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Abstract

We investigate an extension of interpreted systems to model correct functioning behaviour of agents
and of the system as a whole. We combine this notion with the standard epistemic notions defined on
interpreted systems to provide a formalism to reason about knowledge that agents are permitted to hold
under ideal functioning circumstances. We then extend this by introducing a doubly-indexed operator
representing knowledge that an agent would have if it were operating under the assumption that a group
of agents is functioning as intended. We investigate the completeness problem for the first formalism and
discuss the issue for the more general one.

1 Introduction

The area of modal epistemic logic, developed into its modern form by the work of Hintikka [Hin62,
HM92a] in philosophical logic, has found promising applications in computer science [FHMV95, MH95],
and economics [Aum76]. Technically the work revolves around a family of modal logics that can be used
to give a bird’s eye view of the knowledge properties of a multi-agent system.

While most of the knowledge representation literature concerns explicit knowledge, i.e., knowledge
that the agents themselves are aware of and which informs their actions and decisions, reasoning about
knowledge of agents or processes from an observer’s perspective (the bird’s eye view) is essential in other
areas of computer science. Only in this way can we reason about the information that agents in the system
have in principle at their disposal; for example, in cryptography it is crucial to verify whether or not an agent
has enough information to decipher a message regardless of whether or not that agent has in fact been able
to decipher the message. Evidence of the interest in modal logic as a specification language for epistemic
notions can be found in the multitude of logics that have been discussed, and in the different semantics
(interpreted systems [HM90], contexts [FHMV95], environments [Mey96]) that have been proposed to
model different grains of detail of communication processes, protocols, etc.

One of the most developed parts of these studies involves the combination between knowledge and
other modal operators, notably knowledge and belief [Hoe93], and knowledge and time [HMV97]. This
has brought about a greater understanding of (a-)synchronicity, recall capabilities, and interaction between
knowledge states and other aspects of agency. Much of this literature is not only concerned with axiomati-
sations of the knowledge properties of particular multi-agent systems but most interestingly with the notion
of protocol. In particular, it is of interest to reason about the knowledge properties of a multi-agent system
that are enforced by a particular protocol. Consider for example agents that start in a hypercube configura-
tion (i.e., one in which all the local states for the agents are equally possible); in this case it can be shown
that if the protocol enforces synchronous broadcast the knowledge properties of the system are captured by
the logic S5WDn (see [LMR00] for details).

While it is worthwhile to study protocols enforcing particular epistemic states from an axiomatic point
of view, it is also of interest to analyse systems in which there is no guarantee that the intended protocol
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will be followed by all the agents. For example, this is an issue in safety critical systems where one wants to
reason about the properties of the individual agents and of the system as a whole not only when functioning
as intended but also, and equally importantly, when not doing so. The distinction between actual and
intended or ideal functioning behaviour has been discussed in possible applications of deontic logic (e.g.,
see [MW93]). Still, to the best of our knowledge, these works have stopped short of investigating the
knowledge properties of the agents that arise when a violation in the protocol has or has not occurred.

In this article we would like to take a first step towards developing logical formalisms for reasoning
about knowledge properties relating to intended and non-intended functioning behaviour of the agents. As
ever there exist two approaches in which to carry out this exercise: syntactical and semantical. From a
syntactical point of view one may consider combinations [BdR97] of deontic and epistemic operators, and
study logics that include KDn for the deontic component together with S5n for the epistemic one. This is
likely to give rise to interesting axiomatisation problems, and it is a worthwhile exercise, but the axioma-
tisations that one would obtain may not be easy to relate to intuitive classes of computational processes,
especially if carried out with respect to classes of Kripke frames.

