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Abstract

We investigate an extension of interpreted systems to model correct functioning behaviour of agents
and of the system as a whole. We combine this notion with the standard epistemic notions defined on
interpreted systems to provide a formalism to reason about knowledge that agents are permitted to hold
under ideal functioning circumstances. We then extend this by introducing a doubly-indexed operator
representing knowledge that an agent would have if it were operating under the assumption that a group
of agentsisfunctioning asintended. We investigate the completeness problem for the first formalism and
discuss the issue for the more general one.

1 Introduction

The area of modal epistemic logic, developed into its modern form by the work of Hintikka [Hin62,
HM924] in philosophical logic, has found promising applicationsin computer science [FHMV95, MH95],
and economics [Aum76]. Technically the work revolves around a family of modal logics that can be used
to give abird's eye view of the knowledge properties of a multi-agent system.

While most of the knowledge representation literature concerns explicit knowledge, i.e., knowledge
that the agents themselves are aware of and which informs their actions and decisions, reasoning about
knowledge of agents or processes from an observer’s perspective (the bird’s eye view) is essential in other
areas of computer science. Only in thisway can we reason about the information that agents in the system
havein principleat their disposal; for example, in cryptography it iscrucial to verify whether or not an agent
has enough information to decipher a message regardless of whether or not that agent hasin fact been able
to decipher the message. Evidence of the interest in modal logic as a specification language for epistemic
notions can be found in the multitude of logics that have been discussed, and in the different semantics
(interpreted systems [HM90], contexts [FHMV95], environments [Mey96]) that have been proposed to
model different grains of detail of communication processes, protocols, etc.

One of the most developed parts of these studies involves the combination between knowledge and
other modal operators, notably knowledge and belief [Hoe93], and knowledge and time [HMV97]. This
has brought about a greater understanding of (a-)synchronicity, recall capabilities, and interaction between
knowledge states and other aspects of agency. Much of thisliterature is not only concerned with axiomati-
sations of the knowledge properties of particular multi-agent systems but most interestingly with the notion
of protocol. In particular, it is of interest to reason about the knowledge properties of a multi-agent system
that are enforced by a particular protocol. Consider for example agentsthat start in a hypercube configura-
tion (i.e., onein which al the local states for the agents are equally possible); in this case it can be shown
that if the protocol enforces synchronous broadcast the knowledge properties of the system are captured by
thelogic SSWD,, (see [LMROQ] for details).

Whileit is worthwhile to study protocols enforcing particular epistemic states from an axiomatic point
of view, it is also of interest to analyse systems in which there is no guarantee that the intended protocol
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will befollowed by all the agents. For example, thisisanissuein safety critical systemswhere onewantsto
reason about the properties of the individual agents and of the system as awhole not only when functioning
as intended but also, and equally importantly, when not doing so. The distinction between actual and
intended or ideal functioning behaviour has been discussed in possible applications of deontic logic (e.g.,
see [MWO3]). Still, to the best of our knowledge, these works have stopped short of investigating the
knowledge properties of the agents that arise when aviolation in the protocol has or has not occurred.

In this article we would like to take a first step towards developing logical formalisms for reasoning
about knowledge propertiesrelating to intended and non-intended functioning behaviour of the agents. As
ever there exist two approaches in which to carry out this exercise: syntactical and semantical. From a
syntactical point of view one may consider combinations [BdR97] of deontic and epistemic operators, and
study logics that include KD,, for the deontic component together with S5,, for the epistemic one. Thisis
likely to give rise to interesting axiomatisation problems, and it is a worthwhile exercise, but the axioma-
tisations that one would obtain may not be easy to relate to intuitive classes of computational processes,
especidly if carried out with respect to classes of Kripke frames.

