
Using an holistic method based on prior information to
represent global and local variations on face images

Carlos E. Thomaz
Department of Electrical Engineering, FEI
São Bernardo do Campo, São Paulo, Brazil

Vagner do Amaral
Department of Electrical Engineering, FEI
São Bernardo do Campo, São Paulo, Brazil

Gilson A. Giraldi
National Laboratory for Scientific Computing
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Abstract

Faces are familiar objects that can be easily perceived and recognized by ourselves.
However, the computational modeling of such apparently natural human ability remains
challenging. Recent studies in the literature have suggested that face processing is a
cognition task composed of configural (or global) and featural (or local) sources of infor-
mation, but with controversial arguments about the combination of these two types of
information. In this work, we describe an holistic method that combines variance used
in Principal Component Analysis (PCA) with some prior knowledge about the under-
lying visual perception task, including systematically the global and local information
in the common multivariate representation of face images. We have showed that, with
prior information, important local variations represented by principal components with
small eigenvalues may not be discarded augmenting the classification accuracy of the first
orthogonal basis vectors. Most interestingly, PCA with prior knowledge provides a spe-
cialized feature selection procedure, where the mapping of high-dimensional data into a
lower-dimensional space has been able to handle local variations and capture not only the
entire facial appearance but also some sample group facial features.
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1 Introduction

Faces are one of the most familiar objects that can be perceived and recognized by humans
[23, 15, 8, 24, 26]. However, the computational modeling of such apparently natural and
heritable human ability [35, 17] remains challenging.

Recently, it has become a consensus, especially owing to biological and behavioral evidences
[7, 15, 14, 1, 27], that face processing is a cognition task composed of configural and featural
sources of information [4, 34, 16, 26], but with controversial arguments about the combination
and relative interaction of these two types of information [26]. In other words, faces are expected
to have not only a global and common spatial layout with all its parts such as eyes, nose and
mouth arranged consistently [13], but also variations in these local features [18], which are
fundamental to explain the singularity of each individual [25] or even samples of individuals
with the same, for example, gender information or facial expression.

Several studies in the literature have suggested that this inherent relationship between the
whole face and its constituent parts might rely on a holistic representation to appropriately
describe the low-dimensional mechanism underlying our visual perception of faces [28, 2, 10,
19, 9, 13, 20, 6, 24]. In this context, Principal Component Analysis (PCA) [21, 12] has been the
best known holistic representation used as a pre-processing step for automated face recognition
systems [28, 33] as well as a conceptual framework for human face reasoning and coding [10,
19, 3, 5, 20, 14, 1]. Despite these well-known properties of PCA extensively applied in both
computer vision and human perception communities, the issue of handling local variations
differently in the common n-dimensional representation of face images with n pixels has not
been addressed yet.

In this work, we describe and implement a priori-driven PCA that represents global and local
variations on face images. In face recognition, with prior information, we show that important
local variations represented by principal components with small eigenvalues may not be dis-
carded augmenting the classification accuracy of the first orthogonal basis vectors. Analogously,
PCA with prior knowledge is able to convey, using the same n-dimensional representation, the
different visual cues that create, for instance, our distinct and selective perception for facial
identity and expression [6] when reducing the dimensionality of the high-dimensional image
inputs.

The paper is organized as follows. Next, in section 2, we translate in a systematic way the
configural and featural sources of information for face processing on n-dimensional priori-driven
principal components. Then, section 3 describes the face image datasets used to evaluate the
effectiveness of the feature selection method proposed. All the analyzes of the experimental
results carried out in this work have been explained in section 4. Finally, in section 5, we
conclude the paper, discussing its main contribution and limitation.

2 Method

In this section, we describe the holistic method proposed that combines variance with prior
information in order to include systematically the configural and featural sources of information
in the n-dimensional representation of face images.
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2.1 Combining variance with prior knowledge

Let an N × n data matrix X be composed of N face images with n variables (or pixels), that
is, X = (x1,x2, . . . ,xN)T . This means that each column of matrix X represents the values of
a particular variable observed all over the N signals. Let this data matrix X have covariance
matrix

S =
1

(N − 1)

N∑
i=1

(xi − x̄)(xi − x̄)T , (1)

where xi = [xi1, xi2, . . . , xin]T and x̄ is the grand mean vector of X given by

x̄ =
1

N

N∑
i=1

xi = (x̄1, x̄2, . . . , x̄n). (2)

The well-known Pearson’s sample correlation coefficient between the jth and kth variables
is defined as follows [11]:

rjk =
sjk√
sj
√

sk

(3)

=

∑N
i=1(xij − x̄j)(xik − x̄k)√∑N

i=1(xij − x̄j)2

√∑N
i=1(xik − x̄k)2

,

for j = 1, 2, . . . , n and k = 1, 2, . . . , n. Analogously to equation (3), we can describe the
priori-driven sample covariance s∗

jk between the jth and kth variables by

s∗
jk = (

√
wj

√
wk)sjk (4)

=
N∑

i=1

√
wj(xij − x̄j)

√
wk(xik − x̄k).

