
Agents as Multi-threaded Logical Objects

Kieth Clark1 and Peter J. Robinson2

1 Department of Computing, Imperial College, London, England

klc@doc.ic.ac.uk
2 School of Computer Science and Electrical Engineering, The University of

Queensland, Australia

pjr@csee.uq.edu.au

Abstract. In this paper we describe a distributed object oriented logic

programming language in which an object is a collection of threads de-

ductively accessing and updating a shared logic program. The key fea-

tures of the language, such as static and dynamic object methods and

multiple inheritance, are illustrated through a series of small examples.

We show how we can implement object servers, allowing remote spawning

of objects, which we can use as staging posts for mobile agents. We give

as an example an information gathering mobile agent that can be queried

about the information it has so far gathered whilst it is gathering new

information. Finally we de�ne a class of co-operative reasoning agents

that can do resource bounded inference for full �rst order predicate logic,

handling multiple queries and information updates concurrently.

We believe that the combination of the concurrent OO and the LP pro-

gramming paradigms produces a powerful tool for quickly implementing

rational multi-agent applications on the internet.

1 Introduction

In this paper we describe an object oriented extension of the multi-threaded

Qu-Prolog described in [7]. We show how this can be used to quickly implement

multi-agent applications on the internet in which agents have both reactive and

pro-active behaviours that utilize quite rich inference systems. The di�erent

behaviours execute concurrently, as separated threads of an active object that

implements the agent.

The original Qu-Prolog [12] was developed as an implementation and tac-

tic language for interactive theorem provers, particularly those that carry out

schematic proofs. It has built-in support for the kinds of data values typically

needed when writing a theorem prover in Prolog: object variables - the variables

of the logical formulae being manipulated, substitutions for these object vari-

ables, and quanti�ed terms, terms denoting object level formulae with explicit

quanti�ers over the object level variables. As further support, the uni�cation al-

gorithm of Qu-Prolog uni�es such quanti�ed terms up to alpha-equivalence, that

is it knows about equivalence up to changes of quanti�er bound object variables.

It also carries out the occurs checks before binding a variable. This is essen-

tial for implementing sound inference systems. Qu-Prolog is the implementation

language of the Ergo theorem prover [1], which has seen substantial use in the

development of veri�ed software.

Motivated by a desire to implement a multi-threaded, multi-user version of

Ergo, we then added multi-threading and high-level inter-thread communication

between Qu-Prolog threads running anywhere on the internet [7]. Each thread

has a internet wide unique identity similar to an email address. It also has a

message bu�er of received but unprocessed messages which it can periodically

search for messages of interest. Communication between threads in di�erent

Qu-Prolog processes makes use of the store and forward ICM communications

system [17] developed for the April language [18]. This o�ers robust middleware

for distributed symbolic applications. As an example, it can be con�gured to

automatically store messages for threads running on hosts, such as laptops, that

are temporarly disconnected, delivering them when the laptop reconnects.

In [7] we describe the multi-threading and the inter-thread communication

facilities in detail and show how they can be used to implement a distributed

deductive data base in which each data base comprises the clauses of a program

being executed by a multi-threaded Qu-Prolog process. The clauses in each data

base can contain remote calls that are queries for relations de�ned in other data

bases. Such a remote call takes the form DB?Call, where DB is the global identity

of the query interface thread for the other Qu-Prolog process. DB typically has

a value such as interface:qupDB@`zeus.doc.ic.ac.uk'. The interface thread

can fork a new query thread for each received remote query. Moreover, although

we did not illustrate this in [7], di�erent deductive data bases can do inference

using a di�erent logic, a non-resolution inference system or even a modal logic.

Since each can have rules that call for sub-proofs in other deductive data bases,

we can easily implement distributed hybrid reasoning systems.

Threads in di�erent invocations of Qu-Prolog can only communicate using

messages, but threads within the same invocation can also communiciate via the

dynamic clause data base. Asserting or retracting a clause is an atomic operation

with respect to the multi-threading. In [7] we showed how we can use the shared

dymamic clauses to implement a Linda-style tuple space manager in Qu-Prolog.

In addition, threads can be made to suspend waiting for a particular clause to be

asserted. Suspension waiting for a clause of a certain form to be asserted enables

one to implement daemons. A daemon is a thread that is launched but which

immediately suspends until the trigger clause is asserted.

In [8] we sketched how multi-threaded Qu-Prolog could be used to implement

DAI applications. With this type of application in mind, we have recently added

a concurrent object oriented layer to Qu-Prolog. This OO layer, which in this

paper we shall refer to as QuP++, is transformed into the base Qu-Prolog using

the term expansion pre-processing facilities of Qu-Prolog. It allows OO software

engineering methodology to be used to construct distributed Qu-Prolog appli-

cations, in particular multi-agent applications.

In the next section we give a brief overview of the main features of QuP++.

This is followed by section 3 which is an example based introduction to pro-

gramming in QuP++. In section 4 we show how object servers allowing remote

spawning of objects can be de�ned and used to create and manage mobile objects

and agents. In section 5 we introduce the features of Qu-Prolog that allow the

implementation of non-resolution inference. We show how they can be used to de-

�ne a reasoning agent that can do resource bounded inference for full �rst order

predicate logic both to answer questions about what it believes and to check for

possible inconsistency before it adds new information to its belief store. We then

elaborate the agent to a co-operative reasoning agent that can ask other agents

to engage in sub-prrofs on its behalf. In section 6 we conclude with mention of

related research.

2 Overview of QuP++

QuP++ is a class based OO language with multiple inheritance. A class is a

named collection of static Qu-Prolog clauses with an optional state component

comprising a collection of dynamic predicates and state variables, the latter

being Qu-Prolog atoms. The stucture of a class de�nition is:

class C isa [S1,.Si-[r/2]..,Sn] % optional inheritance

state [d/3,a:=9,b,{k(g,h). k(j,l)},...] % state components

clauses{ % sequence of static clauses

p(...):- ...

...

p(...):-super?p(...).

....

}private [d/3,..] % preds that are private

The dynamic predicates (of the object state) must be disjoint from the static

predicates of the class and any of its super-classes. Instances of the class share

the static clauses but do not share clauses for their dynamic predicates and do

not share state variable values.

A class de�nition with a state component is the template for an object. An

object is an instance of the class. The static clauses of the class are the �xed

methods of the object. Objects are active, each is implemented as one or more

independently executing threads. The clauses for the dynamic predicates and

the values associated with the state variables are the state of the object. Default

initial clauses for the dynamic predicates can be given in the class de�nition, e.g.

the clauses for k/2 above, as can default initial values for the state variables,

e.g. a:=9. A default value for a state component given in a class C over-rides

any default value given for the same state component in a super-class of C. A

state variable value can only be accessed and updated from the methods of the

class, and clauses for a dynamic predicate can only be asserted and retracted by

a class method. However, the dynamic predicates of an object can be queried in

the same way as the static predicates. Externally they look like extra method

names. They are methods with dynamic de�nitions unique to each object.

Static predicate names and state component names can be re-used in di�er-

ent classes, they are treated as distinct names. Inheritance, by default, makes

all the static predicates of the super-classes of a class C static predicates of C.

If an inherited predicate is rede�ned in a class, the new de�nition over-rides

the inherited de�nition. However, the combined superclass de�nition for a pred-

icate p/n can always be accessed from inside C with a call super?p(...). Using

super?p(...) we can make the new de�nition extend what would have been

the inherited de�nition, as in:

p(...):- ...

...

p(...):-super?p(...).

More precisely, the de�nition for p/n given in a speci�c super-class S can also be

accessed with a call super(S)?p(...). If the predicate p/n is not rede�ned in

C, the de�nition that is inherited in C is exactly the same as if it were rede�ned

in C as:

p(X1,..,Xn):- super(S1)?p(X1,..,Xn);

super(S2)?p(X1,..,Xn);

...

super(Sj)?p(X1,..,Xn).

Here S1,..,Sj are all the superclasses of C from which inheritance of p/n has not

been explicitly suppressed. Inheritance of the clauses for p/n, from a speci�c

super-class S is suppressed by using of S-[p/n], rather than S in the isa list of

super-classes.

A call p(...) in a static clause of a class C always denotes a call to the

de�nition for p/n of the class C, even if the call is executed inside an object O

that is an instance of a sub-class SubC of C that has rede�ned p/n. In contrast, a

call self?p(...) in a static method of C executed by O will be evaluated using

the de�nition for p/n of SubC.

Inheritance unions the state components of a class C with the state com-

ponents of all its superclasses. That is, all state variables of a super-class are

automatically state variables of C, and all dynamic predicates of a super-class

are automatically dynamic predicates of C.

