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Abstract

Compositionality is a key property in the development and analy-
sis of component-based systems. In non-probabilistic formalisms such
as Labelled Transition Systems (LTS) the functional behaviour of a
system can be readily constructed from the behaviours of its parts.
However, this is not true for probabilistic extensions of LTS, which
are necessary to analyse non-functional properties such as reliability.
We propose Probabilistic Component Automata (PCA) as a proba-
bilistic extension to Interface Automata to automatically construct a
system model by composing models of its sub-components. In par-
ticular, we focus on modelling failure scenarios, failure handling and
failure propagation. Additionally, we propose a novel algorithm based
on Compositional Reachability Analysis to mitigate the well-known
state-explosion problem associated with composable models. Both
Probabilistic Component Automata and the reduction algorithm have
been implemented in the LTSA tool.

1 Introduction

Many software systems, from service-based to ubiquitous systems, are built
by combining new services and components with existing ones. Models for
these systems should therefore preserve the modularity and reusability prop-
erties of component-based design and accommodate compositional analysis.
This has been successfully explored for functional behaviour models using
LTS representations [1–4] and software architectures [5–7]. However, this is
less well supported for non-functional properties such as reliability and per-
formance which require representations that consider time and probabilistic

1



information. Although performance models are compositional [8], their se-
mantics is based on the duration of actions. Consequently, these models allow
to answer questions such as “what is the probability that the system fails
within s units of time?” or “what is the average time until the system fails?”.
In contrast, we focus on probabilistic compositional reachability analysis of
failure states to answer questions such as “what is the probability that the
system fails?” or “what is the probability of failure after action a?”.

Discrete-Time Markov Chains (DTMCs) have been traditionally used for
probabilistic reachability analysis [9–12]. However, a composite model of a
system cannot be simply constructed from the DTMC models of its sub-
components, i.e. the models are not composable. This limitation arises from
the difficulty of composing probabilistic behaviour. For example, Proba-
bilistic LTS (PLTS) have been advocated for reasoning about non-functional
properties [13]. However, the composition of two PLTS may result in a model
whose probabilistic choices from a given state do not sum to 1 [14] and a
straightforward normalisation does not always accurately capture the com-
posite behaviour. Probabilistic I/O Automata (PIOA) [15] and Probabilistic
Interface Component Protocols (PCIP) [16] attempt to address this but their
semantics introduces additional characteristics (e.g., input-enabledness and
error-on-wait) which hinder their applicability. Furthermore, these models
do not support the representation of failure scenarios and failure handling.

We propose a modelling formalism, Probabilistic Component Automata
(PCA), that is compositional and includes primitives to represent failure sce-
narios, failure propagation and failure handling. Our model complements Ar-
chitectural Description Languages, such as Darwin [6], to describe the system
behaviour and how exceptions are used to deal with failures in object-oriented
languages. As composite PCA models may suffer from state-explosion, we
extend the use of Compositional Reachability Analysis [17] to hide prob-
abilistic transitions in PCA and perform compositional reliability analysis.
The main contributions of the paper, PCA and the associated CRA algo-
rithm, are described in Sections 3 and 4. In this report, we also: (a) conduct
a brief review (Section 2) of existing formalisms for modelling probabilistic
behaviour, their inter-relationships and limitations, (b) evaluate the benefits
of PCA in conjunction with the reduction algorithm for scalable reliability
analysis (Section 5). Conclusions and future work are presented in Section
6.
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2 Related Work

2.1 Non-composable models

Discrete-Time Markov Chains (DTMCs) have been initially proposed by
Cheung [9] to represent the reliability of component-based systems. The
behaviour of component Ci is modelled as a single state si, denoting compo-
nent Ci is executing. A transition matrix P represents the transfer of exe-
cution control between components, where P (si, sj) denotes the probability
of transferring control from Ci to Cj, conditional on the successful execution
of Ci. If Ci fails, a transition to a global failure state F is added to state si
and P (si, F ) denotes the probability of such failure. A final absorbing state
C represents the successful termination.

This approach faces several limitations. Firstly, the model assumes that
components execute sequentially and thus cannot represent concurrent ex-
ecution. Secondly, the DTMC model of a composite component cannot be
automatically constructed from the models of its sub-components. There-
fore, when the system architecture changes a new representation has to be
manually defined and the system needs to be profiled again to obtain a new
transition matrix P . Thirdly, this approach assumes that failures occur in-
dependently in components bound to each other and cannot represent failure
dependencies and failure propagation across component bindings. Filieri et.
al [10] extended Cheung’s approach to allow failures to be propagated but
their approach still does not support automatic construction of the model
from the representations of its parts. To overcome this, Wang et. al [11] de-
fined mappings between architectural patterns and DTMC representations
of the entire system. However, such mappings must be manually defined and
the resulting models do not include the internal behaviour of each component.

2.2 Composable Models

Probabilistic I/O Automata (PIOA) [15] are a probabilistic extension of I/O
Automata [18] that distinguish between input actions, which follow reactive
semantics and internal/output actions, which follow generative semantics.
When composing two PIOA, only matching pairs of input-output actions
are synchronised, which correspond to bindings between the provided and
required interfaces of components. Internal actions represent behaviour that
is not externally visible to other components. Distinguishing between in-
put and output actions allows PIOA to address some of the inconsistencies
encountered in probabilistic LTS [13]. However, PIOA are input-enabled
models, i.e. each component must process any input action at any time, re-
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gardless of its internal state. This makes PIOA unsuitable for representing
component-based software systems.

