MEnNG IND1viDUAL PrROJECT REPORT

A Method of Bounded Model Checking
for a Temporal Epistemic Logic
Based on Reduced Ordered Binary

Decision Diagrams

Andrew JoNEs
{avjos@doc.ic.ac.uk)
Department of Computing
Imperial College London

Supervisor: Dr. Alessio R. Lomuscio (alessio@doc.ic.ac.uk)

Second Marker: Prof. Marek SErGoT (mjs@doc.ic.ac.uk)

Project ArcHIVE: http://www.docicacuk/~avjos/memas.tgz

June 16, 2009


mailto:avj05@doc.ic.ac.uk
mailto:alessio@doc.ic.ac.uk
mailto:mjs@doc.ic.ac.uk
http://www.doc.ic.ac.uk/~avj05/mcmas.tgz




Abstract

Symbolic model checking is a powerful technique for the verification of reactive systems. Traditionally, such
approaches use reduced ordered binary decision diagrams (ROBDDs) to represent the model. These, however,
suffer adversely from the infamous state space explosion problem. Bounded model checking — a procedure for
“bug hunting” — attempts to alleviate this difficulty by considering only a truncated model up to a specific depth.
The possible falsification of a universally quantified formula is shown through a translation of the specification,

and the model, to the boolean satisfiability problem (SAT).

We propose a method of bounded model checking for the existential fragment of the epistemic logic CTLK,
grounded in the interpreted systems formulation of multi-agent systems. Our approach uses ROBDD:s to rep-
resent reachable state space, rather than a translation of the problem to SAT. We show that this is not only
flexible, but can also be easily extended to support agent verification in a distributed environment. An imple-
mentation of such techniques into an existing model checker for multi-agent systems, MCMAS, is presented, as
well as the provision of a scalable scenario which allows for a constructive evaluation of our methods against

the existing implementation.






Acknowledgements

First and foremost, I wish to thank my supervisor, Alessio Lomuscio, for his help and encouragement through-
out the project. This project would not have been anywhere near as successful without his enthusiasm and
willingness to listen to my problems — as well as reading, and replying to, the gargantuan emails I started to
send towards the later stages.

I would also like to thank:

+ Marek Sergot for reassuring me of this project’s potential during the early stages and for marking this
report.

+ Michael Huth for being amenable to my visits to his office to ask, what must have seemed to him, very
random questions — although they were all very related to this project.

+ William Harrower, William Jones and Robin Doherty for their friendship and support through the
entire degree — despite their abuse about my love for formal methods. As well as, somehow, at various
stages of the degree, finding it in themselves to manage to live with me (I have no idea how Rob managed
three years of it).

And, saving the most important until last — my parents, without whose unconditional love, support (and proof
reading) this report would not have been possible.

il






Contents

1 Introduction
TheProblem . ... ... .. ... ...,

I.I

I.2

1.3

I.I.1

An Illustrative Scenario . . . . . ... ...

Motivation .+ .« v v v v v v v e e e e e e e e e e e e

Contributions + « + v v v v v v e e e e

2 Background

2.1

2.2

2.3

2.4

2.5

3 Preliminaries

3.1
3.2

3.3

3.4

Temporal Logics . . . .. ... oo

2.I.I

2.1.2

Linear Temporal Logic . . . . .. ... ...
Computational Tree Logic . . . . . .. ...

Multi-Agent Systems . . . . . . ... ...

2.2.1
2.2.2

2.2.3

Agents” . ... o
Interpreted Systems . . . . . . ... ...
Alogicof knowledge . . . . . ... .. ...

Model Checking . . .. ... ............

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9

Explicit Model Checking . . . . .. ... ..
Counterexamples and witnesses . . . . . . .
Symbolic Model Checking . . . . . .. ...
BDDs and Variable Orderings . . . . . . . .
Alternatives to BDD Based Model Checking
Model Checking Multi-Agent Systems . . .
BMC for Multi-agent Systems . . . . . . . .
Current Model Checking Technology . . . .
BDD based BMC . .............

Distributed Model Checking . . . . . ... .. ...

2.4.1

Grid Based BMC with “Seed” States . . . .

Verifying correctness in real life models . . . . . . . .

2.5.1

The Train-Gate-Controller Model . . . . . .

Discussionon Priorart . . . . . . . . v v v
CUDD Specifics . .. . v v v v v v i i
MCMAS Internals . . . . . v v v v v v e e

3.3.1
3.3.2
3.3.3
Models

Global Variables . . .. ... ... .....
Important Classes . . . . .. .. ... ...
Satisfiability checking within MCMAS . . .

D T T T A T TR SR S S T SR TR SR SR SR S SR S

O 0 W o O O vt N w

-
—

II
13
13
15
17
20
22
23
27
29
29
30
30

35
35
35
36
36
36
37
38



4 Original Contributions

4.1

4.2

4.4

BDDbasedBMC . . . ... ... ... ......
4.1.1  BDD based BMC with “early termination”

4.1.2  Variations on BDD-BMC . . ... ..
4.1.3 AnImplementation . .........
SATK......................
421 BDDbasedSarg .. ... ... ...
Distributed Verification of ACTLK . . .. ..
4.3.1  Thekey idea of grid based BDD-BMC
4.3.2  Outline of grid based BDD-BMC . . .
4.3.3  Uniqueness of the Approach . . . . . .
4.3.4 DistributingMCMAS . . . . ... ..
4.3.5  Consideration of other connectives . .
Ascalablemodel . . ... ...........
4.4.1  'The Faulty Controller . . .. .....
4.42 TheFaulty Train . . . . ... .....
4.4.3 Specifications . . . . . ... ...

5 Evaluation

5.1

5.3
5.4

5.5
5.6

5.7

Fixed Point Methods on Non-total Transition Relations

ST T SATEX « « v v v v v e v et e e
502  SATEG « v ¢+ v v v v v v e e e e e
5.1.3  SATEE « « v v v v v e v et e e
5.0.4 SATEU « « ¢+ v v v v o v v v e v e e
Satg on Truncated Paths . . . .. ... .. ..
5.2.1  Correctness of the Algorithm Satgz . .
Model Checking of A°CTLK with Seed States
Performance and Benchmarking . . . . .. ..
5.4.1  Aninitial investigation . . . . . .. ..
5.4.2  The Faulty Train Gate Controller . . .
5.4.3 MCMAS 0.9.8.5 Examples . . .. ..
5.4.4  Length of Counterexample Found . . .
5.4.5  Stress Testing MCMAS . .. ... ..
Evaluation of One-ShotBMC . ... ... ..
Evaluation of Distributed MCMAS . . . . ..
5.6.1 Depthofseedstates . .. .......
5.6.2 Numberofslaves. . ... ... ....
5.6.3 Disk space overhead . . . .. ... ..
Qualitative Evaluation . . .. ... ... ...
5,7.1  Effectiveness of deliverables . . . . . .
5.7.2  Elegance of solution . . ... ... ..

5.7.3 Scalability .. .............

6 Conclusions

6.1

ProjectReview . . ... ... ... . ... ..
6.1.1 Contributions . . . . ... ... ...
6.1.2 Comparisons . . . .« . v ..
6.1.3  Limitations, challenges and applications
Further Work . . . . . .. .. ... .. ....

vi

.

.

.

.

.

41
41
41
42
44
45
45
48
48
48
49
50
54
54
54
55
56

61
61
61
62
63
64
65
65
66
67
67
70
76
80
82
82
33
83
86
86
37
87
37
87

89
89
89
89
89
90



6.2.1 Addingavisualiserto MCMAS . . ... .. ... ... ... ............ 90
6.2.2  Counterexample generationfor K . . . ... ... ... ... ............ 90
6.2.3 Common and distributed Knowledge . . . . ... .................. 90
6.2.4 Heuristics for seed state GENEratION &+ v v v v v v v e v v e v v e e e e e s s 90
6.2.5 Itersectionbased BMC . . . . . . . . . . v i i i it e e e e, 90
6.2.6  Saving Reach to diskin “oneshot”"BMC . . . . .. .. ... .. ... ........ oI

6.2.7 Moremodels/benchmarks . . . . ... ... ... . ... OI
6.2.8 Better Useof CUDD . . . . . i v it i i i s e i e e e e e e e e s e e e e Ot

Bibliography 92
‘Web References 08
A BMC Implementation in MCMAS 101

vii



viii



Chapter 1

Introduction

“It is fair to state, that in this digital era correct systems
for information processing are more valuable than gold.”
H. Barendregt. The quest for correctness. 1996.

1.1 The Problem

Providing assurances about systems is not easy. All the while our daily lives are becoming more and more depen-
dent upon computerised systems, but without any reassurance of the reliability of these devices. The systems
with which humans generally interact with are classed as reactive systems because of their continual interaction
with their environment. It is apparent that some of these systems may contain errors in their software but,
in the context of a safety-critical control system for a nuclear power plant, or a plane’s flight control system, it
should be obvious that any kind of bug is unacceptable.

Systems verification looks at determining if a given system meets the required specification. Currently, most
verification is a manual effort by humans, which is just as error prone as the design of the system itself. The
current approaches to verification are based around exhaustive testing and simulation, but, as humans become
even more dependent on these systems, and the systems themselves become increasingly more complex, bugs
in these systems can easily be overlooked and missed.

Currently, there is a migration from a “testing” approach to a more thorough “formal methods” approach to
this problem. The term model checking applies to a collection of formal techniques for the analysis and exhaustive
state space exploration of these reactive systems.

Formal methods have lead to a rise in tools, such as model checkers, which attempt to prove the correctness
of software. However, these methods either require an “abstracted” model of the system and, as such, are not
entirely representative of the entire system, or they consume a lot of “resources’, be these time or memory, to
perform the task with which they are presented.

The infamous “state space explosion” problem arises from the attempted verification of systems, or software,
which contain a large number of concurrent processes. The resulting interleavings can lead to an unfavourable
amount of permutations of state orderings and these, in turn, lead to the “explosion”.

Bounded model checking (BMC) (Section 2.3.5), on the other hand, is an attempt to reason about the full
system without the requirement of ever exploring the entire the model.

1.1.I1  An Illustrative Scenario

Consider an autonomous agent such as NASA’s Mars Spirit and Opportunity, both of which landed on Mars
in 2004. The rovers were programmed to traverse the Martian landscape collecting data and measurements
from rocks on the surface. They were instructed to give priority to rocks which had “green patches’, in which
NASA scientists were particular interested.

The rovers had limited resources; the batteries could only charge from sunlight, and priority was given to
transmitting data back to earth. They had interruptible activities but, during integration, a mistake was made
in the code. For example, the following error was introduced: if the sun went down during data collection, the
rover would blindly continue to scrape the rock and the data was lost.

This point is illustrated with a trace of such a system in Figure 1.1.



D)

Find Rock

Scrape Rock

Process Data

Transmit Data

<---

Figure 1.1: A simple model of a Mars rover

NASA uses model checking to verify its systems. Assume that they wish to verify that their rovers will
always transmit the data - this means that there cannot exist a trace of an execution through the model for the
agent which does not transmit the data. The approach taken by “Regular” model checking is to build up a set
of every single possible reachable state in the model, and then see if the property does, or does not, hold.

In comparison, bounded model checking attempts to find a trace through the system in which the rover
never transmits the data. This is performed as an incremental check prior to attempting to find any more acces-
sible states at each iteration of state space generation.

We can see that, when using bounded model checking, the error trace (called a counterexample) can be
located after reaching the second state. In this instance the whole procedure can return false and only has to
explore 2 states, rather than checking 4 states as a conventional model checker would.

1.2 Motivation

Conventional model checking, and bounded model checking, are currently complimentary to each other. Most
conventional “symbolic” model checkers have implementations that are based on a representation called “Binary
Decision Diagrams” (BDDs, Section 2.3.3). In the simplest of terms, these are binary decision trees where
isomorphic sub-trees are removed to reduce redundancy.

In comparison, bounded model checking is an approach to overcome the state space explosion problem by a
“translation” of the property, and the model, to the boolean satisfiability problem (SAT, Section 2.3.5). Modern
SAT solvers take a boolean formula and attempt to find an assignment to each variable contained in it, such
that the whole formula evaluates to true.

Most model checkers are based on BDDs requiring a complete exploration of the state space (Section 2.3.1).
There is not an obvious conversion from a model checker based on BDDs to being able to perform bounded

model checking with SAT.



1.3 Contributions

The main contribution of this report is a method for bounded model checking based on BDDs (Section 4.1).
This method, unlike other methods for BDD based BMC, is complete and exact; it does not return either
false positives or negatives. An evaluation of this method includes an evaluation of using existing fixed point
methods for calculating the satisfiability sets when using non-total transition relations. The specifics and im-
plementation details of this method, and the evaluation, can be found in Chapter 4 and Chapter 5, respectively.

This work contains two different approaches to performing bounded model checking:

1. “Full” BMC — Section 4.1 — This performs iterative depth bounded model checking inside the model

checker in an attempt to find the shortest counterexample to a given specification

2. “One-shot” BMC — Section 5.5 — Rather than performing the satisfiability checks at each incremental
depth, we describe a method for performing a single satisfiability check at a given depth. This depth may
be less than the depth to find the fixed point.

The uniqueness of our approach is that, while there do exist tools which perform bounded model checking on
BDD:s (Section 2.3.9), these are very primitive approaches. They can only verify liveness properties which are
expressible in terms of atomic propositions. These methods detect a violation of the specification by finding a
reachable state in which the proposition does not hold.

In comparison, our method allows for a fuller lexicon of expressions which can not only deal with quan-
tifications of paths through the model, but can also verify epistemic properties — ones that express a notion of

knowledge.

The final method contributed by this work is an approach of distributed bounded model checking based upon
exploration of partial state spaces on different networked hosts (Section 4.3.4). Our method generates a set of
candidate “seed” states, each of which can be used as the initial state on different hosts.

To support this distribution, we further restrict the universal fragment of CTLK to only allow invariant
properties (Section 4.3.1). This restriction means that the method of distributed partial state space exploration
is both sound and complete (Section 5.3).

To allow for the effective evaluation of such a method, we have presented a novel scalable scenario — “The
Faulty Train Gate Controllet’, Section 4.4 — which can allow for an adjustable depth for a counterexample
to be found. Increasing this bound towards the depth at which the fixed point in the state space is reached
allows us to critically evaluate if the method pays an undue overhead. The model presented has a number of
meaningful parameterised specifications (Section 4.4.3); this allows for the generation of formulae proportional
to the number of components in the system.






Chapter 2

Background

2.1 Temporal Logics

It is possible to describe a finite state system (e.g. a reactive one) as a Kripke structure [33]:
M= (S8,ZT,R,L)
Where
+ S is a finite set of states (or “worlds”)
+ T is the set of initial states (Z C S)

+ R is a transition relation between worlds (R C S x &) — it is a total relation such that Vs € S, 3s’ €
S : (s,8) eR.

+ L is a function which labels states from S with atomic propositions

Temporal logics are used to specify properties about the behaviours of a system defined by Kripke struc-
tures. A behaviour of such a system can be obtained by repeatedly applying the transition relation R to the set
of currently reachable states, starting with an initial state s € Z.

Informally, a trace, or “run’, of a system modelled by a Kripke structure is a sequence of states such that the
first state is in the initial states, and each successive state is reachable as per the transition relation. Given that
R is total, all of the traces of these systems are infinite.

This “infinite” behaviour of systems, modelled with Kripke Structures, led to Lamport’s [34] classification
of the requirements of these systems to fall into two categories:

+ Safety — “something bad is unable to occur” — A system will satisfy the stated property, if all of the
behaviours of the system do not satisfy this property.

+ Liveness — “something good will eventually happen” — in this case the system must exhibit a specific
behaviour to satisfy the property (e.g. returning to the initial state).

There are two main classifications of types of temporal logics:

+ Linear — These logics allow for the specification of properties of execution sequences of systems (e.g.

LTL).

+ Branching — These logics allow for the specification of the choices available to the system during execu-

tion (e.g. CTL).

From this moment on, AP is used to represent the set of atomic propositions.



2.1.I1 Linear Temporal Logic
LTL syntax

Definition 1. The Syntax of LTL formulae is as follows:*

+ Vp € AP, pis a formula

+ If pis a formula, then = is a formula

+ If ¢ and ¥ are formulae, then ¢ V 1) is a formula
+ If pis a formula, Xy is a formula

+ If ¢ and ¥ are formulae, then (pU) is a formula

From the above, we can see that the only temporal logic operators that are used in LTL are X (neXt) and
U (Until).
LTL syntax can also be given in Backus-Naur Form (BNF), where p € AP:

pu=plople Vel Xe|eUp
The temporal operators G (“always’, Globally) and F (“eventually’, Future) can be further defined as:

Fop def trueUp

As a note to the reader F and G are sometimes written as < and O respectively.
LTL semantics

Definition 2. Semantics of LTL
Let p € AP, M be a Kripke structure (S,Z,R, L), s € S, ¢, are LTL formulae. Satisfaction, F, is
defined as follows:

M,;sEp iff pe L(s)
M,sE-p iff M,sEp
M,sEpVvy iff (M,sF @)or(M,sE )
M,sEpAY iff (M,skF ¢)and(M,sE 1)
M,sEXp iff R(s)Fo
M,sE Uy iff 3j>0:RI(s)FpA(VO<k<j:R'(s)F )

Where R is defined as per the Kripke semantics given previously, with the one addition that it maps the
input state to a unique successor state for a certain behaviour through the model. It should be noted that

RY(s) = 5, and R"F1(s) = R™(R(s)).
2.1.2 Computational Tree Logic

Computational Tree Logic (CTL) was introduced by Clarke and Emerson in 1980 [15] - CTL is a branching
time logic. It is able to express the existence of, and properties upon, runs of a system.

'Adapted from [32], see also [44, 10]



CTL Syntax
Definition 3. The syntax of CTL is defined as follows:

+ Vp € AP, pisaformula

+ If p is a formula, then —¢ is a formula

+

If o and 1) are formulae, then ¢ V 9 is a formula

+ If pis a formula, EX( is a formula

+ If pis aformula, EGy is a formula

+ If p and © are formulae, then E [pU)] is a formula
Syntax of CTL in BNF:

pu=pl-p|eVe|EXp|EGy | E[pUy)

From the above definition, we can see that CTL has four temporal operators: EX¢, EGy, E [pU].
From these, we can further define extra temporal operators:

+ AXgp e _EX (=p)

+ EFp ¥ E [trueUy]
+ AGp & —EF (—)
+ ApUy] & B [-§U=p A 4] A ~EG—)
+ AFyp A [erueUg]

Semantics of CTL

Definition 4. A path [16] in a Kripke structure M is an infinite series of states T = 50, 51, ... such that
Vi > 0, (Si, Si+1) eR.

It should be noted that, in comparison to LTL, R, where used here, may returns the set of all successor
state, and not a particular successor for a particular behaviour. In CTL, E and A are path quantifiers — E repre-
sents the existence of a path, whilst A is a quantifier over all paths (they can be seen as synonymous to 3and V).

We can now inductively define the meaning of F (where M, s F ¢ means ¢ holds in the state s in the
model M, and M, ™ E ¢ means ¢ holds along a path 7 in a model M).

Definition 5. Semantics of CTL

M,sEp iff pe L(s)
M,;sE-p iff M,sFp
M,sEpVvy iff (M,skE p)or(M,skE )
M;sEpAY iff (M,sE p)and(M,sE )
M,sEEXy iff Ir=sp,81,...: M,s1Ep
M,s EEGy iff Im=sg,81,...:ViM,s; Fop
M,sEE[pUY] iff Im=s0,51,...:Ik>0: M, s, FpandV0>j >k M,s; Fo

In the above, the semantical differences between E and A can be seen by replacing 37 with V.



2.2 Multi-Agent Systems

Trends in the fields of interconnected and distributed systems have lead to the introduction of the multi-agent
systems paradigm. These are systems comprised of software programs which can “act as autonomous, rational
agents” [61]. These so called “agents” are capable of independent actions, as well as communication and co-
operation with other agents. The agent acts in an such a way that it can reach its design objectives without
being given an explicit way of completing these goals. The idea of a multi-agent system is one of many agents
interacting in a global environment. In these systems, agents are able to hold knowledge pertaining to, and express
belief about, their environment.

2.2.1 “Agents”

Definition 6. Agents [59] are autonomous systems that
+ Perceive the environment in which they are situated (via sensors)
+ Act upon the environment (via effectors)
+ Are designed with certain “performance” requirements

— Maintain environment in a certain state

— Achieve certain state of its environment
An agent [43] is:
+ Situated in an environment
+ Capable of autonomous action
+ Capable of social interaction with peers
+ Acting to meet their design objective

An agent has a set of local states £ which represents the current “configuration” of the agent. This config-
uration might be an assignment to the local variables of the agent, or the values within a knowledge base of
known facts. An agent has a set of actions A, and a function which maps from the current state of the agent to
the set of enabled actions (a “protocol”) for that state P : L — 24, It is then possible to define an “evolution”
function for an agent:

T: LxA—=L

As well as having a set of local states, the agent also has an initial state 7 which the agent starts in.
This allows us to then define the idea of a run of an agent:

Definition 7. [59] A run of an agent is a set of states and actions (e, ag, €1, a1, . . .) such that eg = 7 (the
initial state), ag € P(eg), and Vi, a; € Ple;) : T (e;,a;) = €j11

2.2.2 Interpreted Systems

“An interpreted system is a semantic structure representing the temporal evolution of a system of agents.” 52,
56] We are now assuming that we have a set of n agents i (i = {1,...,n}) - the local states for an agent i are
now represented as £;. The same is true for the actions (A; = agent ¢’s actions), the initial state (Z; = agent ¢'s
initial state) and the protocol (P; = agent i's protocol).

The set of n agents act within an “environment” (£ g) which can also be modelled with a set of states — this

can be seen as a special agent which can capture any information which may not pertain to a specific agent.



Definition 8. Global States
The set G of global states of a system is:

GCL;x--- XL, XLE

Atpleg = (I1,...,ln,lg) € G can be seen as a “snapshot” of the current system, where each of the
l; € L;.1f g is a global state then [;(g) represents the local state of agent 7 in the global state g.

If we make the assumption that an interpreted system is a synchronous one, that is, all of the agents within
the system transition at the same time, then we can define the global transition function:

T:Gx A1 x...xA,—G

Along with this, we also have an “evolution” function which determines the transitions for an individual
agent between its local states. For an agent ¢, the evolution function ¢; is as follows:

i LixLepx A1 x...x A, x Ag — L;
Similarly, we have an evolution function for the environment’s local states, t :
tEtﬁEX.Alx...X.AnXAEﬁﬁE
The set of initial states Z, evolution functions ¢; and the protocols P;, define the run of an interpreted system:

Definition 9. [52] A run of an interpreted system ™ = (go, g1, . - .) is such that go € I, and for each pair
(95, gj+1) € 7 there exists a set of actions a enabled by the protocol P such that t(g;,a) = gj41.

Let Abeasetofagents {1,...,n} with respective local states, protocols and transition functions. The set

AP is the countable set of propositional variables {p, g, . . .} and V is the valuation function for those variables
VAP — 29,

Definition 10. [52]
An interpreted system is a tuple:

1§ = (gaI,H,Nla sy NnaV)
Where:

+ G is the set of reachable global states
+ T is the set of initial states 7 C G

+ Il is the set of all the possible runs of the system
The binary relation ~;, ¢ € A is defined by:
g ~ig iffli(g) = Li(g")

The relation g ~; ¢’ represents that the local state of the agent in the current global state is invariant between
the two global states. That is, [;(g) = l;(¢’) where the function ; is the projection function for an agent’s
local state from the global state. If two states are invariant for an agent, then this means that those states are

indistinguishable for that agent, and, as such, the agent is unable to distinguish which global state it is currently
in.



An interpreted systems model [52] From the definition of an interpreted system 7S, we can create a model

Mzs =(G,Z,11,~1,...,~y, V) where:
+ G is the set of reachable global states
+ T C @ is the set of initial states
+ Il is the set of possible runs in the system

+ ~; is the binary relation for every agent i (g ~; ¢’ iff1;(g) = li(¢')). As before, this represents that the
global state is indistinguishable for the agent 7 (i.e. the local state of the agent is invariant between the
two global states).

+ V is the valuation function for the propositional atoms

2.2.3 A logic of knowledge

”

Interpreted systems provide “‘computationally grounded semantics that has been used to model knowledge...” [56].
CTLK is an epistemic logic; it allows for the expression of properties which contain a notion of knowledge.

Syntax of CTLK
Definition 11. BNF definition of the CTLK language

pu=p|-p|eVe|EXe | EGy | E[pUyp| | Kip
Semantics of CTLK

The epistemic modality K is used to represent “knows” — in logical form, agent ¢ knowing ¢ is written as K; .

