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Abstract. This paper introduces global session nets, an integration of mul-
tiparty session types (MPST) and Petri nets, for role-based choreographic
specifications to verify distributed multiparty systems. The graphical represen-
tation of session nets enables more liberal combinations of branch, merge, fork
and join patterns than the standard syntactic MPST. We use session net token
dynamics to verify a flexible conformance between the graphical global net and
syntactic endpoint types, and apply the conformance to ensure type-safety and
progress of endpoint processes with channel mobility. We have implemented
Java APIs for validating global session graph well-formedness and endpoint
type conformance.

1 Introduction

Backgrounds and motivations In the early 2000s, there was an active debate
on the ways in which various foundations could be applied to the description and
verification of Web service standards, triggered by both researchers and developers
working on Web services. Two of the major formalisms actively discussed are
Petri nets and the π-calculus: the former can offer flexible graphical models of
parallel workflows, while the latter can describe process interactions and mobility
of channels in a textual format. A working group called Petri-and-Pi was led by
Milner and van der Aalst in 2004 to seek meeting points. As a direction in a
similar vein, this paper develops a new graphical formulation of multiparty session
types (MPSTs) [12] based on Petri nets (PNs) that we call session nets. Our main
motivations are (1) to offer graphical global specifications based on Petri nets
that cannot be directly represented in MPST systems based on “linear” syntactic
types [2, 4, 9, 12]; and (2) to apply Petri net token dynamics to a conformance
validation which can guarantee independent endpoint processes satisfy safety and
progress. We believe the resulting graphical representation, similar to notations
used in BPMN [3] and UML [18], and accompanying token model will help
engineers to write and understand MPST global protocols..
Session nets An MPST framework starts with global descriptions of the
message passing protocols by which the participants should interact. In session
nets (Figure 1), global protocols are specified by a combination of multiparty role
(A, B, C, . . .) and message (a, b, c, . . .) information over a PN control flow structure.
Global session execution is modelled by standard PN token dynamics: branches
and merges at places correspond to internal and external choices in the protocol
flow at the specified roles; unlabelled transitions correspond to internal fork/join
synchronisations; and labelled transitions to observable message I/O actions (e.g.
?a and !a). Decoupling I/O transitions gives a natural asynchronous model.
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Fig. 1. Interleaved (i.e. non-nested) choice (branch-merge) and parallel (fork-join)
structures with “criss-crossing” paths, leading to a recursive protocol segment.

The session net in Figure 1 cannot be represented by the global type syntax
of [2, 4, 9, 12]. Firstly, because the “criss-crossing” of the middle two of the four
paths from p0 to t cannot be expressed in the tree structure of a linear syntax.
Secondly, each of these paths flows from the initial branch through a fork, but then
goes through a merge before the join. This interleaving of choice (branch-merge)
and parallel (fork-join) structures is not supported by the nesting of choice and
parallel constructors imposed by standard global type syntax. Appendix A shows
session graphs of larger application protocols from [3].

Due to the flexibility of PN structures, a key design point in session nets is
to characterise the nets that correspond to coherent protocols that are safely
realisable as a system of distributed, asynchronous endpoints. In our framework,
well-formed session graphs guarantee that net execution exhibits safety, in PN
terminology (i.e. 1-boundedness), and an MPST-based form of progress. Safety
states that no place is ever occupied by more than one token at a time. Progress
means that every marking reachable from the initial marking enables a transition
or is a terminal marking, in which tokens occupy only terminal places. § 2 defines
session graphs, which are free-choice PNs by construction, their well-formedness
conditions, and shows the above properties.
Conformance Unlike the typical top-down projection from global to local types
in previous MPST systems [2, 4, 9, 12], we introduce a conformance relation be-
tween syntactic endpoint types and well-formed nets. § 3 shows our conformance
allows each endpoint type to be validated against a net independently, while guar-
anteeing that their behaviour in composition respects the behaviour of the global
net. Conformance between syntactic endpoints and global graphs is also motivated
by practice: developers of Web services and other distributed applications often
use expressive graphical patterns [3, 7, 23] for global specifications, but implement
the endpoint programs using relatively primitive send/receive APIs, such as
network socket or RPC interfaces. Our conformance accepts valid expansions
of parallel specifications into a sequence of interleaved actions at the endpoint
implementation level, and captures several session typing concepts, such as branch
subtyping [8] and certain forms of asynchronous output permutations [6, 16].

Conformance is validated as a bidirectional I/O simulation between the
(localised) net execution of a session graph and the behaviour of an individual
role given by its type. Roughly speaking, conformance works by checking that
every output specified by a local output type is accepted by the session net
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(acting as an environment comprising the external roles), and that every message
sent in the session net by another role to the local role is handled by a local input
type. For example, T1 and T4 are different endpoint types that each conform to
the session net in Figure 1 for the A role.

T1 = !{B〈a〉.!C〈b〉.T2, C〈b〉.!B〈a〉.T2,
B〈c〉.!C〈d〉.T2, C〈d〉.!B〈c〉.T2}

T2 = ?{B〈e〉.?C〈f〉.T3, C〈f〉.?B〈e〉.T3}
T3 = µ t.!{B〈g〉.end, B〈h〉.?{B〈i〉.t}}

T4 = !{B〈a〉.!C〈b〉.T5, B〈c〉.!C〈d〉.T5}
T5 = ?{B〈e〉.?C〈f〉.T6, C〈f〉.?B〈e〉.T6}
T6 = !{B〈h〉.?{B〈i〉.!{B〈g〉.end}}}

The type !{B〈a〉.T, C〈b〉.T ′, . . .} denotes a choice between outputs B〈a〉 followed by
T , C〈b〉 followed by T ′, etc.; dually ?{...} for input choice. For singleton choices,
we can omit the curly braces, e.g. !C〈b〉. µt.T denotes a recursive type. T1 is the
endpoint type that corresponds most “directly” to the structure relevant to A in
the graph. The parallel forks after p0 to B and C are expanded into the sequential
interleaved outputs (a, b and c, d) in each branch. This is followed in T2 by the
interleaved inputs (e, f) in the next part joining at t. Conformance prioritizes
parallel outputs over inputs to prevent deadlocks (§ 3). T3 conforms to the final
part (after t) with a recursive type containing the branch by A to either enact
the loop (g) or end the protocol (h). T4 differs from T1 by safely under-specifying
a subset of the interleaved outputs (analogously to MPST output subtyping)
in the first part, and performing only one specific trace of the recursive branch;
replacing T6 with !{B〈g〉.end} would also be conformant. T1 and T4 are each
guaranteed compatible with any independently conformant B and C endpoints.

In § 3, we use conformant endpoint types to type check endpoint session
processes, including channel passing and session delegations [12]. We show that
safety and progress of a well-formed session net are reflected in the MPST safety
and progress of a system of conformant, well-typed endpoint processes. This
approach gives a natural application for our novel notion of progress in PNs.

The benefits of the session nets framework come from integrating PN and
π-calculus models to support more advanced graphical MPST protocols, and to
bridge the gap between high-level graphical specifications and lower-level endpoint
code. To our knowledge, session nets are the first application of Petri nets to a
static typing of processes featuring channel mobility. We have implemented Java
APIs for validating session graph well-formedness and endpoint type conformance
to demonstrate the tractability of our framework, which are available from [19].
The appendix contains additional related work, use cases [3] and full proofs.

2 Session Net Graphs

2.1 Role Structures and Session Net Graphs

We first define the labelled Petri net graphs that we have adapted to represent
message passing protocols in the manner of multiparty session types (MPST). We
then introduce role structures, which are labelled Petri net graphs given by a few
simple construction rules. Role structures are interconnected by asynchronous
communication places to form a complete session net graph.
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Fig. 2. An example role structure

Petri net graphs We extend standard Petri net graphs with functions f and g to
specify MPST roles and message labels [12]. A labelled Petri net graph (henceforth,
Petri net graph) is a tuple P = 〈P, T, F, f, g〉, where: P = {p0, . . . , pn} is a finite
set of places; T = {t0, . . . , tm} is a finite set of transitions; F ⊆ (P ×T )∪ (T ×P )
is a set of arcs (the flow relation); f : P ⇀ R is a partial function which associates
places to role names from the set R = {A, B, C, . . .}; and g : T ⇀ L is a partial
injective function which associates transitions to message labels from the set
L = {†1a, †2b, †3c, . . .} where † = ? | ! is an I/O decoration. Places and transitions
are required to be disjoint (P ∩T = ∅) and their union, denoted by X, is required
to be non-empty (X = P ∪ T 6= ∅). The elements (x, y, . . .) of X are called
nodes. The pre-set of x ∈ X is •x = {y ∈ X | (y, x) ∈ F} and its post-set is
x• = {y ∈ X | (x, y) ∈ F}.

We represent places as circles and arcs as arrows between places and tran-
sitions, as in the standard graphical representation. We call observable the
transitions in the domain of g and represent them as boxes. The other transitions
are called internal and represented as narrow rectangles, as in Figure 1. Observ-
able transitions are annotated according to the g labelling function: ?-decorated
observables are referred to as inputs, and !-decorated observables as outputs.
Places can be annotated according to the f function.
Role structures An inbound role tree (IRT) is a Petri net graph P =〈P, T, F, f, g〉
with dom(f) = P , which forms a directed tree rooted at a place, with set of nodes
X and edges F , and such that: (1) every arc is directed towards the root (the
root is reachable from every node); (2) every observable transition is an input;
(3) if |X| > 1, the set of inputs contains all and only leaves. An outbound role
tree (ORT) is defined dually, but permits observables in non-leaf positions: (1)
every arc is directed away from the root; (2) every observable transition is an
output; (3) if |X| > 1, every leaf is an output. An IRT or ORT with |X| = 1 is
just a single root place.

Using common terminology [3, 18], we refer to: a place in an IRT as a merge,
and in an ORT as a branch; and a transition in an IRT as a join, and in an ORT
as a fork. Intuitively, an IRT represents the internal synchronisations within a
role after receiving control through the arrival of external messages (the input
leaf nodes). An ORT represents the decisions leading to the transfer of control
to other roles by dispatching external messages (the output leaf nodes). Their
asymmetry reflects the I/O asymmetry of the conformance approach (see § 3).

A role structure consists of an IRT and an ORT, rooted at a shared place and
disjoint elsewhere, for a single role. Figure 2 as a whole shows a RS for role A
with core place p0. We often annotate only the core place in each RS. Formally:
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Definition 2.1 (Role structures). Let P1 = 〈P1, T1, F1, f1, g1〉 be an IRT and
P2 = 〈P2, T2, F2, f2, g2〉 an ORT. Then P = 〈P1∪P2, T1∪T2, F1∪F2, f1∪f2, g1∪
g2〉 is a role structure (RS) iff: (1) P1 ∩ P2 = {p} and p, called the core place,
is the root of P1 and P2; (2) T1 ∩ T2 = ∅; (3) f1(p1) = f2(p2) = {A} for all
p1 ∈ P1, p2 ∈ P2 and some A ∈ R. We use R1, R2,... to denote role structures.

Session net graphs We construct session net graphs, using communication
places to compose role structures by connecting their input and output transitions.

Definition 2.2 (Session net graphs). A session net graph (session graph or
SG for short) G is a Petri net graph generated by the following cases:

1. G = R is a role structure;
2. G = 〈P1 ∪P2, T1 ∪T2, F1 ∪F2, f1 ∪ f2, g1 ∪ g2〉 is the union of disjoint session

graphs G1 = 〈P1, T1, F1, f1, g1〉 and G2 = 〈P2, T2, F2, f2, g2〉;
3. G = 〈P ∪ {p}, T , F ∪ {(t!, p), (p, t?)}, f, g〉 where 〈P, T, F, f, g〉 is a session

graph, p /∈ P is a communication place, t! is an output and t? is an input and:
(1) ∃a∈L(g(t!) =!a ∧ g(t?) =?a); (2) @p′∈P\dom(f)((t!, p′) ∈ F ∨ (p′, t?) ∈ F ).

Communication places represent asynchronous message dependencies between
the roles of the connected RSs. Condition 3 prevents connecting any observable
transition to more than one communication place (P \ dom(f) gives the set of
communication places). In Figure 1, communication places p5 and p7 connect the
leftmost A and B RSs, while p6 and p8 connect the leftmost A and C RSs.

The behaviour of a role in an SG protocol is given by all the RSs for that role
and the message causalities with other RSs. Each RS represents a control point
in the protocol where an internal decision by the role is activated by incoming
messages, leading to the dispatch of subsequent messages. This decision may then
be handled as an external choice distributed over multiple RSs downstream. In
Figure 1, A’s internal choice to send g or h is handled by B over the two right-most
B-RSs. Recursive protocols are also formed from the composition of RSs.

Free-choice graphs [10] are a well-known class of Petri net graphs, where
complexity is limited by structurally preventing conflicts. A Petri net graph is
free-choice if, for any arc from a place p to a transition t, either •t = {p} or
p• = {t}. The following states that every SG is free-choice.

Proposition 2.1. If G is an SG, then G is a free-choice Petri net graph.

2.2 Well-formedness of Session Net Graphs

Paths, cycles and diamonds Let G = 〈P, T, F, f, g〉 and X = P ∪ T . A node
x ∈ X is initial if •x = ∅ and terminal if x• = ∅. We write Term(G) for the set of
terminal nodes in G. F x = {(x′, x′′) | x′ ∈ X \ {x}, x′′ ∈ X \ {x}, (x′, x′′) ∈ F}
denotes the restriction of F to X \{x}. We extend this definition to a set of nodes
in the natural way, where we omit set parenthesis, e.g. we write F x,y = F {x,y}.
The reflexive and transitive closure of a relation < is denoted <∗.

A path in P is a finite, non-empty sequence of nodes x0..xn such that
(xi, xi+1)0≤i≤n−1 ∈ F . We let σ, σ′, . . . range over the set of paths augmented by
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the empty sequence ε; σσ′ denotes the concatenation of σ and σ′. We sometimes
treat σ as the set of nodes occurring in it, e.g. we write σ ∪ σ′. We say σ is a
simple path iff every x ∈ σ occurs exactly once; σ contains a node x if x ∈ σ.

A cycle ϕ is a path xx1..xn x where xx1..xn is a simple path. A node x is: an
entry node of ϕ iff there is a path σ from an initial node to x and σ∩ϕ = {x}; an
exit node of ϕ iff there is a path σ′ from x to a terminal node and σ′ ∩ ϕ = {x}.
Figure 3 (left) shows a cycle, along with its entry and exit nodes.

A diamond δ from start x to end y, x 6= y, is a pair of paths δ = 〈xσ1 y, x σ2 y〉,
where σ1 ∩ σ2 = ∅, σ1 ∪ σ2 6= ∅ and x, y /∈ σ1 ∪ σ2. δ is pre-cross-free if for all
z′ ∈ σ1 and z′′ ∈ σ2, (z′, z′′) /∈ F ∗−x,y or (z′′, z′) /∈ F ∗−x,y. Informally, δ is pre-
cross-free if it does not feature a pair of criss-crossing paths between its two sides.
In Figure 3 (right), the diamond with start p and end t is pre-cross-free when the
dotted part is ignored. Finally, δ is cross-free if it is pre-cross-free in the graph
obtained by removing the nodes of a path, if any, from an initial node to each
z ∈ •x. That is, a cross-free diamond has an entry path via each z ∈ •x that
does not overlap the diamond. The p–t diamond in Figure 3 (right) is cross-free
due to the path from p′ to t′.

The conditions for an SG to be well-formed are as follows.

Definition 2.3 (Well-formed session graph). An SG G = 〈P, T, F, f, g〉 is
well-formed if it is a connected graph that respects the following conditions:
(Reachability) (R1) There is exactly one initial node: place pI ∈ P

(R2) All terminal nodes are core places
(R3) ∀x∈X ((pI , x) ∈ F ∗ ∧ ∃y∈Term(G) ((x, y) ∈ F ∗))

(Labels) (L1) ∀p∈P ,∀t,t′∈p• ({f(p′) | (t, p′) ∈ F ∗} = {f(p′) | (t′, p′) ∈ F ∗})
(L2) ∀t∈dom(g),∃p∈P\dom(f)((p, t) ∈ F ∨ (t, p) ∈ F )

(Cycles) (C1) If x is an entry node for some cycle ϕ, x ∈ P
(C2) If x is an exit node for some cycle ϕ, x ∈ P

(Diamonds) (D1) If 〈xσ1y, xσ2y〉 is a diamond, then x ∈ T ⇒ y ∈ T
(D2) If 〈xσ1y, xσ2y〉 is cross-free, then x ∈ P ⇒ y ∈ P
(D3) If 〈tσ1y, tσ2y〉 is cross-free, then for all p ∈ σ1 and t′ ∈ p•,

there is a σ′1 such that t′ ∈ σ′1y and 〈tσ′1y, tσ2y〉 is cross-free

The first five conditions correspond to basic properties of MPST global types.
(R1)–(R3) ensure that every node is reachable from the initial place and a terminal
place is reachable from them. (L1) checks that the sets of roles involved in each
case of a branch are equal (branch mergeability [4, 9]). (L2) ensures that the SG
construction has connected every input and output to a communication place.
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The remaining conditions ensure safety and progress of token dynamics, by
constraining the composition of branch-merge, fork-join and recursive structures
to be a realisable MPST protocol. (C1) and (C2) state that an entry or exit node
of any cycle is a place. (D1) requires a diamond starting at a transition to also
end at a transition. (D2) imposes a dual condition only on cross-free diamonds.
(D3) checks that branches along a cross-free transition-start diamond are re-
merged before the diamond ends. Cross-free diamonds represent the “minimal”
diamond structures for which these latter constraints need hold. Checking these
conditions on cross-free diamonds only (i.e. not all diamonds) permits a larger
set of well-formed SGs, e.g. the p0–t diamond in Figure 1 is not checked for (D2).

We illustrate conditions (C1), (C2) and (D1)–(D3) by examples. In Figure 3 (left),
if the dotted structure in the top-left RS for B is added, the transition t would be
the entry node of a cycle, violating (C1): the net execution from the initial place
would be immediately stuck. If instead the dotted structure in the bottom-right
RS for A is added, the greyed-out internal transition would be an exit node,
violating (C2): the net execution would be unsafe, allowing an unbounded number
of tokens to accumulate within the cycle. Figure 4 (a)–(c) give badly-formed SGs
that violate conditions (D1)–(D3), respectively. In (a), the diamond opened by
a fork but closed by a place is unsafe (not 1-bounded). In (b), the (cross-free)
diamond opened by a branch but closed by a transition will be stuck. Note that
it is not necessary to apply this condition to non-cross-free diamonds, e.g. the
p0–t diamond in Figure 1. In (c), the branch at p along the upper side of the t–y
diamond will prevent the net from terminating if t′1 is chosen by B.