By default, all the static and dynamic predicates of a class are visible, that is

they can be used in queries to the object instances of the class. Both static and

dynamic predicates can also be declared as private, in which case they can only

be called from methods of the class and its sub-classes1. Queries to instances of

the class cannot access the clauses for the private predicates. Such a call to a

private predicate of an object will fail.

An object instance of a calls C is created with a call of the form:

new(C,...,O)

where O is an unbound variable which will be assigned a system generated glob-

ally unique identity for the new object. O is actually the identity of the object's

1 Private predicates are inheritable and can be rede�ned in sub-classes.

default execution thread. This thread will immediately call the init method

of class C, if this is de�ned. This can be used to launch sub-threads of object

O using the QuP++ object thread fork primitive. The object sub-threads can

communicate with one another either by explicit messages using the inter-thread

message primitives of Qu-Prolog, or by updating O's dynamic clauses or state

variables. Special QuP++ self assert and self retract primitives enable any

thread within an object to update the dynamic clauses of the object. The QuP++

primitives *= and := enable any object thread to access and update the value

of one of the object's state variables2. The init method can also be used to an-

nounce the object's presence by remote calls to other objects, for example a call

to a directory server registering some description of the object. On termination

of the init method, the default thread enters a loop in which it repeatedly ac-

cepts and evaluates remote calls for O. It suspends if there are no pending remote

calls. It becomes the object's external interface thread - its reactive component.

A remote call is a query Q sent to O from another concurrently executing

object, anywhere on the internet. The query can be sent as a call O?Q, or a call

O^^Q3. (The di�erences between the two forms of call will be explained shortly.)

Q can be an arbitrary Prolog query using any of the visible predicates of the class

of O or any Qu-Prolog primitive4. Multiple remote calls, whether synchronous or

asynchronous, are queued at an object in time order of arrival. The object will

respond to them in this order.

A ? call is a synchronous communication, the client querying thread Cl sus-

pends until an answer is returned, which may be a fail message. Backtracking in

the client thread will generate all solutions of the remote call5.

A call O^^Q is an asynchronous remote call. Q is executed by O as a single

solution call. There is no automatic answer response from O to such a query, no

client variables in Q will be bound as a result of the call, and on the client side

the call always immediately succeeds. Usually Q will cause some update of the

state of O, or cause O to execute a remote call. This remote call could be either

a synchronous or an asynchronous call back to the object from which the query

was sent. The architecture of a QuP++ object is depicted in �gure 1.

During the evaluation of any remote call received by an object O, the global

identity of the object QO from which the query came can be found by executing

a call caller(QO). This will unify QO with the global identity of the querying

2 Execution of the dynamic clause and state variable update and access primitives is

an atomic action. However it is a useful discipline to restrict update of a particular

dynamic predicate or state variable to a particular sub-thread and have other threads

only access the value.
3 There is also a O??Q form of call with the semantics as given in [7]. We shall not use

this form of call in this paper.
4 In addition, any predicate of a Qu-Prolog program can be used in Q if we know that

it will have been loaded by the Qu-Prolog process in which O is running. To the

QuP++ application these are seen as extra Qu-Prolog primitives.
5 For a call O?Q all solutions to Q are immediately found by O using a findall call and

returned by O to Cl as a list. There is then local backtracking in Cl over the di�erent

solutions in the returned list.

Object O
of Class CInterface

thread
with id O

state shared
by all object threads

sub-threads

All incoming
remote calls
for O

outgoing
synchronous call
answer
returned to
sub-thread T

possible response -
remote call from O" to O

synchronous query

asynchronous query

access to or update of shared state

thread forking

O"

outgoing
remote
calls

call of a class method

Static class methods
shared by all
objects of class C

T

asynchronous call
to object O"
asynchronous call
to object O"

asynchronous call
to object O"

Fig. 1. A QuP++ object

object, which remember is the global identity of its interface thread. This will be

the case even if the query came from another sub-thread of QO. The pair of calls,

caller(QO),QO^^RCall, thus sends an asynchronous query RCall to the object

QO which sent O the remote call it is currently evaluating. If O executes this pair

of calls whilst evaluating an asynchronous call, O^^Q, from QO, the return call

QO^^RCall is e�ectively a response to QO for the query Q. Use of ^^ remote calls

and caller/1 enables objects to have asynchronous conversations as well as

client server interactions. This is particularly useful when the objects implement

agents.

Tests on the value returned by a caller/1 call can also be used to restrict

use of certain methods to known objects, or objects satisfying certain properties.

For example, a method:

p(...):- caller(QO), allowed_to_call_p(QO), ...

causes a remote call to p to fail if the querying object is not allowed to call p.

allowed to call p/1 can be a dynamic predicate initialised when the object is

created, and perhaps updated by calls to a method:

allow_to_call_p(NewO):-caller(QO),allowed_to_call_p(QO),

self_assert(allowed_to_call_p(NewO)).

from objects already allowed to call p/k.

3 QuP++ by example

Let us begin with a simple example program. This is a class de�nition for a person

object. In this case there is no inheritance, except from a default system class

that de�nes a set of standard method predicates for all objects. One of these is

the re
ective method predicate/1 which can be used to query an object to �nd

its visible predicates. A call O?predicate(V), where V is a variable, will return

one at a time the names and arities of O's visible predicates. Another system

class predicate is class/1. A call O?class(C) will unify C with the class name

of O. There are two other re
ective predicates: myid/1 and mystate/1 which

are actually used in the above class de�nition. They can only be called from a

method. myid/1 uni�es its argument with global identity of the object that calls

it. mystate/1 returns the entire current state of the object that executes the

call as a list.

class person

state [firstname/1,surname/1,age:=0,sex/1,child/1,parent/1]

clauses{

adult :- age*=A,A>18.

family_name(N):-surname(N).

likes(O):-child(O).

new_child(Fn,Sx,O):-

nonvar(O),!,

self_assert(child(O)).

new_child(Fn,Sx,O):-

surname(Sn),

myid(Me),

new(person,

[firstname(Fn),surname(Sn),sex(Sx),{parent(Me). }],

O),

self_assert(child(O)).

get_married_to(Sp):-

myid(Me),

Sp?(class(person);class(married_person),spouse(Me)),

mystate(St),

become(married_person,

[spouse(Sp)|St]).

} private {surname/1}.

Let us now look more closely at the above class de�nition. The state decla-

ration:

state [firstname/1,surname/1,age:=0,sex/1,child/1,parent/1]

tells us that instances of this class will record the state of the object using clauses

for �ve dynamic predicates and one state variable age. The state variable has a

default initial value of 0. When we create an instance of the class we can give

values for the dynamic predicates and we can override the default value 0 for

age. For example, the call:

new(person,[firstname(bill),surname(smith),sex(male),age:=23],O1)

will create a new instance of the person class, with the clauses given in the

state list second argument as initial de�nitions for its dynamic predicates, and

the value 23 for its age state variable. The clauses for the dynamic predicates

and the state variable initialisations can be given in any order. Notice that this

person object does not have clauses de�ning parent/1 and child/1.

When an object is created it can be given a set of clauses for some or all

of its dynamic predicates and values for some or all of its state variables. For

a dynamic predicate these either over-ride or add to any default clauses given

for the predicate of the class de�nition. The choice is signalled by the way the

clauses are given in the object creation call. For a state variable any value given

in the object creation call always over-rides any default value it might have in

the class de�nition.

new/3 is one of two QuP++ primitives for creating new objects. The above

call to new/3 returns the global indentity of the person object as the binding

for O1. We can access O1's state as recorded by its visible dynamic predicates by

queries such as:

O1?sex(S)

which binds S to male. We cannot directly access the age of O1 since this is

recorded as the value of a state variable. However we can use the adult method

to indirectly access its value. For example,

O1?adult

will succeed. The call age*=A in the adult clause uses the QuP++ primitive

*=/2 to access the current value of the age state variable. This call can only be

used in a method. An attempt to use it in a remote call such as O1?age*=A will

fail.

A call:

O1?predicate(P)

will in turn bind P to each of:

new_child/3, adult/0, family_name/1, get_married_to/1,

likes/1, firstname/1, sex/1, child/1, parent/1

surname will not be returned as it was declared as private to the class. Its

de�nition can be accessed indirectly via the family name method. We have a

separate family name de�nition because, when we de�ne the married person

subclass, we shall rede�ne this predicate.

O1?class(C)

will bind C to person.