As such,

IS, gEKpiff Vg € G, g ~; ¢ implies IS, g F ¢
CTLK is enriched with a further two epistemic operators, for a set of agents I' C Agents in the System:

“Everybody Knows” [21] The modal operator Er¢ is exactly true when all members of the group I" know ¢,
formally:

IS8,9gFErpitVie I', 75,9 F K;p

This modality shows that every agent (or, if I is a strict subset of all the agents, every agent in the set I')
knows (. It is sometimes referred to as “mutual knowledge”.

“Common Knowledge” [21] The modal operator Cr is true if all agents in the group I' know ¢, and every-
one in the group I" knows that everyone in I" knows ¢, and so on and so forth. The following abbreviations are
useful to help define common knowledge:

Ep = ¢
Efp = Erp
Ei"'¢ = ErEfy

As a formal definition:

IS,gECroiff Vk =1,2,... IS,g F Eky

The computation of common knowledge (calculated using a fixed point) is based upon the following equiv-
alence [21]:

Cry = Er(p A Cryp)

I0



Definition 12, Semantics of CTLK [52]
For an interpreted system ZS, global state g, and a formula ¢:

IS,gEp iff peV(s)
IS,9gF~p iff gFp
IS,9gF oV iff (ZS,gF ¢)or(ZS,gE )
IS,9F Ny ff (ZS,9F ¢)and (ZS,g9F )
IS,9gFEXy iff dm, Ji . mp=gAmp1Foe
IS,9FEGy iff Im, Ji i mj=gAVj>imiEo
IS,gFE[pUyY] if 3m, Fi : mi=gAIk>0:mp FYAYj:i<j<(i+k), mEp
I8,9EKip iff Vg' €G, g~ig impliesZS,¢' F ¢
IS,gF Erp if V¢ €G, g ~E g implies IS, ¢ F ¢
IS,gECryp iff Vg €G, g~8 ¢ implies ZS,¢' F ¢

The relation NF is the union of all ~;, such that NF = (J ~4. While ng is the transitive closure of the
el
E
I

m; represents the global state at position ¢ in a run 7. The modalities of AX, EF, AF, AG, AU can be
derived as in CTL.

2.3 Model Checking

Model checking [15, 13] is a method of formal verification, used to verify the correctness of a system. In a
nutshell, the problem of model checking is simply: given a description of a finite-state system and property
(expressed as a logical formula), does the system satisfy that property? If an error is located, the process will
return a counterexample showing the steps in which the error state was reached.

“Model checking is an automated technique that, given a finite-state model of a system and a logical property,
systematically checks whether this property holds for (a given initial state in) that model” [32]

“Model checking is an effective technique to expose potential design errors” 3]

The rest of this section intends to concentrate upon CTL model checking.
2.3.1  Explicit Model Checking
The principle behind CTL model checking is, given a model M = (S,Z,R, L) to “label” each state s € S

with all of the formulae that are valid in s. Then to check if a formula ¢ is valid in s:
M, s E ¢ iff sis “labelled” with ¢

To decide if the model M satisfies the formula ¢, is as simple as checking if all the initial states are in the
set of states which satisfy ¢. That is:

MEpifTC{seS| M,sE ¢}
The notation [¢] is used to represent the set of states in a the model in which the formulae ¢ holds:

[l ={s €S |IM,sF ¢}

II



The algorithms below have been adapted from (32, 24, 50]. For further information, the reader is advised

to consult these texts.

Algorithm 1 CTL Model Checking [3]

: foralli < |yp|do

-

2: forall ) € Sus(ip) with |¢| =i do
3: compute SAT(?)) from Sat(¢)’)

4: end for

5: end for

6:

return Z C ()

Definition 13. Sub-formulae of a CTL-formula [32]
Let p € AP, and ¢, 1) be CTL formulae, then:

Algorithm 2 SAT( : FORMULA) : set of STATE

: if (¢ = TRUE) then
return S
else if (o = FALSE) then
return ()
else if (o € AP) then
return {s | ¢ € L(s)}
else if (¢ = —p1) then
return S\ Sat(p)
else if (¢ = EX¢1) then
10:  return SATEx(¥1)
11: elseif (QD =E [SDiUSDQ]) then
12:  return SATgy(p1, 902)
13: elseif (¢ = EG(¢1)) then
14:  return SaTgg(¥1)

-

)

O 0 NN O vt B W
PO A R - A O P

15: end if

State pre-image functions

pre5(Y) = {s€8[3s:(sRs ands' €Y)}
pre,(Y) = {se€S|Vs':(sRs impliess €Y)}

IfY is a set of states, pre;(Y") generates the set of states which can transition into Y, and pre, (Y") generates the

set of states which only transition into Y.

I2



Algorithm 3 SaTgx(p : FORMULA) : set of STATE
1: X« Sat(y)
2: Y — preg(X)

3: return Y

Algorithm 4 SaTgy (¢ : FormuLa, 1) : FORMULA) : set of STATE
11 W« Sat(p)

XS

Y « Sat(v))

while X # Y do
XY
Y — YU (WnNpreg(Y))

end while

return Y

)
o

© N Ot AW
DO AR e P

Algorithm 5 SATEG (p : ForRMULA) : set of STATE
¢ X — Sat(gp)

: Y S

: Z— 0

: while Z # Y do

Z—Y

Y — X Npreg(2)

: end while

: return Y

-

)

It can be seen that Algorithm 5 and Algorithm 4 these can both be calculated from the least (Ifp) or greatest
(gfp) fixed point of EX [16]:

EG(p) = gfpZ[p NEXZ]
ElpUy] = lfpZ [V (¢ NEXZ)]

We can also define the temporal operator EF in the similar way:

EF(p) = lUpZ [¢VEXZ]

2.3.2 Counterexamples and witnesses

A benefit of model checking is the ability of the model checker to generate counterexamples and witnesses to
properties. In a CTL model, when a universally quantified formula is found to be false, the algorithm will
generate a counterexample which is “a computation path which demonstrates that the negation of the formula
is true” [16). Likewise, when an existentially qualified formula is found to be true, the algorithm will generate a
witness which is “a computational path which demonstrates why the formula is true” [16].

2.3.3 Symbolic Model Checking
Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [8, 3, 24, 60] or, more commonly, reduced ordered binary decision diagrams,
are one of the most widely used symbolic data structures for use in model checking. ROBDDs,

13



+ Are canonical, and unique, to each boolean function

+ Allow for operations such as negation, conjunction and implication to be easily implemented with a
complexity which is directly proportional to that of the inputs.

A BDD is a directed acyclic graph, with exactly two terminal nodes (drains), one marked 1 (true) and the
other O (false). Each of the internal nodes represents a single boolean variable and has only two outgoing edges,
one solid, representing an assignment of true to that variable, and one dashed (an assignment of false). The
node reached to from the “true” path is the value returned by the function succ; (u) = v where u,v € V (V is
the set of nodes in the graph). This is the same as for “false” (succp).

Boolean operations on BDDs  Given two BDDs B, B, representing the functions f, g respectively, the BDD
for f A g can be obtained by taking the BDD B and replacing all of its 1 terminals with B. This is similar for
fV g, except the 0 terminal is replaced [44, 24].

Semantics of BDDs The semantics of a BDD By is the value the terminal node reached when traversing the
graph starting from the root node, and taking the corresponding path representing the variable at that node.

Reduction rules A “reduced” BDD (B) is one that has undergone the following transformations, repeatedly,
until a fix point has been reached [43, 3]:

+ Elimination — For two inner nodes u, v, for which succ; (1) = succo(u) = v, all of the incoming edges
to u are directed to v, and u is eliminated from B.

+ Isomorphism — If two distinct inner nodes w, v of B are the roots of two structurally identical sub trees,

node u is removed and all of its incoming edges are redirected to v.

Variable ordering The ordering in which variables appear in a BDD drastically change the size of the BDD,
leading to totally different BDDS.

Definition 14. [24] Let [z1, ..., 2y, be an ordered list of variables without duplications and let 5 be a BDD,
all of whose variables occur somewhere in the list. We say that BB has the ordering [x1, . .., x,] if all variable
labels of B occur in that list and, for every occurrence of z; followed by x; along any path in 3, we have ¢ < j.

An ordered BDD is one which has some ordering for the set of variables it represents. For a fixed variable
ordering the BDD representing any propositional formula is uniquely defined. This means that equivalent
formulae are all represented by the same BDD.

Literature exists to suggest that it is generally a good heuristic to group “dependant” variables closely together
in the graph; see [44] for details.

Tests of BDDs [24] For a function f(x1,...,2,), and a ROBBD By representing that function. The func-
tion is:

+ Valid — iff By is the single terminal node 1 representing true.

+ Satisfiable — iff B is not the single terminal node By representing falsity.

BDD based algorithms There exist a various number of algorithms which are based around BDDs — these

are not discussed here; the reader is referred to [24].

14



Kripke Structures as BDDs

The state of a system can be symbolically represented as the assignment of values to the variables of each state.
The transition relation can equally be represented in the same way, as a boolean function between two sets of
state variables, from the current state to the next state.

One way of doing this is to assign each s € S a unique boolean vector {v1,...,v,}Vi < n,v; € {0,1}
(n should be chosen such that 2" ~! < |S| < 2", where |S| represents the total number of states in the model).
The boolean vector expressing a state in the system can be based upon the propositional formulae which hold
at that state (e.g. for s € S, the BDD state vector can be based upon the atoms in £(s)). If there are not
enough boolean variables to give each state a unique boolean vector, then it should be padded with additional
variables such that the value of 1 is large enough. It is easy enough to see how Z should be represented, given
thatZ C S.

The transition relation (R C S X S) can be represented as two boolean vectors, the first being the boolean
vector representing the originating state and the second being the boolean vector representing the target state.

L is the function mapping of s € & onto propositional atoms in AP. It is more convenient to con-
sider it as the converse, mapping atoms to subsets of & which satisfy that atom. This set of states £, =
{s € S|pe L(s)} [16]. Itis easy to see how this set can be represented in the same way as Z (or any other
s € S for that matter).

2.3.4 BDDs and Variable Orderings

The number of nodes and edges, and, as such, memory, that a ROBBDs requires is directly linked to the variable
ordering which has been selected from that BDD. Selecting a “bad” ordering can cause an unfavourable growth

in the size of a ROBDD.

The rest of this subsection is an example of:
+ How to represent a transition system as BDD, and
+ A demonstration of how reordering can effect the size of the BDD

Figure 2.1° shows a simple transition system with a total transition relation. We can easily see that the
model has 4 states, and, as such, each unique state in the model can be represented using 2 bits. An assignment
of boolean variables to each individual state can be seen in Figure 2.2.

—— (o

State H Ir1 X2

) 0 )
C sI 0 I
s2 I )
s3 I I
Figure 2.1: A small tranisiton system Figure 2.2: Variable assignments to states

Now that we have a unique “bit string” for each state in the model, it is possible to construct a boolean
formula representing the transitions between each state. The boolean function — (Figure 2.3) represents the
transition relation. The function encodes each transition, and then takes two boolean assignments representing
states: the initial state (the unprimed variables) and the next state (the primed variables). If the transition exists
in the model, the function will evaluate to true and false otherwise.

2Adapted from [64].

15



/ / / /
— (1, X2, 27, 25) = -z A —mg A ) A xh)
—x1 A g ATy A xh)
—x1 Az A T) A )

(
(
(
(

—x1 A T A T) A o)

<< < <L

(x1 Axg A Ah)

Figure 2.3: A boolean representation of the transition relation

It is not hard to see how the labelling function can be represented in the same way. The function, for each
variable, will evaluate to true if the propositional atom holds in that state or not, and false otherwise.

Figure 2.4 shows one possible BDD representing the — function. It uses the following variable ordering:
x1 < xy < ) < zfy. The BDD contains 8 nodes and 16 edges (each BDD has two outgoing edges).

Figure 2.4: One example of ROBDD for the transition relation in 2.3

The BDD in Figure 2.5 represents the same boolean function —, except that it uses a differnt variable
ordering: z1 < ) < xo < z%. This second reordering only requires the ROBDD to have 6 nodes and 12
edges.

It is quite obvious to see why, when using ROBDD to perform model checking, selecting a good variable
reordering is preferable to allow for efficent state space handling.

16



Figure 2.5: A smaller ROBDD representing the same transition relation 2.3

2.3.5 Alternatives to BDD Based Model Checking
BMC & SAT

One alternative to symbolic model checking based on BDDs came with the introduction of bounded model
checking (BMC) (7, 5, 6, 14]. BMC searches for the minimum length counterexample which violates the system
specification. The algorithm looks for a counterexample with an increasing length (k = 0,1, . ..) and checks if
there exists a computation path in the model which violates the system specification in £ steps.

From a temporal logic specification, and a Kripke structure, a propositional formula is generated which is
satisfiable if there exists a computational path, with length k, within the model which satisfies the specifica-
tion. The generated boolean formula is given to a solver, which calculates an assignment to all of the variables
comprising of the formula, such that a final evaluation is true. The variable assignment is a witness to that path.

SAT, also known as the boolean satisfiability problem, is the problem of trying to find an assignment to all
of the variables within a given formula, such that the whole formula evaluates to true.

A crucial part of the bounded model checking algorithm is that, although the path considered is finite, it
may still represent an infinite path within the model if it is said to contain a back loop from one state in the path
to an eatlier state in the path. If the path does not contain a loop, then it cannot say anything about the “infinite”
behaviour of that path. An example of this is that p might hold at every state path of length k, therefore be seen
to be satisfying Gp, but without a back loop it cannot witness that formula because, at state s;y; of a path
length k + 1, p may no longer hold.

For a path 7 in a model, 7(k) represents the state at element k in the path.

Definition 15. k-path [48]): Let k € NT and M = (S§,Z,R,L). A k-path is a finite sequence m1 =
(S0 -+, 8k) : Vi,0 <i < k,(s;,8i+1) € R

Definition 16. loop [48]: a k-path misaloopif 31 : 0 < [ < k and (7(k), 7 (1))
Definition 17. k-model [48]: Let M = (S,Z,R, L) be amodel, and k € N*. My = (S,Z, Paths,, L),
where Pathsy, is the set of all the paths of length £k in M.

17



Let M be a Kripke structure, and M, be its respective k-model, the function loop : Pathy, — 2N is defined
as follows:

loop(m) ={l |l < k and (7(k),n(l)) € R}

For the rest of this chapter we will be dealing with two restrictions of CTL, one called ECTL - this is a
subset of CTL, in which negation can only be applied to propositional atoms € AP. The other called ACTL,
¢ € ACTL iff p € {—¢) | ¢» € ECTL}.

Definition 18. Bounded Semantics of ECTL [48]
For a k-model My, @, 1) are ECTL formulae. My, s F ¢ denotes ¢ holds in the state s of a model M.
E is defined as follows:

My, sEp iff pe L(s)
Mp,sE—p iff gEp
Mi,sEoVy iff (Mg,sE p)or(Mg,skE )
Mi,sE oAy iff (Mg,sF @)and (Mg, s E 1)
My, s EEXy iff Jm € Pathsy, : (w(0) = g and w(1) F ¢)
My, s EEGy iff 31 € Pathsy, : (7(0) = g and Vo<j<xMp, 7(j) E o) and loop(7) # ()
My, s EE[pUy| iff 3r € Pathsy, : (m(0) = g and Jo<jcr(Mp, 7(i) E ¢ and Vo< j«iMp, 7(J) E @)

| M|, the size of a ECTL model, is defined by the number of states in S. ||, the length of a ECTL formula,

is defined as follows:
+ ifp € (APU{—p|pec AP}) then|p| =0
+ if pis of the form EXa or EGq, then || = |af + 1
+ if pisoftheforma V 3, a A B or E[aUf], then |¢| = |a| + || + 1

Definition 19. Validity of bounded semantics An ECTL formula is valid in a k-model, My E ¢ iff Vi €
I, Mt E o

From the bounded semantics above, it can be seen that My, s F @ implies VI : | > k, M;,s F .
Simple induction then shows us that My, s F ¢ implies M, s F (. Another property from above (proof can
be found in [48]) is that, if M, s F ¢, then My, s E ¢ when k = |¢|.

Creating the propositional formula The function States(Path) generates the set of states from the k-model
which can be reached with a path of length £:

States(Path) = {s € S | 3w € Paths,3i < k : (i) = s}

Definition 20. Sub-models of M [48]

My, = (S,Z, Paths,, L) is a k-model of M. The structure My, = (S’,Z, Paths),, L) is a sub-model of My,
such that Paths), C Pathsy, S’ = States(Pathsy), and L' = L|s: (a reduction of the labelling function to only
contain states in S”)

Definition 21. The function f, : CTL Formula — N [48]

+ fi(p) =f.(=p) =0
o fillo V) = max {f, (), f,(¥) }

18



* fllp AY) = file )+fk(¢)

o fi(BXp) = fi() +

* fi(BGp) = (k+1) - f.(0) +1

* fi(B[pUY]) = k- fi(p) +£,(¢¥) + 1

Algorithm 6 BMC(M : Kripke STRUCTURE, 9 : ACTL FormuLra) [48]

: p «— —p {pis an ECTL formula}

for k — 1to | M| do
M.« k-model of M
Select sub-models of M), of M with |Path),| < fe()
[M#], « propositional formula of the transition relation of all the sub-models of M,
[©] M, < propositional formula of the translation of ¢ over all the sub-models of M,
(M, @]y, = M A [“P]Mk
Check the satisfiability of [M, ¢],.

end for

-

)

O © N O Nt »h W
Er SN AT SR A e S 4

Construction of the propositional formula [M, ¢], is as follows. A symbolic representation is used so
that the S C {0,1}", where n = [log,(|S|)]. Each state s € S can therefore be represented as a vector
of propositional variables which hold at that state (s = {s[1],...,s[n]}, s[i] € AP). A k-path can then be

represented as a vector of length & of these states (7, = (S0, . .., sx)). LL? C N7 is a finite set of a numbers.
[M¥*],. constrains |[LL?| symbolic k-paths valid in My. For j € LL?, the i symbolic k-path is
denoted as (wo j, . . . , Wk j), where w; ; Vi € {0, ..., k} are state variables.

The function lit [48] is defined as follows:

lit(0,p) = —p
lit(1,p) = p

The following are propositional formulas, based upon the usual definition of a Kripke structure, where w,
v are state variables [48]:

Iy (w) iff /\lit(s[z] wli
(w,
pE

(w,v) iff v) €
p(w) iff L(w ) p € AP
H(w,v) iff w=wv
)

LkJ(l

+ I;(w) encodes the initial state Z of the model, s[i] = 1 is encoded by w|i], and s[i] = 0 is encoded by
—wli]

= T(wkp,wi;)

+ T(w, v) encodes a transition between two states (i.e. T'(w, v) iff wRv)

+ p(w) encodes a proposition of p of ECTL

+ H(w,v) represents logical equivalence between states

+ Lj (1) encodes a backward loop connecting the k™ state to the [ state in the symbolic k-computation

jfor 0 <1 <k.

19



The unrolled transition relation at bound k, [M*#*],, is calculated as follows [48]:

[M#P*],, = To(woo) A\ /\ (Wi j, wit1,5)

JELL® i=0
Where:
+ wopand w; ; (fort =0,...,kand j € LL¥) are vectors of state variables
o [LL?] = fi(p)

Finally, the ECTL formula ¢ has to be translated into a propositional formula [] M, The translation of
this formula differs for paths which are, and are not, k-loop paths. These can be distinguished with Ly, ;(1). At
each state wy, , within a k-path of index n, the temporal subformulas of the formula being translated to the
k-path n are translated to the k-paths that start at that state. Starting with wg; = wy, ,Vi € LL?. [¢] Lm’n}
is the translation of the formula ¢ at wy, ;, to a propositional formula.

Translation of an ECTL formula [48]:

&)

[p]Lm = p(wm,n)
ol = p(wmn)
o vyl = [y [
oAl = Tl Al
[EXSD]LmM = \/ <H (Wi, m> woi) A [SD]E’Z])
i€LL¥
k
[EGLP]LW”} _ \/ H (W, > W0 i) \/ Lii( S A /\ ] ]
i€LL¥ 1=0 =0
k I ,
[E [SOUM]LWM - \/ H (w5, wo,i) A \/ (M]][g]’q A /\ [‘P]gl])
i€LL¥ j=0 =0

To summarise, to create the propositional formula which will be satisfiable for a model M, and formula
¢, at a bound k. First, the algorithm has to create [M¥"*] 1r» Which is representative of the unrolled transition
relation at bound k. Next, the algorithm forms [¢] 4, which will be true if, and only if, ¢ is valid along a path
of length k in the model M. The final stage is to create [M, ], = [MP*], A [@]Mk This is then passed to

a satisfiability solver.
2.3.6 Model Checking Multi-Agent Systems
Interpreted Systems as Boolean Formulae

Given a model of an interpreted system Mzs (see Section 2.2.2), the number of boolean variables used to
represent local states of an agent is as follows:

(i) = [logy| L4l

This means that a global state can be represented with the following number of boolean variables:

N = Z no(i)

Vi€ Agents

20



The evaluation function £ is simply a mapping of states of variables in AP, so this can work on the boolean
variables representing each state. The protocols can also be expressed in the same way.

The transition function ¢; for each agent can be represented as a set of conditionals, which, when satisfied
enable a transition for an agent between two local states. For more details see [52].

The model checking algorithm in Section 2.3.6 requires a representation R; of the global transition relation
between two global states (g, ¢') [53]:

Ri(g,q") iff Vi € Agents : Ja € P(l;(g)) A ti(g,a,9)

Model Checking CTLK

The algorithms from the section below have been adapted from [52, 53].

Algorithm 7 SATcr k(¢ : FORMULA) : set of STATE
: if (¢ € AP) then

return L(y)

: elseif (o = 7)) then

return G \ SATcric (1) {G is the set of all states in the model}
: elseif (o = EX¢q) then

return SATEX (1)

: elseif (o = E[p;Ups]) then

return SATEU (1, ¥2)

: elseif (o = EG(¢1)) then

10:  return SATEG(¥1)

11 elseif (¢ = K;(¢1)) then

12:  return SATk (1)

13: elseif (9 = Ep(¢1)) then

14:  return SATE(p1)

15: elseif (¢ = Cr(¢1)) then

16:  return SATC(p1)

17: end if

-

)

O 0 N3 O vt H W
b P b

The functions EX¢r1x, EGerix and EUcryg, are the same as in Section 2.3.1, except they use the relation
Ry rather than the Kripke structure transition relation, and G is used instead of S.

As for CTL, we have to define functions to find the pre-image for a set of states, where pre_is the function
for the modality K. pre_ and pre_ are defined similarly. As previously, X is a subset of G, i is an agent and I" is
a set of agents

pre (X,i) = {g €G|3d : (gKig' and ¢ € X)}
preEF(X,F) = {g €g| 3¢ - (gRlli‘g/ and ¢’ € X)}
pre. (X,I) = {g €g|3d: (gRIEg' and ¢ € Xand ¢ € SATCTLK(L,O))}

pre.. is based on 2.2.3.

Algorithm 8 SaTk (¢ : ForRMULA, i : AGENT) : set of STATE

1 X «— SaTcrk (—9)
2: Y « pre (X, 1)
3: return —Y

21



Algorithm 9 SaTg(p : Formura, I : set of AGENT) : set of STATE

1 X — SaTcrk(—9)
20 Y «— pre, (X, T')
3: return —Y

Algorithm 10 Satc (¢ : FormuLa, I' @ set of AGENT) : set of STATE

1 X — SaTcrk(—9)
Y—G§
while X # Y do
XY
Y < pre (X, T)
end while

return Y

)
o

I AN S

2.3.7 BMC for Multi-agent Systems

Bounded model checking of interpreted systems [47, 35, 46, 62] is based upon the logic of CTLK, and builds
upon the bounded model checking method for ECTL. The syntax of ECTL (definition 3) has to be first ex-
tended to give an epistemic modality, different from that of CTLK:

Syntax of ECTLK [35]
As for ECTL (definition 3), with the following:

+ If pis aformula, fl-go is a formula, 7 € Agents
In BNF:
pu=p|-p|eVe|EXp|EGy | E[pUy] | Kip

ECTLK also includes the following modalities: Crypand ErgforT' C Agents, but these have been omit-
ted here for brevity.