Proposition 2.2. For any SG G, well-formedness is decidable.

Deciding well-formedness conditions (R1) to (C2) is straightforward from their
definitions. For (D1) and (D2), we can show that if the properties hold for any SG
diamond comprised of simple paths, they hold for all general diamonds that may
be derived from the “simple diamond” by performing some number of cycles along
its sides. The case of (D3) is similarly decided by checking only the diamonds
restricted to simple paths from the start to p and from p to the end.

2.3 Session Nets

A Petri net 〈P,M〉 is a Petri net graph P = 〈P, T, F, f, g〉 with a marking
M : P → N0. The following is standard terminology. A place p ∈ P contains n

7



tokens in M , if M(p) = n. A transition t ∈ T is enabled at M (written 〈P,M〉 t−→)
when M(p) > 0 for every p ∈ •t. When t is enabled it may fire, yielding a new
marking M ′ (written 〈P,M〉 t−→ 〈P,M ′〉) such that: M ′(p) = M(p)− 1, for all
p ∈ (•t\t•); M ′(p) = M(p)+1, for all p ∈ (t•\•t); M ′(p) = M(p), otherwise. We
may omit P if it is clear from the context. A firing sequence M0

t1−→M1 . . .
tn−→Mn

can also be written φ : 〈P,M0〉
s−→ 〈P,Mn〉, where s = t1 . . . tn. A marking M ′ is

reachable from M in P if there is a firing sequence φ from 〈P,M〉 to 〈P,M ′〉.

Definition 2.4 (Session nets). Let G = 〈P, T, F, f, g〉 be a well-formed SG
with initial place pI ∈ P . A Petri net N = 〈G,M〉 is: 1) an initial session net and
M is the initial marking for G iff M(pI) = 1, and M(p) = 0 for all p ∈ P \ {pI};
2) a session net iff M is reachable from the initial marking M0 for G.

Session nets satisfy the standard safety of Petri nets [10, 17], i.e. no place contains
more than one token in any marking reachable from the initial marking. Formally:
a Petri net 〈P,M〉 is safe iff M ′(p) ≤ 1, for all p and M ′ reachable from M in P.

Theorem 2.1 (Safety). Every initial session net is safe.

We want to ensure that sessions can always terminate successfully [2, 12, 20].
Standard Petri nets liveness [10, 17] asks for continuous execution in a system
such that no part ever becomes redundant, which is not practical for general
sessions. Deadlock-freedom instead requires that every reachable marking enables
some transition, which does not ensure the progress of all session participants.

Let 〈G,M〉 be a session net for G = 〈P, T, F, f, g〉. The marking M is terminal
in G just when, for all p ∈ P , M(p) > 0 implies p ∈ Term(G), i.e. only terminal
places contain tokens. Progress asks for some terminal marking to be reachable:

Theorem 2.2 (Progress). Let N = 〈G,M〉 be a session net. Then there is a
terminal marking M ′ which is reachable from M in G.

The proofs of decidability of well-formedness (Proposition 2.2), safety (Theo-
rem 2.1) and progress (Theorem 2.2) are based on a conspicuous set of basic
properties of diamonds and cycles in well-formed SGs (see appendix).

We sketch the critical part of the proof of progress, specifying which condition
of Definition 2.3 is mostly responsible for proving each step. Given a reachable
marking M and a transition t such that there are two places p, q ∈ •t, where
M(p) > 0 and M(q) = 0, we need to show that a marking M ′ is reachable from
M , where t is enabled. First, we go back through the history of firings which led
to adding a token into p, until we find a fork which rejoins at t via q (we use (D2)).
Then we go forward in the firing history again, all the way to M . Meanwhile, we
show the invariant that a token is “on its way” to q, i.e. that there is a simple
path σ from a non-empty place to q (we use (D3)). Finally, we show that there
exists a sequence of firings which starts from M , contains all the transitions in σ
and ends by inserting a token into q (we use (C1)).

We comment on the use of other well-formedness conditions. (D1) and (C2) are
fundamental for safety: (D1) prevents incorrect merging of parallel token flows
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generated by a fork; (C2) rules out cycle patterns that could generate unboundedly
many tokens. (R1) and (R3) allow to derive basic results upon which all properties
rely. (R2), (L1) and (L2) ensure session types compatibility (§ 3 and § 3).

3 Endpoint Types and Conformance

Endpoint types represent the local view of a global protocol from the perspective
of a role. This section defines conformance between well-formed SGs and syntactic
endpoint types. Using the results of § 2, we show the key property of our framework:
executing a system of independently conformant endpoints preserves conformance
to the corresponding global net execution, thereby ensuring safety and progress.
Endpoint multiparty session types Syntactic endpoint types provide a more
programmatic specification for implementation, to be verified by type checking
(as shown in § 3) or type inference (along the line of [22]). We define their syntax
and LTS with message buffers for asynchronous FIFO communication.

Endpoint types are defined as follows:
T ::= ?{ri〈ai〉.Ti}i∈I | !{ri〈ai〉.Ti}i∈I | µ t.T | t | end

Input choice (?{ri〈ai〉.Ti}i∈I) is an external choice, receiving one of the I-indexed
messages labelled ai from role ri (A, B, . . . ). Dually, output choice (!{ri〈ai〉.Ti}i∈I)
internally chooses one of the ai messages to send to ri. t is a recursion variable,
µ t.T is a recursive type that binds t in T , and end is the terminated type. We
assume that all labels in types are distinct and recursive types are guarded,
taking an equi-recursive view of types [2, 12]. Let R be a set of roles, then:

C ::= (~T , ~w) ~T = (Tr)r∈R ~w = (wrr′)r6=r′∈R w ::= ~a

where C denotes configurations and w denotes buffers. Let m denote the actions
m ::= r!r′〈a〉 | r?r′〈a〉. We write !m to stand for r!r′〈a〉 for some r, r′ and a;
similarly for ?m. The relation T m−→ T ′, on endpoint types for role r, is given by:

!{r′
i〈ai〉.Ti}i∈I

r!r′i〈ai〉
−−−−−→ Ti ?{r′

i〈ai〉.Ti}i∈I

r?r′i〈ai〉
−−−−−→ Ti

T [µ t.T/t] m−→ T ′

µ t.T m−→ T ′

We write T m−→ iff T
m−→ T ′ for some T ′. Lastly, (~T , ~w) r†r′〈a〉−−−−→ (~T ′, ~w′) iff:

† =! =⇒ (Tr
r!r′〈a〉−−−−→ T ′

r ∧ (i 6= r⇒ T ′
i = Ti) ∧ wrr′ · a = w′

rr′ ∧ (ij 6= rr′ ⇒ wij = w′
ij))

† =? =⇒ (Tr
r?r′〈a〉−−−−→ T ′

r ∧ (i 6= r⇒ T ′
i = Ti) ∧ wr′r = a · w′

r′r ∧ (ij 6= r′r⇒ wij = w′
ij))

Output by r to r′ enqueues a message in the buffer. Input by r′ consumes messages
in the same order, checking that the label matches one of those expected.
Conformance Conformance replaces the usual projection found in MPST sys-
tems [12]. Similarly to safe projections and session type subtyping [8], conformance
relates the local protocol behaviour of a role to the global specification. Unlike
projection, it uses the global behavioural model (i.e. net dynamics) to validate
each local behaviour at endpoint level.

The functions local(t) and remote(t) lookup the local and the remote role of
an observable transition t, respectively. Given G = 〈P, T, F, f, g〉, let t ∈ dom(g).
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A !a ?a

B
!b ?b

A

!c ?c

B
!d ?d

A

T bad
A =!B〈a〉.?B〈b〉.!B〈c〉.?B〈d〉.end
T bad

B =?{A〈a〉.?A〈c〉.!A〈b〉.!A〈d〉.end,
A〈c〉.?A〈a〉.!A〈b〉.!A〈d〉.end}

Fig. 5. Motivation for output priority in independent conformance to parallel SG flows

Then local(t) = f(p), for p ∈ dom(f) such that ((p, t) ∈ F∨(t, p) ∈ F ). Similarly,
remote(t) = f(p), for p ∈ dom(f) such that there are p′ /∈ dom(f) and t′, where
either: {(p, t′), (t′, p′), (p′, t)} ⊆ F if g(t) =?a; or {(t, p′), (p′, t′), (t′, p)} ⊆ F if
g(t) =!a. We define the projected LTS on session nets for a role r as follows:

1. 〈G,M〉 r†r′〈a〉−−−−→ 〈G,M ′〉 if M t→M ′, g(t)=†a, local(t)=r and remote(t)=r′

2. 〈G,M〉 τr−→ 〈G,M ′〉 if M t→M ′ and local(t) 6= r.
3. 〈G,M〉 τ−→ 〈G,M ′〉 if M t→M ′ and t /∈ dom(g).

We write τ∗−→ for the reflexive and transitive closure of τ−→, and =⇒ for the reflexive
and transitive closure of τ−→ ∪ τr−→. Conformance is defined as follows.

Definition 3.1 (Conformance). An endpoint type Tr conforms to a session
net 〈G,M〉, written Tr � 〈G,M〉, if the following conditions are satisfied:

1. (a) if Tr
r!r′〈a〉−−−−→ T ′r, then 〈G,M〉 =⇒ r!r′〈a〉−−−−→ 〈G,M ′〉 and T ′r � 〈G,M ′〉

(b) if Tr
?m−−→, then 〈G,M〉 =⇒ ?m′−−→ for some ?m′

2. (a) if 〈G,M〉 =⇒ r!r′〈a〉−−−−→, then Tr
!m−−→ for some m

(b) if 〈G,M〉 =⇒ r?r′〈a〉−−−−→ 〈G,M ′〉, then:
– Tr

~m−→ ?m−−→, for some ?m and sequence of output actions ~m
– if Tr

?m−−→ for some ?m, then Tr
r?r′〈a〉−−−−→ T ′r and T ′r � 〈G,M ′〉

3. if 〈G,M〉 τr−→ 〈G,M ′〉, then Tr � 〈G,M ′〉

Tr � G (Tr conforms to G) if Tr � 〈G,M0〉 where M0 is the initial marking.

The asymmetry between cases 1 and 2 is due to choice subtyping [8], and the
omission of parallel endpoint types. In 1(a), every endpoint output must be
simulated by the session net. In 2(a), an endpoint only has to perform some
output when the net outputs. Thus endpoint outputs may safely underspecify
the global model. Dually, endpoint inputs may be overspecified. In 2(b) and 1(b),
the endpoint simulates every input by the net, but not vice versa. In 2(b), we
allow the endpoint to output before simulating an input: this is sound because
the net can do the same outputs without disabling the original input. Note that
the subtyping [8] is included in the conformance: if Tr � 〈G,M〉 and T ′r 6 Tr
where 6 is defined as in [8, Definition 8], then T ′r � 〈G,M〉 (Lemma J.1).

Conformant endpoint types for the SG in Figure 1 were explained in § 1.
Figure 5 shows a SG between roles A and B, and endpoint types T badA and T badB
for A and B, respectively (using the abbreviated notation described in § 1). Note
that these types do not independently conform to the SG: T badA refines the global

10



P ::= u[r1, .., rn](c).P Request
| u[r](c).P Accept
| c! r : l〈v〉;P Select
| c?{ri : li(zi).Pi}i∈I Branch
| P | Q | 0 Parallel, Nil
| µX.P | X Recursion
| (νa)P | (νs)P Hiding
| s[r, r′] : h Queue

h ::= ε | h · l〈v〉 | h · s[r]
v ::= a | s[r] | x (values)
u ::= a | x (identifiers)
c ::= x | s[r] (sessions)
s, s′, ... (session names)
a, b, ... (shared names)
x, y, z, ... (variables)

Fig. 6. Syntax of processes

protocol by forcing a process to wait for an acknowledgement to a (message b),
before sending c; similarly, T badB mandates to wait for both a and c before doing
any output. When composed together, they get stuck in a deadlock. Conformance
is designed to prioritise outputs over inputs, thus ruling out incorrect protocols
as T badA and T badB . If output priority was to be relaxed, both T badA and T badB would
be conformant and deadlocks would not be prevented.

Weak transition sequences of a net are finite; hence we have:

Proposition 3.1. For any endpoint type Tr and SG G, conformance is decidable.

Theorem 3.1 (Soundness). Let G = 〈P, T, F, f, g〉 have initial marking M0
and f have range R. Let C0 = (~T0,~ε) be an initial configuration such that T0r �
〈G,M0〉, for all r ∈ R. Let also C0

m1−−→ C1 . . .
mn−−→ Cn be such that Ci = (~Ti, ~wi),

for all i ∈ {1, . . . , n}. Then 〈G,M0〉
τ∗−→ m1−−→ 〈G,M1〉 . . .

τ∗−→ mn−−→ 〈G,Mn〉, for
some M1 . . .Mn; such that Tir � 〈G,Mi〉, for all i ∈ {1, . . . , n} and r ∈ R.

We now define the safety properties of a configuration C, following those in
communicating automata [9, § 3]. We say C is terminal if C = ( ~end,~ε).

1. C is a deadlock configuration if ~w = ~ε, while C is not terminal and no Tr is
an output type, i.e. some types are blocked, waiting for messages.

2. C is an orphan message configuration if all Tr ∈ ~T are end but ~w 6= ∅, i.e.
there is at least an orphan message in a buffer.

3. C is an unspecified reception configuration if there is r ∈ R such that Tr is
an input and, for all r′ ∈ R and a, Tr

r?r′〈a〉−−−−→ T ′r implies that |wr′r| > 0 and
wr′r 6= a · w, i.e Tr is prevented from receiving any message from buffer r′r.

We say C is deadlock-free (resp. orphan message-free, reception error-free) if no
C ′ such that C ~m−→ C ′ is a deadlock (resp. orphan message, unspecified reception)
configuration. C is safe if it is deadlock-free, orphan-free and reception error-free.

Theorem 3.2 (Safety and Progress). Let G = 〈P, T, F, f, g〉 be a well-
formed SG, where the range of f is R. Let C0 = (~T0,~ε) be an initial configuration
such that T0r � G, for all r ∈ R. Then (1) C0 is safe; and (2) for all C such
that C0

~m−→ C, either C is terminal or C m′−−→ C ′, for some action m′.
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[Req]
Tr1 � G = 〈P, T, F, f, g〉 Γ ` u : G
range(f) = {r1, .., rn} Γ ` Q B∆,x : Tr1

Γ ` u[r1, .., rn](x).Q B∆
[Acc]

Tri � G Γ ` u : G
Γ ` Q B∆,x : Tri i 6= 1

Γ ` u[ri](x).Q B∆

[Sel]
j ∈ I Γ ` P B∆, c : Tj Γ ` u : Gj

Γ ` c! rj : lj〈u〉;P B∆, c :!{ri〈li〈Gi〉〉.Ti}i∈I

[Bra]
∀i ∈ I Γ, zi :Gi ` Pi B∆, c : Ti

Γ ` c?{ri : li(zi).Pi}i∈I B∆, c :?{ri〈li〈Gi〉〉.Ti}i∈I

[SSel]
j ∈ I Γ ` P B∆, c : Tj

Γ ` c! rj : lj〈c′〉;P B∆, c :!{ri〈li〈T ′
i 〉〉.Ti}i∈I , c

′ : T ′
j

[SBra]
∀i ∈ I Γ ` Pi B∆, c : Ti, zi :T ′

i

Γ ` c?{ri : li(zi).Pi}i∈I B∆, c :?{ri〈li〈T ′
i 〉〉.Ti}i∈I

Fig. 7. Process typing for conformant endpoints

4 Multiparty Asynchronous Session Calculus
Safety and progress are reflected from session graphs onto processes through
type conformance. The syntax (Figure 6) is extended from [2], allowing commu-
nication with different roles within a single branch.It supports channel mobility
and session delegation (i.e. passing and hiding shared/session channels). We
summarise the semantics adapted from [2]. bLinkc creates a new session s with
bidirectional queues, where fn(P ) is the set of free names of P ; bSelc enqueues
and bBrac dequeues a message. Other rules give the closure under |, ν and
structural equivalence ≡ (including (νs)(s[r1, r′1] : ε | .. | s[rn, r′n] : ε) ≡ 0).
bLinkc a[r1, .., rn](x).P1 | a[r2](x).P2 | · · · | a[rn](x).Pn

−→ (νs)(Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε)) s 6∈ fn(Pi)

bSelc s[r]! r′ : l〈v〉;P | s[r, r′] : h −→ P | s[r, r′] : h · l〈v〉

bBrac s[r]?{r′
i : li(zi).Pi}i∈J | s[r′

j , r] : lj〈v〉 · h −→ Pj [v/zj ] | s[r′
j , r] : h

Conformance replaces the usual endpoint type projection [12]. Type environ-
ments use well-formed SGs G and endpoint types T from the previous sections:

Γ ::= ∅ | Γ · u :G | Γ ·X :∆ ∆ ::= ∅ | ∆ · c :T
SG/endpoint type messages are injectively mapped to pairs of process labels
l1, l2, . . . and G or T , e.g. ?{ri〈li〈Si〉〉.Ti}i∈I where each S is either G (shared
channel passing) or T (session delegation). X : ∆ types a recursive process.
Γ ` P B∆ is a typing judgement.

Figure 7 lists the key rules, adapted from [2], for typing conformant endpoint
processes in the session net setting; the omitted rules are as in [2]. Rule [Req] types
a session initiation request by checking that the endpoint type for the session
body conforms to the G associated to the shared channel for role r1; [Acc] types
an initiation accept in the dual manner. Rules [Sel] and [Bra] type selection and
branching with shared channel passing (i.e. passing SG-typed messages). Rules
[SSel] and [SBra] similarly type selection and branching with session delegation
(i.e. linear communication of endpoint-typed messages).