Alternatively, one may start from the semantics, and in particular from the intuitive framework of inter-
preted systems as defined by Halpern et al. in [FHMV95], encode the concepts of ideal/correct behaviour
there, and study the interaction of these with the usual epistemic notions of epistemic constructions. In
this paper we run an exercise along these lines. We start with the basic notion of interpreted system, and
show how it can be trivially adapted to represent some issues normally addressed in deontic logic. In par-
ticular we aim at representing local and global states of violation and compliance (with respect to some
functioning protocol). By using these concepts we will present a complete axiomatisation of the concept
of ideal (or normal) functioning behaviour of an agent, and of a system of agents. Having done so, we
will introduce the concept of the knowledge that an agent is permitted to have (again with respect to an
ideal functioning protocol), and of the knowledge that an agent has on the assumption that components of
the system are functioning correctly according to their protocols, and we will study a few different ways in
which this can be encoded in the formalism.

This paper is organised as follows. In Section 2, we define deontic interpreted systems, and define
satisfaction, and validity, of a modal language on them. In Section 3 we study their axiomatisation. Next
in Section 4 we use these results to incorporate knowledge, and reason about knowledge under correct
behaviour. We conclude in Section 5.

2 Deontic interpreted systems

2.1 Syntax

We will start by analysing a simple indexed deontic language, and later extend it with an indexed epistemic
operator. For the moment assume a set P of propositional atoms, and a set A = 1; : : : ; n of agents.

Definition 1 The language L is defined as follows.

' ::= false j any element of P j :' j ' ^ ' j Oi ' (i 2 A):

We use the indexed modal operator Oi to represent the correctly functioning circumstances of agent i:
the formulaOi ' stands for “in all the possible correctly functioning alternatives of agent i, ' is the case”,
or “whenever agent i is functioning correctly (with respect to some protocol or specification)' is the case”.
The formula ' can either refer to local or global properties or to both at the same time. We write P i for the
dual of Oi: Pi ' =def :Oi :'. We have chosen the symbol Oi because its semantics will be similar to
that of the obligation operator of standard deontic logic. However, it would not be appropriate to readO i '

as “it is obligatory for agent i that '”.

Note. We use, and assume knowledge of, standard notions and constructions of Kripke semantics and
modal logic systems. See [HC96, FHMV95] for details.



2.2 Deontic interpreted systems

Interpreted systems were originally defined by Halpern and Moses [HM90], and their potentiality later pre-
sented in greater detail in [FHMV95]. They provide a general framework for reasoning about properties of
distributed systems, such as synchrony, a-synchrony, communication, failure properties of communication
channels, etc.

The fundamental notion on which interpreted systems are defined is the one of ‘local state’. Intuitively,
the local state of an agent represents the entire information about the system that the agent has at its
disposal. This may be as varied as to include program counters, variables, facts of a knowledge base, or
indeed a history of these. The (instantaneous) state of the system is defined by taking the local states of
each agent in the system, together with the local state for the environment. The latter is used to represent
information which cannot be coded in the agents’ local states such as messages in transit, etc.

More formally, consider n non-empty sets L1; : : : ; Ln of local states, one for every agent of the system,
and a set of states for the environmentLe. Elements of Li will be denoted by l1; l01; l2; l

0

2
; : : : . Elements of

Le will be denoted by le; l0e; : : : .

Definition 2 (System of global states) A system of global states for n agents S is a non-empty subset of a
Cartesian product Le � L1 � � � � � Ln.

An interpreted system of global states is a pair (S; �) where S is a system of global states and � : S !
2
P is an interpretation function for the atoms.

The framework presented in [FHMV95] represents the temporal evolution of a system by means of
runs; these are functions from the natural numbers to the set of global states. An interpreted system, in
their terminology, is a set of runs over global states together with a valuation for the atoms of the language
on points of these runs. In this paper we do not deal with time, and so we will simplify this notion by not
considering runs, and work only on states.

We now define deontic systems of global states by assuming that for every agent, its set of local states
can be divided into allowed and disallowed states. We indicate these as green states, and red states respec-
tively. A different but interesting approach is to label runs instead of states. In this way we would be able
to reason about ideal, or normal runs as opposed to non-ideal/non-normal runs. We do not explore these
ideas here.