The person class has a method new child/3 that both updates the state of

the object that executes it and may create a new instance of the person clause,

which is the object representing the recorded child. The asserted child/1 clause

records the child object's global identity. A new person object is created if the

third argument of the new child/3 method call, the object identity of the child,

is given as an unbound variable. Thus, a call:

O1?new_child(mary,female,O2)

will result in a new person object with the global identity the returned binding

for O2 being created with state:

[surname(smith),firstname(mary),age:=0,sex(female),parent(O1)]

The new child/3 second clause is used and this calls the dynamic predicate

surname/1 to access the surname for object O1 in order to de�ne the surname/1

dynamic predicate of the new person object that it creates. It also calls the

QuP++ primitive myid to �nd the global identity of the object executing the

method6. This is in order to give an initial clause for the parent/1 dynamic

predicate of the new person object, which is deemed to be a child of the object

executing the new child method. Finally the new child/3 method adds the

clause child(O2) to the state of O1 using the QuP++ primitive self assert.

self assert rather than assert is used to ensure that the dynamic clauses for

the same predicate in di�erent objects are kept distinct.

Now a query:

O2?firstname(F)

or the equivalent queries:

O1?child(C),C?firstname(F)

O1?(child(C),C?firstname(F))

6 In manyOO languages the returned binding for Me is denoted by use of the term self.

In QuP++
self can only be used as the object identity of a call, as in self?p(..). If

we want to embed its value as an argument of a remote call, as here, we must �nd its

value using myid/1. As we remarked earlier, a self?p(...) call can be used within

a method of a class C to signal that the latest de�nition of p should be called in case

the method is being executed by an instance of a subclass of C which rede�nes p.

This is a standard use of self in OO languages.

can be used to �nd the �rst name of the new child object. The last two queries

di�er with respect to where the call C?firstname(F) is executed. In the �rst

query it is executed in the object that executes the call O1?child(C), and in

the second it is executed in the object O1. The second is a remote call contain-

ing a remote call. Remember all the objects are executing as separate threads

which repeatedly accept and execute remote calls. The di�erences between the

evaluations of the two queries is depicted in �gure 2.

O1

O2

Client
child(C)

C=O2

firstname(F)

F=mary

Client
O1

O2

child(C),
C?firstname(N)

C=O1,N=mary

firstname(N)

N=mary

Fig. 2. Remote calls

Let us now look at the method get married to/1. This does not create a

new object but metamorphises the person object that executes it into an instance

of the married person class. This is as a result of the call to the the QuP++

primitive become/2. This can be called by a static method of any object O and

when the method that calls it terminates the object O becomes an instance of a

new class. Importantly, it retains the same global identity. The �rst argument

of the become/2 call is the name of the new class, the second is a list, just

like the list argument of a new/3 call, giving values for some or all the state

components for the object as an instance of the new class. In the case of the

become/2 call of the get married to/1 method the new state list is the state

list returned by executing the system class method mystate with the clause

spouse(Sp) added as a new component. Notice that the method only succeeds

if Sp is an instance of the person class (i.e. as yet unmarried), or Sp is an instance

of the married person call that has the person being told to get married (the

Me returned by the call myid(Me)) as its recorded spouse. A call to mystate/1

uni�es its argument with a list giving the current complete state of the object O

that executes the call. The state of an object O as a married person is its state

as a person object with an extra clause for a new dynamic predicate spouse/1.

This clause records the identity of the object to whom the married person is

married.

As one can imagine, the married person class is best de�ned as a sub-class of

the person class. Its de�nition is given below. The isa person-[get married to/1]

of the class declaration means that all the static clauses and state components of

the person class, except the clauses for get married to/1 which is not inherited

and family name/1 and likes which are rede�ned, are automatically included

in the married person class. Note that the sub-class rede�nes the likes/1 pred-

icate as:

likes(O):- spouse(O);super?likes(O).

This rede�nition calls the de�nition that would be inherited so it just extends

the person de�nition for likes/1. Note that get married to/1 is removed from

the methods of the married person class.

The sub-class also has a clause for the predicate init. When a class contains

a de�nition for init, which is always deemed as private to the class, it is called

immediately after any instance of the class is created, either by a new call, or

a becomes call. Only when the init method terminates will the object accept

external queries.

class married_person isa person-[get_married_to]

state [spouse/1]

clauses {

init:- spouse(Sp),

myid(Me),

Sp?spouse(Me) -> true;

Sp^^get_married_to(Me).

likes(O):- spouse(O);super?likes(O).

family_name(N):- sex(male) -> surname(N) ;

spouse(Sp),Sp?surname(N).

get_divorced:-

mystate(St),

remove(spouse(Sp),St,NSt),

myid(Me),

(Sp?spouse(Me)->Sp^^get_divorced),

become(person,NSt).

}.

Let us see what the e�ect of the init is if we execute the conjunction:

new(person,[firstname(june),surname(jones),

sex(female),age:=20],O3),

O3^^get_married_to(O1)

where O1 is the previously created male instance of the person class. The call

O3^^get_married_to(O1) is an asynchronous call. It always immediately suc-

ceeds whether or not the call get married to(O1) succeeds in the object O3. No

answer bindings are ever directly returned from an asynchronous call and so the

query of the call usually contains no unbound variables, as here.

When O3 receives the query it will eventually execute:

become(married_person,

[spouse(O1),firstname(june),surname(jones),

sex(female),age:=20])

and this causes O3 to become an instance of the married person class. This in

turn, will cause the automatic execution of the init method of this class by O3.

This will query O1, the recorded spouse of the metamorphised O3, to see if O1

`knows' that its spouse is the object executing the init method, i.e. O3. The

init method �nds the global identity O3 by executing the call myid(Me). Since

O1 is at this time an instance of the person class, it will have no clauses for

spouse, and the call Sp?spouse(Me) will fail. This will result in the execution

by O3 of the asynchronous remote call:

O1^^get_married_to(O3)

and this will cause O1 to metamorphise into an instance of the married person

class, with recorded spouse O3. Now the init call executed when O1 becomes a

married person will �nd that its spouse O3 does `know' that it is married to O1

and the distributed activity started by the init executed by O3 will terminate.

The init method ensures consistency between the state components of the two

married person objects.

Note that it is essential that the remote call to get married to/1 of the init

method is executed asynchronously. Before the remote call terminates, the ob-

ject that executes the call will itself be queried. The interaction between O1 and

O3 is as depicted in the �gure 3. If O1 executed the remote get married to(O1)

query to O3 synchronously, that is if it suspended until the remote query suc-

cessfully terminated, it would not be able to respond to the synchronous query

spouse(O3) from O3. The two objects would deadlock, and neither would be

able to complete their init methods.

Finally let us look at the get divorced method for a married person. This

causes a married person object O to metamorphise back into a person object

and ensures that the recorded spouse, if it `believes' it is still married to O,

similarly reverts to being a person.

4 Object servers, and mobile agent objects

Below is a de�nition of an object server class. Instances of this class can be

sent messages to remotely spawn objects and can be used as stepping stones by

mobile agent objects.

person object
 O3

person object
 O1

get_married_to(O1)

become(married_person,
 [spouse(O1),...])

married_person
 object O3

get_married_to(O3)

become(married_person,
 [spouse(O3),...])

married_person
 object O1

spouse(O3)

spouse(O1)

object metamorphosis

fail

succeed

Fig. 3. Object state synchronisation

An object server accepts requests to create new objects for a particular

class keeping track of which objects it has created, in which class, in a dynamic

predicate class of/2. It also allows objects to be created with given public

names, as we shall describe below. It keeps track of these public names in a

dynamic relation used names. The two dynamic predicates are not private, so

both can be queried by other objects. Use of such an object server assumes that

the class de�nitions for all the classes for which it may need to create instances

have been loaded by the Qu-Prolog process in which the object server is running.

class object_server

state [class_of/2,used_name/1]

clauses {

newob(C,Inits,O) :-

var(O),

new(C,Inits,O),

self_assert(class_of(C,O)).

newob(C,Inits,N,O) :-

atom(N),

var(O),

\+ used_name(N),

new(C,Inits,N,O),

self_assert(used_name(N)),

self_assert(class(C,O)).

}.