Processes typed by endpoint types T4, T5 and T6 in § 1 are given as follows:
P4 = a[rA, rB, rC](x).if v then x! rB :a;x! rC :b;P5 else x! rB :c;x! rC :d;P5
P5 = x?{rB :e.x?{rC :f.P6}, rC :f.x?{rB :e.P6}} P6 = x! rB :h.x?{rB : i.x! rB :g.0}
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where we use the if statement which is encodable in the current syntax [15,
§ 2]. Without explicit subsumption typing rules, conformance still enables the
typing of processes with branch/select and recursive subtype behaviours [8] and
permutation of selections [16], via parallel expansion. By Theorem 3.1, we have
the following subject reduction theorem, from which the safety properties for
processes are derived as a corollary [12].

Theorem 4.1. Suppose Γ ` P B ∅ and P −→∗ P ′. Then Γ ` P ′ B ∅.

Session net progress (Theorem 2.2) corresponds to the following progress property
for processes within a single session [12] (a session net, as any individual global
type, models a single protocol). We say P0 = a[r1, .., rn](x).P1 | a[r2](x).P2 |
· · · | a[rn](x).Pn is simple if a :G ` P0B ∅, Pi does not contain session delegation,
accept, request and hiding, and G = 〈P, T, F, f, g〉 where range(f) = {r1, .., rn}.

Theorem 4.2 (Progress). Let a : G ` P0 B ∅ and let P0 be simple. Then for
all P such that P0 −→∗ P , either P ≡ 0 or P −→ P ′, for some P ′.

Thus safety and progress of a well-formed net ensure those of the conforming,
well-typed processes. Progress across separate sessions can be obtained by using
advanced typing systems, e.g. [2], at the top of the typing systems in Figure 7.

5 Implementation and Related Work

Implementation We have implemented Java APIs for validating session graph
well-formedness and endpoint type conformance to demonstrate the tractability
of our framework. The code and implementations of all the examples in this
paper (including Appendix A) are available at [19]. We plan to integrate this
framework into an extension of Session Java [13], using these well-formedness
and conformance APIs to extend the type system following § 3.
Related Work Workflow nets [20] (WFNs) are a class of Petri nets originally
introduced to describe the operation of business processes. A WFN is an ab-
straction of a global system on which Petri net techniques are used to verify
properties such as dead-lock freedom and proper termination. Session nets differ
firstly by specifying multiparty role and message details that WFNs are not
concerned with. A sound WFN is a good single, self-contained system, whereas
a well-formed session net further ensures that the global protocol, given by the
configuration of roles and messages on the structure of the net, is safely realisable
as a set of independent, distributed endpoints. Secondly, as an MPST framework,
session nets bridge from the global graph to syntactic endpoint specifications
(via conformance), that are then used to type-check endpoint code.

Open WF-nets (oWFNs) [14] are an endpoint-oriented adaptation of WF-nets
to distributed systems, that starts from constructing a separate net for each
endpoint. In contrast, session nets start from the global-oriented SG model of a
protocol against which each endpoint is checked for conformance. In oWFNs, the
final system properties depend on the specific endpoint composition (effectively
treating the complete system as a standalone WF-net), whereas in session nets,

13



A
!a ?a

B
!b ?b

C
!c ?c

A
!d ?d

B
!e ?e

Fig. 8. A badly-formed SG due to multiparty role conditions (Def. 2.3 (L1))

any endpoints that are independently conformant to an SG are guaranteed to
give a good composition. Like basic WFNs, oWFNs do not explicitly specify or
validate multiparty protocol details.

Although Petri nets classes such as WFNs can be interpreted in a communi-
cations setting (e.g. in [21], the validation of a sequence of I/O action sequences
is subsumed under the general task of accepting traces of fired transitions), they
do not explicitly describe communication protocols. The multiparty protocol
information captured by an SG and their associated well-formedness is crucial
in the design of session nets, allowing us to validate the safe decomposition of
the global system into distributed endpoints. Without these concerns, it is not
necessary to consider as many structural constraints for WFNs as for well-formed
SGs. (A basic WFN requires only (1) one initial and one terminal place, and (2)
that any transition is contained in a path from the initial to the terminal place;
an SG with a single terminal node is thus a WFN.)

As an example, Figure 8 shows a SG whose underlying Petri net satisfies safety
and progress, but not the conditions on role labelling (specifically, Def. 2.3 (L1)).
This global protocol cannot be safely realised between the distributed endpoints
at the implementation level. If an A endpoint chooses to send d in an instance of
this protocol, the C endpoint will not receive any message. However, this means C
cannot locally determine whether A has indeed selected !d, or whether A actually
selected !a and C should wait (indefinitely) to do ?b. A simple way to amend this
SG is to ensure that C is also present along the lower branch (not necessarily in the
same order), so that the initial internal choice by A is explicitly communicated to C
in all eventualities. Other cases of incoherent message labelling, but otherwise safe
in terms of the underlying Petri net, are similarly ruled out by well-formedness,
e.g. race conditions in parallel protocol flows.

In [21], WF-nets are used to implement tools for checking the conformance
of an executed process to a BPEL specification. Their conformance checking,
however, is done at run-time and is used to verify the execution trace of a process,
via e.g. a logging service or runtime monitor. Our notion of conformance is
different, as it is used to statically check the local correctness of each endpoint
type by relating them all to an agreed SG. A well-typed system of endpoint
processes is guaranteed to behave safely for all executions.

Session nets, as in [2, 4, 9, 12] and other type structures for Web services (e.g. [1,
5, 11]), abstract from specific data types so that data typing can be integrated
orthogonally. Recently there have been several works to bridge communicating
automata with choreographies or session types [1, 9]. The main focus of [1, 4, 9] are
projectability conditions for more general forms of global specifications. The unit
of their specifications is an input-output relation between two roles (i.e. A→ B),
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whereas a main new feature of session nets is the explicit representation of the
internal decision structures of participants to produce outputs in response to
inputs. This enables more flexible well-formed global types than those in [1, 4, 9].
None of these works proposed conformance as we have developed for session nets.
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Appendix Contents

A Additional Examples from Use Cases
Two BPMN-based examples and their session net representations

B Additional Comments on Related Work
Expanding on § 5

C Structures in Petri Net Graphs
Some properties of Petri net graphs (§ 2.1) used in later sections

D Session Graphs
Some properties of session graphs (Definition 2.2); proof of Proposition 2.1
(session graphs are free-choice)

E Well-Formed Session Graphs
Various properties of well-formed session graphs (Definition 2.3); proof of
Proposition 2.2 (well-formedness is decidable)

F Session Nets
A property of session nets (Definition 2.4) used in Appendices G and H

G Session Net Safety
Proof of Theorem 2.1 (session net safety)

H Session Net Progress
Proof of Theorem 2.2 (session net progress)

I Conformance
Proofs of Proposition 3.1 (conformance is decidable) and Theorems 3.1
(conformance soundness) and 3.2 (conformance safety and progress)

J Multiparty Asynchronous Session Calculus
Additional rules for process reduction (§ 3) and process typing (Figure 7);
proofs of Theorems 4.1 (subject reduction) and 2.2 (progress).

A Appendix: Additional Examples from Use Cases

This section gives two examples that demonstrate how session nets can be applied
to more realistic and concrete multiparty application protocols. The first example
is a fork-join extension of the Buyer-Seller Web services examples found in [2, 12].
The second example is a choreography from the OMG Business Process Model and
Notation (BPMN) specification [3]. The source code for constructing these session
graphs and validating their well-formedness using our Java APIs is available at
[19].

Multiparty Buyer-Seller with fork-join Figure 9 illustrates the application
protocol as a BPMN choreography. The Buyer (B) makes a combined order request,
in this example for two items, to the Seller (S). In BPMN, the light background
participant in each interaction box is the interaction initiator, dark participant
the non-initiating participant, white envelope the message from the initiator to
non-initiatior, and optional shaded envelope an acknowledgement message. The
diamonds containing a + symbol are parallel gateways (used to denote both
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Fig. 9. BPMN choreography for a Buyer-Seller application featuring multiparty fork-join

forks and joins). After receiving the order, S forks (t1) the protocol into three
threads. The top and bottom threads forward the order for each item to the two
different Suppliers (P1 and P2), who acknowledge the order. In the middle thread,
S performs a credit check on the B via CreditAgency (C)). Taking advantage of
the graphical representation, the protocol is specified so that the join (t3) of the
top and middle threads is independent of the join (t4) of the middle and bottom
threads. As long as the C has acknowledged the credit check, this allows the first
item order to be confirmed independently of the second (i.e. concurrently).

Figure 10 gives the session net representation of this protocol (with the map
from labels to the application data types). This multiparty fork-join pattern can-
not be represented using the global MPST type syntax of [2, 4, 9, 12]. Intuitively,
the tree-structured syntax in these works would require either all three of the
middle threads to be joined before sending either invoice message (i.e. a second
parallel constructor for the two invoice threads is syntactically sequenced after
the preceding three threads), or else one pair of middle threads would be joined
before the other (i.e. a second parallel is syntactically nested within the first).

BPMN Logistics use case Figure 11 reproduces the choreography diagram
for the “Logistics” use case from the BPMN 2.0 specification document1 (§ 11.1).
Figure 12 gives the well-formed session net representation. In addition to branch-

ing and looping (implicit in the “loop” marked tasks), this protocol features a

1 http://www.omg.org/spec/BPMN/2.0/PDF/
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B

!a

?a

S t1

!b ?b
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g = {a 7→ Order, b 7→ Item1, c 7→ Item1Ack, d 7→ CreditInfo, e 7→ CreditAck1,
f 7→ CreditAck2, g 7→ Item2, h 7→ Item2Ack, i 7→ Invoice1, j 7→ Invoice2}

Fig. 10. The session net representation of the protocol in Figure 9

fork-join segment in which the Supplier-Shipper and Supplier-Consignee threads
loop independently to perform some number of repeated message exchanges
before synchronising at the join. Note that the asymmetry between Shipper (H)
and Consignee (C) threads prior to the join is due to the fact that, unlike C, H is
not involved in the continuation of the protocol following the join. Supplier (S)
informs H when the g–f (i.e. Provide/Deliver Item) loop is ended by message u,
whereas it is sufficient for C to be informed via the message q (Confirmation of
Delivery Schedule) later on in the protocol. For this example, we have chosen to
model the Update PO and Delivery Schedule synchronisation at the BPMN join
using two messages (h and l) to join at Retailer (R), but alternatively we could
extend the graph to have S first perform an internal join and send a single message
to R. The latter part of the protocol, although represented in the BPMN as a
linear task sequence, involves a second fork-join pattern (the parallel behaviour
is implicit in the configuration of roles along the sequence), which the session net
makes explicit.

B Appendix: Additional Comments on Related Work

This section gives some additional comments on the related work discussed in § 5.
The standard notion of liveness for Petri nets [10] states that from any marking

reachable from the initial marking, there is a firing sequence that will enable any
transition in the net. Liveness is thus only directly suited to modelling continuously
running systems, often too strong a property for communication sessions, which
may feature mutually exclusive choices and eventually terminate. On the other
hand, deadlock-freedom in Petri nets states that every reachable marking enables
some transition; this property is too weak for modelling multiparty sessions,
where progress is required of all participants.

Session nets and WFNs share the above motivations for developing more
practical progress properties. Session net progress (shown for all well-formed
SGs) corresponds to the proper termination conditions for WFN soundness
(e.g. [20], Def. 7(i),(ii)) generalised to multiple terminal places. Soundness of
a free-choice WFN can be verified in polynomial time, by verifying liveness of
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Fig. 11. “Logistics” use case from the BPMN 2.0 specification1 (Figure 11.4, page 319)
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Fig. 12. The session net representation of the “Logistics” use case in Figure 11
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a lightly extended version of the net [20]. This technique can be extended to
SGs by transforming multiple terminal places to a single one, but we note the
transformation may be non-trivial in the general case. Appendix H shows that
the no dead transitions property of sound WFNs also holds for well-formed SGs
(Theorem H.1). Regarding safety, sound WFNs are bounded, while well-formed
SGs are more strictly 1-bounded. The stronger latter property is related to the
preservation of linearity of communications [12] (e.g. precluding parallel message
races), which is essential to guarantee session type safety.

Some of the well-formedness conditions of Definition 2.3 are naturally similar
to certain characterisations of sound WFNs: e.g. [21] requires all diamonds
to have matching splits and joins. SG well-formedness is more general, e.g. it
imposes the place-to-place (branch-merge) requirement on cross-free diamonds
only (permitting diamonds such as the p0–t diamond in Figure 1). We believe
our well-formed SG characterisation can be adapted to provide intuitive user
feedback in MPST tool implementations based on session nets, e.g. to report
why a global type/graph is badly-formed and why it would not be a valid MPST
protocol. More abstract net characterisations, e.g. based on S-coverability [21]
and linear dependencies [10], may not provide as direct guidance in terms of
protocol design and engineering.

Session nets have so far focused on a programming methodology that steps
from the graphical global specification to syntactic endpoint specifications. A
possibility for integrating session nets and WFNs would be to project (or relate by
conformance) global session nets to WFN endpoints extended with asynchronous
I/O actions. Adapting the projection of synthesised Petri nets into communication
automata [20] may offer one approach.

Additional References
20. E. Badouel, B. Caillaud, and P. Darondeau. Distributing finite automata through

petri net synthesis. Formal Aspects of Computing, 13(6):447–470, 2002.
21. W. M. P. van der Aalst. The application of petri nets to workflow management.

Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

C Appendix: Structures in Petri net Graphs

In this section we present some general results on structures that occur in Petri
net graphs of all kinds.

C.1 Simple Paths

We define the function simple(−), which takes a path, removes the cycles and
returns a simple path. Then we show that it satisfies the expected properties.

For any path σ, we define simple(σ) as follows:

– simple(ε) = ε;
– if σ = x · σ′ and x /∈ σ′, then simple(σ) = x · (simple(σ′));
– if σ = x · σ′ · x · σ′′ and x /∈ σ′′, then simple(σ) = x · (simple(σ′′)).
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The first result shows that the function simple(−) indeed returns a simple path,
with the same start and end nodes as the original path.

Lemma C.1. Let σ be a path from x to y in a Petri net graph P. Then simple(σ)
is a simple path from x to y.

Proof. We do the proof by induction on the length of σ. Since σ is an actual
path, it cannot be ε. Then, by definition of simple(−), there are σ′, σ′′ and x
such that σ = σ′ ·x ·σ′′, x /∈ σ′′ and either σ′ = ε or σ′ is a path whose first node
is x. Either way, the above implies simple(σ) = x · simple(σ′′).

If σ′′ = ε, σ is a path from x to x and simple(σ) = x is a simple path from x
to x. Otherwise there are nodes z ∈ x• and y, such that σ is a path from x to
y and σ′′ is a path from z to y. By induction hypothesis, simple(σ′′) is a simple
path from z to y. Then simple(σ) is a simple path from x to y. �

The next result shows the other direction of the above.

Lemma C.2. Let σ be such that simple(σ) is a path from x to y. Then σ is also
a path from x to y.

Proof. By definition of simple(−), σ = ε if and only if simple(σ) = ε. Since the
latter contains at least one node, so does the former. Then σ is a path. Let z
be the first node of σ. Then by Lemma C.1, z is also the first node of simple(σ).
Then z = x. We use the same reasoning to show that y is the last node of σ. �

The following result gives a useful factorisation for the function simple(−).

Lemma C.3. Let σ be a path and x ∈ simple(σ). Then there are σ′ and σ′′ such
that σ = σ′ · x · σ′′ and simple(σ) = simple(σ′) · simple(x · σ′′).

Proof. Since x ∈ simple(σ), the length of simple(σ) is greater than or equal to 1.
If the length is 1, then simple(σ) = x. By definition of the function simple(−),
there is σx such that σ = ε · x · σx (note that σx is possibly ε). Then:

simple(σ) = simple(ε · x · σx) = ε · simple(x · σx) = simple(ε) · simple(x · σx)

and the claim is satisfied.
Suppose that the claim holds for length n ≥ 1 and let simple(σ) have length

n+ 1. Hence, there are a node y and a path σ′ of length n such that:

simple(σ) = y · σ′

First let y = x. By definition of simple(−), σ is of the form σ = ε · x · σx, for
some σx. Then, following the same reasoning given in the base case, we have
simple(σ) = simple(ε) · simple(x · σx), which concludes the proof.

Now let y 6= x. By definition of simple(−), σ is of the form σ = σy ·σ′y, for some
σy and σ′y such that y is the first and last node of σy, y /∈ σ′y and σ′ = simple(σ′y).
Then simple(σy) = y and:

simple(σ) = y · σ′ = simple(σy) · simple(σ′y)
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x 6= y implies x ∈ σ′. By induction hypothesis, there are σx and σ′x such
that σ′y = σx · x · σ′x and σ′ = simple(σ′y) = simple(σx) · simple(x · σ′x). Then
σ = (σy · σx) · x · σ′x. Moreover, y /∈ σ′y implies y /∈ σx. Hence, simple(σy · σx) =
y · simple(σx) = simple(σy) · simple(σx). Then:

simple(σ) = simple(σy) · simple(σ′y) = simple(σy) · simple(σx) · simple(x · σ′x)
= simple(σy · σx) · simple(x · σ′x)

which concludes the proof. �

It follows as a corollary that every node contained in the result path is also
contained in the original path.

Corollary C.1. Let σ be a path in a Petri net graph P and let x ∈ simple(σ).
Then x ∈ σ.

C.2 Diamonds

We start by introducing some technical notions related to diamonds that are
used throughout the Appendix, then we present the results.

Diamonds: technical notions. We formalise the notion of entry path we
informally used in § 2 to define cross-free diamonds. Coincidentally, we introduce
the new notion of straight diamond, by relaxing the cross-free condition: like
cross-free diamonds, straight diamonds require an entry path; but unlike cross-free
diamonds, they allow criss-crossing paths between the two sides of the diamond.

Definition C.1 (Entry path of a diamond, straight diamond). Let δ =
〈σ1, σ2〉 be a diamond with start node x. Then a path σ from an initial node y to
some node z ∈ •x is an entry path of δ if and only if σ ∩ (σ1 ∪ σ2) = ∅. If such
is the case, we say that δ is a straight diamond with entry path σ.

