12 and pm11,m

1
2q P B; and

– m2
e
Ñ m12 implies that there is m11 such that m1

e
ñ m11 and pm11,m

1
2q P B .

Two states m1 and m2 are called weakly bisimilar on T , written m1 «T m2, iff pm1,m2q P

B for some weak bisimulation B .
Two transition systems Ti “ pMi,mi

0, Êi,Ñiq, i P t1,2u, such that M1XM2 “ H,
are weakly bisimilar, written T1 « T2, if given T 1 “ pM1YM2Ytm0u, m0, Ê1Y Ê2,Ñ1
YÑ2 Ytpm0,ε,m1

0q,pm0,ε,m2
0quq, m1

0 «T 1 m2
0 holds. ˛

3 Adapted from R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Weak bisimulation for probabilistic timed
automata. Theor. Comput. Sci., 411(50):42914322, 2010.
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D Appendix: Proofs of Section 3
In this section, we first prove the key properties of the relations defined in the paper.
Then we prove the main theorem (soundness), the reachability lemma and complexity
results stated in Section 3.

We use the following functions in the proofs:

1. sndppqs,qr,sÑr :aqq “ sndpsÑr :aq def
“ s;

2. rcvppqs,qr,sÑr :aqq “ rcvpsÑr :aq def
“ r; and

3. idppqs,qr,sÑr :aqq “ idpsÑr :aq def
“ ts,ru.

D.1 Properties of TSpSq

Lemma D.1. Let S “ pMpqpPP be a GMC system and TSpSq “ pN, n0, Ê,Ùq, for all
p PP and for all q P Qp such that pq, `1,q1q,pq, `2,q2q P δp for some q1,q2 P Qp, there
is n,n1,n2 P N such that nrps “ q,

– n
π1
Ù n1

e1
Ù, with π1çp“ ε, e1çp“ `1; and

– n
π2
Ù n2

e2
Ù, with π2çp“ ε, e2çp“ `2.

Proof. This result follows directly from the representability condition.

Lemma D.2. Let S“ pMpqpPP be a system and TSpSq “ pN, n0, Ê,Ùq. For all n‰ n1 P

N, if n
e
Ù n1, then n1

e
{Ù.

Proof. By contradiction, assume there are n ‰ n1 P N such that n
e
Ù n1 and n1

e
Ù n2,

where e “ pqs,qr,sÑ r : aq. There are two cases depending on whether the events
come from distinct events in δ̂.

1. Assume pn,e,n1q,pn1,e,n2q P δ̂, then it must be the case that pqs,sr!a,qsq P δs and
pqr,sr?a,qrq P δr, i.e., there is a corresponding self-loop in machines s and r.
Since the local source state and target states of both machines are the same, this
contradicts the assumption that n‰ n1.

2. Assume pn,e,n1q,pn1,e1,n2q P δ̂, with e‰ e1, e1 “ pq1s,q
1
r,sÑr :aq, and e ’ e1. We

must have that δspqs,sr!aq “ q1s and δrpqr,sr?aq “ q1r; and since e ‰ e1 we must
have that qs‰ q1s or qr‰ q1r. Take qr‰ q1r, we must have pqr,sr?a,q1rq,pq

1
r,sr?a,q2rq P

δr. This implies that we have ppqr,sr?a,q1rq˛pq
1
r,sr?a,q2rqq since sr?a P actpqr,q1rq.

The cases where qs ‰ q1s and qs ‰ q1s ^ qr ‰ q1r are similar. Hence, by Def. 3.1, we
conclude that  pe ’ e1q which contradicts our hypothesis.
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D.2 Properties of ă
Lemma D.3. Let n,n1,n2 P TSpSq, if n ă n1 and n1 ă n2, then n ă n2.

Proof. Assume n ă n1 and n1 ă n2, by definition of ă, we have

n0 Ù
˚ n Ù

˚ n1Ù˚ n2

which implies that there is a simple path from n to n1.
By contradiction, assume  pn ă n2q. This implies that either (i) n “ n2, which

contradicts the fact that n1 ă n2; or (ii) there is a simple path from n0 to n that includes
n2, thus there is also a simple path from n0 to n1 that includes n2, which contradicts our
assumption.

Lemma D.4. Let n1 . . .nk be a simple path in TSpSq, such that nk Ù n1. For all 1 ď
i, j ď k, if ni ă n j, then  pn j ă niq.

Proof. Take ni and n j such that ni ă n j. This means that n j never appears on a path
from n0 to ni. Since n1 . . .nk forms a cycle, we must have ni Ù

˚ n j and n j Ù
˚ ni. Thus

we have
n0 Ù

˚ ni Ù
˚ n j Ù

˚ ni

and there is a simple path from n0 to n j that includes ni (cf. simple path assumption),
which implies that we cannot have n j ă ni.

