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Game semantics has proven to be a robust method to give compositional semantics for a variety of higher-order

programming languages. However, due to the complexity of most game models, game semantics has remained

unapproachable for non-experts.

In this paper, we aim at making game semantics more accessible by viewing it as a syntactic translation

to a dialect of the π -calculus, referred to as metalanguage, followed by a semantic interpretation of the

metalanguage into a particular game model. The semantic interpretation is done once and for all; while the

syntactic translation can be defined for a wide range of programming languages without knowledge of the

particular game model used. Reasoning on the interpretation (soundness and adequacy) can be done at the

level of the metalanguage through a sound equational theory, escaping tedious technical proofs usually found

in game semantics. We call this methodology programming game semantics.
We expose the methodology in three steps of increasing expressivity, building on concurrent game semantics

based on event structures. By developing an extension of the existing models to deal with non-angelic

nondeterminism, and nonlinear computation, we can give very accurate models of complex languages by a

simple translation into a typed variant of the π -calculus inspired by Differential Linear Logic. We illustrate

this expressivity on IPA, a higher-order programming language with shared-memory concurrency. By simply

translating it into the metalanguage, we give the first model of IPA, which is (1) causal and (2) adequate for

the usual operational notion of bisimulation — a novel result.

To make the development more concrete, we have built a simple prototype to compute the interpretation of

the target programming language into the metalanguage and games strategies.

Additional Key Words and Phrases: Game Semantics, Pi-Calculus, Session Types, Metalanguage, Programming,

Linear Logic, Event Structures, Denotational Semantics

1 INTRODUCTION
Background. Semantics of programming languages are usually operational, modelling the concrete

execution on the metal by an abstract machine made of mathematical symbols and Greek letters.

Operational semantics tend to be very flexible and model a wide range of programming features.

However, traditional operational semantics struggle to express the behaviours of open programs,

ie. programs with external parameters. This is where denotational semantics shines, by provid-

ing compositional semantics, where an open program is typically interpreted as a function from

its external parameters to the result. The most common form of denotational semantics, based

on domain theory, copes well with higher-order functions, but more laboriously with effectful

computations, and almost not at all with concurrency.

At the dawn of the 1990s, a new form of denotational semantics appeared: game semantics
[Abramsky et al. 2000; Hyland and Ong 2000]. There, an open program is modelled by its possible

interactions with the context. Thanks to its interactivity, this methodology has proved to be
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very extensible and support a wide range of programming features (references, control operators,

probabilities, concurrency, quantum, etc.)

Moreover, as observed by Ghica and Tzevelekos [2012], game semantics reconciles denotational

and operational semantics together: the interaction traces of a program can be computed either

denotationally (by induction on the syntax) or operationally (by running an abstract machine).

While game semantics has been recognised as a powerful tool to build (fully abstract) denotational

models, we believe that its most useful and promising feature is the simplicity with which one can

describe the compositional behaviour of systems in general (eg. with its recent use for verifying

operating systems [Gu et al. 2018] or compilers [Stewart et al. 2015]). So far, its simplicity has not

been apparent, and game semantics is often considered inaccessible to non-experts who wish to

define a denotational model based on games for their favourite language.

The Framework. The thesis of this paper is that, the complexity of game semantics interpretations

can be cut down by introducing a simple message-passing intermediate language, between the

source program and the model. Indeed, game semantics bundles two things together: the idea

of interpreting a program as a process interacting with its environment, and a mathematical

formalisation of this process. Most game semantics models of the same language only differ in the

latter. Our main contribution in this paper is to make this separation explicit by factorising the

interpretation of a language in game semantics as the following steps:

Program
(Source language)

Process
(Metalanguage)

Strategy
(Game Model)

syntactic

translation

interpretation

This factorisation offers several advantages. First, it allows to decouple the interpretation of the

source language from the details of the model. One can use the same translation to obtain different

models (traces, event structures, ...), and, conversely, one can use the same model for different

translations. Second, interpreting a language becomes a matter of writing a syntactic translation,

an easier task than doing the interpretation directly, since one does not have to deal with the

complexity of the model.

A Language for Strategies. What would a good programming language for strategies be? Strategies

represent the interaction of the program with the environment in the form of messages that are

exchanged between them. For that reason, a message-passing language such as the π -calculus
[Milner et al. 1992] is an ideal candidate. Dating back to encodings of the call-by-name and

call-by-value λ-calculi by Milner [1992], the π -calculus has been used to encode a wide range of

programming languages, including functional, concurrent, and distributed languages. Its connection

with game semantics has been studied ever since the introduction of game semantics [Hyland

and Ong 1995]. However, interpretations in game semantics, viewed through the lenses of the

π -calculus, do not use the free name output feature of the π -calculus (which creates semantic

difficulties). This subset of the π -calculus, called the internal π -calculus, represents causalities of
interactions by bound name passing, capturing greater expressiveness than (a core) CCS [Sangiorgi

1996].

Some game semantics interpretations rely on the use of the categorical semantics of Linear

Logic [Melliès 2009]. Through session types, there is a Curry-Howard correspondence between

the internal π -calculus and Linear Logic, discovered by Caires and Pfenning [2010]; Wadler [2014].

More specifically, this paper uses an extension of the calculus in [Caires and Pfenning 2010; Wadler

2014] to Differential Linear Logic (DiLL) [Ehrhard 2018] where ⊗ and ` are identified to be able to
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f : N→ unit ⊢ f 1 ∥ f 2 : unit

(a) Program (written in IPA)

(νxy ; x ′y′)(o().

f [a]. (a(). a ⊕ 1 ∥ f (). x ⊕ done)

∥f f [a]. (a(). a ⊕ 2 ∥ f (). x ⊕ done)

∥ y(). y′(). o ⊕ done)

▷ f : LN→ unit M⊥, o : L unit M

(b) Process (written in πDiLL)

(unit → unit) → unit
q−

q+ q+

q− q− done− done−

1
+

2
+ done+

(c) Strategy (event structure)

Fig. 1. An overview of the methodology on an example

interpret languages with deadlocks. Session types are a natural fit here since their connection with

game semantics have been recently discovered [Castellan and Yoshida 2019].

Contributions and Outline of the Paper. This paper proposes a framework where we view game

semantics interpretations as syntactic translations to a process language, followed by a semantic

interpretation of this process language into a game model. This allows us to carry out calculations

on the model syntactically via an equational theory on the process language.

We present our framework in increasingly complex settings. § 2 introduces a model for linear
deterministic concurrent strategies, due to Rideau and Winskel [2011]; a metalanguage, πMALL, based

on Multiplicative Additive Linear Logic (MALL) along with an equational theory; and a translation

of the affine λ-calculus into πMALL. § 3 extends the model to nonlinear deterministic concurrent
strategies, presenting the model of [Castellan et al. 2015]; an extension of the metalanguage to

πLL, based on Linear Logic; and translations from call-by-name and call-by-value PCF into πLL.
Finally § 4 presents the new model of nondeterministic concurrent computation; extends the

metalanguage to πDiLL using ideas from Differential Linear Logic and shows how to give the

first causal, compositional and non-angelic model of Idealised Parallel Algol (IPA), a higher-order
programming language with shared memory concurrency.

Setting Model Calculus Encoding
Linear (§ 2) LDStr [Rideau and Winskel 2011] πMALL Affine λ-calculus

Deterministic (§ 3) DStr [Castellan et al. 2015] πLL PCF
Nondeterministic (§ 4) Str (⋆) πDiLL(⋆) IPA (⋆)

The methodology is illustrated in Figure 1 on a parallel program calling twice an external function

f . This program is translated to the π -calculus which is then interpreted as an event structure

describing the causal relationships between the different actions of the program (see § 4.3 for the

detailed description).

Apart from our proposal of this uniform framework for game semantics interpretations, together

with its new metalanguage and the proof techniques developed for deterministic computations, this

paper gives three fresh contributions on the game semantics side (denoted as (⋆) in the table above).

The first contribution is a new game model for concurrent and nondeterministic higher-order

computation, which combines the approaches of [Castellan et al. 2015] and [Castellan et al. 2018].

The second contribution is a metalanguage based onDiLL and its interpretation inside the model, as

well as a sound (in)equational theory axiomatising the quotient induced by the interpretation. The

third contribution is the first model for IPA based on event structures, which is adequate for weak

bisimulation. Starting from the most basic game model, these new results are naturally derived as a

consequence of our methodology. § 5 outlines our prototype implementation of the interpretation
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of the metalanguage and of IPA. § 6 provides the related and future work. Proofs can be found in

Appendix, and we shall submit our prototype implementation to Artefact Evaluation.
We make use of the knowledge package. Definitions of mathematical concepts appear blue

boldface, and their uses occur in blue and are linked to the original definition.

2 LINEAR AND DETERMINISTIC GAMES
This section introduces the framework in the simplest setting: deterministic and linear. We use

here LDStr, the category of (forest-like, confusion-free and race-free) games, and linear and deterministic

strategies from [Rideau andWinskel 2011]. We start by a brief introduction to prime event structures

in § 2.1 followed by the description of deterministic strategies in § 2.2. The category LDStr and its

structure are defined in § 2.3.

From § 2.4, the contributions of our paper starts. We propose a metalanguage, πMALL, to describe

the games and strategies of this model. πMALL is based on an extension ofMALL where ` and ⊗

are identified and become a unique connective written ∥ (by analogy with categorical semantics of

linear logic, we call this variant compact-closedMALL). πMALL is similar syntactically to the linear

fragment of binary session types [Honda et al. 1998], though the semantics are slightly different.

In § 2.5, πMALL is interpreted in LDStr. This induces an equivalence relation on πMALL. We propose

a sound equational theory that allows us to reason about semantic equality. In § 2.6, we show the

first use of our framework by translating an affine λ-calculus into πMALL and show it is sound and

complete with respect to βη-equivalence using the equational theory of πMALL.

2.1 Event Structures
Event structures are a model of concurrent and nondeterministic computation based on the notion

of causally ordered events [Winskel 1986]. We use here prime event structures with binary conflict.

Definition 2.1. An event structure is a triple (E, ≤E , #) where (E, ≤E ) is a partial order, and

# ⊆ E2
is a binary irreflexive relation satisfying: (1) [e]

def

= {e ′ ∈ E | e ′ ≤ e} is finite; and (2) if e#e ′

and e ′ ≤ e ′′ then e#e ′′.

Two events e, e ′ are in conflictwhen e#e ′ and are compatible otherwise. Two compatible events

which are not ordered are called concurrent. We write e_e ′ (immediate causal dependency)
when e <E e ′ with no events in between, and e e ′ (minimal conflict) when (e, e ′) is the only
conflicting pair in [e] ∪ [e ′]. From _ and , we can recover ≤ and # via axiom (2). Depictions of

event structures will use _ and .

Given an event structure E, a configuration of E is a subset x ⊆ E down-closed for ≤E and

conflict-free. We write C(E) for the set of finite configurations of E. For x ∈ C(E), an extension of

x is an event e ∈ E \ x such that x ∪ {e} ∈ C(E); we write x
e

−−⊂ .

An event structure E is confusion-free when (1) e e ′ implies [e) = [e ′) and (2) the relation

( E ∪ =E ) is an equivalence relation. Its equivalence classes are called cells.
Finally, given a set V ⊆ E, the projection of E to V is the event structure (V , ≤E ∩V 2, # ∩V 2).

Constructions on Event Structures. Given a family of event structures (Ei ∈I ) we define their parallel
composition ∥i ∈I Ei as follows. Its events are pairs (i ∈ I , e ∈ Ei ). Causality and conflict are

obtained by lifting those from the Ei :

(i, e) ≤∥Ei
(j, e ′)

def

= (i = j ∧ e ≤Ai e
′) (i, e)#∥Ei

(j, e ′)
def

= (i = j ∧ e#Ai e
′)
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unit ⇒ unit

lam+

call−

ret+

(a) unit ⇒ unit (CBV)

unit ⇒ unit ⇒ unit
call−

call+ call+ ret+

ret− ret−

(b) unit ⇒ unit ⇒ unit (CBN)

call−

call+ ret
ff

+ rettt+

ret
ff

− rettt−

bool bool⇒

(c) bool ⇒ bool (CBN)

Fig. 2. Examples of Games

Similarly, the nondeterministic sum of the Ei , written
∑

i ∈I Ei has the same components as

∥i ∈I Ei except for conflict:

(i, e)#∑
i∈I Ei (j, e

′)
def

= (i = j ⇒ e#Ei e
′).

The empty event structure, written ∅ is the unit for both parallel composition and sum.

Maps of Event Structures. A partial map of event structures is a partial function f : E ⇀ F
such that the direct image of a configuration is a configuration and which is locally injective:
f restricted to any configuration of E is injective. We write dom(f ) for the domain of f . When

dom(f ) = E, f is said to be total. Event structures and total maps form a category ES. The following
categorical property will be key to compose strategies later on.

Lemma 2.2 ([Winskel 1986]). The category ES has pullbacks.

2.2 Games and Strategies on Event Structures
We recall the game model based on event structures [Rideau and Winskel 2011].

Games as Polarised Event Structures. Games arise as particular event structures, where events are

equipped with a polarity:

Definition 2.3. A game is an event structure A along with a labelling pol : A → {−,+} such that:

(1) A is confusion-free and race-free: if a Aa
′
, then pol(a) = pol(a′)

(2) (A, ≤A) is a forest: elements of [a] are totally ordered by ≤A for any a ∈ A.

