
Engineering the Meta-Theory of Session Types
An experience report

DAVID CASTRO, Imperial College London

FRANCISCO FERREIRA∗, Imperial College London

NOBUKO YOSHIDA, Imperial College London

Session types provide a principled programming discipline for structured interactions. They are used to

statically check the safety of protocol composition and the absence of communication errors. These properties

depend upon the meta-theory of the typing discipline, usually a type safety proof. These proofs, while

conceptually simple, are very delicate and error prone due to the presence of linearity and name passing and

have been falsified in several works in the literature. In this work, we explore mechanised proofs in theorem

assistants as tools to develop trustworthy proofs, and at the same time to guide extensions that do not violate

type safety. To that end, we study the meta-theory of two of the most used binary session types systems,

the Honda-Vasconcelos-Kubo system and the more flexible revisited system by Yoshida and Vasconcelos.

Additionally, we show the subtlety of representing the first system in α-equivalent representations. We develop

these proofs in the Coq proof assistant, using a locally nameless representation for binders, and small scale

reflection and overloaded lemmas to simplify the handling of linear typing environments.

Additional Key Words and Phrases: Message Passing Concurrency, Session Types, Proof Assistants, Subject

Reduction.

1 INTRODUCTION
Given the prevalence of distributed computing and multi-core processors, concurrency is a key

aspect of modern computing. There are huge practical and theoretical consequences of the transition

from sequential models of computation to concurrent systems. Message passing calculi (like

the π -calculus) have been used to model these systems since their introduction by Milner et al.

[1992]. More recently, the π -calculus is getting used “directly” for guiding correct language design,

implementation and verification. For example, Lange et al. [2017] used a variant of the π -calculus
for Go program analysis; Scalas et al. [2017] used an encoding into the linear π -calculus to correctly
implement multiparty session protocols; Scalas et al. [2019] implemented an extension of Dotty

1

modelled by a dependently typed Higher Order π -calculus; and Liao et al. [2019] proposed an

affine π -calculus to build an executable implementation of the universal composable (UC) security

protocols
2
. Remarkably, all the work above uses types in order to control concurrent and distributed

behaviour. Certifying basic typed π -calculi is more and more crucial, as it has impact on the

correctness of such implementations.

In this work, we concentrate on session types [Honda 1993], a typing discipline for structured
interactions in distributed systems. They are applied to a wide range of problems, and their

properties, such as deadlock-freedom, are well studied. Foundational works [Honda et al. 1998;

Takeuchi et al. 1994] describe a basic approach to typing communicating systems together with

the type-safety proof. Many other papers are built on this foundation and develop their own

extensions. These calculi are very expressive, and rather complex, with features like: shared and

linear communication channels, name passing, and fresh name generation. Given this complexity,

∗
corresponding author

1
https://dotty.epfl.ch/

2
https://en.wikipedia.org/wiki/Universal_composability

Authors’ addresses: David Castro, Imperial College London, d.castro-perez@imperial.ac.uk; Francisco Ferreira, Imperial

College London, f.ferreira-ruiz@imperial.ac.uk; Nobuko Yoshida, Imperial College London, n.yoshida@imperial.ac.uk.

David Castro, Francisco Ferreira, and Nobuko Yoshida

it is not surprising that some innocent looking extensions violated the type safety properties of the

calculus in several literature as pointed out by [Yoshida and Vasconcelos 2007]. As a consequence,

the interest for mechanisation and formal proofs has risen significantly.

Type systems offer certain security properties by construction. These guarantees are backed

by rigorous meta-theoretical proofs. These proofs have three particular characteristics: first they

are rather cumbersome to write; second, they are boring to read and validate; and finally they are

continuously extended to more expressive type systems. In this work, we study the mechanisation

of proofs using a proof assistant with the aim of alleviating all three pain points: first to have proofs

that are as easy to specify as possible. Second by the nature of proof assistants, the proofs are easy

to trust without having to read them, instead they are mechanically validated. Finally, we aim to

provide a description of a methodology and tools that make validating extensions to theories more

straightforward.

Proof assistants facilitate writing and validating formal proofs. They define a logic formalism

that the proof will be expressed in, offer tools to help building the proof, and check the correctness

of the proof. They vary in the underlying logic system they implement and the automation mech-

anisms they offer. These systems have reached a certain level of maturity and are widely used in

programming languages research. As the beginning of a project on the mechanisation of π -calculi,
the choice of proof assistant reflects this objectives and our sensibilities. Furthermore, an important

aspect is that we need an industrial strength, general purpose, and well established proof assistant

that is appropriate for meta-theoretical proofs (but preferably not just that). While other options

exist, among the well established ones that fill our objectives are: Coq [The Coq Development

Team 2016], Isabelle/HOL [Nipkow and Paulson 1992] and Agda [Norell 2007]. We present this

development in Coq, because of its strong support in the community, suitability for proofs in the

locally nameless style, support for code extraction (that keeps our options open down the road for

executing our code) and finally, small scale reflection of proofs using the Ssreflect [Gonthier and

Mahboubi 2010] library. We use boolean reflection to mirror some of the inductive predicates, and

we try to leverage in our advantage the proof style favoured by Ssreflect.
Modelling the properties of session types in existing proof assistants is challenging (even when

compared to more habitual theories based on the λ-calculus) due to the presence of linearity

and name passing calculi with complex binding structures. In this paper we want to propose an

extension to common techniques for formalising the meta-theory of session types, that are both

appropriate for session types and expressive enough to implement other systems too. To that effect,

we use the Coq proof assistant [The Coq Development Team 2016] to study the representation and

meta-theory of the two systems described in [Yoshida and Vasconcelos 2007]. Crucially, we discuss

issues around the representation of common calculi using well known techniques.

We use locally nameless [Aydemir et al. 2008; Charguéraud 2012] binders to represent our syntax.

In our opinion, locally nameless is at the same time a high-level representation (avoiding reasoning

about de Bruijn indices and shifts as much as possible), and well suited to our setting with easy

support for resource sensitivity (i.e: linearity) and name creation. Additionally, locally nameless

is implementable in Coq (and possibly other systems) without requiring complicated extensions.

And finally, it is amenable to the Ssreflect proof style. For example, the predicate to establish

well-formed terms can be easily implemented as a boolean function that reflects the inductive

definition. We use multiple disjoint sets of names to simplify the reasoning about different binding

scopes (e.g: to avoid mixing expression variables and channel variables). This approach is suitable

for resource sensitive calculi (support for this is implemented in the file: theories/Env.v of our
Coq development).

This paper aims, on one hand, to be a case study on mechanising proofs in Coq and, on the other,

to provide a library and tools to mechanise similar proofs, namely proofs about concurrent systems

Meta-Theory of Session Types

that include the notion of names together with sub-structural contexts. As a case study, we choose

to mechanise the Send-Receive system introduced in [Honda et al. 1998] as presented in [Yoshida

and Vasconcelos 2007] (the original and revised presentations). For this purpose, we develop a

library using the locally nameless [Charguéraud 2012] representation for binders (described in

Section 3). The library supports multiple scopes of names (that we take advantage of to distinguish

between names and variables) and a robust definition of contexts and environments that support

easy splitting of contexts together with the necessary lemmas to easily implement the particular

context splitting notion of a system.

Yoshida and Vasconcelos [2007] present two systems, the first one that we will refer to as the
original and the second that we will refer to as the revised systems. Additionally, this work discusses

a seemingly straightforward extension that breaks type safety. Notably, for the original system,

we discuss how the way it is defined makes its representation impossible when using intrinsically

α-convertible terms (e.g: locally nameless, de Bruijn indices, and others). In Section 4.1, we discuss

this problem, and its relation to the unsound extended system. We also discuss how to fix the

system when we implement and prove type preservation for the revisited system in Section 5. In

hindsight this may seems obvious, but it is a unexpected consequence, and shows that mechanising

proofs brings further understanding even to well-established and thoroughly studied systems.

The contributions of this paper are fourfold:

(1) The first fully mechanised proof of type preservation for a typing discipline with session types

and linear and shared channels based on the calculus presented in [Yoshida and Vasconcelos

2007]. Available at: https://github.com/emtst/emtst-proof.

(2) The presentation of a technique suitable to mechanise resource sensitive systems. Concretely,

we combine locally nameless [Aydemir et al. 2008; Charguéraud 2012] for syntax represent-

ation, Ssreflect [Gonthier and Mahboubi 2010] as proof style, and support for resource

sensitivity inspired by [Nanevski et al. 2010] and [Gonthier et al. 2013].

(3) A reusable framework for representing typing environments with the supporting lemmas to

implement resource sensitive context handling rules (i.e: variants of linear and affine logic

that require context splits). For example, this framework is suitable for implementing richer

systems like multiparty session types systems [Coppo et al. 2015; Honda et al. 2008, 2016].

(4) We discuss the problem of representing calculi like the original type system using syntax

encodings that provide built-in α-equality. Furthermore, we discuss how the revised system’s

presentation addresses this issue.

The rest of the paper is structured in the following way: in the next section we introduce the

original binary session types system as presented in [Honda et al. 1998]. Then in Section 3, we

provide an introduction to the locally nameless (LN) representation roughly following [Aydemir

et al. 2008]. Subsequently, we define the system from Section 2 using LN and we implement it

in Coq in Section 4. There we discuss the difficulty of implementing the original system in LN

(and other α-equivalent representations). And in Section 5 we define and implement the revisited

binary session types system from [Yoshida and Vasconcelos 2007] and mechanise its proof of

subject reduction. We describe the artefact in Section 6, and then finalise with the related work and

conclusion sections.