Interface Automata (IA) [19] are similar to I/O Automata but do not
require input-enabledness. In essence, an automaton that executes an output
action waits for the automaton with the corresponding input action to be
ready to communicate. This is achieved by removing illegal transitions from
the product of the two automata, i.e. where this property is not verified.
However, IA models do not consider probabilistic information.

Probabilistic Component Interface Protocols (PCIP) [16] are a full prob-
abilistic extension1 to IA, but a different semantics is used to construct com-
posite models. While in IA the transitions in the composite automaton
associated with illegal behaviour are discarded to implement a wait on call
semantics, in PCIP such situations are considered erroneous behaviour and
are included in the composite PCIP as transitions leading to a special error
state. This hinders their applicability for reliability analysis where transitions
to the error state represent failures of actions, e.g. communication failures.

Other approaches to reliability analysis based on the probability of reach-
ing an error state as a result of failures are described in existing surveys
[21, 22]. However, a compositional model that allows for representation for
failures, failure propagation and failure handling is still missing.

3 Probabilistic Component Automata

We define Probabilistic Component Automata (PCA) as a probabilistic ex-
tension to IA [19] with support for the representation of failures. Probabilistic
information is added to the transitions between states and we redefine ac-
cordingly the semantics of the operators to construct single and composite
models. In composite models we follow the wait on call semantics of IA and
introduce a different, and arguably more intuitive, normalisation than the
one used in PIOA and PCIP. We further introduce an explicit representation
for failure actions and failure handling actions that is analogous to the con-
ventional use of exceptions in object-oriented programming languages. Our
model has been implemented as an extension to the LTSA tool [1] and is
available at https://wp.doc.ic.ac.uk/dse/software/ltsa-pca/. The implemen-
tation aspects are described in [23].

1Probabilistic Interface Automata [20] only support the composition of a probabilistic
model of the environment with a non-probabilistic model of the software system.
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3.1 Definition

A Probabilistic Component Automaton is defined as P = 〈S, q, E ,∆, µ〉
where:

• S is a set of states and q ∈ S is the initial state;

• E = E in ∪ E loc: E in are input actions from the environment that follow
reactive semantics; E loc = E int ∪Eout are locally controlled actions that
follow generative semantics, where E int and Eout are internal actions
and output actions, respectively;

• ∆ ⊆ (S × E × S) is the set of transitions.

• µ : ∆→ [0, 1] where µ = p(s′, a | s′) denotes the probability of reaching
state s′ from state s through the execution of action a.

Similarly to IA, input actions model the receiving end of a communication
channel or (interface) methods that can be called, whereas output actions
model the invocation of methods or sending of messages. Hereafter we refer
to both types of interactions as communication between components.

3.2 Modelling Basic Components

Just as Finite State Processes are used to specify Labelled Transitions Sys-
tems, Probabilistic Finite State Processes (P-FSP) [23] support incremental
specification of PCA models. The correspondence between P-FSP expres-
sions and PCA models is given by the function pca : E → PCA. Given a
P-FSP expression E, pca(E) = 〈S, q, E ,∆, µ〉.

Prefix and choice are the basic operators to incrementally construct PCA
models of basic components, whose operational semantics is respectively de-
fined by Rule 1 and Rule 2.

(a, pa → E)
a,pa−−→ E

(Rule 1)

A transition consists of a) an action type: ? for input, ! for output, no-
symbol for internal, ∼ for internal failures, ∼? for input failures and ∼! for
output failures; b) the execution probability p, and c) the action label a ∈ E .
The corresponding PCA is given by pca(a, pa → E) = 〈S ∪ {p}, p, E ∪
{(p, a, q)}, µ ∪ {(p, a, q)→ pa} 〉.

(p1 a1 −> E1 | . . . | pn an −> En)
ai,pai−−−→ Ei

(Rule 2)
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The choice operator defines possible outcomes from a given state. If
a1, . . . , an are locally controlled actions (internal or output), then (p1 a1 −>
E1 | . . . | pn an −> En) describes a PCA that initially engages in any ac-
tion ai with probability pi. In this case, the choice operator can be used
to model if or switch statements. On the other hand, if a1, . . . , an are
input actions, the action ai the PCA engages in is dictated by the environ-
ment, i.e. other processes that output ai. As input actions follow reactive
semantics, the probabilities associated with transitions with the same ac-
tion label are equal to 1. Once an input label is chosen, the process can
choose locally different outcomes with different probabilities. This case mod-
els how the provided interfaces of a component are used by other components,
which is only known in a specific architectural configuration i.e., when the
components are bound. The corresponding PCA model is formally defined
by the following. Let 1 ≤ i ≤ n and pca(Ei) = 〈Si, qi, Ei,∆i, µi〉, then
pca(ρ1 a1 −> E1 | . . . | ρn an −> En) = 〈(

⋃
i Si) ∪ {p}, p, (

⋃
i Ei) ∪

{a1, . . . , an}, (
⋃
i ∆i) ∪ {(p, ai, qi) }, (

⋃
i µi) ∪ {(p, ai, qi)→ pai}〉.