These restrictions on games make the development simpler and is sufficiently expressive to

represent the behaviour of types we are interested in. Parallel composition and nondeterministic

sum extend to games. Similarly, the empty event structure extends to the empty game written 1.
Given a game A, its dual A⊥

is the game obtained from A by reversing polarities. Given an element

e < A and a polarity p ∈ {−,+}, we write ep · A (lifting) the game obtained from A by adjoining

an event e with polarity p which is below and consistent with all events of A. If x,y ∈ C(A), we
write x ⊆p y for x ⊆ y and pol(y \ x) ⊆ {p}. A game is negative when its minimal events are all

negative; positive if they are all positive. A game is polarised if it is either negative or positive.

We give a few examples of games in Figure 2. Each game corresponds to a particular function

type, under a particular calling convention (call-by-name or call-by-value). Remember that a game

represents the allowed messages that Program and Context can exchange during the course of

the execution. As depicted in Figure 2a, in unit → unit in call-by-value, there are three moves.

The first move is a Player move telling the context that the program has evaluated to a closure

(as it may diverge). Once this move has been received, Context can call the closure via call. When

called, Program can return from the closure via ret. The only rules we have here are due to the
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causal ordering which constrains the order in which the moves can be played by the players. In

call-by-name, however, the dynamic is reversed: Context starts the computation by calling the

function
1
. Moreover, arguments are not values but thunks. Each thunk can be evaluated by Program

via a callmove, as illustrated in Figure 2b. Finally, our third example illustrates the interpretation of

types with several values: each value becomes a different move. Because there can only be one value

exchanged in one run of the system, the different moves are in conflict as evidenced in Figure 2c.

Note that moves are drawn in columns, to ease readability.

Strategies as Labelled Event Structures. Let us introduce the strategies of [Rideau and Winskel 2011].

Strategies will be their own event structure S along with a labelling map S → A. Often the labelling

will be injective, allowing us to see S as a subset of A; but this is not always the case (cf. Figure 3b).

Definition 2.4. A deterministic strategy (in the rest of the text, simply strategy) on a game A
is a total map of event structures σ : S → A such that

Receptivity For x ∈ C(S) and a a negative extension of σ x , there exists a unique x
s

−−⊂ with

σ s = a.
Courtesy For any s_S s

′
such that σ s and σ s ′ are concurrent, pol(s) = − and pol(s ′) = +.

Determinism If s S s
′
, then σ s A σ s ′ and both are negative.

Asking for σ to be a map of event structures amounts to asking that σ respects the rules of the

game: configurations of S should correspond to configurations (ie. executions) of A, in particular σ
should not be able to play a move before it has played the move unlocking it. Moreover, within a

configuration, moves should be played at most once. The conditions of receptivity and courtesy

are needed for strategies to form a category and imply a strong form of asynchrony (see § 2.3).

Determinism amounts to saying that nondeterministic choices can only come from Context.

A strategy from a game A to a game B is a strategy on the composite game A⊥ ∥ B. We write

σ : A B to distinguish them from maps. We will omit displaying both S and A, along with the

labelling, but rather adopt a concise representation as in Figure 3 where we only display S with

labels in A and use columns to disambiguate. Figure 3a depicts a simple example of a concurrent

strategy, which given two thunks evaluates them in parallel and only returns when both have

returned. We have highlighted in blue the causal links that the strategy adds onto the game, which

must be from negative to positive by courtesy. Figure 3b depicts a strategy where the labelling σ is

not injective. Indeed, the event rettt occurs twice, but the two occurrences are in conflict (inherited

from the conflict rettt− retff−).
Given a game A, we form the copycat strategy on A, cc A : CCA → A⊥ ∥ A, as follows. The

events of CCA are exactly those of A⊥ ∥ A, and ≤CCA is obtained from the transitive closure of

≤A⊥ ∥A ∪{(a, ā) | a ∈ A⊥ ∥ A is negative} where we write ā ∈ A⊥ ∥ A for the corresponding event

to a on the other side. Then a#CCAa
′
holds when [a]CCA ∪[a′]CCA ∈ C(A⊥ ∥ A). The labelling function

cc A is simply the identity. A strategy is negative when its minimal events are all sent to negative

events of the game. Copycat for example is a negative strategy.

The empty strategy !A on a game A is defined as the inclusion A0 ⊆ A where A0 contains events

a ∈ A such that [a] only contains negative events (ie. it is the minimal receptive strategy).

Because S is arbitrary, equality of strategies is not meaningful. Rather, we consider strategy up

to isomorphism. Two strategies σ : S ⇀ A and τ : T ⇀ A are isomorphic (written σ � τ ) when
there exists an isomorphism of event structures φ : S � T (that is a map S → T with an inverse)

such that τ ◦ φ = σ .

1
There is no need for Program to tell Context it has evaluated to a closure since λx .⊥ ≡ ⊥ in call-by-name, while this

equality does not hold in call-by-value
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unit ⇒ unit ⇒ unit

call−

call+ call+

ret− ret−

ret+

unit unit

(a) Interpretation of λxy. x ∥ y (CBN)

bool ⇒ bool

call−

call+

ret
ff

− rettt−

rettt+ rettt+

(b) Interpretation of λx . if x tt tt : bool (CBN)

Fig. 3. Examples of Strategies

2.3 The category LDStr
We now explore the algebraic properties of strategies, which have guided the choice for the

metalanguage πMALL (introduced in § 2.4).

Composition of Strategies. Let us first review the main operation on strategies: composition. Given

a strategy σ : A B fromA to B, and a strategy τ : B C from B toC , we would like to combine

them to form a strategy τ ⊙ σ from A to C . This is done by letting σ and τ interact on B, giving
an event structure T ⊛ S (not a strategy) which projects to A ∥ B ∥ C . The composition is then

obtained by hiding events projected to B to recover a strategy τ ⊙ σ : A⊥ ∥ C .
In a few words, interaction amounts to merging the causal constraints of σ and τ (ie. do the

union of the causal orderings), and pruning any resulting cycles. This rather complex construction

can be elegantly formulated as a categorical pullback: the interaction τ ⊛ σ : T ⊛ S → A ∥ B ∥ C of

σ : S → A⊥ ∥ B and τ : T → B⊥ ∥ C is obtained as the pullback of σ ∥ C : S ∥ C → A ∥ B ∥ C and

of A ∥ τ : A ∥ T → A ∥ B ∥ C . Their composition is then obtained by projecting T ⊛ S to events

that are sent to A or C:

T ⊙ S = (T ⊛ S) ↓ {e ∈ T ⊛ S | (τ ⊛ σ )(e) ∈ A ∥ C} τ ⊙ σ = τ ⊛ σ |T ⊙S : T ⊙ S → A⊥ ∥ C .

Lemma 2.5 ([Rideau and Winskel 2011]). Composition of strategies is associative, and copycat is
an identity on strategies, both up to isomorphism.

For copycat to be an identity, the conditions of receptivity and courtesy are necessary. Intuitively,

this is because composing a strategy with copycat amounts to prefixing it with an asynchronous

buffer; and if the strategy is too “synchronous”, this buffer may have observable effects.

2.3.1 Categorical Structure. We define LDStr, the category whose objects are finite games and

morphisms fromA to B are strategies σ : A B. First, duality of games extends to an isomorphism

of category LDStr � LDStrop: any strategy σ : A B can be regarded as a strategy σ⊥
: B⊥ A⊥

.

Moreover, parallel composition of games forms a monoidal structure on LDStr. Therefore, LDStr is
compact-closed:

Lemma 2.6 ([Castellan et al. 2017]). (LDStr, ∥, 1, (−)⊥) is a compact-closed category.

There is a way to lift certain maps of event structures between games to strategies that is useful to

obtain structural maps. A map of games is a partial map f : A ⇀ B preserving polarities such

that (1) f restricted to its domain is bijective, (2) f preserves causal ordering and conflict. The

lifting of f is the strategy lift(f )
def

= CCA ↓ A⊥ ∥ dom(f )
A⊥ ∥f
−−−−→ A⊥ ∥ B. Though LDStr does not

have (co)products, it has weak (co)products, that are defined by lifting. Given two games A and B,
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let us define A & B
def

= (L− · A) + (R− · B). There are obvious maps of games p1 : A & B ⇀ A and

p2 : A & B ⇀ B and we let π1 = lift(p1) : A & B A and π2 = lift(p2) : A & B B.

Lemma 2.7. For every strategies σ : A B and τ : A C there exists a strategy ⟨σ , τ ⟩ :

A B &C such that π1 ⊙ ⟨σ , τ ⟩ � σ and π2 ⊙ ⟨σ , τ ⟩ � τ . By duality, we obtain weak coproducts
A ⊕ B = (A⊥

& B⊥)⊥.

2.4 A Metalanguage for LDStr: πMALL

Types and Processes. First, let us look at how to describe games syntactically. Since our games are

finite forests, they can be built inductively from ∥, ⊕ and &. This decomposition crucially relies on

the fact that games are confusion- and race-free. This suggests the following grammar for types:

T F 1 | (T ∥ . . . ∥ T ) | &i ∈ITi | ⊕i ∈ITi

In the grammar, k , i and j range over labels L, to be thought of as values such as integers and

booleans. The type grammar corresponds to Multiplicative Additive Linear Logic (without additive

units and literals) except that ⊗ and ` have been collapsed into one operation, ∥ (similarly for the

multiplicative units). This is to be expected since the main asymmetry between ⊗ and ` arise as a

way to avoid deadlocks during cut-elimination. In our setting, deadlocks are permitted so there is

no need for a distinction. We call this variant compact-closed MALL, because identifying ⊗ with `
is a common feature in models that are compact-closed (eg. games or the relational model).

Types come equipped with a notion of duality stemming from the usual De Morgan laws: & and

⊕ are dual to each other and ∥ and 1 are self-dual. We will use the notation ℓ− ·T and ℓ+ ·T for

&i ∈{ℓ }T and ⊕i ∈{ℓ }T . We will also use the binary version A & B for &ℓ∈{inl,inr}Tℓ with Tinl = A
and Tinr = B; and dually for A ⊕ B. For instance, let us introduce B = q− · (⊕b ∈{tt,ff }1), the type

of (call-by-name) booleans. The initial move represents the evaluation request from Context, as

call-by-name booleans are thunks waiting for a request from the environment before starting to

evaluate.

As for terms, we draw inspiration from the connection between Linear Logic and session types

[Caires and Pfenning 2010; Wadler 2014]. The calculus turns out to be a subset of standard binary

session types, the main difference being that our calculus has no free name output. The syntax for

processes is as follows:

P F 0 (null) | P ∥ Q (parallel) | (ν a b : A)P (hiding)

| a ⊕ k . P (selection) | a & {i . Pi }i ∈I (branching) | a{x1, . . . , xn}. P (split)

where a,b, x, . . . range over the set of channels N which transmit values. Process (ν a b : A)P
is a restriction of two channels where type of a is A and type of b is its dual; Process a ⊕ k . P
is an output of value k (a label) which selects the k-th branch of an input process a & {i . Pi }i ∈I .
Process a{x1, . . . , xn} (used to introduce parallel processes) is similar to the internal π -calculus
[Sangiorgi 1996]. It is however not sending (or receiving) fresh channels x1, . . . , xn . Instead, it is
used to break down a channel of type a : (T1 ∥ . . . ∥ Tn) into channels xi : Ti ; the idea being that
several parallel protocols will be interleaved on a and an action on one of the xi amounts to an

action on a, paired with the natural number i ∈ N (thought to be a “port number”). For a process P ,
we write fc(P) for the set of free channels occurring in P , defined by fc((ν a b : A)P) = fc(P) \ {a,b},
fc(a{x1, . . . , xn}.P) = fc(P) \ {x1, . . . , xn} and other standard rules.

Typing Rules. The typing rules are given in Figure 4. Each typing rule corresponds to a rule of

compact-closed MALL. Because of deadlocks, this typing system only ensures an affine channel
usage. Γ denotes a mapping from channels to types.Mix ensures that two environments are disjoint;
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Weaken

0 ▷ Γ
Mix

P ▷ Γ1 Q ▷ Γ2

P ∥ Q ▷ Γ1, Γ2

Cut

P ▷ a : T ,b : T⊥, Γ

(ν a b : T )P ▷ Γ
⊕-intro

k ∈ I P ▷ Γ,a : Tk

a ⊕ k . P ▷ Γ,a : ⊕i ∈ITi

&-intro

∀i : I , Pi ▷ Γ,a : Ti

a & {i . Pi }i ∈I ▷ Γ,a : &i ∈ITi
∥ -intro

P ▷ Γ, x1 : T1, . . . , xn : Tn

a{x1, . . . , xn }. P ▷ Γ,a : (T1 ∥ . . . ∥ Tn )

Fig. 4. Typing Rules for Compact-Closed MALL

Cut composes two channels with dual types and hides them; rules ⊕/&-Intro are standard; and

∥-Intro types a split process with a corresponding parallel type.