Definition 3 (Deontic system of global states) Given n agents and n+1 mutually disjoint and non-empty
sets Ge; G1; : : : ; Gn, a deontic system of global states is any system of global states defined on L e �
Ge; : : : ; Ln � Gn. Ge is called the set of green states for the environment, and for any agent i, G i is
called the set of green states for agent i. The complement of Ge with respect to Le (respectively Gi with
respect to Li) is called the set of red states for the environment (respectively for agent i).

Given an agent, red and green local states respectively represent ‘disallowed’ and ‘allowed’ states of
computation. An agent is in a disallowed state if this is in contravention of its specification, as is the
case, for example, in a local system crash, or a memory violation. The notion is quite general however:
classifying a state as ‘disallowed’ (red) could simply signify that it fails to satisfy some desirable property,
e.g., rationality if the agents are players in a game theoretical setting.

Note that any collection of red and green states as above identifies a class of global states. The class of
deontic systems of global states is denoted by DS .

Definition 4 (Interpreted deontic system of global states) An interpreted deontic system of global states
IDS for n agents is a pair IDS = (DS; �), where DS is a deontic system of global states, and � is an
interpretation for the atoms.

In the knowledge representation literature interpreted systems are used to ascribe knowledge to agents,
by considering two global states to be indistinguishable for an agent if its local states are the same in the
two global states. Effectively, this corresponds to generating a Kripke frame from a system of global states
(some formal aspects of this mapping have been explored in [LR98]). In this case, the relations on the
generated Kripke frame are equivalence relations; hence (see [Pop94, FHMV95]) the logic resulting by
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Figure 1: An example of deontic system and its generated frame. In the example above the en-
vironment is not considered and the local states for the agents are composed as follows. Agent 1:
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present acceptable configurations respectively for agent 1, and 2. The labelled links indicate the relations
R1 and R2 of the generated frame.

defining a family of modal operators representing a ‘bird’s eye view’ of the knowledge of the agents is
S5n.

We investigate how to axiomatize deontic systems of global states using the languages defined in Def-
inition 1, and study the properties of the resulting formalisation. In the spirit of the interpreted systems
literature we interpret modal formulas on the Kripke models that are built from deontic systems of global
states. In order to do this, we first define the frame generated by a deontic system.

Definition 5 (Frame generated by a system) Given a deontic system of global states DS, the generated
frame F (DS) = (W;R1; : : : ; Rn) is defined as follows.

� W = DS.

� For any i = 1; : : : ; n, hle; l1; : : : ; lniRi hl
0

e
; l0
1
; : : : ; l0

n
i if l0

i
2 Gi.

The function F is naturally extended to map interpreted systems of global states to Kripke models as
follows: if F (DS) = (W;R1; : : : ; Rn) then F (DS; �) = (W;R1; : : : ; Rn; �).

Intuitively, the relations Ri represent an accessibility function which picks out the global states in
which agent i is running according ‘correct (or acceptable) operating circumstances’. We illustrate this in
Figure 1.

We can make use of the construction above to give an interpretation to the formulas of a deontic lan-
guage in a way similar to what is done for knowledge on interpreted systems. Given an interpreted deontic
system IDS = (DS; �), the interpretation of formulas of the language L is defined on the corresponding
generated Kripke model F (DS; �), where the the truth of formulaO i ' at a global state signifies the truth
of formula ' in all i related worlds, i.e., in all the points resulting from global states in which agent i is in
a correct local state, i.e. in a green state.

Definition 6 (Satisfaction on interpreted deontic systems of global states) For any ' 2 L, g 2 DS,
and IDS = (DS; �), satisfaction is defined by:

IDS j=g ' if F (DS; �) j=g ';



where this is defined as:

F (DS; �) j=g true;
F (DS; �) j=g p if g 2 �(p);
F (DS; �) j=g :' if not F (DS; �) j=g ';

F (DS; �) j=g ' ^  if F (DS; �) j=g ' and F (DS; �) j=g  ;

F (DS; �) j=g Oi ' if for all g0 we have that g Ri g
0 implies F (DS; �) j=g0 ':

Validity on deontic systems is similarly defined on the class of generated frames.