Alternatively, one may start from the semantics, and in particular from the intuitive framework of inter-
preted systems as defined by Halpern et a. in [FHMV 95], encode the concepts of ideal/correct behaviour
there, and study the interaction of these with the usual epistemic notions of epistemic constructions. In
this paper we run an exercise along these lines. We start with the basic notion of interpreted system, and
show how it can be trivially adapted to represent some issues normally addressed in deontic logic. In par-
ticular we aim at representing local and global states of violation and compliance (with respect to some
functioning protocol). By using these concepts we will present a complete axiomatisation of the concept
of ideal (or normal) functioning behaviour of an agent, and of a system of agents. Having done so, we
will introduce the concept of the knowledge that an agent is permitted to have (again with respect to an
ideal functioning protocol), and of the knowledge that an agent has on the assumption that components of
the system are functioning correctly according to their protocols, and we will study afew different waysin
which this can be encoded in the formalism.

This paper is organised as follows. In Section 2, we define deontic interpreted systems, and define
satisfaction, and validity, of amodal language on them. In Section 3 we study their axiomatisation. Next
in Section 4 we use these results to incorporate knowledge, and reason about knowledge under correct
behaviour. We concludein Section 5.

2 Deonticinterpreted systems

2.1 Syntax
We will start by analysing asimple indexed deontic language, and later extend it with an indexed epistemic
operator. For the moment assume a set P of propositional atoms, andaset A = 1, ..., n of agents.

Definition 1 The language £ is defined as follows.
pu=false|anyelementof P | ¢ | Ap | O;p (i € A).

We use the indexed modal operator O; to represent the correctly functioning circumstances of agent i:
the formula©; ¢ standsfor “in al the possible correctly functioning alternatives of agent i, ¢ isthe case”,
or “whenever agent 7 is functioning correctly (with respect to some protocol or specification) ¢ isthe case”.
Theformulay can either refer to local or global propertiesor to both at the same time. We write P ; for the
dua of O;: P; ¢ =4y — O; . We have chosen the symbol O; because its semantics will be similar to
that of the obligation operator of standard deontic logic. However, it would not be appropriateto read O ;
as“itisobligatory for agent i that ”.

Note. We use, and assume knowledge of, standard notions and constructions of Kripke semantics and
modal logic systems. See [HC96, FHMV 95] for details.



2.2 Deonticinterpreted systems

Inter preted systems were originally defined by Halpern and Moses [HM90], and their potentiality later pre-
sented in greater detail in [FHMV95]. They provide a general framework for reasoning about properties of
distributed systems, such as synchrony, a-synchrony, communication, failure properties of communication
channels, etc.

The fundamental notion on which interpreted systems are defined isthe one of ‘local state’. Intuitively,
the loca state of an agent represents the entire information about the system that the agent has at its
disposal. This may be as varied as to include program counters, variables, facts of a knowledge base, or
indeed a history of these. The (instantaneous) state of the system is defined by taking the local states of
each agent in the system, together with the local state for the environment. The latter is used to represent
information which cannot be coded in the agents’ local states such as messagesin transit, etc.

Moreformally, consider n non-empty sets L+, . . ., L,, of local states, onefor every agent of the system,
and a set of states for the environment L .. Elementsof L; will bedenoted by 11,1, 12,1, . . .. Elements of
L. will bedenoted by I.,1., .. ..

Definition 2 (System of global states) A system of global statesfor n agents .S is a non-empty subset of a
Cartesianproduct L, x Ly X « -+ x Ly,.

An interpreted system of global statesisa pair (.S, 7) where S isa system of global statesand = : S —
2P isan interpretation function for the atoms.

The framework presented in [FHMV95] represents the temporal evolution of a system by means of
runs; these are functions from the natural numbers to the set of global states. An interpreted system, in
their terminology, is a set of runs over global states together with a valuation for the atoms of the language
on points of these runs. In this paper we do not deal with time, and so we will simplify this notion by not
considering runs, and work only on states.

We now define deontic systems of global states by assuming that for every agent, its set of local states
can be divided into allowed and disallowed states. We indicate these as green states, and red states respec-
tively. A different but interesting approach is to label runsinstead of states. In this way we would be able
to reason about ideal, or normal runs as opposed to non-ideal/non-normal runs. We do not explore these
ideas here.