An example of a useful process is the forwarder [a↔b]A ▷a : A,b : A⊥
, the syntactic counterpart

to the copycat strategy. It is defined by induction on A:

[a↔b]1
def

= 0 [a↔b]T1 ∥ ... ∥Tn
def

= a{a1...an}.b{b1...bn}. ([a1↔b1]T1
∥ · · · ∥ [an↔bn]Tn )

[a↔b]T ⊥
def

= [b↔a]T [a↔b]&i∈ITi
def

= a &

{
i .b ⊕ i . [a↔b]Ti

}
i ∈I

Another more concrete example is the process if for call-by-name conditional:

ifo c b1 b2

def

= o &

{
q : c ⊕ q. c &

{
tt : b1 ⊕ q. [o↔b1]B

ff : b2 ⊕ q. [o↔b2]B

}
▷ c : (B)⊥,bi : (B)⊥,o : B

It has four channels: c for the condition, b1 and b2 for the values of the branches, and o for the

output. When Context requests the outcome of i , the condition is evaluated, and, according to the

value received, b1 or b2 is evaluated and its answer is forwarded to o.

2.5 Interpretation into LDStr
The interpretation of πMALL inside LDStr maps session types to games; and processes to strategies.

Interpretation of Types. First, let us interpret types as finite games as follows:

J1K = 1 JT1 ∥ . . . ∥ TnK = JT1K ∥ . . . ∥ JTnK J&i ∈ITiK = &i ∈I JTiK J⊕i ∈ITiK = ⊕i ∈I JTiK.

We have JT⊥K = JT K⊥ as desired. Moreover, every game arises as the interpretation of a type:

Lemma 2.8 ([Castellan and Yoshida 2019]). For every finite game A, there exists a type T such
that JT K � A.

Interpretation of Terms. We now interpret typing derivations as morphisms in LDStr. The judgement

P ▷ ∆ will be interpreted as a strategy on J∆K. The interpretation is described in Figure 5 where we

use abundantly the fact that a strategy on J∆1K ∥ J∆2K can be viewed as a strategy J∆1K⊥ J∆2K.
Notice that J[a↔b]T K = cc JT K and that J(νab)(P | Q)K where a ∈ fc(P) and b ∈ fc(Q) is equal to
JQK ⊙ JPK. The rule for a{x1, . . . , xn}. P is a simple “renaming” semantic-wise, since the games for

x1 : T1, . . . , xn : Tn and a : (T1 ∥ . . . ∥ Tn) are isomorphic. The interpretation of outputs and inputs

is done using the weak product structure. The interpretation of restriction uses the trace operator

induced by the compact-closed structure, which consists in composing by copycat to connect a and

b via an asynchronous forwarder.

Since strategies are finite, we have a definability result.

Theorem 2.9 (Definability, [Castellan and Yoshida 2019]). Every strategy in J∆K is the
interpretation of a process P ▷ ∆.
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r
0 ▷ ∆

z
= !∆

s
P ▷ Γ1 Q ▷ Γ2

P ∥ Q ▷ Γ1, Γ2

{
= JPK ∥ JQK

s
P ▷ Γ, x1 : T1, . . . , xn : Tn

a{x1, . . . , xn }. P ▷ Γ,a : T1 ∥ . . . ∥ Tn

{
= JPK

s
k ∈ I P ▷ Γ,a : Tk
a ⊕ k . P ▷ Γ,a : ⊕i ∈ITi

{
= (π⊥

k : JTk K J⊕i ∈ITi K) ⊙ (JPK : JΓK⊥ JTk K)

s
∀i : I , Pi ▷ Γ,a : Ti

a & {i . Pi }i ∈I ▷ Γ,a : &i ∈ITi

{
= ⟨JPi K : JΓK⊥ JTi K⟩i ∈I

s
P ▷ a : T ,b : T⊥, Γ

(ν a b : T )P ▷ Γ

{
= (JPK : JT K⊥ ∥ JT K JΓK) ⊙ ( cc JT K : ∅ JT K ∥ JT K⊥)

Fig. 5. Interpretation of πMALL into LDStr

Equational Theory. Rather than giving an operational semantics to our calculus and showing

a correspondence with our game semantics, we give a semantics to our calculus by way of an

equational theory axiomatising the natural congruence induced by themodel: P andQ are equivalent

when JPK � JQK. This equational theory can be used to alleviate tedious reasoning on the game

model, instead of doing the proof semantically.

To define the equational theory, we rely on open processes, which represent evaluation contexts
(we avoid calling them context to avoid ambiguities with typing contexts). An open process is a
process with free process variables (denoted by X ,Y , . . . ) described by the following grammar:

PF X | (P ∥ P) | (P ∥ P) | a{x1, . . . , xn}.P | a ⊕ k .P | a & {i .Pi }i ∈I | (ν a b : T )P

Variables must always occur on one of the two sides of a parallel composition. We write fc(P)
for the free channels occurring inP. Open processes can be typed as follows: Xi : ∆i ⊢ P ▷ Γ means

that whenever Pi ▷∆i ,∆, we haveP[Xi B Pi ] ▷ Γ,∆. The substitution is often simply writtenP[Pi ]i .
We also consider particular open processes called actions:

a F a{x1, . . . , xn}.X | a ⊕ k .X | a & {i .Xi }i ∈I

An action can be either a positive action (+) (a ⊕ k), a negative action (-) (a & {i .Xi }i ∈I ) or a

naming action (0) (a{x1, . . . , xn}.X ). To bind an action of the appropriate polarity, we write it in

exponent, eg. a− denotes a negative action on channel a. We use such a generic formulation to

accommodate the new constructions of § 3 and § 4.

We define the equivalence relation on typing derivations. Let ≡ be the smallest congruence

closed under the laws of Figure 6 (where we only consider the instances where both sides are typed

in the same context). Let us detail the rules. They are split in several categories:

Compact-closed fragment rules deal with the parallel operation and the restriction. They

arise from the compact-closed structure and state that ν commutes with all other constructs and ∥

is a commutative monoid. The last equation states that the forwarder is an identity on processes.

Permutations rules deal with courtesy and receptivity. Courtesy and receptivity induce reorder-

ings: for instance a ⊕ i .b ⊕ j and a ⊕ i . ∥ b ⊕ j denote the same strategy. The allowed reorderings

are positive/positive and negative/negative. We also allow positive actions to permute with parallel

composition, however a−[P ∥ Q] is not the same as a−[P] ∥ Q because in the former Q waits for a

but not in the latter. We use na(a) to denote the names occurring in a, bound or free.
Communications define the main equations for communications.

Cut elimination rules allow to reduce restrictions. The first rule represents deadlocks: (ν a b :

T )a−[Pi ] must be empty because any potential output on b is delayed by the input on a, hence
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Compact-Closed Structure
P ≡ Q (if P =α Q ) P ∥ Q ≡ Q ∥ P (P ∥ Q) ∥ R ≡ P ∥ (Q ∥ R) P ∥ 0 ≡ P

(ν a b : T )0 ≡ 0 (ν a b : T )P ≡ (ν b a : T⊥)P (ν a b : T )(ν c d : T ′)P ≡ (ν c d : T ′)(ν a b : T )P

(ν a b : T )P ∥ Q ≡ (ν a b : T )(P ∥ Q) (if fc(Q ) ∩ {a, b } = ∅)

(ν a b : T )P[Pi ]i ≡ P[(ν a b : T )Pi ]i (if fc(P) ∩ {a, b } = ∅)

P ≡ (ν b b ′ : T )(P[a B b] ∥ [b ′↔a]T ) (if a ∈ fc(P ))

Permutations
P[a0[Pi ]]i ≡ a

0[P[Pi ]i ] (if na(a) ∩ fc(P) = ∅) a+[b+[P]] ≡ b+[a+[P]] (if a , b)

a+[P] ∥ Q ≡ a+[P ∥ Q] a−[b−[Pi , j ]i ]j ≡ b
−[a−[Pi , j ]j ]i (if a , b)

Communication
(ν a b : ⊕i ∈ITi )(a ⊕ k . P ∥ b & {i .Qi }i ∈I ) ≡ (ν a b : Tk )(P ∥ Qk )

(ν a b : T1 ∥ . . . ∥ Tn )(a{x1, . . . , xn }. P ∥ b{y1, . . . ,yn }.Q) ≡ (ν x1 y1 : T1) · · · (ν xn yn : Tn )(P ∥ Q)

Cut Elimination
(ν a b : T )a−[Pi ]i ≡ 0 (ν a b : T )(u−[Pi ]i | a

−[Q j ]j ) ≡ u
−[(ν a b : T )(Pi | a

−[Q j ]j )]i (if u < {a, b })

Fig. 6. Equational Theory for πMALL

will never occur. Because of the permutation rule, we can always move an initial output outside

a restriction. For inputs, it is only allowed when the other parallel threads are receiving on an

internal variable. For instance, we can eliminate deadlocks by combining the two rules:

(ν a b : T )(ν c d : T )(a & ℓ.d ⊕ ℓ ∥ c & ℓ.b ⊕ ℓ) (Moving a outside the restriction on c and d)

≡ (ν a b : T )a & ℓ. (ν c d : T )(d ⊕ ℓ ∥ c & ℓ.b ⊕ ℓ) (Restriction on a/b now starts with input on a)

≡ 0

All these rules are sound.

Lemma 2.10 (Soundness). If P ≡ Q , then JPK � JQK.

2.6 Interpreting an Affine λ-Calculus in LDStr
As the first example of our methodology, we show how to translate an affine λ-calculus into LDStr,
through a syntactic translation into πMALL. The resulting model characterises βη-equivalence. Types
of affine λ-calculus are given by the grammar: τ F B | τ ⊸ τ . The affine typing system has the

following standard rules:

Γ, x : τ1 ⊢ M : τ2

Γ ⊢ λx .M : τ1 ⊸ τ2

Γ ⊢ M1 : τ1 ⊸ τ2

∆ ⊢ M2 : τ1

Γ,∆ ⊢ M1 M2 : τ2

Γ(x) = τ

Γ ⊢ x : τ

b ∈ {tt, ff}

Γ ⊢ b : B

Γ1 ⊢ M : B
Γ2 ⊢ N : B Γ2 ⊢ N ′

: B

Γ1, Γ2 ⊢ ifM N N ′
: B

To translate types, we follow the standard tradition of call-by-name game semantics of interpret-

ing types by negative games. Syntactically, we thus interpret a type τ by a session type of the form

&i ∈ITi . Such types support an interpretation of the linear arrow:

S ⊸ (&i ∈ITi )
def

= &i ∈I (S
⊥ ∥ Ti )

Types of the λ-calculus are translated as follows: LB M def

= q− · ⊕b ∈{tt,ff }1 and Lτ ⊸ τ ′ M def

= Lτ M ⊸

Lτ ′ M, and typing contexts as: Lx1 : τ1, . . . , xn : τn M def

= x1 : Lτ1 M, . . . , xn : Lτn M.
For example, the session type associated to linear functions from booleans to booleans is:

LB⊸ B M = LB M ⊸ LB M = q− · (q− · (tt− & ff
−) ∥ tt+ ⊕ ff

+)
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12 Simon Castellan, Léo Stefanesco, and Nobuko Yoshida

Translation of Terms

L λx .M : τ1 ⊸ τ2 Moi
def

= o{x,o}. LM Moi Lx : τ Moi
def

= x ⊕ i . [x↔a]τ /i Lb : B Moq
def

= o ⊕ b

LM1 M2 : τ2 Moi
def

=
(
LM Moi

)
{oBx,o} x⊙y LN My

L if M N N ′
: B Moi

def

= LM Mxq x⊙y y &

{
tt : LN Moi ;ff : LN ′ Moi

}
Macros

Name Definition Type Given

(P ){aBx , y } νa b . (P ∥ b {x ′, y′ }.([x↔x ′] ∥ [y↔y′])) x : T1, y : T2 P ▷ a : T1 ∥ T2

P a ⊙b Q (ν a b : _)(P ∥ Q ) Γ, ∆ P ▷ Γ, a : T ;Q ▷ ∆, b : T⊥

Fig. 7. Translation from the affine λ-calculus to πMALL

The function awaits for the q signal from the environment, and then has a choice: either it

returns directly a boolean — it is a non-strict function — or it can ask Context for its argument

value before returning its result.

For terms, the idea is to translate a typing derivation with conclusion Γ ⊢ M : τ into a typ-

ing derivation of πMALL whose conclusion is: L t Mo ▷ L Γ M⊥,o : Lτ M, where o, the name used to

communicate with Context about the return value, is a parameter of the translation.

However, building directly L t Mo by induction proved tedious so we use a slightly stronger

inductive invariant. Indeed, the processes that we will build are all negative as well, ie. of the form
o & {Pi }i ∈I where Lτ M = &i ∈iTi . The set I is called the set of computation types of τ , written ct(τ ),

and we write τ/i
def

= Ti (for now I = {q} — but this property will not remain true in the extension

in § 4.3). It turns out that constructing Pi is simpler, so from a term Γ ⊢ M : τ , we build a family of

processes L Γ ⊢ M : τ Moi ▷ L Γ M⊥,o : τ/i where i ∈ ct(τ ). Those processes are put together as follows:

L Γ ⊢ M : τ Mo def

= o &

{
i . L Γ ⊢ M : τ Moi

}
i ∈ct(τ ) .

The definition of the translation of a linear λ-terms (Figure 7) is now straightforward, by induction

on its structure. From this syntactic translation, we can derive a semantic interpretation of types

and λ-terms as games and strategies as follows:

Jτ K = JLτ MK JMK = JLM MaK for some a.