3.3 Modelling Composite Components

We define Probabilistic Component Automata (PCA) as a probabilistic ex-
tension to IA [19] with support for the representation of failures. Probabilistic
information is added to the transitions between states and we redefine ac-
cordingly the semantics of the operators to construct single and composite
models. In composite models we follow the wait on call semantics of IA and
introduce a different, and arguably more intuitive, normalisation than the
one used in PIOA and PCIP. We further introduce an explicit representation
for failure actions and failure handling actions that is analogous to the con-
ventional use of exceptions in object-oriented programming languages. Our
model has been implemented as an extension to the LTSA tool [1] and is
available at https://wp.doc.ic.ac.uk/dse/software/ltsa-pca/. The implemen-
tation aspects are described in [23].

3.4 Definition

A Probabilistic Component Automaton is defined as P = 〈S, q, E ,∆, µ〉
where:

• S is a set of states and q ∈ S is the initial state;

• E = E in ∪ E loc: E in are input actions from the environment that follow
reactive semantics; E loc = E int ∪Eout are locally controlled actions that
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follow generative semantics, where E int and Eout are internal actions
and output actions, respectively;

• ∆ ⊆ (S × E × S) is the set of transitions.

• µ : ∆→ [0, 1] where µ = p(s′, a | s′) denotes the probability of reaching
state s′ from state s through the execution of action a.

Similarly to IA, input actions model the receiving end of a communication
channel or (interface) methods that can be called, whereas output actions
model the invocation of methods or sending of messages. Hereafter we refer
to both types of interactions as communication between components.

3.5 Modelling Basic Components

Just as Finite State Processes are used to specify Labelled Transitions Sys-
tems, Probabilistic Finite State Processes (P-FSP) [23] support incremental
specification of PCA models. The correspondence between P-FSP expres-
sions and PCA models is given by the function pca : E → PCA. Given a
P-FSP expression E, pca(E) = 〈S, q, E ,∆, µ〉.

Prefix and choice are the basic operators to incrementally construct PCA
models of basic components, whose operational semantics is respectively de-
fined by Rule 1 and Rule 2.

(a, pa → E)
a,pa−−→ E

(Rule 1)

A transition consists of a) an action type: ? for input, ! for output, no-
symbol for internal, ∼ for internal failures, ∼? for input failures and ∼! for
output failures; b) the execution probability p, and c) the action label a ∈ E .
The corresponding PCA is given by pca(a, pa → E) = 〈S ∪ {p}, p, E ∪
{(p, a, q)}, µ ∪ {(p, a, q)→ pa} 〉.

(p1 a1 −> E1 | . . . | pn an −> En)
ai,pai−−−→ Ei

(Rule 2)

The choice operator defines possible outcomes from a given state. If
a1, . . . , an are locally controlled actions (internal or output), then (p1 a1 −>
E1 | . . . | pn an −> En) describes a PCA that initially engages in any ac-
tion ai with probability pi. In this case, the choice operator can be used
to model if or switch statements. On the other hand, if a1, . . . , an are
input actions, the action ai the PCA engages in is dictated by the environ-
ment, i.e. other processes that output ai. As input actions follow reactive
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semantics, the probabilities associated with transitions with the same ac-
tion label are equal to 1. Once an input label is chosen, the process can
choose locally different outcomes with different probabilities. This case mod-
els how the provided interfaces of a component are used by other components,
which is only known in a specific architectural configuration i.e., when the
components are bound. The corresponding PCA model is formally defined
by the following. Let 1 ≤ i ≤ n and pca(Ei) = 〈Si, qi, Ei,∆i, µi〉, then
pca(ρ1 a1 −> E1 | . . . | ρn an −> En) = 〈(

⋃
i Si) ∪ {p}, p, (

⋃
i Ei) ∪

{a1, . . . , an}, (
⋃
i ∆i) ∪ {(p, ai, qi) }, (

⋃
i µi) ∪ {(p, ai, qi)→ pai}〉.

3.6 Modelling Composite Components

While the previous operators enable the specification of basic components,
the parallel composition operator || is used to automatically construct the
PCA model of a composite component from the PCAs representing its sub-
components. The semantics of composite models is a probabilistic extension
of the composition semantics of IA models. Synchronisation between input
and output actions models the interactions between two components i.e.,
communication along component bindings and internal actions of different
PCAs are interleaved to model their concurrent execution. Note that parallel
composition can only be applied to compatible PCA models. Two PCA (A,
B) are compatible iff:

E intA ∩ EB = ∅, E intB ∩ EA = ∅,

E inA ∩ E inB = ∅, EoutA ∩ EoutB = ∅.
These conditions ensure that synchronisation occurs solely between a sin-
gle pair of input and output actions. In practice, this implies that parallel
composition can only be applied to synchronise single bindings to a provided
interface. When there are multiple bindings, the interface actions of the com-
ponents have to be differentiated before constructing the composite model
(see Section 3.7).