Definition 7 (Validity on deontic systems) For any ' 2 L, and IDS = (DS; �), validity on interpreted
deontic systems of global states is defined by IDS j= ' if F (DS; �) j= '. For any ' 2 L, andDS 2 DS ,
validity on deontic systems of global states is defined by DS j= ' if F (DS) j= '.

For any ' 2 L, we say that ' is valid on the class DS , and write DS j= ', if for every DS 2 DS we
have that DS j= '.

In the following we investigate the logical properties that deontic systems of global states inherit. From
Definition 7 it follows that this analysis can be carried out on the class of the generated frames.

3 Axiomatisation of deontic systems

In this section we study deontic systems of global states from the axiomatic point of view. An immediate
consideration comes from the following.

Lemma 1 Given any DS, we have that F (DS) is serial, transitive, and Euclidean.

This observation leads immediately to the conclusion that the logic of deontic systems of global states
must be at least as strong as KD45n, which is to be expected. However, it turns out that the logic determined
by deontic systems of global states is in fact stronger than KD45n. Axiomatising this semantical class is
a rather laborious exercise; we only report the main results here and refer the reader to [LS00] for further
details.

Definition 8 (Secondarily universal) Let R be a binary relation on W . R is secondarily universal if

(i) for all w 2 W , R is universal on R(w) (where R(w) = fw0 2W j wRw0g).

(ii) for all w0; w00 2W , R(w0
) = R(w00

).

A frame F = (W;R1; : : : ; Rn) is a secondarily universal frame if every relation Ri, i 2 A, is secondarily
universal.

It can be noted that every secondarily universal relation is Euclidean.
We are now in a position to relate validity on the class of serial secondarily universal frames to validity

on the class of serial, transitive and Euclidean frames. However, we are interested here in the multi-modal
case, and for this we need a property of frames we call i-j Euclidean.

Definition 9 (i-j Euclidean frame) A frame F = (W;R1; : : : ; Rn) is i-j Euclidean if for all w;w0; w00 2
W , and for all i; j 2 A, we have that wRi w

0; w Rj w
00 implies w00 Ri w

0.

The class of i-j Euclidean frames collapses to ‘standard’ Euclidean frames for i = j.
There is a precise correspondence that can be drawn between i-j Euclidean frames and the following

axiom:
Pi p!Oj Pi p (for any i; j 2 A) 5

i-j

Lemma 2 A frame F is i-j Euclidean if and only if F j= 5
i-j .



Now we will relate validity on the class of (serial) secondarily universal frames to validity on the class
of (serial) transitive, i-j Euclidean frames.

Lemma 3 If a frame F is secondarily universal then it is also i-j Euclidean.

Theorem 1 The logic KD45i-j
n

is sound and complete with respect to

� serial, transitive and i-j Euclidean frames

� serial, secondarily universal frames.

Before we can axiomatise deontic systems of global states we need to make clear the correspondence
between deontic systems of global states and secondarily universal frames.

Theorem 2 Any serial, secondarily universal frame is the p-morphic image of the frame generated by an
appropriate deontic system of global states.

For the result presented in this paper, the notion of p-morphism is enough to achieve the result, but it
can be noted that the function defined above is actually an isomorphism.

We can now prove the main result of this section.

Theorem 3 The logic KD45i-j
n

is sound and complete with respect to deontic systems of global states.