The class has two methods, one for newob/3 and one for newob/4. The �rst

takes the name of the class and the state components and creates a new object

with a system generated identity O that will be returned to the client providing

the method was invoked as a synchronous query. The method for newob/4 has

an extra argument, N, which must be an atom. It then calls the four argument

new primitive passing in this symbol N. This will use N to construct the global

identity O. For example, suppose we have an instance of the object server

class running on a machine `zeus.doc.ic.ic.ac' within a Qu-Prolog process

with the name objects. The Qu-Prolog process can be given this name by a

command line option when it is started. If we send it the remote synchronous

query:

newob{person,[firstname(bill),...],billS,O)

then O will be bound to:

billS:objects@`zeus.doc.ic.ac.uk'

providing billS is not already a used name for an object already created by the

object server. (The already used names can be found by querying its used names

dynamic relation.) This is a public global identity that can be used to refer to

this particular person object in any QuP++ application. A call:

billS:objects@`zeus.doc.ic.ac.uk'?family_name(N)

from any QuP++ object, anywhere on the internet, will be routed to the object

via the ICM[17] message transport system7.

More usefully, we can give such a public identity to the object servers running

on each internet host. We can do this by launching each object server, in a Qu-

Prolog process with the name objects, with a call:

?-new(object_server,[],server,_).

If we do this on the host zeus.doc.ic.ac.uk, we can remotely launch an object

on this host with a remote call:

server:objects@`zeus.doc.ic.ac.uk'?newob(person,[...],O).

or, if we want the launched object to have a public name, with a query:

server:objects@`zeus.doc.ic.ac.uk'?newob(person,[...],billS,O).

As we remarked earlier, such a remote launch requires that the class de�nition for

person has been loaded on zeus.doc.ic.ac.uk. We could, however, elaborate

the object server so that it keeps track of which class de�nitions have been

loaded, loading new ones as required. Then all that we need to assume is that

we only use a given object server to create objects for classes to which it has

access to the class de�nition.

Consider now the class de�nitions:

7 This typically requires ICM processes to be running on each host on which we have

a QuP++ process running.

class mobile_object

clauses {

move_to(Host,O):-

mystate(St),

class(C),

server:objects@Host?newob(C,St,O),

die.

}.

mobile_person isa [person,mobile_object].

The mobile object class is an abstract class. It will have no direct instances

but can be used as a super-class whenever we want some class of objects to be

re-locatable. The mobile person class inherits from this class, and the person

class.

The single method of the mobile object class takes the name of a host

machine, Host and relocates the object by sending a remote newob/3 query to

the publically named object server on that host. Executed by a mobile person

object, the call mystate(St) will bind St to the person state component and

the call class(C) will bind C to mobile person. The last action of the method,

executed if the remote newob call succeeds, is die. This terminates all the threads

executing within the object on the current host.

Suppose O1 is mobile person object initially created by a newob/3 query to

some object server. If we then execute8:

O1?move_to(`pine.doc.ic.ac.uk',O2)

then, providing there is an object server running on that host, the object O1

will relocate to become the object with global identity O2. This safely relocates

an object that only has the default interface thread executing at the time it is

relocating and the move to is executed by this thread. If we want to relocate a

multi-threaded object we should program it so that all threads but the interface

thread have terminated, perhaps after recording information about their execu-

tion state in the state of the object, before move to is executed. The object's

class should then have an initmethod that will re-launch the additional threads

when the object is re-launched on the new host.

Of course, if we are to have objects moving from object server to object

server, we should augment the object servers so that they can be informed when

an object moves. We should add a new method to the object server class:

moved_to(NewHost):-

caller(O),

self_retract(class_of(O,C)),

(O=N:_@_,atom(N)->self_retract(used_name(N));true).

and the move to/1 method of a mobile object should be:

8 We can also identify the host using its IP number

move_to(Host,O):-

mystate(St),

class(C),

server:objects@Host?newob(C,St,O),

myid(_:objects@CurrHost),

server:objects@CurrHost^^moved_to(Host),

die.

Notice that the new moved to/2 method of the object server uses caller /1

to �nd the identity of the local object that is moving, and the move to method

�nds the identity of the object server that should be informed of the move by

massaging the term that is its own global identity. It makes the assumption that

all these moving objects are created by newob messages to object servers and

hence have global identities of the form:

Name:objects@CurrHost

This is the case even if the object is not given a public name, Name is then an

atom such as object234.

To many, a mobile agent is a mobile object with a purpose. The purpose

manifests itself in proactive behaviour when the agent object arrives at a new

site. Below is a class de�nition for a two threaded generic mobile agent object.

class mobile_agent isa mobile_object

state [name,hostlist,script/1,report_to]

clauses {

init:-

hostlist*=[CH|Hosts], % find where I am -- head of hostlist

hostlist:=Hosts, % update hostlist

report_to*=R, % find agent to report to

name*=N, % find my name

myid(Me), % find my current global id

R^^i_am_now(N,Me), % inform report_to agent of new id

object_thread_fork(_,script(CH)). % execute script for CH

% as a separate thread

} private [move_to].

It has a state component which is a list of hosts to visit, and a script of what

to do as it arrives at each host. The script is given by clauses for the dynamic

relation script/1. It has another state component, report to, which is the

global identity of an agent to which it should report, and one called name which

is some name by which it can be recognised. Each time it arrives at a host it

executes the init method. This sends an asynchronous call to the report to

agent object giving its current global identity. This is so that the report to

agent can send remote queries accessing its current state.

The init method of this class also calls the script progam passing in the

name of the current host which is assumed to be the �rst host on hostlist.

The script is executed as a separate object thread so that the main thread of

the object can become the default interface thread responding to remote calls,

in particular calls from the report to agent that will have been informed of its

current identity. It also updates hostlist by removing the current host name.

The called script/1 program will typically end by executing a move to/1 call

on the inherited method of the mobile object class. To implement a mobile

agent we only need to assume that this generic class de�nition is available on

each host that the agent will visit. The actual script for the mobile agent will

be passed as part of the state component of the agent and will be agent speci�c.

server:objects@H1?newob(mobile_agent,

[hostlist:=[H1,...,'zeus.doc...'],report_to:=R,

{script('zeus....'):- % script for home base

make_visible(found_pair/2),

!. % terminate script thread

script(H):- % script for elsewhere

make_visible(found_pair/2),

forall(server:objects@H?

class_of(Mp,married_person),

(Mp?(sex(male),spouse(Sp)),

self_assert(found_pair(Mp,Sp)))),

hostlist*=[H|_],

self^^move_to(H,_).}],_)

The above call creates a mobile agent that moves to each of the list of hosts

[H1,...'zeus.doc...'] reporting to an agent object �R. It is initially created

on H1. In all but the last host 'zeus.doc...', which is its home base, perhaps

the host on which R resides, it queries all the local married person objects to

create a list of the married person pairs on that host. It �nds the identities

of the married person objects by querying the class of relation of the local

object server. The found married person pairs, if any, are cached in a new dy-

namic relation found pair. self assert can be used to add clauses for dynamic

relations that are not declared in the state component of an object's class. By

default they become additional private dynamic relations of the object and are

automatically collected as part of the state list constructed by mystate/1. So the

clauses for these additional dynamic relations will move with the mobile agent.

Any private dynamic predicate can be made visible if the object executes a call to

make visible/1. This is what our mobile agent script does at each host, allowing

the report to agent to query the found pair/2 relation each time the mobile

agent reports its new identity. Finally note that the last action of the script,

at other than the home host, is an asynchronous call self^^move_to(H,_) to

itself. This is instead of of a direct method call move to(H,). The direct call

would result in the inherited move tomethod being executed in the script thread,

whereas the asynchronous self call results in its being sent as an asynchronous

remote call to the interface thread of the mobile agent. Sending it for execution

in the interface thread is cleaner. It means that when it is executed the script

thread on the current host will have terminated because it immediately termi-

nates after sending the self call. It also means that any remote synchronous

call currently being executed by the interface thread, and any such calls that

are pending, will be completed before the move to method is executed by this

thread. (Remember that remote calls are queued and executed by the interface

thread in time order of arrival.)

This is a very simple mobile agent program but the agent, in its ability to

concurrently accept queries about the information it has gathered, whilst it is

gathering new information, is quite sophisticated. Its activity is as depicted in

�gure 4. We can use the same program to launch mobile agents with scripts

that �nd out new hosts to visit, adding the host name to hostnames. We can

also de�ne other mobile agent classes, inheriting from this class, or directly from

mobile object, that allow agents to be recalled or given new scripts on their

journey.

object
server object

server

report_to
agent

newob(mobile_agent,...)

launched
mob. ag.
with two threads

i_am_now(O)

 script
sub-thread

class_of(..)

possibe query accessing
found_pairs relation

married
person obj.

sex(male),
spouse(Sp)

interface
thread
 O

self^^move_to(..)

newob(mobile_agent,...)

object state

Different hosts

Fig. 4. Simple mobile agent

5 Advanced reasoning agents

In this section we show how the Qu-Prolog support for quanti�ers, substitutions

and object variables can be used to implement powerful reasoning agents that

go beyond Prolog inference.