Correctness of the Encoding. Wenow show that our translation characterises βη-equivalence, defined
as the smallest congruence on typed λ-terms containing the well-typed instances of the rules:

Γ ⊢ (λx . t)N =βη t[x B N ] : B Γ ⊢ M =βη (λx .M x) : A ⊸ B

Γ ⊢ if b att aff =βη ab : B Γ ⊢ M =βη ifM tt ff : B

In the third rule, b ∈ {tt, ff} and in the second x is not free in t .

Theorem 2.11 (Soundness and Completeness). We haveM =βη N if and only if LM Ma ≡ LN Ma

if and only if JMK � JN K.

Proof. The forward direction is by induction on the rules defining βη. A key property to use is

the negativity of LM Ma : it always starts by an input on a by construction. The converse direction

relies on the confluence and normalisation of the calculus. Every termM is βη-equal to its η-long
β-normal form. IfM,N are in such a normal forms, then we prove:M =βη N iff LM Ma ≡ LN Ma iff

JMK � JN K. See Appendix A.3 for details. □
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3 NONLINEAR AND DETERMINISTIC GAMES
Strategies presented in § 2.3 are linear: each move of the game can be played at most once in an

execution. As moves correspond to function calls, we are restricted to interpreting linear languages.

In this section, we extend our framework to handle nonlinear computations, following the

methodology of Castellan et al. [2015, 2019]. In § 3.1, we present the challenge of extending the

previous setting to deal with non-linearity. In § 3.2, we recall event structures with symmetry, the

technical tool used to solve this issue. In § 3.3, we present how to build a category out of these

ideas. In § 3.4, we present πLL, an extension of πMALL with the exponentials of Linear Logic to define

nonlinear strategies. In § 3.5 and § 3.6, we look at encodings of higher-order languages into DStr
following game semantics methodology, both in call-by-name and call-by-value.

3.1 Non-linearity in Game Semantics
A standard procedure to interpret nonlinear computations inside a linear model is given by Linear

Logic [Girard 1987]. The main insight is that for each type A, there should be two types !A and ?A
allowing repeated invocations of A. In this setting, an object of type !A should be seen as producing

infinitely many A’s, while an object of type ?A as producing finitely (possibly zero) A’s. This is
well-behaved when it comes to interaction since a !(A⊥) is a morally a “server”, able to consume

infinitely many A’s, while ?A is a client, issuing several requests of type A.
Seely [1989] defines the algebraic structure required on these new objects. By duality, it is enough

to describe the structure for one of those two connectives. First ?A should be a monad conform to the

intuition that ?A is a bundle of many A’s; and moreover it must turn any object into a commutative

comonoid, i.e. for every A, it must come equipped with a map ?A ∥ ?A → ?A explaining how to

join bags together (and a unit 1 → ?A, the empty bag).

Before building such structure in games and strategies, let us look at the category of event

structures first (indeed, most of the structure can be lifted to strategies). In event structures, a

candidate for “infinite many E’s”, is the following construction. Given an event structure E, we
define ♯E as ∥i ∈N E. In particular, its events are pairs (i, e) of a move e ∈ E and an integer i ∈ N,
referred to as a copy index. There are natural candidates for a monad structure on ♯(−):

ηE : (a ∈ E) 7→ (0,a) ∈ ♯E µE :

(
(i, (j,a)) ∈ ♯♯E

)
7→

(
(⟨i, j⟩,a) ∈ ♯E

)
where ⟨·, ·⟩ : N2 ≃ N is any bijection. To satisfy the monadic laws, we must have ⟨0, i⟩ = ⟨i, 0⟩ = i
for all i ∈ N, which is incompatible with ⟨·, ·⟩ being a bijection. There is in fact no hope of realising

these laws “on the nose”, i.e. up to function equality. Instead, the equation holds up to copy indices.
This is reasonable: the precise identity of copy indices should not affect the semantics since they

are an artefact of the model. To formalise the notion of equality “up to copy indices”, we equip ♯E
with an isomorphism family, turning it into an event structure with symmetry.

3.2 Event Structures with Symmetry
The main idea of event structures with symmetry introduced by Winskel [2007] is not to look at

events individually but at configurations instead.

Definition 3.1. An isomorphism family on an event structure E is a family Ẽ of order-iso-

morphisms φ : x � y with x,y ∈ C(E) such that

(1) Ẽ contains all identities, and is stable under inverse and composition

(2) If x ⊆ x ′
and φ : x ′ � y ′ ∈ Ẽ, then φ |x : x � φ x ∈ Ẽ

(3) If x ⊆ x ′
and φ : x � y ∈ Ẽ, then there exists a (non-necessarily unique) y ′ ∈ C(E) such that

φ extends to φ ′
: x ′ � y ′ ∈ Ẽ.
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14 Simon Castellan, Léo Stefanesco, and Nobuko Yoshida

An event structure with symmetry is a pair (E, Ẽ) of an event structure E and an isomorphism

family Ẽ on E. We write E, F , ... for event structures with symmetry.

Most constructions on event structures (such as parallel composition, sum and lifting) can be

extended seamlessly to event structures with symmetry [Winskel 2007]. Given an event structure

with symmetry E, define an isomorphism family ♯Ẽ on ♯E containing all the θ : x � y for which

there exists π : N→ N such that

(1) for (i, e) ∈ x , θ (i, e) is of the form (π i, e ′) and (2) {(e, e ′) | θ (i, e) = (π i, e ′)} ∈ Ẽ.

We define the event structure with symmetry ♯E as (♯E, ♯Ẽ).
A map of event structures with symmetry f : E ⇀ F is a map f : E ⇀ F such that for all

θ ∈ Ẽ, f θ
def

= {(f e, f e ′) | (e, e ′) ∈ θ } is in Ẽ. Two such maps f ,д : E → F are said to be similar
if for all x ∈ C(E), {(f s,д s) | s ∈ x} ∈ Ẽ, which we write f ∼ д. Event structures with symmetry

and total maps form a category ESS. This equivalence relation is enough to formalise this idea of

equality up to copy indices.

Lemma 3.2. ♯(−) : ESS → ESS is a monad up to ∼.

3.3 The Category DStr
Games with Symmetry. To be able to identify strategies up to copy indices, we need more structure

than a simple symmetry on A, but the structure of a thin concurrent game [Castellan et al. 2019].

Definition 3.3. A thin concurrent game (tcg) is a tuple A = (A, Ã, Ã+, Ã−) where A is a game,

and Ã, Ã+, Ã− are isomorphism families on A subject to axioms listed in [Castellan et al. 2019]; in

particular Ã− and Ã+ are sub-isomorphism families of Ã.

The intuition is that Ã− (resp. Ã+) contain only isomorphisms that affect negative (resp. positive)

events. This idea of polarised decomposition of the symmetry was first introduced by Melliès [2003]

in a simpler setting. Games operations (parallel composition, dual) extend to tcgs.

Uniform Strategies. Symmetry on games induces naturally an equivalence relation on strategies,

relaxing isomorphism by asking that the triangle commutes up to symmetry on the game. This

equivalence, however, is not a congruence since nothing prevents a strategy to observe copy indices

from Opponent. To recover a well-behaved compositional setting, we need to ensure that the

strategy we consider behaves uniformly with respect to copy indices from Opponent. It turns out

that we need to add extra structures on strategies, under the form of an isomorphism family.

Definition 3.4. Consider a tcg A. A uniformity witness for σ : S → A is an isomorphism

family S̃ on S such that:

(1) σ becomes a map of event structures with symmetry (S, S̃) → (A, Ã);
(2) if θ : x � y ∈ S̃ and σ θ extends to φ : x ′ � y ′ ∈ Ã with x ⊆− x ′

, then θ extends to a θ ′
such

that σ θ ′ = φ;
(3) if θ : x � y ∈ S̃ is the identity on negative elements of x , then θ is the identity on x .

A ∼-strategy on A is a strategy σ on A along with a uniformity witness for σ .

We can lift the equivalence relation ∼ on maps to a weak isomorphism on strategies: two ∼-

strategies σ : S → A and τ : T → A are weakly isomorphic (written σ ≊ τ ) when there exists an

isomorphism of event structures with symmetry φ : S � T such that τ ◦ φ ∼ σ .

Theorem 3.5 ([Castellan et al. 2019]). Uniformity witnesses compose and weak isomorphism
is a congruence on ∼-strategies. As result, tcgs and ∼-strategies up to weak isomorphism form a
compact-closed category DStr.
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The Lifting Monad. Unfortunately, ifA is a tcg, ♯A is not a tcg is general. However, ifA is polarised

then ♯A is also tcg [Castellan et al. 2019]. To work around this issue, we lift games before taking

♯(−) which leads to the two natural exponentials of Linear Logic: !A (resp. ?A) when lifted with a

negative (resp. positive) move.

Formally, liftings of games are defined as follows. Given a tcg A, we define ↑−A to be the tcg

box− · A. This operation on tcgs extends to a functor ↑−− : DStr → DStr: given σ : A B,

↑−σ starts by acknowledging the negative box on the right, before playing box on the left, and

continuing as σ . As a result, ↑−σ is a negative strategy. Writing DStr− for the subcategory of DStr
whose games are negative with negative strategies on it, we have:

Lemma 3.6. The functor ↑−(−) is the right adjoint to the inclusion DStr− → DStr. In particular, ↑−

transports comonads on DStr− to comonads on DStr.

By duality, we define similarly ↑+A which has a dual adjunction result.

Exponentials on DStr. On DStr−, ♯(−) has the desired structure:

Lemma 3.7 ([Castellan et al. 2019]). ♯(−) : DStr− → DStr− is an exponential comonad,
i.e. in this affine setting, a comonad equipped with a natural transformation, the contraction, cA :

♯A ♯A ∥ ♯A which turns ♯A into a comonoid.

The exponential comonad ♯(−) induces, through the lifting adjunction, an exponential comonad

!(−): !A = ♯↑−A. By duality, we get the exponential monad ?A
def

= ♯↑+A. The unit of the monad ?(−)

gives the dereliction strategy dA : A ?A, forwarding A onto the zeroth copy of A in !A;

and the multiplication of the comonad !(−) gives the digging strategy µA : !A ‼A, forwarding

(⟨i, j⟩,a) onto (i, (j,a)).

3.4 A Metalanguage for DStr: πLL
To build a calculus for DStr, we extend the calculus of § 2.4 with the exponentials of Linear Logic:

T F ... | !T | ?T P F · · · | a!(x). P | a?[x]. P | a?{x,y}. P

The type !T represents a server waiting for clients following protocolT and the type ?T is for a client
connecting to a server that follows protocol T . The process a!(x). P creates a server listening on a;
spawning a copy of P for every request x made; a?[x]. P is a client which connects to server a and

continues as P with channel x meant to perform the request. The process a?{x,y}. P is a duplication:
it duplicates the name a into two names x and y and executes P : the two names will be connected

to the same server but can issue requests in parallel to the server. This construction allows the

non-affine use of channels of type ?T . Note that fc(a?{x,y}. P) = fc(P) \ {x,y}. Typing judgements

are extended with the corresponding rules of Linear Logic:

Server

P ▷ ?Γ, x : T

a!(x). P ▷ ?Γ,a : !T
Client

P ▷ Γ, x : T

a?[x]. P ▷ Γ,a : ?T
Dup

P ▷ Γ, x : ?T ,y : ?T

a?{x,y}. P ▷ Γ,a : ?T

Rule Server ensures that all the free names of an exponential input are client names (denoted by

?Γ); rule Client types a request (once) to a server; and Rule Dup types a duplicator where the type

of x,y is the same as a. The forwarder can naturally be extended:

[a↔b]!T = a!(x).b?[y]. [x↔y]T .
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Communication
(ν a b : !T )(a!(x). P ∥ b?[y].Q) ≡ (ν x y : T )(P ∥ Q)

(ν a b : !T )(a!(x). P ∥ b?{b1,b2}.Q) ≡ (ν a1 b1 : !T )(ν a2 b2 : !T )((a1!(x). P ∥∆ a2!(x). P) ∥ Q)
(if fc(P ) \ {x } = ∆, (fc(P ) ∪ fc(Q )) ∩ {a1, a2 } = ∅)

Contractions
a?{a1,a2}. P ≡ a?{a2,a1}. P a?{b,a′}. a′?{c,d}. P ≡ a?{a′,d}. a′?{b, c}. P

a?{b, c}.P ≡ P[a/b] (if c < fc(P ))

Fig. 8. Equational Theory for πLL

Infinitary terms. Types now denote infinite games, and as a result the model contains infinite

strategies. The promotion construction allows to define some infinite strategies, but it is not enough.

To allow arbitrary infinite behaviours, we consider infinite terms with infinite typing derivations.
Formally, we consider the free ω-CPO over the set of typing derivations, ordered by prefix. This

will be useful to interpret the fixpoint operator of PCF and the memory allocation of IPA.

Interpretation of the Calculus. Types are interpreted by the corresponding operations in DStr
homomorphically: J!T K = !JT K and J?T K = ?JT K. The interpretation of the new process constructions

follows the standard categorical semantics of Linear Logic:

s
P ▷ ?Γ, x : T

a!(x). P ▷ ?Γ,a : !T

{
= (!JPK : !!JΓK⊥ !JT K) ⊙ µJΓK⊥

s
P ▷ Γ, x : T

a?[x]. P ▷ Γ,a : ?T

{
= dJT K ⊙ (JPK : JΓK⊥ JT K)

s
P ▷ Γ, x : ?T ,y : ?T

a?{x,y}. P ▷ Γ,a : ?T

{
= cJT K ⊙ (JPK : JΓK⊥ ?JT K ∥ ?JT K)

The interpretation of infinitary terms follows from this result:

Lemma 3.8 ([Castellan et al. 2015]). For any tcg A, ∼-strategies over A have a natural order
which turns DStr(A) into an ω-CPO.