The epistemic modalities, as defined for the existential fragment of CTLK (ECTLK), are defined as the
dual of those from CTLK; that is:

def =
e Kip = —Kimp

def —
def

The modality K ;¢ stands for “agent i considers it possible ¢” [62, 21].
Semantics of ECTLK [62]

Again, as per the ECTL semantics but with:

IS,g)ZKicp iff Elgleg:gwig'/\IS,glzw

22



Bounded Semantics of ECTLK [62]
The definition of an interpreted system (§2.2.2) allows for the specification of multiple initial states (the set Z),
BMC reduces this down to only have an single initial state: ¢.

78,9 F Ky iff 3 € Paths : (7(0) = ¢ and Jp<;i<k(ZS, 7(i) F ¢ and g ~; 7(i))

In the above, g and g are global states (G is the set of all global states), K(p holds in the global state g if there
exists a global state ¢/, such that the local state for the agent i is invariant between the two, and ¢ also holds
in ¢’. The function [; is used to extract an agent’s local state from the global state. This can also be represented
with the relation g1 ~; g2, where the relation ~; is defined as for CTLK.

It is worth noting here that, if ZS, g F ¢, then Vi € Acents : IS,g9 F Egp, given the relation ~; is
reflexive’. For the semantical definition of Er and Cr the reader is referred to either [62] or [35].

Translation to SAT of a ECLTK formula [62, 47]

As well as having a boolean encoding for propositions such as the initial state, or the proposition variables, BMC
has a boolean encoding for the epistemic relation between an agent’s local states; that is, equality between two

local states:
Hi(w,v) iff lij(w)=1(v),Vie AcenTs

The translation of K, to SAT is as follows:

Ky = Loy A V(160 A Hawnn, ws,)
i€LLY §j=0

2.3.8 Current Model Checking Technology

CUDD
CUDD (58] [68] is a C++ based BDD library which allows for easy code reuse*. CUDD provides:

+ The data structures necessary for BDD creation, handling and manipulation
+ Efficient implementations of BDD functions (and, or, add, ...)

+ Utility functions for managing the BDDs

+ “BDD managers” — which are basically hash tables for BDD storage

Within the CUDD BDD representation, the lower bits of pointers are used to represent the negative edges
from a BDD. It also provides a method of generating Graphviz Dot [72] diagrams for the BDDs it is used to

represent,

Operator Overloading As can be seen in fig. 2.3.8, CUDD’s C++ API makes extensive use of operator
overloading. Importantly:

* — This represents the operation AND upon two BDDs. AND can be used to calculate the intersection (| )
between two sets represented as BDDs.

+ — This represents the operation or on two BDDs. or can be used to calculate the union of two sets ([ )
between two sets represented as BDDs.

I — This represents the unary operation Not. CUDD performs this operation in constant time [28].

*We're dealing with a KT45 logic, and as such, the relation ~; is reflexive, transitive and symmetric.
It should also be noted that CUDD supports Zero-suppressed Binary Decision Diagrams (ZDDs) and Algebraic Decision
Diagrams (ADDs), but as these do not concern this project, they will not be covered here

23



int main(int argc, char* argvI[])

{
Cudd bddmgr; // The manager
bddmgr = Cudd(0,0);
BDD x = bddmgr.bddVar();
BDD y = bddmgr.bddVar();
BDD f = x + y;
BDD g =y + !x;
if ( £==9)
{
cout << "f is equal to g";
}
else
{
cout << "f is NOT equal to g";
}
}

Figure 2.6: An example C++ program using the CUDD library [50]

BDD Manager CUDD uses “unique tables” to store BDDs. This ensures that each node is unique — in this
context, unique means that there exists no other node labelled with the same variable, which also has the same

children.

Cache CUDD contains a cache which is used to store computed results, which allows for the efficient ma-
nipulation of BDDs. The default, and maximum, size of CUDD’s cache can be chosen by the user — too small
a cache will cause useful BDDs to be overwritten. It is the cache which is scanned by the garbage collector to
regain memory.

Garbage Collection CUDD uses a “stop world” garbage collector; that is, it stops the entire execution of the
program whilst a garbage collection takes place. CUDD keeps a reference count for each node produced by it,
recording both internal references (nodes which are internal to CUDD, or nodes which reference other nodes)
as well as external references (such as those from the “external” program). It should be obvious that garbage
collector is an asynchronous process, and only initiates once the cache reaches a pre-defined threshold at which
stage CUDD tries to release some memory.

Dynamic Reordering As covered in Section 2.3.4, the size of a BDD is greatly affected by the variable ordering
— CUDD supports a number of dynamic reordering algorithms which attempt to reduce the size of a BDD.
Reordering within CUDD can either be invoked directly via a call to Cudd_ReduceHeap, or it can be triggered
asynchronously when the number of nodes in the unique table exceeds a threshold.

The Reordering process is iterated until no further improvement is possible. CUDD contains numerous
reordering algorithms; an example of an algorithm is CUDD_REORDER_SIFT. It is based upon Rudell’s sifting
algorithm [55] and, in the most simplistic of terms: each variable is considered in turn and placed at every
possible position; once a best position has been identified, this is the new location of the variable in the ordering.

NuSMV

NuSMYV [11] is an open source symbolic model checker — it is a reimplementation of a model checker developed
at CMU called, unsurprisingly, SMV. It supports both SAT based BMC for verification, as well as BDD based
satisfiability methods [12]. Due to the fact that these methods are usually used to solve different types of
problems, it allows for interesting avenues of research.

In BDD based model checking, NuSMV first builds up a finite state machine representing the given model;
it can then perform a various number of checks, including: fair CTL, LTL (via a reduction to CTL), and others.

24




When operating in SAT mode, NuSMV can either use its own built SAT solver, SIM, or it can write out
the SAT problem in the standard DIMACS format, which allows for the use of external SAT based solvers, e.g.
CHAFE It supports the bounded model checking of LTL properties only. During this procedure it interleaves
“problem generation and solution attempt via a call to [a] SAT solver, and iterates until a solution is found or
the specified maximum bound is reached” [11].

It is able to operate in a simulate mode, in which the user can interactively select the behaviour which the
system exhibits. It also stores all of the traces of the model checking procedure for the generation of counterex-
amples and witnesses.

NuSMYV provides two alternative [76] ways of calculating the satisfiability of invariant properties; that is,
properties of the form: AG(¢). An invariant property of that kind means that, in all of the reachable states, ¢
must hold. Rather than calculate the fixed point of AG(¢) using gfp, [¢ A AXZ], NuSMV can handle it in

two ways:

+ If the full set of reachable states from the initial state has been computed, then the check simply results
to:

Reachable(Z) C [¢]

Where the function Reachable represents the set of reachable states from a given state.

+ It can check the property “on the fly” — rather than calculate the full state space, NuSMV can do the
following check at each step of the reachability analysis

Reachable,(Z) C [¢]

The function Reachable;, computes with a set of reachable states from the given state within £ steps.

Verifying multi-agent systems with NuSMV  Raimondi et al (51, 36] investigated a method for the verifica-
tion of multi-agent systems with NuSMV as part of their tool set. NuSVM was used as a tool to generate the
set of reachable states for the model. This was then processed by them to encode the epistemic relations, and
then passed to a third tool, Akka [65], which was then used to verify the epistemic properties. The processing
stage parsed the NuSMV output of all of the reachable states and generated the epistemic relation to the local
states which were invariant across multiple global states. Akka is a Kripke model editor, which also supports
model testing. The methodology employed for this procedure is outlined in fig. 2.3.8.

Specify interpreted system

v

Translate specification into a NuSMV model

b

XML Editor
XML to SMV

translator (Java)

Use NuSMYV to calculate reachable states NuSMV
V
Build an epistemic model Parser
v
Model check epistemic formulae Akka

Figure 2.7: Methodology employed to verify multi-agent systems with NuSMV [51]

It should be noted that, given that NuSMV was used just as a tool to generate the set of reachable states, it
would not be possible to make use of NuSMV’s alternatives for handling invariant style properties.

Another approach was attempted by Raimondi et al [37] to reduce CTLK specifications to ARCTL (Action-
Restricted CTL) [45] specifications. ARCTL is an extension to CTL, in which qualifications are allowed over

25



labelled paths interpreted over labelled transition systems. ARCTL has the same temporal operators as CTL,
except that it allows for the restriction of paths whose actions satisfy a formula (. There exists experimental
extension to NuSMV which supports an extended syntax, and allows for the verification of ARCTL proper-
ties (which could possibly be a translation of CTLK specifications). [37] provides an extension to the SMV
language for the description of interpreted systems and CTLK formulae.

MCMAS

Model Checking Multi-Agent Systems (MCMAS) [40] [75] is a specialised model checker for the automatic
verification of certain aspects of a modelled multi-agent system. It supports CTLK, meaning that it is able to
check standard temporal formulae, and ones dealing with epistemic modalities. It is based around the symbolic
method introduced in [52], using an external BDD library. It is based around the Colorado University Decision
Diagram (CUDD) [68] package. In a similar style to NuSMV, MCMAS is also able to act in an interactive way,
and allows for the user to interactively select the joint action which should happen.

MCMAS supports the creation of counterexamples (to universal formula) and witnesses (to existential
formula). MCMAS supports its own dedicated programming language based on the interpreted systems for-
malism [21] — ISPL. As per the interpreted systems formalism, MCMAS represents the global state asa BDD
composed of each local state for each agent.

ISPL - Interpreted systems programming language MCMAS accepts descriptions of multi-agent systems
in the form of ISPL files. These files contain a multi-agent system, in the form of a list of agents each with their
own description, and a set of formulae which the user wishes to check. The structure of ISPL files is roughly
based upon the work presented in [4].

Syntax of an ISPL file [54]
+ Agent — The name which will be used by MCMAS to represent the agent.
+ LState — These are the states which are used to the local states (L;) for each agent
+ Action — The actions which an agent can perform (A4;)
+ Protocol — The individual protocol for each agent (7;)
+ Ev — The evolution function (¢;)
+ InitStates — The set of initial states (Z)
+ Formulae — The formulae to be evaluated on the whole MAS
+ Evaluation — This allows the user to declare atomic propositions based on the local states of each agent
+ Groups — Allows for the grouping of individual agents into groups (I")

ISPL files allow for the definition of “red states” for an agent. These are states which violate some property
of the MAS. These states are defined over the local variables of an agent, as well as observable global variables.
All other states in the set of local states are labelled as “green states” - if the set of “red states” is empty, all the
local states are marked as green states.

Although the core of MCMAS is written using C++, the parsing of the ISPL files is done using Flex [70]
and GNU'’s Bison [71]. The grammar for these files is specified in the parser/ directory of the source tree.
nssis.1lis a description file for the lexer, while nssis.yy is the file for the parser.

One of the options to MCMAS is to print bdd-stats. These are statistics about the BDD, and corre-
sponding memory usage, which has been consumed in model checking the provided MAS. MCMAS is able to
generate Graphviz Dot files which represent counterexamples and witnesses, should they exist for the provided

model and for formulae.

26



MCMAS also provides an Eclipse [69] interface which supports the creation of skeleton MCMAS files,
as well as syntax highlighting for them. It also provides a graphical interface for executing the checking of
ISPL files, and then the examination of the counterexamples/witnesses generated, and their corresponding

Dot images.

The internal structure of MCMAS can be seen in fig. 2.3.8.

I Specify an interpreted system <———— Text editor/Eclipse interface

777777777777777777777777777777777777

Parse the input Flex and Bison Parser

| ! |
1 Build OBDDs for the MAS <——— C++ code and CUDD
: | :

4 Parse the formulae to check «——+— C++ code and CUDD

| @

5 Compute the states in which the formulae hold <— C++ code and CUDD
v |

6 Compare with the reachable states <« C++ code and CUDD

7 FALSE TRUE return

Figure 2.8: MCMAS internal structure [50]

2.3.9 BDD based BMC

In 2001, Fady Copty et al [17] investigated the possibility of using BDDs rather than SAT when performing
bounded model checking. The main aim of their paper was to see if the benefits gained from performing SAT-
based bounded model checking was due to the “underlying technology” used for model checking — BDDs vs
SAT - or whether the gains came from the method of model checking — bounded vs unbounded model check-
ing. They adapted Intel's BDD based unbounded model checker Forecast® to perform bounded model checking.

Given a description of a finite system, with a transition relation TR, and a set of initial states S, their
method attempts to check an invariant property P by checking the reachability of the target set T, representing
the compliment of P, from S. For each pass of their algorithm a check is made to ascertain if the frontier set
(the current reach set) and the error set are disjoint. Given a bound k, their algorithm is as follows:

*see [17] for details

27



Algorithm 11 BounpeEpTrRAVERSAL(TR, S, T, k)
1: Frontierg «— S

s for (i =0; i < k; i++)do

if (Frontier; - T # ()) then
return (FAILURE)

end if

Frontier; 11 < Imc(TR, Frontier;)

)

end for

return (PAsS)

The function IMG is used to calculate the next set of reachable states, from a given state using the transition
relation.

Among other topics Amal et al 2003 (2] discuss the terminating conditions for BDD-based BMC at a

depth k
+ All paths of length k have been explored
+ A state in the target (or error) set has been reached
+ All reachable states have been explored (a fixpoint has been reached)

The final conclusions reached by Copty, by comparing Forecast against a SAT-based checker Thunder,
seem to suggest that a SAT-based BMC out performs BDD-based BMC, but their comparisons are possibility
flawed due to the fundamental differences between the two checkers.

The ideas discussed by Fady Copty et al are further extended by Cabodi et al in 2002 [9]. They discuss
the idea of not only forward bounded model checking — from the initial set to the target set (FwpVER, Algo-
rithm 12) — but also the converse, this time working from the pre-image of the error set (BwpBMC). They
implement their algorithms into a model checker — Forward-Backward Verifier (FBV) — using CUDD, which
they then compare against the SAT-based BMC implementation in NuSMV [10]. Whilst only considering
safety properties, their results seem to suggest that BDD-based BMC scales better with an increasing bound of
k.

Algorithm 12 FwpVEr(TR, S, T)

k0

2: Ry = New =S

3: while New # () do

4 if (T- New # () then

5:  return (CounTeEREx(R))
6: endif

72 k+—k+1

8:  Next < Imc(TR, Next)

o:  New « Next - Rp_;

10: R =Rp_1+ New
11: end while
12: return (PASS)

These results were backed up by Amal et al 2003 [2], when they undertook a more thorough comparison
of BMC methods. It should be noted here, that unlike the work by Cabodi et al and Copty et al, Amla et al do
not provide any form of algorithm, nor any implementation specific information.

Their work presents three BMC approaches:

28



+ BDD based BMC — The paper looks at liveness properties when using a bounded reachability check (we
assume their approach sis similar to Algorithm 12). One of the cases in which their algorithm terminates
is when “an error state is reached”.

+ Explict State BMC — They perform explict state model checking, but they “kill” all state transitions after
a certain depth. They look at “proving a property holds” rather than trying to find a counterexample.

+ SAT based BMC — As previously discussed.

They also make the distincton that, unlike Copty’s implementation, both their BDD and explict state BMC
methods “can produce a positive answer if all the reachable states have been encounter at the depth checked.”.

2.4 Distributed Model Checking

There exists various techniques for attempting to alleviate the infamous state space explosion problem (BMC
is only one such method), which allow for the automated verification of larger systems. One such approach is
an attempt to distribute and parallelise the computational work load associated with model checking. These are
approaches which aim to exploit the resources available in a parallel computing environment, such as a cluster
or a grid computing environment, in an attempt to solve larger, more realistic, “industrial” sized verification
problems [77].

When the model checking procedure suffers from the state space explosion, and, as such, no longer fits
completely into the computer’s main memory, this causes swapping. Being unable to store the complete state
space, and having to utilise backing storage, causes a significant inefficiency in the procedures used.

Many attempts to parallelise model checking involve an attempt to divide up the state space into inde-
pendent subtasks which can be performed in an arbitrary order in a parallel manner. The intended result is
hopefully a quicker, and more efficient, verification, whilst avoiding the slow down associated with swapping.
Distributed techniques build on parallel methods and allow for the problem to be distributed between a number
of machines, each with disjoint memory.

For instance, there has been research into parallelising BMC, such that multiple solvers look for counterex-
amples at different lengths [27].

2.4.1 Grid Based BMC with “Seed” States

Another approach towards distributing bounded model checking is to start at different depth “seed states”
within the state space [27].

The approach which Iyer et al propose in [27, 25, 26] is to try and find various “candidate deep reachable
states” which can then be used as seeds to run parallel SAT solvers from in a grid environment. They argue that,
when starting SAT based BMC at a deeper state, it is possible to find states deeper in the model, as well as
locate errors which may not be locatable by existing methods.

Their method uses partitioned-ROBDDs, and under approximate, to build up a partioned state space
such that generating the seeds remains tractable, but this is done at the expense of completeness [26]. Once the
memory use of the system exceeds a threshold, they then select only a subset of the next states to continue with
forward verification.

Seed states are written out as conjunctive normal form clauses at regular intervals (e.g. after a certain
number of next-state computations). These are then used to start “bug hunting” with multiple parallel SAT
instances.

Figure 2.9 outlines their approach. The large triangle represents the state space which can be realistically
explored by conventional SAT based BMC. Instead, BDDS are used to generate an under-approximated state
space (the ovals). From this partitioned state space, many parallel SAT instances are started at various depths
within the state space (ds1 — ds4, each representing a different BMC-SAT instance). This is what allows their
process to reach errors which would otherwise be difficult to catch.

The justification for their work is to perform “efficent bug-finding” [25] and, as such, their approach only
looks at verifying invariant properties. Due to their under-approximated state space, their method also sacrifices

29



=
S

ds4

Figure 2.9: Seeding Multiple SAT-BMC runs from POBDD reachability (image adapted from [26])

completeness, although it is sound by construction [26]. If an error is found by a seed state, then the error exists
in the design and a trace can be generated from the initial states to the state where the invariant ceased to hold.

2.5  Verifying correctness in real life models

There is growing interest in being able to perform model checking on real life, “industrial’, models. The rise
of bounded model checking, using SAT solvers, caused the number of industrial cases to rise. BMC performs
more of a “bug hunting” approach, and given that most systems do contain bugs, BMC can perform favourably.

One area which quite alot of focus has been given to is the verification of the correct functionality in railway
systems. For instance, in [20] Faber looks at the verification of various aspects of the new European Train
Control System (ETCS). His work looks at the safety of the railway to prevent crashes. A fuller evaluation of
applying symbolic CTL model checking to railway interlock software is presented in [18].

2.5.1 'The Train-Gate-Controller Model

An example of a simplified model based upon a real world train system is that of the Train-Gate-Controller
system.

Alur et al [1] devised this model for use with the Mocra model checker. Their model is based around the
idea of two circular train tracks, each with a train travelling in a different direction. At a particular part of the
track, the trains must use a tunnel (in the original user manual this was a bridge, but this has evolved over time,
and we will be using that formalism), but the tunnel can only accommodate a single train. At the point at which
the tracks merge there exists a controller, which controls signals for entry to the tunnel. If a train sees a green
light, then it knows it is safe to enter the tunnel.

Within MocHa, each of the trains is modelled as a reactive module, which can perform two basic actions:
arrive and leave. Each reactive train module contains a single enumerated type, representing the current
state of the train: {away, wait, tunnel}. Each train also has access to a signal external variable signal.

The train module acts as follows: when it arrives at the tunnel it sends the event (i.e. it performs the action)
arrive to the controller, and checks the signal variable (state = wait). Ifthe signalis red, the train waits
and continually checks the signal. When the signal turns green, the train enters the tunnel (state = tunnel)
and, on its exit from the tunnel, the train sends the signal 1eave to the controller, such that it knows that the
train is no longer in the tunnel.

To support multiple trains within this environment, Alur et al extend the model such that there were two
copies of signal variable: signalW and signalE — representing a train approaching from the east or from
the west. Similarly, the events arrive and leave were prefixed with the approach direction, such that the
controller could differentiate between the events it witnessed.

In the proposed model, the controller initialised both of the lights to red — when a train arrived and signalled

30



to the controller, it would check if the other light was red, and only then would the signal be changed to green,
allowing the train access to the tunnel. When a train leaves the tunnel, and informs the controller of this fact,
it would then change that light back to red.

The behaviour of the trains can be seen in Fig. 2.10. The edge from the wait state to the tunnel state can
be seen as being a guarded action (i.e. the action can only be performed when the condition is met).

One limitation of the work in [1] was that the authors did not discuss the properties which should be
checked upon the model. The functionalities which the controller should exhibit are briefly discussed in [23].
The controller should:

+ Ensure that two trains are never in the tunnel at the same time, and
+ Ensurea “smooth running” of the system (e.g. the trains can always eventually move through the tunnel®).

Sitjani et al [57] further investigate the Train-Gate-Controller problem with respect to modelling, and
verifying, the system using Rebeca [78] — “an actor-based language with a formal foundation”. Their paper

provides some more concrete properties, in LTL, which they use to verify their Train-Gate-Controller based
Rebeca model’:

+ Mutual exclusion
G- (Traint-INTunNEL A TrAaIN2-INTUNNEL)

Only one train should be in the tunnel at one time
+ No deadlock
GF (Traint-INTunNEL V TrAIN2-INTUNNEL)

Both trains should eventually pass through the tunnel

+ No starvation
G (F (Train1-INTunnEL) A F (Train2-INTUNNEL))

Both trains finally pass through the tunnel (there is always progress)

It should be noted that the final property is attempting to see if the controller acts in a fair way, and will
eventually allow any train waiting to pass through the tunnel. Another property which they state, which also
corresponds to how controller deals with requests, is:

G (ConTRrOLLER-SIGNALT — F (TRAINI-INTUNNEL))
This states that, once a train receives a signal from a train (saying that it is waiting to enter the tunnel), eventually
that train does enter the tunnel®,
A Multi-Agent Train-Gate-Controller

The first time that the Train-Gate-Controller was considered in a multi-agent systems context was in the work
by van der Hoek et al [23]. A flaw with the paper, with respect to this current work, is that the paper was
concerned with looking at ATL properties on this model. As such, properties expressed in either CTL or
CTLK were cleatly not given.

This property is attempting to express that starvation does not occur within the model
"The properties in the paper are:

+ specified with O and ©,
+ presented in a hybrid Rebeca/logic/C-like notation
+ based on the “bridge” model

I have re-written them here in the LTL style as used previously in this report, as well as adapting them to the “tunnel”
scenario,
®This can really be seen as a liveness property, but the authors do not state this.

31



Arrived
at the

tunnel
A

[LicuT = GREEN]

Leaving
the tunnel

Figure 2.10: An automaton modelling a train from the Train-Gate-Controller model [1, 23]

The work presented by Kacprzak et alin [31, 29, 30] looks at building upon the work of van der Hoek [23],
but this time they attempt to present an interpreted systems formalism of the Train-Gate-Controller problem.
Their approach is looking to use the Train-Gate-Controller example in unbounded model checking on multi-
agent sytems.

Their work makes the assumption that the function of the controller is to ensure that two trains are never
in the tunnel at one time, and that trains “follow the lights diligently (i.e. they stop on red)”. In contrast to the
work of Alur and van der Hoek, the controller only transitions to the red state once a train enters the tunnel
(i.e. the controller is, by default, in the green state).

The local states of the agent in the interpreted systems are as follows [29]:

Lirain, = {awayy,waity,tunnely}
Liraing, = {aways,waite, tunnels}
Lcontroller = {Ted, g?“een}

The local states take the obvious meanings in the context. The global state, as usual in the interpreted
systems, is comprised of all of the local states for each agent, i.e: G = Liyqin, X Liraing X Leontroller- In the
scenario presented in [31, 29, 30] the initial state is taken to be: ¢t = (awayi, green, aways).

The local transition structures, with respect to the joint actions, for the two trains can be seen in fig. 2.11.

Which agents are affected when a joint action takes place, along with their pre- and post-states enabling
that action, can be seen in table 2.12. The joint actions from the table 2.12, can be very roughly translated as

follows:

+ aj represents TRAINT signalling the controller that it wishes to the enter the tunnel. (similatly for a4 with
TraIN2).

+ ag corresponds to the joint action allowing TRAINT to enter the tunnel (again, similarly for as).
+ a3 is the joint action in which the train leaves, and signals to the controller (same as for ag and TraIN2).