Definition 3 (Deontic system of global states) Givenn agentsand n+ 1 mutually disjoint and non-empty
sets G, G, ..., Gy, a deontic system of globa states is any system of global states defined on L, D
Ge,...,L, O G,. G, iscalled the set of green states for the environment, and for any agent i, G ; is
called the set of green states for agent . The complement of G . with respect to L. (respectively G; with
respect to L;) is called the set of red states for the environment (respectively for agent 7).

Given an agent, red and green local states respectively represent ‘disallowed’ and ‘allowed’ states of
computation. An agent is in a disallowed state if this is in contravention of its specification, as is the
case, for example, in aloca system crash, or a memory violation. The notion is quite general however:
classifying a state as ‘ disallowed’ (red) could simply signify that it fails to satisfy some desirable property,
e.g., rationality if the agents are playersin a game theoretical setting.

Note that any collection of red and green states as above identifies a class of global states. The class of
deontic systems of global statesis denoted by DS.

Definition 4 (Interpreted deontic system of global states) Aninterpreted deontic system of global states
IDS for n agentsisapair IDS = (DS, x), where DS is a deontic system of global states, and 7 isan
interpretation for the atoms.

In the knowledge representation literature interpreted systems are used to ascribe knowledge to agents,
by considering two global states to be indistinguishable for an agent if its local states are the same in the
two global states. Effectively, this correspondsto generating a Kripke frame from a system of global states
(some formal aspects of this mapping have been explored in [LR98]). In this case, the relations on the
generated Kripke frame are equivalence relations; hence (see [Pop94, FHMV95]) the logic resulting by
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Figure 1. An example of deontic system and its generated frame. In the example above the en-
vironment is not considered and the local states for the agents are composed as follows. Agent 1:
Ly = {0,010, Gy = {l,1}. Agent 22 Ly = {I5,05,15,15'}, Gy = {ls,l}. DS =
{13, 15), (11, 15), (1Y, 12), (1{",15")}. In the figure the sets DSy, DS, represent the subsets of DS which
present acceptable configurations respectively for agent 1, and 2. The labelled links indicate the relations
R, and R, of the generated frame.

defining a family of modal operators representing a ‘bird’s eye view’ of the knowledge of the agents is
S5,..

We investigate how to axiomatize deontic systems of global states using the languages defined in Def-
inition 1, and study the properties of the resulting formalisation. In the spirit of the interpreted systems
literature we interpret modal formulas on the Kripke models that are built from deontic systems of global
states. In order to do this, we first define the frame generated by a deontic system.

Definition 5 (Frame gener ated by a system) Given a deontic system of global states D.S, the generated
frame F(DS) = (W, Ry, ..., R,) isdefined as follows.

o W =DS.
e Foranyi=1,...,n, (le,l1,..., lny R (IL,11,..., 1) if I} € G;.

The function F' is naturally extended to map interpreted systems of global states to Kripke models as
follows: if F(DS) = (W,Ry,...,R,) then F(DS,7) = (W, Ry, ..., Ry, ).

Intuitively, the relations R; represent an accessibility function which picks out the global states in
which agent i is running according ‘ correct (or acceptable) operating circumstances . We illustrate thisin
Figure 1.

We can make use of the construction above to give an interpretation to the formulas of a deontic lan-
guagein away similar to what is done for knowledge on interpreted systems. Given an interpreted deontic
system IDS = (DS, ), the interpretation of formulas of the language £ is defined on the corresponding
generated Kripke model F'(D.S, ), where the the truth of formula O ; ¢ at aglobal state signifies the truth
of formulay in all i related worlds, i.e., in al the points resulting from global statesin which agent i isin
acorrect local state, i.e. in agreen state.