D.3 Properties of lnpn,e1,e2q

Lemma D.5. Let S “ pMpqpPP be a system and TSpSq “ pN, n0, Ê,Ùq. For all n P N,

if n
e1
Ù, n

e2
Ù, and e1 ‰ e2, then lnpn,e1,e2q ‰H.

Proof. By assumption, there is at least one node that fires both e1 and e2 and is reach-
able from n, i.e., n itself.

If n is the only node from which e1 and e2 are fireable, n
e1
Ù n1, and n

e2
Ù n2, then

lnpn,e1,e2q “ tpn1,n2qu. Note that the results also holds if n Ù n since we have  pn ă

nq, by definition of ă. If n is not the only node from which e1 and e2 are fireable, then
there are two cases:

1. None of these nodes is reachable from n, in which case the result is the same as
above, i.e., lnpn,e1,e2q “ tpn1,n2qu.

2. Let N0
def
“ tn1

ˇ

ˇ n Ù
˚ n1^ n1

e1
Ù ^n1

e1
Ùu, note that n P N0, and, by contradiction,

assume lnpn,e1,e2q “H. Hence, none of the nodes in N0 satisfy the condition, i.e.,

@n1 P N0 : Dn2 P N0 : n1Ù n2^n1 ă n2

Since the number of nodes in TSpSq is finite, we must have a cycle in N0.
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By Lemmas D.3 and D.4, we know that ă forms a strict partial order on the nodes
of each simple cycle in N0. Thus, for each simple cycle consisting of nodes N10ĎN0,
each top element n1 P N10 satisfies the condition:

@n2 P N10 : n1Ù n2 ùñ  pn1 ă n2q

Let N20 Ď N0 be the set of all top elements of each simple cycle in N0, none of the
nodes in N10 satisfy the condition only if

@n1 P N20 : Dn2 P N20 : n1Ù n2^n1 ă n2

We show that given ni,n j P N20 such that ni Ù n j and ni ă n j, we cannot have
n j ă ni, i.e., there is no ă-cycle between the nodes.
(a) If  pn j Ù

˚ niq, we cannot have n j ă ni (and there is no cycle between the two
nodes),

(b) If there is a simple cycle between the two nodes, then either the nodes are
ă-incomparable (i.e., we have a contradiction) or ni ă n j ^ pn j ă niq, cf.
Lemma D.4.

(c) If there is (only) a non-simple cycle such that ni Ù
˚ n j, n j Ù

˚ ni, then, each
path between ni and n j must go through n3 such that n3 ‰ n j and n3 ‰ ni, which
contradicts n1Ù n2.

Given that there cannot be a ă-cycle amongst the nodes in N20 , the function must
return at least one element (i.e., at least one top element satisfies the condition).

Lemma D.6. Let S “ pMpqpPP be a GMC system and TSpSq “ pN, n0, Ê,Ùq. For all

n P N, if n
e1
Ù n1 and n

e2
Ù n2, then either

1. n1
e2
Ù n1 and n2

e1
Ù n1, for some n1 P N, or

2. sndpe1q “ sndpe2q

Proof. Direct from Lemma D.5 and Def. 3.5.

Lemma D.7. Let S “ pMpqpPP be a GMC system and TSpSq “ pN, n0, Ê,Ùq. For all

n‰ n1 P N, if n
e
Ù n1, n1

e
Ù n2, and n

e1
Ù n1 then, n1

e1
Ù n2.

Proof. There are four cases depending on the machines involved in e and e1, and whether
the event fired from n is the same as the event fired from n1 in δ̂.

1. If idpeqXidpe1q “ H, i.e., the events are independent, the result follows by defi-

nition of TSpSq: we have n1
e1
Ù n2.

2. If idpeq “ idpe1q and pn,e,n1q,pn1,e,n2q P δ̂, then we have @p P idpeq : nrps “
n1rps, which contradicts the fact that n‰ n1.
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3. If idpeqXidpe1q ‰H and pn,e,n1q R δ̂ or pn1,e,n2q R δ̂, then we must have, without
loss of generality, pn,e,n1q,pn1,e2,n2q P δ̂, such that e’ e2 and e‰ e2. By definition
of ’ , we must have e“ pqs,qr,sÑr:aq and e2“ pq2s ,q

2
r ,sÑr:aq, with qs‰ q1s or

qr ‰ q1r. For each p P idpeqXidpe1q, we have pnrps,e1çp,n1rpsq P δp by assumption
and, by definition of ˛, we must also have pn1rps,e1çp,n2rpsq P δp. Thus, if idpeq “
idpe1q, we have the result immediately. If idpeq ‰ idpe1q, then the machine not
involved in e is still able to interact with p so to fire e1, and we have the result.