The interpretation of finite terms of πMALL into DStr is monotonic for this order, and as a result,

can be uniquely extended by continuity to infinite terms.

Equational Theory. We extend open processes as follows:

PF · · · | a!(x).P | a?{a1,a2}.P | a?[x].P

The action a?{a1,a2}.X is a naming action; a!(x).X is a negative one; and a?[x].X is positive. We

use the following macro to manage context duplication, where both processes have access to the

same channels

P ∥Γ Q
def

= ®x?{®a, ®b}.
(
P[®x B ®a] ∥ Q[®x B ®b]

)
such that

P ▷ ?Γ,∆1 Q ▷ ?Γ,∆2

P ∥Γ Q ▷ ?Γ,∆1,∆2

We also use P[a?] for a?[x]. P[x] to limit the noise added by derelictions.

In Communication, the first rule is defined as a usual reduction for the π I-calculus [Sangiorgi
1996]; the second rule creates two fresh servers which are accessed by Q . In Contractions, the
rules are there to reflect the fact that contraction induces a comonoid structure.

Note that the communication rule for !/? makes the server disappear, unlike the usual replication

rules in the π -calculus. The typing rules ensure that there are no occurrences of a in Q : the server

will never be contacted again and hence can safely be shut down. The only way to contact a server

twice is via the use of the contraction rule, which will duplicate the server accordingly.

Lemma 3.9 (Soundness). If P ≡ Q , then JPK � JQK.
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Translation of Terms

L Γ, x : τ ⊢ x : τ Moi
def

= x?[u]. x ⊕ i . [u↔o]τ /i

L Γ ⊢ λx .M : τ1 → τ2 Moi
def

= o{x,o}.LM Moi

LM N : τ2 Moi
def

=
(
LM Moi

)
{oBx,o} x⊙

L Γ M
y x !(r ). LN Mr

L if M N N ′
: τ Moi

def

= LM Mxq x⊙
L Γ M
y y &

{
tt : LN Moi ;ff : LN ′ Moi

}
LY : (τ → τ ) → τ Moi

def

= o{ f ,u}. fixf ,ui

L iszero : N→ B Moq
def

= o{a,o}. a ⊕ q. a &

{
0 :o ⊕ tt

n + 1 :o ⊕ ff

L succ : N→ N Mo def

= o{a,o}. a ⊕ q. a & {n : o ⊕ n + 1}n∈N

Macros

Name Definition Type

P a ⊙
Γ
b Q (ν a b : _)(P ∥Γ Q ) ?Γ, ∆1, ∆2 given P ▷ ?Γ, ∆1, a : T Q ▷ ?Γ, ∆2, b : T⊥

fixu ,fi

f ?{f1, f2 }. f ?

1
⊕ i . f1 {a, u′ }.

([u↔u′] ∥ a!(x ). x &

{
j . fixx ,f2j

}
)

f : ?(Lσ → σ M⊥), u : σ /i

Fig. 9. Translation from call-by-name PCF to πLL

3.5 Interpretation of Call-by-Name PCF in DStr
We show how to translate a non-linear language, PCF, into πLL. The grammar of types and terms

extends that of the affine λ-calculus.

τ F · · · | N M F · · · | n ∈ N | Y | iszero(M) | succ(M)

The typing rules of PCF are standard. We write →PCF for the standard call-by-name reduction

on terms of PCF. Due to the non-linearity, we change the interpretation of the arrow to use an

exponential on the argument:

Lτ1 → τ2 M = !Lτ1 M ⊸ Lτ2 M LN M = q− · ⊕n∈N1 LB M = q− · ⊕b ∈{tt,ff }1.

The translation on terms is then updated to take non-linearity into account, following the usual

encoding of call-by-name computation into Linear Logic. It is described in Figure 9. This translation

is similar to the one for the affine λ-calculus: apart from adding a promotion in the definition of

application, and a dereliction for the variable case, we simply replaced instances of x⊙x̄ with its

non-linear counterpart.

Correctness. As before, we have the substitution lemma:

Lemma 3.10. LM1[x B M2] Mo ≡ LM1 Mo x⊙
Γ
y y!(r ). LM2 Mr .

Proposition 3.11 (Soundness and adeqacy). Given two terms Γ ⊢ M,N : τ , if M →PCF N
then LM Mo ≡ LN Mo . Moreover if LM Mo ≡ Ln Mo for ⊢ M : N, thenM →PCF n.

Proof. The proof of soundness is essentially the same as the affine case, using the fact that

programs are interpreted by negative strategies. Adequacy is first proved on finite terms (terms
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without Y but with immediate divergence), and then lifted to the infinite terms by continuity,

following standard methods. The proof is in Appendix B.2 □

Our methodology inherits the flexibility of game semantics. For instance, for PCF, we know that

implementing if concurrently, by evaluating the condition and the branches in parallel leads also

to a sound and adequate model, due to the absence of state. We can describe such an interpretation

here by simply changing the interpretation of conditionals as follows:

L if M N1 N2 Moi = (νuv ;x1 y1;x2 y2)

(
LM Muq ∥L Γ M LN1 Mx1

i ∥L Γ M LN2 Mx2

i

∥v & {tt : [y1↔o];ff : [y2↔o]}

)
The return value ofM is only used to know what value to return on o: that of N1 or that of N2.

3.6 Interpretation of Call-by-Value Languages in DStr
As an aside, to show that different encoding of types can lead to different calling conventions, we

show how to interpret a call-by-value simply-typed λ-calculus. For simplicity and space reason,

we consider here PCF where the fixpoint combinator has been replaced by a formal divergence

⊥ : A. The fixpoint combinator in call-by-value is more involved than in call-by-name and this

simplification is sufficient for demonstrating our framework. We use a standard call-by-value

reduction whose main rules are:

V is a value

(λx .M)V →v M[x B V ]

b ∈ {tt, ff}

if b Mtt Mff
→v Mb

M →v N

E[M] →v E[N ]
+ rules for iszero and succ

where values and evaluation contexts are defined as follows:

V ::= n | b | λx .M E ::= [] | EV | M E | if E M N | iszero(E) | succ(E).

The main difference between the game semantics interpretation of call-by-name and call-by-value

computations is the polarity of types. In call-by-name, types become negative games waiting for a

message from Context before starting to evaluate; while in call-by-value, types become positive

games which can directly produce a result.

Types of this language are interpreted as follows:

LB M = ⊕b ∈{tt,ff }1 LN M = ⊕n∈N1 L ⊕i ∈IAi → B M = lam+ · !&i ∈I (A
⊥
i ∥ B).

The translation of arrow types is more involved than in call-by-name. The first move is played

when the term has evaluated to a closure. This is used to distinguish λx .⊥ and ⊥; only the first

term will play lam+. We then allow Context to call this closure as many times as it wants (via

the exponential !). To call the closure, Context has to provide an argument value (&i ∈I ), and then

Program can ask further questions about its argument (playing in Ai ) or provide information about

the return value (playing in B). For instance, the type of functions from integers to Booleans is

interpreted as the game lam+ · !(&n∈N · (tt+ ⊕ ff
+)).

Remark that for all type τ , we have Lτ M = ⊕i ∈iTi . The set I is the set of value types of τ , written
vt(τ ). Given i ∈ vt(τ ), we write τ/i for the type Ti . This notation extends to contexts: we write

vt(Γ) for the set of families (kx )x ∈dom(Γ) where kx ∈ vt(L Γ(x) M). Given such a family (kx ), we write
Γ/(kx ) for the metalanguage context (x : Γ(x)/kx )x ∈dom(Γ).

We need this machinery because in call-by-value, terms receive values from the context before

starting to execute. As a result, the translation works as follows: From a term Γ ⊢ M : τ , we build

by induction a family of processes L Γ ⊢ M : τ Mo
®k
▷ (Γ/®k)⊥,o : Lτ M indexed over value types of Γ.

The translation is described in Figure 10.

We can put these processes together using a specific tensor product defined as follows: (⊕i ∈IAi )⊗

(⊕j ∈JBj ) = ⊕i , j ∈I×J (Ak ∥ Bl ). For instance, B ⊗ B is really a pair of booleans. We write ⊗Γ for the
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Translation of Terms

L Γ ⊢ ⊥ : A Mo
®k

def

= 0

L Γ, x ⊢ x : σ Mo
®k

def

= o ⊕ kx . [x↔o]σ /kx

L Γ ⊢ λx .M : σ → τ Mo
®k

def

= λσx→o . (L Γ, x : σ ⊢ M : τ Mo
®k ,x :v

)v ∈vt(σ )

L Γ : M N : τ Mo
®k

def

= appcbvx :σ→o

(
LM Mx

®k
, LN Mo

®k

)
(Γ ⊢ M : σ )

L Γ ⊢ if M N1 N2 : τ Mo
®k

def

= LM Mx
®k x⊙

L Γ M/®k
y y &

{
tt : LN1 Mo

®k
;ff : LN2 Mo

®k

}
L Γ ⊢ iszero : N→ B Mo

®k
def

= λNx→o .

(
o ⊕ tt if n = 0

o ⊕ ff if n > 0

)
n∈N

L Γ ⊢ succ : N→ N Mo
®k

def

= λNx→o . (o ⊕ n = 1)n∈N

Macros

Name Definition Given

λσx→o . (Pk ) o ⊕ lam. o!(r ). r & {k : r {x , o }. Pk } ▷ ∆, o : Lσ → τ M ∀k , Pk ▷ ∆, x : (Lσ M/k )⊥, o : L τ M

unlamv
x→o (P )

(
P [o := x ] x ⊙y

y &

{
lam : y? ⊕ v . [y↔o]

} ){oBx , o } ▷ Γ, x : (Lσ M/v)⊥, o : L τ M P ▷ Γ, o : Lσ → τ M, v ∈ vt(σ )

appcbvx :σ→o (P ,Q ) Q x ⊙
∆
y y &

{
v . unlamv

y→o (P )
}
v∈vt(σ )

▷ ?∆, o : L τ M Q ▷ o : Lσ → τ M, ?∆,

P ▷ x : Lσ M, ?∆

Fig. 10. Translation from call-by-value λ-calculus to πLL

tensor product of the interpretations of the types in Γ: we have vt(⊗Γ) = vt(Γ). The final translation
is then defined as follows:

L Γ ⊢ M : τ Mc ,o := c &

{
c{®x}. L Γ ⊢ M : τ Mo

®k

}
®k ∈vt(Γ)

▷ c : ⊗Γ,o : Lτ M.

The translation of terms is presented in Figure 10. Because the types in the context are ensured

to implement call-by-value, this translation is more involved than the previous ones, and has to be

defined on the typing relation instead of the terms themselves.

3.6.1 Soundness. In the semantics, values can be recognised by the fact that they start by sending

an initial move on o.

Lemma 3.12. If a term Γ ⊢ M : τ is a value, then its translation is of the form: LM Mo
®k
≡ o ⊕ ℓ.P ®k for

some ℓ ∈ vt(τ ).

For example, closed values of type N are in bijection with natural numbers.

Lemma 3.13. The effect of substitution of values on the translation is the following:

L Γ ⊢ M[x B N ] Mo
®k
= P ®k y⊙

L Γ M/®k
x L Γ ⊢ M Mo

®k ,x :ℓ
.

where N is assumed to be a value with LN My
®k
= y ⊕ ℓ.P ®k .

We then deduce soundness and adequacy (however, in this setting without recursion, adequacy

is a much weaker result):
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Proposition 3.14 (Soundness and adeqacy). Given two terms Γ ⊢ M,N : τ , ifM →v N , then
LM Mc ,o ≡ LN Mc ,o . Moreover, if JMK ≡ JnK for ⊢ M : N, thenM →v n.

4 NONLINEAR AND NON-DETERMINISTIC GAMES
This section extends our framework to handle nondeterminism. In § 4.1, we introduce a new model

that combines [Castellan et al. 2015] and [Castellan et al. 2018] to have a non-angelic model of

nonlinear computations. In § 4.2, we propose our metalanguage for Str, denoted as πDiLL, based
on Differential Linear Logic (DiLL). In § 4.3, we give the interpretation of a higher-order language

with shared-memory concurrency.

4.1 The category Str
Traditional models of game semantics tend to have an angelic treatment of nondeterminism: if

M is a nondeterministic program, then JMK records all the possible maximal executions ofM . In

particular, it does not record the points whereM might get stuck. Such models equalise tt + ⊥ and

tt (where + represents nondeterministic choice), which shows a loss of information. In models

based on event structures, a similar problem occurs: moving to nondeterministic ∼-strategies does

not give an accurate model of nondeterminism. In [Castellan et al. 2018], this problem was solved

by allowing strategies to record internal transitions. Such internal transitions give rise to internal
events which can be used to record hidden divergences.

4.1.1 Essential Strategies. Formally, such strategies are represented as partial maps S ⇀ A, and
events outside the domain are viewed as internal.