Definition 6 (Satisfaction on interpreted deontic systems of global states) For any ¢ € £, g € DS,
and IDS = (DS, ), satisfaction is defined by:

[DS |:9 @IfF(stw) ':g P,



where thisis defined as:

F(DS,r) =4 true,

F(DS,7) =4 p if g € 7(p);

F(DS,m) =4~ if not F(DS,m) |=4 ¢;

F(DS,m) =g o ANy ifF(DS,7) =4 pand F(DS,7) =4 13

F(DS,m) =4 O; ¢ if for all ¢’ we havethat g R; ¢' implies F(DS, ) =4 .

Validity on deontic systemsis similarly defined on the class of generated frames.

Definition 7 (Validity on deontic systems) For any ¢ € £,and IDS = (DS, «), validity on interpreted
deontic systems of global statesisdefinedby IDS = ¢ if F(DS,7) |E . Foranye € £L,and DS € DS,
validity on deontic systems of global statesis defined by DS = ¢ if F(DS) |= .

For any ¢ € £, wesay that ¢ isvalid onthe class DS, and write DS = o, if for every DS € DS we
havethat DS |= .

In the following we investigate the logical propertiesthat deontic systems of global states inherit. From
Definition 7 it follows that this analysis can be carried out on the class of the generated frames.

3 Axiomatisation of deontic systems

In this section we study deontic systems of global states from the axiomatic point of view. An immediate
consideration comes from the following.

Lemmal Givenany DS, we havethat F/(DS) isserial, transitive, and Euclidean.

This observation leads immediately to the conclusion that the logic of deontic systems of global states
must be at least as strong asKD45,,, whichisto be expected. However, it turns out that the logic determined
by deontic systems of global states isin fact stronger than KD45,,. Axiomatising this semantical classis
arather laborious exercise; we only report the main results here and refer the reader to [LS00] for further
details.

Definition 8 (Secondarily universal) Let R beabinary relation on 1. R is secondarily universal if
(i) for all w € W, Risuniversal on R(w) (where R(w) = {w' € W | wRw'}).
(i) for all w',w" € W, R(w') = R(w").

Aframe F = (W, Ry,...,R,) isasecondarily universal frameif every relation R;, 7 € A, is secondarily
universal.

It can be noted that every secondarily universal relation is Euclidean.

We are now in aposition to relate validity on the class of seria secondarily universal framesto validity
on the class of serial, transitive and Euclidean frames. However, we are interested here in the multi-modal
case, and for this we need a property of frameswe call i-j Euclidean.

Definition 9 (i-j Euclidean frame) Aframe F = (W, Ry, ..., Ry) isi-j Euclidean if for all w,w',w" €
W,andfor all i, j € A, wehavethat w R; w',w R; w" impliesw” R; w'.

The class of i-j Euclidean frames collapsesto ‘ standard’ Euclidean framesfor i = j.
There is a precise correspondence that can be drawn between i-j Euclidean frames and the following
axiom:
Pip— O; Pip (foranyi,j € A) 5t

Lemma?2 Aframe F isi-j Euclideanif and only if F' |= 5.



Now we will relate validity on the class of (serial) secondarily universal framesto validity on the class
of (serid) transitive, i-j Euclidean frames.

Lemma 3 If aframe F' is secondarily universal thenit isalso i-j Euclidean.

Theorem 1 Thelogic KD45%7 is sound and complete with respect to
e serial, transitive and i-j Euclidean frames

e serial, secondarily universal frames.

Before we can axiomatise deontic systems of global states we need to make clear the correspondence
between deontic systems of global states and secondarily universal frames.

Theorem 2 Any serial, secondarily universal frame is the p-morphic image of the frame generated by an
appropriate deontic system of global states.

For the result presented in this paper, the notion of p-morphism is enough to achieve the result, but it
can be noted that the function defined above is actually an isomorphism.
We can now prove the main result of this section.

Theorem 3 Thelogic KD457 is sound and complete with respect to deontic systems of global states.