4. If idpeqXidpe1q ‰H, idpeq ‰ idpe1q, and pn,e,n1q,pn1,e,n2q P δ̂, then, it must be
the case that one of the machine has a self-loop, so that we have three machines of
the form:

qs

q1
s

e1çs

eçs

qr

q1
r

eçr

qr1

q1
r1

e1çr1

s r r1

If there is pq1s,e
1çs,q1sq P δs then we have the result immediately (as above), other-

wise there are two cases, depending on whether pn1,n1q P lnpn,e,e1q.
(a) If pn1,n1q P lnpn,e,e1q, then either the two branches commute, and we have the

result; or case (2) of Def. 3.5, must hold. However, in both branches, machine
r is able to execute eçr as a first action (since r R idpe1q by assumption). This
means that the two branches must merge, i.e., once in state q1s, s must be able
to interact with r1 such that r1 reaches q1

r1
. In addition, by representability, the

self-loop at s must appear in TSpSq, which means there must be two branches
in TSpSq, one that leads to a configuration where machines s, r, and r1 are
in states qs, qr, and qr1 , respectively (where the self-loop is not represented);
and one branch that leads to a configuration where the self-loop appears. This
contradicts case (2) of Def. 3.5 since r would have the same first actions in
both branches, while its behaviour must be different in both branches (i.e., the
self-loop appears in one but not in the other).

(b) If pn1,n1q R lnpn,e,e1q, we must have the following situation (by definition of
the last node function):

n

n1

n1

n2n̂

n̂1n̂2

n̂1

n̂11n̂12

e1

e eα1

ee1

α2

ee1

α3

Indeed, since pn1,n1q R lnpn,e,e1q, there must be a successor of n that fires both
e and e1, i.e, n̂ in the diagram above. Note that by, Lemma D.2, n̂ cannot be a
target of e or e1.
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i. If pn̂1, n̂2q P lnpn̂,e,e1q. We show that e must also be fireable from n̂2, by
contradiction. Since e1çs is a self-loop in s (and the machines are determin-
istic), s is still able to fire eçs after e1çs; and since r R idpe1q, the only way
e would not be fireable from n̂2 is if r P idpα1q and @q P Qr : pn̂rrs, eçr
, qq R δrq, which contradicts the fact that n̂

e
Ù. We can now repeat the ar-

gument with α1 “ e1, n̂“ n1, and n̂1 “ n2.
ii. If pn̂1, n̂2q R lnpn̂,e,e1q, then we can repeat the argument (cf. faded part of

the picture) until we reach a pair of nodes that is in lnp ,e,e1q. We know
that such a pair exists by Lemma D.5.

Definition D.1. Let S“pMpqpPP, TSpSq“ pN, n0, Ê,Ùq, p PP, q PQp, and pq, `1,q1q ,pq, `2,q2q P

δp, with `1 ‰ `2, we write
pq, `1,q1q! pq, `2,q2q

iff there exists n P N such that:

1. nrps “ q
2. n

e1
Ù n1, n

e1
Ù n2,

3. pn1,n2q P lnpn,e1,e2q

4. t`iu “ hd
` 

eiçp ¨ϕ
ˇ

ˇ ϕ P LTpS,ni,pq
(˘

, for i P t1,2u.

We write pq, `1,q1q — pq, `2,q2q iff either (i) pq, `1,q1q ! pq, `2,q2q; or (ii) there is
pq, `1,q1q P δp such that pq, `1,q1q! pq, `1,q1q and pq, `1,q1q — pq, `2,q2q.

Lemma D.8 (Verified branches). Let S “ pMpqpPP be a GMC system and TSpSq “
pN, n0, Ê,Ùq. For all p PP and for all q PQp, if pq, `1,q1q,pq, `2,q2q P δp (with `1‰ `2q,
then pq, `1,q1q — pq, `2,q2q.

Proof. First, we show the following:

@pq, `1,q1q P δp, Dpq, `2,q2q P δp : pq, `1,q1q! pq, `2,q2q (1)

By Lemma D.1, for each pq, `2,q2q P δp there is n such that nrps “ q,

n
π1
Ù n1

e1
Ù with π1çp“ ε ^ e1çp“ `1 and n

π2
Ù n2

e2
Ù with π2çp“ ε ^ e2çp“ `2 (2)

Choose n, `2, π1, and π2 such that π1 is the smallest, i.e., there is no other node n1 such
(2) holds and π1 is strictly smaller, for some `2. In other words, n is the last node from
which p can “choose” to fire either `1 or another action (`2). Let k “ |hd pLTpS,n,pqq|
and recall that `1, `2 P hd pLTpS,n,pqq by assumption.

We first show the result for k “ 2.

1. If n is such that n
e1
Ù and n

e2
Ù, with eiçp“ `i (i P t1,2u), then, by Lemma D.5, there

is n̂, n̂1, n̂2 P N such that n̂
e1
Ù n̂1 and n̂

e2
Ù n̂2, with pn̂1, n̂2q P lnpn̂,e1,e2q. Thus, we

have pq, `1,q1q! pq, `2,q2q.
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2. If n is such that n
e1
Ù, n

e2
Ù, with eiçp‰ `i (i P t1,2u), and pn1,n2q P lnpn,e1,e2q, then

we have pq, `1,q1q! pq, `2,q2q, since n is the latest node and k “ 2.