A
(!a,pa)−−−−→ A′ , B

(?a,pa′ )−−−−→ B′

A||B
(a,

pa.pa′
η

)

−−−−−−→ A′||B′
, a ∈ EA ∪ EB (Rule 3)

A
(a,pa)−−−→ A′

A||B
(a, pa

η
)

−−−−→ A′||B
, a /∈ EB

B
(b,pb)−−−→ B′

A||B
(b,

pb
η
)

−−−−→ A||B′
, b /∈ EA (Rule 4)

Synchronisation occurs only when both components are ready to commu-
nicate, as input actions wait for a corresponding output action to be ready
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for execution and output actions wait for a corresponding input action to be
ready for communication (Rule 3). Non-shared actions are interleaved (Rule
4) to represent their concurrent execution. In Rules 3 and 4, η denotes a nor-
malisation factor that preserves the generative semantics of locally controlled
actions and is discussed in detail in the following paragraphs.

Consider the composite PCA of a simple Client-Server system constructed
from the individual PCAs shown in Figure 1. Client and Server execute
independently their respective internal actions prepare and process, be-
tween the shared actions request and response. To preserve the generative
semantics for actions prepare and process in the composite PCA, their
probabilities need to be normalised by η. In the general case, η is equal to
the sum of the probabilities of all interleaved locally controlled actions for a
given state, which implies that both components (e.g. Client and Server) are
equally likely to execute their actions. Additionally, the normalisation factor
η is not used for actions request and response since the composite model
only contains communication between two components (cf. sub-section 3.7).

(a) Client (b) Server

(c) ClientServer

Figure 1: PCA representations of a Client and Server system

In the general case, the normalisation factor η is defined as follows. Con-
sider a composite PCA A1||...||An. For each composite state (s1, ..., sn) ∈
SA1||...||An , we define ∆loc

A1||...||An(s1, ..., sn) as the set of outgoing transitions

from state (s1, ..., sn) labelled with locally controlled actions. In this case, η =∑n
i=1 pi = µAi(si, a, s

′
i) ∈ [1, n] denotes the number of automata with locally

controlled actions from state (s1, ..., sn). For each transition 〈(s1, ..., sn), (a, p′i), (s
′
1, ..., s

′
n)〉 ∈

∆loc
A1||...||An(s1, ..., sn), p′i = pi

η
, (si, a, s

′
i) ∈ ∆Ai , pi = µAi(si, a, s

′
i). For each

transition 〈(s1, ..., sn), (a, p), (s′1, ..., s
′
n)〉 ∈ ∆in

A1||...||An(s1, ..., sn), η = 1 as nor-
malisation is applied only to local actions.
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3.7 Modelling Multiple Bindings

Given that parallel composition only allows synchronisation between a sin-
gle pair of matching input-output actions, to bind multiple Clients to the
Server’s provided interface, the Server PCA needs to be extended to handle
requests from multiple clients. This is achieved using a process sharing op-
erator similar to the one defined for LTS [1]. The interface actions of the
Server PCA (request and response) are substituted by two prefixed actions
that represent the interaction with each Client (e.g. c1.request). The re-
sulting PCA model constructed as {c1, c2}::Server is shown in Figure 2.
Once more, the probabilities of the new prefixed output actions need to be
normalised in order to preserve the generative semantics of locally controlled
actions. In this case, η is equal to the number of prefix labels applied by the
process sharing operator.

Figure 2: Server PCA with multiple bindings

Figure 3: Client-Server composite PCA with multiple bindings

The composite representation of a system comprising two Clients and one
Server (Figure 3) can thus be obtained by composing in parallel as follows:
c1:{Client} || c2:{Client} || {c1, c2}::Server, where c1:{Client}
adds prefixes c1 to the actions of the Client PCA. Note that three different
kinds of normalisation are applied, each with a slightly different meaning.
Firstly, normalisation is applied using the formula defined on the previous
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sub-section to the interleaving of requests originating from separate clients
(state 0 in Figure 3) where either c1.request or c2.request can occur. This
assumes that the two Clients use the server equally. Secondly, normalisation
is applied within the context of the client-server interactions, once for each
client (state 1 and state 5 in in Figure 3) where c1.prepare or process

(c2.prepare and process respectively) can occur. In this case, the normal-
isation represents that Client and Server are equally likely to execute their
actions. Although we have used the same rule in both cases it is important
to distinguish between them because normalisation across clients often needs
to take into account their differing usage profiles i.e. some clients use the
server more frequently than others. Informally, this is analogous to having
different normalisation factors for sessions originating from different clients
and for the interleaving of actions within a session. The generalisation of η,
to use ”weights” for the different clients is straightforward.

Thirdly, the probabilities of transitions labelled with actions c1.response
and c2.response from states 3 and 7 in Figure 3 have to be normalise to
reflect that only c1.response (c2.response) can be executed at state 3
(7) since the Server cannot execute c1.response (c2.response) without
having received c1.request (c2.request). This normalisation is applied
prior to the previous ones as it is applied separately for each machine. In
the composition A1||...||An, the normalisation factor ηi applied to PCA Ai
in the composite state (s1, ..., sn) is defined as follows: ηi〈(s1, ..., sn)〉 =∑
pj |〈(s1, ..., sn), (a, p), (s′1, ..., s

′
n)〉 ∈ ∆A1‖...‖An , a ∈ E locAi , pj = µi(si, a, s

′
i).

Note that in the case the process sharing has not been previously applied, ηi
is equal to 1, hence effectively no normalisation is applied.