The spatial weighting vector (or spatial multivariate map)

w = [w1, w2, . . . , wn]T (5)

is such that wj ≥ 0 and
∑n

j=1 wj = 1, where each wj measures the information power of the jth

variable. Thus, when n variables are observed on N samples, the weighted sample covariance
matrix S∗ can be described by

S∗ =
{
s∗

jk

}
=

{
N∑

i=1

√
wj(xij − x̄j)

√
wk(xik − x̄k)

}
. (6)

It is important to note that s∗
jk = s∗

kj for all j and k and consequently the matrix S∗ is a nxn
symmetric matrix. Let S∗ have respectively P ∗ and Λ∗ eigenvector and eigenvalue matrices, as
follows:

P ∗T S∗P ∗ = Λ∗. (7)

The set of k (k ≤ n) eigenvectors of S∗, that is, P ∗ = [p∗
1,p

∗
2, . . . ,p

∗
k], which corresponds to

the k largest eigenvalues, defines a new orthonormal coordinate system for the data matrix X
called priori-driven principal components [31, 32].
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2.2 The priori-driven weights

The issue here is how we can translate in a systematic way the configural and featural sources
of information for face processing on a n-dimensional vector of priori-driven weights.

Since the holistic representation assumes that an input face image with n pixels can be
treated as a point in an n-dimensional space (by concatenating the rows, or columns, of the
image matrix), the layout of the whole face and its constituent parts like eyes, nose and mouth
is already arranged by definition. As a consequence, any configural face variation related, for
instance, to the spatial distances between facial parts would be intrinsically encoded in this
holistic representation. The question is then how we can define the n-dimensional weighting
vector to handle local variations and capture not only the entire facial appearance but also
some individual or sample group facial features.

To do that we propose the idea of using a limited set of labeled samples and rearrange
the data matrix X composed of N input images with n pixels on the following M (M ≤
N) classification pairs: (x1, y1), (x2, y2), . . . , (xM , yM), where xi ∈ <n denote again the ith

face images and yi are scalars that correspond to the human reasoning about the specific
experimental task under investigation. For example, in a low-dimensional representation about
gender facial differences, which involves two sample groups only (male versus female), yi ∈
{−1, 1}.

The easiest multivariate linear method to calculate a spatial multivariate map w that dis-
criminates labeled sample groups [30] is via computation of the spectral decomposition of the
between-scatter matrix Sb given by:

Sb =

g∑
i=1

Ni(x̄i − x̄)(x̄i − x̄)T , (8)

where Ni is the number of images from class i, x̄i is the unbiased sample mean of class i [11]
and g is the total number of classes or groups. The spatial multivariate map w is simply the
leading eigenvector of Sb, called here as the 1st order prior information.

2.3 The Step-by-Step Algorithm

The main steps for calculating the priori-driven principal components P ∗ = [p∗
1,p

∗
2, . . . ,p

∗
k] of

an N ×n training set matrix X composed of N input images with n pixels can be summarized
as follows:

1. Calculate the vector w = [w1, w2, . . . , wn]T using the M classification pairs, where M ≤
N , and the between-scatter matrix, as described in the previous sub-section;

2. Normalize w such that wj ≥ 0 and
∑n

j=1 wj = 1, that is, replace wj with
|wj |∑n

j=1 |wj | ;

3. Standardize all the n variables of the data matrix X such that the new variables have
x̄j = 0, for j = 1, 2, . . . , n. In other words, calculate the grand mean vector

x̄ =
1

N

N∑
i=1

xi = (x̄1, x̄2, . . . , x̄n)

and replace xij with zij given by
zij = xij − x̄j

for i = 1, 2, . . . , N and j = 1, 2, . . . , n;
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4. Spatially weigh up all the standardized zij variables using the normalized weighting vector
w calculated in step 2, that is

z∗
ij = zij

√
wj;

5. The priori-driven principal components P ∗ are then the eigenvectors corresponding to the
k largest eigenvalues of (Z∗)T Z∗, where Z∗ = {z∗

1, z
∗
2, . . . , z

∗
N}

T .

3 Experiments

The following experimental tasks have been performed using frontal and pre-aligned face im-
ages cropped to 128x128 pixels in size: (a) Gender experiments (female versus male samples);
(b) Smiling experiments (neutral versus smiling samples). We chose to contrast these two ex-
periments because the featural sources of information related to gender and smiling are both
sparse, but distributed differently on face images.

Two publicly available data sets have been used to evaluate the low-dimension representation
and interpretability of the priori-driven principal components: FEI [29] and FERET [22]. The
FEI data set is composed of 200 subjects (100 men and 100 women). Each subject has two
frontal images (one with a neutral or non-smiling expression and the other with a smiling facial
expression). In total 400 images were used to perform the gender and expression experiments.
In the FERET database, we have used 200 subjects (107 men and 93 women). Each subject has
two frontal images (one with a neutral or non-smiling expression and the other with a smiling
facial expression), also providing a total of 400 images to perform the gender and expression
experiments.