3. If n is such that n
e1
Ù, n

e2
Ù, with eiçp‰ `i (i P t1,2u), and pn1,n2q R lnpn,e1,e2q, we

must have the following situation, where e1içp“ `i,

n

n1

n11

n2

n12

n̂

n̂1 n̂2

e1

π1

e11

e2

π2

e12

e1
e2

α

α αα1

Since, pn1,n2q R lnpn,e1,e2q, it must be the case that there is a successor of n that
is able to fire both e1 and e2, i.e., n̂ here. Note that by, Lemma D.2, n̂ cannot be a
target of e1 or e2. In addition, by Lemma D.7, there must be an event α between
both ni and n̂i (i P t1,2u), cf. faded α-labelled edges in the diagram above.
By assumption (k“ 2), we have t`iu “ hd pLTpS,ni,pqq (otherwise, n would not be
the latest node); thus `2 ‰ αçp‰ `1.
For i P t1,2u, we reason as follows:

– If case (1) of Def. 3.5 applies to the branching at ni, then e1i can also be fired
from n̂i, and we have the result.

– If case (2) of Def. 3.5 applies to the branching at ni, then either (i) machine
p must execute an action different from `i in the branch corresponding to πi.
However, this contradicts the fact that `2 cannot appear in π11çp. Or, (ii) there
is merging node n2, reachable from both n1 and n2, and two paths (from n2

to ni) such that machine p behaves identically on both; which contradicts our
assumption that n is the last node such that `1 and `2 are fireable.

Since `1 and `2 are the only actions fireable from q, we conclude that each action
is executed from n̂1 and n̂2, respectively, and we obtain the result.

4. If pn̂1, n̂2q R lnpn̂,e1,e2q, then we repeat the same argument until we find a pair that
is included in lnp ,e1,e2q, and we know there is such a pair by Lemma D.5; cf.
faded α1 edge in the diagram above (or leads to a contradiction)

If k ą 2, then we reason similarly, with k events ei and nodes ni, where each path
cannot execute any actions from p without leading to a contradiction. We then conclude
that case (1) of Def. 3.5 must apply for each path and we finally reach a pair of nodes
in lnpn̂,e1,e2q, as above.
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Second, having established (1), we show that

@pq, `1,q1q ‰ pq, `2,q2q P δp : pq, `1,q1q — pq, `2,q2q (3)

We show this by contradiction, if (3) does not hold, we must have partitions of outgoing
transitions from q such that the result hold within each partition, but not across two
partitions, i.e., we have a situation of the form below, where n is the last node such that
all transitions of p from q are taken.

n

PiP1 Pk

n1 n2

n3

However, between two partitions either (i) case (2) of Def. 3.5 applies, i.e., the branches
do not commute nor merge (cf. right-hand side of the diagram above) and thus, there
must be a node n and two events e1 and e2 which will be checked for, by Lemma D.5; or
(ii) case (1) of Def. 3.5 applies (cf. left-hand side of the diagram), in which case there is
two other nodes n1 and n2, which commute (or merge, cf., item (ii) in (2a) of Def. 3.5)
to a third node, n3, and we can inductively repeat the argument in (i) where n1 and n2
replace n. Note that it must be the case that p executes some actions from nodes n3, thus
linking two partitions together.

D.4 Proof of Theorem 3.1 (Soundness)

Theorem 3.1 (Soundness). If S is GMC, then it is safe, i.e., free from orphan message,
deadlock and unspecified reception configurations.

Proof. Absence of orphan message configuration and unspecified reception configura-
tions follow directly from Lemma D.12.

We show absence of deadlock configuration, by contradiction, using Lemma D.14.
Assume there is a deadlock configuration s P RSpSq such that s “ p~q;~εq, n “ ~q, and
pqr,sr?a,q1rq P δr for some r PP. By Lemma D.14, we have n0 Ù

˚ n, and since S
is representable, there must be an execution in which sr?a is taken. Moreover, by
Lemma D.12, there is no unspecified reception configuration, so it must be the case
that there is a branching in Mr such that the machine is expecting a message a in one
branch, but not in the other (reasoning in a similar fashion to the proof of Lemma D.12).
The branching in Mr must be reflected in TSpSq such that there is a branch going to n
and another branch where the interaction on a takes place. However, in the n branch,
the behaviour of r is empty (deadlock) and thus we obtain a contradiction with Def. 3.5
since r executes sr?a in one branch and does nothing (i.e., ε) in the other branch.
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Lemma D.9. Let S “ pMpqpPP be a GMC system and TSpSq “ pN, n0, Ê,Ùq. For all
p PP and for all q P Qp, if pq, `1,q1q,pq, `2,q2q P δp (with `1 ‰ `2q, and there is n P N,

nrps “ q, such that n
ei
Ù with eiçp“ `i, then pq, `1,q1q! pq, `2,q2q.

Proof. Direct from Def. D.1 and Lemma D.5.