Proof: The proof for soundness is straightforward and omitted here. For completeness, we prove the
contrapositive. Suppose I/ ; then by Theorem 1, there exists a serial, secondarily universal model M =
(F,m) such that M £, ¢, for somew € W. By Theorem 2 there exists a deontic system D.S such that
F(DS) isthe domain of ap-morphismp : F(DS) — F'. But then by p-morphism considerations, since
F ¥~ o, wehavethat F(DS) £ ¢, 50 DS [~ ¢, S0 DS = ¢, which iswhat we needed to show. o

We now turn to motivate the adequacy of the axioms of KD45i-j,,. In light of much of the literature
in this area the logic above should be seen as providing a bird’'s eye view of the properties of the MAS.
Therefore validity of axiom K:

Oilp—q) = (Oip = Oiq) K

seems reasonable. Indeed, if agent i’s functioning specification requires that whenever p is the case then ¢
should also be the case, then, if according to the agent’s functioning protocol p is the case, then ¢ should
al so be the case according to that protocol.

Axiom D guaranteesthat individual specifications are consistent:

Oip—>—=0;-p D

Another way of seeing the aboveisto notethat in normal modal logics, axiom D isequivalentto — O ; false.
Axiom D is sometimes called the characteristic deontic axiom: together with axiom K, axiom D isthe basis
for Standard Deontic Logic (SDL).

Moving to the next pair of axioms, if we give abird’s eye view reading of the O ; modality, axiom 4

Oip—>0; O;p 4

and axiom 5
Pip— Oi Pip 5

are perhaps not as strong as afirst reading might suggest.

Another way of reading axiom 4 is to note that it forbids the situation in which p is prescribed but it is
allowed that p is not prescribed. This seems reasonable with respect to strong deontic notions such as the
one we are modelling. For example consider the case of one agent running a program in which one of its
variablesis supposed to be ‘guarded’, say to aboolean value. It would then be unreasonableif the protocol
were to specify that the variable has to be a boolean, but at the same time alowed it not to be prescribed
that it be aboolean. It isworth pointing out that the underlying reason for the validity of axioms4 and 5in



this context is that the criterion for what counts as a green state is absolute, that is to say, the set of green
states for an agent is independent of the state in which it currently is. An aternative would be to introduce
functions g; : L; — 2%+ to identify green states; but that seems to have less appeal in the present context
and we do not exploreit further.

Lastly, axiom 577 of the previous section, of which axiom 5 is a specia case, also reflects the absolute
nature of the specification of ‘green’. It represents an interaction between the states of correctly functioning
behaviour of pairs of agents.

Pi p— Oj Pl P 5i_j

577 expresses the property that if a state of the system can happen under the correct behaviour of one agent
1, then the protocol of any agent j must alow this eventuality in any correct state that it specifies for j.
Again, this seems a reasonable assumption. Suppose that agent  can follow its functioning protocol and
reach a state coded by p. Axiom 5% stipulates that in this case agent j's protocol cannot prescribe as
admissible any states in which agent i does not have the opportunity to moveto a state coded by p. In other
words, axiom 5777 asserts a sort of independence in the interplay between agents. Naturally, we do not
have the very strong property that all specifications are mutually consistent: O ; p — = O; —p is not valid.
However, 577 provides awesk kind of mutual consistency: agent j's protocol cannot forbid the possibility
of p for agent 7 if thisis granted by agent 7's protocol.
It can be checked that the logic KD45E 7 contains also the following generalisation of axiom 4:

O;ip— Oj O;p 43
and indeed all axiomsin the following scheme:
Xip < Y; Xip

where X; isany one of O;,P; and Y isany one of O;,P;. There are thus only 2n distinct modalitiesin
the logic KD45%7

It is both instructive and useful to consider also what is likely to be an alternative characterisation
of the logic of deontic systems of global states in a manner analogous to the well-known Andersonian
reduction of Standard Deontic Logic to alethic modal logic [And58]. Suppose we augment the language
L of Definition 1 with amodal operator O to represent what holdsin al global statesandasetg,...,g,
of distinguished propositional constants. Each g; is intended to be read as expressing that agent i isin a
correctly functioning local state according to its own protocol. We write < for the dual of O. The relevant
truth conditions are;

F(DS,7) Ey8i ifgeRi(g) (i€ A)
F(DS,7) [z, Oy ifforalg',F(DS,7) =y .