4 Results

4.1 Prior information

The multivariate weighting maps that represent the difference between the sample group means
are illustrated in Figure 1 for the gender and smiling variation tasks in both datasets. We can
see clearly that the information varies depending essentially on the experimental task, consistent
with the theoretical concept of a priori driven model. As expected, given the well-framed and
pre-aligned face images, the spatial multivariate map of the gender experiments (right panel)
is sparse and less localized whereas in the smiling task (left) the weights extracted by the 1st
order prior information show group-differences present mainly on the mouth and areas nearby.

4.2 Dimensionality reduction

Figure 2 shows the total variance of the smiling (left panel) and gender (right) experiments us-
ing different number of principal components selected by the corresponding largest eigenvalues.
It is possible to see that the combination of the variance criterion used in standard PCA with
the prior knowledge about the experimental task has provided a more parsimonious feature ex-
traction procedure, where the mapping of high-dimensional data into a lower-dimensional space
used less features. For instance, to explain in both experiments 90% of the total variance, note
that less priori-driven components would be necessary than standard ones in all experiments
carried out.
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Figure 1: From top to bottom: spatial multivariate maps that represent sample mean differences
extracted from the smiling (left) and gender (right) sample groups. Regions contained within
the colored areas and closer to the spectrum of red represent pixels of relatively larger weights
(in absolute values).
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Figure 2: Total variance of the priori-driven PCA (wPCA) compared to the standard PCA
for the smiling (left) and gender (right) experiments. The vertical lines denote the number of
priori-driven and standard principal components necessary to explain 90% of the corresponding
total variance information in each experiment.
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Additionally, Figure 3 illustrates the inner product matrices of the first 40 standard (left)
and priori-driven (right) principal components of the gender and smiling experiments using
the FEI and FERET datasets. It is noteworthy that in contrast to the standard principal
components that are identical (apart from the sign) in both datasets, there are clear changes in
the information retained and the ordering of the priori-driven components, describing distinct
patterns depending on the experimental tasks when reducing the dimensionality of the high-
dimensional face image inputs.

4.3 Classification accuracy

We adopted a 10-fold cross validation method drawn at random from the gender and smil-
ing corresponding sample groups to evaluate the classification accuracy of the priori-driven
approach in comparison with the standard PCA. Throughout all the results, the Euclidean dis-
tance to the nearest neighbour sample has been used to assign a test image to either the male
or female groups in the gender experiment, or to either the smiling or non-smiling group in the
expression experiment. Figure 4 shows the average recognition rate using different number of
principal components selected by the corresponding largest eigenvalues. It is clear that in both
experiments and datasets the use of prior information improved the discriminant power of the
principal components, especially in the first ones, allowing similar or higher average recognition
rates with the same number of components. Most interestingly and, in fact, more importantly
regarding an holistic representation to describe the low-dimensional mechanism underlying our
visual perception of faces, the combination of the variance criterion used in standard PCA with
the prior knowledge about the experimental task has provided a specialized and constrained fea-
ture selection procedure, where the mapping of high-dimensional data into a lower-dimensional
space contained most of the relevant local information and used less features. For instance,
note that in all results not only less priori-driven components would be necessary than standard
ones to explain 90% of the total variance (vertical lines), but also such subsets of priori-driven
components seem to be more appropriate to make judgments about the experiments because
show higher classification accuracy.

5 Conclusion

In this paper we have described an holistic method that combines variance with prior informa-
tion in order to include systematically global and local sources of information in the commonly
used high-dimensional representation of frontal and pre-aligned face images. The advantage
of the approach proposed is that it can be performed on the features of interest, generating
simpler and easier low-dimensional representation of face images that allow subsequent retriev-
ing or classification using fewer principal components. Its disadvantage is the dependence on
some labeled samples pre-defined to handle the local variations and capture not only the entire
facial appearance but also some sample group facial features. The rationale of this priori-driven
multivariate approach is akin to the idea of investigating the link between low-level (or local)
visual attributes, such as color, shape and texture, and high level (or global) ones, explained by
semantic concepts of human reasoning, to extract and interpret the most informative features
in face image analysis given by the data available.
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Figure 3: Inner product matrices of the first 40 standard (left) and priori-driven (right) principal
components of the smiling and gender task experiments using the FEI (top) and FERET
(bottom) datasets.
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Figure 4: Average recognition rate of the priori-driven PCA (wPCA) compared to the standard
PCA for the smiling (left) and gender (right) experiments. All the principal components re-
tained have been selected by their corresponding largest eigenvalues. The vertical lines denote
the number of priori-driven and standard principal components necessary to explain 90% of the
corresponding total variance information in each experiment.
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