In (31, 30] attempt to devise epistemic propositions based on a single controller and two trains. They define
the following two propositional atoms: in_tunnel; and in_tunnels (which take the obvious meanings), the
valuation function determining which states they hold as defined as:

+ in_tunnel; € V(g) iff ltgamn:(9) = tunnel; forg € G

+ in_tunnely € V(g) iff Itpana(g) = tunnel; forg € G

32



al —

TUNNEL,

CONTROLLER

RED

TuNNEL,

Figure 2.11: The local transition structures for the two trains and the controller [29]

Action Agent Pre-State  Post-State
ai trainy away waity
trainy waity tunnely
a2
controller | green red
traing tunnely away,
a
3 controller red green
Qaq traing aways waity
traing waity tunnels
as
controller | green red
a traing tunnels aways
6 controller red green

Figure 2.12: Descriptions of Actions in the Train-Gate-Controller [29]

33



Upon these propositional atoms, they then build the following formula:

1. o = ~AX(—in_tunnel;)
It is possible that the first train will be in the tunnel in the next state

2. o1 = AG(in_tunnely — Kypgin, (min_tunnels))
When the first train is in the tunnel, then it knows the second train is not in the tunnel

3. 2 = AG(—in_tunnely — (= Kyprain, (in_tunnels) A =Kipain, (—in_tunnels)))
When the first train is not in the tunnel, it does not know if the other train is in the tunnel or not.

The novel approach presented in [29] is to build a parameterized model, and a supporting formula, to see the
effective of attempting to verify properties exposed to ‘combinatorial explosion”. They generalise the property

o with N trains:

N N
v2(N) = AG (ﬁn_tunnell — <ﬂKtmm1 (/\ ﬁin_tunneli> A —Kiraing (\/ z'n_tunneli) ))

=2 =2

34



Chapter 3

Preliminaries

3.1 Discussion on Prior art

Nearly all approaches to bounded model checking look at conversion of the model, and the property, to that of
the boolean satisfiability problem. This is not an ideal solution; there is no obvious way to directly convert an
existing model checker using binary decision diagrams to the SAT problem without significant re-engineering.
Plus, this then adds an extra requirement for either an external SAT solver, or the implementation of one.
This point is clearly illustrated, with the exception of NuSMYV, by the distinct lack of existing model checkers
supporting both BDD methods and a translation to SAT.

The conversion to SAT also ignores a lot of optimisations, such as variable reordering, which have been
designed specifically for model checking. The research which has been put into optimising BDD based methods
heavily eclipses that of the research for model checking methods based on SAT.

Another problem with a majority of the existing approaches to BMC is that (with the exception of the
unstated algorithm in [2]) they only deal with the falsification of properties. This is not a favourable solution,
given that BDD based methods of satisfaction also enable the user to prove if a property is satisfiable.

When performing forward verification, as in Copty’s approach, we can be more intelligent. The majority of
most symbolic model checkers perform forward verification, building up a reachable state space until a fixed
point is reached. An approach such as Copty’s, which takes this fixed point into consideration, is cleatly a
preferable solution, as opposed to assuming that not finding a bug at a given depth is an indication that no bug
exists at any depth.

Approaches taken by NuSMYV for invariant satisfaction, or the previously discussed BDD based bounded
model checking methods, only look at very simple properties — that is, properties which can be expressed
through the assignment of propositional atoms. NuSMV’s approach is to check if the reachable states are a
subset of the states in which the atom holds. In contrast, the BDD based BMC approaches of (17, 9, 2] look
at trying to falsify safety properties through the intersection of the reachable states and the error states, which
invalidate the safety property.

It should be immediately obvious that the full lexicon of expressible properties in a logic such as CTLK
cannot be expressed by simply providing the model checker with a single state and then attempting a reachability

check.

3.2 CUDD Specifics

The API provides the functionality for quantification of variables within a BDD. The function ExistsAbstract [63]
builds the following BDD, where x, y and z are the BDDs representing the variables which we wish to quantify
with respect to:

Bh = El(x,y,z) Bf

An implementation of the above quantification (using CUDD) can be seen in fig. 3.1 [63]. Conceptually,
ExistsAbstract (and the similar function Exists) use Shannon’s expression [16] to construct the quantified

BDD:
f=02A flaco) V(@ A flac)

35



This quantification attempts to express if it is possible to make the BDD (representing the function f) By true
by an assignment of either false (right hand side) or true (left hand side) to the variable x.

flzep is a restriction upon the variable , as used in the function f, to a value of b € {0, 1}. The BDD
for a restriction to 0 can be computed by removing the node n, representing the variable x, and redirecting all
incoming edges to succy(n). A restriction to a 1 can be computed in the same way, but the incoming edges are
directed to succy (n).

// build the extracted BDD xyz
BDD temp = x * y * z;
// h = there_exists(xyz)f

BDD h = f.ExistAbstract(temp);

Figure 3.1: Existential quantification of variables within CUDD

3.3 MOCMAS Internals

This section attempts to inform the reader of some implementation specifics which occur in the current version’

of MCMAS.

3.3.1 Global Variables
The following is a list of global variables which are used throughout MCMAS’ code:

+ BDD reach — the reachable states — a BDD representing the current reachable set of states

+ BDDvector *v — the local states — a vector of BDDs, each describing an exact local state for each agent

(see previous part)
+ BDDvector *pv’ — the next states — a vector of BDDs, each describing a unique local state for an agent

+ BDDvector *VRT — the transition relation — a per agent mapping between v and pv, constructed from the
conjunction of the protocol and the evolution function (both represented as BDDs).

+ map<string, basic_agent *> *is_agents — the interpreted systems agents — an std: :map of strings
(of agents’ names) to instances of agents.

+ modal_formula_vector *is_formulae — the interpreted systems formulae — an std: :vector of all the
formulae, as given in the ISPL for that model.
3.3.2 Important Classes
Object

This is a base class which the majority of classes extend — it is very similar to the Object class in Java. Impor-
tantly, the class includes a virtual to_string() method.

modal_formula : public Object

This is the class which MCMAS uses to represent and store modal formulae. When the ISPL code is parsed
it generates modal_formula and stores them in the is_formulae vector.

Wersion 0.9.7
>“A boolean vector is an array of BDDs where each BDD represents one bit of an expression” [67]

36




Variables

+ unsigned char op — MCMAS does not support any kind of inheritance to distinguish between differ-
ent types of modal formulae. Each type of modal formula has an associated unsigned char value (e.g.
an atomic proposition is represented by 0, AG is represented by 10, and K is represented by 30).

+ Object* obj[] — MCMAS uses this variable to store the “arguments” to the formula, for example
another modal_formula.

Methods

+ BDD check_formula() — Checks the modal formula with respect to the current reach set. The return
value is the BDD representing the set of states in which the formula holds.

+ modal_formula * push_negations(int level) — “Pushes” negations down a certain number of
levels through the entire formula (e.g. using De Morgan’s Laws or re-writing formula with a leading
negation to use the dual). Returns a pointer to a new formula with pushed negations.

+ bool is_ACTLK() — Checks if the given formula is in ACTLK.
+ bool is_ECTLK(Q) — As above, except for ECTLK.

basic_agent

Used to represent an agent within MCMAS. Each agent has a respective: name (its name); vars (the variables
which comprise an agent’s local state); actions (the actions that agent can perform); protocol (which actions
can be performed in a given state); evolution (how an action affects an agent’s local state).

3.3.3 Satisfiability checking within MCMAS

As stated in Section 2.3.1, a model (M) satisfies a formula () if the all the initial states (Z) are included in the
set of states at which that formula holds. That is:

MEpiff 7 C [¢]

This means that, to check the satisfiability of the formula ¢, we can construct (and check the satisfiability
of) the formula:
L—

where ¢ represents a propositional atom which is true at the initial states of the model only. This implication
is implicitly true at all states except the initial ones (the antecedent is false, so the formula is true regardless of
the value of the consquent). MCMAS employs this method to easily check the satisfiability of a formula over
an entire model. If [t — ¢] is equal to reachable states (reach) we can deduce that the formula ¢ holds at the
initial states of the model.

More in-depth implementation specifics of MCMAS, including the construction of SATcrx (with the ex-
ception K), are not discussed here. The reader is referred to [49] [74] for further information.

37



3.4 Models

MCMAS?® comes with a set of example models, the following four of which all have properties which are ex-
pressible in ACTLK*. Some of the properties given below have been constructed, for this work, purely to adhere
to the logic ACTLK.

The Bit Transmission Problem

Imagine two processes, a sender S and a receiver R, who communicate over a possibly faulty communication
line. S continually sends a bit to R, until it receives an ack from R. R does nothing until it receives a bit from
S, and then infinitely sends an ack to R. If S receives the ack from R, then S knows R has received the bit.
Given that S does not acknowledge the ack, R will never know if S received the ack.

An expression such as this can be formalised in CTLK [41]:

IS E AG (recack — Kg (K (bit=0) V K (bit=1)))

Lomuscio et al [42] extended this model to include possible failures. Their work added the following faults
to the receiver:

1. The protocol for the agent no longer enforces it to send an acknowledgement when it receives a message,

and

2. It allows for the possibility that it can send an acknowledgement without previously receiving a message
ACTLK Properties The property is true on the original BTP model, and false on the faulty model:
+ @prp1 — AF(K(Receiver,bit0) or K(Receiver,bitl))
The Dining Cryptographers

The Dining Cryptographers is a problem which was introduced by Chaum in 1988 to illustrate the anonymous
sending of messages with unconditional send and recipient untraceability. The idea is as follows: three cryp-
tographers are out for dinner and learn that their meal has already been paid for, but they desire to discover
who has paid — one of them, whilst staying anonymous, or their employer, the National Security Agency. They
devise the following protocol: each of the cryptographers flips a coin behind their menu so that only they and
the person to their right can see the output. The cryptographers then announce if the two coins which they can
see (theirs and the one to their left) is the same or different. If one of the cryptographers has paid of the meal,
then he, or she, will announce the opposite to the difference of the coins that they can see. If an even number
of “same” the NSA has paid.

This problem can be modelled as a multi-agent systems problem, where each of the cryptographers is an
agent and the environment encapsulates the values of the coins. The environment non-deterministically chooses
if a cryptographer or the NSA has paid. A “cryptographer” agent has four local variables, one for each coin, one
stating if the coins are the same or different, and one saying if that agent has paid or not. The protocol of each
agent determines if they should lie or not, given if they are the payer or not.

MCMAS can then be used to check if there is an odd number of “same’, which means that a cryptographer
has paid. If an agent has not paid, and there is an 0odd number of “same” utterances, then the agent knows that
someone paid, but he does not know who.

ACTLK Properties
+ Ypc1 —AG((odd and !clpaid) -> (K(DinCryptl, c2paid or c3paid))) — True

+ Ypc2 —AG((odd and !clpaid) -> (K(DinCryptl, c2paid or c3paid)) and (K(DinCryptl, c2paid)
or K(DinCryptl, c3paid))) — False

3As of version MCMAS 0.9.8.3.
*Some of these do not have obvious translations to English.

38



“Software Developement”

The work of Lomuscio et al in [39, 38] presents a model based upon the composition of services based upon a
contract. Their model contains seven agents: “a principal software provider (PSP), a software provider (SP),
a software client (C), an insurance company (I), a testing agency (T'), a hardware supplier (H) and a technical
expert (E).

Their idea is as follows: The client (C) wants a piece of software developed and deployed on a hardware
supplier (H) by the technical expert (E). There are two parties which are to provide the software; the principle
(PSP) and non-principle (SP) software providers. The PSP performs software integration of its software with
SP’s when a deliverable is made, which it then sends to the testing agency (T for testing. If the software passes
testing it is given to the insurance company (I) for the provision of software insurance. The software is finally
handed over to the E, who deploys it on the H.

If any of the above parties deviate from the above (e.g C requires software changes which either PSP or SP
do not agree with, or the software fails in testing too many times) the contract is violated.

ACTLK Properties

+ sp1 — A(HardwareSupplier_green U HardwareSupplier_end) — False — The hardware supplier is
always in compliance until it has finished the contract.

The Book Store

This model is similar to the “software development model” found above, in as much as it deals with contract
violations. The model contains two agents: a Purchaser and a Supplier.

The Supplier waits for an order from the purchaser and decides if it should accept, or rescind, the order.
The agent then waits to receive the payment, which it can then accept or decline. The “e-goods” (books) are
made available to the purchaser; if the purchaser is unhappy with the goods the supplier can offer a “remedy”
or a refund. If, at any stage, the supplier does not “follow protocol” (i.e. it performs terminate action) the
contract is violated.

The Purchaser initiates a contract with the supplier, pays for the goods and downloads them. If the Pur-
chaser is unwilling to accept the goods it can return them to the Supplier. The agent can violate the contract by
refusing to pay for the goods (by performing the terminate action).

ACTLK Properties

+ ps1 —AF (K(Supplier, contract_success)) — False — The supplier, at some stage, knows that the
contract has ended successfully. That is, both parties have adhered to the protocol and both goods and
payment have transferred hands. This is violated at any stage, by either of the parties, by performing the
terminate action.

+ pps2 — AG (payment_received -> AF(supplier_compliance)) — True — When the supplier re-
ceives the payment it complies with the rest of the transaction

+ ps3 — AG (payment_received -> AF(AX(supplier_compliance)) — False — When the supplier
receives the payment from the next state’ it complies with the transaction.

+ @Ypsa —AG ((supplier_compliance and purchaser_compliance) -> K(Supplier, AF contract_end))
— False — If both parties comply the supplier knows that eventually the contract will end (i.e. it will not
be prematurely terminated).

*In the previous property, supplier_compliance holds in the same state in which payment_received holds, which, when
using weak until, is true.

39



40



Chapter 4

Original Contributions

This chapter outlines our contribution of an original algorithm for binary decision diagram based bounded
model checking. We include discussion of how such algorithm could be implemented within an existing model
checker. We look at the model checker for multi-agent systems - MCMAS.

Section 4.1 lays out an overall view of our approach, as well as the devised algorithm. We also include a
discussion of certain “variations on a theme”, displaying an element of flexibility within the method. In the final
part of this section we look at implementing this method into MCMAS.

In Section 4.2 we present a method for SATgcr1x, which supports the K operator. This is a fundamental
requirement to our methods in the preceding section, when verifying epistemic logic in a bounded context. We
also include a BDD based implementation of SaTg for MCMAS.

Section 4.3 covers an extension to the first method, further displaying the flexibility of the approach. We
show how the method can be distributed, requiring only limited changes to both the method and an imple-
mentation of that method.

Finally, in Section 4.4, we conclude by setting forward a model which could be used to show the possible
benefits, and limitations, of each of these methods.

4.1 BDD based BMC

Our main algorithm (Algorithm 13) performs an incremental state space generation, including a check at each
“depth”. We continue this process until either we find a counterexample to the original formula, or we reach a

fixed point in the state space.

4.1.1  BDD based BMC with “early termination”

Algorithm 13 BDD-BMC(¢) : ACTLK Formura, 7 : INrT1aL STATE, Trans : TRANSITION RELATION) ¢
BooLEAN

1: p « ) {p: ECLTK FormuLA}

2: Reach «— 7 {Reach : BDD}
while TruE do

3:
4 if [t — ] = Reach then

5: return FaLse {Counterexample to ACTLK formula found}
6: endif

7: Reach < Reach V (Reach A Trans)

8:  if Reach Unchanged then

9t

break {Fixed point reached}
ro: endif

11: end while

12: return [t — 1] = Reach

Conceptually, whilst similar to both Cabodi’s approach (of Algorithm 12) and Copty’s approach (of Algo-
rithm 11), ours differs significantly in one major way. Both of the original BDD based BMC methods merely
performed a set intersection between either the reach set (Algorithm 12) or the frontier set (Algorithm 11) of

41



states with a target error state. In comparison, the algorithm we set forward here performs a full satisfability
check (as per Section 3.3.3) on the whole state space.

It can be seen that our approach is more flexible, and expressive, given that it is possible to express more
properties than a single error state can describe. A striking difference between our algorithm and Copty’s is
that our algorithm keeps a BDD based representation of the entire reachable state space (the variable Reach in
the above), whilst Copty’s implementation only keeps the current frontier set of states.

The Algorithm (13) presented has two “exit” points: lines 5 and 12. The first of which is the case that the
algorithm has found a counterexample to 1) — this is what we refer to as “early termination”. This is due to
the fact that, as soon as we find the counterexample to the ACTLK formula, we are able to return early (i.e.
terminate the algorithm) and no longer have to continue building a reachable state space. The second exit point
(line 12) is only accessible if we break the main loop body (line 9). The terminating condition for the loop
is that we have reached a fixed point in the state space, i.e. the set of next states generated is the same as the
previous set of next states (we are adding nothing “new” to the Reach set).

To calculate the next Reach set (line 9) we initially generate only the set of “next” states. These are the
states which are reachable one step away from the current reachable states set (i.e. with one application of the
transition relation). We can construct these states from the conjunction of transition relation and the current
reach set. The disjunction of these “next” states with the current reachable states results in the next set of
reachable states (at a BMC depth of k + 1, with k applications of the transition relation).

In the actual implementation, the set of next states is stored in a temporary variable (at function, not loop,
scope), allowing us to easily determine when a fixed point has been reached. If the previous, and the current,
set of next states are the same, then the algorithm can no longer find any new reachable states (the next set is a
subset of the reachable states), and, as such, fixed point has been reached.

4.1.2 Variations on BDD-BMC

Checking the satisfiability of [t — ] at each successive depth is not a “free” operation. This calculation may
consume additional memory resources above and beyond the cost of only building the reachable states. This is
an unwanted overhead when compared to performing non-bounded' BDD based model checking.

Also, the calculation of the set of satisfiable states is not an instantaneous process — this results in a time
penalty at each depth. Again, this is an overhead not exhibited by non-bounded model checking.

In an attempt to alleviate the space/time penalty of checking at each successive bound, heuristics can be used
to decide if a check should be performed at a specific bound. This procedure is highlighted in Algorithm 14.

It can be seen on Line 4 that we only perform the satisfiability check when the heuristic is satisfied.

Examples of possible heuristics for selecting when to check for satisfaction include:

+ Different size increments — our original implementation did a check at every bound; alternatively it could
be performed after a certain number of iterations (e.g. at every 10/ depth i.e k%10 == 0).

+ “One shot” — see Section 5.5

+ Number of states — the satisfaction check could be guarded on the number of reachable (or next) states
exceeding a certain threshold

+ Memory used — similar to above, except the guard is on the memory used to hold the reachable state

+ Time consumed — rather than checking on a depth bound, the check could be performed after a variable
unit of time

"When we refer to non-bounded model checking we refer to MCMAS’ default behaviour of building up the state space
until a fixed point is reached. Only once a fixed point is reached is a single satisfiability check performed. This is not the
same as unbounded model checking [29]

42



Algorithm 14 Heuristic-BDD-BMC(7) : ACTLK Formura, Z : INrTiaL STATE, Trans : TRANSITION
ReLaTiON, Heuristic) : STRING X BooLEaN
1: p «— ) {p: ECLTK FormuLA}
: Reach < 7 {Reach : BDD}
while Truk do

)

3:
4:  if Heuristic met then

5: if [t — @] = Reach then

6: return HEURISTIC MET X FALSE
71 end if

8: endif

9:

Reach < Reach VV (Reach A Trans)

ro:  if Reach Unchanged then

I break

12:  endif

13: end while

14: return FIXep pOINT X [t — 9] = Reach

“One shot” BMC

The second method of BMC we have implemented is BMC with a “one shot” heuristic (Algorithm 15). The crux
of this approach is, rather than checking [t — (] against the current reachable states at every depth, we build up
the reachable states to the given “one shot” depth — and only then do we compare [t — ¢] against the reachable
states. If the model satisfies ¢ at the one shot depth the algorithm returns false (¢ is the counterexample). If
we are unable to satisfy the negation we return true, although this could possibly be an incomplete result, as we
have not built up all of the states.

Algorithm 15 “ONE sHot” BMC(¢) : ACTLK Formutra, Z : INrT1AL STATE, Trans : TRaNSITION RELA-
110N, OneShotBound : INT) : STRING X BoOLEAN

1 @ « =) {¢ : ECLTK FormuLa}

2: Reach «+ 7 {Reach : BDD}
for k < 0 to OneShotBound do

3:
4t Reach < Reach VV (Reach A Trans)

5:  if Reach Unchanged then

6: return FIXED POINT cASE : [t — 9] = Reach
7:  endif

8: end for

o

return ONE SHOT cASE : [t — @] = Reach

The method employed in Algorithm 15 differs significantly from that of Algorithm 13. The original algo-
rithm will only terminate once a complete result has been found (either from reaching a fixed point or from
finding a counterexample). The “one shot” BMC, as presented here, may return an incomplete (and useless)
result. As discussed previously, the motivation for this approach is that the calculation of [t — ¢] at each
depth is not a “free” operation; it can affect the amount of memory used by the model checker. (In MCMAS’
case, this is the size of CUDD’s cache). This results in a memory increase which is not displayed in “regular”
verification. This algorithm avoids this overhead by only calculating the satisfiability set once, and then exiting,

The implementation of this algorithm is not supposed to be “used” directly by a user, due to the possibility
of returning a false positive. Instead, we have developed a wrapper script to MCMAS which attempts an
iterative depth approach to verification of a given model. When one instance of MCMAS finishes we regain
all of the memory used by that instance. Then, when a new instance of MCMAS is launched, we start with a

43



“fresh” CUDD cache. This implementation is intended to overcome the memory overhead of our first method,
but does this at the expense of time. Each time we start with a deeper one shot bound we have to effectively
recalculate the set of reachable states, which may have already been calculated by the previous instance.

4.1.3 An Implementation

The remainder of this section discusses an actual implementation of our algorithm into MCMAS. The devel-
oped code can be found in Appexdix A.

In the following we attempt to outline the significant additions to the MCMAS code base to implement

bounded model checking:

+ New Types (Figure A.1) and New Globals (Figure A.2) — For efficiency, rather than calculating an
ECTLK formula from a ACTLK each time, we keep a pair of both types of formulae, which allows us

to easily change between the two.

+ Conversion of ACTLK to ECTLK (Figure A.3) — We convert from an ACTLK formula to an ECTLK
one by construction of the negation of the ACTLK formula and then “pushing” the negations through.
We extended the push_negations function to support re-writing a negated K modality to that of a K
modality.

+ Checking the ECTLK formulae (Figure A.4) — The original MCMAS implementation iterated over
the is_formulae vector. In an attempt to reduce the effect our code had on the original implementation,
we added a function which iterated over the bmc_formulae vector.

+ Implementing Algorithm 13: Part 1 (Figure A.5) — In this Figure we outline our implementation of
Lines 1 — 11 from the original algorithm. The main difference between the algorithm and the implemen-
tation is that, rather than a “while true’, our loop is guarded on still having formulae to check.

+ Implementing Algorithm 13: Part 2 (Figure A.5) — Our implementation terminates with Line 12 from
the algorithm. We print out all of the formulae for which we have found counterexamples; any remaining
formulae are checked with the original check_formulae function.

44



4.2  SaArg

The heart of bounded model checking lies in being able to satisfy an existential formula, without the require-
ment of having a representation of the entire state space which calculating the satisfaction of a universal formula
would require. Model checking the existential fragment of CTLK (ECTLK) can follow the same procedures
as for model checking ECTL (Algorithm 2), but with the addition of checking the dual of K; K

One possible way of calculating the satisfiability of a Kagenr(¢), would be to evaluate =Kaggnr(—¢)
using Algorithm 8. Although this would be a feasible strategy it has the disadvantage that it pays an overhead
to perform two negations, as well as being a rather inelegant solution.

A preferable way of calculating this procedure would be to provide, and implement, a direct method for
SaTg which is not dependent upon Saty.

Conceptually, our method for satisfaction of formulae of the form Kacenr(() can be seen in algorithm 16.
To find the set of states in which the previous formula holds, we first calculate the set of states in which ¢ holds.
Next, we utilise the relation pre _ for the given agent, which returns the set of all global states in which the local
state for the agent is invariant (~;, as per Algorithm 8).

Algorithm 16 Satg(¢ : ForRmULA, 7 : AGENT) : set of STATE

1 X SaTerk ()
2: Y « pre (X, 1)
3: return Y

4.2.1 BDD based Sarg

The first stage towards making a BDD based SaTk is to be able to easily locate, and represent, the reachable
states for which the local states are invariant for a given agent. The process for calculating these states can be
seen in figure 4.1, showing a simplified” project_local_state method.

BDD basic_agent::project_local_state(BDD *state, BDDvector*® v)

{
BDD tmp = bddmgr->bddOne();

// For all of the state variables before the agent
for (int j = 0; j < get_var_index_start(); j++)

{
// ‘‘and’’ them on
tmp = tmp * (*v)[j];
}
// and after the agent
for (int j = get_var_index_end() + 1; j < v->count(); j++)
{

// ‘‘and’’ them on
tmp = tmp * (*v)[jl;
}

return state->ExistAbstract(tmp);

Figure 4.1: The simplified project_local_state method

*The actual implementation does not differ much, but it also has to quantify over the set of global observable variables
and, as these have not been discussed previously, they have been omitted for clarity

45




This method is in the basic_agent class, which is MCMAS's lowest encapsulation of agent. The two
methods get_var_index_start and get_var_index_end return the first and last index, respectively, into
the vector of states (v) for that agent. A temporary BDD temp is constructed from the conjunction of all the
other state variables for all the other agents in the system. Finally, the BDD representing a quantification of
these states is constructed and returned.