Lemma D.10. Let S “ pMpqpPP be a GMC system and TSpSq “ pN, n0, Ê,Ùq. For all
p PP and for all q PQp, if pq, `1,q1q,pq, `2,q2q P δp (with `1 ‰ `2q, such that `1 (resp. `2)
is a send action (resp. receive) action and pq, `1,q1q! pq, `2,q2q, then there is n P N,
nrps “ q, such that n

ei
Ù with eiçp“ `i.

Proof. By contradiction, assume there is no such n P N. Then for all n
πi
Ù ni

ei
Ù, with

πiçp“ ε and eiçp“ `i, |πi| ą 0. Observe that such nodes exists since pq, `1,q1q !

pq, `2,q2q. This implies that case (1) of Def. 3.5 cannot apply, and case (2) of Def. 3.5
cannot apply either (since there is no unique sender); which contradicts the fact that S
is GMC.

Lemma D.11 (Mixed Choice). Let S “ pMpqpPP be a GMC system, for all p PP and
for all q PQp such that pq, `,q1q,pq, `1,q2q P δp for some q1,q2 PQp, if ` is a send action
and `1 is a receive action, then there is q̂ PQp such that pq1, `1, q̂q P δp and pq2, `, q̂q P δp.

Proof. By Lemma D.8, we must have pq, `,q1q — pq, `1,q2q.
If pq, `,q1q! pq, `1,q2q, the result follows directly by Lemma D.10.
If  ppq, `,q1q! pq, `1,q2qq, then there must be a chain of transitions pq, `i,qiq such

that
pq, `1,q1q! . . .! pq, `k,qkq k ą 2 (4)

where `1 “ `, `k “ `1, q1 “ q1, and qk “ q2. We show that for all 1 ď i ‰ j ď k: `i is a
send action and ` j is a receive action, then there is q̂ P Qp such that pqi, ` j, q̂q P δp and
pq j, `i, q̂q P δp. We show the result by induction on the length k of the smallest chain of
transitions for which (4) holds. Assume k “ 3, then there are two cases

– If `2 is a send action, then it must commute with `3, by Lemma D.10 and Def. 3.5.
By Lemma D.9, we must also have pq, `1,q1q! pq, `3,q3q, and we are done.

– If `2 is a receive action, then it must commute with `1, by Lemma D.10, and we
reason as above.

The inductive case follows straightforwardly. Assume the result holds for k ą 3 and let
us show it holds for k` 1. If `k is a send action, it must commute with `k`1, which
implies that there is a smaller chain —-linking `k`1 with `1 (as above). If `k is a receive
action, then it must commute with all the send actions `i such that i ă k, thus there
is a smaller chain —-linking `k`1 with a send action, and we are done by induction
hypothesis.
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Lemma D.12. Let S“ pMpqpPP be a GMC system for all s P RSpSq, if s sr!a
ÝÝÑs1

ϕ
ÝÑs2, with

sr?a R ϕ, then s2 Ñ
˚ s3

sr?a
ÝÝÑs4.

Proof. By contradiction, assume there is s P RSpSq such that s sr!aÝÝÑs1 and for all ϕ such
that s1 ϕÝÑ, we have sr?a R ϕ. In addition, assume that s is the first configuration (from
s0) such that a sent message cannot be received.

Assume the state of s in s is qs. Since S is representable, there must be s2 P RSpSq,
where the state of s in s2 is qs, such that s1 sr!a

ÝÝÑ
sr?a
ÝÝÑ, i.e., there is an execution where

the message a sent by s is received by r. If the message cannot be received by r from
s, it means that either

1. r is unable to fire the action sr?a because it is expecting another message, i.e., it is
blocked by a transition pr?b, or

2. there is a branching in Mr such that in one of the branch a is received but not in the
other.

Case (1) implies that there is another configuration before s where a message is not
received, thus we only consider case (2).

Let us consider the last state q P Qr such that pq, `1,q1q,pq, `2,q2q P δr (`1 ‰ `2)
and there is no sr?a transitions fireable from q1 (before any other transition receiving
from s) and the first transition receiving from s after q2 is sr?a. Observe that since
q is the last state where such a branching occur, there cannot be q1 P Qr such that
pq1, `2,q1q,pq2, `1,q1q P δr.

Essentially, we have the following situation:

q0

sr?a is executed.
sr?a cannot be executed.

`1 `2

r

where r cannot execute sr?a once it has taken the transition `2.
We have the following cases:

1. `1 is a send action and `2 is a receive action,
2. both `1 and `2 are send actions, or
3. both `1 and `2 are receive actions.

Following Lemma D.11, case (1) cannot happen since it would imply that the branches
commute.