Checking the cross-free condition of a diamond, requires some tedious quantifica-
tions over its two paths and all the paths that go from a node in the first path
to a node in the second path. Sometimes, it is possible to abstract from those
quantifications, by using the following two families of sets. Let σ1, . . . σn be paths
and let X ′ ⊆ X be a subset of the set of all nodes X. Then we define:

SX
′

i,j = {x ∈ σi|∃y∈σj
: (x, y) ∈ F ∗−X′} (1a)

S̄X
′

i,j = {y ∈ σj |∃x∈σi : (x, y) ∈ F ∗−X′} (1b)

where i, j ∈ {1, . . . n}. Generally, we assume that X ′ = σ ∪ {t, t′}, for some path
σ and transitions t and t′, such that there exists some diamond from t to t′ with
σ as entry path. We also assume that tσit′ is a path, for all i ∈ {1, . . . , n}. If σ, t
and t′ are clear from the context, we leave X ′ = σ ∪ {t, t′} implicit, e.g. we write
Si,j and S̄i,j to stand for Sσ∪{t,t

′}
i,j and S̄

σ∪{t,t′}
i,j , respectively.
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Note that Si,j 6= ∅ if and only if S̄i,j 6= ∅. Let also ≤σ be the total order
induced by a path σ on its nodes, as follows. Given x, y ∈ σ, x ≤σ y if and only if
either x = y or the latest occurrence of x appears before the latest occurrence of
y in σ. In the following proofs, we may refer to the maximal element of Si,j and
to the minimal element of S̄i,j , where: maximality in Si,j is with respect to ≤σi

;
whereas minimality in S̄i,j is with respect ≤σj . Given x, y ∈ σi \ σ, we have that:
x ≤σi

y and y ∈ Sσi,j imply x ∈ Sσi,j ; while x ≤σi
y and x ∈ S̄σj,i imply y ∈ S̄σj,i.

In other words, a non-empty Si,j is bijectively mapped to its maximal element,
while a non-empty S̄i,j is bijectively mapped to its minimal element.

Diamonds: results. The following result shows that simple(−) applied to the
entry path of a diamond returns an entry path for the same diamond again. It
follows that if a diamond has an entry path, then it has also a simple entry path.

Lemma C.4. Let σ be an entry path for a diamond δ, then simple(σ) is also an
entry path for δ.

Proof. Let δ = 〈σ1, σ2〉. Suppose that there exists x ∈ simple(σ)∩ (σ1∪σ2). Then
x ∈ simple(σ). By Corollary C.1, this implies x ∈ σ. Since x is also contained in
σ1 ∪σ2, we have x ∈ σ ∩ (σ1 ∪σ2). But this is impossible since σ is an entry path
of δ. Then simple(σ) ∩ (σ1 ∪ σ2) = ∅. Then simple(σ) is an entry path of δ. �

The next result shows a nice factorisation of the function simple(−), when applied
to a path on either side of a diamond.

Lemma C.5. Let 〈x · σ · y, x · σ′ · y〉 be a diamond from a node x to a node y.
Then simple(x · σ · y) = x · simple(σ) · y and simple(x · σ′ · y) = x · simple(σ′) · y.

Proof. We do the proof for σ, that for σ′ follows the same reasoning. The node
x appears only once in x · σ · y, then x /∈ σ · y. This implies simple(x · σ · y) =
x · simple(σ · y). By Lemma C.1, simple(σ · y) is a simple path that ends at y.
Then y does appear in simple(σ · y). By Lemma C.3, there are σ′ and σ′′ such
that σ · y = σ′ · y · σ′′ and simple(σ · y) = simple(σ′) · simple(y · σ′′). Since y
appears only once in σ · y = σ′ · y · σ′′, we have σ = σ′ and σ′′ = ε. Then
simple(σ · y) = simple(σ) · y and simple(x · σ · y) = x · simple(σ) · y. �

The following result justifies the definitions of diamond and cross-free diamond.

Lemma C.6. Let δ = 〈xσy, xσ′y〉 be a diamond from a node x to a node y.
Then δ′ = 〈simple(xσy), simple(xσ′y)〉 is a diamond from x to y. Moreover, if δ
is a cross-free diamond, then δ′ is a cross-free diamond.

Proof. By Lemma C.1, simple(xσy) and simple(xσ′y) are both simple paths which
start from x and end at y. Let z ∈ simple(xσy) ∩ simple(xσ′y). By Corollary C.1,
z ∈ (xσy)∩ (xσ′y). Since σ ∩ σ′ = ∅, either z = x or z = y. Then δ′ is a diamond
from x to y.

Now, suppose that δ is cross-free and let •x = {z1, . . . , zn}. By definition
of cross-free diamond, there are an initial node z0 and paths σ0, . . . , σn such
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that σi starts from z0 and ends at zi (for all i ∈ {1, . . . , n}) and δ is pre-cross-
free in the graph obtained by removing σ1, . . .σn−1 and σn. Without loss of
generality, we assume that ∀z∈σ,z′∈σ′ (z, z′) /∈ F ∗σ1∪...∪σn∪{x,y}. By Lemma C.5,
simple(xσy) = x·simple(σ)·y and simple(xσ′y) = x·simple(σ′)·y. By Corollary C.1,
any z ∈ simple(σ) and z′ ∈ simple(σ′) are such that z ∈ σ and z′ ∈ σ′. Then
(z, z′) /∈ F ∗−σ1∪...∪σn∪{x,y}. Then δ′ is a cross-free diamond from x to y. �

The following result shows that any straight diamond “subsumes” some cross-free
diamond.

Lemma C.7. Let δ = 〈xσ1y, xσ2y〉 be a straight diamond from a node x to
a node y with entry path σ0, and let z be the last node of σ1. Then there is a
cross-free diamond δ′ = 〈x′σ′1y, x′σ′2y〉 with entry path σ′0, where σ′1 is a path
ending with z, x′σ′2 is a suffix of xσ2 and σ0x is a prefix of σ′0x′.

Proof. The trivial case is when S
σ0∪{x,y}
2,1 = ∅, as it implies directly that δ =

〈xσ1y, xσ2y〉 is a cross-free diamond with entry path σ0.
Suppose that there is x2 ∈ Sσ0∪{x,y}

2,1 . Then there is a path σ2,1 from x2 to
z such that σ2,1 ∩ (σ0 ∪ {x, y}) = ∅. Note that σ2,1 ∩ σ2 6= ∅, since x2 ∈ σ2.
Then there are a node x′ ∈ σ2 and a path σ′1 such that x′σ′1 is a suffix of
σ2,1 and σ′1 ∩ σ2 = ∅ (i.e. x′ is the last node of σ2,1 which occurs also in σ2).
Then σ2 = σxx′x

′σ′2, for some paths σxx′ and σ′2 such that x′ /∈ σ′2. Note that
δ′ = 〈x′σ′1y, x′σ′2y〉 is a straight diamond with entry path σ′0 = σ0xσxx′ . Note
also that z is the last node of σ′1 and x′σ′2 is a suffix of σ2.

Now, if δ′ is cross-free we are done; otherwise we apply the reasoning above
recursively, until we find a cross-free diamond which satisfies the requirements,
where the number of recursive applications is bounded by the length of σ2. �

D Appendix: Session Graphs

In this section we prove some results on session graphs. They apply to both
well-formed and non-well-formed SGs.

We introduce S-paths, which will be used in Lemma D.3, and later in the
proof of safety. A path σ is an S-path if and only if, for all t ∈ T and p, q ∈ P :

(((t, p) ∈ σ ∧ (t, q) ∈ σ) ∨ ((p, t) ∈ σ ∧ (q, t) ∈ σ)) ⇒ p = q

This is a new definition, however it is inspired by the relatively standard defini-
tion of S-net [10] (also called state-machine in, e.g. [17]): intuitively, the graph
underlying an S-path is an S-net, since the place that precedes any occurrence of
a transition t in σ is unique; the same for the place that follows t.

The proofs for the first three results are rather straightforward checks on the
definition of IRTs, ORTs and their compositions. The first one says that SGs
satisfy the free-choice property stated in the main section.

Proof of Proposition 2.1. An RS consists of two trees sharing only the root
and with arcs going towards the root in one case and away in the other. Then it
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satisfies free-choice. Moreover, input transitions may only occur in the IRT part
of their RS, they only have incoming arcs from places with a unique outgoing
arc. In Def. 2.2, we can form SGs by connecting an output transition of a
RS with an input transition of another RS through a communication place.
Each communication place has exactly one outgoing arc. Then SGs also satisfy
free-choice. �

In our proofs, we also use the following dual property of free-choice: for any arc
from a transition t to a place p, either •p = {t} or t• = {p}. To ensure this
property, we consider a slight variant of SG, whereby each IRT that contains
some output transition t is such that: given p ∈ t•, the unique successor of t in the
IRT, we have •p = {t}. Note that the above already holds in ORTs, where every
place has at most one incoming arc. We could have included the above condition
in the original definition of IRT. However, it is quite pedantic, while also being
an extremely minor requirement: we can apply a canonical transformation that
inserts a dummy sequence of place-then-transition, after each output transition
occurring in an IRT, and makes the condition hold for every SG. Up to this
transformation, then we state the following.

Lemma D.1. For any transition t in some SG and p ∈ t•, either •p = {t} or
t• = {p}.

Proof. An RS consists of two trees sharing only the root and with arcs going
towards the root in one case and away in the other. Then it satisfies the stated
property. Moreover, output transitions only have outgoing arcs to places with
a unique incoming arc, both in the IRT and in the ORT parts of their RS. In
Def. 2.2, we can form SGs by connecting an output transition of a RS with an input
transition of another RS through a communication place. Each communication
place has exactly one incoming arc. Then SGs also satisfy the stated property. �

The following is another structural result which follows from the way RSs are
defined. The proof follows from the same observations given for the above two
results, hence we omit it.

Lemma D.2. For any transition t in some SG, |•t| > 1 implies |t•| = 1 and
|t•| > 1 implies |•t| = 1.

The following is a result on S-paths that is used in the proof of safety.

Lemma D.3. Let G = 〈P, T, F, f, g〉 be an SG with initial place pI . Let t ∈ T ,
let p ∈ t• and let σ be an S-path from pI . Then:

(1) p ∈ σ ⇒ t• ∩ σ = {p} (2) p, t /∈ σ ⇒ t• ∩ σ = ∅

Proof. The proof is immediate in the case of t• = {p}. Then let |t•| > 1, which
means that there exists p′ ∈ t• such that p′ 6= p. By Lemma D.1, •p = •p′ = {t}.

For the proof of (1), note that neither p nor p′ are initial. Hence, any occurrence
of p or of p′ in sigma must follow an occurrence of t. Conversely, since σ is an
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S-path, any occurrence of t be followed by an occurrence of the same place. Then
either p or p′ does not occur in σ. Since p does occur in σ, p′ does not.

The proof of (2) is easier. As stated above, any occurrence of p′ in σ must
follow an occurrence of t. But t does not occur in σ. Then neither does p′. �

E Appendix: Well-Formed Session Graphs

This section shows some properties of well-formed SGS, which we use in later
sections. We conclude by confirming that well-formedness is decidable (Proposi-
tion 2.2).

E.1 Properties of Well-formed Session Graphs

The first result says that every transition following the initial place has no other
incoming arc, except for the one from the initial place.

Lemma E.1. Let G = 〈P, T, F, f, g〉 be a well-formed SG with initial place pI .
Let t ∈ pI•. Then •t = {pI}.

Proof. By contradiction, let there be q ∈ •t such that q 6= pI . By Definition 2.3(R3),
(pI , q) ∈ F ∗.

Suppose that (pI , q) ∈ F ∗−t. Then (t, q) ∈ F ∗ and, therefore, there is a cycle
ϕ which contains the arc (q, t). Since pI ∈ •t \ ϕ, Definition 2.3(C1) applies. An
implication is that (t, pI) ∈ F ∗. But that is impossible, since •pI = ∅ by definition
of initial place. Then we have a contradiction.

Now suppose that (pI , q) /∈ F ∗−t. Since (pI , q) ∈ F ∗, there must be t′ ∈ pI•
such that t′ 6= t. But by Proposition 2.1, pI• = {t} since |•t| > 1. Again, we have
a contradiction. Then •t = {pI} �

The following result says that whenever there is an arc from a place p to a
transition t, then there is a path from the initial place to p which does not visit t.

Lemma E.2. Let G = 〈P, T, F, f, g〉 be a well-formed SG with initial place pI .
Let p ∈ P and t ∈ T such that (p, t) ∈ F . Then (pI , p) ∈ F ∗−t.

Proof. By contradiction, suppose that (pI , p) /∈ F ∗−t. By Definition 2.3(R3),
(pI , p) ∈ F ∗. Then there is a simple path σ from pI to p which visits t. Then
σ = σttσtp, for some paths σt and σtp. Since p ∈ •t, there is a cycle ϕ = tσtpt.
By simplicity of σ, we have σt ∩ σtp = ∅. Then t is an entry node of ϕ. By
Definition 2.3(C1), t ∈ P . Contradiction. �

The following result says that, if a transition has more than one incoming arc,
then it may not be part of a cycle of only two nodes.

Lemma E.3. Let t ∈ T be a transition of a well-formed SG G = 〈P, T, F, f, g〉
such that |•t| > 1. Then •t ∩ t• = ∅.
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Proof. By contradiction, let p ∈ •t ∩ t• and let q ∈ •t be such that q 6= p. Let
pI ∈ Init(G) be the initial place of G. By Lemma E.2, (pI , q) ∈ F ∗−t. Then let
σ be a simple path from pI to q where t does not occur. We are going to show
that p does not occur in σ either. By Proposition 2.1, |•t| > 1 and p ∈ •t imply
p• = {t}. Then p ∈ σ implies t ∈ σ as well. But t /∈ σ, then p /∈ σ. Then t is
an entry node for the cycle tpt. By Definition 2.3(C1), t ∈ P . Then we have our
contradiction. �

The following result says that if an entry node of a cycle is contained in a diamond,
then the ending transition of the diamond is not contained in the cycle. As a
technical remark, note that the diamond is not required to be straight. However,
the path considered, going from the initial node to the start node of the diamond,
is required to be simple.

Lemma E.4. Let G = 〈P, T, F, f, g〉 be a well-formed SG with initial place pI .
Let σ be a simple path from pI to t ∈ T , let 〈σ1, σ2〉 ∈ diamond(t, t′) be a diamond
from t to t′ ∈ T and let ϕ ∈ Φ such that σ ∩ ϕ = ∅. Then t′ /∈ ϕ.

Proof. We assume t′ ∈ ϕ and show that this leads to a contradiction. Let σ′ be
the prefix of σ which ends right before t, i.e. σ = σ′t. We do the proof by cases.

Case 1: ϕ∩ (σ1 ∪σ2) = {t′}. The path σ′σ1 goes from pI to t′. Moreover, it only
intersects ϕ in t′. Therefore, t′ is an entry node for ϕ. By Definition 2.3(R1), t′ ∈ P .
On the other hand, Definition 2.3(D1) implies t′ ∈ T , since t ∈ T . Contradiction.

Case 2: {t′} ( ϕ ∩ σ1. Let x ∈ X be the first node occurring in σ1 which also
occurs in ϕ. Note that x 6= t, since t ∈ σ and σ ∩ ϕ = ∅. Let σx be the prefix
of σ1 ending at x. Then simple(σ′σx) is a simple path from pI to x which only
intersects ϕ in x. Then x is an entry node for ϕ. By Definition 2.3(R1), x ∈ P .

Now let y ∈ X be the first node occurring in σ2 which also occurs in ϕ
(if σ2 ∩ ϕ = {t′}, then y = t′). Let σy be the prefix of σ2 ending at y and
let σyx be the sub-path of ϕ starting from the successor of y and ending at x.
Note that σyσyx is a simple path. Note also that σx ∩ σy = σx ∩ σ2 = {t} and
σx∩σyx = σx∩ϕ = {x}. Then 〈σx, σyσyx〉 ∈ diamond(t, x). By Definition 2.3(D1),
t ∈ T implies x ∈ T . Contradiction.

Case 3: {t′} ( ϕ ∩ σ2. This case is symmetric to the previous case. �

The following result complements the previous one by saying that if an exit node
of a cycle is contained in a diamond, then the starting transition of the diamond
is not contained in the cycle. The proof is dual and we omit it.

Lemma E.5. Let G = 〈P, T, F, f, g〉 be a well-formed SG and pT ∈ Term(G).
Let σ be a simple path from t ∈ T to pT , let 〈σ1, σ2〉 ∈ diamond(t′, t) be a diamond
from t′ ∈ T to t and let ϕ ∈ Φ such that σ ∩ ϕ = ∅. Then t′ /∈ ϕ.

The following result says that any simple path from the initial place is the prefix
of an S-path that ends at a terminal place.
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Lemma E.6. Let G = 〈P, T, F, f, g〉 be a well-formed SG with initial place pI .
For any simple path σ from pI , there are a terminal place pT and a simple path
σ′ ending at pT such that σσ′ is an S-path.

Proof. Let x ∈ X be the last node occurring in σ, where X = P ∪ T is the set of
nodes. By Definition 2.3(R3), there is pT ∈ Term(G) such that (x, pT ) ∈ F ∗. Let
xσ′ be a path from x to pT which, by Lemma C.1, we can assume to be simple.
The case of x = pT is trivial, then let x 6= pT . If σ ∩ σ′ = ∅ then σσ′ is simple
and, therefore, it is also an S-path.

Suppose that σ ∩ σ′ 6= ∅. Let y be the first node of σ′ which also appears in
σ. Let also σyx be the suffix of σ which starts from y and σy be the prefix of σ′
which ends at y. Since both σyx and σy are simple, σyxσy is a cycle and y is an
entry node for it. By Definition 2.3(C1), y ∈ P .

Since σ∩σy = {y} ⊆ P and both σ and σy are simple, σσy is an S-path. Now
let z be the last node of σ′ which also appears in σyx. Then z is an exit node
and by Definition 2.3(C2), z ∈ P . Let yσz be the prefix of σyx which ends at z.
Note that yσz is a subpath of σ, then since σσy is an S-path, σσyσz is an S-path
as well.

Let zσ′′ be the suffix of σ′ which starts from z. Since z is the last node of
σ′ which also appears in σyx and since σ′ is simple, we have σ′′ ∩ σyxσy = ∅.
Then we can apply all the previous reasoning to the prefix of σ ending at z
(which is simple like σ) and σ′′ (which is simple like σ′ but shorter). The path
obtained extends σσyσz, while preserving the properties of S-paths. By applying
this reasoning recursively, we eventually obtain an extension of σ which ends in
pT . If the suffix used for the extension is not simple, apply simple(−) to it and
show that if σ1σ2 is an S-path, then σ1simple(σ2) is an S-path. �

The following result shows that any path from the initial place to a transition
with multiple incoming arcs has a suffix, which is one of the two sides of a
cross-free diamond. First, we show the case where said transition occurs only
once in the path.