2 BINARY SESSION TYPES: THE SEND-RECEIVE SYSTEM
Honda, Vasconcelos and Kubo’s binary session types system [Honda et al. 1998] is a milestone

in the development of type systems for concurrent process calculi. This system types structured

interaction between processes and supports channel mobility, that is higher-order sessions.

https://github.com/emtst/emtst-proof

David Castro, Francisco Ferreira, and Nobuko Yoshida

Process

P ,Q,R ::=

| request a (k).P session request

| accept a (k).P session accept

| k ![e]; P data send

| k ?(x).P data receive

| k ◁m; P selection

| k ▷ {l : P[]r : Q } branching

| throw k [k ′]; P channel send

| catch k (k ′).P channel receive

Expressions

e ::=

| true | false boolean

| . . .

| if e then P else Q conditional

| P | Q parallel

| inact inaction

| νn (a).P name hiding

| νc (k).P channel hiding

| !P replication

m ::= l | r labels

Fig. 1. Syntax using names

The syntax appears in Figure 1, processes are ranged by P , Q , names are ranged by a, b, c ,. . . ,
channels are ranged by k and k ′. Notice that all the places where there are variable binderss are
denoted with parenthesis followed by a dot (e.g: k ?(x).P).

Sessions are produced by pairing a request a (k).P with a accept a (k).P , data is communicated

(values from expressions) by pairing k ![e]; P and k ?(x).P . We have a minimal set of expressions in

this presentation, as we concentrate on the presentation of processes. Similarly, for label selection

and branching, we simple fix two labels (i.e. l and r) for convenience. Channels are communicated

by pairing appropriately a throw k [k ′]; P with a catch k (k ′).P . We have conventional if processes
to allow the control flow to depend on expressions. Parallel composition and inactive processes are

respectively: if e then P else Q , P | Q and inact. For clarity reasons, we split name restriction in

two, when restricting over a name, and over a channel, they are respectively: νn (a).P and νc (k).P .
Finally, we replace the original treatment of recursion with a simpler process replication model.

This way we simplify the presentation of the calculus while remaining expressive. We use process

replication (i.e: !P) to represent potentially infinitely many copies of P . With this, we avoid having

an extra kind of variables (recursion variables are not needed). Replication works by equating the

replicated process with a process in parallel with the replication of that process, as shown in the

structural congruence rules in Figure 4.

2.1 Typing Discipline
The typing discipline we present follows [Honda et al. 1998] and [Yoshida and Vasconcelos 2007].

Figure 2 shows the syntax of types. First, we present Sorts that are the classifiers for shared channel
endpoints (that type session requests and accepts), and expressions. And second, Types that classify
the interactions of channels. There are types for sending and receiving expressions (![S];α and

?[S];α), for sending and receiving channels (![α]; β and ?[α]; β), for finished processes (end and
⊥), and for typing choice, both offered and taken (&{l : α , r : β } and ⊕{l : α , r : β }). Types have a
natural notion of duality: sending and receiving, offering and taking a choice. Duality of types is

defined in the usual way and the dual of type α is represented as α . Note that ⊥ does not have a

dual.

Expressions are typed by sorts, and processes are typed by typings that describe the type of all
the channels involved in them. The type system is defined by two main judgements Γ ⊢ e : S and

Meta-Theory of Session Types

Sort S ::= ⟨α ,α⟩ | bool | . . .

Type α , β ::= ![S];α | ?[S];α | ![α]; β | ?[α]; β | end | ⊥ | &{l : α , r : β } | ⊕{l : α , r : β }

Sorting Γ ::= · | Γ,x : S Typing ∆ ::= · | ∆,k : α

Fig. 2. Syntax of types

Γ ⊢ P ▷ ∆ that respectively type an expression and a process in a sorting context. Figure 3 defines

these judgements as in [Honda et al. 1998]. Rule [Repl] requires that a process have its interface

(i.e. typing) empty (or completed) to be able to be duplicated. The fact that it may be typed by a

completed typing is a technicality that enables the system to support weakening by ended channels.

Sortings and typings support look-ups (Γ(x) = S) and a function to compute the domain (dom(∆))
in the conventional way. Because typings are resource sensitive, the rule for [Conc] defines the

following two operations on typings, to establish compatibility (∆ ≍ ∆′) and composition (∆ ◦ ∆′)
among two of them. The definition is as follows:

∆ ≍ ∆′ = if ∆(k) = ∆′(k) for all k ∈ dom(∆
⋂

∆′)

(∆ ◦ ∆′) (k) =

⊥ if k ∈ dom(∆
⋂

∆′)

∆(k) if k ∈ dom(∆) and k < dom(∆′)

∆′(k) if k ∈ dom(∆′) and k < dom(∆)

2.2 Structural Congruence and Reduction
Reduction and structural congruence rules are presented in Figure 4. They closely follow those

from [Honda et al. 1998]. We call attention to the [Pass-Nm] rule stating that that in order to have

a reduction sending a channel both sides communicate exactly the same channel (not only they

communicate over a channel both processes know, but they also communicate a channel they both

know of). Intuitively, the restriction means that the sent channel should be free enough in the

receiving process, that is possible to use congruence (concretely α-equality) to rename the channels

to be equal. However, we should see this rule as a red flag when we consider it from the point of

view of syntax up-to α-conversion. The problem is eloquently articulated in [Pollack 1994] with

the slogan: “the names of bound variables are not meant to be taken seriously”. The rule [Pass-Nm]

requires the sent channel name, and the received channel name (a bound variable) to be equal, this

rule takes the bound name of the received channel very seriously indeed. This is a key aspect of the

definition of this first system. It may seem natural to try to relax the [Pass-Nm] rule into this rule:

[WrongPass] throw k [k ′]; P | catch k (k ′′).Q −→ P | Q[k ′/k ′′]

However, as shown in Section 3 of [Yoshida and Vasconcelos 2007] this relaxation breaks subject

reduction. Therefore, they propose a system that has a more liberal [Pass-Nm] rule. We call it the

revisited system, and discuss it in Section 5 together with its meta-theory.

3 A LOCALLY NAMELESS PRIMER
Locally nameless (LN) is a style of representation for syntax with binders that provides an α-
equivalent representation of terms while still retaining names for free variables. The key concept is

to use de Bruijn indices [de Bruijn 1972] for bound variables and names for free variables, these

ideas were initially proposed by [Gordon 1994; McBride and McKinna 2004; McKinna and Pollack

1999], and more recently further developed in [Aydemir et al. 2008; Charguéraud 2012].

An important consideration is that locally nameless is easy to use and implement in existing

proof assistants. Moreover, there are implementations of helper libraries that provide support for

David Castro, Francisco Ferreira, and Nobuko Yoshida

[BoolT]

Γ ⊢ true : bool

[BoolF]

Γ ⊢ false : bool

[NameI]

Γ(x) = S

Γ ⊢ x : S

[Bot]

Γ ⊢ P ▷ ∆,k : end

Γ ⊢ P ▷ ∆,k : ⊥

[Inact]

∆ completed

Γ ⊢ inact ▷ ∆

[Acc]

Γ(a) = ⟨α ,α⟩ Γ ⊢ P ▷ ∆,k : α

Γ ⊢ accept a (k).P ▷ ∆

[Req]

Γ(a) = ⟨α ,α⟩ Γ ⊢ P ▷ ∆,k : α

Γ ⊢ request a (k).P ▷ ∆

[Send]

Γ ⊢ e : S Γ ⊢ P ▷ ∆,k : α

Γ ⊢ k ![e]; P ▷ ∆,k : ![S];α

[Rcv]

Γ,x : S ⊢ P ▷ ∆,k : α

Γ ⊢ k ?(x).P ▷ ∆,k : ?[S];α

[Br]

Γ ⊢ P ▷ ∆,k : α Γ ⊢ Q ▷ ∆,k : β

Γ ⊢ k ▷ {l : P[]r : Q } ▷ ∆,k : &{l : α , r : β }

[SelL]

Γ ⊢ P ▷ ∆,k : α

Γ ⊢ k ◁ l; P ▷ ∆,k : ⊕{l : α , r : β }

[SelR]

Γ ⊢ P ▷ ∆,k : β

Γ ⊢ k ◁ r; P ▷ ∆,k : ⊕{l : α , r : β }

[Thr]

Γ ⊢ P ▷ ∆,k : β

Γ ⊢ throw k [k ′]; P ▷ ∆,k : ![α]; β,k ′ : α

[Cat]

Γ ⊢ P ▷ ∆,k : β ,k ′ : α

Γ ⊢ catch k (k ′).P ▷ ∆,k : ?[α]; β

[Conc]

Γ ⊢ P ▷ ∆ Γ ⊢ Q ▷ ∆′ ∆ ≍ ∆′

Γ ⊢ P | Q ▷ ∆ ◦ ∆′

[If]

Γ ⊢ e : bool Γ ⊢ P ▷ ∆ Γ ⊢ Q ▷ ∆

Γ ⊢ if e then P else Q ▷ ∆

[NRes]

Γ,a : S ⊢ P ▷ ∆

Γ ⊢ νn (a).P ▷ ∆

[CRes]

Γ ⊢ P ▷ ∆,k : ⊥

Γ ⊢ νc (k).P ▷ ∆

[Repl]

Γ ⊢ P ▷ · ∆ completed

Γ ⊢ !P ▷ ∆

Fig. 3. Original system in [Honda et al. 1998] - the typing judgement

LN, such as the Metalib
3
library originally distributed with [Aydemir et al. 2008]. However, for

this development we roll out our own implementation, mostly due to the fact that we use several

disjoint nominal sets to draw names from, with the intention of separating the different kinds of

binders present in the π -calculus and session types calculi.