Observe that if there are more than two transitions outgoing q, we can partition them
into two sets: (i) the transitions after which a is a received and (ii) the transitions after
which a is not received. By Lemma D.8, there must be, at least, one transition pq, `2,q2q

in (i) and one transition pq, `1,q1q in (ii) such that pq, `1,q1q! pq, `2,q2q. Hereafter, we
only consider these two transitions. Case (2) of Def. 3.5 must apply to a branching node
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n such that nrps “ q and the first action of r in one branch is `1 and the first action of r
in the other branch is `2, by definition of !. Note that case (ii) of (2a) cannot apply for
r since it would otherwise mean that there is a later branching in machine r such that it
can “choose” whether to receive a or not; i.e., r must be involved in the choice.

Case (2). Then, r is the selector at node n. Following Def. 3.5, there are two sub-
cases: Machine s executes a receive action before sending another action. This implies
that there must be a branching in s before the transition sr!a, which means that sr!a
can only be executed once the `2-branch has been executed. Thus, r cannot make a “bad
choice”: the two branches are mutually exclusive in all possible executions.

Indeed, if r was able to make another choice, it would mean that it could choose
between receiving `1 and `2, i.e., there is no C-dependency between `1 and `2. More
formally, assume we have pq,s1r?`1,q1q,pq,s2r?`2,q2q P δr. By representability, there
must be a node n PN such that, for i P t1,2u, n

πi
Ù ni

ei
Ù with eiçr“ sir?`i, πiçr“ ε, and

nrrs “ q. Also, by GMC and the fact that we assumed that the non-reception at r is the
first one in the system, r must be able to receive both messages from s1 and s2 in each

branch, i.e., we must have, for i‰ j P t1,2u, ni
ei
Ù

πi
Ù

e j
Ù with e jçr“ sjr?`j. If s1 “ s2,

the two actions are always mutually exclusive (since the channels are message order
preserving) and thus there is always a trivial C-dependency. If s1 ‰ s2, we must have a
C-chain between the two corresponding interactions in both branches. The shortest of
such chains are as follows, with i‰ j P t1,2u,

siÑr :`i CrÑsj :aCsjÑr :`j

which implies that r cannot choose between receiving either message in any asyn-
chronous execution.

Case (3). This means that another machine selects the branch:

– If s is the selector, then there must be a branching in machine s such that s sends a
different message to all participants involved in the choice (possibly through other
participants), including r. This implies that r must be aware of which branch s has
chosen and thus cannot make a “bad choice” either.

– If s is not the selector, there must be another participant making the decision and
we reason as in case (2) above.

D.5 Proof of Reachability
The following lemma states the reachability property, which is important to apply Cor-
tadella’s algorithm.

Lemma D.13. If S is GMC and TSpSq “ pN,n0, Ê,Ùq, then @n P N : n0 Ù
˚ n.

Proof. By contradiction, assume there is p~q,~εq P RS1pSq such that n0 Ù
˚ ~q and p~q1,~εq P

RS1pSq such that p~q1,~εq is reachable by 1-bounded execution from p~q,~εq, but not by a
synchronous execution. This implies that there is a dependency chain between the two
configurations. The smallest such chain is:

p~q,~εq sr!a
ÝÝÑ

rs!b
ÝÝÑ

rs?b
ÝÝÑ

sr?a
ÝÝÑ p~q1,~εq
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i.e., it is not possible to swap actions rs!b and sr?a, thus there is no synchronous
counterpart for this execution. Such an execution implies that we have machines of the
form:

s : q1
sr!a
ÝÝÑ q2

rs?b
ÝÝÑ q3 r : q11

rs!b
ÝÝÑ q12

sr?a
ÝÝÑ q13

By representability, each execution must be represented in the TSpSq, thus, there must
be two branches in each machine, so that both branches appear in TSpSq:

q

q1 q2 q3

q4 q5 q6

As

Bs

sr!a rs?b

sr!ars?b

q1

q1
1 q1

2 q1
3

q1
4 q1

5 q1
6

Ar

Br

sr?a rs!b

rs!b sr?a

By assumption, branches As and Ar can be executed synchronously, since n0 Ù
˚ ~q,

while, by representability, As and Br (resp. Bs and Ar) must be executable synchronously.

– If q1 “ q4 or q11 “ q14, we obtain a contradiction with the assumption that p~q1,~εq is
not reachable by a synchronous execution.

– Hence, if q1 ‰ q4 and q11 ‰ q14 , there are three branches in TSpSq: pAs,Arq, pAs,Brq,
and pBs,Arq. This implies that machine s (resp. r) has the same first actions in
branches pAs,Arq and pAs,Brq (resp. pAs,Arq and pBs,Arq). Thus, either the branches
commute, i.e., q1 “ q4, q3 “ q6, q11 “ q14, q13 “ q16, or there is a path in s (resp r)
such that both branches merge, either way, this contradicts the fact that p~q1,~εq is not
reachable by a synchronous execution. If the branches do not commute nor merge,
then the system is not GMC, which contradicts our assumptions.

Lemma D.14. If S is GMC and TSpSq “ pN,n0, Ê,Ùq, then @p~q,~εq P RSpSq : n0 Ù
˚~q.