Lemma E.7. Let G = 〈P, T, F, f, g〉 be a well-formed SG with initial place
pI ∈ InitG(P ). Let σ be a path from pI to t ∈ T such that t occurs only once in
σ, and let q ∈ •t such that q /∈ σ. Then there are a suffix σ′ of σ and a simple
path σ′′ such that 〈σ′, σ′′〉 is a cross-free diamond, and σ′′ ends with (q, t).

Proof. By Lemma E.2, there is a simple path σq from pI that ends with the
arc (q, t). By Lemma C.1, simple(σ) is also a simple path from pI to t but does
not contain q, by Corollary C.1. Without loss of generality, let σq = σ0xσ1t
and simple(σ) = σ0xσ2t, for some paths σ0, σ1 and σ2, and node x such that
S2,1 = S

σ0∪{x,t}
2,1 = ∅, where we use Si,j and S̄i,j as defined in (1a) and (1b),

respectively (i.e. among all the paths from pI ending with (q, t), σq is the one
that shares the longest prefix with simple(σ)). Note that σ0, σ1 and σ2 are simple
and that 〈xσ1t, xσ2t〉 is a cross-free diamond with entry path σ0.
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By Lemma C.3, there are σ′0 and σ3 such that σ = σ′0xσ3t, simple(σ′0) = σ0
and simple(xσ3t) = xσ2t. We are only interested in the suffix of xσ3t that starts
from the last occurrence of x, hence we assume x /∈ σ3, without loss of generality.

By contradiction, suppose that S3,1 6= ∅ (i.e. there is a node of σ1 which can
be reached from some node of σ3). From simple(xσ3t) = xσ2t and x /∈ σ3, we infer
simple(σ3t) = σ2t. Then σ3t and σ2t start from the same node, by Lemma C.1.
This implies S̄2,3 = σ3 (i.e. every node in σ3 is reachable from some node in
σ2). From S̄2,3 = σ3 and S3,1 6= ∅, we infer S2,1 6= ∅. This contradicts a previous
statement. Then S3,1 = ∅. Then 〈xσ1t, xσ3t〉 is a cross-free diamond from x to t
with entry path σ0. �

Now we show the rest of the result.

Lemma E.8. Let G = 〈P, T, F, f, g〉 be a well-formed SG with initial place
pI ∈ InitG(P ). Let σ be a path from pI with last arc (p, t) ∈ F and let q ∈ •t
such that q 6= p. Then there are a suffix σ′ of σ and a simple path σ′′ such that
〈σ′, σ′′〉 is a cross-free diamond, and σ′′ ends with (q, t).

Proof. The case where t appears only once in σ is given by Lemma E.7. In this
proof, we assume that t appears more than once in σ. Then there is a suffix of σ
of the form tσtt, for some path σt such that t /∈ σt. By Lemma E.2, there is a
simple path σq from pI to q such that t /∈ σq. We consider two separate cases:
in the first case, we assume σt ∩ σq 6= ∅; in the second case, we show that the
assumption σt ∩ σq = ∅ leads to a contradiction.

case: σt∩σq 6= ∅. Let t′σ′t be the suffix of σt such that t′ ∈ σq and σ′t∩σq = ∅ (i.e.
t′ is the last node of σt which is also a node of σq). Then σq = σ0t

′σ′q, for some
σ0 and σ′q. Since σq is simple, t′ /∈ σ′q. And σ′t ∩ σ′q = ∅, since σ′t ∩ σq = ∅. Then
〈t′σ′tt, t′σ′qt〉 is a diamond. Moreover, since σq is simple, we have σ′q ∩ σ0 = ∅.
And since σ′t ∩ σq = ∅, we also have σ′t ∩ σ0 = ∅. Then 〈t′σ′tt, t′σ′qt〉 is a straight
diamond with entry path σ0. Then we can apply Lemma C.7 and we are done.

case: σt∩σq = ∅. By Lemma E.2, there is a simple path σp from pI to p such that
t /∈ σp. Let t′σ′p be a suffix of σp such that t′ ∈ σq and σ′p ∩ σq = ∅. Then σq is of
the form σq = σ0t

′σ′q, for some simple paths σ0 and σ′q. From σ′p∩σq = ∅ we infer
both σ′p ∩ σ′q = ∅. Then δ = 〈t′σ′pt, t′σ′qt〉 is a diamond. Let ϕt = t · simple(σtt).
By Lemma C.1, ϕt is a cycle. From σt ∩σq = ∅ and t /∈ σq, we infer ϕt ∩σ0t

′ = ∅.
But this contradicts Lemma E.4, since t ∈ ϕt. �

The following result says that any simple path from the end node of a cross-free
diamond to a terminal place does not intersect any other node of the diamond.

Lemma E.9. Let 〈tσ0t
′, tσ1t

′〉 be a cross-free diamond in a well-formed SG
G = 〈P, T, F, f, g〉. Let σT be a simple path from t′ to some terminal place
pT ∈ TermG(P ). Then σT ∩ (σ0 ∪ σ1 ∪ {t}) = ∅.

Proof. By contradiction, suppose that σT ∩ (σ0 ∪ σ1 ∪ {t}) 6= ∅. Then σT =
σ′T1x1σT1, for some x1, σT1 and σ′T1 such that x1 ∈ (σ0 ∪ σ1 ∪ {t}) and σT1 ∩
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(σ0 ∪ σ1 ∪ {t}) = ∅. Without loss of generality, let us assume that x1 ∈ tσ1
and let x1σx1 be a suffix of tσ1. Then x1 is an exit place for the cycle ϕ1 =
simple(x1σx1σ

′
T1) · x1. By Definition 2.3(C2), x1 ∈ P . This implies x1 6= t and

x1 ∈ σ1. By Definition 2.3(D3), there is σ2 such that 〈tσ0t
′, tσ2t

′〉 is a cross-free
diamond and σT1 ∩ σ2 6= ∅.

Then there is a suffix of σT1 of the form x2σT2, for some x2 and σT2 such
that x2 ∈ σ2 and σT2 ∩ σ2 = ∅. By applying the above reasoning again, we infer
that x2 is the exit place of a cycle ϕ2 such that ϕ2 ∩ σT2 = ∅, and that x2 ∈ P .
But since σT2 is strictly shorter than σT1, this reasoning can only be applied a
finite number of times. Eventually, we obtain a suffix σTn of σT and a path σn
such that 〈tσ0t

′, tσnt
′〉 is a cross-free diamond and the last node of σTn appears

also in σn. Since σTn is a suffix of σT , its last node is pT . Since pT is a terminal
place, pT • = ∅. But pT ∈ σn implies pT • 6= ∅. Contradiction. �

Note that the proof of Lemma E.9 above does not include any reference to any
entry path. In other words, the definition of cross-free diamond is never invoked
explicitly. Instead, Definition 2.3(D3) is used for the conditions that a cross-free
diamond must obey.

E.2 Decidability of Well-formedness

This section shows that well-formedness is decidable (Proposition 2.2). We start
by providing an outline, then we add all the proof details.

The definition of well-formed SG (Definition 2.3) relies on two main structures:
cycles (for conditions (C1) and (C2)) and diamonds (for conditions (D1), (D2)
and (D3)). While a cycle is defined as a simple path that goes back to the start
node, a diamond is defined as a pair of (non-necessarily simple) paths with
the same start and end nodes. In general, there may be an infinite number of
paths between two nodes: for instance, if there is a path which contains a cycle,
then there are infinitely many other paths that only differ from the first one
in the number of repetitions of the cycle. Therefore, the key for decidability
is to show that the diamond conditions in the definition of well-formed SG
(Definition 2.3(D1), (D2) and (D3)) can be verified by checking simple paths only,
which are finitely enumerable. The hardest condition is Definition 2.3(D3), which
requires checking a property on every single node inside every diamond.

The following result reduces Definition 2.3(D3) to the verification of the
existence of some diamond and of an additional condition, which boils down to
verifying the existence of some simple paths. The proof is given at the end of
this section.

Lemma E.10. Let G = 〈P, T, F, f, g〉 be an SG. Then G satisfies Definition 2.3(D3)
if and only if it satisfies the following condition. Let δ = 〈tσ1t

′, tσ2t
′〉 be a cross-

free diamond from a transition t to a transition t′, where σ is a simple entry path
of δ, and q is the last node of σ1. Then for any place p such that:

(t, p) ∈ F ∗−σ∪σ2t′ ∧ (p, q) ∈ F ∗−σtσ2t′
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and for any transition t′′ 6= t′ such that (p, t′′) ∈ F , the following holds:

(t, t′′) ∈ F ∗−σ∪σ2t′ ∧ (t′′, q) ∈ F ∗−σtσ2t′

The main point about Lemma E.10 is that it allows us to only check for simple
paths (e.g. a condition of the form (p, q) ∈ F ∗−σ) and for the existence of diamonds
and cross-free diamonds (as we do for Definition 2.3(D1) and Definition 2.3(D2)).
We do not have to check a property like Definition 2.3(D3), for any place that is
contained in any diamond.

Such an existential verification is further simplified by applying Lemma C.6,
which shows that: if a (cross-free) diamond between two nodes exists, then a
simple (cross-free) diamond between the same nodes also exists, where a diamond
is simple just when its two paths are both simple. Note also that the “only if”
direction follows from the fact that every simple diamond is also a diamond.
Similarly, Lemma C.4 shows that if a diamond has some entry path (which is
the case for cross-free diamonds) then it has also a simple entry path.

We have thus shown that, all we need to verify Definition 2.3, is to check
for the existence of a relatively small set of simple paths. Then well-formedness
is decidable, since the length of any simple path is bounded by the number of
nodes in the graph.

Proof of Proposition 2.2. It follows from Lemmata C.4, C.6 and E.10. �

Decidability: a technical remark. In the rest of this section we show the
proof of Lemma E.10. The results that we introduce for this proof are not used
in the proofs of progress and safety and can thus be skipped. Nonetheless, they
do provide further insights on Definition 2.3(D3). We start by introducing some
technical notions that are used in the proof.

Let us recall the definition of cross-free diamond. Let δ be a diamond with
start node x. Then δ is cross-free if it is pre-cross-free in the graph obtained
by removing a path from an initial node to each y ∈ •x. By Definition 2.3(R1),
there is a unique initial place pI . If x is a transition, |x•| > 1 by definition of
diamond. Then we can apply Lemma D.2 and infer that there is a unique place
p ∈ •x. For the rest of this section, we are treating Definition 2.3(D3), that is
only concerned with cross-free diamonds which do start from a transition. Then,
in this particular case, the definition of cross-free diamond given above can be
rephrased as follows. The diamond δ given above is cross-free if it is pre-cross-free
in the graph obtained by removing a single entry path σ, from pI to p.

Decidability: proof details. We strengthen Definition 2.3(D3) progressively,
by imposing additional conditions on the derived diamond with respect to the
original diamond. The next result shows that the replacement path in the new
diamond ends at the same place as the path it replaces.

Lemma E.11. Let δ = 〈tσ1y, tσ2y〉 be a cross-free diamond in an SG G =
〈P, T, F, f, g〉, where t ∈ T is a transition. Then, for any place p ∈ σ1 and

31



transition t′ ∈ p•, there is a path σ′1 such that t′ ∈ σ′1y and 〈tσ′1y, tσ2y〉 is a
cross-free diamond. Moreover, if σ1 ends at q ∈ P , then so does σ′1.

Proof. Let p ∈ σ1 be a place and t′ ∈ p• a transition. Let us assume that
t′ /∈ σ1y, as the other case is immediate. A consequence of this is that |p•| > 1.
By Definition 2.3(D3), there is a path σ3 such that t′ ∈ σ3y and δ′ = 〈tσ3y, tσ2y〉
is a cross-free diamond. By Proposition 2.1, |p•| > 1 implies •t′ = {p}. Then
p ∈ σ3 as well.

By contradiction, suppose that p is the maximal element of S3,1, where
S3,1 = Sσ,t,y3,1 is defined as in (1a) and σ is some entry path of δ. Let: pσ1p be
the suffix of σ1 such that p /∈ σ1p (i.e. the suffix following the last occurrence
of p); pσ3p be the suffix of σ3 such that p /∈ σ3p; and σ′3pp be the prefix of σ3
such that p /∈ σ′3p. Then 〈pσ1pt

′, pσ3pt
′〉 is a cross-free diamond with entry path

simple(σtσ′3p). By Definition 2.3(D2), t′ ∈ T implies p ∈ T . Contradiction.
Then p is not the maximal element of S3,1. Then there is σ′3 containing t′,

ending at q and such that δ′ = 〈tσ′3y, tσ2y〉 is a cross-free diamond. �

Lemma C.4 shows that if a diamond has some entry path then it has also a simple
entry path. The next result shows that any two cross-free diamonds between the
same two nodes have the same simple entry paths.

Lemma E.12. Let δ = 〈tσ1y, tσ2y〉 be a cross-free diamond with a simple entry
path σ in an SG G = 〈P, T, F, f, g〉, where t ∈ T . Then σ is an entry path of any
cross-free diamond δ′ of the form δ′ = 〈tσ′1y, tσ2y〉, for some σ′1.

Proof. Let σ′1 be such that δ′ = 〈tσ′1y, tσ2y〉 is a cross-free diamond. We assume
that σ′1 ∩ σ 6= ∅, and show that this leads to a contradiction.

Let σtxx be the unique prefix of σ′1 such that x ∈ σ and σtx ∩ σ = ∅ (i.e.
x is the first node of σ′1 which is also contained in σ). Then σ has the form
σ = σxxσxt, for some σx and σxt. Then ϕx = xσxtt · simple(σtx) · x is a cycle
with entry path σxx. By Definition 2.3(C1), x ∈ P .

By Definition 2.3(R3), there is a terminal place pT ∈ Term(G) such that
(y, pT ) ∈ F ∗. Then let σT be a simple path from y to pT , and consider the path
tσ2yσT , from t to pT . Since t ∈ ϕx, if σ2yσT ∩ ϕx = ∅ then t is an exit node for
ϕx, which in turn implies t ∈ P , by Definition 2.3(C2). But that is a contradiction.
Then σ2yσT ∩ ϕx 6= ∅. But σ ∩ σ2y = ∅, since δ is a cross-free diamond with
entry path σ; and tσ′1 ∩ σ2y = ∅, since δ′ is a diamond. Then ϕt ∩ σ2y = ∅, which
implies ϕt ∩σT 6= ∅. But σ′1 ∩σT = ∅, by Lemma E.9. Then σtxx∩σT = ∅, which
implies σxt ∩ σT 6= ∅. Then σ ∩ σT 6= ∅, since σxt is a suffix of σ.

Let σyx′x′ be the unique prefix of σT such that x′ ∈ σ and σyx′ ∩ σ = ∅
(i.e. x′ is the first node of σT which is also contained in σ). We can apply to
x′ the same reasoning we applied to x above. Thus we show that x′ ∈ P . Now,
since x′ ∈ σ and σ is a simple path, either x′ ∈ σxx or x′ ∈ σxt. In the former
case, let σx′x be the subpath of σ that starts from x′ and ends at x. Then
we have a diamond δtx = 〈tσtxx, tσ2yσyx′σx′x〉. In the latter case, let σxx′ be
the subpath of σ that starts from x and ends at x′. Then we have a diamond
δtx′ = 〈tσtxσxx′ , tσ2yσyx′x

′〉. In both cases we can apply Definition 2.3(D1), and
obtain x ∈ T or x′ ∈ T , respectively. Either way, we have a contradiction. �
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As a consequence of the above result, Definition 2.3(D3) is further strengthened,
as we can now require that the entry path for the derived diamond be the same
as the entry path for the original diamond, as follows.

Corollary E.1. Let δ = 〈tσ1y, tσ2y〉 be a cross-free diamond with a simple entry
path σ in an SG G = 〈P, T, F, f, g〉, where t ∈ T is a transition. Then, for any
place p ∈ σ1 and transition t′ ∈ p•, there is a path σ′1 such that t′ ∈ σ′1y and
〈tσ′1y, tσ2y〉 is a cross-free diamond with entry path σ.

By combining Corollary E.1 with Lemma E.11, we obtain the following result.

Corollary E.2. Let δ = 〈tσ1y, tσ2y〉 be a cross-free diamond with a simple entry
path σ in an SG G = 〈P, T, F, f, g〉, where t ∈ T is a transition and σ1 ends at
a place q. Then, for any place p ∈ σ1 and transition t′ ∈ p•, there is a path σ′1
ending at q such that t′ ∈ σ′1y and 〈tσ′1y, tσ2y〉 is a cross-free diamond with entry
path σ.

We are now ready to prove Lemma E.10.

Proof of Lemma E.10. We prove the two directions of the result separately.

Right-to-left direction. We assume that the stated conditions hold and we show
that they imply Definition 2.3(D3). Let δ = 〈tσ′1pσ′′1 t′, tσ2t

′〉 be a cross-free
diamond from t to t′, with entry path σ. Let q be the last node of σ′′1 . Then:

(t, p) ∈ F ∗−σ∪σ2t′ ∧ (p, q) ∈ F ∗−σtσ2t′

by definition of cross-free diamond. By Lemma C.4, simple(σ) is also an entry
path of δ. Then we can assume, without loss of generality, that σ is a simple
path. Let also t′′ ∈ p• such that t′′ 6= t′ (the case of t′′ = t′ is immediate). Our
assumptions imply that:

(t, t′′) ∈ F ∗−σ∪σ2t′ ∧ (t′′, q) ∈ F ∗−σtσ2t′

Then let σ1 = σ′1pσ
′′
1 and σ3 = σ′1pt

′′σ′3, for some σ′3 ending at q and such that
σ′3 ∩ σtσ2t

′ = ∅. Let also Si,j = Sσ,t,t
′

i,j and S̄i,j = S̄σ,t,t
′

i,j be defined as in (1a)
and (1b), for i, j ∈ {1, 2, 3}. Note that S3,1 = S̄1,3 = σ3 (i.e. they both contain
all the nodes of σ3) since both σ1 and σ3 end at q. Note also that either S1,2 = ∅
or S̄2,1 = ∅, since δ is a cross-free diamond. In the former case, S3,2 = ∅ since
S̄1,3 = σ3. In the latter case, S̄2,3 = ∅ since S3,1 = σ3. Then 〈tσ3t

′, tσ2t
′〉 is a

cross-free diamond from t to t′ (with entry path σ).