3.1 Example: the linear λ-calculus
As an illustration, Figure 5 uses locally nameless to represent the syntax of the linear λ-calculus in
order to start with a simple and familiar example. As expected for variables (ranged over by x), we
distinguish between bound variables (ranged over by i , and j) that are encoded as de Bruijn indices,

and free variables (ranged over by n) encoded as names from a set that contains countably many

distinct names. Abstractions are as usual, noticing that they introduce an anonymous variable (as

3
https://github.com/plclub/metalib

https://github.com/plclub/metalib

Meta-Theory of Session Types

P ≡ Q if P ≡α Q P | inact ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

ν {n,c } (u).P | Q ≡ ν {n,c } (u).(P | Q) if u < fn(Q) ν {n,c } (u).inact ≡ inact !P ≡ P | !P

[Link]

accept a (k).P | request a (k).Q −→ νc (k).(P | Q)

[Com]

e ↓ c

k ![e]; P | k ?(x).Q −→ P | Q[c/x]

[Left]

k ◁ l; P | k ▷ {l : Q[]r : R} −→ P | Q
[Right]

k ◁ r; P | k ▷ {l : Q[]r : R} −→ P | R

[Pass-Nm]

throw k [k ′]; P | catch k (k ′).Q −→ P | Q

[If1]

e ↓ true

if e then P else Q −→ P

[If2]

e ↓ false

if e then P else Q −→ Q

[Scop]

P −→ P ′

ν {n,c } (u).P −→ ν {n,c } (u).P
′

[Par]

P −→ P ′

P | Q −→ P ′ | Q

[Str]

P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q

P −→ Q

Fig. 4. Congruence and reduction using names

Terms t , s ::= x | λ.t | t s | c Variables x ::= i | n where i ∈ N and n ∈ A
Types T , S ::= S ⊸ T | C Contexts Γ ::= · | Γ,n :T

Open for variables:

{j→s} i = s with j = i
{j→s} x = x otherwise

Open for terms:

{j→s} λ.t = λ.{(j + 1)→s} t
{j→s ′} t s = ({j→s ′} t) ({j→s ′} s)

Top variable open: ts ≡ {0→s} t

Locally closed terms:

lcn

∀n < L, lc tn

lc (λ.t)

lc t lc s

lc (t s) lc c

Fig. 5. Example: the syntax of the linear λ-calculus

expected for the de Bruijn index representation that we use here for bound variables). Then we

have applications, and a constant to inhabit a base type. For the types we simply have the linear

function space, and a base type.

Opening variables. We define the operation {k→s} t to mediate between bound and free vari-

ables. This is intended to keep the invariant that free variables are represented by names when

going under a binder. The operation {k→s} t replaces all the occurrences of bound variable j with
the term s in term t . We define the more common operation to open the most recent variable ts as
a shortcut for {0→s} t . There is a natural dual operation to close free names when they become

David Castro, Francisco Ferreira, and Nobuko Yoshida

·,n :T ⊢ n : T

∀n < L, (Γ,n : S) ⊢ tn : T

Γ ⊢ λ.t : S ⊸ T

Γ1 ⊢ t : S ⊸ T Γ2 ⊢ s : S Γ1 ∩ Γ2 = ∅
Γ1, Γ2 ⊢ t s : T · ⊢ c : C

t −→ t ′ lc s

t s −→ t ′ s

body t lc s

(λ.t) s −→ ts
body t

value λ.t value c

Fig. 6. Example: the typing and operational semantics of the linear λ calculus

bound. This operation is mostly used when constructing terms. We omit its definition and refer the

interested reader to [Charguéraud 2012].

The locally closed predicate. In Figure 5, we also introduce the locally closed (i.e: lc) predicate
over terms that validates the invariant that all bound variables are represented by indices and all

the free variables are represented by names (i.e: there are no “free” de Bruijn indices). Of particular

interest is the rule for abstractions, where the body may in general contain a bound variable. In

this case, we need that the body of the abstraction is locally closed after opening the term with a

name n that is sufficiently fresh. To express this notion of sufficient freshness we quantify over all

the names that are not in some finite set L, this style of quantification is commonly called co-finite

quantification and its use is proposed and justified in [Aydemir et al. 2008]. We may shorten this

by defining:

body t ≡ ∀n < L, lc tn

We will discuss co-finite quantification later in this section. Only locally closed terms adequately

represent terms in the linear λ-calculus. Adequacy, or the fact that the system we implement

corresponds to the system we have defined, is an important aspect of mechanisation efforts. Section

3.4 of [Aydemir et al. 2008] discusses how this relates to locally nameless representations, one

approach is to show that your formalisation supports that properties you expect from it. They

also suggest the approach, taken in [Harper and Licata 2007], of proving the bijection between the

on-paper definition and the mechanised one. Give that, this approach requires a lengthy on-paper

proof, it is easy to see why it is not chosen often. However, this is an important aspect of this work

and we will revisit this topic in Section 4.1 when we consider the original binary session types

system using the locally nameless representation.

The typing judgement. Figure 6 shows the typing rules and the operational semantics of the

example calculus defined in Figure 5. Largely these rules are exactly what one would expect.

However, we want to call the reader’s attention to the following four aspects.

(1) Fresh Names. The typing rule for abstraction uses co-finite quantification to choose a fresh

name. More common approaches are either to universally quantify over all possible free names,

or state that exists one free name such that the body is well typed in the extended context. These

two approaches have dual strengths and weaknesses. Having a single name existentially quantified

makes it easy for introduction forms, but provides a weak induction principle. Conversely, having

the premise hold for all the free variables provides a strong and useful induction principle but

it is hard to use for introductions. [Aydemir et al. 2008] and [Charguéraud 2012] argue for co-

finite quantification over a finite set of names. This is easy to use in introductions, and provides a

strong enough induction principle. Our experience here validates their claim. We used co-finite

quantification on all the inductive definitions, and it proved to be easy to deal with and sufficiently

expressive for all the challenges we faced.

Meta-Theory of Session Types

(2) Application. The rule for application is explicit on the fact that the split contexts need to be

disjoint (a fact that can always be achieved using alpha conversion), that we will model by providing

contexts that contain each name only once, and become undefined otherwise. Thus, we track these

constraints by requiring the joint contexts to be defined. These definitions and companion lemmas

(in the file theories/Env.v) form the basis of our reusable support for resource sensitive definitions

(e.g. it is possible to support linear and affine type systems, and also the nuanced typing contexts

of binary session types that unlike linear logic admit weakening under the condition that all added

channels are of type end).
(3) β-reduction. We use a minimal operational semantics in a call by name style, and we keep in

mind that we only want to reduce well-formed terms (i.e: locally closed terms), so we add premises

to support the property that if a term reduces the reduced term is also well-formed. That’s why the

rule for application requires s to be locally closed, and the rule for β-reduction requires that the

abstraction’s body is locally closed when opened with a fresh name, and similarly for abstractions

as values.

(4) Substitution with a fresh name. While the β-reduction rule is usually defined in terms of a

substitution, in this setting we could open the body with a sufficiently fresh name, and immediately

substitute it away. Instead, it is much simpler to just open the bound variable in the abstraction with

the applied parameter, that has the same effect as the substitution, in a straightforward manner.

3.2 Coq and Locally Nameless

Module Type ATOM.

Parameter atom : Set.

Definition t := atom.

(* atoms can be compared to booleans *)

Parameter eq_atom : atom → atom → bool.

Parameter eq_reflect : ∀ (a b : atom),

ssrbool.reflect (a = b) (eq_atom a b).

Parameter atom_eqMixin : Equality.mixin_of atom.

Canonical atom_eqType := EqType atom

atom_eqMixin.

Parameter fresh : seq atom → atom.

Parameter fresh_not_in : ∀ l, (fresh l) < l.

(* ... *)

End ATOM.

Fig. 7. The type of atoms

Proof formalisations give us confidence in the

results and often result in new insights about

the problem. This is due to the fact that suc-

cessful mechanisations require very precise

specifications and careful thought to define

and revisit all the concepts. When starting a

formalisation, the first choice is the particu-

lar proof assistant. These days there are many

appropriate options, among them: some are

general purpose like: Coq [The Coq Develop-

ment Team 2016], Isabelle/HOL [Nipkow and

Paulson 1992], Agda [Norell 2007] and others

are more specialised like Abella [Gacek 2008] or

Beluga [Pientka and Cave 2015]. As mentioned

before, for this formalisation we chose Coq as

it offers large community support, has a proven

record for large developments, and implements

a very powerful logic.

Locally nameless implementation. The
implementation of locally nameless is in three

files
4
: theories/Atom.v, theories/AtomScopes.v and theories/Env.v. Where the first provides

the basic definition and specification of atoms to act as names, the second one, provides a way to

create multiple disjoint sets of names for representing the different kinds of names that session

types require (e.g. variables and channel names), and finally the last one implements finite maps

used for contexts and typings, with emphasis on supporting the linearity requirements of various

session typing disciplines.

4
As mentioned before, the repository is available at https://github.com/emtst/emtst-proof

https://github.com/emtst/emtst-proof

David Castro, Francisco Ferreira, and Nobuko Yoshida

Section Environment.

Context (K : ordType).

Context (V : eqType).

Inductive env := Undef

| Def of {finMap K → V}.

(* Operations: add, def,

dom, subst_env,... *)

Lemma def_addb k t E:

def(add k t E) = def E&&(k < dom E).

(* ... *)

Lemma domP x D: look_spec x D (x ∈ dom D).

(* ... *)

Lemma add_union k T D D':

((add k T D) ∪ D') = (add k T (D ∪ D')).

(* ... *)

Lemma subst_union c c' D1 D2 :

subst_env c c' (D1 ∪ D2)

= (subst_env c c' D1 ∪

subst_env c c' D2).

(* ... *)

End Environment.

Fig. 8. Environments to represent contexts and typings

We use module types and parametrised modules to have an abstract type of atoms together

with their supported operations. Figure 7 shows the implementation of atoms, and the expected

operations: how to compare them and functions to obtain a fresh atom given a finite sequence of

atoms (definition: fresh), to have proof that the fresh atom is actually fresh (definition: fresh_not_in).