The BDD returned from project_local_state is, in essence, a BDD representing only the local states
for the agent, with all of the other states in v being set to “don't cares™.

BDD get_nK_states(BDD *state, string name)

{
// Look up the agent from its name
basic_agent *agent = (*is_agents)[name];

// Project the local state over [[phi]]
BDD localstate = agent->project_local_state(state, Vv);

// ‘‘and’’ that state over the reachable states
return reach * localstate;

Figure 4.2: The global function get_nK_states

The function in figure 4.2 builds upon the previous method — it takes the set of the states, [¢] (the first
argument, state), and a unique ID for the agent (string agent). Once a reference to the agent is found from
is_agents, the BDD representing the local state for that agent is constructed, which is subsequently ANped
with the set of reachable states. The resulting BDD represents the set of all reachable states in which the local
state is indistinguishable from a local state in [@] for the given agent.

Figure 4.3 displays our additions to a skeletonmodal_formula: : check_formula(). The integer constant
50 (stored in op, Section 3.3.2) is the formula identifier which MCMAS uses to represent formula of the kind
KAGENT(SD)' .

The “arguments” to the formula K, AGeNT and ¢ are stored in the obj local variable. obj[8] is a pointer
to agent class for AGeN'T, whilst obj[1] is a pointer to the modal formula representing ¢.

*In the spirit of Karnaugh maps

46




BDD modal_formula::check_formula()

{
// Returns a BDD encoding the set of states
// in which the current formula is true

BDD result, af;
string name;
Object *id;

switch (op)
{

/:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’.‘:’::’::’::’::"::"::"::1':’.‘:’.‘:’.‘:’.‘:1‘:"::1':’.‘:’.‘:’.‘:’.‘:1‘:"::1':’.‘:’.‘:’.‘:’.‘:1‘:"::"::’.‘:’.‘:’.‘:’.‘:"::"::"::"::’.‘:’.‘:’.‘:"::"::"::"::’::’::’:

* SNIP

*

EE R O O O O O O O O R AR o O o O R R R R R o O o

case 50: // KB
{

// id is the identity of an agent

id = ((modal_formula*) obj[0])->get_operand(0);

// Name is the name of agent
name = ((atomic_proposition *) id)->get_proposition();

// af is the set of reachable states in which the formula holds
af = ((modal_formula*) obj[1])->check_formula();

// result is the reachable states which are
// indistinguishable for agent name

result = get_nK_states(&af, name);

break;

/ v % ek vk SR O R R R R R O R R R ok
* SNIP
ECE R R S S S R Rk i R O

.‘:’.‘:"::"::"::1':’.‘:’.‘:’.‘:’.‘:1‘:"::1':’.‘:’.‘:’.‘:’.‘:1‘:"::1':’.‘:’.‘:’.‘:’.‘:1‘:"::"::’.‘:’.‘:’.‘:’.‘:"::"::"::’.‘:’.‘:’.‘:’.‘:"::"::"::’::’::’.‘:’:/

}

return result;

Figure 4.3: A reduced check_formula method

47




4.3 Distributed Verification of ACTLK

This section presents an extension to our algorithm in Section 4.1 in which we demonstrate how the technique
can be distributed in an attempt to utilise the available resources in a disjoint memory architecture. Our work
builds on the ideas of Iyer et al in [25] but, rather that just hunting for bugs, we can also show correctness of the
system under verification. We display a technique of using a Java based “wrapper” for MCMAS that enables
the model checker to work in a networked fashion, using multiple hosts in a grid to both reduce the time taken
and the memory used for verification.

4.3.1  The key idea of grid based BDD-BMC

Our approach uses a method of state space partitioning to allow for multiple “hosts” to perform bounded model
checking on different areas of the state space. The main consideration for this approach is in checking invariant
properties, expressing that a given condition must hold at every state in the reachable set.

Invariant properties in CTLK contain AG as the top most connective in the parse tree. The simplistic parse
tree, for the formula AG((p), can be seen in Figure 4.4. This formula will be satisfied from the initial state if, at
every reachable state, © holds.

AG

¥

Figure 4.4: The parse tree for AG(LP)

Our method places an extra restriction upon the logic ACTLK, stating that AG is at the top — we refer to
this as A°CTLK. The construction of the formula beneath this connective remains unaffected (we allow regular
ACTLK formula). The falsification of a formula can be displayed by finding a single reachable state (from the
initial state) in which the property beneath AG is no longer satisfied. We have previously shown that NuSMV
supports ‘on the fly” checking of invariant properties in a very similar way (Section 2.3.8).

In a Kripke model, the transition relation is transitive; we deduce here that the reachability between two
states is also transitive (if a state $7 is reachable from sg, and s3 from s1, then s4 is reachable from sq).

We translate the problem of falsifying AG(¢) in the initial state, from finding a single reachable state in
which —¢ holds, to finding a reachable state in which AG(¢) does not hold. That is, we find a reachable state
in which EF(—¢) holds.

We use Iyer’s terminology of “seed states” to represent the different reachable states in which we attempt to

show the falsifiability of AG(¢).
4.3.2  Outline of grid based BDD-BMC

In the design approach we have taken for this algorithm we have two types of hosts: a single master and multiple
slaves. The single master instance performs initial verification and seed generation. After this, the node acts
solely as a “co-ordination host” between the multiple slaves.

Our method works in three stages:

Fixed Depth BMC - Initially, we perform a heuristics based approach to BMC — we check the satisfiability
of [t — EF(—¢)] at every depth, attempting to find a counterexample, until a predetermined depth.

Generate Seed States — Once the given depth has been exceeded, each unique state in the frontier set of next

states is recorded in a way which makes them amenable to either network transfer or to storage to a

backing device.

48



Parallel Seed BMC - Parallel BMC solvers search for a counterexample (Algorithm 13), each starting with a
different frontier state.

The first two stages in the above are only performed on the master instance, after which all of the compu-
tational work load is offloaded to the slaves.

Although, as we have presented it here, the master only performs BMC up to a specific depth, our method
allows us to be much more flexible in our approach. Realistically, we can use any heuristic — for instance, seeds
can be generated when:

+ The memory used to represent the reach set becomes too large (e.g. it reaches the maximum memory of
the machine, which would mean that the swapping of the program’s memory to disc would soon occur)

+ The number of states in the “next” set exceeds a threshold (e.g. the state threshold could be related to the
number of nodes in the grid)

+ 'The time taken to calculate [t — EF(—¢)] on the current reach exceeds a certain value

4.3.3 Uniqueness of the Approach

The uniqueness of our approach hinges on attempting falsification in a concurrent way between multiple hosts.
Once the initial phase has terminated, and the seed states have been generated (fig. 4.5), the master instance can
then disseminate each of the seed states between the nodes. If there are more seed states than slaves, the master
instance can re-allocate a slave with a new seed state once it has completed its original processing. The slaves
all use Algorithm 13, which proceeds until either a counterexample is reached or a fixed point is established.
This means that the slaves can return two results: false or maybe true. Algorithm 13 takes an initial state as an
argument here; where this algorithm is utilised in a slave, the initial state is the seed state allocated to that slave.
The final line of the algorithm Line 12 is replaced with [t — ¢] # Reach such that, when a seed state has
zero successors, the slave returns maybe true.

start —

ey s N .
/ A 74 h

SoéeEs ™

Figure 4.5: The initial state of seeded BMC, up to a seed depth of k (k = 1). “Dashed” states represent the set
of seed states.

A return of false from a single slave means that a counterexample has been found from the seed state to
which it was allocated. As previously stated, not only are the seed states reachable from the initial state (by
construction), but the state in the seed tree which invalidated the property is also reachable (represented by
“Seed 3” in fig. 4.6). When a slave instance informs the master that a counterexample has been found, the
master can then “kill off” the other slave instances, reducing the over-processing. It is then possible for the
master instance to return a definite value of false to the user. Unlike regular BMC, which finds the minimum
counterexample, seeded BMC may not find the most optimal counterexample, given that the execution trace
found in the node could be longer.

49



start start

————————————————————————— Depth £

Figure 4.6: Seeded BMC in which one of the slave instances (starting from Seed 3) can falsify the property

In contrast, a slave returning maybe true means that the slave cannot falsify the property from its given seed
state. This is not a complete indication of the actual result of the verification process. It is possible that the
selected seed for that slave may not have a reachable state which violates the invariant property (it may not have
any reachable states).

The flip side to this is if all results from the seeds return this value (fig. 4.7). From this we can see that, from
all of the seed states, the property cannot be falsified. This, in conjunction with the initial check by the master
instance performed (up to the generation depth), ensures that the invariant is satisfied on the whole model.
From this we are able to deduce that, from all reachable states from the initial state, a violation of the invariant
cannot be found. As such, the verifier can return a definite answer of true to the user.

¥

start start

————————————————————————— Depth k

Figure 4.7: Seed BMC in which all of the slaves return maybe true

4.3.4 Distributing MCMAS

We have developed a framework which can be used as an extension to MCMAS, allowing for easy distribution.
Our framework is not directly tied to the model checker — it acts as a wrapper to the model checker, allowing for
communication between the master and slave instances. Our approach can be utilised across different model
checkers, providing that they return output in a specific format.

We use a networked file system which is common to all of the nodes of the system. This allows for easy
transfer of data (the model and the initial states) between different hosts.

50



MCMAS was extended to take some parameters, the first of which is a flag specifying if it should be
launched as either a master or a slave. If we are launching a master instance we provide it with a directory
which it uses to store the seeds, as well as the depth to which it should perform BMC until the seed states are
generated. The only extra argument the slave takes is a file which it should use as the initial seed state.

It can be seen that this method requires the model checker to be able to save, and retrieve, states from disk.
The DDDMP Library [79], which works with CUDD, defines file formats which can be used for the storage of
BDDs. We use this library in both the master and the slave. The slaves use Algorithm 13, which already takes
an initial state from which it should start the state space traversal — conventionally, MCMAS would pass the
initial state specified in the model. We now pass the seed state as the initial state, as specified in the arguments
to MCMAS (Figure 4.8). The master iterates over all of the states in the current frontier set, writing each of
them to the given directory, and then exits. This is highlighted in Figure 4.9, which generates the seeds when
BMC reaches the specified depth.

// DDDMP specifics
Dddmp_VarMatchType varmatchmode = DDDMP_VAR_MATCHIDS;
Dddmp_VarInfoType varoutinfo = DDDMP_VARIDS;

// Parse the file name
char filename[100];
strcpy(filename, initbddfile.c_str());

// Load the seed state

DdNode* b;

b = Dddmp_cuddBddLoad(bddmgr->getManager(), varmatchmode, NULL,
NULL, NULL, DDDMP_MODE_DEFAULT, filename, NULL);

// Construct a BDD representing this state
BDD temp (bddmgr, b);

// Assign the state to both initial states
// and the initial reach states

in_st = temp;

reach = temp;

// BMC continues as previously

Figure 4.8: The internals of the “slave” instance to load the given seed state

Our Java wrapper contains Slave and Master classes, each of which provide an interface to the two types
of MCMAS instances. The master acts as coordinator to the whole process — performing the initial BMC and
assigning states in an iterative manner to each of the slaves, until a desired result is reached.

The slave instances connect to a given master and await information pertaining to the seed state, which
they should use. After a slave has completed BMC from the given slave it conveys the result of the verification,
including statistics such as memory use, back to the master.

When a slave indicates to the master that it has found a counterexample for its seed state, the master then
“terminates” all of the other slaves, causing the verification of the other seed states to halt. We implement this
in a basic way by closing all of the sockets used by the slaves to communicated with the master. Exception
handling for a closed socket is used on the slave, terminating the execution of MCMAS and exiting the Java
process when this exception is detected.

A sequence diagram displaying the whole process can be seen in Figure 4.10.

51




// k is the current BMC depth the algorithm has explored to
// If we reach the seed depth, and still have formulae to falsify
if (k == seed_depth && !bmc_formulae->empty())
{
// DDDMP specifics
Dddmp_VarMatchType varmatchmode = DDDMP_VAR_MATCHIDS;
Dddmp_VarInfoType varoutinfo = DDDMP_VARIDS;
int status = 0;

// Identifier for each state
int state_iter = 0;

// While we still have next states
while (nextstates != bddmgr->bddZero())
{
// Pick a random node, which is the state in v,
// from the set of next states
BDD singlenextstate = nextstates.PickOneMinterm(*v);

// If the state we’ve chosen _isn’t_ valid, then skip over it
if (!is_valid_state(singlenextstate, *v) continue;

// Otherwise

// Set up the file name

sprintf(filename, "%s/state_%04d.out", working_directory,
state_iter);

// Get the decision diagram representing that node
DdNode* a = singlenextstate.getNode();

// Write the it out to a file
status = Dddmp_cuddBddStore(bddmgr->getManager(), NULL, a, NULL,
NULL, DDDMP_MODE_TEXT, varoutinfo, filename, NULL);

// Check if we were unable to write the node out
if (status != 1)
{
cout << "DDDMP failed: ";
cout << "we were unable to write the node to a file";
cout.flush(Q);
exit(-1);
}

// Remove the current state from the set of next states (set minus)

nextstates -= singlenextstate;

// Increment our state identifier
++state_iter;

Figure 4.9: The internals of the “master” instance to save the next set of states to a file

52




:MCMASMaster :MCMASSIlaver | | MCMASSIlave2

ﬂ - -
Iterate To Seed Depth

Check BMC
ooc

GenerateSeeds
i

Initialise
Connect
| ISPLModel
i
Initialise
Conngct
,,,,,,,,,,,, ISPLMpdel
it
Iterate Seeds)
Use Seed
Iterate DepthJ
Check BMC
P
,,,,,,, resule |
Use Seed
Iterate DepthJ
Check BMC
it
,,,,,,,,,,,,,, result | ]

Figure 4.10: Sequence diagram for the distributed bounded model checking of CTLK
53



4.3.5 Consideration of other connectives

Although we originally placed a restriction of ACTLK such that AG was the top level connective, it is possible
to extend our scheme to also support AF.

The immediate problem of a seed based approach to bounded model checking, with respect to an AF
formula, is that it is possible to find a counterexample to the original formula from a seed state — even though
the formula is true from the initial state.

For example, if we take a model in which, from the initial state, AX () holds — then, from the same initial
state, AF(¢) holds (ie. ¢ € L(s) < R(¢, s)).

Attempting to falsify the original property by checking the satisfaction of EG (=), as per the initial stage of
our distributed method for this initial state, will not succeed. When BMC cannot satisfy an ECTLK formula,
the algorithm continues under the assumption that it has not yet considered enough states to find a counterex-
ample. But, in this situation, AF(¢) is true, so will continue until the full state space has been explored and a
fixed point is reached.

Prior to reaching the fixed point, the distributed version of BMC will reach the depth at which the seed
states should be generated, and seeded BMC will begin. Attempting to find a counterexample with EG(—¢)
will now be true at every seed state (because transition relation is serial), resulting in an incorrect result. (Our
algorithm will assume that the counterexample would also be valid from the initial state and return false).

This situation can be avoided by modifying the initial bounded check, as performed by the master. A final
check, prior to generating the seed states, can be performed to check the satisfaction of AF(y) and, if it is
satisfied on the current truncated model, returns true to the user and does not continue with seeded BMC.

If we are unable to satisfy this extra check, we generate seeds such that they are the final state in a path
through the model along which ¢ is never satisfied. If, from such seed, we are able to find a path witnessing
EG(—¢) (representing a k-loop), then a path starting from the original initial state, which passes through this
state and includes the loop, is an infinite path upon which ¢ is never satisfied. This path is then a counterexample
to the original formula which exists in the full model.

4.4 A scalable model

To allow us to effectively investigate the efliciency of our BMC implementation we required not only a scalable
model. The model also required the existence of meaningful and expressible properties which could be falsified
at a variable depth but, under certain parameters to the model, could equally be true.

The resulting model is one which builds on Kacprazak’s parameterised model of [29] allowing for a variable
number of agents in the system. Inspiration for the design of the new model was also taken from [19], in as
much as this work was the catalyst for designing a possibly faulty multi-agent system.

Our model is a combination of these two factors, in the context of the Train-Gate-Controller model (§2.5.1).
Where it is necessary to make a distinction between the original model and our new model, our model shall be
referred to as the faulty train-gate-controller.

4.4.1  The Faulty Controller

We scale the number of agents by allowing the controller to handle the merging of an arbitrary number of
tracks into a single track in the tunnel. An automaton displaying the new behaviour can be seen in figure 4.11;
the descriptions of the transitions, including assignments and required preconditions from this automaton, are
shown in table 4.12.

Note to the reader: The protocol for an agent in a given local state can be inferred from the given precon-
ditions for each possible action in that state.

In a faulty model with N trains the controller contains N c5 edges (table 4.12), each of which is the transi-
tion of a different train entering the tunnel. This is represented in the table with the unquantified “?” variable.

54



C3
C1 C4,Cs5
C2

Figure 4.11: An automaton modelling the controller in the faulty Train-Gate-Controller model

Label Action Assignments Preconditions

c1 IDLE i++ 1< 2

co EXIT_TRAIN 1=2

c3 IDLE train?_waiting := true Train?.action = SIGNAL

Cy4 IDLE

cs ENTER_TRAIN? i::=0 Train?.action = ENTER
train?_waiting := false {rain?_waiting = true

Figure 4.12: Descriptions of actions of the controller in the faulty Train-Gate-Controller model

In comparison to the original train-gate-controller, where both of the actions enter and exit were joint actions
for the controller and a train, in our faulty model we only have the per-train joint action enter.

The controller has been extended to function under the assumption that trains take at most two syn-
chronous system evolutions to leave the tunnel. This is represented by the guard on the action ¢, and the
additional 1DLE action c;. This guard only enables the transition back to the green state when a counter, repre-
senting the number of evolutions since the first train entered the tunnel, has exceeded the threshold of two.

4.4.2 The Faulty Train

We have adapted the trains from the original model, such that they now contain a service and a BREAK action.
The trains also contain an additional service counter representing the number of synchronous system evolutions
they have performed since they were last serviced. The service action resets the service counter to zero, whilst
the break action occurs when a fault occurs in the train. Faults occur in trains when they are not serviced
regularly enough, i.e. the service counter exceeds a predefined threshold, and can only be exhibited when the
train is in the tunnel. An automaton displaying the state transitions for this faulty train model can be seen in
figure 4.13. The trains also contain a max counter, which, once the service counter reaches this value, forces a
train to perform the service action®.
We have modelled the faulty system with 3 types of trains:

+ Type 1 — Faulty — table 4.14 — Once the service counter exceeds the breaking threshold the trains can
non-deterministically break in the tunnel. Once a train has broken in the tunnel it is unable to repair
itself and is in the tunnel for the rest of the run of that system. If the service counter reaches the maximum
counter the train can no longer non-deterministically choose the leave action and definitely breaks.

+ Type 2 — Faulty — table 4.15 — Same as type 1, with the exception that all the non-deterministic break
action allows is for the train to get “stuck” in the tunnel for a single evolution. The train can break an infi-
nite number of times (displaying the behaviour of always being in the tunnel), or can eventually perform

the leave action.

*This can be seen as similar to “aircraft maintenance checks” [73], where a plane requires a set of a mandatory “checks”
after a certain number of flight hours. This is still only a preventative measure and not a guarantee that no fault will occur
before this.

55



(3] 3,14

tg, t7

Figure 4.13: An automaton modelling a train from the faulty Train-Gate-Controller model

+ Type 3 — Correct — table 4.16 — Trains can never perform the break action; the only action that can be
performed in the tunnel is the leave action. This is the same behaviour for the trains as in the original
system [1].

The tables for the descriptions of the actions of the three types of faulty train allow for implicit requirements
for some actions to take place. For example, we require that, once the service counter reaches the maximum
counter that the train is serviced, this requirement is modelled by the subsumption of the preconditions of the
transition o by those of transition ¢ in table 4.14. The action BACK can only be performed when the service
counter is strictly less than the maximum counter; this means that the only action which is allowed by the
protocol from this state is the SERVICE action. A second example of this is the requirement that a train must
break if it is in the tunnel and the service counter reaches the maximum counter — again, this can be seen in the
subsumption of the preconditions of the transition tg by transition ¢7 (table 4.14).

Label || Action Assignments Preconditions

t1 SERVICE servicecount := 0

to BACK servicecount++ servicecount < mazxcounter

t3 SERVICE servicecount := 0

ta SIGNAL servicecount++ servicecount < mazxcounter

ts ENTER servicecount++ servicecount < mazxcounter

Controller.action = ENTER_TRAIN?
?=this
tg BREAK broken = true
ty BREAK broken := true broken = false
servicecount > threshold

ts LEAVE servicecount++ broken = false

servicecount < maxcounter

Figure 4.14: Descriptions of actions for a type 1 faulty train

4.4.3 Specifications

To display the effectiveness (or possible ineffectiveness) of our BMC implementation, we need to be able to
specify properties upon the model which can be falsified in a model with faulty trains (i.e. trains of the type 1 or
2). These are properties which, if evaluated on a model with correct trains (i.e. type 3), should not be falsifiable

56



Label || Action Assignments Preconditions

tg Removed

ty BREAK servicecount > threshold
ts LEAVE servicecount++

Figure 4.15: Descriptions of actions for a type 2 faulty train

Label | Action Assignments Preconditons

t1 SERVICE servicecount := 0

to BACK servicecount++ servicecount < maxcounter

ts SERVICE servicecount := 0

ty SIGNAL servicecount++ servicecount < maxcounter

ts ENTER servicecount++ servicecount < mazxcounter
Controller.action = ENTER_TRAIN?

? = this

ts Removed

tr Removed

ts LEAVE servicecount++

Figure 4.16: Descriptions of actions for a working train

(ie. they should be satisfiable in the model).

It should be clear to the reader that a faulty controller, when used in a model with faulty trains, may allow
extra trains to enter the tunnel even though there is still another train currently occupying it (e.g. A train of
type I enters and subsequently breaks in the tunnel. Two synchronous evolutions occur - the controller then
moves into the green state and allows another train to also enter).

We feel compelled to point out to the reader at this point that neither our faulty controller model, nor the
bounded model checking which has yet to be presented, support any kind of notation. This means that the
starvation property from [57] cannot be used as it would be false both in a model with faulty, and a model with
correct, trains.

The following formulae are described in a model containing two trains, TRaIN; and TrRa1Ng. The proposi-
tional atoms TraIN{_IN_TUNNEL and TRAIN2_IN_TUNNEL hold iff the local state for agent equals the tunnel.
The formulae (2 to (5 can be constructed pairwise with each unique pair of agents within the system.

Formula 1 (¢rgc1) “There always exists a future state in which the train no longer occupies the tunnel”

ACTLK = AG (AF (—TRAIN]_IN_TUNNEL))
ECTLK = —EF (EG (TraIN]_IN_TUNNEL))
ISPL = AG(AF(!trainl_in_tunnel));

Formula 2 (¢rec2) Mutual Exclusion: “Two trains never occupy the tunnel at the same time”

ACTLK = AG (—TraIN;_IN_TUNNEL V = TRAINy_IN_TUNNEL)
ECTLK = —EF(TramN;_IN_TUNNEL A TRAINg_IN_TUNNEL)
ISPL = AG((!trainl_in_tunnel or !train2_in_tunnel))

*This formula could be written in a more intuitive way as, AG— (TraIN1_IN_TUNNEL A TRAIN2_IN_TUNNEL) [57].
We have used De Morgan’s law to present a specification which adheres to the requirement that, in ACTLK, negation may
only appear in front of atoms.