In order to support the programming of such reasoning agents the Her-

brand Universe (or object-level) of Qu-Prolog extends that of normal Prolog.

Qu-Prolog's Herbrand universe has quanti�ed terms and object level variables.

Correspondingly the meta-level of Qu-Prolog includes terms to represent the

object-level quanti�ed terms and variables. Object variables (or more strictly

object-variable variables) are meta-level variables that range over variables at

the object-level. This means that one object variable may be bound to another

during uni�cation, but cannot be bound to any other kind of term.

Qu-Prolog also supports a notation for substitution application. Such a meta-

level term represents the application of a substitution to a term at the object-

level with change of bound variables as required.

Uni�cation in up to alpha-equivalence. In other words, the uni�cation algo-

rithm attempts to �nd instantiations of variables that make two terms equal up

to change of bound variables. We present some example uni�cation problems

shortly to illustrate the uni�cation of quanti�ed terms.

Note that, in Qu-Prolog, there is a distinction between substituition and

instantiation. When talking about substitution we mean variable substitution

at the object-level and consequently change of bound variables is required when

`pushing' a substitution into a quanti�ed term (at the object-level). On the other

hand, instantiation (often called substitution when discussing standard Prolog)

is really substitution at the meta-level. Instantiations therefore `move through'

terms representing object-level quanti�ed terms without requiring change of

bound variables.

Object variables use the same syntax as Prolog atoms but are distinguished

from atoms by declaration. The declaration

?- obvar_prefix([x,y]).

declares x and y, as well as x and y followed by numbers or underscores and

numbers, as object variables. So, for example, x0, y_1 are also object variables.

Quanti�er symbols are declared using the same method as declaring opera-

tors. So, for example,

?- op(500, quant, q).

declares q to be a quanti�er symbol with precedence 500. Note, however, that

this declaration does not give any semantics to the quantifer symbols (other than

as an object variable binder) { the semantics are de�ned by the predicates of

the program.

Assuming the declarations above, the following interaction with the inter-

preter shows Qu-Prolog uni�cation in action.

| ?- x = y.

x = y

y = y

| ?- x = a.

no

| ?- q x f(x) = q y f(y).

x = x

y = y

| ?- q x A = q y B.

x = x

A = [x/y]B

y = y

B = B

provided:

x not_free_in [$/y]B

| ?- [A/x]B = 3.

A = A

x = x

B = B

provided:

[A/x]B = 3

The �rst example shows that object variables can be uni�ed with each other.

The second example shows that object variables don't unify with other terms.

The third example shows that uni�cation of quanti�ed terms is up to alpha-

equivalence { neither x nor y is instantiated by the uni�cation.

The forth example extends the third example { to make the two terms alpha

equivalent all free occurrences of y in B are replaced by x. The notation [x/y]B is

the application of a substitution to B with this property. Note that, without more

information about B, the substitution cannot be evaluated. Also note that the

uni�cation adds the constraint x not_free_in [$/y]B (where $ is an atom).

This constraint is also required in order to make the terms alpha-equivalent.

If x and y represent di�erent object variables then the constraint reduces to

x not_free_in B { which says that since the left hand side of the uni�cation

has no free x's then neither can the right hand side. On the other hand if x and y

represent the same object variable then the constraint becomes true since there

are no free x's in [$/x]B. Also, in this case there are no free x's on either side

of the uni�cation.

The �nal example shows a uni�cation problem that delays, that is, becomes

a constraint. This is because the uni�cation problem has two solutions: B = 3

and B = x, A = 3. Uni�cation problems that have more than one solution or

problems for which it is hard to prove there is only one solution, delay in the hope

that some future computation will simplify the problem. The Qu-Prolog release

comes with an example program, incomplete_retry_delays that attempts to

�nd solutions to delayed uni�cation problems. This program is used in the Ergo

prover to eliminate such delays on request and is used in our example below to

eliminate any remaining delayed uni�cation problems.

Let us now look at the implementation in QuP++ of a reasoning agent whose

inference engine is a tableau style prover for full �rst order predicate logic. The

inference engine is given a list of sentences in �rst order logic and tries to �nd

a contradiction { in other words it tries to show the collection of sentences is

unsatis�able. The inference engine is supplied with a resource bound that limits

the number of inference steps.

We begin with a discussion of the inconsistency checker class (the inference

engine) and later look at the reasoning agent class.

The inconsistency checker and the reasoning agent and its clients need to

represent logical formulae as Qu-Prolog terms and this is aided with the following

declarations.

?- obvar_prefix([x,y]).

?- op(860, quant, all). % The universal quantifier

?- op(860, quant, ex). % The existential quantifier

?- op(810, fx, ~). % negation

?- op(820, xfy, and). % conjunction

?- op(830, xfy, or). % disjunction

?- op(840, xfy, =>). % implication

?- op(850, xfy, <=>). % equivalence

Following the declarations, the Qu-Prolog parser will then recognize the terms

below (for example).

all x p(x)

[A/x]B

all x_1 ex x_2 (p(x_1) => q(x_2))

The �rst term represents the quanti�ed term whose quanti�er symbol is all,

whose bound variable is x and whose body is p(x). The seond term represents

a substitution application where all free x's in B are to be replaced by A.

The header for the inconsistency checker class is given below. The state

variable simplifier is the address of a simpli�er agent that the inconsistency

checker uses to simplify the formulae.

class inconsistency_checker

state [simplifier]

inconsistent(Fs,R,RR):-

find_contradiction(Fs,R,RR,not_simplified_yet).

% ... clauses for find_contradiction/4 and make_instances/5

} private [find_contradiction/4,make_instances/5]

In the only public method of this class, inconsistent(Fs,R,RR), Fs is a list of

formulae and R is a resource bound { the maximum number of inference steps

allowed in trying to reduce Fs to an obviously inconsistent list of formulae. RR

is the remaining sumber of inference steps after an inconsistency is found. The

state variable simplifier holds the identity of a simpli�er agent that can be

used, at most once, to do auxilary simpli�cation reductions.

find_contradiction(_,0,_,_):- !,fail. % resource bound exceeded

find_contradiction(Fs,R,RR,STag) :-

member(~true, Fs),!,

RR is R-1.

find_contradiction(Fs,R,RR,STag) :-

member(~(X=X), Fs),

incomplete_retry_delays,

!,

RR is R-1.

find_contradiction(Fs,R,RR,STag) :-

member(X, Fs),

member(~X, Fs),

incomplete_retry_delays,

!,

RR is R-1.

find_contradiction(Fs,R,RR,STag) :- % Split conjunct.

member_and_rest(A and B, Fs, Rst),

!,

NR is R-1,

find_contradiction([A,B|Rst],NR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Remove an ex quantifier.

member_and_rest(ex x A, Fs, Rst),

x not_free_in Rst,

!,

NR is R-1,

find_contradiction([A|Rst],NR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Branch on disjunct.

member_and_rest(A or B, Fs, Rst),

!,

NR is R-1,

find_contradiction([A|R],NR,IRR,STag),

find_contradiction([B|R],IRR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Branch on implication.

member_and_rest(A => B, Fs, Rst),

!,

NR is R-1,

find_contradiction([~A|R],NR,IRR,STag),

find_contradiction([B|R],IRR,RR,STag).

find_contradiction(Fs,R,RR,STag) :- % Do univ. instantiations.

make_instances(Fs, Fs, NewFs, R, NR),

NR < R, % made at least one univ. instantiation

!,

find_contradiction(NewFs,NR,RR,STag).

% Call the simplifier - only if not been called before.

find_contradiction(Fs,R,RR,not_simplified_yet) :-

NR is R-1,

simplifier*=S,

S?simplify(Fs,SFs), % remote call to simplifier agent

find_contradiction(SFs,NR,RR,simplified).

% Make instances of all universal and

% negated existential formulae.

make_instances([], New, New, R, R).

make_instances([H|T], Fs, NewFs, R, NR) :-

(H = all x A

->

IFs = [[_/x]A|Fs],

IR is R - 1

;

H = ~ex x A

->

IFs = [~[_/x]A|Fs],

IR is R - 1

;

IFs = Fs,

IR = R

),

make_instances(T, IFs, NewFs, IR, NR).