The constant g; istruein aglobal state g when agent 7 isin acorrect (green) local state. Expressed directly
in terms of the interpreted deontic system IDS = (DS, w), the truth conditionsfor each g ; are:

(DS,7) =g g ifli(g) € Gi

where[; isafunction that returnsi’slocal state from aglobal state.
One can see that the truth conditionsfor O;  areidentical to thosefor the expression O(g; — ). Each
operator O; can thus be defined as an abbreviation in terms of O and g ; asfollows:

Oi ¢ =gef O(gs — ) Def.O;

P;  isthen an abbreviation for &(g; A ).
The model property that every R; is seria, equivaently that every G; in the interpreted deontic system
is non-empty, validates the following:
ﬁDﬁgi i.e., <>gz D(gz)

Thelogic of O isobvioudy S5 (i.e. type KT5 = KT45). It iseasy to check that O ; as defined above has
the propertiesK, D, 4 (477) and 57,



We also have the following interaction between O and each O ;:
Op— O;p 0-0;

It would be reasonable to suppose that the S5 axioms for O together with axioms Def.O ;, D(g;) and
0O- O; provide acomplete characterisation of the logic of interpreted deontic systems. We have not checked
that thisis so.

So far we have described and discussed the use of a green and red state semantics for interpreting the
indexed deontic operator of correct behaviour. There are several possible ways to extend these notions to
model the notion of globally correct functioning behaviour of the MAS. For example, it is straightforward
to augment the framework with another modality O capturing global correctness, interpreted in terms of
G, the set of green states for the system as awhole, as follows:

F(DS,7) =, Opifforal g' € Gwehavethat F(DS,7) =4 ¢.

There are several possible definitions of G, depending on the notion of global correctness we wish to
model:

1L G={(el1,...,ln) |l € G},
2. G={(le,lr,...,ln) | l; € G; for somei € A},
3. G={(el1,.--,ln) | l; € Gifordli € A},

The first version corresponds to a notion of correct behaviour for the environment. This can be used to
model system failures where these are associated with events such as communication breakdown, etc. In
the second definition of GG, a state of the system is regarded as correct whenever one or more of the agents
in the system areinlocally correct states; parts of the system might not be performing as intended but parts
of it are. Thiscan serve asaguaranteethat the system is not completely crashed, asisthe case, for example,
in a system containing redundant components. It could aso perhaps be used to model liveness. The third
definition models correct states as states in which all the subcomponents are working correctly. This can
be used to model a conservatory notion of correctness, useful when modelling safety critical systems.

Should the second definition from the list above be chosen as semantical model, the resulting axioma-
tisation would inherit the following interplay between globally and locally correct behaviours:

Op—O;p for somei € A.
Should the third possibility be adopted, we would inherit the validity of:
Op—O;p foralli e A.

It isaso straightforward to generalise, to alow for the modelling of arbitrary groups of agents, and not
just individual agents and the global system as a whole: O x would represent correct functioning of any
group of agents X C A, with O x interpreted in various ways, in analogous fashion to the different notions
of global correctness identified above. The indexed modality O ; is then the limiting case where X isa
singleton {i}, and global correctness O is the limiting case where X = A.

4 Epistemic deontic systems

Interpreted deontic systems are an extension of interpreted systems, and as such can be used to interpret
knowledge in the same way. To see this, augment the language £ of Definition 1 with an indexed modality
K; representing knowledge of agent . To give an interpretation to this modality, consider the usual clause:

F(DS,7) =4 K; ¢ if fordl g’ wehavethat
li(9) = li(g") implies F(DS,7) [=¢' ¢,



where [; is afunction that returns the i’s local state from a global state. It is reasonable to expect that an
axiomatisation of the resulting augmented logic will be given by S5,, for the K; component union (in the
technical sense of [KW91, Gah98, GS98]) the logic KD45% for the deontic part.