The normalisation we use is different from that introduced in PCIP where
a single delay rate is used to normalise all controlled actions of a composite
PCIP. Although the delay date can be informally interpreted as the fre-
quency of requests from different components and thus used to normalise
requests from different components, it is not suitable for all the aforemen-
tioned scenarios, e.g. it is not applicable to normalise the probabilities of
specific interleaved actions within a Client-Server session.

3.8 Failure Modelling

We introduce failure actions to model failure scenarios, failure propagation
and failure handling behaviour. If a PCA is in state s and can execute
an unreliable internal action e, a transition (s,∼ e, ERROR) leading to the
ERROR state represents the failure of e. While internal failures represent
unexpected executions such as runtime exceptions, transitions labelled with
output failure actions (s,∼!e, ERROR) model externally visible failures such
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as communication failures.
Both internal and output failures follow generative semantics as they are

locally controlled. On the other hand, an input failure action (s,∼?e, ERROR)
denotes that a PCA is able to handle the failure of the corresponding output
action from another component. These actions follow reactive semantics as
their execution is determined by the PCA that fails.

The semantics of failure propagation and failure handling in PCA is in-
tuitively similar to exception handling. An output failure action can be
interpreted as an exception being thrown while an input failure action cor-
responds to the exception being caught and handled. This allows to express
a variety of failure handling behaviours. For example, the failure of an inner
component can be handled by an outer component or by another component
at the same level. It can also be handled and a different failure action be
output on a different interface e.g. to a higher level component.

Figure 4 shows a modified version of the server PCA of our example,
where the server’s response action fails in 1% of occurrences and state −1
denotes the ERROR state.

Figure 4: Server PCA with failures

A
(!a, pa)−−−−→ A′ , A

(∼!a, pf )−−−−−→ ERROR , B
(?a, p′a)−−−−→ B′

A||B
(∼a,

pf .pa

η
)

−−−−−−→ ERROR

(Rule 5)

The operational semantics of the parallel composition operator needs to
be extended to represent failure propagation and failure handling. When the
PCA of the unreliable Server is composed with the Client PCA, the output
failure action response is propagated to the composite PCA as an internal
action and the ERROR state in the Server PCA becomes a global ERROR
state (Figure 5). In other words, the failure of a single component, if not
handled, leads to the failure of the composite component (Rule 5).
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Figure 5: Client-Server composite PCA (with failures)

A
(!a, pa)−−−−→ A′ , A

(∼!a, pf )−−−−−→ ERROR ,

B
(?a, p′a)−−−−→ B′ , B

(∼?a, pf ′ )−−−−−→ B′′

A||B
(a,

pf .pf ′
η

)

−−−−−−→ reset(A)||B′′
(Rule 6)

Alternatively, the Client PCA can be extended to handle the failure of the
response action (Figure 6) using an input failure action followed by failure
handling behaviour (Rule 6). In this case, the composition of the input
and output response failure actions becomes an internal transition of the
composite component that does not lead to the ERROR state.

Figure 6: Client PCA with failure handling

The Server PCA then resets its behaviour to the initial state while the
Client PCA continues its execution based on the failure handling behaviour
specified. Finally, internal failures are treated in the same way as other in-
ternal actions. Therefore, when two automata are composed, internal failure
actions lead the composite automaton to a global ERROR state.

3.9 Hiding

The composite model for a complex system often is significantly large as it
contains a large number of internal states and transitions. The hiding oper-
ator \{a1, . . . , an} when applied to a PCA A collapses, when possible, the
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Figure 7: Client-Server composite PCA with failure handling

transitions in A labelled with the action names {a1, . . . , an}, while maintain-
ing the probabilistic reachability properties of the original process. This op-
erator can be used to remove behaviour associated with unbound provided
interfaces, internal transitions or reduce a PCA to its interface behaviour
representation. Its dual, the interface operator @ {a1, . . . , an}, indicates the

transitions that should be kept and is internally converted to \
{
EA−{a1, . . . ,

an}
}

. In the next section we present the algorithm we use to implement hid-

ing and minimisation to help reduce the state space and facilitate analysis.
The results of this reduction will be discussed in Section 5.

4 Compositional Reliability Analysis

Compositional Reachability Analysis (CRA) [24] has been proposed to help
mitigate the state-explosion associated with the composition of LTS and
thereby potentially improving the scalability of their composition [17], but
so far the method has not been applied to probabilistic systems. Consider
two LTS A = 〈SA, qA, EA,∆A〉 and B = 〈SB, qB, EB,∆B〉 representing the
behaviour of two components. In the composite behaviour A||B, A imposes
behaviour contextual constraints on B [24]. Such constraints are captured
by an interface process I such that the properties which hold for A||I also
hold for A||B. This requires that I is behaviourally equivalent to B ↑ αA,
i.e. a process that is constructed by restricting B to actions in A. The main
steps for constructing the interface process I of B constrained by A are as
follows:

• for every transition (s, e, s′) ∈ ∆B, if e /∈ EA delete transition (s, e, s′);

• merge states s and s′ into a single state.

14



Consider now the PCA representation of two components A and B. If
the provided interfaces of B are bound to required interfaces of A, then the
PCA representing the behaviour of B can be reduced using the CRA method
to its interface actions w.r.t. interactions with component A. However, the
CRA method [24] does not take probabilities into account and these need to
be propagated when transitions are deleted.