Left-to-Right direction: Contradiction hypothesis and its implications. Now we
assume that Definition 2.3(D3) holds and show that it implies the stated conditions.
Let δ = 〈tσ1t

′, tσ2t
′〉 be a cross-free diamond with a simple entry path σ, where

q is the last node of σ1. Let p ∈ P be such that:

(t, p) ∈ F ∗−σ∪σ2t′ ∧ (p, q) ∈ F ∗−σtσ2t′

and let t′′ 6= t′ be a transition such that (p, t′′) ∈ F .
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The above implies that there is σ3 of the form σ3 = σ′3pσ
′′
3 , where tσ′3p is a

simple path from t to p, pσ′′3 is a simple path from p to q and σ3 ∩ σtσ2t
′ = ∅.

By contradiction, suppose that:

¬((t, t′′) ∈ F ∗−σ∪σ2t′ ∧ (t′′, q) ∈ F ∗−σtσ2t′)

But (t, p) ∈ F ∗−σ∪σ2t′
and (p, t′′) ∈ F imply (t, t′′) ∈ F ∗−σ∪σ2t′

. Then we have:

(t′′, q) /∈ F ∗−σtσ2t′

The contradiction hypothesis above implies that there is no σ4 ending at q,
containing t′′ and such that 〈tσ4t

′, tσ2t
′〉 is a cross-free diamond with entry path

σ. By Corollary E.2, we infer that there is no σ4 ending at q, containing p and
such that 〈tσ4t

′, tσ2t
′〉 is a cross-free diamond with entry path σ. In particular,

the diamond δ′ = 〈tσ3t
′, tσ2t

′〉 is not cross-free. Then σ1 is different from σ3 and
p /∈ σ1, since σ1 is a path of δ and δ is cross-free.

As done for the other direction, let Si,j = Sσ,t,t
′

i,j and S̄i,j = S̄σ,t,t
′

i,j be defined
as in (1a) and (1b), for i, j ∈ {1, 2, 3}. Since δ′ is not a cross-free diamond, both
S2,3 and S3,2 are non-empty. Since both σ1 and σ3 end at place q, S3,1 contains
all the nodes that occur in σ3 and S1,3 contains all the nodes that occur in σ1 (i.e.
q is the maximal element of both). Then S2,1 is also non-empty. Then S1,2 must
be empty, since δ is a cross-free diamond. Note that S̄1,3 6= ∅, since S1,3 6= ∅.

Let y be the minimal element of S̄1,3. Then there is a cross-free diamond
δ′ = 〈tσ3yy, tσ1yy〉 with entry path σ, where σ3yy is a prefix of σ3 and σ1y has
some non-empty prefix which is also a prefix of σ1. By Definition 2.3(D1), t ∈ T
implies y ∈ T . Let also σ′3y be the remaining suffix of σ3, i.e. σ3 = σ3yyσ

′
3y.

Note that S1,2 = ∅ implies that 〈tσ1yyσ
′
3yt
′, tσ2t

′〉 is a cross-free diamond. As we
showed above, there is no σ4 ending at q, containing p and such that 〈tσ4t

′, tσ2t
′〉

is a cross-free diamond. Then p /∈ yσ′3y, which implies p ∈ σ3y.

Left-to-Right direction: Reaching a contradiction. Since δ′ is a cross-free diamond
and p ∈ σ3y, we can apply Corollary E.1. Then there is σ4y containing t′′ and
such that 〈tσ4yy, tσ1yy〉 is a cross-free diamond with entry path σ. By using
Lemma E.4, it is easy to show that t′ /∈ σ4y. Then:

(t′′, q) ∈ F ∗−σ∪{t,t′}

This implies that there is q′ such that q′ is the first node to appear in σ3 that
satisfies (t′′, tq′) ∈ F ∗−σtσ3t′

, for some tq′ ∈ •q′. We first show that q′ is a place,
then we contradict that statement.

The choice of t′′ and tq′ implies that there is a simple path σt′′tq′ from t′′ to
tq′ such that σt′′tq′ ∩ σtσ3t

′ = ∅. If q′ = p or the first occurrence of q′ appears in
σ3 before the first occurrence of p, there is a cycle ϕq′ = simple(σ3q′p) · σt′′tq′ q

′,
where σ3q′p is a subpath of σ3 that starts from q′ and ends at p. Note that q′ is
an entry node of ϕq′ , having entry path σtσ3q′ , where σ3q′ is the prefix of σ3 that
ends at the first occurrence of q′. Then q′ is a place, by Definition 2.3(C1). On the
other hand, If the first occurrence of q′ appears in σ3 after the first occurrence
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of p, then there is a cross-free diamond δpq′ of the form δpq′ = 〈σ3pq′ , pσt′′tq′ q
′〉,

where σ3pq′ is a subpath of σ3 that starts from p and ends at q′. In particular,
the entry path for such diamond is of the form σtσ3p, for some prefix σ3p of σ3.
By Definition 2.3(D2), p ∈ P implies q′ ∈ P .

Now we are going to show that q′ is in fact a transition. Note that (t′′, q′) ∈
F ∗−σ∪{t,t′}, while (t′′, q′) /∈ F ∗−σtσ2t′

. Then σt′′tq′ ∩ σ2 6= ∅, which implies that
there is a diamond δq′ = 〈tσ2q′q

′, tσ3q′q
′〉, where σ3q′ is a prefix of σ3 and σ2q′

is a path which has a prefix in common with σ2. By Definition 2.3(D1), t ∈ T
implies q′ ∈ T .

By the above contradiction, we have thus showed that:

(t′′, q) ∈ F ∗−σtσ2t′

which concludes the proof. �

F Appendix: Session Nets

In this section, we prove a property of session nets that is used for both safety
and progress.

We introduce the notion of firing path. Let 〈P,M0〉 be a Petri net and let
φ : M0

t1−→M1 . . .
tn−→Mn be a firing sequence. Then σ = p0th(1)p1th(2) . . . pmt is

a firing path (with respect to φ) when: p0 is the initial place and h : N → N is a
monotonic function such that h(0) = 0 and h(m+1) = n+1; for all i ∈ {0, . . . ,m}
and j ∈ {h(i), . . . , h(i+ 1)}, Mj(pi) > 0. Intuitively, each place in a firing path
contains a token until the next transition fires, then the token is removed and a
new token is added to the next place. We say that h is the function associated to
σ.

Lemma F.1. Let 〈G,M0〉 be an initial session net. For any φ : M0
t0−→M1

t1−→
. . .

tn−1−−−→M such that M t−→, there is a firing path σ from the initial place to t.

Proof. We prove the claim by induction on the length of φ.

Base case. Let φ be the empty sequence of firings. Hence, M = M0. The path
σ = pIt is such that M(σ) = M(pI) = 1 > 0.

Inductive case. Let the claim hold for firing sequences of length less than n, and
let φ′ : M0

t0−→ M1
t1−→ M1 . . .

tn−2−−−→ Mn−1. First, suppose that Mn−1
t−→. By

induction hypothesis there is a firing path σ of the form σ = pI . . . pt. Note that
p ∈ •t. Since t is still enabled in M , we have M(p) > 0. Let h′ be the monotonic
function associated to σ. Then, given the unique m ≥ 0 such that h′(m) = n,
let h be a monotonic function such that h(m) = n+ 1 and h(i) = h′(i), for all
i ∈ {0, . . . ,m− 1}. Then h and σ satisfy the claim for φ.

Now suppose that t is not enabled in Mn−1. Since t is enabled in Mn,
it must be the case that the firing Mn−1

tn−1−−−→ Mn adds a token to some
previously empty place p ∈ •t. Hence, Mn−1(p) = 0 and Mn(p) = 1 By induction
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hypothesis, there is a firing path σ′ from pI = p0 to tn−1 with associated
monotonic function h′ : N → N , such that h′(0) = 0 and h′(m) = n. Then
σ = p0tf ′(1)p1tf ′(2) . . . pm−1tn−1pt is a firing path from pI = p0 to t, whose
associated function h : N → N is such that h(m+ 1) = n+ 1 and h(i) = h′(i),
for all i 6= m+ 1. �

The following result is immediate, but useful for proving a progress invariant.

Lemma F.2. Let 〈G,M〉 be a session net, where G = 〈P, T, F, f, g〉 and let σ
be a path in G such that M(σ) > 0. Then σ is of the form σ = σ′pσ′′, for σ′, σ′′
and p ∈ P , such that M(pσ′′) = M(p) > 0.

Proof. Let p be the last non-empty place in σ. Then there are σ′ and σ′′ such
that σ = σ′pσ′′ and M(pσ′′) = M(p) > 0. �

G Appendix: Session Net Safety

In this section, we prove that session nets enjoy the safety property. The core of
the proof is to show the following invariant.

Lemma G.1. Any S-path σ that starts from the initial place and ends at a
terminal place in a session net N = 〈G,M〉 is such that M(σ) ≤ 1.

Proof. Let M = Mn be reachable from the marking of an initial session net M0

through a sequence of firings φ : M0
t0−→ M1

t1−→ M1 . . .
tn−1−−−→ Mn. We do the

proof by induction on n.

Base case. Let n = 0. By definition of initial session net (Definition 2.4), M0(pI) =
1 and M0(p) = 0, for any p 6= pI . Since pI ∈ σ, M0(σ) = 1.

Inductive case: induction hypothesis and its implications. Suppose that, for all
i ∈ {0, . . . , n− 1}, Mi(σ) ≤ 1. The firing of t = tn−1 only increases the number
of tokens of the places in t•. Then let p ∈ t•∩σ. By Lemma D.3(1), t•∩σ = {p}.

Suppose that there is q ∈ •t ∩ σ. Since t is enabled in Mn−1, Mn−1 assigns
1 to every place in •t. Conversely, Mn−1(σ) = 1 implies that Mn−1 assigns 1
to exactly one place in σ and 0 to all the others. Then we infer that •t ∩ σ
is a singleton set. To resume, we have •t ∩ σ = {q} and t• ∩ σ = {p}. Since
the firing of t removes a token from q adds one to p, it preserves the invariant
M(σ) = Mn(σ) = 1.

Given the above observations, we will henceforth assume the following:

•t ∩ σ = ∅ ∧ t /∈ σ ∧ t• ∩ σ = {p}

where t /∈ σ is implied by •t ∩ σ = ∅.

Inductive case: firing path σ′. By Lemma F.1, there is a firing path σ′ from pI to
t. Since both σ and σ′ start from pI , σ ∩ σ′ 6= ∅. Let x be the last node occurring
in σ which also occurs in σ′. We want to show that x ∈ P . Since p ∈ P , let us
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assume x 6= p. Let σx be the suffix of σ starting from the last occurrence of x
and σp the prefix of σ ending at the last occurrence of p.

First, suppose that the last occurrence of x in σ appears before the last occur-
rence of p. Then there is a diamond 〈simple(σxp), simple(σ′xp)〉 ∈ diamond(x, p),
where: σxp is the unique subpath which is both prefix of σx and suffix of σp;
and σ′xp consists of the suffix of σ′ which starts from the last occurrence of x,
extended by an occurrence of p. By Definition 2.3(D1), p ∈ P implies x ∈ P .

Now suppose that the last occurrence of x in σ appears after the last occurrence
of p. Then there is a cycle ϕ = simple(σxp)simple(σpx), where σxp is the suffix of
σ′ which starts from the last occurrence of x, and σpx is the subpath of σ which
starts from the last occurrence of p and ends at the last occurrence of x. Note
that, if σx ∩ ϕ = {x} then x is an exit place for ϕ and, by Definition 2.3(C2),
x ∈ P . Then suppose that {x} is strictly contained in σx ∩ ϕ.

Since x is the last node to occur in σ which also occurs in σ′ and σx is the
suffix of σ which starts from the last occurrence of x, σx ∩ σ′ = {x}. Since σxp
is contained in σ′, σx ∩ σxp = {x}. Since ϕ = simple(σxp)simple(σpx) and {x} is
strictly contained in σx ∩ ϕ, there must be y ∈ σx ∩ σpx such that y 6= x.

Without loss of generality, we can assume that y is the first node to ap-
pear in σpx which occurs also in σx. Since both σpx and σx are subpaths of
σ, |•y ∩ σ| > 1. Then since σ is an S-path, y ∈ P . Now, given the diamond
〈simple(σxy), simple(σxp)simple(σpy)〉 ∈ diamond(x, y), where σxy is the prefix of
σx ending at the first occurrence of y and σpy is the prefix of σpx ending at the
first occurrence of y, we apply Definition 2.3(D1) and we conclude that x ∈ P .

Note that t /∈ x•, since x ∈ σ and •t∩σ = ∅. Since σ′ is a firing path, there is
i ∈ {0, . . . , n− 1} such that: Mi(x) = 1 and Mi+1(x) = 0; and ti is the successor
of x in σ′. By Lemma D.3(2) and since the place that follows ti in σ′ is not in σ,
ti• ∩ σ = ∅. Then Mi(σ) = Mi(x) = 1 implies Mi+1(σ) = 0. If no token is added
in σ between Mi+1 and Mn−1, i.e. Mn−1(σ) = 0, we conclude that M(σ) = 1.

Inductive case: contradiction argument. By contradiction, we assume the following:

∃j∈{i+1,...,n−2} Mj(σ) = 0 ∧Mj+1(σ) = 1

Equivalently, we can say that the firing Mj
tj−→Mj+1 adds a token to some place

q in σ. Since Mj(σ) = 0 and Mj
tj−→, we infer σ ∩ •tj = ∅. Then tj /∈ σ.

By Lemma F.1; there is a firing path σ′′ from pI to tj . The reasoning previously
applied to σ′ can be applied to σ′′: there is k ∈ {0, . . . , j−1} such that tk removes
a token from a place y ∈ P , where y is the last node of σ to also occur in σ′′.

Note that k may not be greater than i, since Mk(y) > 0. Suppose k = i. Then
tk ∈ σ′ ∩ σ′′. The paths σ′ and σ′′ have different endings, therefore they must
split at some node. But they may not split at a place, since they are both firing
paths w.r.t. the same firing sequence φ. Then let t′ ∈ T be the last node of σ′
which is also in σ′′. If q appears in σ before p, we have a diamond from t′ to p
consisting of: the suffix of σ′′ starting at t′, concatenated with the sub-path of
σ that goes from q to p; and the suffix of σ′ following t′. By Definition 2.3(D1),
t′ ∈ T implies p ∈ T , which is false. On the other hand, if q appears in σ after
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p, then the diamond is between t′ and q, which leads to a contradiction as well.
Then k < i. This also implies that no pair of transitions occurring one in σ′ and
the other in σ′′ are associated to the same firing in φ after Mi. Formally, let
h′ and h′′ be the monotonic functions associated to the firing paths σ′ and σ′′,
respectively. Then, for all l ∈ {i, . . . , n− 1}, if l is in the range of h′ it is not in
the range of h′′ and viceversa.

Since Mk+1(σ) = 0 and Mi(σ) = 1, there must be a firing which adds a
token in σ between Mk+1 and Mi. Since σ′ is a firing path, there must be a
firing of a transition t′ which adds a token in σ between Mk+1 and Mi, such
that t′ occurs in σ′ before x. Then we can apply the same reasoning again. As
shown above, we apply it in alternation between σ′ and σ′′. By the finiteness of
φ, we infer that the invariant stated above applies to all its transitions. Formally,
for all l ∈ {1, . . . , n − 1}, if l is in the range of h′ it is not in the range of h′′
and viceversa. But since σ′ and σ′′ are firing paths both starting from pI , we
necessarily have h′(1) = h′′(1) = 1. Contradiction. �

With the above invariant, the proof of safety is straightforward.

Proof of Theorem 2.1. Let 〈G,M〉 be a session net, where G = 〈P, T, F, f, g〉
and pI is the initial place of G. Let p ∈ P be an arbitrary place. It follows from
Definition 2.4 (of session net) that every marking reachable from M is also the
marking of a session net. Then we just have to show that M(p) ≤ 1.

By Definition 2.3(R3), we have (pI , p) ∈ F ∗. Then there is a simple path σ
from pI to p. By Lemma E.6, there are pT ∈ Term(G) and σ′ such that σσ′
is an S-path from pI to pT . Since it contains p, we have M(p) ≤ M(σσ′). By
Lemma G.1, M(σσ′) ≤ 1. Then M(p) ≤ 1. �

H Appendix: Session Net Progress

In this section, we prove the progress property through a series of incremental
results. Almost as a corollary of the proof, the no dead transition property of
workflow nets follows (Theorem H.1).

The following invariant allows us to show that, whenever a transition has a
non-empty input place, there is a token “on its way” towards each other input
place of the transition.

Lemma H.1. Let 〈G,M0〉 be an initial session net, where G = 〈P, T, F, f, g〉
and pI ∈ InitG(P ) is the initial place. Let φ : M0

t1−→M1 . . .
tn−→Mn = M and let

t ∈ T be a transition such that there is a firing path σ from pI to t ∈ T with respect
to φ and with associated function h. Let q ∈ •t be such that M(q) = 0. Then
for some i in the domain of h, some suffix σ′ of σ and for all j ∈ {h(i), . . . , n},
there is σj = σ′jqjσ

′′
j such that: δj = 〈σj , σ′〉 is a cross-free diamond from th(i)

to t; qjσ′′j is a simple path with (q, t) as last arc; and Mj(qjσ′′j ) = Mj(qj) > 0.

Proof. By Lemma E.8, there is a cross-free diamond δ = 〈σ?, σ
′〉 from some node

x ∈ σ to t such that σ? is a simple path with (q, t) as last arc and σ′ is a suffix
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of σ. By Definition 2.3(D2), x ∈ T . Then x = th(i), for some i in the domain of h.
Given the frequent usage of x = th(i), we use the two names interchangeably. Let
also σh(i) = σ? and δh(i) = δ. We do the proof by induction on j ∈ {h(i), . . . , n}.

Base case. Let j = h(i). Note that σj = σh(i) is of the form σj = xqjσ
′′
j , for some

qj ∈ x• and some simple path σ′′j . The firing Mj−1
tj−→ Mj adds a token to qj .

Then Mj(qj) > 0. Let σ′′ be an entry path of δj , which we can assume to be
simple by Lemma C.4. Then the path σ′′σj is simple, hence it is also an S-path.
By Lemma G.1, Mj(σ′σj) ≤ 1, which implies M(qjσ′′j ) = M(qj).