What is more interesting though, is that deontic systems of global states allow us to express some more
subtle concepts of knowledge not expressible in bare interpreted systems. One of these is the knowledge
that an agent is allowed to have. Consider, in the first instance, the notion expressed by the construction
O K;. For ease of reference, the truth conditions can be stated equivalently asfollows:

F(DS,7) =, OK;p iffordl g’ € Gwehavethat F(DS,7) |=4 K; ¢.
Or:

F(DS,7) =, OK;p ifforalg’,g" wehavethat
li(g") = Li(g") and g"" € G implies F(DS,7) =, .

Againthere are different notionsthat can be expressed, depending on how we choose to interpret the notion
of global correctness modelled by O, that is, what we choose for the specification of the set G of green
global states.

It is particularly important when reading these expressions to remember that they express the “bird’'s
eye” view of the MAS: O K; p saysthat in all states conforming to correct global behaviour, agent i has
sufficient information to know that . There are many other notions of ‘agent i ought to know ¢’ that
are not captured by this construction. Similarly, O ; K; ¢ expresses that in al states in which agent j is
functioning correctly according to its protocol, agent ¢ has the information to know that . And likewise
for the expression O x K; ¢ where X is any subset of the agents A.

Clearly, we can also study the notions expressed by constructionsof theformK ; O;, K; O, andK; Ox.
More interesting is a third possibility still, which is knowledge that an agent i has on the assumption that
the system (the environment, agent j, group of agents X) is functioning correctly. We shall employ the
(doubly relativised) modal operator K/ for this notion, interpreted as follows on the interpreted deontic
system (DS, r) itself:

(DS,7) |=y KI o ifforall g’ suchthat 1;(g) = li(¢') and;(g') € G;
we havethat (DS, 7) =4 ¢,

and as follows on the generated frame F/(D S, 7):

F(DS,m) =, Kl ifforal g suchthatl;(g) = I;(¢g') and g’ € R;(g")
we havethat F(DS, ) =4 .

We write IA(i for the corresponding global analogue: the truth conditions are obtained by replacing the
condition;(¢') € G; by ¢’ € G: again, different versions are obtained by choosing among the different
options for the definition of what counts as the set of green global states . And likewise for the obvious
generdisation to K:¥ where X isany (non-empty) subset of the set of agents A.

It is easy to check that the operator IA(f satisfies axioms K, 4, and 5, but does not satisfy axiom T. For
the notions modelled in epistemic logic, positive and negative introspection for IA(f do seem reasonable.
Intuitively it is reasonable that " knowledge under the assumption of correct behaviour” should not imply
truth.

It is perhaps clearer to see the relationship between the constructions O ; K;, K; O; and IA<Z when they
are expressed using the reduction method of the previous pages.

O;Kip = O(g; = Kip)
K;Ojp K;O(g; — p)
Kip = Ki(g —p)



K; O; and IA<Z are closely related. To see the relationship, notice from the truth conditions, or from the
reduction schemes above and properties of O and K ;, that the following axiom schemas are valid (among
others):

K;p—K/p  (butnotthe converse)
K;O;p—K/p  (butnottheconverse)
ij—>IA(Zp (bUtnOtij%Kinp)

This seems intuitively correct. If one restricts attention to states in which j is functioning correctly, i
‘knows’ at least as much as when al states, j-green and j-red, have to be considered (first of the axioms).
And if ¢ knows that p holds in all states where j is functioning correctly, i.e. K; O; p holds, then surely
aso IA(f p; on the other hand, there could be things p that 7 ‘knows' on the assumption that j is functioning
correctly that do not hold in all j-correct states: K{ p should not imply K; O; p. Of course, to be really
useful, the question is not just whether ﬁ{ p holds but whether ¢ can determine this, i.e. whether K; RZ D
holds. But notice: IA<{ p — K;(g; — p) (by definition), K;(g; — p) — K; K;(g; — p) (by property 4 of
K;), and K; K;i(g; — p) — K; K{ p (by definition). Since we also have K ; p — p, we have the following
valid axiom:
Kip < K;Kip (dlie A,

which seems very satisfactory. .