57



Formula 3 (¢rgc3) “When a train is in the tunnel it knows that another train is not™

ACTLK = AG (TraiN;_iN_TUNNEL — Krgay, (0 TRAINg_IN_TUNNEL))
ECTLK = -EF (TRAINl_IN_TUNNEL A KTpang (TRAINQ_IN_TUNNEL))
ISPL = AG(trainl_in_tunnel -> K(Trainl, (!train2_in_tunnel)));

Formula 4 (¢rgcca) “Trains always know that they have exclusive use of the tunnel”

ACTLK = AG (Krgam; (mTrAIN] _IN_TUNNEL V = TRAIN_IN_TUNNEL))
ECTLK = -EF (KTRAINl (TrRAIN] _IN_TUNNEL A TRAINQ_IN_TUNNEL))
ISPL = AG(K(Trainl, (!trainl_in_tunnel or !train2_in_tunnel)));

Formula 5 (¢rec5) “Trains are aware that there is a gap between leaving and the next train entering the
tunnel”’

ACTLK = AG (Trani_iN_TUNNEL — Krpamy, (AX (- TRAINy_IN_TUNNEL)))
ECTLK
ISPL = AG(trainl_in_tunnel -> K(Trainl, AX(!train2_in_tunnel)));

—EF (TRAINl_IN_TUNNEL A KTpany (EX (TRAINQ_IN_TUNNEL)))

Parameterised The formulae prgc3 and prges can be parameterised in a similar way to [29], for a system
composed of N trains:

“When a train is in the tunnel, it knows that no other train in the whole system is in the tunnel”

i—1
vrec3(N) = AG (TRAINZ‘_IN_TUNNEL — KTramy; ( A —TRAIN;_IN_TUNNEL A
Jj=1
N
A —TRAIN;_IN_TUNNEL
Jj=i+1

“When a train is in the tunnel it knows that no other train in the whole system will enter the tunnel in the
next evolution”

i—1
Yrec5(N) = AG (TRAINZ‘_IN_TUNNEL — KTram, ( A AX <—|TRAINj_IN_TUNNEL> A
j=1
N
A AX <—|TRAINj_IN_TUNNEL> ) >
j=it1

We have developed an “ISPL generator” for this model, allowing us to generate models of an arbitrary size
containing a configurable number of any of the three types of trains, with a configurable breaking depth. The
generator creates all of the formulae discussed here. In these models the controller is modelled as part of the
environment.

Auto generated ISPL code for a controller (modelled by the environment) in a train-gate-controller model
with 2 trains, a maxcounter of 20 and breakingdepth of 10 can be found in Figure 4.17. The generated
ISPL for a type 1 faulty train, in the same model, can be found in Figure 4.18.

Similar to a1 from [30].
’Or, “trains are aware that the controller allows for a gap between one train leaving and the next entering”.

58



Agent Environment
Vars:
lights : { red, green };

trainl_waiting : boolean;
train2_waiting : boolean;

counter : 0..2;
end Vars

Actions = { enterl, enter2, idle };

Protocol:
lights = green and trainl_waiting = true : { enterl };
lights green and train2_waiting = true : { enter2 };

Other: { idle };
end Protocol

Evolution:
counter = counter + 1 if counter < 2 and lights = red;

lights = green and counter = ® if counter = 2 and lights = red;
lights = red and trainl_waiting = false if

trainl_waiting = true and lights = green and

Action = enterl and Trainl.Action = enter;
lights = red and train2_waiting = false if

train2_waiting = true and

lights = green and Action = enter2 and Train2.Action = enter;

trainl_waiting = true if Action = idle and Trainl.Action = signal;

train2_waiting true if Action = idle and Train2.Action = signal;

end Evolution

end Agent

Figure 4.17: An example “controller” environment

59




Agent Trainl
Vars:
state : { wait, tunnel, away };
serviced : 0..20;
broken : boolean;

end Vars
Actions = { signal, enter, leave, back, service, break };
Protocol:
serviced = 20 and (state = away or state = wait) : { service
state = wait and serviced < 20 : { signal, service, enter };

-- Trains work correctly if the non-deterministic
-- break action is removed. Replace the following lines:

state = tunnel and serviced < 5 and broken = false: { leave };

state = tunnel and serviced >= 5 and

serviced < 20 and broken = false : { leave, break };
state = tunnel and broken = true : { break };
state = tunnel and serviced = 20 and broken = false : { break };
-- With:
-- state = tunnel : { leave };
state = away and serviced < 20 : { service, back };

end Protocol

Evolution:
serviced = 0 if Action = service;

state = tunnel if broken = true and state = tunnel;

state = tunnel and broken = true if
state = tunnel and Action = break;

state = wait and serviced = serviced + 1 if
serviced < 20 and state = wait and Action = signal;

state = wait and serviced = serviced + 1 if
serviced < 20 and state = away and Action = back;

state = tunnel and serviced = serviced + 1 if
serviced < 20 and state = wait and Action = enter
and Environment.Action = enterl;

state = away and serviced = serviced + 1 if
serviced < 20 and state = tunnel and Action = leave;

-- The only edge case is that the train cannot be
-- serviced in the tunnel
state = away and serviced = 20 if
serviced = 20 and state = tunnel and Action = leave;
end Evolution
end Agent

60
Figure 4.18: An example type 1 faulty train




Chapter 5

Evaluation

5.1 Fixed Point Methods on Non-total Transition Relations

The core of any model checker is its implementation of the SATcrx of Section 2.3.1. The sub-procedures of
this are based on either a least, or greatest, fixed point calculation (i.e. the calculation continues until the result
stabilises).

These methods rely on the total transition relation of a Kripke Structure (M = (S,Z, R, L), Section 2.1).
That is, for all states s € S there exists a state s’ € S, such that (s, ') € R.

When performing BDD based bounded model checking using these procedures, the transition relation is
not guaranteed to be serial. It is quite possible that, at our current depth, there may be states on the “fringe” (i.e.
at the end of a path through the model) of the reachable states for which there does not exist a successor state.

In the following subsections, we demonstrate that these fixed point methods are, in fact, correct, even when

used upon truncated paths through the model — they do not return “false positives”.

5.1.1 SATEX

To show the falsification of a universal next formula (AX (), we attempt to check the satisfiability of its existen-
tial dual - EX—¢. As noted in Section 3.3.3, the formula the implementation tries to satisfy is the following:
Init — EX—, that is: are the initial states for the model a subset of the states in which EX—¢ holds.

Within MCMAS, checking an atomic proposition returns all of the reachable states in which the proposi-
tion holds. (‘This is performed through set intersection upon the set [¢] and reach, see Section 2.3.8). The
pre-image calculation is based upon VRT (the per-agent transition relation vector); all calculations upon this
set are also taken with conjunction (i.e. intersection) of the reachable states. We can perform set intersection
of the reachable states, and the states returned by the pre-image function, such that we only get a set of states
which is subsumed by the reachable set.

———————————————————————————————————— Depth o

SRS U S W AN Uy SEPEN R W S ég Depth 1

Figure 5.1: Checking AX(¢y)

In Figure 5.1, presume that L(p) = {s1, S2, 53,54} (i.e L(—p) = {IN1T, 55}). Initially, at a depth of
o, the reach set contains only the INIT state and ¢ does not hold at this state. As such [—¢] is {InrT}. The
pre-image calculation (pre5({IN1T})) returns the empty set ({)), due to the restriction that the starting states
of the transition relation must be in the reachable set of states, and that, in this model, there are no states which

transition into INIT.

61



Therefore, EX—¢ does not hold in the initial state, so the ECTLK formula is false and we do not have a
counterexample to our original formula. We shall refer to the set of the state at which a particular formula ()
holds at a particular bound, as: [¢]sounp-

When we increment k to a depth of 1, giving us: [—¢]1 = {INIT, S5} the pre-image computation of this
set gives us {IN1T}. (Again, the pre-image of INIT is empty, whilst the pre-image of s5 is INIT). So we have
found a witness of the existential formula, meaning that we have a counterexample to the universal formula. As

such, the BMC algorithm can terminate.

SATEG

5‘102

preg(Inrt) = {}
preg(s1) = {InrT,s4}
preg(s2) = {s1}
preg(ss) = {s2}
preg(sa) = {s3,52}

Figure 5.3: The labelling function and existential pre-
Figure 5.2: Checking AF(¢p)

image function for Figure 5.2

In Figure 5.2 (the state pre-image function can be seen in Figure 5.3) assume that £(¢) = {s3} and, as
such, L(—p) = {INrT, 51, S2, S4}. Using SATEG from Section 2.3.1 (the reader is reminded that Y «— X N

preq (Z)), we can then calculate the fixed point for the satisfiability of an EG formula as follows:

Depth o: Depth 1:
Iteration 0 Iteration 1 Iteration 0 Iteration 1 Iteration 2
X «— {Inrt} | X < {InrT} X« {Inrt, 51} | X {InrT, 851} | X  {INIT, 51}
Z —{In1t} | Z — {} Z — {Intt,81} | Z — {In1T} Z —{}
V—{} V—{} Y — {mrr} V—{} Y —{}
[EG—¢]o = 0 [EG—¢]1 =0
Depth 2:

Iteration 0 Iteration 1 Iteration 2 Iteration 3

X «— {InrT, 51, S2}

X « {Inrt, 51, 82}

X «— {In1T, 51, 52}

X « {Inrt, 51, 82}

Z — {Inrt, 81,82} | Z — {In1T, 81} Z — {In1t} Z—{}
Y «— {inrT, 51} Y «— {inr1} Y —{} Y —{}
[EG-p]2 =0

62




Depth 3:

Iteration 0

Iteration 1

X« {In1t, 51, S2, 84}
7 «— {In1T, 81, S2, S4 }
Y « {In1t, 51, S2, S3, 84}

X « {In1T, 51, S2, 84}

Z — {INIT531)S2,S3534}
Y « {In1t, 51, S2, S3, 84}

[EG—¢]s = {IN1T, 51, S2, S3, S4}

We can see that the calculation of SATEG only returns a result once the result is definitely true in the model;

we do not get any kind of “false positive”.

We can repeat the same for the calculation of a formula of the form EF — the satisfiability for an EF is the least
fixed point for EX.

Figure 5.4: Checking AG(y)

Depth o:

Iteration 0 Iteration 1

X—{} X—{}

Z — {Inrt} | Z —{}

Y {} Y —{}

[EE—¢]o =0

Depth 2:

Iteration 0

X {w2}

Z «— {In1T, 51, $2.83}
Y « {In1t, 51, S2.53}

[EF—¢]o = {IN1T, 51, S2.53}

= {s2}
= {}

= {s1}

= {s1,s2}

= {s1,s3, InrT}

= {Inrt,s3}

Figure 5.5: The labelling function and existential pre-

image function for Figure 5.4

Depth 1:
Iteration 0 Iteration 1 Iteration 2
X—{} X—{} X—{}
Z — {Inrr,81} | Z — {Int1} | Z — {}
Y «— {Inrt} Y — {} Y —{}
[EF~¢]: =0

Again, it can be seen that the fixed point methods work appropriately when dealing with models with

truncated paths.

63




5.1.4 SATEU
To calculate the [E [©Ug|], W stores [[], Y stores [¢/] and X the set of all reachable states.

{s1}

= {s2,83}

L(p) = {InrT,s1,52}
L) = {ss}
pres(Inrt) = {}
preg(s1) = {InrT}
)
)

Figure 5.7: The labelling function and existential pre-

Figure 5.6: Checking E [ U] image function for Figure 5.6
Depth o: Depth 1:
Iteration 0 Iteration 1 Iteration O Iteration 1
W — {Intt} | W « {InrT} W — {IntT, 51} | W — {In1T, 51}
X — {Intt} | X « {} X — {Intt, 51} | X —{}
Yo |ye{) Yo {) Y {}
[E[¢Ug]lo =0 [E[pUg]]1 =0
Depth 2:
Iteration 0 Iteration 1
W «— {In1t, 51,52} | W« {INnIT, 51, S0}
X «— {In1t, 51,82} | X« {}
Y {) Y {}
[E[pUg]]2 =0
Depth 3:
Iteration 0 Iteration 1 Iteration 2 Iteration 3
W — {In1t, 51, 52} | W« {In1T, 51, 82} | W « {INnIT, 51, 82} W — {In1t, 51, S2}
X e {InrT, 51,52} | X « {s3} X — {s2,s3} X — {s1,82,s3}
Y — {s3} Y — {s9,s3} Y « {Inrt, 51, 2,83} | Y < {InrT, 81, S2, S3}

Iteration 4

W — {In1t, 51, S2}

X «— {InrT, 51, S2, S3}

Y « {In1t, 51, S2, 83}

[E [¢Ug]]3 = {InrT, 51, S2, 53}

64



5.2 Satg on Truncated Paths

Lp) = {s2}
preg(Inrt) = {}

pres(s1) = {Inrr}
preg(s2) = {s1}
preg(s3) = {s2,s3}
pre (s1) = {s1,s2}
pre (s2) = {s1,s2}
pre (s3) = {s3}

Figure 5.9: The labelling function and existential pre-
Figure 5.8: A model showing the local state equivalence ~ image, and knowledge pre-image, functions for Fig-
relation ure 5.8

In Figure 5.8; [;(s1) = l;(s2). Thatis [;(s1) and [;(s2) are local states which are indistinguishable for Agent
“X”; the epistemic relation is represented by the dashed line. The epistemic accessibility relation is reflexive; as
such, every state is related to itself.

Y is the set of states returned from the knowledge pre-image function upon the [[¢]:

Depth o: Depth 1: Depth 2:
Iteration O Iteration 0 Iteration 0
X—{} X—{} X — {s2}
Y —{} Y —{} Y — {51,8}
[Kx(¢)]o =0 [Kx(o)1 =0 [Kx(@)]2 = {s1, 52}

5.2.1 Correctness of the Algorithm Saty

The algorithm Satg is sound and complete’:
Proposition 1. For every ECTLK formulae ¢, IS F ¢ iff Satg(¢) = G (G is the set of global states)

Proof. (=) By induction on the structure of . Let o = K;(1) and let IS, g F K;(¢). This means that there
existsa g’ € GA g ~; ¢ suchthat IS, ¢’ F 9. By the induction step, ¢’ € [¢]; also we have R;(g,¢’) by
definition of R;. This implies that g € [K;(1)], i.e. g € []- O

Proof. (<) Straightforward, as the induction steps above are symmetrical. O

'Adapted from [53].

65



5.3 Model Checking of A°CTLK with Seed States

The method of partial state space evaluation which we use in our method of bounded model checking is both
sound and complete when we look at the restriction we placed upon the logic universal fragment of ACTLK.
We said that, in ASCTLK, all formulae are invariant — that is, the top most connective in the parse tree must

be an AG.

Proposition 2. Seeded bounded model checking is sound with respect to the total model when a counterex-
ample for AG() is found from an individual seed state.

Proof. Through the construction of the seed states, every seed state is reachable from the initial state in the
model. Finding a counterexample from this seed state means that there exists a path from that state to another
in which ¢ does not hold (i.e. EF(—¢) holds in the seed state). As such, there exists a path in the full model
which starts at the initial state and passes through this error state. From the semantics of CTLK, we also have
EF(—¢) in the initial state. O

Proposition 3. Seeded bounded model checking is complete with respect to the total model when a counterex-
ample for AG() cannot be found from any seed state.

Proof. Ifthe truncated model up to the depth at which the seed states were generated could not satisfy EF(—y),
and neither could any of the partial state spaces starting from each individual seed, this means that there does
not exist a reachble state in which ¢ does not hold. As such, from the semantics of CTLK, we do not have a

path in any part of the model which satisfies EF(—¢), so AG(p) is satisfied by the model. O

66



5.4 Performance and Benchmarking

5.4.1 An initial investigation

The machine used for this evaluation was a dual core PC with 4GB of memory and an Intel Core 2 Duo clocked
at 3.00GHz, with a 4096 KiB cache. The machine was running 32-bit Ubuntu Linux 8.04.2, a vanilla 2.6.24-
19-generic kernel and glibc 2.7°. All experiments were performed four times, with the results presented here
being the average across all four runs. Realistically, the only metric which required averaging was time, given
that MCMAS is a deterministic process and will yield the same results each time for all other metrics.

The initial evaluation of our algorithm seemed to suggest that it massively under-performed that of “regular”
model checking. Even though the implementation would, in some cases, only explore 25% of the state space
compared to full forward verification, it still required more memory. These first tests were performed using
MCMAS linked against a vanilla version (release 2.4.1) of the CUDD library (i.e. using garbage collection,
asynchronous sift reorderings and a default cache). We initially looked at various sized models containing Type
2 trains, whilst attempting to falsify the @rgc5 property.

The results of these initial benchmarks can be seen in Table 5.1 — T represents the number of trains in
the model, M is the maximum value of the service counter for those trains, and B denotes the service counter
threshold at which the trains exhibit a fault. Decrease shows the comparative resource utilisation between BDD
based BMC and MCMAS's default (“regular”) model checking method — a value greater (less) than 1 indicates

a decrease (increase).

Model Decrease
T | M | B || Memory | Time | States
2 | I0 | 4 0.9750 0.4535 | 3.6318
2 | 10| 6 0.9632 1.293I | 3.2970
3 | 10 | 4 0.1561 0.0366 | 1.4815
4 | 10 | 2 0.2338 0.0204 | 1.2672

Table 5.1: Memory, time and states results, with a vanilla CUDD verifying the ¢r6c5

It can be seen that, in the examples above, BMC did not produce any reduction in the resources used, with
the exception of a model with 3 trains in which the regular final verification performed took longer than the
intermediate checks as performed by BMC, but the memory used was still higher.

It became increasingly apparent that MCMAS required an unusual amount of memory to represent initial
states, and this value did not fluctuate significantly from start to finish (i.e. there was little variance between the
memory required when verification began, and the memory held by MCMAS when verification terminated).
For instance, in a model with two Type 2 trains, a full counter of 10 and a breaking threshold of 4, MCMAS
required 4911108 bytes to represent the single initial state, and yet only required 6210388 to hold the entire fix
point of states (an additional 10605 states).

MCMAS was initially using the default CUDD constructor (Figure 5.10), which gave an initial pre-allocated
cache size (256 KiB). This was changed such that, rather than being initialised with CUDD_CACHE_SLOTS,
CUDD’s constructor was passed 0, such that it initialised with no cache. This meant that, when verification
began (after setting up all of the state variables, the transition relation, etc), MCMAS required, in the same
model as the above, 721188 bytes to represent the single initial state, which then increased to 4152900 bytes to
represent all of the 10605 in the fixed point state space. The results of performing the same evaluation as above,
but without a default CUDD cache size, can be seen in Table 5.2

Interestingly, reducing the memory required to hold the initial state also reduced the total memory required
to represent the full state space, regardless of the method of verification performed (6210388 bytes originally,
4152900 with the “tweaked” CUDD).

*vector35 in the Department of Computing at Imperial College London.

67



/% initial size of subtables */
#define CUDD_UNIQUE_SLOTS 256

/* default size of the cache */
#define CUDD_CACHE_SLOTS 262144

Cudd

(
/* The initial number of BDD variables */
unsigned int numVars = 0,

/* The initial number of ZDD variables */
unsigned int numVarsZ = 0,

/% The intitial size of the unique tables */
unsigned int numSlots = CUDD_UNIQUE_SLOTS,

/% The initial size of the cache */
unsigned int cacheSize = CUDD_CACHE_SLOTS,

/* Maximum memory occupation (0 is unlimited) */
unsigned long maxMemory = 0

Figure 5.10: CUDD's default constructor (with additional comments)

Model Decrease
T | M | B || Memory | Time | States
2 | 10 | 4 1.6042 0.7292 | 3.6318
2 | 10| 6 1.1884 2.2424 | 3.2970
3 10 | 4 0.2556 0.0389 | 1.4815
4 | 10| 2 0.2510 | 0.0095 | I.2672

Table 5.2: The relative reductions in memory, time and states explored with no initial CUDD cache

68




Although CUDD can adjust the size of the cache during execution, having too small a cache will reduce
the number of unique BDD functions which can be stored in it, meaning that useful results will often be over-
written. This also causes an increase in the number of cache misses. Each time the cache, as well as the unique
tables, fill up, CUDD attempts to garbage collect unreferenced results from the cache. As such, having too
small a cache then results in an increased number of garbage collections.

When CUDD is required to create a new internal node, and the number of nodes exceeds a given threshold?,
CUDD attempts automatic variable reordering. When performing BDD based BMC we are required to store
a number of intermediate “working” results, all of which are represented as BDDs using CUDD nodes and are
stored in the unique table. This means that BMC also affects the number of variable reorderings which CUDD

performs.
Model # Reorderings # Garbage Collections
T [ M | B || Original | BDD-BMC || Original | BDD-BMC
2 | 10 | 4 6 II 10 16
2 10| 6 12 9 17 II
3 | 10| 4 13 55 27 69
4 | 10 | 2 17 26 30 61

Table 5.3: The number of asynchronous reorderings and garbage collections performed by CUDD

For the same models as previously, Table 5.3 illustrates the number of garbage collections, and variable
reorderings, which CUDD performed during BMC. In some cases, BDD based BMC required over four times
as many variable reorderings, and twice as many garbage collections, when compared to MCMAS'’s default
behaviour.

The authors felt that the most plausible explanation for the under-performance of BDD based BMC was as
a consequence of CUDD’s automatic variable reordering. If CUDD performs asynchronous reorderings more
frequently during state space generation, this could cause a sub-optimal variable reordering to be selected. Such
an ordering could be preferential for the current reach set, but might be an adverse ordering for the reach set
generated in the next state space generation iteration. (CUDD only allows a certain time per-attempt to find
an optimal reordering and, if one is not found, does not change the ordering).

'Sift'ing the variables to such a reordering could provide possible preferential orderings for either the regular
approach or the bounded approach. This is heavily dependent upon the possible ordering generated; that is, it
is not possible to say if a reordering should, or should not, be applied for a given method.

To provide a fair benchmark between MCMAS's regular approach and the approach set forward in this
document, we edited a version of CUDD which permanently turned off both variable reorderings and garbage
collection.

The internal CUDD function cuddGarbageCollect (in cuddTable. c) and the method Cudd_ReduceHeap
(in cuddReorder. c) available in the API were changed such that they return immediately on function entry®,
It should be noted that, as stated above, BMC utilises temporary variables and, without garbage collection to
clean them up, these will cause an additional overhead which would not be present otherwise. As such, disabling
this functionality is not necessarily a beneficial improvement for BMC.

Resource decreases, for a build of CUDD with these features disabled, can be seen in Table 5.4.

The final result for a four train model (italicised in Table 5.4) is a test which did not complete. CUDD halted
the execution of MCMAS with a non-zero exit code and the string Unexpected error, indicating a serious,

and unknown, problem. The test failed after 3101.51 s for regular verification (3100.11 s for BMC), exhausting
967.09 MiB (967.14 MiB).

3See [58] for more details.
“Both of these function bodies now contain return; as the first line.

69



Model Decrease
T | M | B || Memory | Time | States

2 | 10| 4 4.0044 13.8500 | 3.6318
2 | 10| 6 3.7481 12.6667 | 3.2970
3 | 10 | 4 1.4811 6.2529 1.4815
4 | 10| 2 1.0000 1.000§ 1.0000

Table 5.4: Statistics with no default cache, and with reordering and garbage collection both disabled

To allow for coherent and fair results, the rest of the results in this chapter—with the exception of the one-
shot results in Section 5.5—have all been gathered with an MCMAS build with a zero sized initial CUDD
cache, disabled asynchronous variable reordering and no garbage collection, even though the latter two of these
detrimentally hamstring the model checker.

Our justification for disabling these features is that we wished to evaluate our novel approach, rather than
benchmarking a specific implementation, and the benefits which such an implementation gains from the opti-
misations (such as ’sifted variable reorderings) arising from an auxiliary library.

5.4.2 'The Faulty Train Gate Controller

The faulty train gate controller model, as presented in Section 4.4, provides us with a unique model for bench-
marking our BMC implementation. This is because, in a faulty model (i.e. one which contains either type 1
or type 2 trains), eventually there will be a demonstrable counterexample prior to reaching a fixed point in the
entire state space.

Using a model such as this allows us to demonstrate the possible benefits, and drawbacks, of using such an
approach under different circumstances, such as a different number of agents (using parameterised formulae),
with various size formulae — or with formulae which are true on the model and, as such, a counterexample
cannot be found.

In the graphs which follow the resource usage of our implementation is expressed as a percentage of that
which is required to verify the same model in MCMAS'’s default approach. Memory, time and states should
be immediately obvious as to which metrics they represent. We can calculate the percent used by BMC with
respect to full verification as follows:

(BMC value/full value) * 100

The “depth” metric represents the number of iterations (i.e. checks) which bounded model checking has to
perform until it finds a counterexample or the state space reaches a fixed point. The “depth” of model checking,
when performing full unbounded verification, is the number of iterations in which the the algorithm generates
new “next” states before a fixed point is reached.

Figure 5.11 depicts bounded model checking of a model containing two type 1 trains, with a maximum
service counter of a 100 — trying to falsify the @rgco property. It is clearly illustrated in the figure that our
implementation is able to find a counterexample using resources proportional to that of the depth at which the
property is found to be false.

The final group of results, WORKING, shows the attempted falsification of the same property but on a model
with type 3 trains, in which the property cannot be falsified. In this case, it can be seen that bounded verification
only pays a very minor overhead in terms of memory used and time taken, when compared to regular verifica-
tion of the same state space. Due to the inability of this formulae to be falsified on this model, bounded model
checking has to explore the same number of states, and to the same depth, as the standard approach.