Proof: The proof for soundness is straightforward and omitted here. For completeness, we prove the
contrapositive. Suppose 6` '; then by Theorem 1, there exists a serial, secondarily universal model M =

(F; �) such that M 6j=w ', for some w 2 W . By Theorem 2 there exists a deontic system DS such that
F (DS) is the domain of a p-morphism p : F (DS) ! F . But then by p-morphism considerations, since
F 6j= ', we have that F (DS) 6j= ', so DS 6j= ', so DS 6j= ', which is what we needed to show. 2

We now turn to motivate the adequacy of the axioms of KD45i-j
n

. In light of much of the literature
in this area the logic above should be seen as providing a bird’s eye view of the properties of the MAS.
Therefore validity of axiom K:

Oi(p! q)! (Oi p!Oi q) K

seems reasonable. Indeed, if agent i’s functioning specification requires that whenever p is the case then q
should also be the case, then, if according to the agent’s functioning protocol p is the case, then q should
also be the case according to that protocol.

Axiom D guarantees that individual specifications are consistent:

Oi p! :Oi :p D

Another way of seeing the above is to note that in normal modal logics, axiom D is equivalent to :O i false.
Axiom D is sometimes called the characteristic deontic axiom: together with axiom K, axiom D is the basis
for Standard Deontic Logic (SDL).

Moving to the next pair of axioms, if we give a bird’s eye view reading of the O i modality, axiom 4

Oi p!OiOi p 4

and axiom 5
Pi p!Oi Pi p 5

are perhaps not as strong as a first reading might suggest.
Another way of reading axiom 4 is to note that it forbids the situation in which p is prescribed but it is

allowed that p is not prescribed. This seems reasonable with respect to strong deontic notions such as the
one we are modelling. For example consider the case of one agent running a program in which one of its
variables is supposed to be ‘guarded’, say to a boolean value. It would then be unreasonable if the protocol
were to specify that the variable has to be a boolean, but at the same time allowed it not to be prescribed
that it be a boolean. It is worth pointing out that the underlying reason for the validity of axioms 4 and 5 in



this context is that the criterion for what counts as a green state is absolute, that is to say, the set of green
states for an agent is independent of the state in which it currently is. An alternative would be to introduce
functions gi : Li ! 2

Li to identify green states; but that seems to have less appeal in the present context
and we do not explore it further.

Lastly, axiom 5i-j of the previous section, of which axiom 5 is a special case, also reflects the absolute
nature of the specification of ‘green’. It represents an interaction between the states of correctly functioning
behaviour of pairs of agents.

Pi p!Oj Pi p 5
i-j

5i-j expresses the property that if a state of the system can happen under the correct behaviour of one agent
i, then the protocol of any agent j must allow this eventuality in any correct state that it specifies for j.
Again, this seems a reasonable assumption. Suppose that agent i can follow its functioning protocol and
reach a state coded by p. Axiom 5i-j stipulates that in this case agent j’s protocol cannot prescribe as
admissible any states in which agent i does not have the opportunity to move to a state coded by p. In other
words, axiom 5i-j asserts a sort of independence in the interplay between agents. Naturally, we do not
have the very strong property that all specifications are mutually consistent: O i p! :Oj :p is not valid.
However, 5i-j provides a weak kind of mutual consistency: agent j’s protocol cannot forbid the possibility
of p for agent i if this is granted by agent i’s protocol.

It can be checked that the logic KD45i-j
n

contains also the following generalisation of axiom 4:

Oi p!Oj Oi p 4
i-j

and indeed all axioms in the following scheme:

Xi p $ Yj Xi p

where Xi is any one of Oi;Pi and Yj is any one of Oj ;Pj . There are thus only 2n distinct modalities in
the logic KD45i-j

n
.

It is both instructive and useful to consider also what is likely to be an alternative characterisation
of the logic of deontic systems of global states in a manner analogous to the well-known Andersonian
reduction of Standard Deontic Logic to alethic modal logic [And58]. Suppose we augment the language
L of Definition 1 with a modal operator 2 to represent what holds in all global states and a set g 1; : : : ;gn
of distinguished propositional constants. Each g i is intended to be read as expressing that agent i is in a
correctly functioning local state according to its own protocol. We write 3 for the dual of 2. The relevant
truth conditions are:

F (DS; �) j=g gi if g 2 Ri(g) (i 2 A)
F (DS; �) j=g 2' if for all g0; F (DS; �) j=g0 ':

The constant gi is true in a global state g when agent i is in a correct (green) local state. Expressed directly
in terms of the interpreted deontic system IDS = (DS; �), the truth conditions for each g i are:

(DS; �) j=g gi if li(g) 2 Gi

where li is a function that returns i’s local state from a global state.
One can see that the truth conditions forOi ' are identical to those for the expression2(gi!'). Each

operatorOi can thus be defined as an abbreviation in terms of 2 and g i as follows:

Oi ' =def 2(gi! ') Def.Oi

Pi ' is then an abbreviation for3(gi ^ ').
The model property that every R i is serial, equivalently that everyGi in the interpreted deontic system

is non-empty, validates the following:
:2:gi i.e.,3gi D(gi)

The logic of 2 is obviously S5 (i.e. type KT5 = KT45). It is easy to check that O i as defined above has
the properties K, D, 4 (4i-j ) and 5i-j .



We also have the following interaction between 2 and each O i:

2p!Oi p 2-Oi

It would be reasonable to suppose that the S5 axioms for 2 together with axioms Def.O i, D(gi) and
2-Oi provide a complete characterisation of the logic of interpreted deontic systems. We have not checked
that this is so.

So far we have described and discussed the use of a green and red state semantics for interpreting the
indexed deontic operator of correct behaviour. There are several possible ways to extend these notions to
model the notion of globally correct functioning behaviour of the MAS. For example, it is straightforward
to augment the framework with another modality O capturing global correctness, interpreted in terms of
G, the set of green states for the system as a whole, as follows:

F (DS; �) j=g O ' if for all g0 2 G we have that F (DS; �) j=g0 ':

There are several possible definitions of G, depending on the notion of global correctness we wish to
model:

1. G = f(le; l1; : : : ; ln) j le 2 Geg,

2. G = f(le; l1; : : : ; ln) j li 2 Gi for some i 2 Ag,

3. G = f(le; l1; : : : ; ln) j li 2 Gi for all i 2 Ag,

The first version corresponds to a notion of correct behaviour for the environment. This can be used to
model system failures where these are associated with events such as communication breakdown, etc. In
the second definition of G, a state of the system is regarded as correct whenever one or more of the agents
in the system are in locally correct states; parts of the system might not be performing as intended but parts
of it are. This can serve as a guarantee that the system is not completely crashed, as is the case, for example,
in a system containing redundant components. It could also perhaps be used to model liveness. The third
definition models correct states as states in which all the subcomponents are working correctly. This can
be used to model a conservatory notion of correctness, useful when modelling safety critical systems.

Should the second definition from the list above be chosen as semantical model, the resulting axioma-
tisation would inherit the following interplay between globally and locally correct behaviours:

O p!Oi p for some i 2 A:

Should the third possibility be adopted, we would inherit the validity of:

O p!Oi p for all i 2 A:

It is also straightforward to generalise, to allow for the modelling of arbitrary groups of agents, and not
just individual agents and the global system as a whole: OX would represent correct functioning of any
group of agents X � A, with OX interpreted in various ways, in analogous fashion to the different notions
of global correctness identified above. The indexed modality O i is then the limiting case where X is a
singleton fig, and global correctness O is the limiting case where X = A.

4 Epistemic deontic systems

Interpreted deontic systems are an extension of interpreted systems, and as such can be used to interpret
knowledge in the same way. To see this, augment the language L of Definition 1 with an indexed modality
Ki representing knowledge of agent i. To give an interpretation to this modality, consider the usual clause:

F (DS; �) j=g Ki ' if for all g0 we have that
li(g) = li(g

0
) implies F (DS; �) j=g0 ';



where li is a function that returns the i’s local state from a global state. It is reasonable to expect that an
axiomatisation of the resulting augmented logic will be given by S5n for the Ki component union (in the
technical sense of [KW91, Gab98, GS98]) the logic KD45 i-j

n
for the deontic part.