An important aspect of the formalisation is dealing with contexts and typings. As we saw in

Section 2, processes are typed in context Γ, and classified by typing ∆, that specifies the types of all
the channels a process uses. Moreover, typings are resource sensitive (i.e. linear), channels have to

be used exactly once, unless they have performed all their communications. Similarly, weakening

of typings is generally not admissible, except for channels that have finished their interactions. Our

approach is to define an environment type that is suitable to implement intuitionistic contexts like

Γ or resource sensitive typings like ∆.

Environments. Figure 8 shows the definition of environments, they are parametrised over two

types, K for the keys, and V for the type of keys. Environments env are either undefined, or a finite

map of unique keys and values. All the operations keep the invariant that any operation that

would lead to a duplicated entry key makes the tree undefined. We define the expected operations

over the type env. Important operations are: add to add a new element, def a predicate for defined

environments, dom to obtain the predicates domain, subst_env for substitutions in environments,

look to look up keys, etc. But more importantly, it provides dozens of lemmas to support common

proofs that involve environments. In Figure 8, we illustrate some of these theorems with: def_andb

that shows if adding an element to an environment is defined, that is equivalent to saying that the

environment is defined and the element was not in the environment before. Also, domP that relates

statements about looking up in an environment and its domain. Additional important lemmas are

the ones that ease dealing with the union of contexts (these unions commonly arise in linear calculi),

for example add_union, subst_union that respectively show that adding an element and substitution

commute with unions. These are just some examples, there many more lemmas are proven.

The current implementation of environments together with their lemmas are used in the two

formalisations in Sections 4.2 and 5.1 and they are suitable for other mechanisations where resource

sensitivity and locally nameless are required.

Meta-Theory of Session Types

Process

P ,Q,R ::=

| request a ().P session request

| accept a ().P session accept

| k ?().P data receive

| catch k ().P channel receive

| νn ().P name hiding

| νc ().P channel hiding

| . . .

Names/Channels

a,k ::=

| n where n ∈ A (Free)

| i where i ∈ N (Bound)

Fig. 9. Anonymous binders using locally nameless

[Acc]

Γ(a) = ⟨α ,α⟩ (∀k < L, Γ ⊢ Pk ▷ ∆,k : α)

Γ ⊢ accept a ().P ▷ ∆

[Req]

Γ(a) = ⟨α ,α⟩ (∀k < L, Γ ⊢ Pk ▷ ∆,k : α)

Γ ⊢ request a ().P ▷ ∆

[Rcv]

∀x < L, Γ,x : S ⊢ Px ▷ ∆,k : α

Γ ⊢ k ?().P ▷ ∆,k : ?[S];α

[Cat]

∀k ′ < L, Γ ⊢ Pk ▷ ∆,k : β ,k ′ : α

Γ ⊢ catch k ().P ▷ ∆,k : ?[α]; β

[NRes]

∀a < L, Γ,a : S ⊢ Pa ▷ ∆

Γ ⊢ νn ().P ▷ ∆

[CRes]

∀k < L, Γ ⊢ Pk ▷ ∆,k : ⊥

Γ ⊢ νc ().P ▷ ∆

Fig. 10. Typing System, rules that change with LN

4 THE SEND-RECEIVE SYSTEM IN LOCALLY NAMELESS REPRESENTATION
As discussed in Section 3, the LN representation offers α-equivalent terms by using anonymous (i.e:

de Bruijn indices) for bound variables. We choose it for the mechanisation due to its friendliness and

suitability for calculi with linear resources. As a consequence, we need to adapt the presentation of

our syntax and typing rules. We use co-finite quantification to ensure name freshness. In Figure 9

we show the changes to the syntax presented in the locally nameless representation. Notice that

the only difference is that the terms with binders have anonymous binders and that names and

channels can be either free or bound.

Typing rules. Figure 10 shows the typing rules that change with the LN representation, all of

which are the rules with binders. There are two changes: the obvious one is that bound variables

are now nameless, and the other one is the use of co-finite quantification. At first sight, there are

two options for choosing a fresh name when opening a term. The first is using an existential to say

that there must exist a name that is free in the term. And the second is to use a universal quantifier

over all the names that do not appear in the term or context. For example, we could revisit [Rcv] in

the following ways:

[Rcv-Ex]

x < fv(P) ∪ dom(Γ) Γ,x : S ⊢ Px ▷ ∆,k : α

Γ ⊢ k ?().P ▷ ∆,k : ?[S];α

[Rcv-All]

∀x < fv(P) ∪ dom(Γ), Γ,x : S ⊢ Px ▷ ∆,k : α

Γ ⊢ k ?().P ▷ ∆,k : ?[S];α

David Castro, Francisco Ferreira, and Nobuko Yoshida

These two rules both have their advantages and disadvantages. On one hand, the existential

rule ([Rcv-Ex]) makes introduction easy, as one only needs to show that one name is free. On the

other hand, the universal rule ([Rcv-All]) is more convenient as an elimination rule, given that it

immediately shows that the body is well typed for any fresh name. On both cases, if a rule is good

for introductions is less good for eliminations and vice versa. Aydemir et al. [2008]; Charguéraud

[2012] propose the co-finite quantification approach, which compromises between these approaches.

Our representation of typing rules use it (e.g: see [Rcv] in figure 3). For eliminations we get that

there are infinitely many names that we can choose from, and as an introduction rule it is better

than the universal rule in that we are able to exclude some names.

4.1 Reduction rules and a name handling problem
Figure 11 shows the changes for the reduction rules. Besides the lack of names for bound variables,

we add premises to ensure that whenever a process reduces, both processes are locally closed. The

congruence rules are largely unchanged, except for the α-conversion rule that holds implicitly for

terms in LN representation since only α-equivalent terms can be represented. However, there is

one more change to call our attention to, the rule for [Pass] went from:

[Pass-Nm]

throw k [k ′]; P | catch k (k ′).Q −→ P | Q

[Pass-LN]

lc P bodyQ

throw k [k ′]; P | catch k ().Q −→ P | Qk ′

The original rule using names, enforces that the communicated channel to be the same as the

channel that is expected in the receiving process. This is a way to say that the receiving process

has to be α-equivalent to the process that uses that specific name. This policing on the name of

a bound variable is in a sense pushing the meaning of syntax up-to α-equivalence. In the locally

nameless setting, and in any setting that supports bindings with intrinsic α-equivalence (such as

de Bruijn indices, higher-order abstract syntax, etc.) it is not possible to represent this constraint.

In rule [Pass-LN] there is no name to constrain for the bound variable, and moreover it does not

really make sense to talk about α-equivalence in the congruence rules (a locally nameless term

represents the whole α-equivalent class of terms). Therefore, the natural representation of the rule

([Pass-LN]), simply opens the receiving variable with the communicated name. This seems a natural

representation. Nevertheless, this presentation of the rule eminently becomes rule [WrongPass] in

Section 2.2. And with that we have the key insight of this section: the straightforward representation

of the original system using locally nameless allows the counterexample from [Yoshida and Vas-

concelos 2007]. Moreover, this problem would also arise in any other representation that provides

α-equivalent syntax and it does not have an easy solution. Notably, it is not possible to discuss

the name of a bound variable in LN. Instead of reverting to the names as strings representation,
we address this problem with the same solution offered in [Yoshida and Vasconcelos 2007]. We

describe the solution and our implementation in Section 5. In the remainder of this section we

discuss the Coq mechanisation, and provide a proof that the counterexample provided in the paper

breaks type safety, once one settles on rule [Pass-LN].

As we have seen, the locally nameless representation provides an α-equivalent approach to

syntax with binders that is simple to understand and suitable for on-paper presentations of meta-

theory. This change is really motivated by being able to mechanise the definition and meta-theory

of session types in Coq.

Meta-Theory of Session Types

[Link]

body P bodyQ

accept a ().P | request a ().Q −→ νc ().(P | Q)

[Com]

e ↓ c lc P bodyQ

k ![e]; P | k ?().Q −→ P | Qc

[Left]

lc P lcQ lcR

k ◁ l; P | k ▷ {l : Q[]r : R} −→ P | Q

[Right]

lc P lcQ lcR

k ◁ r; P | k ▷ {l : Q[]r : R} −→ P | R

[Pass-LN]

lc P bodyQ

throw k [k ′]; P | catch k ().Q −→ P | Qk ′

[If1]

e ↓ true lc P lcQ

if e then P else Q −→ P

[If2]

e ↓ false lc P lcQ

if e then P else Q −→ Q

[Scop]

∀u < L, Pu −→ P ′u

ν {n,c } ().P −→ ν {n,c } ().P
′

[Par]

P −→ P ′ lcQ

P | Q −→ P ′ | Q

[Str]

lc P P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q

P −→ Q

Fig. 11. Reduction using locally nameless

4.2 Mechanising the meta-theory in an α-equivalent representation
Figure 12 shows the representation of the syntax as a locally nameless definition in Coq (for full

details please check the aforementioned repository). We call attention that due to bound variables

being nameless variables they simply do not appear in the syntax.

Syntax definition. The binding structure is defined both by the opening operations as described
in Section 3 and by the locally closed predicate, this predicate states that all free variables are

represented by names, therefore no de Bruijn index escapes its binder. For this calculus we choose

to represent all free variables with the same set of names, and we define several opening functions

relevant to expression variables in expressions, and to opening names and expressions in processes.

This is because, given the problem stated in Section 4.1, for this system we only want to show that

the counterexample becomes admissible due to the changes needed as a consequence of having

anonymous bound variables.

Recall that in the definition of LN syntax in Figure 5, we define the operation to open variables,

and the predicate for well-formed terms (i.e: lc t). We proceed in the same manner for the binary

session calculus, except that now we have expressions and processes. In the latter, we have binders

for channels (e.g: catch k ().P) and binders for variable expressions (e.g: k ?().P). To cope with this

additional complexity we define three opening operations, the first to open variables in expressions

(i.e: function oe defined in file theories/SyntaxO.v), and two more opening operations, one to

open an expression variable in process (defined as: {ope k ~> u } t) and the final one to open names

in a process (defined as: {op k ~> u } t). Finally, there are two predicates to show that expressions

and processes are locally closed (defined as: lc_exp and lc respectively). We omit the definition of

locally closed expressions as it is trivial. On the other hand, we show a few significant cases of the

predicate for processes in Figure 13.