70



Bounded Model Checking Resource Usage

T T T T
Memory
140% |- Time
States
Depth %
120% |- 100% -
7
o | 2 |
® 100% i
s} NN
5 RN
g AR
8 80% 5?«::\; —
4 A AR
& 2o
9] o -4 AN
60% - 1T AN —
x® s R
P 7 7 Kﬁ]‘.\\ﬁ
I P
40% - | ks poies .
vz Johiws ;//jmu ’
v AR bl
Z NN AN
2% o AR AN
20% - v LIl AR RN —
I N AN AA RN
V24 (A AR NN A AR NN A
0% (344 A R4 AR RN
v _ RN AT
0% pegst | piwst | it | bl
25 50 75 WORKING

Breaking Threshold of Train

Figure 5.11: % resource use of BMC against regular model checking, with a model containing two type 1 trains,

with a maximum depth of 100 and various breaking depths - ¢rgc2

The next four figures (Figure 5.12 to Figure 5.15) show that bounded model checking is an appropriate
verification technique across different size models when using more complex parameterised formulae, which also
deal with knowledge. All four show the attempted falsification of the (13 property — the number of agents in
the model in Figure 5.12 and 5.13 is 2, whilst being 3 for Figure 5.14 and 5.15. We pass the number of agents
in the model as the parameter of the formulae.

The graphs plotting data from models containing type 2 trains (Figure 5.12 and Figure 5.14) both show two
interesting anomalies.

In the first, with 2 trains, although the initial results depict the expected trend — as the depth increases the
resource requirements increase — towards the deeper breaking depths at which the property can be falsified,
the resource requirements go down. This is still a favourable result in terms of BMC — it implies that, as the
fixed point of reachable states is approached, the last few add more states than in the initial iterations.

In the second, with 3 trains, it appears that checking a shallower bound requires more resources than a
deeper one — but this not the case. In the first two, the breaking bound is lower than the minimum amount of
joint actions performed by both the train and controller to allow the train to enter the tunnel. This is reflected
by the similarities between the results for a breaking bound of 1 and 3; once the breaking bound is higher than
the minimum number of joint actions, we see a decrease percentage of resources required.

A point of distinction is that Figure 5.14 shows that, although BMC may not show drastic improvements,
in terms of memory usage, over full verification, it does not show any significant penalties either. The point
made previously about this model, showing that the breaking bound is less than that of the number of joint

actions to enter the tunnel, is reiterated in this graph as well.

71



Bounded Model Checking Resource Usage

\ \ \ \ \ M \
emory [
140% |- Time zzzzz
States
Depth sy
120% |- 100% .
— z
@ 100% |- = ¥ —
e | B
5 ‘::\ PR
1Y N 1
) o i N oo 24
2 80% |- M b | ey n
2 AN B PN
Lo N JINats
e B | kst | ki
o) 0 R B w | P
60% ! 0 AN LR —
\0 ' [ NG N
S i s R N
N AN AN AN
1 t/]r‘/ o 7h 1 r//\}\ Y
B | s | B | P
40% REL | s | b —
1y [/]‘ iy N ’//\‘ v
R AR ez L on i
2R (ohis N N
;
a2 A | |
20% - A | o | 7
R AN NN R
7 d~ & 7a s 7 hhy 7t
AR L/I‘H/ N ’//U o
tra~xs L N AN
R RN N R
0% 4 A 4 AN N
3 6 9 12 15 18 WORKING

Breaking Threshold of Train

Figure 5.12: Resource usage in a model with two type 1 trains and a maximum counter of 20 — Yrsc3

Bounded Model Checking Resource Usage

Mem.or)l' —/

140% | Time zzzzz -
States
Depth
120% |- 100% —
g 100% |- 77 .
8 N
= ;
8 Z
7] 80% |- 2 —
Q 2
22 7
(o ;
© 60% |- Z —
X :
40% |- 2 .
20% - : - : i
BRI ;
0% ﬂ BN vaz‘ : AN [N :
3 6 9 12 15 I8 WORKING

Breaking Threshold of Train

Figure 5.13: Resource usage in a model with two type 2 trains and a maximum counter of 20 — Yrsc3

72



Bounded Model Checking Resource Usage

T T T T
Memory ——
140% - Time zzzzz -
States U
Depth 2222222

120% |- 100% .

0, [ —
8 100% —
U (I
- [
3 o i

g 80% i —
:

° 60% | B _|
ES Y
SR
//];~ :

0, | ;5]15 ' _
40% AN
Effl“ I
N

% | s ]
20% ZAH
AR
rooh
0% A

1 3 5 WORKING

Breaking Threshold of Train

Figure 5.14: Resource usage in a model with three type 1 trains and a maximum counter of 7 — Prgc3

Bounded Model Checking Resource Usage

T T T T
Memory ——
140% |- Time zzzzz -
Stateﬁ
ept
120% ICPO‘V —
()
g 100% |- 7 -
|9}
-
3
2 80% | .
(9]
o~
—
© 60% |- —
N
40% —
20% U =
0% .

I 3 5 WORKING

Breaking Threshold of Train

Figure 5.15: Resource usage in a model with three type 2 trains and a maximum counter of 7 — Prgc3

73



The final four graphs for the faulty train gate controller model, Figure 5.16 to Figure 5.19, illustrate the
difference in either memory required, or time taken, for falsifying different properties in the same model. The
formulae Yrgca and @rgces both use their parameterised versions and are based on the number of agents (trains)
in the model.

The resource usage illustrated in models which have shallow breaking bounds (Figure 5.17 and Figure 5.19)
both display the same correlation of results as previously. Again, in these particular models, there is a mini-
mum number of joint actions required until a train can enter a tunnel; if the breaking depth is lower than this
minimum number of moves, then no savings can be garnered.

In the graphs showing memory usage (Figure 5.16, Figure 5.17) we can see that there is a slight overhead
when checking rqc5 at a deep breaking depth, but this overhead appears to be less in the working model. This
is because the number of iterations required to find a counterexample at the deepest breaking bound is more
than for reaching a fixed point in the working model. For example, in a model with 3 trains and a maximum
counter of 7, BMC requires 15 iterations to find a counterexample at a breaking depth of 5, but in the working
model it only requires 11 to reach the fixed point.

The figures depicting the time taken for verification (Figure 5.18 and Figure 5.19) are the only ones which
show any form of significant overhead for bounded model checking. When checking the property @rgc1 it can
be seen that, in both models, bounded model checking is not preferable. It should be noted that this overhead
is only demonstrated in a model in which the property cannot be falsified, meaning that BMC has to perform
significantly more calculations in comparison. We feel obliged to point out that, given how we perform bounded
verification and the fact that calculating the satisfiability set of the given formulae is not “free’, this is exactly the
result we would expect.

Bounded Model Checking Memory Usage

T T T T T

o Precl

140% |- Prec2

Prec4

Prech
120% 100% —

el

Q A i .

% 100% |- = 7 IR 1
.

=) b N

z Z NN N
g 80% 7| Erd | e T

g TR AN AN

5 122 2 il A

S oo | ke AN
& 6% - | i | g -

© AN Lo AN

B3 \i%. e p i
o L A4 N N |

40% AN N AN AN

S’ AN Jpiis

AN R AN

0 AN N AN
20% AN AN IR .

S Vokis il

120357 SOk N

R AN e

0% A2 LofeZ N

4 12 16 WORKING

Breaking Threshold of Train

Figure 5.16: Memory usage for two type 2 trains, with a full service depth of 20 — when checking various for-

mulae

74



Bounded Model Checking Memory Usage

\
Pracl
140% |- Prac2
Precd
(Orgeh AR

120% |- 100% —

100%

80%

N
N

~
N

60%

1

% of Memory Used

40%

20%

R R R S TATATATATATATATY
NANIANIANNNNNNNNNNNNNNY

N
N
o
N
NN

0%

WORKING

Breaking Threshold of Train

=
w
%

Figure 5.17: Memory usage for three type 2 trains, with a full service depth of 7 — when checking various
formulae

Bounded Model Checking Time Usage

T T T T T
Precl
140% |- Prec2
Precd
—Prech
120% |~ 100% —0 -
3
§ 100% 7 —
Z
g z
2 8o% |- Z .
Z
£ ;
t 60% ; _
o ;
X E
40% e —
i ;
% :
20% 2% ; —
Rz :
i ;
0% —z1ony 4 A

12 16 WORKING

Breaking Threshold of Train

Figure 5.18: Time required for two type 2 trains, with a full service depth of 20 — when checking various formulae

75



Bounded Model Checking Time Usage

I
Precl

140% |- Prac2
Precd
_ Prech a048
120% |- 100% ——
e}
()
§ 100% |- = —
g Z
C«‘J Z
2
80% 77 —
2 Z
R= ;
H o L s ; _
o 60% Z 2
S 7 2
xR % %
40% 2 52 .
7 :
% ’
20% I 7 zz .
7 2
% %
0%

I 3 5 WORKING

Breaking Threshold of Train

Figure 5.19: Time required for three type 2 trains, with a full service depth of 7 — when checking various formulae

5.4.3 MOCMAS o0.9.8.5 Examples

After running all of the examples which are included with MCMAS, it is immediately obvious that, with the
exception of one model, they are all very small, trivial examples. This means that the time required to check
these models is very small — when measured with /usr/bin/time they all take 0.0s of “real” time to complete.
This means that, with the exception of the larger model, BMC never displays an overhead or a benefit when

looking at time alone.
The Book Store

The benchmarking results for The Book Store example can be seen in Figure 5.20. It can be immediately seen
that, for ACTLK formulae (¢gs1 —gsa) which are applicable to the model, BMC offers very little improvement
in both memory used and time taken. Although we do not pay any overhead for using BMC, we do not get any
improvements, in terms of resources used, either.

BMC does not display a memory improvement because the difference in memory required to hold the initial
state space and the entire reachable states is very low. Ignoring the cost of checking the formulae, MCMAS
requires 570324 bytes to hold the initial state and only 588196 bytes to hold the entire reachable states (i.e. the
state space reaches a fixed point) — a difference of 17 KB. Due to the lack of extra memory required to store
the rest of the model, when BMC can falsify the property (in all but with (gs2) the benefits are not clearly
illustrated.

For the three properties which are falsifiable (551, ¥ps3 and @gsa) we can easily identify that MCMAS
only has to explore a fraction of the states it would usually explore when performing BMC.

MCMAS originally required 10 iterations to reach the fixed point in the state space for the book model, and
for g2, where the property is not falsifiable, we can clearly see that BMC pays a very slight memory increase
for performing 10 satisfiability checks in comparison to a single check.

The Correct Bit Transmission Problem

©prp1, when evaluated on a correct model for the bit transmission problem (Figure 5.21), is true, which means
that BMC should pay an overhead. The case here is that the fixed point is reached within two state space

76



Bounded Model Checking Resource Usage

T T T T
Memory ——
140% |- Time
States
Depth 72771
120% |- 100% —
0,
g 100% |- AT f
ot AN
fu R
g AN
3 . AR
L A7 _
2 80% AR
AN~
~ N7
5 (o
> 60% - AN .
° AN
A
AN 7
A
40% |- AN i -
(oon s 550
AN
o 7
AN
A7
20% - A4 7 -
AN N
A7
0% AW N
0
PBs2 Pss
Formula

Figure 5.20: The Book Store

iterations, meaning that BMC only performs two extra checks. The memory required to both check and store
the entire reachable states is negligible, which means that BMC does not display any disadvantage.

The Faulty Bit Transmission Problem

In the faulty BTP model (Figure 5.22), ©ogrp1 is falsifiable — BMC can find a counterexample in the initial state.
Again, we do not see any benefits in resource requirements. This is because, as the size of the model is small,
there is very little memory difference between holding just the initial states and holding the set of all reachable
states (the model has two initial states and only 18 reachable states in the full state space). This means that,
although we can terminate early, this is not demonstrable.

The initial states are representable with 545444 bytes; BMC requires only 160 bytes to falsify the property,
whilst full verification only requires an extra 2848 bytes to represent and check the entire state space.

The Dining Cryptographers

Although, in the dining cryptographers (Figure 5.23), ¢pc2 is false in this model, we are unable to find a coun-
terexample until we reach the same depth at which the fixed point is found, so BMC displays no immediate
benefits. Whilst ¢pc2 is true on the model, the fixed point in the state space is reached after two iterations, so
performing two extra checks does not pay much of an overhead.

The “Software Development” Example

The only ACTLK property which is provided for the software development example is false in the initial state.
This is an example in which BMC excels, as is clearly illustrated by the graph (Figure 5.24). Full verification
of this model requires 70 iterations to reach the fixed point, nearly 14s (versus os) and uses nearly 60 times as
much memory (full verification uses 118 MB, whereas the initial states are representable in only 2 MB).

77



Bounded Model Checking Resource Usage

T
Memory
140% |- Time
States
. Depth
120% 100%
$ 100% |-
3 7oezs
- 77777
3 2500
a2 80% - 7557
~ 7557
- 555%
\2 60% - 7202
S 7o0s
40% |~ ¢ 555%
‘ 7557
‘ 2507
{ 755%
0%
Figure 5.21: The Correct Bit Transmission Problem
Bounded Model Checking Resource Usage
T
Memory ——
140% |- Time
States
. Depth
120% 100%
$ 100% |- 2
S 2
3 v
|
% 80% |- (77
e, 7
S E?ﬁ
S 60% |- (7
x 12
[
40% - b2
%
|
20% |- Z
7
0% 02
Pprrl
Formula

Figure 5.22: The Faulty Bit Transmission Problem

78



Bounded Model Checking Resource Usage

T T
Memory —
140% |- Time zzz7z
States
. Depth
120% 100%
” o |
8 100% RRE A 7 7
S ; ( 27
3 v ( 22
2 8% |- / E 7
~ / ¢ 72
- z 72
o 60% - / E 7
x® { 22
‘ 27
4% |- i
( 70
( 27
20% |- ‘ 7
0% f
Figure 5.23: The Dining Cryptographers
Bounded Model Checking Resource Usage
T
Memory ——
140% |- Time
States
. Depth
120% 100%
$ 100% |-
|9}
-
3
8 80% |-
(a4
s N
- 60%
40% I~
20% -
0% — ‘
Pspl
Formula

Figure 5.24: The “Software Development” Example

79



5.4.4 Length of Counterexample Found

Our attempt to implement BDD based bounded model checking on top of an existing model checker allows us

to gain some functionality for “free” — in this case, counterexample generation. MCMAS is already capable of

generating counterexamples (and witnesses) to ACTLK (ECTLK) formulae. It can do so by printing out the

list of states, and joint actions between, displaying a trace through the model which invalidates the property.
To deem counterexample generation from BMC “successful’, we felt we had two goals to satisfy:

1. Groce et al [22] make the distinction that “bounded model checkers often produce counterexamples that
are difficult to understand due to the values chosen by a SAT solver”. By harnessing MCMAS's coun-
terexample methods, we should generate understandable counterexamples when using bounded model

checking,

2. Biere et al [7] state that bounded model checking “finds counterexamples of minimal length”. As such,
we should ideally generate counterexamples which are smaller, or of equal length, to that of regular ver-
ification.

A comparison between the length of the counterexample generated between MCMAS's regular behaviour
and our implementation can be seen in Table 5.5. The counterexamples have been constructed for various
formulae in a two train model, composed of type 2 trains, a maximum service counter of 20 and a breaking

depth of 1o0.

Formula
Method || Yrec1  Prec2  Proc3  Procd  Prach
Regular 25 17 4 4 12
BMC 13 16 4 4 FAIL

Table 5.5: Length of counterexamples generated between BMC and full verification

Figure 5.25 and Figure 5.26 show a counterexample for (11 using regular, and then bounded, model
checking. The authors argue that the counterexample in Figure 5.26 is significantly easier to understand.

<actiong;actionyy;actiony, > represents the actions performed by the Controller, Train1 and Train2 re-
spectively. It can clearly be seen in the second figure that, in the transition from state 10 to state 11, Train1
performs the break action and from then on that train is in the tunnel, which invalidates the liveness property
(in the final state for both traces, the train is “broken”). This trace is more convoluted in the second trace because
of the multiple “break” actions performed by the train.

BMC was unable to generate a counterexample for ¢rgc5 — CUDD caused the program to terminate with
a non-zero status, and printed out the string “Unexpected error™.

It should be noted that the counterexamples which were generated were done so by finding a counterexam-
ple to the original ACTLK formulae, as specified in the ISPL, using the K modality — and not the K modality®,

Despite this, it was felt that counterexample generation was successful, both in terms of readability and
length (i.e. BMC did not generate a longer counterexample).

*Forcing MCMAS to continue building up a set of reach states beyond its usual termination depth allowed us to find
a counterexample shorter than for full verification for this property. But, as this was not an automated process, the result
was omitted.

*push_negations(int depth) was modified such that, when performing counterexample generation, it did not
translate K to its dual.

80



@< idle;back;back>
I
<idle;signal;signal >

~{8]-{H]

<enterI ;signal ;service>
< enter1;signal;service>
<enter1;signal;enter>
<enter1;signal;signal >
<enter1;signal;signal >
<enterI ;signal;service >

<enter1;signal;enter>

<Je] =] <[S]{a]{a]{=]-{=]

<enterI;enter;enter>

=
o

<idle;back;back>
<idle;break;signal >

idle;signal;signal
idle;break;enter> <idlgsignaisignal>

Encl

idle;leave;signal > <enter1;signal;service>

<idle;break;signal > <enter1;signal;service>

EnEl
S w

<idle;break;signal > . )
<enter1;signal;service>

<idle;leave;service>
<enter1;signal;signal >

-
(o)}

<idle;leave;signal >

-
N

<enter1;signal;signal >

<idle;break;signal >

-
o}

<idle;leave;signal > <enter1;signal;service>

=
o

<idle;break;signal > <enter1;signal;enter>

©
o

<idle;break;signal >

5
«{el<f=]{Sl<{al<{a]-{=]<{s]<{s]<{5]-{e]

<enterI;enter;enter>

H
]
-

(o]

<idle;break;signal >

©

<idle;break;enter>
enter2;break;signal >

S
w
A
.
=

<idle;break;service >
2
<idle;leave;signal >

<enter2;break;signal >

S
N
5]

<enter2;leave;service>

o
1921
-
w

<enter2;break;service > <idle;leave;enter>
Figure 5.25: Counterexample for ¢rgc1 from “regular”  Figure 5.26: Counterexample for ¢rgc1 from bounded
model checking model checking

81



5.4.5 Stress Testing MCMAS

BDD based BMC, as shown previously, can falsify properties on models requiring less memory than conven-
tional verification uses. This means that there will be cases in which BDD based BMC will be able to verify the
model, whilst other verification techniques will be unable to complete.

Results showing this can be found in Table 5.6 — T is the number of trains, M is the maximum service

counter, B is the depth of the breaking bound.

Model Regular BMC
T | M | B Memory | Time | States Memory | Time | States
3 | 20 5 2131866612 8085.88 5834990 64694612 2.43 74017
3 | 20 10 1919076244 34383.60 | 4755710 319959508 84.51 587164
3 | 20 15 1971699364 | 22448.24 | 3452620 061126804 1657.57 | 1853920
3 | 20 | WORKING 1101036372 2836.36 2688260 I117194660 | 4007.68 | 2688260
4 | 20 5 1814837044 3487.12 | 8560450 | 829675748 | 406.35 | 1549040
4 | 20 10 1371231508 3707.59 6195380 1380098852 7066.06 6195380
4 | 20 15 1371165972 3917.96 6195380 1380098852 7086.08 6195380

Table 5.6: Stress testing MCMAS (Memory is given in bytes, Time in seconds)

The italicised results are ones in which MCMAS failed to complete the verification of the model. It can be
seen from these results that there are cases in which BMC can halt and succeed, whilst regular model checking
halts and fails.

To attempt to see how robust our implementation was, we performed more “tests” than depicted here. We
attempted to verify models containing up to 6 agents (the maximum service depth was kept at 20, with varying
depth breaking of 5, 10, 15 and a working model), but all these models caused both regular and bounded
model checking to fail. Interestingly, these results did not suggest that a memory limit of approximately 1.36
GiB (which the latter results in Table 5.6 would suggest) was the only limiting factor. In a model with 6 trains,
MCMAS failed at a memory limit of 1.69 GiB and approximately 11970900 states (neatly twice as many as
shown in the table), but after a time of roughly 1500 seconds.

5.5 Evaluation of One-Shot BMC

The proposed method of “one shot” BMC was an attempt to alleviate the memory overhead associated with
performing a satisfiability check at every depth. This BMC-related “penalty” was our original justification for
turning off automatic reordering within CUDD, but, as one-shot BMC does not have this problem, we are able
to benchmark against a version of MCMAS linked against a vanilla CUDD (zero sized initial cache, with both
variable reorderings and garbage collection enabled).

We used the script developed to perform iterative one-shot model checking upon two models — one with
two type 2 at a breaking depth of 20 (Figure 5.7) and the other with three type 2 at a breaking depth of 7
(Figure 5.8) — attempting to falsify Qgrp2.

As before, a decrease below 1 represents that the system had an increased resource requirement in that
configuration.

As expected, one-shot BMC can, in terms of memory used, out-perform the standard approach to model
checking when the property can be falsified. In a model in which a counterexample cannot be found, the veri-
fication process performed by one-shot is identical to that of regular model checking. This is illustrated by the
identical memory usage between the two approaches in a working model.

This approach was designed to alleviate the memory overhead at the expense of time and, with the exception
of the anomalous result at a breaking depth of 10 this is mirrored in these results.

"The time taken to perform the single satisfaction check in regular model checking took an unusually long time, which
is why one-shot appears beneficial in these results

82



Decrease Decrease
B Memory | Time B Memory | Time
1.00 0.50 2 1.13 0.91
10 1.78 1.24 4 1.88 0.39
15 1.70 0.63 6 1.70 0.82
WORKING 1.00 0.05 WORKING 1.00 0.14

Table 5.7: Improvements for One-Shot BMC and full ~ Table 5.8: Improvements for One-Shot BMC and full

verification with reordering (2 Trains, Max Counter 20)  verification with reordering (3 Trains, Max Counter 7)

5.6 Evaluation of Distributed MCMAS

There were two different factors which required consideration when benchmarking:

1. Depth of seed state generation — The threshold depth at which the seed states generated would affect
the number of seed states which had to be verified

2. The number of slaves — If the master instance had more slaves available for it to use this should cause a
decrease in the time which verification took.

Evaluation Difficulties

Our method of distributed model checking lends itself well to models which have deep counterexamples, and
which suffer from the state space explosion problem, which it attempts to alleviate through state space parti-
tioning. To be able to show proficient benchmarks we require models with these problems. The models which
come with MCMAS are either too small or have shallow counterexamples, although the faulty train gate con-
troller model can be constructed such that it displays a deep counterexample. Due to the cyclic design of the
model, which allows agents to eventually return to a previous local state, the counterexample can be found from
every seed state.

Another problem arises here: because the set of “next” states can transition into the current “reach” set, the
next set for this model subsumes the reach set. This means that it is possible to have a seed state which is the
same as the original initial state, as specified in the ISPL model®.

Our distributed approach has been benchmarked using the faulty train gate controller, but, given the abilty
to find counterexamples from any state in a faulty model, the distributed falsification of properties is shown in
a particularly good light. This also gives rise to the fact that the property is falsified by the first slave to returna
counterexample (usually the first slave that connects to the master instance). This does not invalidate or make
these results any worse, it is simply an unintended bias of our method to this particular model.

Machine Specification

The networked hosts of these benchmarks were identical machines to that used to perform the previous bench-
marks. The machines used were vector30 through to vector4® when idle.
The seed states were saved to the networked file system “bitbucket” — a networked file server for un-
metered disc space — running a 813 GiB XFS file system with a 4 KiB block size (in a RAID configuration).
Each slave was connected to the master and every host to bitbucket, using gigabit ethernet.

5.6.1 Depth of seed states

We attempted to falsify properties on three different models, each with 3 trains, a maximum service counter of
7 and a breaking threshold of 4. The difference between the three models was the type of trains in each model;
for the models which contained type 3 trains, the property was not falsifiable. All of these benchmarks were
performed using a single master and three slaves.

#It would be possible to performnext\reach (set minus) here to give a strict set of next states, but our implementation
does not do this.

83



In Tables 5.9, 5.11 and 5.13:

BMC memory and states is the total number of states, and the memory (bytes) used to represent those
states, which our original BMC algorithm had to explore to find a counterexample or, in the case of a working
model, reach a fixed point.