A compositional analysis algorithm which seeks to apply CRA concepts
to PIOA has been proposed before [25], but its resulting automaton may be
inconsistent with PIOA semantics. For example, transitions labelled with
a non-observable action that lead to an absorbing state are deleted [25] but
this is not appropriate since their probabilities cannot be propagated to other
transitions.

We propose here a novel algorithm to reduce PCA models to their inter-
face behaviour through CRA, whilst preserving the probabilistic properties of
the original model. The algorithm analyses the transitions of each state and
checks if non observable transitions can be deleted and whether their prob-
abilities can be propagated forwards to subsequent transitions or backwards
to prior transitions.

We define as follows:

• ∆(s) = {(s, e, s′) ∈ ∆ | s′ ∈ S, e ∈ E}: the successor transitions of a
state s ∈ S;

• ρ(s) = {(s′, e, s) ∈ ∆ | s′ ∈ S, e ∈ E}: the predecessor transitions of a
state s ∈ S;

• ∆s(s) = {s′ | (s, e, s′) ∈ ∆, s′ ∈ S, e ∈ E}: the states of successor
transitions of a state s ∈ S;

• ρs(s) = {s′ | (s′, e, s) ∈ ∆, s′ ∈ S, e ∈ E}: states of predecessor transi-
tions of a state s ∈ S;

• ∆e(s) = {e | (s, e, s′) ∈ ∆, s′ ∈ S, e ∈ E}: the actions successor transi-
tions of a state s ∈ S;

• ρe(s) = {e | (s′, e, s) ∈ ∆, s′ ∈ S, e ∈ E}: the actions predecessor tran-
sitions of a state s ∈ S;

• canFail(e, s) = ∃(s,∼ e, s′) ∈ ∆: a non-reliable action e ∈ E from
state s.

Our algorithm is divided in two phases (Algorithm 1). During the first
phase (Algorithm 2), we perform a breadth-first search to delete the following
situations:
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input : B = 〈S, q, E,∆, µ〉 and EA
output: IA||B = 〈SI , qI , EI ,∆I , µI〉

1 [B’, markedStates, cyclicPaths] = firstPhase(B, EA);
2 IA||B = secondPhase(B’, markedStates, cyclicPaths, EA);

Algorithm 1: PCA reduction algorithm

• paths initiated by transitions labelled with an unused input action that
does not belong to the action set EA, e.g. input actions associated with
unbound provided interfaces (Algorithm 2 - line 18);

• transitions labelled with a locally controlled action that does not belong
to EA and that verify one of the following conditions: a) the destination
state has only one incoming transition and does not have transitions
labelled with input actions (Algorithm 2 - line 26) and b) the transition
is the only outgoing transition from the current state and there is no
incoming transition labelled with input actions (Algorithm 2 - line 29);

The following transitions are kept in order to preserve the semantics of
PCA models:

• cyclic transitions, i.e. (s, e, s′) ∈ ∆, s = s′ (Algorithm 2 - line 15);

• transitions labelled with locally controlled actions which: a) lead to a
deadlock or error state (Algorithm 2 - line 20) and b) can fail (Algorithm
2 - line 23).

Additionally, the number of cyclic paths that start at a given state are mea-
sured in the first phase (Algorithm 2 - line 8) to be later used in the second
phase (Algorithm 3). Transitions leading to a state s that has several in-
coming transitions are kept in the first phase and the state s is marked for
subsequent analysis in the second phase.

In the second phase, the reduced automaton produced by the first phase
is traversed and the incoming transitions of all the marked states are grouped
based on their source state. For each marked state s, ρ(s, s′) denotes the set
of incoming transitions of state s originating from s′ (s′ ∈ ρs(s)). Transitions
in ρ(s, s′) are collapsed backwards if all the transitions are labelled with
actions that do not belong to EA and no transition in the group is labelled
with an input action. In the specific case when |ρs(s)| = 1, i.e. all incoming
transitions of marked state s have the same source state, these transitions
are collapsed forward if the previous conditions are verified.

A breadth first navigation is used to traverse the automaton, though a
state is only analysed when all its incoming transitions have been traversed
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input : B = 〈S, q, E ,∆, µ, δ〉 and EA
output: B′ = 〈S ′, q, E ′,∆′, µ′, δ′〉, markedStates, cyclicPaths

1 boolean[] markedStates, boolean[] visited;
2 int[] cyclicPaths; Queue states;

3 states.push(q);
4 while not states.isEmpty() do
5 currentState ← states.pop();
6 if visited[currentState] then
7 cyclicPaths[currentState]++;
8 continue;

9 visited[currentState] = true;
10 if ∆(currentState) = ∅ then continue;
11 ;
12 foreach (currentState, e, s) ∈ ∆(currentState) do if e ∈ EA

then
13 addTransition((currentState, e, s)) to B′;
14 else
15 if currentState = s then
16 addTransition((currentState, e, s)) to B′;
17 continue;

18 if e ∈ Ein then continue;
19 ;
20 if ∆(s) = ∅ ∧ e /∈ E in then
21 addTransition((currentState, e, s)) to B′;
22 else if |ρ(s)| = 1 then
23 if canFail(e, currentState) then
24 addTransition((currentState, e, s)) to B′;
25 else if ∆e(s) ∩ E in = ∅ ∧ s 6= q then
26 collapseForward (currentState, s, µ(currentState,

e, s));