David Castro, Francisco Ferreira, and Nobuko Yoshida

Inductive proc : Set :=

| request : name → proc → proc (* request a ().P *)

| accept : name → proc → proc (* accept a ().P *)

| send : channel → exp → proc → proc (* k ![e]; P *)

| receive : channel → proc → proc (* k ?().P *)

| select : channel → label → proc → proc (* k ◁m; P *)

| branch : channel → proc → proc → proc (* k ▷ {l : P []r : Q } *)

| throw : channel → channel → proc → proc (* throw k [k ′]; P *)

| catch : channel → proc → proc (* catch k ().P *)

| ife : exp → proc → proc → proc (* if e then P else Q *)

| par : proc → proc → proc (* P | Q *)

| inact : proc (* inact *)

| nu_nm : proc → proc (* νn ().P *)

| nu_ch : proc → proc (* νc ().P *)

| bang : proc → proc (* !P *)

.
Fig. 12. Syntax representation

Inductive lc : proc → Prop :=

|lc_send : ∀ k e P,

lc_nm k → lc_exp e →

lc P →

lc (send k e P)

|lc_receive : ∀ (L : seq atom) k P,

lc_nm k →

(∀ x, x < L → lc (open P x)) →

lc (receive k P)

|lc_inact : lc inact

(* ... *).

Inductive oft_exp (G : sort_env) :

exp → sort → Prop := (*...*)

Inductive oft:

sort_env → proc → tp_env → Prop :=

binds a (end_points T t) G →

(∀ k, k < L →

oft G (open P k) (add k t D)) →

oft G (request a P) D

|t_send G k e P D S T:

oft_exp G e S → oft G P (add k T D) →

oft G (send k e P) (add k (output S T) D)

|t_receive (L : seq atom) G k P D S T:

(∀ x, x < L →

oft (add x S G) P (add k T D)) →

oft G (receive k P) (add k (input S T) D)

|t_par ∀ G P Q D1 D2:

oft G P D1 → oft G Q D2 →

compatible D1 D2 →

oft G (par P Q) (D1 o D2)

(*...*).

Fig. 13. Locally closed and the typing judgement

On one hand, for simple processes without binders like lc_inact (i.e: inact), or lc_send (i.e:

k ![e]; P), the predicate simply states that all the channels, expressions and process continuations

are all recursively locally closed. On the other hand, processes with binders, need to open the terms

in order to assign a name to the bound variable and show that the result is now locally closed.

For example, this is what rules like lc_receive (i.e: k ?().P) do. This is another example of co-finite

Meta-Theory of Session Types

quantification, akin to the definition of the typing rules in Figure 10. Co-finite quantification ensures

the name we use for opening is fresh.

Typing system. Following habitual practice, the typing relations are encoded as inductive

predicates, some cases are shown in Figure 13. For expressions they relate a context (sort_env in

the code), an expression (exp in the code) and their sort, and similarly processes replacing sorts

by typings (tp_env). The encoding of the typing rules is generally straightforward. The notions of

compatible typings and their composition are implemented in the compatible inductive predicate

and the compose function respectively (note that for convenience, composition has an inline operator

notation D1 o D2 instead of the longer: compose D1 D2).

Operational semantics and the counterexample. Recall the discussion in Section 4.1 of the

difficulty of encoding the reduction semantics in a representation with intrinsic α-equality. This is
also present in the Coq representation. We represent the reduction and congruence relations with

P−→Q and P≡Q for (P --> Q and P === Q without notational embellishments). At this point we need

to prove type safety, however, first we need to address the concerns about the counterexample.

As it turns out, this definition breaks subject reduction. It is important to notice that the original

system as defined in [Yoshida and Vasconcelos 2007] is type safe, but its reduction semantics are

not directly representable in a locally nameless syntax (or any representation where α-equality is

built in).

For the straightforward representation of the original system using locally nameless, we define

the counterexample. And subsequently prove that it breaks subject reduction. The counterexample

proof is in the file: theories/TypesO.v in code section named CounterExample.
We define the process counter as:

throw k [k ′]; inact | catch k (0 ?().k ′ ![true]; inact).inact

and the process reduced as:

k ′ ?().k ′ ![true]; inact

These processes are expected to be typed under the empty contexts and typings where k and k'

are bottom. We represent this typing (D) as the concatenation of two typings that type the processes

composed in counter (D that is defined as D1 o D2). With these definitions we prove three simple

goals: First, that the counterexample admits the typing. Second, that it reduces. And finally, that

there is no type derivation that allows the reduced process to admit the typing. Therefore, subject

reduction does not hold for this definition of the calculus.

In Figure 14, we show the statements for the three theorems. These statements show the counter-

example implemented in our syntax, and two goals
5
. The first is that counter is well typed, and the

fact that it computes to reduced. Notice that before proving lemma oft_reduced we show a partial

proof and where we get stuck trying to prove that the reduced process admits the same typing as

the original. Finally, in lemma oft_reduced we prove that there are no derivations for reduced with

typing D. In conclusion, our representation of the original system using a syntax representation that

provides α-equality is not adequate. This result may seem discouraging, but we show it for two

reasons; first, it is an important cautionary tale; and second, most of tools and techniques shown

here will be applicable to represent and study the meta-theory of the revisited system. We discuss

that in the next section.

5Goal is used to introduce an anonymous theorem

David Castro, Francisco Ferreira, and Nobuko Yoshida

Goal oft nil counter D. (* the process is well typed *)

(* proof omitted.*)

Goal (counter −→ reduced).(* the process reduces *)

(* proof omitted.*)

(* we try and fail to type check the reduced process *)

Goal oft nil reduced D.

rewrite/reduced/D/D1/D2.

(* apply: t_receive.

it fails, k' cannot be bot and input *)

Abort.

(* we prove that the reduced counter example process does not admit D. *)

Lemma oft_reduced : ~ oft nil reduced D.

(* proof omitted.*)

Fig. 14. Proof the Counterexample Breaks Subject Reduction

Polarities

p ::= + | −

Endpoints

k ::=

| x endpoint variables

| κp channel names

Endpoint var.

x ::=

| n where n ∈ ALC (free)

| i where i ∈ N (bound)

Endpoint name

κ ::=

| n where n ∈ ACN (free)

| i where i ∈ N (bound)

Fig. 15. Syntactic Changes - Endpoints

5 THE REVISITED SEND RECEIVE SYSTEM
As discussed in Section 2, in the original binary session types system, as described in [Honda

et al. 1998], one has to be very careful when extending or relaxing the channel passing rule to

avoid breaking type preservation, as described in [Yoshida and Vasconcelos 2007]. In Section 4.1,

we discussed that when representing the original system with syntax that intrinsically equates

α-equivalent terms, the counter example to subject reduction becomes typable. This is a rather

inconvenient and (somewhat) unexpected side-effect of the very particular way of ensuring safety

in the communications chosen in the original system’s description. Fortunately, the revisited system

in [Yoshida and Vasconcelos 2007], inspired by [Gay and Hole 2005], proposes another solution

that we will describe in this section, and for which we present the Coq full-development of the

type-preservation proof.

The key insight in the design of the revisited system is considering channel endpoints instead
of just channels. As before, a new channel is created when a requested session is accepted, and

each continuation gets one of the endpoints of the newly created channel. Eventually, process

synchronisation over a channel must occur over dual endpoints. It is not necessary for the endpoints

to have dual types. The changes to the syntax are minor, specially in this setting where we use a

locally nameless representation and binders do not appear in the syntax.

Meta-Theory of Session Types

[Acc]

Γ(a) = ⟨α ,α⟩ (∀k < LLC, Γ ⊢ P
k ▷ ∆,k : α)

Γ ⊢ accept a ().P ▷ ∆

[Req]

Γ(a) = ⟨α ,α⟩ (∀k < LLC, Γ ⊢ P
k ▷ ∆,k : α)

Γ ⊢ request a ().P ▷ ∆

[Rcv]

∀x < LEV, Γ,x : S ⊢ Px ▷ ∆,k : α

Γ ⊢ k ?().P ▷ ∆,k : ?[S];α

[Cat]

∀k ′ < LLC, Γ ⊢ P
k ▷ ∆,k : β,k ′ : α

Γ ⊢ catch k ().P ▷ ∆,k : ?[α]; β

[Conc]

Γ ⊢ P ▷ ∆ Γ ⊢ Q ▷ ∆′

Γ ⊢ P | Q ▷ ∆,∆′

[CRes]

∀κ < LCN, Γ ⊢ P
κ ▷ ∆,κ+ : α ,κ− : α

Γ ⊢ νc ().P ▷ ∆

[CRes’]

∀κ < LCN, Γ ⊢ P
κ ▷ ∆ κ < ∆

Γ ⊢ νc ().P ▷ ∆

[NRes]

∀a < LSC, Γ,a : S ⊢ Pa ▷ ∆

Γ ⊢ νn ().P ▷ ∆

Fig. 16. Type System, rules that change in the revisited system

In Section 2, we used one set of names for channels and expressions. For the revisited system’s

formalisation we choose to distinguish our binders in four categories:

• expression variables, with names from the set AEV

• shared channel variables, from ASC

• linear channel variables, from ALC

• channel names from ACN (notice that these names can also be bound in restrictions). Channel

names are not variables, but objects that exist at run-time.