Inductive case. Let j ∈ {h(i)+1, . . . , n}. As inductive hypothesis, we assume there
is σj−1 = σ′j−1qj−1σ

′′
j−1 with (q, t) as last arc and such that δj−1 = 〈σj−1, σ

′〉 is a
cross-free diamond from x to t, qj−1σ

′′
j−1 is a simple path and Mj−1(qj−1σ

′′
j−1) =

Mj−1(qj−1) > 0. We are going to show that the same holds for index j.
In the case of Mj(qj−1) > 0, we set σj = σj−1. Hence, M(σj) > 0. The

existence of qj , σ′j and σ′′j that satisfy the conditions follows from Lemma F.2.
Below, we assume that Mj(qj−1) = 0. Note that Mj−1(qj−1) = 1 implies

tj ∈ qj−1• (recall that tj is the transition firing at Mj−1, leading to Mj). There
are two main cases to consider: first we do the proof for the case of qj−1 6= q;
then we show that qj−1 = q leads to a contradiction.

Inductive case - first sub-case: qj−1 6= q. Lemma E.11 implies that there is σj
with last arc (q, t) such that tj occurs in σj and δj = 〈σj , σ′〉 is a cross-free
diamond from x to t. Then tj• ∩ σj 6= ∅, which in turn implies Mj(σj) > 0. The
existence of qj , σ′j and σ′′j that satisfy the conditions follows from Lemma F.2.

Inductive case - second sub-case: qj−1 = q. We are going to show that qj−1 = q
leads to a contradiction. By Proposition 2.1, |•t| > 1 implies q• = p• = {t}.
Then t = tj . By Lemma D.2, |•t| > 1 implies t• = {pt}, for some pt ∈ P . By
Lemma E.3, |•t| > 1 implies pt /∈ •t, then pt 6= p.

Recall that σ′ = th(i)pi . . . th(m)pmth(m+1)pt, where t = tj only occurs once in
σ′. Then j 6= h(k), for all k ∈ {i, . . . ,m+ 1} (i.e. the firing Mj−1

tj−→Mj does not
correspond to any transition occurrence in σ′). The firing Mj−1

tj−→Mj removes
a token from p and only adds a token to pt. Then Mj−1(p) > 0, which implies
that Mj−1(p) = 1 (Corollary 2.1) and in turn that Mj(p) = 0, since p 6= pt. Then
j < n, since Mn(p) > 0. Together with the inductive assumption, j > h(i), this
implies that there is l ∈ {i, . . . ,m} such that h(l) < j ≤ h(l + 1). Hence, the
place pl ∈ σ′ is such that Mj−1(pl) > 0. Since t appears only once in σ′ and
p• = {t}, p may not appear more than once either. Then p and pl are distinct
and such that both Mj−1(p) > 0 and Mj−1(pl) > 0.

We are going to show that there is an S-path from the initial place pI which
contains both pl and p. Let σ′′ be an entry path for δj−1, which we can assume
to be simple by Lemma C.4. By definition of entry path, σ′ ∩ σ′′ = ∅. Then by
Lemma C.1 and Corollary C.1, σ′′ · simple(σ′) is a simple path from pI to t (hence
it is also an S-path). Since t only occurs as last node of σ′ and since p is the
place preceding such occurrence, Lemma C.3 and C.1 imply that (p, t) is the last
arc of simple(σ′).
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If pl ∈ simple(σ′), we have found our S-path. Suppose that pl /∈ simple(σ′).
Then σ′ is of the form σ′ = σxyyσyyσyt, for some node y and paths σxy, σy and
σyt, such that simple(σ′) = simple(σxy) ·y ·simple(σyt) and pl ∈ σy. It follows from
the definition of simple(−) that σy∩σxy = ∅, while σ′∩σ′′ = ∅ implies σy∩σ′′ = ∅.
Then y is an entry node for the cycle simple(yσy) · y. By Definition 2.3(C1), y ∈ P .
Then the path σ′′σxy · simple(yσy) · y is an S-path.

Let z be the last node of simple(σ′) which occurs also in simple(yσy) and σyz
be the prefix of simple(yσy) ending at z. Let also σyt = σ1yzσzt, where σ1yz is
the prefix that ends at z. We are going to show that z is a place, which implies
that the path σ′′σxy · simple(yσy) · σyzσzt is an S-path.

Since z is the last node of simple(σ′) which occurs also in simple(yσy), σzt ∩
simple(yσy) = ∅. By Definition 2.3(R3), there is pT ∈ TermG(P ) such that
(t, pT ) ∈ F ∗. Since t• = {pt}, (pt, pT ) ∈ F ∗ as well. Then let σt be a simple path
from pt to pT . By Lemma E.9, σt ∩ σ′ = ∅. Then σt ∩ simple(yσy) = ∅. This
implies that z is an exit node for the cycle simple(yσy) · y. By Definition 2.3(C2),
z ∈ P . Then the path σ′′σxy · simple(yσy) · σyzσzt is an S-path.

Since p• = {t} and |z•| > 1, p 6= z. Since pt is a suffix of simple(σ′), while
σzt is the suffix of σ′ that follows z, the former must be a suffix of the latter.
This implies p ∈ σ′′σxy · simple(yσy) · σyzσzt. It remains to see whether pl ∈
σ′′σxy · simple(yσy) ·σyzσzt, that is whether pl ∈ simple(yσy). If not, we can apply
the same expansion technique recursively until we find a path that does contain
pl. Note that the number of recursive expansions is bounded by the length of
σy. Then we eventually obtain an S-path σ′′′ from pI to t such that p ∈ σ′′′ and
pl ∈ σ′′′. Since Mj−1(pl) > 0, Mj−1(p) > 0 and pl 6= p, we have Mj−1(σ′′′) > 1.
But Lemma G.1 implies Mj−1(σ′′′) ≤ 1. Contradiction. �

The following weakens the above invariant, extracting only what is useful for the
progress proof.

Corollary H.1. Let 〈G,M〉 be a session net, where G = 〈P, T, F, f, g〉. Let
t ∈ T and p, q ∈ •t, such that M(p) > 0 and M(q) = 0. Then there are two paths
σp and σq, ending respectively at p and at q, such that: 〈σpt, σqt〉 is a cross-free
diamond; there is a suffix q′σ′q of σq, where M(q′σ′q) = M(q′) > 0.

The following result shows that any transition with a non-empty input place
is contained in a simple path from an enabled transition to a terminal place.
Informally, this means that some token can move forward towards our target
transition.

Lemma H.2. Let 〈G,M〉 be a session net, where G = 〈P, T, F, f, g〉. Let t ∈ T
and p, q ∈ •t, such that M(p) > 0 and M(q) = 0. Let also σT be a simple path
from t to some terminal place pT . Then there are a transition t′ and a path σ′

such that M t′−→ and σ′qσT is a simple path from t′ to pT .

Proof. Let t0 = t, p0 = p, q0 = q and σt0 = σT . By Corollary H.1, there are
two paths σp0 and σq0, and a suffix p1σ

′
0 of σq0 such that: 〈σp0p0t0, σq0q0t0〉 is a
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cross-free diamond; and M(p1σ
′
0) = M(p1) > 0. By Lemma E.9, σt0 ∩ σq0q0 = ∅.

Then σt1 = σ′0qσT is a simple path from some transition t1 ∈ p1• to pT .
If there is q1 ∈ •t1 such that M(q1) = 0, we apply the same reasoning again.

Suppose that we have applied the above reasoning n − 1 times (for n > 0).
Then we have a transition tn ∈ T , a place pn ∈ •tn and a path σ′n such that
σtn = σ′nqσT is a simple path from tn to pT and M(pn) > 0. Note also that, for
all i ∈ {0, . . . , n− 1}, σt(i+1) is longer than σti.

Since σtn is a simple path, the number of times this reasoning can be applied
is bounded by |P ∪T |, the number of nodes in GStruct. Therefore, we eventually
find a transition t′ ∈ T and a path σ′ such that σ′qσT is a simple path from t′ to
pT and M

t′−→. �

We now show that, whenever a transition has a non-empty input place, we can
reach a marking where that transition is enabled. The proof is by induction on
the length of the longest path of the kind shown in the previous result.

Lemma H.3. Let 〈G,M〉 be a session net and G = 〈P, T, F, f, g〉. Let t ∈ T
and p ∈ •t, such that M(p) > 0. Then some M ′ is reachable from M such that
M ′

t−→.

Proof. By Definition 2.3(R3), there are a terminal place pT ∈ TermG(P ) and a
simple path σT from t to pT . Let us show that there are also a transition t′ ∈ T
and a path σ such that M t′−→ and σσT is a path from t′ to pT . In the case of
M

t−→, this is satisfied by σ = ε. Otherwise, there is q ∈ •t such that M(q) = 0.
Then the claim follows from Lemma H.2.

Then let SM be the set of such paths (indexed by the marking M):

SM = {σ | ∃t′∈T (M t′−→ ∧σσT is a simple path from t′ to pT )}

Since they are all paths from some transition to some place, their lengths are
always even. Then let 2n ≥ 0 be the length of the longest path in S, and let SM,i

be the set of paths of SM that have length 2i, for any i ∈ {0, . . . , n}. Note that
SM,0 6= ∅, if and only if M t−→.

Now, suppose that there is σ ∈ SM,i, for some i > 0, and let t′ be the
first transition of σ. By definition of SM,i, t′ is enabled at M . Then the firing
M

t′−→ M ′ moves a token closer to t. Let us be more specific. Let SM ′ and
SM ′,j be defined as SM and SM,j , respectively, for all j ∈ {0, . . . , n}. Then
|SM ′,i| = |SM,i| − 1, |SM ′,i−1| = |SM,i−1| + 1 and |SM ′,j | = |SM,j |, for all
j ∈ {0, . . . , i−2, i+1, . . .}. Hence, (|SM ′,n|, . . . , |SM ′,0|) ≤lex (|SM,n|, . . . , |SM,0|),
where ≤lex is the lexicographical order on tuples of natural numbers.

We have shown that, as long as the length of the longest path is greater than
0, a transition can fire that decreases the order. After a finite number of firings,
we reach a marking M ′′ such that SM ′′,0 6= ∅, which implies that M ′′ t−→. �

The following result shows that if a terminal place is reachable from a non-empty
non-terminal place, then that terminal place is empty.
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Lemma H.4. Let 〈G,M〉 be a session net, where G = 〈P, T, F, f, g〉. Let p ∈
P \ Term(G) be a non-terminal place such that M(p) > 0. Then there is a
terminal place pT ∈ Term(G) such that (p, pT ) ∈ F ∗ and M(pT ) = 0.
Proof. By Definition 2.3(R3), there exists pT ∈ TermG(P ) such that (p, pT ) ∈ F ∗.
By contradiction, suppose that M(pT ) > 0. Since (p, pT ) ∈ F ∗, there is a simple
path pt1p1 . . . tnpT from p to pT . By repeatedly applying Lemma H.3, we obtain
a sequence of firings of the form M

s1−→M1
t1−→M ′1 . . .Mn−1

sn−→Mn
tn−→M ′n. By

definition of terminal place, pT • = ∅. This implies the number of tokens in pT
never decreases. Then M ′n(pT ) ≥ Mn(pT ) ≥ M(pT ) > 0. Since the firing of tn
adds a token to pT , we infer M ′n(pT ) > Mn(pT ). Hence, M ′n(pT ) > 1. Now, let
pI be the initial place of G. By Definition 2.3(R3), we have (pI , pT ) ∈ F ∗. Then
there is a simple path σ from pI to pT . By Lemma E.6, σ is an S-path. Then, by
Lemma G.1, M ′n(σ) ≤ 1. But M ′n(pT ) > 1 implies M ′n(σ) > 1. Contradiction. �

And now the proof of progress.
Proof of Theorem 2.2. Let 〈G,M〉 be a session net, where G = 〈P, T, F, f, g〉.
Let EmptyT (G,M) = {pT ∈ Term(G) | M(pT ) = 0} be the set of terminal
places of G which are empty at M . Suppose that there is a non-terminal place
p ∈ P such that M(p) > 0. By Lemma H.4, there exists pT ∈ TermG(P ) such
that (p, pT ) ∈ F ∗ and M(pT ) = 0, which in turn implies EmptyT (G,M) 6= ∅.

Let pt1p1 . . . tnpT be a simple path from p to pT . By repeatedly applying
Lemma H.3, we obtain a sequence of firings of the form M

s1−→ t1−→ . . .
sn−→ tn−→M ′.

Since the firing of tn adds a token to pT , we infer M ′(pT ) > 0. Moreover, the
number of tokens in any p′T ∈ Term(G) never decreases, since p′T • = ∅, by
definition of terminal place. Hence, EmptyT (G,M ′) is strictly contained in
EmptyT (G,M). Then, by applying the above reasoning a finite number of times
(at most |Term(G)|), we reach a marking M ′′ such that EmptyT (G,M ′′) = ∅.
By Lemma H.4, this implies M ′′(q) = 0, for any q ∈ P \ Term(G). Hence, M ′′ is
a terminal marking. �

From the progress proof above and a basic property of well-formed SGs, it follows
that no transition is dead from the initial marking.
Theorem H.1 (No dead transitions). Let 〈G,M0〉 be an initial session net,
where G = 〈P, T, F, f, g〉. For every transition t ∈ T , there is a marking M

reachable from M0 such that M t−→.
Proof. Let pI be the initial place of G. By Definition 2.3(R3), (pI , t) ∈ F ∗. Then
there is a simple path of the form pIt1p2 . . . pnt. Since M0(pI) > 0, we repeatedly
apply Lemma H.3 and obtain the following sequence of firings: M0

s1−→ t1−→ . . .
sn−→

M
t−→. �

I Appendix: Conformance

Proof of Proposition 3.1 The syntax of endpoint types contains no parallel
construct, then the set of derivatives of Tr is finite. The set of markings reachable
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from the initial marking M0 of G is also finite, by Corollary 2.1. The closure
of {Tr, 〈G,M0〉} under the rules of Definition 3.1 is a subset of the cartesian
product of those two sets, hence it is also finite. Then we can find such a closure
(or a violation of the rules) in finite time by playing out each possible derivation
that conformance allows and then backtracking to the closest unexplored branch.
�

The following result establishes an invariant between a transition sequence from
an initial configuration and its weak simulation from an initial session net, where
conformance is preserved at each step. The invariant associates a message in a
configuration buffer to a token inside a related communication place.

Lemma I.1. Let 〈G,M0〉 be an initial session net and C0 an initial configuration
with set of roles R. Let 〈G,M0〉

τ∗−→ m1−−→ . . .
τ∗−→ mn−−→ 〈G,Mn = M〉 and C0

m1−−→
. . .

mn−−→ Cn = C = (~T , ~w) such that Ci = (~Ti, ~wi) and Tir � 〈G,Mi〉, for all
i ∈ {0, . . . , n} and r ∈ R. Given r, r′ ∈ R, wr′r = w′ · a · w′′ if and only if:

∃p∈P\dom(f),t∈p• : M(p) = 1 ∧ g(t) =?a ∧ local(t) = r ∧ remote(t) = r′ (2)

Proof. We prove it by induction on n, the length of the transition sequence from
C0 to Cn. Suppose that n = 0. The left-to-right direction is immediate, since
~w0 = ~ε. Let pI ∈ P be the initial place of G. Hence, M(pI) = 1 and M(p) = 0, for
all p ∈ P \{pI}. Since •pI = ∅, pI is not a communication place (i.e. pI ∈ dom(f))
by Definition 2.2. Then the right-to-left direction is also satisfied.

Suppose that n > 0 and that Cn−1 and Mn−1 satisfy (2). Let mn = r!r′〈a〉.
Then wnrr′ = w(n−1)rr′ ·a and wnr′′r′′′ = w(n−1)r′′r′′′ , for all r′′, r′′′ ∈ R such that
r′′r′′′ 6= rr′. We are now going to show that the correspondence of (2) is preserved
by the transitions in the session net. 〈G,Mn−1〉

τ∗−→ r!r′〈a〉−−−−→ 〈G,Mn〉 implies
that there is a sequence of firings 〈G,Mn−1〉

st−→ 〈G,Mn〉, such that g(t) =!a,
local(t) = r, remote(t) = r′ and t′ /∈ dom(g), for all t′ ∈ s. By Definition 2.3(L2),
there is p ∈ P \dom(f) such that either (p, t) ∈ F or (t, p) ∈ F . By Definition 2.2
and because t is an output transition, we discard (p, t) ∈ F , hence p ∈ t•. Note
that p ∈ t• is a communication place exactly as requested by (2). The firing
of t adds a token to p. Then Mn(p) > 0. By Corollary 2.1, Mn(p) = 1. As we
stated above, for all t′ ∈ s, t′ /∈ dom(g). Then Mn(q) = Mn−1(q), for every
communication place q 6= p. Then (2) is satisfied.

The case of mn = r?r′〈a〉 follows a dual proof . �

The following result says that if we can weakly do some output in the projected
LTS of a role r, then we can do the same output after firing only internal
transitions contained in a role structure for r, while also preserving conformance.

Lemma I.2. Let Tr
r!r′〈a〉−−−−→ T ′r and 〈G,M〉 =⇒ r!r′〈a〉−−−−→ 〈G,M ′〉 such that T ′r �

〈G,M ′〉. Then there are transitions t1, . . . , tn, t and a marking M ′′ in G such
that: 〈G,M〉 t1−→ . . .

tn−→ t−→ 〈G,M ′′〉 and T ′r � 〈G,M ′′〉; g(t) =!a, ti /∈ dom(g)
and f(pi) = r, for all i ∈ {1, . . . , n} and pi ∈ •ti ∪ ti•.
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Proof. We just roll back every transition in the original weak sequence that is
not contained in a RS for r. This can be done safely because such transitions do
no affect the firing of t at all. �

Using the above results, we prove soundness of the conformance relation.

Proof of Theorem 3.1. We do the proof by induction on n. The base case is
immediate. Let n > 0 and suppose that 〈G,M0〉

τ∗−→ m1−−→ 〈G,M1〉 . . .
τ∗−→ mn−1−−−−→

〈G,Mn−1〉 and Tir � 〈G,Mi〉, for all i ∈ {0, . . . , n− 1} and r ∈ R.
Let mn = r!r′〈a〉, for some roles r, r′ ∈ R and action a. Then T(n−1)r

mn−−→ Tnr.
By Definition 3.1 (1a), 〈G,Mn−1〉 =⇒ mn−−→ 〈G,Mn〉 and Tnr � 〈G,Mn〉. By
Lemma I.2, we can assume that the above transition sequence corresponds to some
firing sequence 〈G,Mn−1〉

t1−→ . . .
tj−→ t−→ 〈G,Mn〉, where g(t) =!a, ti /∈ dom(g)

and f(pi) = r, for all i ∈ {1, . . . , j} and pi ∈ •ti ∪ ti•.
We are going to show that, for all r′ ∈ R \ {r}, Tnr′ = T(n−1)r′ � 〈G,Mn〉.