27 else if
|∆(currentState)| = 1 ∧ ρe(currentState) ∩ E in = ∅ then

28 collapseBackward(currentState, s, µ(currentState,
e, s));

29 else
30 addTransition((currentState, e, s)) to B;

31 markedStates[s] = true;

32 if s 6= q ∧ s 6= currentState then states.push(s);
33 ;
34 ;

Algorithm 2: First Phase
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input : B′ = 〈S ′, q, E ′,∆′, µ′, δ′〉, boolean[] markedStates, int[]
cyclicPaths

output: IA||B = 〈SI , qI , EI ,∆I , µI , δI〉 and EA
1 int[] nTimesVisited;
2 Queue states;
3 IA||B = clone(B′)

4 states.push(qI);
5 while not states.isEmpty() do
6 currentState ← states.pop();
7 if markedState[currentState] then
8 ρagg ← ρ(currentState) indexed by source state s from IA||B;
9 µagg ← aggregated reachability of ρ(currentState) by source

state s from IA||B;
10 if |ρagg| = 1 then
11 s← single predecessor state;
12 if ρe-agg \ EA = ∅ ∧ s 6= currentState then
13 if ∆′(currentState) \ E in = ∅ then
14 collapseForward (s, currentState, µagg(s));
15 else
16 if ρe(s) \ E in = ∅ then
17 collapseBackward (µagg(s), s);

18 else
19 foreach s ∈ index(ρagg) do
20 if ρe-agg(s) \ EA = ∅ ∧ ρe(s) \ E in = ∅ ∧ s 6= currentState

then
21 collapseBackward (µagg(s), s);

22 ;

23 foreach (currentState, e, s) ∈ ∆(currentState) do if
currentState 6= s then nVisits[s]++ ;

24 if s 6= q ∧ nV isits[s] = ρ(s)− cyclicPaths[s] then
states.push(s) ;

25 ;

Algorithm 3: Second phase
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1 foreach (s′, e′, s′′) ∈ ∆(s′)) do
2 change (s′, e′, s′′) to (s, e′, s′′);
3 µ(s, e′, s′′) = µ(s′, e′, s′′)× µcf ;

Algorithm 4: collapseForward(s, s′, µcf )

1 foreach (s′′, e, s) ∈ ρ(s) do
2 change (s′′, e, s) to (s′′, e, s′);
3 µ′(s′′, e, s′) = µ′(s′′, e, s)× µcb ;

Algorithm 5: collapseBackward(s, s′, µcb)

(Algorithm 3 - line 24). Transitions that represent the end of a cyclic path
which starts and ends in state s are not considered when verifying if all
incoming transitions have been traversed. While the former condition ensures
that all possible reductions have been applied when the incoming transitions
of a marked state are considered, the latter condition allows the automaton
navigation to progress.

Although the result of the two phases is an automaton that cannot be
reduced further, it may be necessary to keep transitions beyond those in
the set EA given by the user, when the probabilities cannot be meaningfully
propagated to other transitions (forwards or backwards).

We are currently working on a formal proof to show that the reduced
model produced by the algorithm bisimulates the original model. Thus far we
have thoroughly tested the algorithm and its implementation in LTSA-PCA
to check that the reduced model preserves the probabilistic characteristics of
the original across an extensive set of examples.

5 Evaluation

We have implemented an extension of the LTSA tool [26] to support the spec-
ification of Probabilistic Component Automata using a modified version of
FSP (PCA-FSP) that considers input, internal, output and failure actions as
well as probabilistic information associated with those actions. PCA are then
constructed from specifications in PCA-FSP using the operational semantics
presented in section 3. A closed PCA, i.e. one without input-actions, is then
automatically translated to an equivalent DTMC specification to be analysed
in PRISM. The extended version of the LTSA tool and the examples used in
this paper can be found at http://www.doc.ic.ac.uk/∼pr1810/.
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An evaluation of the complexity gains of reliability analysis when us-
ing the reduction algorithm to compute the overall system representation is
shown in Table 1. Each row contains the name of the system, the original
size of the composite automaton that represents the overall system behaviour,
the size of the composite automaton when reduction is used, the total time
to analyse a system using the non-reduced and the reduced representations.
The execution time is then split into the time it takes to build the composite
representation in the extended LTSA tool and the the time it takes to analyse
the system reliability in PRISM. No Reduct. denotes the time to compute
the composite representation without using the reduction algorithm, while
Reduct. represents the time to reduce the component representations and
then to construct the composite system model using the reduced representa-
tions. The analysis time obtained from PRISM includes the time to construct
the internal representation in PRISM from the DTMC specification gener-
ated by LTSA, as well as the time to analyse the overall system reliability.
The time to translate a closed PCA to the corresponding DTMC specification
in PRISM is negligible. The results reported hereafter have been collected
on a Macbook Air with the following specifications: 1.8 GHz Intel Core i7,
4GB 1333 MHz, 256GB SSD.