Proof. The proof is similar to the proof of Lemma D.13. By contradiction, assume
there is s P RS2pSqzRS1pSq such that s“ p~q,~εq and  pn0 Ù

˚ ~qq. Then, there should be
an execution of the form

s0
ϕ1ÝÑs1

sr!aÝÝÑs2
ϕ2ÝÑs3

sr!bÝÝÑs4
ϕ3ÝÑs5

sr?aÝÝÑs

with s1 P RS1pSq, stable, s3 P RS1pSq and s4 P RS2pSqzRS1pSq, such that there is a de-
pendency chain in ϕ3 between sr!b and sr?a (otherwise s would be reachable by
a 1-bounded execution). The smallest such chain is of the form rs!c ¨ rs?c, thus let
ϕ2 “ rs!c ¨rs?c. By representability, as in the proof of the lemma above, there must be
two branches in each machine so that each trace can be executed synchronously, i.e.,

q

q1 q2 q3 q4

q5 q6 q7 q8

As

Bs

sr!a sr!b rs?c

rs?c sr!a sr!b

q1

q1
1 q1

2 q1
3 q1

4

q1
5 q1

6 q1
7 q1

8

Ar

Br

sr?a sr?b rs!c

rs!c sr?a sr?b
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Branches As and Ar can be executed synchronously, since s1 is stable and s1 P RS1pSq
(cf. Lemma D.13) By representability, As and Br (resp. Bs and Ar) must be executable
synchronously. Hence, if q1 ‰ q5 and q11 ‰ q15 , there are three branches in TSpSq:
pAs,Arq, pAs,Brq, and pBs,Arq. This implies that machine s (resp. r) has the same
first actions in branches pAs,Arq and pAs,Brq (resp. pAs,Brq and pBs,Arq). Thus, ei-
ther the branches commute, i.e., q1 “ q5, q4 “ q8, q11 “ q15, q14 “ q18, or they merge,
which contradicts the fact that p~q1,~εq is not reachable by a synchronous execution; or
the system is not GMC, which contradicts our assumptions.

D.6 Complexity Analysis: Proofs of Propositions 3.1 and 3.2
In this section, we fix S“ pMpqpPP, TSpSq “ pN, n0, Ê,Ùq, and we let δM be the biggest
set of transitions of all the machines.

We first describe the maximum size of the basic constructions.

– |N|“
ś

pPP
∣∣Qp

∣∣ since each node in N consists of a |P| vector of states, each in Qp.

–
∣∣∣δ̂∣∣∣“ |E|“

∣∣∣2Aˆ |N|2
∣∣∣ since there can be at most 2A transitions between two nodes

in N, indeed:
‚ the local state components of each event is a determined by the node it is fired

from,
‚ by construction, given two nodes, all the transitions between these nodes must

involve the same machines s and r,
‚ the machines are deterministic, thus they can only send a same message once

per state, and
‚ each message may be sent by each one of the two machines.

– |TSpSq|“ |N|`
∣∣∣δ̂∣∣∣

–
∣∣Ê∣∣“ |E|, since, in the worst case, ’ is the identity relation.

– Relation ă can be a computed via a breadth-first traversal of TSpSq, i.e., in Op|N|` |Ù|q
time, and its maximal size if |N|2. Note that it is not necessary to compute the tran-
sitive closure of ă since, to check whether a node is a “last node”, it suffices to
check its (direct) neighbours.

Proposition D.1. The ’-relation is computable in O
´

ř

pPP

´∣∣δp∣∣6¯`´

|E|2ˆp2ˆ |δM|2q
¯¯

time.

Proof. First, we observe that computing the ˛-relation for each machine can be done in
time

ř

pPP

´∣∣δp∣∣6¯ since the size of the non-transitive version of ˛ is
∣∣δ2

p

∣∣ and computing
the transitive closure of a binary relation has a cubic complexity. Then, to compute the
’-relation, for each pair of events in E, we have to look up in two sets of ˛ relations.

Proposition 3.1. Given a system S “ pMpqpPP, checking whether S satisfies the repre-

sentability condition is computable in Op
ř

pPP 2|N|`|Qp|q time, with |N|“
ś

pPP
∣∣Qp

∣∣.
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Proof. The first part of the definition requires, for each machine, to (i) compute its
projection from TSpSq (which depends on the size of N) and (ii) to check that this
projection is language equivalent with the original machine. The second part requires
for each machine (sum over P), for each state (Qp factor), and for each transition from
that state (δp factor) to look for a node in TSpSq (N factor) such that this transition is
reflected in TSpSq (δ̂ factor). Since for each local state, we are only interested in the
nodes where this local state appears, we divide by

∣∣Qp

∣∣. Hence, we have that the time
complexity of the representability condition is:

O

¨

˝

ÿ

pPP

´
∣∣∣δ̂∣∣∣`2|N|`|Qp|

¯

`
ÿ

pPP

¨

˝

∣∣QpˆδpˆN
∣∣ˆ

∣∣∣δ̂∣∣∣∣∣Qp

∣∣
˛

‚

˛

‚

“O

¨

˝

ÿ

pPP

´
∣∣∣δ̂∣∣∣`2|N|`|Qp|

¯

`
ÿ

pPP

´
∣∣∣δpˆNˆ δ̂

∣∣∣¯
˛

‚

“O

¨

˝

ÿ

pPP

´

2|N|`|Qp|
¯

˛

‚

Proposition 3.2. Given a system S“ pMpqpPP, checking whether S satisfies the branch-

ing property is computable in time O
´

|Ù|2ˆ |Ù|!ˆ
ř

rPP

´

|δr|2
¯¯

.