Definition 4.1 ([Castellan et al. 2018]). An essential strategy on a game A is a partial map

σ : S ⇀ A such that:

• if s _S s ′ and σ s,σ s ′ are incomparable in A, then s is non-positive and s ′ non-negative;
• if x ∈ C(S) and σ x can be extended by a negative move a ∈ A, then x can be extended by a

unique s ∈ S with σ s = a;
• if s s ′, then either both σ s and σ s ′ are defined and negative, or both are undefined;

• if s ∈ S \ dom(σ ), then there exists s ′ such that s s ′.

In the first axiom, by non-positive (resp. non-negative) , we mean that the event is not mapped to a

positive event (resp. negative). An event of s ∈ S is internal (or invisible) if σ s is not defined, and
external or visible otherwise.

The usual copycat strategy is an essential strategy (which happens to be total). Moreover, essential

strategies can be composed in a similar way as strategies.

Theorem 4.2 ([Castellan et al. 2018]). There is a category of games and essential strategies.

4.1.2 Essential ∼-Strategies. To get essential ∼-strategies, we simply merge the definitions as there

are very little interactions between the extensions:

Definition 4.3. Given a tcg A, a uniformity witness for an essential strategy σ : S ⇀ A is an

isomorphism family S̃ such that:

(1) σ extends into a map of event structures with symmetry (S, S̃)⇀ (A, Ã);
(2) if θ : x � y ∈ S̃ and σ θ extends to φ : x ′ � y ′

with x ⊆− x ′
, then θ extends to θ ′

such that

σ θ ′ = φ; and
(3) If θ : x � y ∈ S̃ is the identity on negative elements of x , then θ is the identity on x .

A ∼-essential strategy on A is an essential strategy σ on A with a uniformity witness for σ .

As before, uniformity witnesses compose, and most of the structure can be lifted from DStr:
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Theorem 4.4. Thin concurrent games and ∼-essential strategies form a compact-closed category
Str, which has weak (co)products and an exponential comonad.

4.1.3 Transitions and weak bisimulation. Event structures come with a natural notion of transition

system, given by configurations. This can be lifted to the level of strategies. Given an essential

strategy σ : S ⇀ A, and a configuration x ∈ C(S), we build the essential strategy σ/x : S/x ⇀ A/σ x
(read σ after x ) where S/x consists of the events in S which (1) are not in x , but (2) are compatible

in x , and similarly for A/σ x . This construction lifts to ∼-essential strategies.

We say that σ : A can do a transition to τ with visible actions y ∈ C(A), written σ
y

−−−→ τ , when
there exists a configuration x ∈ C(σ ) such that σ/x ≊ τ and σ x � y in Ã. The particular case
where y = ∅ corresponds to an internal transition and is simply written σ −−→ τ . Using this notion

of transition, we can define weak bisimulation on strategies:

Definition 4.5. A weak bisimulation is an equivalence relation R between ∼-essential strategies

on the same tcg such that if σRτ , for all configuration y ∈ C(A), if σ
y

−−−→ σ ′
, then there exists τ ′

such that τ
y

−−−→ τ ′ with σ ′Rτ ′. We write ≈ for the largest weak bisimulation.

Note that σ ≊ τ implies σ≈τ .

4.2 A Metalanguage for Str: πDiLL

We present a calculus for Str that extends πLL in § 3.4. For this, we draw inspiration from Differential

Linear Logic which extends Linear Logic with nondeterministic primitives. DiLL was introduced

to talk about differentiation of programs, but here we use intuitions coming from DiLL in terms

of non-uniform servers. Earlier, we said that a program of type !A can be seen as a server, able to

handle infinitely many requests. However, the only rule in Linear Logic to build such servers is

the promotion rule, which can represent only uniform servers which handle all requests the same

way, without internal state. DiLL allows for the possibility of stateful servers, and therefore the

possibility of races. This is done by adding two constructs:

• Codereliction builds a server which will handle a unique request. If there are several concurrent
requests, one of them will be handled and the other ignored (leading to races); and

• Cocontraction puts two (possibly partial) servers together. Requests are then routed to one of

the two nondeterministically.

There is a problem however with this presentation: if we co-contract two one-time servers (obtained
by codereliction) and there are two concurrent requests, then there are several possibilities. The

best case scenario is that each request goes to a different server, and hence are both handled. The

worst case scenario is that they both go to the same server, and then only one of them will be

handled. In an angelic model, we only see the best case scenario, but in a non-angelic model we

see all cases. To overcome this issue, we add a single construct, generalised codereliction, written
a#(x). P , where x and a can be free in P :

P ::= · · · | a#(x). P P ::= · · · | a#(x).P a
−

::= · · · | a#(x).X .

This construct is a mix of codereliction and co-contraction, which sets up a one-time server on

a, waits for a request x , and execute P . Unlike the usual codereliction, a is still available in P , so
that when P has finished handling the request x , P can listen again on a. A stateful server can be

written by a#(x). P , and its typing rule is:

ND

P ▷ ∆,a : !A, x : A

a#(x). P ▷ ∆,a : !A
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This construct can be used to define the usual nondeterministic sum. Given P,Q ▷ ∆ we define:

P + Q
def

= (ν a b : !(1 ⊕ 1))
(
a#(x). x & {inl : P ; inr : Q}i ∈I ∥ (b?[r ]. r ⊕ inl ∥b b?[r ]. r ⊕ inr)

)
Interpretation in Str. To interpret this extension in Str, we use a morphism cA : !A ∥ A !A.

!A ∥ A → !A

box−i box−j

∗i ∗j

box+j ,i box+i , j a− ⟨a, i⟩+ ⟨a, j⟩+

⟨a, j, i⟩− ⟨a, i, j⟩−

⟨a, j, i⟩+ ⟨a, i, j⟩+

Fig. 11. Strategy cA for A = a+

The intuition is that requests on the right side

race to get forwarded to A; requests that did not

win the race are then forwarded to the left !A.
Since this strategy has a complex operational be-

haviour, let us start by an informal description,

based on the example where the game has a single

positive move, ie.A = a+. The desired strategy cA
for a single move game A = a+ is (partially) de-
picted in Figure 11. The strategy starts by waiting

for a request on the rightmost !A. The different
box−i are all racing together to be considered the

first message acknowledged by cA. Hence, one neutral event per box−i is triggered when the ith
message wins the race. If the ith message has won, then the copy of A on the left is put in contact

with the successor of box−i , expressed by the links a− _ ⟨a, i⟩+ and ∗i _ ⟨a, i⟩+. Then, if i has won
the race, it means that any other j , i lost. In that case, messages on the j component are forwarded

to the leftmost !A: box−j _ box+j ,i and ∗i _ box+j ,i . From there, we have a copycat strategy between

the ith copy of A on the left and on the right. Formally, the event structure CA is defined as:

Events are of one of the following form:

• an event box−i for i ∈ N mapped to the initial move of the right !A;
• an internal event ∗i , representing the fact that the ith request has won the race

• an event box+i , j for i, j ∈ N, corresponding to the forwarding of box−i when j wins the race;
• an event ⟨e, i⟩ for every e ∈ CCA and i ∈ N representing the forwarding to A when the race

is won by i;
• an event ⟨e, i, j⟩ for every distinct numbers i, j , N and e ∈ CCA, for forwarding the ith
copy to !A when i loses the race to j.

Causality includes the usual causal order on the copies of CCA, plus the following links:

• box−i _ ∗i and ∗i ≤ ⟨e, i⟩ for all e ∈ CCA;

• box−i _ box+i , j and ∗j _ box+i , j for any i , j: box+, ji is played when Opponent made the

i-th request and j won the race; and

• box+i , j ≤ ⟨e, i, j⟩ for e ∈ CCA.

Conflict is generated by asking that the ∗i are all in mutual conflict.

CA might not be receptive if A is positive (as in the example), so that the strategy cA is obtained by

precomposing with copycat to ensure receptivity. Using this strategy, we let:

Ja#(x). P ▷ ∆,a : !AK = cA ⊙
(
JP ▷ ∆,a : !A, x : AK : J∆K⊥ J!AK ∥ JAK

)
.

Preorder. Instead of trying to axiomatise ≊ in this setting, in presence of nondeterminism, it is

more fruitful to axiomatise the transition relation −−→. We define the reduction relation P−−→Q
as the smallest preorder closed under the rules in Figure 12. Note that it is not closed under all

prefixes. By these rules, we can derive that P +Q −−→ P and P +Q −−→ Q .

Lemma 4.6. For P,Q ▷ ∆, P −−→ Q implies JPK −−→ JQK.
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P −−→ Q

(ν a b : T )P −−→ (ν a b : T )Q

P ′ ≡ P −−→ Q ≡ Q ′

P ′ −−→ Q ′

(ν a b1 : !T )P −−→ (ν a b1 : !T )Q

(ν a b : !T )b?{b1,b2}. P −−→ (ν a b : !T )b?{b1,b2}.Q

(ν a b : !T )(a#(x). P ∥ b?[y].Q) −−→ (ν a b : !T )(ν x y : T )(P ∥ Q)

(ν a b : T )P −−→ (ν a b : T )Q

(ν a b : T )(P ∥ R) −−→ (ν a b : T )(Q ∥ R)

Fig. 12. Preorder on πDiLL

⟨(skip;M), ρ⟩ −→ ⟨M, ρ⟩

M →PCF M
′

⟨M, ρ⟩ −→ ⟨M ′, ρ⟩

ρ(r ) = k

⟨!r , ρ⟩ −→ ⟨k, ρ⟩ ⟨r := k, ρ⟩ −→ ⟨skip, ρ[r := k]⟩

⟨M, ρ⟩ −→ ⟨M ′, ρ ′⟩

⟨E[M], ρ⟩ −→ ⟨E[M ′], ρ ′⟩

⟨M, ρ[r := k]⟩ −→ ⟨M ′, ρ ′⟩

⟨new r := k inM, ρ⟩ −→ new r := ρ ′(r ) inM ′, ρ ′

Fig. 13. Operational Semantics for IPA

4.3 Interpretation of a Shared-Memory Concurrent Higher-Order Language
The Language IPA. Idealised Parallel Algol [Ghica and Murawski 2007], IPA, is an extension of

call-by-name PCF with shared memory concurrency. Types of PCF are extended by unit, the type
of effectful computation, and loc, the type of locations, ie. references to integers. We use r , s, . . . to
range over variables of type loc. The terms are extended as follows:

M,N ::= · · · | skip | M ;N | (M ∥ N ) | !M | M := N | new r := k inM

with the following standard typing rules:

Γ ⊢ skip : unit
Γ ⊢ M : unit Γ ⊢ N : A

Γ ⊢ M ;N : A
Γ ⊢ M : unit Γ ⊢ N : unit

Γ ⊢ M ∥ N : unit

Γ ⊢ M : loc
Γ ⊢ !M : N

Γ ⊢ M : loc Γ ⊢ N : N
Γ ⊢ M := N : unit

Γ ⊢ M : loc Γ ⊢ N : N
Γ ⊢ M := N : unit

Γ, r : loc ⊢ M : N

Γ ⊢ new r := k inM : N

In new r := k inM , k is an integer representing the initial value of r .

Operational Semantics. We recall the semantics of IPA as given in [Ghica and Murawski 2007]. The

operational semantics considers programs, i.e. open terms of the form r1 : loc, . . . , rn : loc ⊢ M : N.
The operational semantics has states ⟨M, ρ⟩ where Γ ⊢ M : N is a program and µ : dom(Γ) → N is

the memory state. It is given in Figure 13, using the following notion of evaluation contexts:

E[] := [] | (P ∥ E) | (E ∥ P) | []; P | !E | E := n | M := E.

This operational semantics induces a notion of program equivalence on closed terms: weak
bisimulation. Two programs ⊢ M,N : N are weakly bisimilar (writtenM≈N ) when:

• IfM = n, then ⟨N , ∅⟩ →∗ n
• If ⟨M, ∅⟩ → ⟨M ′, ∅⟩, then ⟨N , ∅⟩ →∗ ⟨N ′, ∅⟩ andM≈N .

Translating IPA. We first extend the translation of types

L unit M = q− · done+ L loc M = q− · &{rd : ⊕n∈N1, wr(i) : done+}

The type loc is interpreted as the type of a server waiting for requests that can be either read

requests (answered by a number, the current value), or write requests, answered by a message

acknowledging the write. The translation of terms is detailed in Figure 14, and follows closely the

intuition of the interpretation in [Ghica and Murawski 2007]. new r := k inM is interpreted by

connectingM with a sequential memory server implemented using the generalised codereliction.

The memory server waits for requests and processes them in sequence. If two concurrent requests
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Translation of Terms
L Γ ⊢ skip : unit Moi = o ⊕ done L Γ ⊢ new r := k inM : N Moi

def

= LM Moi r⊙m memk
m

L Γ ⊢ M ∥ N : unit Moq
def

= (ν x1 y1;x2 y2)

(
LM Mx1

q ∥Γ LN Mx2

q ∥ y1().y2().o ⊕ done
)

L Γ ⊢ M ;N : unit Moi
def

= LM Mxq x⊙
Γ
y y().LN Moi L Γ ⊢ !M : N Moq

def

= LM Mord

L Γ ⊢ M := N : unit Moq
def

= LN Mxq x⊙
Γ
y y &

{
n. LM Mowr(n)

}
n∈N

Macros
Name Definition Type Given

memk
m m#(x ). x &

{
wr(i) : x ⊕ done.memi

m ; rd : x ⊕ k .memk
m

}
m : loc k ∈ N

o().P o & done. P ∆, o : done− P ▷ ∆

Fig. 14. Interpretation of IPA into πDiLL

are made, then a sequentialisation is picked nondeterministically. (This behaviour is due to the

implementation of a#(x) P .)