The motivation for having multiple disjoint sets of atoms is to simplify reasoning about free names

(concretely to not have to avoid freshness problems among different kinds of binders). These choices

are different to what we used in the formalisation of the original system. It is motivated by the

different theorems that proven for each system (for the original system we proved that the counter

example became admissible, for this system we prove the more challenging subject reduction

theorem and its many required lemmas). This represents an engineering compromise, having more

binders duplicates some easy theorems but they simplify some harder ones. Other compromises

are possible. The usual one is having less complex calculi that completely avoid this problem, in

our case we focus on the style of calculi the concurrency community works on.

Typing rules. Figure 15 shows the representation of channels, its endpoints and their names

and variables. The last two use the familiar notion of names for free variables, and de Bruijn indices

for bound variables. Figure 16 presents the changes to the typing rules, to accommodate for the

new binding structure. And crucially, it clarifies the binding structure, by showing which set the

co-finite quantification draws its names from (where LEV ⊂ AEV, and respectively for the other

three sets of names). Rules [Conc] and [Cres] are also different. In this system parallel composition

is replaced by a new rule, where we just concatenate disjoint typings. Finally, name restriction,

introduces a new channel name with its two endpoints. The rule [Cres’] allows the typing of

process that do not use the channel in the restriction, this is necessary to preserve typing under

the ν {n,c } (u).inact ≡ inact congruence rule. This is one of the situations in which we see that

David Castro, Francisco Ferreira, and Nobuko Yoshida

Inductive proc : Set :=

| request : scvar → proc → proc

| accept : scvar → proc → proc

| send : channel → exp → proc → proc

| receive : channel → proc → proc

| select :

channel → label → proc → proc

| branch :

channel → proc → proc → proc

| throw :

channel → channel → proc → proc

| catch : channel → proc → proc

| ife : exp → proc → proc → proc

| par : proc → proc → proc

| inact : proc

(* hides a channel name *)

| nu_ch : proc → proc

(* hides a name *)

| nu_nm : proc → proc

(* process replication *)

| bang : proc → proc

.

binds variable

from ASC

binds variable

from AEV

binds variable

from ALC

binds channel

from ACN

Fig. 17. Syntax representation annotated with binders

this calculus is resource sensitive something commonly associated with linearity. However, the

calculus is not exactly linear (e.g: linear channel names can be bound and never used).

5.1 The Coq Mechanisation
Structure of the implementation. The mechanisation of the revisited system is done in three

files: First, the file: theories/SyntaxR.v contains the definitions of the syntactic categories, like
processes, expressions and channels, together with operations on them, like opening and substitu-

tions, the locally closed predicate and operational semantics. Second, the file: theories/TypesR.v
contains the definitions of contexts and environments, together with the typing judgements. It also

contains some lemmas regarding the different kinds of opening and substitutions commuting, the

strengthening and weakening lemmas, and notably the substitution lemmas for expressions and

channels into processes. Finally, the file: theories/SafetyR.v defines the concept of balanced

typings, and shows the two main results, that congruence preserves types, and finally the subject

reduction theorem for processes.

Syntax and operational semantics. The syntactic changes of the revised system are minor

as we can see in Figure 17. As explained, the binders are separated in four categories. The visible

changes in the type definition, are twofold: in request and accept the names of shared channels are

variables that use atoms from ASC (type scvar). And second, channels now are not only names, but

they follow the syntax from Figure 15. In locally nameless, besides the syntax, the binding structure

Meta-Theory of Session Types

and the well-formedness of terms is established in the definitions of the opening operations and

the locally closed predicate. As discussed before, in the original system’s mechanisation, we used

only one scope of atoms, but still had several opening operations, in this case, we use a single

open per kind of atoms that appear in the syntactic category. For example, there is one opening

operation for expression variables in expressions (ope), and there are four for processes: open_c to

open linear channel variables with channels, open_n to open shared channels with shared channel

variables, open_e to open variable expressions with expressions, and finally open_k to open channel

name variables. For locally closed, we define only one predicate per syntactic category (lc_exp for

expressions, lc for processes), as it does not make sense to be locally closed with regard to some

variable kinds and not others.

Given our choice of Ssreflect, we have some overhead due to implementing processes, chan-

nels and expressions as equality types, and because we implement the locally closed predicate

as a boolean function and show that it reflects the inductive definition. This enables us to use

computation with these functions throughout our proofs. To implement locally closed as a function,

we use a dual concept. We simply check that there are no de Bruijn indices that point to non-existent

binders (i.e. we check for the absence of out of scope indices).

The rest of the file contains: theorems about the interactions of substitutions and opening, and

the definitions of the congruence and reduction operational semantics for the calculus.

Type system. The type system is defined in the theories/TypesR.v file. The first concern is

to use the environment type env from file: theories/Env.v to define the sorting context and the

typings. A sorting (represented by Γ) contain names from expression variables, and from shared

channel variables. This means that the key is atoms from ASC +AEV. Similarly, for typings, the keys

are either linear channel variables, or actual endpoints that contain a channel name and a polarity,

the type of keys should be ALC + A
p
CN where p is the polarity of endpoints.

The file: theories/TypesR.v contains the definitions of the typing judgements (oft for processes

and oft_exp for expressions in the code). But before we tackle them, we need to think about co-finite

quantification when we bind endpoints. Concretely, rules [Acc], [Req] and [Rcv] from Figure 16

show in the premise, that the process needs to admit typing when opened with a sufficiently fresh

channel variable name. In our implementation, we generalise this from sufficiently fresh channel

variable name to sufficiently fresh channel. That is, we open with a channel that can be a sufficiently

fresh channel variable name (an element of ALC not in LLC), or a sufficiently fresh channel name

(an element of ACN not in LCN). This is implemented as the relation free_chan and it is used in the

aforementioned rules as shown Figure 18. free_chan works together with the function chan_of_entry

that produces a channel from a typing entry (it either produces a channel variable, or a channel end

point depending on its parameter) . The motivation for this generalisation is that, the induction

hypothesis for these rules is stronger this way; we learn that the premise is well-formed when

opened with both a channel variable or a channel name. As a consequence, the subject reduction

proof is simpler.

Substitution lemma. After defining the typing judgements for processes and expressions, the

file contains the proofs of the substitution lemmas (for the substitution principles defined in file:

theories/SyntaxR.v). Concretely, the important lemmas are SubstitutionLemmaExp for showing the

substitution of expressions in expressions, ExpressionReplacement for the substitution of expressions

in processes. And finally ChannelNameReplacement for the substitution of channels in processes.

Subject reduction. Finally, the file: theories/Safety.v contains the proofs for the main result

of this formalisation. Following [Yoshida and Vasconcelos 2007], subject reduction only holds

for balanced typings. A balanced typing is one for which all the dual endpoints it contains are

David Castro, Francisco Ferreira, and Nobuko Yoshida

Definition free_chan (c : tp_env_entry) (L : seq LC.atom) (L' : seq CN.atom) :=

match c with

| inr (k, _) => k < L'

| inl c => c < L

end.

Inductive oft : sort_env → proc → tp_env → Prop :=

| t_request (L : seq LC.atom) (L' : seq CN.atom) G a P D t:

binds (inl a) (end_points t (dual t)) G →

(∀ c, free_chan c L L' →

oft G (open_c0 P (chan_of_entry c)) (add c (dual t) D)) →

oft G (request (SC.Free a) P) D

| t_accept : ∀ (L : seq LC.atom) (L' : seq CN.atom) G a P D t,

binds (inl a) (end_points t (dual t)) G →

(∀ x, free_chan x L L' →

oft G (open_c0 P (chan_of_entry x)) (add x t D)) →

oft G (accept (SC.Free a) P) D

| t_catch : ∀ (L : seq LC.atom) (L' : seq CN.atom) G k P D T T',

(∀ x, free_chan x L L' →

oft G (open_c0 P (chan_of_entry x)) (add x T (add k T' D))) →

oft G (catch (chan_of_entry k) P) (add k (ch_input T T') D)

(* ... *).

Fig. 18. Typing Judgement and Free Channel Relation

Theorem (Subject Congruence). If Γ ⊢ P ▷ ∆ with balanced∆ and P ≡ Q
then Γ ⊢ Q ▷ ∆′ and balanced∆′.

Theorem CongruencePreservesOft G P Q D :

P ≡ Q → oft G P D → oft G Q D.

(* ... *)

Theorem (Subject Reduction). If Γ ⊢ P ▷ ∆ with balanced∆ and P −→∗ Q
then Γ ⊢ Q ▷ ∆′ and balanced∆′.

Theorem SubjectReduction G P Q D:

oft G P D → balanced D → P −→* Q → exists D', balanced D' /\ oft G Q D'.

(* ... *)

Fig. 19. Congruence and Subject Reduction

associated with dual types. It is related to the concept of compatible from Section 2.1, but instead of

relating to compatible typings, it ensures that the endpoints of a channel are typed by dual types.

This condition is not enforced anywhere else and in our code is defined by the balanced predicate.

Together with some lemmas required by the proofs that follow.

At this point, there remain the two important theorems: first: CongruencePreservesOft that states

that congruent processes have the same type, and finally the subject reduction theorem: SubjectReduction

(that is proven using a lemma about single small step subject congruence). Below we reproduce

the statements of the theorems, and we remark on how similar the final statement is to Theorem

3.3 from [Yoshida and Vasconcelos 2007]. Figure 19 contains their statements in the formalisation

together with their on-paper statement counterparts.

Meta-Theory of Session Types

This concludes the technical development, and represents a full proof of subject reduction for

binary types, following the revised system as defined in [Yoshida and Vasconcelos 2007]. The

minor difference is that we use a simpler version of recursion compared to the original paper.

This results in an expressive calculus with all the key constructs: shared channels, linear channels,

choice, conditional processes, etc. We remark that implementing recursion as in the original paper

is possible and it would not require additional techniques. Implementing recursion variables would

make this proof more complex because of the need to add one more kind of variable, recursion

variables.