Note that, for all m such that 〈G,Mn〉 =⇒ m−→ in the projected LTS for r′,
〈G,Mn−1〉 =⇒ m−→. Then Definition 3.1 (2) still holds. We check Definition 3.1(1).
Let Tnr′ = T(n−1)r′

r′!r′′〈b〉−−−−−→ T ′r′ . By Definition 3.1(1a), 〈G,Mn−1〉 =⇒ r′!r′′〈b〉−−−−−→
〈G,M ′〉 and T ′r′ � 〈G,M ′〉. By applying again Lemma I.2 (as done above for r),
we can assume that the initial weak sequence only contains firings of transitions
inside some RS for r′. Then the same transitions can fire starting from Mn.
Hence, Tnr′ � 〈G,Mn〉.

Let Tnr′ = T(n−1)r′ be an input. Suppose that 〈G,Mn−1〉 =⇒ r′?r′′〈b〉−−−−−→ and

that there are no role r′′′ and message c such that 〈G,Mn〉 =⇒ r′?r′′′〈c〉−−−−−→. Let i
be the highest index in {1, . . . , j} such that 〈G,Mn−1〉

t1−→ . . .
ti−→ 〈G,M ′〉 and

〈G,M ′〉 =⇒ r′?r′′′〈c〉−−−−−→, for some marking M ′, role r′′′ and message c. Let also M ′′

be the “next marking” towards Mn, i.e. 〈G,M ′〉 ti+1−−→ 〈G,M ′′〉. Our assumption
implies that there are no role r′′′ and message c, such that 〈G,M ′′〉 =⇒ r′?r′′′〈c〉−−−−−→.
Since 〈G,M ′〉 =⇒ r′?r′′〈b〉−−−−−→, there are p ∈ •ti+1, t′i+1 ∈ p• and p′ ∈ P such that
(t′i+1, p

′) ∈ F ∗ and f(p′) = r′. By Definition 2.3 (L1), there is p′′ ∈ P such that
(ti+1, p

′′) ∈ F ∗ and f(p′′) = r′. The latter means that the place p′′ is contained
in a RS for r′ then, in order to reach p′′ from ti+1, we must visit an input of
r′, i.e. there are a role r′′′ and an action c such that 〈G,M ′′〉 =⇒ r′?r′′′〈c〉−−−−−→. This
contradicts a previous statement. Hence, we conclude that Tnr′ � 〈G,Mn〉.

Now, let mn = r?r′〈a〉, for some roles r, r′ ∈ R and action a. This implies
w(n−1)r′r = a · wnr′r. By Lemma I.1, there is a communication place p /∈ dom(f)
with associated input transition t ∈ p•, such that Mn−1(p) = 1, g(t) =?a,
local(t) = r and remote(t) = r′. Since t is an input transition, •t = {p}. Then
t is enabled in Mn−1 and its firing corresponds to 〈G,Mn−1〉

r?r′〈a〉−−−−→ 〈G,Mn〉.
Thus we can apply Definition 3.1(2b) and since T(n−1)r is an input such that

T(n−1)r
r?r′〈a〉−−−−→ Tnr, we infer Tnr � 〈G,Mn〉.
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We now show that, for all r′ ∈ R \ {r}, Tnr′ = T(n−1)r′ � 〈G,Mn〉. This
is straightforward. The preservation of Definition 3.1(2) is the same as for the
output case. Definition 3.1(1) follows from the fact that any t′ 6= t which is
enabled in Mn−1 is also enabled in Mn. �

The following is a key result for deadlock-freedom and reception error-freedom.
It says that if a configuration contains an input, then: if all the buffers are empty,
an output action may occur; if not, an input action may occur.

Lemma I.3. Let C = (~T , ~w) be a configuration with set of roles R and such that
C0

~m−→ C, where C0 is an initial configuration. Let also G be a well-formed SG
such that C0 � G. Let r ∈ R such that Tr is an input. Then either:

– there are C ′, r′ ∈ R and a such that C r?r′〈a〉−−−−→ C ′; or
– for all r′ ∈ R, wr′r = ε; and there exists r′′ ∈ R such that Tr′′ is an output.

Proof. Let M0 be the initial marking of G. By Theorem 3.1, 〈G,M0〉
τ∗−→ m1−−→

. . .
τ∗−→ mn−−→ 〈G,M〉, where m1 . . .mn = ~m and Tr � 〈G,M〉, for all r ∈ R.
Suppose that there is r′ ∈ R such that wr′r 6= ε and let wr′r = a · w′, for

some action a. By Lemma I.1, there is a communication place p /∈ dom(f) with
associated input transition t ∈ p•, such that M(p) = 1, g(t) =?a, local(t) = r
and remote(t) = r′. Since t is an input transition, •t = {p}. Then t is enabled in
M and its firing corresponds to 〈G,M〉 r?r′〈a〉−−−−→ 〈G,M ′〉, for some marking M ′.
By Definition 3.1(2b) and because Tr is an input, we infer Tr

r?r′〈a〉−−−−→ T ′r. Since
wr′r = a · w′, we infer C r?r′〈a〉−−−−→ C ′.

Now suppose that for all r′ ∈ R, wr′r = ε. By Definition 3.1(1b) and because
Tr is an input, 〈G,M〉 =⇒ r?r′〈a〉−−−−→ for some role r′ ∈ R and action a. By definition
of the LTS for session nets, this implies that there is a sequence of firings
φ : 〈G,M〉 s−→ 〈G,M ′〉 t−→, for some t ∈ T such that g(t) =?a. By Definition 2.3(L2),
there is p ∈ P \dom(f) such that either (p, t) ∈ F or (t, p) ∈ F . By Definition 2.2
and because t is an input transition, we discard (t, p) ∈ F , hence p ∈ •t. Since t
is enabled in M ′, M ′(p) > 0. By Definition 2.2 and because p is a communication
place, there is a unique output transition t′ ∈ T such that •p = {t′}, and g(t′) =!a.
By Lemma I.1, and because wr′r = ε, we can infer M(p) = 0. Then φ contains
a firing of t′, such that s = s′t′s′′. If there is no observable transition t′′ ∈ s′

such that local(t′′) = r′, then 〈G,M〉 =⇒ r′!r〈a〉−−−−→. By Definition 3.1(2a), Tr′

is an output. Otherwise, if there is an observable transition t′′ ∈ s′ such that
local(t′′) = r′, there are two cases: if t′′ is an input transition, we apply the same
reasoning given previously for t; whereas if t′′ is an output transition, we apply
the reasoning given for t′. Since t′′ ∈ s′, the transition sequence to consider is
strictly a prefix of both s′ and s. Then by applying the same reasoning repeatedly,
we eventually find an output Tr′′ , for some r′′ ∈ R. �

Now we can prove safety of conformance.
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Proof of Theorem 3.2 Let C0
~m−→ C, where C = (~T , ~w). Let M0 be the initial

marking for G. By Theorem 3.1, we have 〈G,M0〉
τ∗−→ m1−−→ . . .

τ∗−→ mn−−→ 〈G,M〉,
where m1 . . .mn = ~m and and Tr � 〈G,M〉, for all r ∈ R.

Deadlock-freedom. By contradiction, let C be a deadlock configuration. Then
there is r ∈ R such that Tr is an input type. Lemma I.3 implies that there exists
r′ ∈ R such that either: C r?r′〈a〉−−−−→ C ′, for some C ′ and a; or Tr′ is an output.
Both cases contradict the assumption that C is a deadlock configuration.

Orphan message-freedom. By contradiction, let C be an orphan message config-
uration. Then ~w 6= ∅. This implies that there are roles r, r′ ∈ R and an action
a such that wr′,r = w′ · a · w′′, for some w′ and w′′. By Lemma I.1, there is a
communication place p /∈ dom(f) with associated input transition t ∈ p•, such
that M(p) = 1, g(t) =?a, local(t) = r and remote(t) = r′. Then 〈G,M〉 r?r′〈a〉−−−−→.
By Definition 3.1(2b), there is an input T ′r such that Tr

~m−→ T ′r with a sequence
of output actions ~m. This is a contradiction since C is an orphan message
configuration, which implies Tr = end.

Reception error-freedom. By contradiction, suppose that C is an unspecified
reception configuration. Let Tr be an input, for some r ∈ R. Hence Tr

r?r′〈a〉−−−−→ T ′r,
for some T ′r, r′ ∈ R and a. Lemma I.3 implies either: wr′′r = ε, for all r′′ ∈ R;
or C r?r′′〈b〉−−−−−→ C ′, for some C ′, r′′ ∈ R and b. The former case contradicts the
assumption that C is an unspecified reception configuration. The latter case
implies Tr

r?r′′〈b〉−−−−−→ T ′′r and wr′′r = b · w′. Then it also contradicts the initial
assumption.

The progress property (2) in this theorem is a corollary of safety. �

J Appendix: Multiparty Asynchronous Session Calculus

This section lists the full definitions and proofs of § 3.

J.1 Reduction rules

We first define the full reduction rules.
bLinkc a[r1, .., rn](x).P1 | a[r2](x).P2 | · · · | a[rn](x).Pn

−→ (νs)(Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε)) s 6∈ fn(Pi)

bSelc s[r]! r′ : l〈v〉;P | s[r, r′] : h −→ P | s[r, r′] : h · l〈v〉

bBrac s[r]?{r′
i : li(zi).Pi}i∈J | s[r′

j , r] : lj〈v〉 · h −→ Pj [v/zj ] | s[r′
j , r] : h

bParc P −→ P ′ ⇒ P | Q −→ P ′ | Q

bResc P −→ P ′ ⇒ (νa)P −→ (νa)P ′

bSresc P −→ P ′ ⇒ (νs)P −→ (νs)P ′

bStructc P −→ P ′, P ′ ≡ Q′, Q′ ≡ Q ⇒ P ≡ Q

where the structure rules are defined as:
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P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νn)P | Q ≡ (νn)(P | Q) if n 6∈ fn(Q) (νn)(νn′)P ≡ (νn′)(νn)P (νn)0 ≡ 0
where n ::= a | s

(νs)(s[r1, r′1] : ε | .. | s[rn, r′n] : ε) ≡ 0
µX.P ≡ P [µX.P/X]

J.2 Typing rules

This subsection lists the typing system for processes.
Typing system for programs This paragraph lists a typing system for pro-
grams, i.e. processes which do not contain free variables and session channels.

[Id] Γ, u : G ` u : G

[Req]Tr1 � G = 〈P, T, F, f, g〉 Γ ` u : G range(f) = {r1, .., rn} Γ ` Q B∆,x : Tr1

Γ ` u[r1, .., rn](x).Q B∆

[Acc]Tri � G Γ ` u : G Γ ` Q B∆,x : Tri i 6= 1
Γ ` u[ri](x).Q B∆

[Sel] j ∈ I Γ ` P B∆, c : Tj Γ ` u : Gj

Γ ` c! rj : lj〈u〉;P B∆, c :!{ri〈li〈Gi〉〉.Ti}i∈I

[Bra] ∀i ∈ I Γ, zi :Gi ` Pi B∆, c : Ti

Γ ` c?{ri : li(zi).Pi}i∈I B∆, c :?{ri〈li〈Gi〉〉.Ti}i∈I

[SSel] j ∈ I Γ ` P B∆, c : Tj

Γ ` c! rj : lj〈c′〉;P B∆, c :!{ri〈li〈T ′
i 〉〉.Ti}i∈I , c

′ : T ′
j

[SBra] ∀i ∈ I Γ ` Pi B∆, c : Ti, zi :T ′
i

Γ ` c?{ri : li(zi).Pi}i∈I B∆, c :?{ri〈li〈T ′
i 〉〉.Ti}i∈I

[Par]Γ ` P B∆ Γ ` Q B∆′

Γ ` P | Q B∆,∆′ [Inact]∀c ∈ dom(∆). ∆(c) = end
Γ ` 0 B∆

[NRes]Γ, a : G ` P . ∆

Γ ` (νa)P . ∆

[Var] Γ,X : ∆ ` X .∆ [Rec]Γ,X : ∆ ` P . ∆

Γ ` µX.P . ∆

[Req] types an initiation request conforming to G for role r1, assuming the set
of index-ordered roles. [Acc] types an initiation accept dually. [Sel] and [Bra] type
selection and branching with shared channel passing. Similarly, [SSel] and [SBra]
type selection and branching with session delegation. Other rules are standard
and identical with the long version of [2]:

M. Coppo, M. Dezani-Ciancaglini, N. Yoshida and L. Padvani, Global
Progress in Dynamically Interleaved Multiparty Sessions, Mathematical
Structures in Computer Science, To appear. Available from http://mrg.
doc.ic.ac.uk/publications.html

Typing systems for runtime processes The typing systems for runtime
processes (Γ `Σ P . ∆) are identical with Appendix A in the above long version
where Σ denotes a set of names of queues in P , except that we do not require
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the equivalent relation of message types and subtyping relations to type runime
processes.

For typing runtime processes, we use the notations from Appendix A in the
above long version, extending to the syntax of selection and branching types.
The duality is defined to the extended types following the standard manner. We
also use consistency of session environments, which assures that each pair of
participants in a multiparty conversation performs their mutual communications
in a consistent way. Consistency is defined using the notions of projection of
endpoint types (see Definition A.1 in the above long version). We call a session
environment ∆ is consistent for the session s (notation co(∆, s)) if s[r] : T ∈ ∆
and T � r 6= end imply s[r′] : T ′ ∈ ∆ and T � r′ ./ T ′ � r for all r and r′. A
session environment ∆ is consistent if it is consistent for all sessions which occur
in it.

Lemma J.1 (Isomorphism and subtyping in conformance).

1. Suppose Tr � 〈G,M〉 and T ′r 6 Tr where 6 is defined as in [8, Definition 8].
Then T ′r � 〈G,M〉.

2. Suppose Tr � 〈G,M〉 for all r ∈ R. Then there exits T ′r such that Tr 6 T ′r
which includes the permutation in Table 10 in the above long version and
{T ′r}r∈R is consistent.

Proof. (1) Suppose T ′r 6 Tr by the output selection subtyping rule in [8, (3) in
Definition 4]. Then T ′r satisfies 1(a) and 2(a) in Definition 3.1. Next suppose
T ′r 6 Tr by the input branching subtyping rule in [8, (2) in Definition 4]. Then
T ′r satisfies 1(b) and 2(b) in Definition 3.1. The case of the end type is obvious.

(2) By (1) and Theorems 3.1 and 3.2. �

With this lemma, the typing system with the conformance is equivalent to
the typing system with the projection (with merging) up to the equi-recursion.
Proofs of the subject reduction theorem (Theorem 4.1) First the subject
congruence theorem is straightforward noting there is no change of ≡ from (see
Theorem A.9 in the above long version).

For the reduction relation, we define the reduction between session environ-
ments ∆⇒ ∆′ as in § A.3 in in the above long version changing Π to a singleton.
Note that ⇒ simulates 1-bound execution of (~T , ~w).

Then we prove the following general subject reduction theorem:

Theorem J.1 (Generalised Subject Reduction). If Γ `Σ P B ∆ with ∆
consistent and P −→∗ P ′, then Γ `Σ P ′ B∆′ for some ∆′ such that ∆⇒∗ ∆′
and ∆′ is consistent.

Proof. We first note that if ∆ is consistent and ∆⇒ ∆′, then ∆′ is consistent.
We also note that, by Subject Congruence Theorem, we only need to prove one
step. We prove by induction of a derivation of P −→ P ′. The only interesting
case is [Init], which we prove below.
Case [Init]
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a[r1, .., rn](x).P1 | a[r2](x).P2 | · · · | a[rn](x).Pn
−→ (νs)(Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε)).

By hypothesis

Γ `Σ a[r1, .., rn](x).P1 | a[r2](x).P2 | · · · | a[rn](x).Pn B∆

Then the redex is an initial process, Σ = ∅ and on all the processes in parallel
we have

Γ ` a[ri](x).Pi B∆i (2 ≤ i ≤ n) (3)
Γ ` a[r1, .., rn](x).P1 B∆1 (4)

where ∆ =
⋃n
i=1 ∆i. Then by [Acc], we have:

Tri
� G

Γ ` Pi B∆i, x : Tri
i 6= 1 (5)

Γ ` a : G

Similarly by [Req], assuming range(f) = {r1, .., rn}, we have:

Tr1 � G
Γ ` a : G

Γ ` P1 B∆1, x : Tr1 (6)

Applying the standard substitution lemma to (5) and (6), we have:

Γ ` Pi[s[ri]/x]B Γi, s[ri] : Tri
(7)

Then using (Qinit, GPar) in Table 11 and Table 12 in in the above long version
on (7), we have:

Γ `{s} Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε) B∆, s[r1] : Tr1 , ..., s[rn] : Trn

Then by Lemma J.1(2), we have consistent {T ′ri
}1≤i≤n which conforms G. Hence

Γ `{s} Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε) B∆, s[r1] : T ′
r1 , ..., s[rn] : T ′

rn
(8)

Thus by applying (GSRes) Table 12 in in the above long version on (8), we
conclude:

Γ ` (νs)(Πi∈{1,..,n}(Pi[s[ri]/x] | Πj∈{1,..,n}\is[ri, rj ] : ε)) B∆ (9)

as required. Other cases are essentially similar with those in the proof of Theorem
A.10 in in the above long version. �

Proof of Theorem 4.2 We now prove the progress property. By the same
routine as [12, § 5] together with Theorem 4.1, Theorems 3.1 and 3.2. �
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Remark on data types We note that since SG and endpoint type messages
are injectively mapped to pairs of process labels l1, l2, . . . and G or T (see § 3), if
we extend T to include constant types such as bool and nat as in the formalisms
in [2, 12], the following types becomes not coherent in our definition:

s[1] :!2〈a, bool〉.?2〈b, nat〉.end, s[2] :?1〈a, nat〉.!1〈b, nat〉.end

since the above does not map the labels to types injectively, i.e. a and b are
mapped to the different types in role 1 and role 2. Hence by the conformance
checking in § 3, and by the typing system in § 3, we can rule out processes which
have the above non-coherent types.
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