(unit → unit) → B
q−

q+

q− done−

∗ ∗

done+ tt
+

ff
+

A first example (without state) of the translation

is depicted in Figure 1, where we write f [a]. P for

f ⊕ q. f {a, f }. P for readability. Another more in-

teresting example is the sequential program M =

λ f . new r := 0 in f (r := 1); !r = 1 whose interpret-

ation is depicted on the right. It tests whether its ar-

gument is a strict function (ie. evaluates its argument

before returning). Its interpretation shows what can

happen whenM is evaluated in a concurrent context. In particular, we see that if the function f
provided by the context returns and evaluates its argument there is a race. This is not possible in

IPA, but could be possible in extensions of IPA including control operators.

Our model is adequate with respect to weak bisimulation:

Theorem 4.7 (Adeqacy). For any closed program ⊢ M : N, we have

M≈N if and only if JMK≈JN K

5 IMPLEMENTATION
To illustrate the model and the metalanguage, we have built a simple prototype that can be used to

compute the interpretation of a term of IPA or of πDiLL. The prototype is available at:

http://programminggamesemantics.github.io/index.html

The prototype allows entering finitary IPA terms, that is, termswithout fixpoints or natural numbers,

and references store booleans. Such terms can then be converted to πDiLL and finally the event

structure is displayed. Or a term of πDiLL can directly be entered and its interpretation is displayed.

The implementation of the model relies on the compilation of the metalanguage to a sequential

monadic language with a monad expressive enough to support the message-passing primitives of

πDiLL. The code is then run and every branch of the process is explored.

, Vol. 1, No. 1, Article . Publication date: July 2019.

http://programminggamesemantics.github.io/index.html


Game Semantics: Easy as Pi 25

6 RELATEDWORK
Metalanguage and Process Representation for Strategies and Games. Hyland and Ong [1995] first

studied a relationship between game semantics and the π -calculus, where π -calculus processes are
used to denote plays of innocent strategies (for PCF). This idea led to recast the traditional encoding

of the call-by-value λ-calculus into the π -calculus [Milner 1992] into a game semantics model for

call-by-value PCF [Honda and Yoshida 1999]; and to translate conditions on strategies (innocence,

well-bracketing) into typing disciplines for the π -calculus [Berger et al. 2001; Yoshida et al. 2004]. In
the sequential setting, the work by Longley [2009] proposed a programming language to describe

sequential innocent strategies as a whole. Later, Goyet [2013] proposed an abstract calculus for

sequential strategies, close to the π I-calculus. An abstract metalanguage based on the profunctors

view of strategies has been proposed by Castellan et al. [2014] but its expressiveness is unclear;

and no syntax is provided for the affine maps on which its primitives rely.

Dimovski and Lazic [2004]; Ghica and Murawski [2006] represent strategies as CSP terms for

use with model checkers. However, their calculi are less canonical than our metalanguages which

are based on Linear Logic, and are not connected to the model by an equational theory. In a similar

vein, Disney and Flanagan [2015] argue for a reading of strategies in terms of processes in the

sequential setting, for type soundness.

Game Semantics for Concurrency and Nondeterminism. The first concurrent game semantics model,

based on traces, is due to Laird [2001] for a message-passing language, extended to IPA later by

Ghica and Murawski [2007], model which is fully abstract for may-equivalence. The first causal

model of a concurrent nonlinear language is due to [Sakayori and Tsukada 2017], based on sets

of partial orders. This model, yet causal, is still angelic. The first causal model of (linear) IPA is

due to [Castellan and Clairambault 2016], also angelic. Harmer and McCusker [1999] provide the

first non-angelic model of game semantics in the sequential setting based on stopping traces. This
approach is tailored tomust-equivalence. Our approach using essential events gives the first accurate

(adequate for weak bisimulation) model of IPA, capturing faithfully the nondeterministic branching

behaviours of shared-memory concurrent programs. Another line of work uses presheaves to

represent nondeterminism faithfully [Eberhart et al. 2015; Tsukada and Ong 2015], but do not give

a causal interpretation of the languages studied.

In another line of the work, Sakayori and Tsukada [2019] give a sound and complete axiomatisa-

tion of the equational theory induced on the asynchronous π -calculus by the game semantics model

of [Laird 2001], only fully abstract for may-equivalence. Note that obtaining a model adequate for

bisimulation is usually harder than may-equivalence in nondeterministic languages.

Recently, Melliès [2019] gave a games semantics model for DiLL based on templates games. It

differs from ours in two ways: (1) his model is synchronous, while our model is asynchronous (due

to courtesy); and (2) it ignores deadlocks, preventing from modelling IPA adequately.

Extensions of the Linear-Logic and Session Types Correspondence. In this paper, we use a variation of

Differential Linear Logic (DiLL) to extend our deterministic framework to nondeterminism. Beffara

[2006] presents a model of Linear Logic in terms of processes of the π I-calculus, used to interpret

concurrent extensions of the λ-calculus. A different approach exists which uses Linear Logic-based

session π -calculi to investigate expressiveness of network topologies [Toninho and Yoshida 2018a]

and encodability via various forms of the λ-calculi (see [Toninho and Yoshida 2018b, § 5]). These

papers have proven that the expressiveness of the original Linear Logic-based calculi is limited to

functional and strong normalising behaviours. To overcome these limitations, several extensions

have been proposed, eg. the lock primitives for nondeterminism [Balzer and Pfenning 2017];

dynamic monitoring [Gommerstadt et al. 2018; Jia et al. 2016]; exceptional handling [Caires and
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Pérez 2017]; multiparty interactions [Carbone et al. 2016, 2015]; and hyperenvironments to capture

non-blocking I/O [Kokke et al. 2019]. Our approach differs from them, aiming to describe game

semantics translations more accurately based on the metalanguages arisen from event structures,

in particular using the memory cell, grounded on the rigorous DiLL logic.

7 CONCLUSION
We presented a syntactic understanding of game semantics interpretations of higher-order lan-

guages based on message-passing concurrency. This understanding allows for easy and flexible

interpretations of higher-order concurrent programs, as well as equational reasoning on them. We

believe it opens a large area of future research into using game semantics to precisely capture the

semantics of sophisticated programming languages via their translations into the π -calculi. Our
metalanguage allows the specification of complicated causal models by simple syntactic translations.

As future work, we plan to explore more advanced source programming languages, in particular

relaxed shared memory, by combining our approach with the techniques presented in [Castellan

2016]. In a more theoretical direction, we will extend the metalanguage to support definability

results, and the equational theory to support completeness results; on the categorical side, we will

try to characterise Str as an initial category. We would also like to explore the operational aspects of

the metalanguage: following Ghica and Tzevelekos [2012], we would like to describe operationally

the construction of the event structure of a process. Another future work is to represent the event

structures generated by processes in a finite way, using for instance Petri Nets generated by a

geometry of interaction [Lago et al. 2017].
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A PROOFS OF § 2
In this section, we provide more details proofs of the results presented in § 2.

A.1 Categorical Structure
A.1.1 Lifting of Maps to Strategies. First, let us show some properties of the lifting of maps defined

in § 2.3.1.

Given a strategy σ : S → A⊥ ∥ B and a map of games f : B → C , we form the strategy

σf : S ↓ V → A⊥ ∥ dom(f )
A⊥ ∥f
−−−−→ A⊥ ∥ C where V contains the set of s ∈ S such that

σ s ∈ A ∥ dom(f ).

Lemma A.1. σf is a strategy A C .
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Proof. Courtesy and determinism follow from f preserving the causal order and receptivity

from f being bijective on its domain. □

It is easy to see that lift(f ) is equal to ( cc A)f . We have the following result:

Lemma A.2. [Castellan et al. 2017] Given σ : A B and f : B → C a map of games, we have:

σf � lift(f ) ⊙ σ .

This result implise the functoriality of lift(−): lift(д ◦ f ) = lift(д) ⊙ lift(f ).

A.1.2 Weak products. We now show that LDStr has weak products.

Lemma 2.7. For every strategies σ : A B and τ : A C there exists a strategy ⟨σ , τ ⟩ :

A B &C such that π1 ⊙ ⟨σ , τ ⟩ � σ and π2 ⊙ ⟨σ , τ ⟩ � τ . By duality, we obtain weak coproducts
A ⊕ B = (A⊥

& B⊥)⊥.

Proof. Consider σ : S → A⊥ ∥ B and τ : T → A⊥ ∥ C . By prefixing, we obtain maps of event

structures (but not strategies):

L− · σ : R− · σ → A⊥ ∥ B &C R− · τ : L− · τ → A⊥ ∥ B &C

Then, it is easy to see that their sum forms a map of event structure σ ⊔ τ : (L− · σ ) + (R− · σ ) →
A⊥ ∥ (B &C).

An easy verification shows that π1◦(σ ⊔τ ) = σ and similarly for π2. To get ⟨σ , τ ⟩, we precompose

with copycat to get a strategy, and this operation preserves the equations with the projections. □

A.2 Reasoning on the equational theory
In this section, we provide proofs of properties on the equational theory.

Lemma 2.10 (Soundness). If P ≡ Q , then JPK � JQK.

Proof. Rules in the compact-close fragment of the theory follow from the compact-closed

structure of LDStr, in particular bifunctoriality of ∥.

Rules for permutations follow from bifunctoriality of ∥ and the fact that nested pairing commute

(by receptivity).

In communication, the rules follow from the weak coproduct structure. In cut elimination, from

an easy investigation on the composition. □

A.3 Proof of Correctness of the Encoding
We now show our encoding of the affine λ-calculus captures βη-equivalence.

A.3.1 Proof of Soundness. First, let us notice that to showing an equality LM Mo ≡ LN Mo is

equivalent to showing the equalities LM Moi ≡ LN Moi for all i ∈ ct(τ ) where τ is the return type of

M and N .

Lemma A.3. Given Γ, x : τ1 ⊢ M : τ2 and ∆ ⊢ N : τ2, and i ∈ ct(τ2), we have:

LM[x B N ] Moi ≡ LM Moi x⊙y LN My .

Proof. By induction. Let us detail a few cases:

• IfM = x :

Lx Moi x⊙y LN My ≡ (x ⊕ i . [x↔o]) x⊙y y &

{
LN Myj

}
j ∈ct(τ2)

≡ [x↔o] x⊙y LN Myi
≡ LN Moi
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• IfM = w , x :

Lw Moi x⊙y LN My ≡ (w ⊕ i . [w↔o]) x⊙y LN My

≡ w ⊕ i . ([w↔o] ∥ (ν x y)
(
LN My

)
)

≡ Ly Mo

The second equality is due to the fact that x does not occur in the left-hand side of ⊙ and the

right-handside of ⊙ starts with an input of y and the last equality due to the rule for deadlock

(LN My starts by an input on y).
• IfM = λw .M ′

:

(o{w,o}. LM ′ Moi ) x⊙y LN My ≡ o{w,o}.
(
LM ′ Moi x⊙y LN My

)
≡ L λw .M ′[x B N ] Moi

□

Lemma A.4. Consider Γ ⊢ M =βη N : τ . Then L t Ma ≡ Lu Ma .

Proof. By induction on the definiton of =βη . We detail some interesting case:

• The case (λx .M)N =βη M[x B N ]. Using Lemma A.3, we have for all i ∈ ct(τ ):

L (λx .M)N Moi ≡ (
(
o{x,o}. LM Moi

)
{oBx,o}) x⊙y LN My

≡ LM Moi x⊙y LN My ≡ LM[x B N ] Moi
• The case λx .M x =βη t whenM has type A ⊸ B.

L λx .M x Moi ≡ o{x,o}. (
(
LM Moi

)
{oBu,o} u⊙v Lx Mv )

≡ o{x,o}. (
(
LM Moi

)
{oBu,o} u⊙v Lx Mv )

Now, since naming actions float freely, we can assume that LM Moi ≡ o{u,o}. P , and we get:

L λx .M x Moi ≡ o{x,o}. (P u⊙v [x↔v])

≡ L λx .M x Moi ≡ o{x,o}. P[u B x] ≡ LM Moi
□

A.3.2 Proof of Completeness. We shall now prove completeness. First, let us define βη-long normal

forms. We introduce two judgements Γ ⊢nf t : A (t is a normal form of type A) and Γ ⊢ne t : A (t is
a neutral term of type A). The rules are as follows:

Γ, x : A ⊢nf t : B

Γ ⊢nf λx . t : A ⊸ B Γ ⊢nf tt, ff : B

Γ ⊢ne n : B Γ ⊢nf t,u : B

Γ ⊢nf if n t u : B Γ, x : A ⊢ne x : A

Γ ⊢ne n : A ⊸ B Γ ⊢nf t : A

Γ ⊢ne n t : B

Lemma A.5. Let Γ ⊢ t,u : A be two normal forms. Then t =βη u iff t and u are α-equivalent.

Proof. Immediate since normal forms cannot be β-reduced or η-expanded. □

Lemma A.6. For every term Γ ⊢ t : A, there exists a normal form Γ ⊢ nf (t) : A such that t =βη nf (t).