As for the relationship between O; K; and K/, various interactions can readily be determined, such as
the following:

OjKip%K{Kip
OjKip—KiKip (anyke A)

It is worth noting that, if we would like to give a complete characterisation in terms of Kripke frames
of alanguage including O;, K;, and the modal operator K¢, then the doubly-indexed operator would be
interpreted on the intersection of the relations corresponding to O ; and K;. Providing axiomatisations for
operators defined on intersections of relationsis non trivial. One of the cases that are better known from
the literature is the case of distributed knowledge [FHV 92, HM92b]. Hereiit is known that one can obtain
a complete axiomatisation for a multi-agent epistemic language with distributed knowledge D, by adding
S5 axioms to the operator D and taking the axiom V ;=1 ,K;p — Dp. The complication of the current
setting over distributed knowledge is twofold. For the case of distributed knowledge, first al the relations
have the same properties, second they are equivalence relations. For the case under consideration here,
whileit is easy to see that the intuitively corresponding axiom:

(’)ijKip—>Kgp (1)

isvalid on the relevant semantic structures, one cannot apply theresults presentedinthe literature. [FHV92]

uses a reduction to equivalence Kripke trees which cannot be applied here because R ; is hot an equivalence
relation. The proof used in [HM92b] can be used for relations that are not necessarily equivalence re-

lations, but the authors do assume that the relations from which the intersection is taken have the same
properties. Still, we are hopeful that completeness can be proven by extending the rewriting technique
used in [HM92b], and it is reasonable to expect to have a logic whose fragments are KD45 for the O ;
component, S5 for the K; component, K45 for the K/ component and the interaction axiom (1).

5 Conclusions

In this paper we have tried to argue that interpreted systems are not only suitable models for representing
knowledge, belief, and time, but can be extended to talk about the issue of compliance/violation, or interms



more common in computing, about the issue of correct functioning behaviour with respect to a protocol.
We have explored the axiomatisation problem, and attempted to incorporate knowledge. Thanks to the
semantical framework, this can be done not only in the straightforward way by means of the union of the
two logics, but also by defining an operator on the intersection of the resulting two relations.

Although we have given the green/red labels a normative (evaluative) reading, they could also be read
as normal/exceptional, and the K operator would then express what agent i knows on the assumption
that agent j is not in an unusual, exceptiona state. This seems to be a concept worth further exploration,
especialy with respect to defeasible knowledge. This remains to be investigated together with the issue of
completeness for the extension to the K? logic.

Quite apart from this, many potential avenues for further work seem to be open. One is an exploration
of the protocols (e.g., environments, or contexts) that guarantee particular knowledge states. Another is
the definition of correct behaviour on runs rather than on states. We also believe it may be fruitful to
examine the possibility of adding additional structure to the environment; in particular, we have in mind
the possibility of analysing communication mechanisms. We should aso like to understand better the
relationship between obtaining the determination results directly and obtaining them via the reduction
method discussed above.

On amore general level, we see there may be potentially two points of valuein this contribution. First,
there may be some mileage in bringing together deontic logic with a computationally grounded formalism
such as the one of interpreted systems; indeed, the lack of a clear computationally grounded semanticsis
perhaps one of the reasons for which deontic logic has not found a greater role in computing. Secondly,
the whole issue of the different subtle ways in which permission and knowledge can be combined seems
fruitful. Inthis paper we began exploring some of these, but we believe others, perhaps equally compelling,
till remain to be analysed.
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