Original Size Reduced Size Execution Time
Name States Transitions States Transitions No Reduct. Analysis Reduct. Analysis

Web-Server (2 Clients) 100 216 8 (92%) 18 (92%) 0.047s 0.105s 0.046s (1%) 0.007s (93%)
Web-Server (3 Clients) 296 792 20 (93%) 60 (92%) 0.048s 0.546s 0.046s (4%) 0.017s (97%)
Web-Server (4 Clients) 784 2496 48 (95%) 176 (94%) 0.053s 4.11s 0.047s (11%) 0.019s (99.5%)
Web-Server (5 Clients) 1952 7200 112 (96%) 480 (96%) 0.072s 34.57s 0.052s (27%) 0.082s (99.7%)
Web-Server (6 Clients) 4672 19584 256 (96%) 1248 (96%) 0.125s 294.82s 0.054s (56%) 0.082s (99.97%)
Web-Server2 (2
Clients)

488 1262 34 (96%) 84 (96%) 0.06s 1.13s 0.052s (13%) 0.13s (88%)

Web-Server2 (3 Clients) 4336 14184 184 (96%) 636 (96%) 0.125s 197.5s 0.055s (56%) 0.255s (99.8%)
Web-Server2 (4 Clients) 33334 123929 2250 (96%) 11250 (96%) 1.9s ¿ 600s 0.11s (94%) 1.12s (¿ 99.99%)

Table 1: Reduction Algorithm Evaluation Results

We have analysed in this manner two Client-Server systems with increas-
ing numbers of clients. In the first system, the Server is a composite com-
ponent that includes a Web-Server which handles requests from Clients and
interacts with backend components (a Cache and a Database) to get the re-
quested content. The second system (Web-Server2) includes a backup server
that is used by the Clients when the main Server fails to send the requested
content. Table 1 reports results for the Client-Server system using from 2 to
5 Clients and one Server. We first note that the composite models obtained
after applying the reduction algorithm are considerably smaller despite the
fact that it is not always possible to reduce all the transitions in order to
preserve the probabilistic semantics. The reduction is particularly signifi-
cant for larger models as expected. For smaller models (Tele Health systems
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and Client-Server with 2 and 3 clients) applying the reduction algorithm and
then composing requires broadly the same amount of time as composing non
reduced models. When the number of client components is increased to 4,5
and 6, the time to compute the composite representation is reduced by 11%,
27% and 56%, respectively. In fact, since the reduction algorithm collapses
internal transitions of the composite Server component that cause the state-
explosion in the non-reduced composite representation, the time to reduce
the representation of the Client and Server components and then compute
the composite representation barely changes when the number of clients was
increased. Consistent with the reduction in size of the overall model, the
analysis time in PRISM is remarkably reduced for larger systems. In par-
ticular we achieve a reduction of 99.96% when a system with 6 Clients is
analysed. The results obtained with a more complex system (Web-Server2)
indicate the effectiveness of the reduction algorithm in different scenarios.
In fact, for a system with 2 Servers and 4 Clients we achieve a reduction of
more than 99.99%. We do not provide the exact figure for the analysis time
in PRISM associated with this system as we aborted the analysis after 10min,
before PRISM was able to finish the construction of the internal representa-
tion from the DTMC specification of the Client-Server system. These results
show the usefulness of the reduction algorithm as an effective technique for
scalable reliability analysis of component-based systems.

6 Conclusion and Future Work

Our Probabilistic Component Automata provide an expressive formalism to
model the probabilistic failure behaviour of components. By combining the
semantics of generative and reactive models it is possible to construct com-
posite probabilistic behaviour representations that cater for reusability, fail-
ure scenarios and how these are handled. The specification burden is further
reduced by modelling each component individually, thereby facilitating in-
cremental elaboration and enabling the definition of more fine grained rep-
resentations. A close correspondence with the source code is also supported,
thus producing a faithful representation of the implementation.

Although the analysis itself is performed using a closed DMTC, the com-
posite system representation is automatically constructed from the represen-
tations of its parts. Models of individual components can be fine grained
to allow detailed analysis of the execution profile. However, when analysing
overall properties of systems the same level of detail may not be required,
in particular for system reconfiguration where components are replaced as a
whole. Using hiding and minimisation, smaller composite models can be con-
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structed by reducing the representations of sub-components, before applying
parallel composition. The reduction gains can be significant but depend on
the properties analysed, as they determine which internal actions can be
removed.

Another advantage of constructing the system representation in this way
is that third-party providers can automatically generate and provide interface
behaviour representations of their components without having to disclose
internal behaviour. PCA establishes here a close correspondence between
behavioural and architectural aspects. Input and output actions correspond
to provided and required interfaces of component models such as Darwin [6];
the architectural structure of composite components, which hides internal
bindings between sub-components, is preserved at the behaviour level by
applying the reduction algorithm to compute their interface behaviour.

We intend to extend PCA, its operators and the reduction algorithm
with variables to support late specification of transition probabilities. Such
parametric PCA models would allow re-analysing reliability properties after
changes in the execution profile without having to re-construct the compos-
ite model and re-run the model checking tools (cf. [27] for analysis with
parametric DTMC models). These would provide means for scalable, accu-
rate probabilistic analysis at runtime. We also plan to investigate the use
of PCA along with the reduction algorithm to perform reliability analysis of
alternative configurations for runtime adaptation.
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