The private method find_contradiction/4 attempts to reduce its Fs argu-

ment to a contradictary list and succeeds if it can do this within the resource

bound of R steps. The last argument is a symbol
ag that switches to simplified

when the simplifier agent has been used in a particular inference, preventing

another use. The third argument will return the �nal resource count when a con-

tradiction is found. It is not of interest for a top level call, but it must be used

when an inference splits into two sub-proofs to ensure that the second sub-proof

uses only the resource left after the �rst sub-proof succeeds.

The �rst clause for find_contradictition/4 causes the call to fail when the

resource bound has been reduced to 0. The next three clauses deal with direct

contradictions in its list of formulae �rst argument. The remainder deal with the

logical operators and simpli�cation. We only give representitive examples of this

last group of clauses. The predicate member_and_rest(E,L,R) succeeds if E is

somewhere on L and R is L with E removed.

The sixth clause eliminates existential quanti�ers. The call to the built-in

predicate not_free_in/2 constrains x to be not-free-in R as required.

The universal instantiation rule makes an instance of each universal and

negated existential formula and adds this to the list of formulae. For example,

the formula all x A is instantiated to A with all free x's in A replaced by a new

meta-variable representing a yet-to-be-determined instance and this is added as

a new formula. Since the universally quanti�ed formulae remain, the rule can

be re-applied any number of times providing there is at least one new formula

added by its application. Repeated application of the rule to the same formulae

is needed because sometimes a proof requires several di�erent instantiations of a

universally quanti�ed formula. After each application we can expect that earlier

rules will apply to the augmented list of formulae and these will be exhaustively

applied before it is re-used. The earlier rules always remove the formula to which

they apply.

The universal instantiation rule is made to fail if no universal instantiation

is found by the call to the auxiliary predicate make_instances/5 to prevent

repeated, pointless application to lists of formulae which contain no universally

quanti�ed formulae. In this case, when the universal instantiation rule is �rst

called and fails, only the simpli�cation rule can be used, as a last resort. After

this has been used once, when all the earlier rules have been exhaustively applied

and the universal instantiation rule is recalled and again fails, the entire proof

fails.

The last clause sends a message to a simpli�er agent that attempts to simplify

the formula list according to its own simpli�cation rules. The prover agent waits

until the simpli�er returns a simpli�ed list. This clause demonstrates how one

reasoning agent can take advantage of the skills of other reasoning agents in

solving its problems. The simpli�er might, for example, be a rewrite system for

arithmetic subexpressions.

We now give an example of the inference engine in action by showing the

sequence of transformations that find_contradictition would generate given

a list of formulae.

(initial list)

[~ex x r(x), p(a) or ex x1 q(x1), all y1 ~q(y1),

all z1 p(z1) => r(z1)]

(or rule on: p(a) or ..)

[~ex x r(x), p(a), all y1 ~q(y1), all z1 p(z1) => r(z1)],

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(univ. instant. rule on: ~ ex x .., all y1 .., all z1 ..

of first list)

[~r(X1), p(a), ~q(Y1), p(Z1) => r(Z1), ~ex x r(x),

all y1 ~q(y1), all z1 p(z1) => r(z1)],

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(implies rule on: p(Z1)=>r(Z1) of first list)

[~r(X1), p(a), ~q(Y1), ~p(Z1), ...],

[~r(X1), ~q(Y1), r(Z1), ...],

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(contradiction rule appied to: p(a),~p(Z1) of first list

and to: ~r(X1),r(Z1) of second list)

[~ex x r(x), ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(ex rule applied to: ex x1 q(x1))

[~ex x r(x), q(x2), all y1 ~q(y1), all z1 p(z1) => r(z1)]

(univ. instant. rule applied to:

~ex x r(x), all y1 ~q(y1), all z1 p(z1) => r(z1))

[~r(X2), ~q(Y2), p(Z2) => r(Z2), ~ex x r(x), q(x2), ...]

(contradiction rule applied to: ~q(Y2),q(x2))

success

When the ex rule is applied the new object variable (which comes from the

rule instance) is set to be not free in all the other formulae in the list.

Note that we can use find_contradiction to attempt answer extraction

during the proof. If, for example, we have the formula ~r(X), instead of the

formula ~ex x r(x) in the list of formulas at the start of the above contradiction

derivation, a contradiction will also be found generating the binding X=a. In fact,

if the formulae in the knowledge base are essentially horn clauses and the `query'

formula is of the right form then find_contradiction behaves as a Prolog goal

evaluator.

However, answer extraction is not always possible. If we take ~ex y r(y) as

the query formula and if the knowledge base consists of the formula ex x r(x) or

the formula r(a) or r(b) then find_contradiction will succeed. If, however,

the query formula is ~r(X) then a contradiction cannot be found. In the �rst case,

the use of the rule for existential quanti�cation causes a not-free-in condition to

be generated that prevents X from being instantiated to x. In the second case,

two di�erent instantiations are required during the proof.

We now turn our attention to an example of a reasoning agent class. This is

the class de�nition for a reasoning agent. Each reasoning agent object contains

a knowledge base of believes facts that can be initialised when the agent is

created and added to whilst it is alive. Clients of the reasoning agent can use the

ask method to see if the agent believes the supplied formula. The agent believes

the formula if it is in the knowledge base or can be deduced from the knowledge

base within the supplied inference step resource bound.

class reasoner isa inconsistency_checker

state [believes/1, told/1, mentor/1]

clauses{

init :- object_thread_fork(_,absorb_told_info).

absorb_told_info:-

thread_wait_on_goal(self_retract(told(F)),

findall(S, believes(S), Fs),

(inconsistent([F|Fs],200,_) ->

true

;

self_assert(believes(F))

),

absorb_told_info.

tell(B) :-

caller(M),

mentor(M),

self_assertz(told(B)).

ask(F,_) :-

believes(F),

!,

caller(Cl),

Cl^^proved(F).

ask(F,R):-

nonvar(F),

integer(R),

R>0,

caller(Cl),

object_thread_fork(_,try_to_prove(F, R, Cl)).

try_to_prove(F, R, Cl) :-

findall(S, believes(S), Fs),

(inconsistent([~F|Fs],R,RR) ->

Cl^^proved(F,RR)

;

Cl^^not_proved(F,RR)

).

}

private [try_to_prove/2, absorb_told_info/0, inconsistent/2,

told/1].

As an example use of this program, suppose we execute:

new(reasoner,[{believes(p(a) or ex x1 q(x1)). ..},..],Ag)

where the agent is given the formulas:

p(a) or ex x1 q(x1), all y1 ~q(y1), all z1 p(z1) => r(z1)

as its initial beliefs. If some other agent Cl then sends the query:

Ag^^ask(r(X),100)

Ag will spawn a contradiction sub-proof trying to reduce:

[~r(X), p(a) or ex x1 q(x1), all y1 ~q(y1),

all z1 p(z1) => r(z1)]

to a contradiction. Since this will succeed, the reply:

Cl^^proved(r(a))

will be sent to the client agent.

The mentor/1 dynamic predicate is used to tell the agent which other agents

are allowed to give it new information by calling its tell method. Notice that

the method does not immediately add a believes/1 fact. Instead a told/1 fact

is asserted and it is the responsibility of the absorb_told_info `daemon', that

runs as a separate thread launched by the init method, to check if the told

sentence F is inconsistent with the sentences already in the knowledge base. If it

can prove inconsistency within a resource limit of 200 inference steps then the

told sentence is ignored. Otherwise the told sentence is added to the knowledge

base. This is potentially dangerous since it could produce a knowledge base with

`deep' contradictions, but it is pragmatic. That the agent will not accept tell/1

calls except from its mentors is another safeguard.

The meta-call predicate thread_wait_on_goal, used in the reasoner class

de�nition, causes the thread to suspend until the goal which is its argument

succeeds. That is, the argument goal is tried. If it succeeds, the meta-call succeeds

and no further solutions of the argument goal are sought on back-tracking. If

it fails, the thread executing the meta-call suspends until there is some update

to the dynamic clause data base, or the record date base. The argument call

is then retried. This try, fail, retry, continues inde�nitely until the argument

goal succeeds. In this case it will cause the absorb_told_info object thread to

suspend until some told(F) fact is asserted by the interface thread. The thread

deletes the asserted fact and asserts a believes(F) fact if F cannot be shown to

be inconsistent with the agent's current beliefs within 200 inference steps. If it

can be shown to be inconsistent with the current beliefs no belief fact is asserted.

The absorb_told_info thread then recurses to handle the next asserted told/1

fact.

This is one simple example of a reasoning agent. Another possibility is to

de�ne a cooperative reasoning agent that can be used to implement a distributed

knowledge base. The system would contain a collection of agents, each with their

own local knowledge base, that would cooperate to produce proofs based on the

combined knowledge of the group. Each agent could have meta knowledge about

which other agents `know about' particular predicates and hence can be asked to

prove or disprove predications (or their negations) containing these predicates.