6 IMPLEMENTATION
The locally nameless support, and the proof we develop in this work are available

6
at:

https://github.com/emtst/emtst-proof

The source code for the development is in the ./theories directory. Locally nameless support

is defined in the following files: Atom.v, AtomScopes.v and Env.v. Then the development of the

counter example for the locally nameless version of the original system is in files: SyntaxO.v,
and TypesO.v. Additionally, the type preservation proof for the revisited system is in SyntaxR.v,
TypesR.v and SafetyR.v. When compiled using the make file, the compilation ends by Coq

checking that the safety proof does not depend on any axioms or admitted theorems and it prints

the reassuring message: Closed under the global context.

7 RELATEDWORK
Following the general trend in the programming language community, the concurrency community

is also keenly interested in mechanising their results. A recent example of this is the BeHAPI

Workshop at ETAPS 2019 [BeH 2019], that started with a full morning session on different aspects

of mechanical proofs and behavioural types. From proving important theorems about linear logic,

to novel representation techniques, theoretical discussions of higher order abstract syntax. And it

even included talks on a couple of work in progress mechanisations of session types.

While this work represents the first formalisation of binary session types as presented in [Honda

et al. 1998; Yoshida and Vasconcelos 2007], there have been many other works in related areas.

For example, Bengtson and Parrow [2009] mechanise the meta-theory of the untyped π -calculus
in Isabelle/HOL. The Abella [Gacek 2008] proof assistant uses its λ-tree representation7 [Miller

and Palamidessi 1999] to implement some meta-theory of the untyped π -calculus [Abe 2019].

Goto et al. [2016] present a session types system with polymorphism and use Coq to prove type

soundness of their system. There are several technical differences between their calculus and

ours. First, theirs is affine, so that it does not provide deadlock freedom (between two parties)

unlike ours; and secondly, they do not support neither shared channels nor expressions which are

crucial to model session initiations and sequential computation. They are essential elements for

implementing session-based programming languages, e.g. [Ancona et al. 2016; Gay and Ravera 2017;

Hu et al. 2008]. Crucially, our objective differs from the aim in [Goto et al. 2016], which proves the

correctness for the minimum calculus with a specialised extension. Our target is the “core” calculus

which has all the essential features to model session-based programming and tools, and it is the

most well-recognised and extended in the past. We formalise a standard binary session calculus

with shared sessions, expressions and the habitual binding structure present in the literature. We

strive for the extensibility and adaptability of our results to mechanise the many related session

calculi already developed or to be developed in future.

6
This repository is anonymous.

7
also referred to as higher order abstract syntax

https://github.com/emtst/emtst-proof

David Castro, Francisco Ferreira, and Nobuko Yoshida

Also related are works that use and implement session types as part of their development (while

not necessarily being the focus), two examples are: First, Tassarotti et al. [2017] where they show

the correctness (in the Coq proof assistant) of a compiler that uses an intermediate language

based on a simplified version the GV system [Gay and Vasconcelos 2010] to add session types to

a functional programming language. And second, [Orchard and Yoshida 2015] that discusses the

relation between session types and effect systems, and they implement their code in the Agda proof

assistant. However, their formalisation concentrates on showing that their translation between

effect systems and session types are type preserving.

Regarding our choice of technology to use, we follow the presentation of locally nameless from:

[Aydemir et al. 2008; Charguéraud 2012]. We implement the proofs in the Coq proof assistant using

the Ssreflect [Gonthier and Mahboubi 2010] library. And the design of environments and some

of the automation is inspired from [Gonthier et al. 2013; Nanevski et al. 2010]. However, these

choices are far from unique, while this is not an exhaustive bibliography, we provide some related

approaches that could also be considered. Other options include: Isabelle/Nominal [Nipkow and

Paulson 1992; Urban 2008] is an industrial strength proof assistant, and as we mentioned, it has

been successfully used to implement the meta-theory of the untyped π -calculus. Our choice of
Coq over Isabelle is out of familiarity and the authors’ preference for constructive proofs as we are

interested in future work where we take advantage of the Coq extraction mechanism.

Higher order abstract syntax (HOAS) [Church 1940; Pfenning and Elliott 1988] is in many ways

the gold standard for representing languages and logics with binding. The Abella [Gacek 2008]

and Beluga [Pientka and Cave 2015] systems implement powerful support for HOAS. Nevertheless,

a lack of support for linearity and code extraction made us prefer using the more common Coq

proof assistant. However, support for linearity and HOAS is being explored in projects like the

LINCX [Georges et al. 2017] linear logical framework.

Additionally, other representations could be used, for example a weaker form of HOAS that can

be directly used in Coq is championed by Parametric HOAS [Chlipala 2008]. And other forms of

embedding specification logics like Hybrid and its enrichment with linearity are discussed in Felty

and Momigliano [2012]; Felty [2019].

Finally, Benton et al. [2012] propose a powerful representation of intrinsically typed de Bruijn

indices that can be readily implemented in many proof assistants (including Coq and Agda). And

there is ongoing work [Kokke 2019] to extend this with support for linearity by following ideas

from [Atkey 2018]. This is a promising direction that could bring the proof style from [Wadler and

Kokke 2019] to the linear setting.

Important aspects that lead to our choices in this work were: current availability, good support for

the technique in one of the leading general purpose proof assistants (we considered Coq, Agda and

Isabelle). The results of the proof leave us with a valuable artefact, and a reusable implementation

of locally nameless that can be used for other projects.

8 CONCLUSIONS AND FUTUREWORK
We set out to study the mechanisation of the meta-theory of binary session types as presented

in [Honda et al. 1998; Yoshida and Vasconcelos 2007]. On the way, we learned a valuable lesson

on adequacy, as we managed the difficulties representing the original system using the locally

nameless representation. On the adequacy issue, we fully agree with Aydemir et al. [2008]: “First,

note that it [adequacy] is an informal question, because it involves the relationship between an

informal thing and a formal thing. No matter how much faith you put in Coq, no Coq proof will

completely settle this question.” Moreover, we propose that the canonical definition of a system

should be the one that has the most properties proved in the most dependable way. This experience

report is a call to arms to make that version a mechanised version. Therefore, we believe that

Meta-Theory of Session Types

we should strive for developing our theories together with their mechanised meta-theory. This

experience report, and its resulting tools and techniques are meant to help in that direction. Our

effort represents a step in an ongoing community wide effort. However small it may be, we think it

is a step in the right direction.

Our future work can be split in two aspects. First, we want to further develop and simplify

the locally nameless and the generic environment implementation that our system supports. The

engineering effort for this proof was significant, but besides having this result, automation will

make it easier to have more results like this. The second aspect is to extend our results to other

calculi, notably we are interested in implementing multiparty session types [Honda et al. 2008] and

their meta-theory. This would be an important result on its own, but we also want to extract a library

of certified operations on these types (e.g: code for projections, and state machine generation).

Concretely, our future goal is to certify the protocol description language, Scribble
8
which has been

used for various endpoint programming languages [Gay and Ravera 2017], including Java [Hu

and Yoshida 2016, 2017; Kouzapas et al. 2016], Go [Castro et al. 2019], Scala [Scalas et al. 2017],

F# [Neykova et al. 2018], MPI-C [Ng et al. 2015; Ng and Yoshida 2014], Erlang [Neykova and

Yoshida 2017a], and Python [Demangeon et al. 2015; Neykova et al. 2017; Neykova and Yoshida

2017b]. This would provide a certified tool-chain, that is developed together and at the same time

as its own meta-theory.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

No. nnnnnnn and Grant No. mmmmmmm. Any opinions, findings, and conclusions or recommend-

ations expressed in this material are those of the author and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES
2019. Abella Examples. http://abella-prover.org/examples/index.html. Accessed: 2019-07-04.

2019. BehAPI Workshop @ ETAPS 2019. https://www.um.edu.mt/projects/behapi/behapi-workshop-etaps-2019/. Accessed:

2019-07-04.

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Denielou, Simon J. Gay, Nils

Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral Types in

Programming Languages. FTPL 3(2-3) (2016), 95–230.

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’18). ACM, New York, NY, USA, 56–65. https://doi.org/10.1145/3209108.

3209189

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering Formal

Metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’08). ACM, New York, NY, USA, 3–15. https://doi.org/10.1145/1328438.1328443

Jesper Bengtson and Joachim Parrow. 2009. Formalising the pi-calculus using nominal logic. Logical Methods in Computer
Science Volume 5, Issue 2 (June 2009). https://doi.org/10.2168/LMCS-5(2:16)2009

Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride. 2012. Strongly Typed Term Representations in Coq. J.
Autom. Reasoning 49, 2 (2012), 141–159.

David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed Programming Using

Role-parametric Session Types in Go: Statically-typed Endpoint APIs for Dynamically-instantiated Communication

Structures. Proc. ACM Program. Lang. 3, POPL, Article 29 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290342

Arthur Charguéraud. 2012. The Locally Nameless Representation. Journal of Automated Reasoning 49, 3 (01 Oct 2012),

363–408.

Adam J. Chlipala. 2008. Parametric higher-order abstract syntax for mechanized semantics. In 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP’08), James Hook and Peter Thiemann (Eds.). ACM, 143–156.

8
https://www.scribble.org

http://abella-prover.org/examples/index.html
https://www.um.edu.mt/projects/behapi/behapi-workshop-etaps-2019/
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.2168/LMCS-5(2:16)2009
https://doi.org/10.1145/3290342

David Castro, Francisco Ferreira, and Nobuko Yoshida

Alonzo Church. 1940. A formulation of the simple theory of types. The Journal of Symbolic Logic 5 (6 1940), 56–68. Issue 02.
Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015. A Gentle Introduction to

Multiparty Asynchronous Session Types. In 15th International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Multicore Programming (LNCS), Vol. 9104. Springer, 146–178.