Proof. The check of part (1) of Def. 3.5 is O
´

|Ù|2ˆ |N|
¯

, so we consider the most
complex case, namely part (2) of Def. 3.5, which is the sum of the complexity of con-
ditions conditions (2a), (2b), and (2c) of Def. 3.5.

For each branch with events e1 ‰ e2 and each participant p PP, we have to compute
the sets Li

p. This also allows to compute the last nodes and can be done considering sim-
ple paths only, and is easily computed with a breadth-first visit of TSpSq, and therefore
this is done in polynomial time in |TSpSq|.

Once this is done it is easy to see that the check of part (2b) of Def. 3.5 is polynomial
in |PYAct|.

The most complex part of the computation is to check conditions (2b)(ii) and (2c)
because it requires to check the paths in TSpSq and the enumeration of all paths is
computed in Op|Ù|!q.

Finally, the check of condition (2b)(ii) can be done in OpsizepTSpSqqˆ |Ù|!q while
(2c) is checked in O

´

|Ù|2ˆ |Ù|!ˆ
ř

rPP

´

|δr|2
¯¯

time.
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E Appendix: Proofs of Section 4
E.1 Equivalences
Lemma A.1. If T is the reachability graph of the Petri net N obtained from TSpSq via
the algorithm in [13], and T 1 is the reachability graph of the Petri net obtained after
applying Transf. A.1, then T « T 1.

Proof. Trivial since N is safe and the only added transition is labelled by ε.

Lemma A.2. If T (resp. T 1) is the reachability graph of the Petri net N obtained after
Transf. A.1 (resp. Transf. A.2), then T « T 1.

Proof. Follows from the fact that N is safe and the only added transitions are labelled
by ε.

Theorem 4.1 (Completeness). Let S “ pMpqpPP be GMC and TSpSq “ pN, n0, Ê,Ùq.
If TSpSq is such that @n,n1 P N : n Ù n1 ùñ n‰ n1, then the projection of the global
graph G synthesised from S is such that S is isomorphic to pGçpqpPP.

Proof. The proof follows from (1) the assumption that TSpSq is self-loop free, (2) Lem-
mas A.1 and A.2, and (3) the fact that transformation to (pre-) global graph preserves
the structure and labels of the joined net.

E.2 Complexity Analysis of the Transformations
Proposition A.1. Transf A.1 is computable in linear time in the size of m0.

Proof. Trivial.

Proposition A.2. Transf. A.2 is computable in polynomial time in the size of N.

Proof. The algorithm for part (1) of the transformation works as follows: (1) compute
the preset of each place (|F |), (2) sort a table of pairs (preset, place) by preset, e.g.,
a lexicographic order on sets of transitions (|P|plog |P|q), (3) go through the table and
apply the transformation on each set of places which have the same preset (|P|). Observe
that, once a set of places with the same preset has been identified, the transformation
can be done in linear time. The algorithm for part (2) works similarly.

Proposition A.3. Transf. A.3 is computable in polynomial time in the size of N.

Proof. One has to iterate on each element in PYT YF and the composition of graphs
is polynomial in the size of the two graphs (number of vertices).

Proposition A.4. Transf. A.4 is computable in polynomial time in the size of N.

Proof. The transformation can be done by iterating on the arcs of the pre-global graph,
so to find matching arc (|A|2).
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F Appendix: Benchmark Examples from Section 5

This section lists the most interesting synthesis examples selected from the benchmark
given in Section 5. All benchmark examples are available in the online appendix4 and
textual representations of these are also available in [17] (gmc-synthesis/tests/benchmark/gmc
directory). Other GMC and non-GMC protocols are also available online.5

F.1 Alternating 3-bit protocol

This protocol, adapted from [14], models a protocol where machine 0 repeatedly sends
to machine 1 alternating messages m1, m2, and m3 but will always concurrently wait for
the acknowledgement ai before sending mi.

4 http://www.doc.ic.ac.uk/˜jlange/benchprotocols.pdf
5 http://www.doc.ic.ac.uk/˜jlange/demo.tar.gz
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F.2 Sanitary Agency

This protocol, adapted from [27], models a software system that aims at “supporting
elderly citizens in receiving sanitary assistance from the public administration”. In our
formalisation, machine 0 is the Citizen, machine 1 is the Sanitary Agency, machine 2 is
the Coop, and machine 3 is the Bank.
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