Proof. By β-normalisation and η-expansion. □
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Lemma A.7. Consider two normal forms Γ ⊢nf M,N : A. Then JMK � JN K implies thatM and N
are α-equivalent.

Proof. Standard result on game semantics, done by induction onM and look at the first positive

move of JMK � JN K. □

Theorem 2.11 (Soundness and Completeness). We haveM =βη N if and only if LM Ma ≡ LN Ma

if and only if JMK � JN K.

Proof. We have already proved the direct implication. The converse implication is a consequence

of Lemmata A.7 and A.6. □

B PROOFS OF § 3
B.1 Proofs of § 3.3

Lemma 3.6. The functor ↑−(−) is the right adjoint to the inclusion DStr− → DStr. In particular, ↑−

transports comonads on DStr− to comonads on DStr.

Proof. The adjunction is fairly simple to describe:

• From σ : ↑+A B inDStr+, by removing the initial negative event on ↑+A, we get a strategy
A B in DStr (not necessarily negative).

• From σ : A B in DStr, we can build a strategy box− · σ : ↑+A B which is well-defined

because B is positive.

It is clear that these operations are inverse of each other; naturality is a simple calculation. □

B.2 Proofs of correctness of the call-by-name translation
B.2.1 Definition of →PCF. First, we define exhaustively→PCF:

(λx .M)N →PCF M[x B N ] if ttM N →PCF M if ff M N →PCF N iszero(0) →PCF tt

n > 0

iszero(n) →PCF ff succ(n) →PCF n + 1 Y M →PCF M (Y M)

M →PCF M
′

E[M] →PCF E[M
′]

where E[] is an evaluation context, defined by the following grammar:

E[] ::= [] | E N | λx .E | iszero(E) | succ(E) | if E M N .

First, it is straightforward to extend the substitution lemma in this setting:

Lemma B.1 (Substitution lemma). Let Γ, x : σ ⊢ M : τ and Γ ⊢ N : σ . We have

LM[x B N ] Moi ≡ LM Moi x⊙
L Γ M
y y!(r ). LN Mr .

Proof. By induction onM . □

Lemma B.2 (Soundness). For Γ ⊢ M,N : τ , ifM →PCF N , then LM Mo ≡ LN Mo .

Proof. The proof is essentially the same as for the affine case, by simple application of the

equational rules.

Let us detail a few rules. First, it is enough to show that LM Moi ≡ LN Moi for all i ∈ ct(τ ).
• β-reduction:

L (λx .M)N Moi ≡
(
o{x,o}. LM Moi

)
{oBx,o} x⊙

L Γ M
y y!(r ). LN Mr

≡ LM[x B N ] Moi
by direct application of Lemma B.1.
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• if:

L if ttM N Moi ≡ u ⊕ tt u⊙
L Γ M
v v &

{
tt : LM Moi ; ...

}
≡ LM Moi

• succ:

L succ(n) Moq ≡ x ⊕ n x⊙y y & {o ⊕ n + 1} ≡ o ⊕ n + 1

□

B.2.2 Finitary PCF and adequacy. Let us define finitary PCF here as the subset of PCF without

fixpoint, with an added term ⊥ : A denoting formal divergence. Closed terms of finitary PCF of type

N converge either towards a natural number or towards ⊥ in a finite number of step. Given a term

of PCF M , we write its n-th approximation Mn defined as M where Y is substituted by λ f . f n ⊥
where f n is the n-fold iteration of f .

Lemma B.3. LM Mo is the limit of the increasing chain LMn Mo .

Proof. Straightforward since Y is the limit of the λ f . f n ⊥. □

Lemma B.4. For ⊢ M : N, if JMK = JnK, then JMk K = JnK for some k ∈ N.

Proof. Trivial, because we know that a positive event labelled n belongs to JMK, and since JMK
is the limit of the JMnK by the previous lemma, and continuity of J·K, the result follows. □

Lemma B.5. IfM diverges for →PCF, then LM Mo ≡ 0.

Proof. SinceM diverge, we haveMn →∗
PCF ⊥ for all n ∈ N. Since LMn Mo ≡ 0, we can conclude.

□

Proposition 3.11 (Soundness and adeqacy). Given two terms Γ ⊢ M,N : τ , if M →PCF N
then LM Mo ≡ LN Mo . Moreover if LM Mo ≡ Ln Mo for ⊢ M : N, thenM →PCF n.

Proof. We already have proved soundness. For adequacy, it is a consequence of the previous

lemma:M cannot diverge, so it must converge to a natural number, and clearly the model is injective

on natural numbers: Ln M = Lm M implies that n =m. □

B.3 Proof of correctness of the call-by-value translation
First, let us define the relation →v as the subset of →PCF which contains only the instances of the

β-reduction (λx .M) → M[x B N ] when N is a value, ie. a λ-abstraction, a natural number or a

boolean.

Lemma 3.12. If a term Γ ⊢ M : τ is a value, then its translation is of the form: LM Mo
®k
≡ o ⊕ ℓ.P ®k for

some ℓ ∈ vt(τ ).

Proof. Easy case distinction on N . □

Lemma 3.13. The effect of substitution of values on the translation is the following:

L Γ ⊢ M[x B N ] Mo
®k
= P ®k y⊙

L Γ M/®k
x L Γ ⊢ M Mo

®k ,x :ℓ
.

where N is assumed to be a value with LN My
®k
= y ⊕ ℓ.P ®k .

Proof. By induction onM . □

Proposition 3.14 (Soundness and adeqacy). Given two terms Γ ⊢ M,N : τ , ifM →v N , then
LM Mc ,o ≡ LN Mc ,o . Moreover, if JMK ≡ JnK for ⊢ M : N, thenM →v n.
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Proof. Soundness is an easy verification, using Lemma 3.13.

For adequacy, assume that JMK ≡ JnK. Because there is no recursion, we can normalise M to

a term containg ⊥. Actually, it is easy to see that a normal form of type N is either a natural

number, or a term of the form E[⊥]. Now, by induction, we can derive that LE[⊥] Mo
®k
≡ 0, which is

a contradiction since JE[⊥]K = JMK must not be empty. □

C PROOFS OF § 4
C.1 Proofs of § 4.2

Lemma 4.6. For P,Q ▷ ∆, P −−→ Q implies JPK −−→ JQK.

Proof. Note that if σ −−→ σ ′
then τ ⊙ σ −−→ τ ⊙ σ ′

. This implies that the first, third and last

rules are sound. The second rule is trivial.

The third rules is a consequence that we have the reduction:

(!A ∥ A
cA
−−→ !A

dA
−−→ A) −−→ (!A ∥ A A)

where the right most strategy is simply the second projection.

□

C.2 Proofs of § 4.3
To prove Theorem 4.7, we show the following:

Theorem C.1. For every closed program ⊢ M : N, we haveM ≈ JMK, by which we mean:

(1) IfM = new ®r := ®k inn, then JMK = JnK
(2) IfM → N then JMK −−→ JN K
(3) If JMK = JnK thenM →∗ new ®r := ®k inn
(4) If JMK −−→ σ thenM →∗ N and JN K ≈ σ .

Theorem 4.7 follows then by composing the bisimulations together.

C.2.1 Soundness. The first point is straightforward, so we focus on the second one.

Given a context Γ containing only locations , and a memory state ρ : dom(Γ) → N, we define

memρ
Γ

def

= ∥r ∈Γ memρ(r )
r̄ .

Given a program Γ ⊢ M : N and ρ : dom(Γ) → N we write LM, ρ Moi for (ν Γ ®Γ)
(
LM Moi ∥ memρ

Γ

)
.

Lemma C.2. Consider that LM, ρ Moi −−→ LM ′, ρ ′ Moi . Then LE[M], ρ Moi −−→ LE[M ′], ρ ′ Moi .

Proof. By induction on E.

• If E[M] = M ;N : then we have

LM ;N , ρ Moi ≡ (ν Γ Γ̄)
(
LM Mxq x⊙

Γ
y y().LN Moi ∥ memρ

Γ

)
≡ (ν x y; Γ Γ̄)

(
LM Mxq ∥ memρ

Γ ∥Γ y().LN Moi
)

−−→ (ν x y; Γ Γ̄)
(
LM ′ Mxq ∥ memρ′

Γ ∥Γ y().LN Moi
)

≡ LM ′
;N , ρ ′ Moi

• Other cases are similar.

□
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Lemma C.3. Consider programs Γ ⊢ M,N : N. Then, for any ρ : dom(Γ) → N if ⟨M, ρ⟩ →∗ ⟨N , ρ⟩,
then LM, ρ Moi −−→ LN , ρ Moi .

Proof. First, without loss of generality by soundness of the PCF translation, we can assume that

M and N are in normal form for →PCF.

We detail a few rules:

• The rule for reading from a location:M = !r , N = ρ(r ) = k . Then we have:

(ν r r̄ )
(
L !r Moi ∥ memk

r̄

)
≡ (ν r r̄ )

(
(r?[x]. x ⊕ rd. [x↔o]) ∥ memk

r̄

)
−−→ (ν x y; r r̄ )

(
(x ⊕ rd. [r↔o]) ∥ y &

{
rd : y ⊕ k .memk

r̄ ; ...
} )

≡ (ν r r̄ )
(
o ⊕ k ∥ memk

r̄

)
The rule for assignment has a similar proof.

• The rule ⟨E[M], ρ⟩ → ⟨E[M ′], ρ ′⟩ with ⟨M, ρ⟩ → ⟨M ′, ρ ′⟩ is a consequence of Lemma C.2.

□

C.2.2 Adequacy. To prove adequacy,we first need to define some kind of Bohm trees of terms

of IPA by reducing all possible redexes→PCF. Given a termM we define its Bohm tree BT(M) as

follows:

BT(M)
def

=



⊥ ifM does not have a head normal form for→PCF

!r IfM →∗
PCF !r

r := BT(N ) IfM →∗
PCF r := N

succ(N ) IfM →∗
PCF succ(N )

iszero(N ) IfM →∗
PCF iszero(N )

r := BT(N ) IfM →∗
PCF r := N

BT(N1);BT(N2) IfM →∗
PCF N1;N2

BT(N1) ∥ BT(N2) IfM →∗
PCF N1 ∥ N2

new r := k in BT(N ) IfM →∗
PCF new r := k in BT(N )

if BT(M) BT(N1) BT(N2) IfM →∗
PCF if BT(M) BT(N1) BT(N2)

Note that the head normal form cannot be a variable, a λ-abstraction or an application becauseM
is a program. Bohm trees are in general infinite.

Lemma C.4. For any programM , we have LM Mo ≡ LBT(M) Mo .

A normal form a program M such that BT(M) = M . The adequacy result follows from this

result. Let us write J⟨M, ρ⟩K for JL ⟨M, ρ⟩ MoqK.
To prove the adequacy result, we will rely on this result:

Lemma C.5. Consider a minimal event of JP a⊙
∆
b b & {Qi }i ∈I K where the type of A is ⊕i ∈ITi . It is

either:
• A minimal event of JPK not on a
• A minimal event of JQk K, and JPK has an initial event output k to a.

Proof. This is a simple reasoning on the composition. JPK and JQK synchronise on J⊕i ∈ITi
which means that a most JPK sends a move to JQK. As a result, a minimal move of the process is

either:
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• A minimal move of JPK before any move on a
• A move of JPK straight after a move on a – impossible by courtesy. (a is positive)

• A move of Jb & {i .Qi }i ∈I K after a reception on b, ie. a minimal move of JQk K. Moreover, if

that the case, then the causal history of this move in the interaction contains an output from

P on a as desired. By courtesy this move must be minimal.

□

Lemma C.6. Let Γ ⊢ M : A be a program of base type A and ρ : dom(Γ) → N a memory state.
Consider e a minimal event of J⟨M, ρ⟩K.

• If e is a neutral event, then there exists a reduction ⟨M, ρ⟩ →∗ ⟨M ′ρ̧ ′⟩ with J⟨M ′, ρ ′⟩K ≈

J⟨M, ρ⟩K/e
• If e is a value v of A, then ⟨M, ρ⟩ →∗ ⟨new ®r := ®k inv, ρ ′⟩.

Proof. Without loss of generality, we can assume thatM is a normal form. Moreover, since we

know that e is a minimal event of J⟨M, ρ⟩K by continuity, there must exist a finite approximation

Mn (ie. M where branches deeper than n are cut) of M such that J⟨Mn, ρ⟩K contains e . We then

proceed by induction onMn .

We detail a few cases, but most are similar using Lemma C.5:

• IfM = !N , then there are two cases:

– Either e = n: then by induction we know that ⟨N , ρ⟩ must normalise to ⟨r , ρ ′⟩. Then
⟨M, ρ⟩ →∗ ⟨ρ ′(r ), ρ ′⟩.

– Or e is an internal event. Then e corresponds to an internal event of J⟨N , ρ⟩K so by induction,
⟨N , ρ⟩ reduces to ⟨N ′, ρ ′⟩, and the desired state is ⟨!N ′, ρ ′⟩.

• M = new r := k inN . Then we directly apply the induction hypothesis to ⟨N , ρ[r := k]⟩.
• N ∥ N ′

. We us Lemma C.5. There are two main cases:

– If the minimal event is in JN K ∥ JN ′K, then we apply the induction hypothesis

– Otherwise, it must be that JN K and JN ′K both have an initial event outputting done, and
by induction we know that N and N ′

reduce to skip and then we can conclude.

□

From this result, Theorem C.1 follows.
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