N.G. de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with

application to the Church-Rosser theorem. Indag. Math 34, 5 (1972), 381–392.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2015. Practical interruptible

conversations: distributed dynamic verification with multiparty session types and Python. FMSD 46, 3 (2015), 197–225.

https://doi.org/10.1007/s10703-014-0218-8

Amy Felty and Alberto Momigliano. 2012. Hybrid: A Definitional Two-Level Approach to Reasoning with Higher-Order

Abstract Syntax. 48, 1 (2012), 43–105.

Amy P. Felty. 2019. A Linear Logical Framework in Hybrid (Invited Talk). In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP 2019). ACM, New York, NY, USA, 14–14. https://doi.org/10.1145/

3293880.3294088

Andrew Gacek. 2008. The Abella Interactive Theorem Prover (System Description). In Proceedings of IJCAR 2008 (Lecture
Notes in Artificial Intelligence), A. Armando, P. Baumgartner, and G. Dowek (Eds.), Vol. 5195. Springer, 154–161.

Simon Gay and Malcom Hole. 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 2 (01 Nov 2005),
191–225. https://doi.org/10.1007/s00236-005-0177-z

Simon Gay and Antonio Ravera (Eds.). 2017. Behavioural Types: from Theory to Tools. River Publishers.
Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear type theory for asynchronous session types. Journal of Functional

Programming 20, 1 (2010), 19âĂŞ50. https://doi.org/10.1017/S0956796809990268

Aina Linn Georges, Agata Murawska, Shawn Otis, and Brigitte Pientka. 2017. LINCX: A Linear Logical Framework with

First-Class Contexts. In Programming Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 530–555.

Georges Gonthier and Assia Mahboubi. 2010. An introduction to small scale reflection in Coq. Journal of Formalized
Reasoning 3, 2 (2010), 95–152. https://doi.org/10.6092/issn.1972-5787/1979

Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. 2013. How to make ad hoc proof automation less

ad hoc. Journal of Functional Programming 23, 4 (2013), 357âĂŞ401. https://doi.org/10.1017/S0956796813000051

Andrew D. Gordon. 1994. A mechanisation of name-carrying syntax up to alpha-conversion. In Higher Order Logic Theorem
Proving and Its Applications, Jeffrey J. Joyce and Carl-Johan H. Seger (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

413–425.

Matthew Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitchar, and James Riely. 2016. An extensible approach to ses-

sion polymorphism. Mathematical Structures in Computer Science 26, 3 (2016), 465âĂŞ509. https://doi.org/10.1017/

S0960129514000231

Robert Harper and Daniel R. Licata. 2007. Mechanizingmetatheory in a logical framework. Journal of Functional Programming
17, 4-5 (2007), 613âĂŞ673. https://doi.org/10.1017/S0956796807006430

Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike Best (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 509–523.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language primitives and type discipline for structured

communication-based programming. In Programming Languages and Systems, Chris Hankin (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 122–138.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proc. of 35th Symp.
on Princ. of Prog. Lang. (POPL ’08). ACM, New York, NY, USA, 273–284.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1 (2016),

9:1–9:67. https://doi.org/10.1145/2827695

Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification Through Endpoint API Generation. In Fundamental
Approaches to Software Engineering - 19th International Conference, FASE 2016,Eindhoven, The Netherlands (Lecture Notes
in Computer Science), Perdita Stevens and Andrzej Wasowski (Eds.), Vol. 9633. Springer, 401–418.

Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In FASE (LNCS),
Vol. 10202. 116–133. https://doi.org/10.1007/978-3-662-54494-5_7

Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-Based Distributed Programming in Java. http://www.doc.ic.

ac.uk/~rhu. In ECOOP’08 (LNCS), Vol. 5142. Springer, 516–541.
Wen Kokke. 2019. Formalising session-typed languages without worries. Invited talk at Workshop on Behavioural APIs.

Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2016. Typechecking protocols with Mungo and StMungo.

In PPDP. 146–159. https://doi.org/10.1145/2967973.2968595

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2017. Fencing off Go: Liveness and Safety for Channel-

based Programming. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL

https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1145/3293880.3294088
https://doi.org/10.1145/3293880.3294088
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.6092/issn.1972-5787/1979
https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1017/S0956796807006430
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7
http://www.doc.ic.ac.uk/~rhu
http://www.doc.ic.ac.uk/~rhu
https://doi.org/10.1145/2967973.2968595

Meta-Theory of Session Types

2017). ACM, 748–761. https://doi.org/10.1145/3009837.3009847

Kevin Liao, Matthew A. Hammer, and Andrew Miller. 2019. ILC: A Calculus for Composable, Computational Cryptography.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019).
ACM, New York, NY, USA, 640–654. https://doi.org/10.1145/3314221.3314607

Conor McBride and James McKinna. 2004. Functional Pearl: I Am Not a Number–i Am a Free Variable. In Proceedings of the
2004 ACM SIGPLAN Workshop on Haskell (Haskell ’04). ACM, New York, NY, USA, 1–9. https://doi.org/10.1145/1017472.

1017477

James McKinna and Robert Pollack. 1999. Some Lambda Calculus and Type Theory Formalized. Journal of Automated
Reasoning 23, 3 (01 Nov 1999), 373–409. https://doi.org/10.1023/A:1006294005493

Dale Miller and Catuscia Palamidessi. 1999. Foundational Aspects of Syntax. ACM Comput. Surv. 31, 3es, Article 11 (Sept.
1999).

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, Parts I and II. Info.& Comp. 100, 1
(1992).

Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. 2010. Structuring the Verification of Heap-manipulating Programs.

In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10).
ACM, New York, NY, USA, 261–274. https://doi.org/10.1145/1706299.1706331

Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed runtime monitoring for multiparty conversations.

Formal Asp. Comput. 29, 5 (2017), 877–910. https://doi.org/10.1007/s00165-017-0420-8

Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. 2018. A Session Type Provider: Compile-time API

Generation for Distributed Protocols with Interaction Refinements in F#. In 27th International Conference on Compiler
Construction. ACM, 128–138. https://doi.org/10.1145/3178372.3179495

Rumyana Neykova and Nobuko Yoshida. 2017a. Let it Recover: Multiparty Protocol-Induced Recovery. In CC. ACM, 98–108.

Rumyana Neykova and Nobuko Yoshida. 2017b. Multiparty Session Actors. Logical Methods in Computer Science 13, 1 (2017).
https://doi.org/10.23638/LMCS-13(1:17)2017

Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. 2015. Protocols by Default: Safe MPI Code Generation based on

Session Types. In CC 2015 (LNCS), Vol. 9031. Springer, 212–232.
Nicholas Ng and Nobuko Yoshida. 2014. Pabble: parameterised Scribble. SOCA (2014), 1–16.

Tobias Nipkow and Lawrence C. Paulson. 1992. Isabelle-91. In Proceedings of the 11th International Conference on Automated
Deduction, Saratoga Springs, NY (Lecture Notes in Artificial Intelligence (LNAI) vol. 607). Springer-Verlag, 673–676.

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology. Technical Report 33D.

Dominic A. Orchard and Nobuko Yoshida. 2015. Using session types as an effect system. In Proceedings Eighth International
Workshop on Programming Language Approaches to Concurrency- and Communication-cEntric Software, PLACES 2015,
London, UK, 18th April 2015. 1–13. https://doi.org/10.4204/EPTCS.203.1

Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In ACM SIGPLAN Symposium on Language Design
and Implementation (PLDI’88). 199–208.

Brigitte Pientka and Andrew Cave. 2015. Inductive Beluga: Programming Proofs. In Automated Deduction - CADE-25, Amy P.

Felty and Aart Middeldorp (Eds.). Springer International Publishing, Cham, 272–281.

Randy Pollack. 1994. Closure under alpha-conversion. In Types for Proofs and Programs, Henk Barendregt and Tobias Nipkow
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 313–332.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming. In ECOOP’17 (LIPIcs), Vol. 74. Sch. Dag., 24:1–24:31.
Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying Message-passing Programs with Dependent Behavioural

Types. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2019). ACM, New York, NY, USA, 502–516. https://doi.org/10.1145/3314221.3322484

Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An interaction-based language and its typing system. In PARLE’94
Parallel Architectures and Languages Europe, Costas Halatsis, Dimitrios Maritsas, George Philokyprou, and Sergios

Theodoridis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 398–413.

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In Programming Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
909–936.

The Coq Development Team. 2016. The Coq Proof Assistant Reference Manual v. 8.6.1. Institut National de Recherche en
Informatique et en Automatique.

Christian Urban. 2008. Nominal Techniques in Isabelle/HOL. 40, 4 (2008), 327–356.

Philip Wadler and Wen Kokke. 2019. Programming Language Foundations in Agda. Available at http://plfa.inf.ed.ac.uk/.
Nobuko Yoshida and Vasco T. Vasconcelos. 2007. Language Primitives and Type Discipline for Structured Communication-

Based Programming Revisited: Two Systems for Higher-Order Session Communication. Electronic Notes in Theoretical

https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1023/A:1006294005493
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.4204/EPTCS.203.1
https://doi.org/10.1145/3314221.3322484
http://plfa.inf.ed.ac.uk/

David Castro, Francisco Ferreira, and Nobuko Yoshida

Computer Science 171, 4 (2007), 73 – 93. Proceedings of the First International Workshop on Security and Rewriting

Techniques (SecReT 2006).

	Abstract
	1 Introduction
	2 Binary Session Types: The Send-Receive System
	2.1 Typing Discipline
	2.2 Structural Congruence and Reduction

	3 A Locally Nameless Primer
	3.1 Example: the linear -calculus
	3.2 Coq and Locally Nameless

	4 The Send-Receive System in Locally Nameless Representation
	4.1 Reduction rules and a name handling problem
	4.2 Mechanising the meta-theory in an -equivalent representation

	5 The Revisited Send Receive System
	5.1 The Coq Mechanisation

	6 Implementation
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