To achieve this we can de�ne a sub-class coop_reasoner of the reasoner

class. This is given below.

It has an extra dynamic predicate:

has_proved_false(L,Ag,RR)

which is used by the agent to record answers to isfalse/2 queries it has sent

out to other agents. It also has extra methods for accepting asynchronous calls

isfalse(L,R), that cause the agent to try to contradict L within R inference

steps, and for accepting asynchronous proved_false(L,RR) replies to such calls

that it has sent to other agents. Here RR is the number of inference steps left

from the resource R given in the isfalse/2 request.

The three new clauses for find_contradiction/4 add a new way for ter-

minating a contradiction proof. When a literal L is found in the current list of

formulas with a predicate P, and the agent believes that some other agent Ag

knows about P, providing the complement literal to L is not in the currentl list,

Ag is sent an asynchronous isfalse(L,RforAg) call. The proof then continues

with asked(L,A) replacing L in the list of formulas. (For this reason we need

the second new clause for find_contradiction/4 that terminates a proof when

a literal is found for which there is an asked/2 formula mentioning its comple-

ment.) RforAg is a number of inference steps that Ag should use in trying to

contradict L. It is got by dividing up the remaining inference steps in a manner

dependent upon L. We leave this unde�ned. A suitable default de�nition would

just halve the remaining inference steps, no matter what L is. Notice that when a

sub-contracted proof is achieved inside the given resource bound, signalled by the

eventual self asserting of a has_proved_false(Ag,L,RR) dynamic clause by the

concurrently executing interface thread as a result of a proved_false(L,RR)

call, the unused inference steps RR of the sub-contracted proof are added to the

still unused inference steps of the main proof to give a more accurate value for

the unused the inference steps of the main proof.

The agent's interface thread will concurrently be responding to queries from

other agents, including any proved false(L) reply sent back from Ag. The in-

terface thread will respond to this by self asserting a has proved false(L,Ag).

These dynamic facts are handled by the second new clause. This second clause

looks for asked(L,Ag) reminders left in the current list of formulas. For each

such reminder it checks to see if has proved false(L,Ag) holds, i.e. if such a

fact has been asserted by the concurrently executing interface thread. If any such

replies have been received to the sub-contracted proofs, the main contradiction

proof immediately terminates.

class coop_reasoner isa reasoner

state [has_proved_false/3]

clauses {

find_contradiction(Fs,R,RR,STag) :-

member_and_rest(L, Fs, Rst),

literal(L),

predicate_of(L,P), % perhaps should sub-contract L

believes(knows_about(P,Ag)), % to Ag but should not if

complement(L,CompL), % Fs contains complement of L

\+ member(CompL,Rst), % or a note that Ag has been

\+ member(asked(CompL,Ag)), % asked about its complement

divide_up(L,R,RforAg,NR),

!,

isfalse(L,RforAg)^^Ag,

find_contradiction([asked(L,Ag)|Rst],NR,RR,STag).

find_contradiction(Fs,R,RR,STag) :-

member(L, Fs),

literal(L),

complement(L,CompL), % find complement to L

member(asked(CompL,_), Fs), % equiv. to having CompL

incomplete_retry_delays,

!,

RR is R-1.

find_contradiction(Fs,R,CRR,STag) :-

member_and_rest(asked(L,A),R),

has_proved_false(L,A,RR), % reply has come from A about L

incomplete_retry_delays,

CRR is R + RR,

!.

find_contradiction(Fs,R,RR,STag):-

super?find_contradiction(Fs,R,RR,STag).

proved_false(L,RR):-

caller(Ag),

self_assert(has_proved_false(L,Ag,RR).

isfalse(L,R):-

caller(Ag),

findall(S,believes(S),Fs),

object_thread_fork(_,try_to_contradict(L, R, Ag)).

try_to_contradict(F, R, Ag) :-

findall(S, believes(S), Fs),

inconsistent([F|Fs],R) -> proved_false(L)^^Ag ; true.

} private [has_proved_false].

6 Related Work

With repect to its OO features the design of QuP++ has been much in
uenced by

L&O [16] and DK-Parlog++ [9]. L&O is an OO extension for a single threaded

Prolog and the objects are not active. However, QuP++ borrows its inheritance

semantics from L&O. DK-Parlog++ is an OO extension of a distributed hy-

brid of Parlog[6] and the multi-threaded IC-Prolog II[10]. DK-Parlog++ classes

have both procedural methods (Parlog clauses) and knowledge methods (Pro-

log clauses). Object state, as in QuP++, is represented by both state variables

and dynamic clauses. QuP++ methods are the equivalent of the DK-Parlog++

knowledge methods. However, DK-Parlog++ has only single inheritance and

does not have built in support for multi-threaded objects where all the threads

can access and update the object's state with atomic operations. It is also re-

stricted to a local area network, whereas QuP++ objects can be distributed over

the internet.

DLP [11] is perhaps the closest distributed OO LP language to QuP++. DLP

has classes with multi-inheritance and class instances run as separate threads.

Object state can only be recorded as state variables, not as clauses. Method

invocation is a remote synchronous call. The default is that such a call spawns

a query sub-thread in the target object. This is similar to the O??Q remote call

of QuP++ that we have not discussed in this paper. For a query O??Q the dif-

ferent solutions are returned by O to the caller Cl, one at a time, as required

by backtracking within Cl. This is distributed backtracking and its QuP++ im-

plementation is sketched in [7]. For a O?Q call all its solutions are returned to

Cl in a list with local backtracking within Cl. DLP does not have the equiva-

lent of the ? and ^^ remote calls. In addition, it appears objects can only be

single threaded. An object can have the equivalent of an init method but this

cannot spawn sub-threads, it can only spawn new objects that have a separate

state. Because of this the DLP init method must periodically expiclitly inter-

rupt its pro-active execution to accept remote calls. One cannot have QuP++

style multi-threaded objects, with one thread accepting remote calls whilst the

other threads concurrently engage in their own speci�c activities interacting, if

need be via the shared object state. In addition, neither DLP and DK-Parlog++

have re
ective methods such as class/1 and mystate/1 and consequently do

not allow easy programming of mobile agents. Both are also OO extensions of

normal Prolog, with no special support for writing inference systems.

CIAO Prolog is a rich Prolog systems that also has multi-threading[4], with

inter-thread communication via atomic updates of the dynamic data base, and a

module system which has been used to implement an OO extenssion O'CIAO[5].

O'CIAO supports multiple inheritance between classes with class methods being

static clauses and object state being represented as dynamic clauses. Dynamic

clauses for the di�erent object instances are distinguished in the same way as in

QuP++ by adding the object identity as an extra argument to the predicate they

de�ne. The objects of O'CIAO are passive objects, the instances do not run as

separate threads, however CIAO itself has active modules which can also have

state, repesented as dynamic clauses local to the module. These active modules

can be given global identities that can be stored in �les and client modules

can make use of the active module by referencing this �le and declaring which

predicates it is using from amongst those that are exported by the module.

These exported predicates are then called in the normal way within the client

module, but the implementation will do a remote call to the active module. The

concept of an active module/class could be added to O'CIAO to give it active

objects. Also, the multi-threading of CIAO could be used to allow multi-threaded

objects sharing the same dynamic clause object state, but this integration of all

the features of CIAO has apparently not yet been done. CIAO Prolog also has

constraint handling but has no built in support for programming non-clausal

theorem provers.

Mozart-Oz[19] is a multi-paradigm distributed symbolic programming lan-

guage with support for logic programming, functional programming and con-

straint handling. It is being used for distributed agent applications[22]. It also

has passive objects, essentially records of functions which can access and update

state local to the record. Mozart-Oz is multi-threaded with the threads shar-

ing a common store of values and constraints. The store is used for inter-thread

communication. Constraints are posted to the store and the store can be queried

as to whether some particular constraint is entailed by the current constraint

store. A thread executing such a query will suspend until the store entails the

constraint. This is a generalisation of our use of thread_wait_on_goal/1 in

QuP++.

In Mozart-Oz any data value, including on object or an unbound variable

of the constraint store, can be shared across di�erent Mozart-Oz processes by

creating a ticket for the data value using a special primitive. The ticket is an

ASCII string and is similar to the global identity of an active object in QuP++,

which is a term constructed from three symbols. This ticket string can then

be used in another Mozart-Oz process to access the value associated with the

ticket, even if it is held in a non-local store, by calling another ticket value access

primitive.