What is more interesting though, is that deontic systems of global states allow us to express some more
subtle concepts of knowledge not expressible in bare interpreted systems. One of these is the knowledge
that an agent is allowed to have. Consider, in the first instance, the notion expressed by the construction
OKi. For ease of reference, the truth conditions can be stated equivalently as follows:

F (DS; �) j=g OKi ' if for all g0 2 G we have that F (DS; �) j=g0 Ki ':

Or:

F (DS; �) j=g OKi ' if for all g0; g00 we have that
li(g

0
) = li(g

00
) and g00 2 G implies F (DS; �) j=g0 ':

Again there are different notions that can be expressed, depending on how we choose to interpret the notion
of global correctness modelled by O, that is, what we choose for the specification of the set G of green
global states.

It is particularly important when reading these expressions to remember that they express the “bird’s
eye” view of the MAS: OKi ' says that in all states conforming to correct global behaviour, agent i has
sufficient information to know that '. There are many other notions of ‘agent i ought to know '’ that
are not captured by this construction. Similarly, O j Ki ' expresses that in all states in which agent j is
functioning correctly according to its protocol, agent i has the information to know that '. And likewise
for the expressionOX Ki ' where X is any subset of the agents A.

Clearly, we can also study the notions expressed by constructions of the formK iOj , KiO, and KiOX .
More interesting is a third possibility still, which is knowledge that an agent i has on the assumption that
the system (the environment, agent j, group of agents X) is functioning correctly. We shall employ the
(doubly relativised) modal operator bK

j

i
for this notion, interpreted as follows on the interpreted deontic

system (DS; �) itself:

(DS; �) j=g
bK
j

i
' if for all g0 such that li(g) = li(g

0
) and lj(g0

) 2 Gj

we have that (DS; �) j=g0 ';

and as follows on the generated frame F (DS; �):

F (DS; �) j=g
bK
j

i
' if for all g0 such that li(g) = li(g

0
) and g0 2 Rj(g

0
)

we have that F (DS; �) j=g0 ':

We write bK
i

for the corresponding global analogue: the truth conditions are obtained by replacing the
condition lj(g0

) 2 Gj by g0 2 G: again, different versions are obtained by choosing among the different
options for the definition of what counts as the set of green global states G. And likewise for the obvious
generalisation to bK

X

i
where X is any (non-empty) subset of the set of agents A.

It is easy to check that the operator bK
j

i
satisfies axioms K, 4, and 5, but does not satisfy axiom T. For

the notions modelled in epistemic logic, positive and negative introspection for bK
j

i
do seem reasonable.

Intuitively it is reasonable that ”knowledge under the assumption of correct behaviour” should not imply
truth.

It is perhaps clearer to see the relationship between the constructions O j Ki, KiOj and bK
j

i
when they

are expressed using the reduction method of the previous pages.

Oj Ki p = 2(gj!Ki p)

KiOj p = Ki2(gj! p)

bK
j

i
p = Ki(gj! p)



KiOj and bK
j

i
are closely related. To see the relationship, notice from the truth conditions, or from the

reduction schemes above and properties of 2 and K i, that the following axiom schemas are valid (among
others):

Ki p! bK
j

i
p (but not the converse)

KiOj p! bK
j

i
p (but not the converse)

Oj p! bK
j

i
p (but not Oj p!KiOj p)

This seems intuitively correct. If one restricts attention to states in which j is functioning correctly, i
‘knows’ at least as much as when all states, j-green and j-red, have to be considered (first of the axioms).
And if i knows that p holds in all states where j is functioning correctly, i.e. K iOj p holds, then surely
also bK

j

i
p; on the other hand, there could be things p that i ‘knows’ on the assumption that j is functioning

correctly that do not hold in all j-correct states: bK
j

i
p should not imply KiOj p. Of course, to be really

useful, the question is not just whether bK
j

i
p holds but whether i can determine this, i.e. whether K i

bK
j

i
p

holds. But notice: bKj

i
p!Ki(gj! p) (by definition), Ki(gj! p)!KiKi(gj! p) (by property 4 of

Ki), and KiKi(gj! p)!Ki
bK
j

i
p (by definition). Since we also have Ki p! p, we have the following

valid axiom:
bK
j

i
p $ Ki

bK
j

i
p (all i 2 A);

which seems very satisfactory.
As for the relationship between Oj Ki and bK

j

i
, various interactions can readily be determined, such as

the following:

Oj Ki p! bK
j

i
Ki p

Oj Ki p! bK
j

k
Ki p (any k 2 A)

It is worth noting that, if we would like to give a complete characterisation in terms of Kripke frames
of a language including Oi;Ki, and the modal operator bK

j

i
, then the doubly-indexed operator would be

interpreted on the intersection of the relations corresponding to O i and Ki. Providing axiomatisations for
operators defined on intersections of relations is non trivial. One of the cases that are better known from
the literature is the case of distributed knowledge [FHV92, HM92b]. Here it is known that one can obtain
a complete axiomatisation for a multi-agent epistemic language with distributed knowledge D, by adding
S5 axioms to the operator D and taking the axiom _ i=1;:::;nKip!Dp. The complication of the current
setting over distributed knowledge is twofold. For the case of distributed knowledge, first all the relations
have the same properties; second they are equivalence relations. For the case under consideration here,
while it is easy to see that the intuitively corresponding axiom:

Oj p _Ki p! bK
j

i
p (1)

is valid on the relevant semantic structures, one cannot apply the results presented in the literature. [FHV92]
uses a reduction to equivalence Kripke trees which cannot be applied here becauseR i is not an equivalence
relation. The proof used in [HM92b] can be used for relations that are not necessarily equivalence re-
lations, but the authors do assume that the relations from which the intersection is taken have the same
properties. Still, we are hopeful that completeness can be proven by extending the rewriting technique
used in [HM92b], and it is reasonable to expect to have a logic whose fragments are KD45 for the O i

component, S5 for the Ki component, K45 for the bK
j

i
component and the interaction axiom (1).

5 Conclusions

In this paper we have tried to argue that interpreted systems are not only suitable models for representing
knowledge, belief, and time, but can be extended to talk about the issue of compliance/violation, or in terms



more common in computing, about the issue of correct functioning behaviour with respect to a protocol.
We have explored the axiomatisation problem, and attempted to incorporate knowledge. Thanks to the
semantical framework, this can be done not only in the straightforward way by means of the union of the
two logics, but also by defining an operator on the intersection of the resulting two relations.

Although we have given the green/red labels a normative (evaluative) reading, they could also be read
as normal/exceptional, and the bK

j

i
operator would then express what agent i knows on the assumption

that agent j is not in an unusual, exceptional state. This seems to be a concept worth further exploration,
especially with respect to defeasible knowledge. This remains to be investigated together with the issue of
completeness for the extension to the bK

j

i
logic.

Quite apart from this, many potential avenues for further work seem to be open. One is an exploration
of the protocols (e.g., environments, or contexts) that guarantee particular knowledge states. Another is
the definition of correct behaviour on runs rather than on states. We also believe it may be fruitful to
examine the possibility of adding additional structure to the environment; in particular, we have in mind
the possibility of analysing communication mechanisms. We should also like to understand better the
relationship between obtaining the determination results directly and obtaining them via the reduction
method discussed above.

On a more general level, we see there may be potentially two points of value in this contribution. First,
there may be some mileage in bringing together deontic logic with a computationally grounded formalism
such as the one of interpreted systems; indeed, the lack of a clear computationally grounded semantics is
perhaps one of the reasons for which deontic logic has not found a greater role in computing. Secondly,
the whole issue of the different subtle ways in which permission and knowledge can be combined seems
fruitful. In this paper we began exploring some of these, but we believe others, perhaps equally compelling,
still remain to be analysed.
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