Active objects can be programmed by using a Mozart-Oz port which can be

sent a message from any thread that has access to the port, perhaps via a ticket.

A port is rather like an object's message queue in QuP++. Another thread then

accesses the messages sent to the port as elements of an incrementally generated

list, calling an appropriate method of some local passive object for each accessed

message. Such a port/thread/object combination behaves very like a QuP++

active object, but the calling of the object's methods and the sending of replies

has to be achieved in Mozart-Oz using explict asynchronous message sends to

ports and explicit accesses of messages from the port message streams. That is,

what we have referred to as the interface thread has to be explictly programmed

as a wrapper for an object to make it active. This is how the remote calls of

QuP++ are implemented, using the inter-thread communication primitives of

Qu-Prolog[7], but QuP++ presents to a programmer the higher level abstraction

of synchronous and asynchronous remote calls directly to an object's methods.

Gaea[20] is a multi-threaded OO Prolog system with active objects which

have dynamic methods and modi�able inheritance trees. Gaea is not a class

based OO system. Instead each active object, which in Gaea is just a thread

with an associated cell of clauses, executes in an environment of a list of parent

cells for its cell. These parent cells have the role of super-classes, but the list of

parent cells can be dynmically constructed as the object is created. Each of

these parent cells can itself have an associated list of parent cells. So an object

executes in an tree structured environment of ancestor cells rooted at its cell.

This is similar to a QuP++ object executing in tree structured environment of

the static methods of its super classes (the parent hierarchy of Gaea cells) with

its own state component of dynamic clauses and state variables (the root cell

directly linked with the Gaea object/thread). The di�erence is that in Gaea, the

inheritance structure is created dynamically, as the active object is forked, and

it can be modi�ed whilst the object is executing. Any parent cell of a cell can be

removed and new ones can be added. So the entire inheritance hierarchy for an

object is dynamic. These modi�cations to the inheritance structure can be made

by the object itself, or by another object executing in the same Gaea process.

Cells can contain cell variables as well as clauses. The cell variables are similar

to the state variables of a QuP++ object. The cell clauses can be updated using

special cell assert and retract primitives, similar to the self assert and retract

of QuP++, as can the cell variables. Objects communicate via the clauses and

cell variables of the cells they both have access to. In addition, a call can be

evaluated relative to a named cell. When this is the root cell linked with an

object, this is equivalent to a call to the methods of that object, even though the

call is executed in the caller, rather than the callee. Clearly this is only possible

when the di�erent objects execute in the same Gaea process, for only then will

each have access to the cell clauses of the other objects. Gaea is not a distributed

system.

The ability to modify the inheritance structure of an object is a much more

dymamic way of changing an object's behaviour than the become/2 primitive of

QuP++. However, the
exibility may come at a cost of program transparency.

Gaea has no special support for writing theorem provers.

�Prolog, see for example [2], is a logic programming language with built-in

support for �-terms and consequently can be used as an implementation language

for theorem provers in much the same way as is done in Qu-Prolog. �Prolog

does not, however, appear to provide as much support as Qu-Prolog does for

implementing interactive theorem provers, nor does it appear to have support

for multiple threads or even high-level communication bewteen di�erent �Prolog

processes.

In this paper we have shown how simple multi-threaded agents can readily be

implemented in QuP++. Since our main concern was illustrating the features of

the language we have not developed any complex agent architectures. However,

it would be no great e�ort to implement logic based agent architectures such

as those described in [3], [21], [23]. Implementing more complex architectures,

with both sophisticated reasoning and reactive capabilities, is the subject of our

on-going research.

Bob Kowalski wrote a short paper in 1985 [13] which anticipated many of

the ideas now being discussed with respect to logic based agents. In particular,

the paper discusses the need for information assimilation by resource bounded

reasoning agents interacting with one another and the world. Our co-operative

reasoning agents are a partial realisation of the ideas expressed in that paper. His

edeas have since been elabaorated in [14] and [15] to allow interleaving of action

and reasoning within an agent in order to reconcile the need for rationality and

reactivity. The agent architecture sketched in these papers could also be easily

implemented in QuP++.

References

1. Holger Becht, Anthony Bloesch, Ray Nickson and Mark Utting, Ergo 4.1 Refer-

ence Manual, Technical Report No. 96-31, Software Veri�cation Research Centre,

Department of Computer Science, University of Queensland, 1996.

2. C. Belleann�ee, P. Brisset, O. Ridoux, A pragmatic reconstruction of �Prolog, Jour-

nal of Logic Programming, 41(1), 1999, pp 67-102

3. M. Bozzano, G. Delzanno, M. Mattelli, V. Mascardi, F. Zini, Logic Programming

and Multi-Agent Systems: A synergic combination for applications and semantics, in

The Logic Programming Paradigm, (eds K. Apt et al), Springer-Verlag, 1999.

4. M. Carro and M. Hermenegildo, Concurrency in Prolog Using Threads and a Shared

Database. Proceedings of ICLP99, (ed. D. De Schreye), MIT Press, 1999, pp 320-334.

5. A. Pineda and M. Hermenegildo, O'Ciao: An Object Oriented Programming

Model for (CIAO) Prolog, Research Report CLIP 5/99.0, (accessible from

http://www.clip.dia.�.upm.es/), Facultad de Informatica, UPM, Madrid, 1999.

6. K. L. Clark, S. Gregory, Parlog: Parallel Programming in Logic, ACM Toplas 8(1),

1-49 pp, 1986.

7. Keith Clark, Peter Robinson and Richard Hagen. Multi-threading and Message

Communication in Qu-Prolog Theory and Practice of Logic Programming, 1(3),

2001, pp 283-301.

8. Keith Clark, Peter J. Robinson and Richard Hagen, Programming Internet Based

DAI Applications in Qu-Prolog, Multi-agent systems, (eds. C. Zhang, D. Lukose),

Springer-Verlag, LNAI 1544, 1998.

9. K.L. Clark, T.I. Wang, Distributed Object Oriented Logic Programming, Pro-

ceedings of FGCS94 Workshop on Co-operating Heterogeneous Information Systems,

Tokyo, 1994.

10. D. Chu, K. L. Clark, IC-Prolog II: A multi-threaded Prolog system Proceedings of

ICLP93 Post Conf. Workshop on Concurrent, Distributed and Parallel implementa-

tions of Logic Programming Systems, 1993

11. A. Eliens, DLP, A language for distributed logic programming Wiley, 1992

12. Richard Hagen and Peter J. Robinson. Qu-Prolog 4.3 User Guide. Technical

Report No. 97-12, Software Veri�cation Research Centre, University of Queensland,

1999.

13. R. A. Kowalski, Logic Based Open Systems, Representation and Reasoning, Jakob

ph. Hoepelmann (Hg.) Max Niemeyer Verlag, Tubingen, 1985, pp125-134.

14. R. Kowalski and F. Sadri, Towards a uni�ed agent architecture that combines

rationality with reactivity, Proc. International Workshop on Logic in Databases,

Springer-Verlag, LNCS 1154, 1996.

15. R. A. Kowalski and F. Sadri, From Logic Programming to Multi-Agent Systems,

Annals of Mathematics and Arti�cial Intelligence 25, 1999, pp391-419.

16. F.G. McCabe, Logic and Objects Prentice-Hall, 1992.

17. F.G. McCabe, The Inter-Agent Communication Model (ICM),

http://www.nar.
a.com/icm/, Fujitsu Laboratories of America Inc, 2000.

18. F. G. McCabe and K. L. Clark. April:Agent Process Interaction Language. Intel-

ligent Agents, (ed. N. Jennings, M. Wooldridge), Springer-Verlag LNCS 890, 1995.

19. Mozart-Oz Homepage: www.mozart-oz.org

20. I. Noda, H. Nakashima, K. Handa, Programming language GAEA and its appli-

cation for multi-agent systems, Proc. of Workshop on Multi-agent systems and Logic

programming, In conjunction with ICLP'99, 1999.

21. A. Roa, AgentSpeak(L): BDI Agents speak out in a logical computable language,

Agents Breaking Away, (eds. W. van de Velde and J. W. Perram), Springer-Verlag

LNCS 1038, 1996.

22. Peter Van Roy and Seif Haridi, Mozart: A Programming System for Agent Appli-

cations, International Workshop on Distributed and Internet Programming with Logic

and Constraint Languages, 1999. Accessible from http://www.mozart-oz.org/papers/

23. G. Wagner, Arti�cial Agents and Logic Programming, in Proc. of ICLP'97 Post

Conference Workshop on Logic Programming and Multi-Agent Systems, 1997.