Master memory (bytes) is the memory required to explore the model up to the given depth, prior to seed
state generation, whilst “states” is the number of seed states which are generated (which, in this model, as noted
above, is in fact the set of reachable states).

Slave “max” memory (bytes) is the maximum memory used by any one slave during the entire process. This
value represents the maximum resource requirement for each slave’, for the particular model, when performing
distributed model checking.

The total states represents the summation of all the states explored by every single host in the verification
process. Again, a weakness in these results is that, as soon as one slave returns a counterexample, the whole
verification process terminates and we lose any intermediate results for the other slaves.

Tables 5.10, 5.12 and 5.14 show the decrease gained by using distributed bounded model checking against
serial bounded model checking. A decrease below one indicates an increase for that model/method.

Depth 3

BMC Master Slave (Max) Max Total
Model Memory | States || Memory | States Memory | States Memory States
TYPB 1 70396964 70181 825572 75 69742244 69459 69742244 69534
Type2 || 198678532 | 284588 || 825572 75 175579220 | 258699 || 175579220 | 258774
Type 3 39705828 41681 825572 75 42212644 41681 42212644 3001032

Table 5.9: The resource usage of distributed bounded model checking at a seed depth of 3

Decrease

Model || Memory | Time | States

Type 1 1.009 0.817 | 1.009
Type 2 1.132 1.251 | I.I100
Type 3 0.941 0.024 | 0.014

Table 5.10: A comparison between BMC and distributed bounded model checking at a seed state generation

depth of 3

For a seed state generation depth of 3, Tables 5.9 and 5.10, we can see that, for models in which the property
can be falsified (type 1 and type 2), the distributed approach is able to find a counterexample with less memory
and less states, which, as stated above, is to be expected in this model.

Verification of type 1 trains takes longer when distributed because bounded verification is able to quickly
find a counterexample, whereas our distributed approach has the various overheads — the master to iterate over
all of the reachable states and write them to disk, as well as both instances having to read and parse the same
ISPL code. It should be noted here that the time taken for a slave to connected to the master, subsequent
communication to take place between the nodes, and seeds to transfer to and from bitbucket is assumed to be
negligible.

A model with type 3 trains is expected to under-perform in distributed bounded verification because every
single node, for every single seed, has to be explored to the fixed point, which means the same state space is

computed for every seed.

°If one slave returns faster than another slave and has used less resources, this is the “maximum” value used. This is
because, when one slave finds a counterexample, the master “kills” off all other instances, which causes any running instances
of MCMAS to be terminated without the recording of any statistics.

84



The avid reader might wonder why verification from certain seeds may require more memory than the full
BMC approach; this is caused by reordering. Starting from a different seed state may result in a different
variable ordering reach BDD. This, in turn, may result in some slaves requiring more memory to represent the

set of all reachable states, when compared to the memory required in serial bounded model checking

Depth 4

BMC Master Slave (Max) Max Total
Model Memory | States || Memory | States Memory | States Memory States

Type I 70396964 70181 1156980 348 68132260 69724 68132260 70072
Type 2 198678532 | 284588 1157876 348 114868452 | 166133 114868452 166481
TYPC 3 39705828 41681 1157876 348 43777924 41681 43777924 | 14379945

Table 5.11: The resource usage of distributed bounded model checking at a seed depth of 4

Decrease
Model || Memory | Time | States

Type 1 1.033 0.772 | 1.002

Type 2 1.730 4.429 | 1.709
Type 3 0.907 0.005 | 0.003

Table 5.12: A comparison between BMC and distributed bounded model checking at a seed state generation

depth of 4

We can see in Table 5.12 that, when we generate “deeper” seeds, this results in reaching a counterexample
quicker because there are now less iterations required until a counterexample can be found. This is mirrored

across memory and states as well.

Depth 5

BMC Master Slave (Max) Max Total
Model Memory | States || Memory | States Memory | States Memory States

Type 1 70396964 70181 1824660 1227 64144676 70169 64144676 71396
Type 2 198678532 | 284588 1659940 867 113094884 | 164529 113094884 165396
Type 3 39705828 41681 1824660 1227 43859860 41681 43859860 51017544

Table 5.13: The resource usage of distributed bounded model checking at a seed depth of 5

Decrease

Model || Memory | Time | States

Type 1 1.097 0.559 | 0.983
Type 2 1.757 4.134 | 1.721
Type 3 0.905 0.00I | 0.001

Table 5.14: A comparison between BMC and distributed bounded model checking at a seed state generation
depth of 5

The number of states explored for distributed bounded model checking, when the formulae cannot be
falsified, stands out in Table 5.13. At a depth of 5, the master instance generates 1227 seeds. This means

85



that, to be able to infer that the property is never falsified over the entire model, bounded model checking is
performed until a fixed point is reached from every seed'’.

5.6.2 Number of slaves

Because every seed state, in a model with type 1 or type 2 trains, can lead to a demonstrable counterexample,
this makes using this model difficult when demonstrating how varying the number of seeds can affect the time
taken for verification.

To allow for some meaningful results we used a model containing three type 3 trains with a maximum
counter of 7. In this model no counterexample can be found, meaning that every single seed state is explored
to the fixed point of states.

‘ # Hosts H Time ‘ Decrease H

2 118.88 0.016
4 58.78 0.032
6 39.93 0.048
8 30.37 0.063

Table 5.15: Time for seeded bounded model checking, when compared to BMC, for a varying number of hosts

when a counterexample cannot be found.

Table 5.15 illustrates the reductions in time gained through using different numbers of slaves at a seed
generation depth of 3. The original time taken by BMC was 1.90s. Although the table displays increases,
we can see that, as the number of hosts is increased, this increase gets lower. As such, in a model where a
counterexample could be found, we can see that using more slaves would decrease the verification time (and
increase verification efficiency).

5.6.3 Disk space overhead

Our current distributed implementation saves the set of all seed states to disk. This is done through the
DDBMP library (version 2.0.3). It would be unfair to present the previous results without discussing the over-
head which saving these states to disk imposes. Figure 5.16 shows the total size and the average seed size (in
bytes), required for storing the seeds at different depths in a model with three type 1 trains, a maximum counter

of 7 and a breaking threshold of 4.

‘ Depth H # Seeds ‘ Total ‘ Average H

2 8 4416 552
3 75 41400 552
4 348 192121 | 552.072
5 1227 677426 | 552.099

Table 5.16: Disk space used to hold the set of seed states

The file system tested used a 4.0 KiB block size. This means that the on disk size for storing 1227 seeds
was, in fact, 4.9 MiB, rather than the total file size of only 652 KiB. From this we can draw the conclusion that
our distributed implementation requires almost 8 times the disk space than if a small block size was used but,
by today’s standards, 4.9 MiB is virtually nothing.

On average, the size for an individual seed is approximately 552 bytes. This allows us to realistically rule
out any real network overhead for results previously, with respect to time, taken. Our justification for this is

1%We feel obliged to point out that not every seed state has an enabled joint action available from it. This is why the total
number of states (51017544) is less than the number of seeds multiplied by the fixed point states (41681 * 1227). In this
case, there are 3 seed states which do not have an enabled action and, as such, do not have any successor states. (The fixed
point of states is immediately reached and a path formula quantifed with A is true in a state with no successors).

86



that transferring such a small file over a gigabit connection would be virtually instantaneous.

5.7 Qualitative Evaluation

5.7.1 Effectiveness of deliverables

The solution we have presented here performs as expected; when possible, it can falsify properties early and,
when not possible, it pays minimal overhead for exploring the whole of the model. Although this is a desirable
goal, the means to an end, turning off garbage collection and asynchronous reordering may not be justifiable in
other circumstances.

5.7.2 Elegance of solution

MCMAS’s code, whilst not being the cleanest of code bases, was amenable to the implementation of all three
of the techniques which were implemented. Our solution could have been a more modular and cleaner solution
if MCMAS utilised the object oriented paradigm more. For instance, only having a single class representing a
“formula’, with a field specifying its “type’, is not an ideal solution. Using virtual methods and dynamic dispatch
would have allowed for various aspects of the code to be cleaner.

To be able to support the work presented, MCMAS's code has been “broken up”. Originally the code was
simply one huge main method, containing switch statements to decide which method of verification to attempt,
with all the code inlined. Our solution is now more modular and, although it could be extended further, has
already improved the maintainability of code and the provision of further verification techniques into MCMAS.

The distributed aspects of the model checker, in an attempt to avoid re-inventing the wheel and to keep
MCMAS's code slightly cleaner, were implemented as an external Java application. Although this can be seen
as anot particularly favourable solution, due to the lack of tight knit integration and the need for the application
to understand MCMAS's output, it does have one benefit. It can now easily be extended to support other model
checkers which support partial state space verification using “seed states”.

5.7.3 Scalability

As shown in Section 5.4.5, when CUDD’s optimisations are turned off, MCMAS is not able to verify large
models. The methods presented for distributed bounded model checking could be used to alleviate this prob-
lem. Rather than using depth as a heuristic for seed state generation, we could generate seed states when the
memory used, or the size of the current reach set, exceeds a given threshold.

Summary

In this chapter we have not only shown that the foundations of the approaches we have taken are sound, we have
also evaluated our implementations of these approaches.

The performance of our BDD based implementation of bounded model checking has been shown to be
favourable when used on models which have formulae which can be falsified prior to reaching the entire state
space. We have also shown results which allow us to conclude that bounded model checking, when checking
formulae which are satisfiable on the model, although possibly paying a slight overhead, still performs with a
resource requirement equivalent to that of conventional satisfiability model checking. .

The crux of this problem is that the evaluation of these formulae on models is not known prior to starting
the verification process. Model checking is generally used with properties which the author believes are true,
with the intention of “bug hunting”. In these circumstances, attempting to use bounded model checking may
be a better approach to take.

87



88



Chapter 6

Conclusions

6.1 Project Review

6.1.1 Contributions

The goal of this project was the development of BDD based bounded model checking techniques for a branching
time logic and its epistemic extensions. The main contributions which this project provides are:

+ Theoretical contributions: Three different possible ROBDD based bounded model checking techniques
(“full’, “one shot” and distributed), as well as the BDD based methods required to also be able to check
properties pertaining to knowledge upon these state spaces. Considerations have been given towards the
validity of calculation of the satisfiability sets for forumulae based on existing fixed point methods. The
technique put forward in this report for evaluating ECLTK formulae on partial state spaces is a wholly
original contribution. The related recent developments in this field have only looked at LTL invariant
properties and these methods, unlike the method here, are not complete.

+ Deliverables: The main output of this project has been an extension to the existing model checker for
multi-agent systems, MCMAS. An implementation of all three types of bounded model checking has been
provided and discussed. An auxiliary script to allow for automated “one shot” BMC until a counterex-
ample. A novel Java infrastructure allowing for the distribution of any model checker supporting seed
states has been developed and used to show the effectiveness of verifying the logic ASCTLK over a “grid”.

+ Examples: The introduction of a new scalable model has been discussed, and how it can be used to
benchmark bounded model checking with a configurable number of steps, until the given formulae can

be falsified, has been shown.

6.1.2 Comparisons

In Chapter 5, the implementation devised was evaluated and figures detailing performances were produced. It
was shown that, with variable reordering turned off, our BMC implementation out-performs traditional model
checking when a counterexample can be found, and, when it cannot, the overhead required for performing the
iterative checks has been shown to be minimal. Performance benefits, including results which demonstrated
reduction in the order of magnitude, were presented.

It is unfair to simply state a single value and claim that our BDD based BMC implementation performed
that many times better (or worse) than the conventional methods.

As noted in the previous chapter, in the majority of cases in which bounded model checking is used in real
systems, it is the case that there are errors to be found, which is the reason for performing model checking in
the first place. In these cases, it should be immediately obvious that using a bounded model checking approach
is a preferential selection.

6.1.3 Limitations, challenges and applications

When used without reordering, and as shown in Section 5.4.5, when performing bounded model checking,
MCMAS can now check models in which it would have previously failed. This shows us that the implementa-

89



tion can show the expected benefits, and that the requirement of exploring less states results in a lower memory
usage.

The problem arises when reordering is enabled (as shown in Section 5.4.1) When comparing our bounded
implementation we can see that the extra processing checks required for performing bounded model checking
are completely unfavourable. We feel that this is an unfair comparison, due to the majority of optimisations
present in a library, such as CUDD, having been developed and researched with conventional model checking
in mind. With this in mind it is highly unsurprising that we under-perform.

6.2 Further Work
6.2.1 Addinga visualiser to MCMAS

Currently, there is no way to visualise the internals of MCMAS during execution — this means that there could
be some hidden anomolies happening “behind the scenes” that we are unable to detect.

To be able to propetly evaluate the effectiveness shown between bounded, and conventional, model check-
ing, it would be advantagous to have an internal visualiser for MCMAS. There have already been attempts at
state space visualisation, but this is only half the story.

It has been shown that for bounded model checking to be shown as advantaneous, we have to disable
variable reordering (and to a lesser extent garbage collection) in the underlying library.

Although this step We have provided conjecture as to why this leads to more favourable results for bounded
model checking, it would be helpful if we could have more of insight to the BDDs which are used to represent
the state space.

Such a tool, which could also be hooked into CUDD, could be used to analyse the variable reorderings
used at run time — this would paint a better picture for model checker designers such that they can be aware of
the behind the scenes optimisations the library provides.

6.2.2 Counterexample generation for K

In our current implementation, we do not directly support counterexample generation. When we come to find
a witness to the negated formulae, we generate this from the satisfability of the K modality and not the K
modality. A simple extension would be to see if generating the counterexamples with K can lead to shorter, or
more understandable, counterexamples.

6.2.3 Common and distributed Knowledge

The work presented here was mainly an attempt at a proof of concept for showing that BDD based bounded
model checking could be at all effective when checking epistemic modalities — which we were successful in doing
so. a possibility of an extension would be to allow for the checking of both Common and distributed Knowledge

(Cand C, and D and D).
6.2.4 Heuristics for seed state generation

In our distributed model checker, we do not handle seed state generation at all intelligently — in an attempt to
find a counterexample quicker, we could prioritise certain seeds in the order of verification. For example, in an
attempt to falsify AG(—p V —¢q), seed states in which p or ¢ hold could be “priortised” — this would possible
allow for a state in which the invariant ceases to hold being found sooner (i.e. If p holds in the seed state, then
BMC attempts to to find q)

6.2.5 Itersection based BMC

The previous attempts at BDD based BMC all attempted an intersection based approach — that is, being able
to represent the set of “bad” states, and then check if any of these states are inside the current reach.

Now we have a way of saving the states to disk, we could use this to create an hold a single error state,
allowing for a an intersection based approach to model checking. We could also use MCMAS's “RedStates”
to represent the set of errors states, and if an intersection of the reachable states and these red states is found,

then an error has been located.

90



6.2.6 Saving Reach to disk in “one shot” BMC

In the same vein as the pervious point, given that MCMAS can now save a set of states to disk using DDDMP,
when we perform “one shot” BMC, rather than throwing away the entire set of reachable states, we could save
the current reach set to disk. When we start a new instance of MCMAS, we can get a cleared CUDD cache,
but we do not loose the previous reach — this would save on over calculation.

6.2.7 More models/benchmarks

To provide a more through evaluation of our BMC implementation, we could attempt to check with more
benchmarks. A set of examples such as “BEEM” (BEnchmarks for Explicit Model checkers) [66] could be
used. The original train-gate-controller model which our version was based upon is included in this set.

6.2.8 Better Use of CUDD

CUDD provides API calls to clean up temporary variables from the cache, to limit the amount of memory
which is used. The two calls Cudd_RecursiveDeref and Cudd_Deref can be used to protect a return result,
but delete intermediate results calculated by a function.

91



92



Bibliography

(1]

R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani and S. Tasiran. MOCHA: User
Manual. In cMocha (Version 1.0.1) Documentation URL http://mtc.epfl.ch/software-tools/
mocha/doc/c-doc/.

Nina Amla, Robert Kurshan, Kenneth L. McMillan and Ricardo Medel. Experimental Analysis of
Different Techniques for Bounded Model Checking. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 2619/2003 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg.
ISBN 978-3-540-00898-9. ISSN 0302-9743 (Print) 1611-3349 (Online), 2003 pp. 34—48. doi:10.1007/
3-540-36577-X_4. URL http://www.springerlink.com/content/600uvxx254x1k8ta/.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, May 2008. ISBN
026202649X.

M. Benerecetti, F. Giunchiglia, L. Serafini, Massimo Benerecetti and Luciano Serafini. Model check-
ing multiagent systems. In Journal of Logic and Computation volume 8(1998):pp. 8—3.

A. Biere, A. Cimatti, E. Clarke, O. Strichman and Y. Zhu. Bounded Model Checking. In Advances in
Computers volume 58(2003).

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita and Y. Zhu. Symbolic model checking using SAT proce-
dures instead of BDDs. In DAC °99: Proceedings of the 36th ACM/IEEE conference on Design automation.
ACM, New York, NY, USA. ISBN 1-58133-109-7, 1999 pp. 317—320. doi:http://doi.acm.org/10.1145/
300847.309942.

Armin Biere, Alessandro Cimatti, Edmund Clarke and Yunshan Zhu. Symbolic Model Checking
without BDDs. In Tools and Algorithms for the Construction and Analysis of Systems, volume 1579/1999 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg. ISBN 978-3-540-65703-3. ISSN 0302-
9743 (Print) 1611-3349 (Online), 1999 pp. 193—207. doi:10.1007/3-540-49059-0_14. URL http://
www.springerlink.com/content/vi286k9mqg0;jp05dh/.

Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. In IEEE Trans.
Comput. volume 35(1986)(8):pp. 677—691. ISSN 0018-9340. doi:http://dx.doi.org/10.1109/TC.1986.
1676819,

Gianpiero Cabodi, Paolo Camurati and Stefano Quer. Can BDDs compete with SAT solvers on
bounded model checking? In DAC "02: Proceedings of the 39th conference on Design automation. ACM, New
York, NY, USA. ISBN 1-58113-461-4, 2002 pp. 117—122. doizhttp://doi.acm.org/10.1145/513918.
513949.

A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: a new symbolic model checker. In
International Journal on Software Tools for Technology Transfer volume 2(2000):p. 2000.

93


http://mtc.epfl.ch/software-tools/mocha/doc/c-doc/
http://mtc.epfl.ch/software-tools/mocha/doc/c-doc/
http://www.springerlink.com/content/600uvxx254xlk8ta/
http://www.springerlink.com/content/vf286k9mq0jp05dh/
http://www.springerlink.com/content/vf286k9mq0jp05dh/

[x11]

18]

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco
Roveri, Roberto Sebastiani and Armando Tacchella. NuSMV 2: An OpenSource tool for symbolic
model checking. In Computer Aided Verification, volume 2404 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg. ISBN 978-3-540-43997-4. ISSN 0302-9743 (Print) 1611-3349 (On-
line), 2002 pp. 241-268. doi:10.1007/3-540-45657-0_29. URL http://www.springerlink.com/
content/7hrg3m38utrrgywb/.

Alessandro Cimatti, Enrico Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani and Ar-
mando Tacchella. Integrating BDD-Based and SAT-Based symbolic model checking. In Frontiers of
Combining Systems, volume 2309 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg. ISBN
978-3-540-43381-1. ISSN 0302-9743 (Print) 1611-3349 (Online), 2002 pp. 265-276. doi:10.1007/
3-540-45988-X_5. URL http://www.springerlink.com/content/ncfgrv2rfkgwvgh/.

E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. In ACM Trans. Program. Lang. Syst. volume 8(1986)(2):pp. 244—263.

Edmund Clarke, Armin Biere, Richard Raimi and Yunshan Zhu. Bounded Model Checking Using
Satisfiability Solving. In Formal Methods in System Design volume 19(2001)(1):pp. 7—34. ISSN 0925-9856
(Print) 1572-8102 (Online). doi:t0.1023/A:1011276507260. URL http://www.springerlink.
com/content/6r6m9pf34jhla229/.

Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In Logic of Programs, Workshop. 1982 pp. 52—71.

Edmund M. Clarke, Orna Grumberg and Doron Peled. Model Checking. MIT Press, 1999.

Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella and
Moshe Y. Vardi. Benefits of Bounded Model Checking at an Industrial Setting. In Computer Aided
Verification, volume 2102/2001 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, ISBN
978-3-540-42345-4. ISSN 0302-9743 (Print) 1611-3349 (Online), 2001 pp. 436—453. doi:10.1007/
3-540-44585-4_43. URL http://www.springerlink.com/content/4p130cddq2jjtrr9/.

Cindy Eisner. Using Symbolic CTL Model Checking to Verify the Railway Stations of Hoorn-
Kersenboogerd and Heerhugowaard. In Software Tools for Technology Transfer volume 4(1):pp. 107 —
124. URL www.haifa.ibm.com/dept/svt/papers/trainssttt.ps.

(19] J. Ezekiel and A. Lomuscio. Combining fault injection and model checking to verify fault tolerance in

multi-agent systems. 2009 .

[20] Johannes Faber. Verifying real-time aspects of the european train control system. In 17th Nordic Workshop

[21]

[22]

On Programming Theory. 2005 pp. 67—70.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses and Moshe Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

Alex Groce and Daniel Kroening. Making the most of bmc counterexamples. In Electronic Notes in
Theoretical Computer Science volume 119(2005)(2):pp. 67 — 81. Proceedings of the 2nd International
Workshop on Bounded Model Checking (BMC 2004), URL http://www.sciencedirect.com/
science/article/B75H1-4FNNN9F-6/2/9aac90bbe®e97fe2453¢c29c665bc2349,

Wiebe van der Hoek and Michael Wooldridge. Tractable multiagent planning for epistemic goals. In
AAMAS ’o02: Proceedings of the first international joint conference on Autonomous agents and multiagent
systems. ACM, New York, NY, USA. ISBN 1-58113-480-0, 2002 pp. 1167—-1174. doizhttp://doi.acm.
org/10.1145/545056.545095.

94


http://www.springerlink.com/content/7hrq3m38utrrgywb/
http://www.springerlink.com/content/7hrq3m38utrrgywb/
http://www.springerlink.com/content/ncfgrv2rf9kgwvqh/
http://www.springerlink.com/content/6r6m9pf34jh1a229/
http://www.springerlink.com/content/6r6m9pf34jh1a229/
http://www.springerlink.com/content/4p130cddq2jjtrr9/
www.haifa.ibm.com/dept/svt/papers/trainssttt.ps
http://www.sciencedirect.com/science/article/B75H1-4FNNN9F-6/2/9aac90bbe0e97fe2453c29c665bc2349
http://www.sciencedirect.com/science/article/B75H1-4FNNN9F-6/2/9aac90bbe0e97fe2453c29c665bc2349

(24]

[25]

Michael Huth and Mark Ryan. Logic in Computer Science: modelling and reasoning about systems (second
edition). Cambridge University Press, 2004. ISBN 052154310X.

Subramanian Iyer, Jawahar Jain, Debashis Sahoo and E. Allen Emerson. Under-approximation
heuristics for grid-based bounded model checking.  In Electronic Notes in Theoretical Computer
Science volume 135(2006)(2):pp. 31 — 46. ISSN 1571-0661. doi:DOI:10.1016/j.entcs.2005.
10.017.  Proceedings of the 4th International Workshop on Parallel and Distributed Methods
in Verification (PDMC 2005), URL http://www.sciencedirect.com/science/article/
B75H1-4177157-4/2/084089258526bf0b960e083ff42c4a74.

Subramanian K. Iyer, Jawahar Jain, Mukul R. Prasad, Debashis Sahoo and Thomas Sidle. Er-
ror detection using BMC in a parallel environment. URL http://www.stanford.edu/~sahoo/
Research/papers/subbu-deep-bmc.pdf.

Subramanian K. Iyer, Jawahar Jain, Mukul R. Prasad, Debashis Sahoo and Thomas Sidle. Error
detection using BMC in a parallel environment. In Correct Hardware Design and Verification Methods,
Lecture Notes in Computer Science. Springer Berlin / Heidelberg. ISBN 978-3-540-29105-3. ISSN
0302-9743 (Print) 1611-3349 (Online), 2005 pp. 354—358. doi:10.1007/11560548_30. URL http://
www.springerlink.com/content/cl2jyudmfg2691r4/.

Rune M. Jensen. A Comparison Study between the CUDD and BuDDy OBDD Package. Applied to
AI-Planning problems, September 2002.

M. Kacprzak, A. Lomuscio, T. asica, W. Penczek and M. Szreter. Verifying Multi-agent Systems via
Unbounded Model Checking. In Formal Approaches to Agent-Based Systems, volume 3228 of Lecture Notes
in Computer Science. Springer Betlin / Heidelberg., ISBN 978-3-540-24422-6. ISSN 0302-9743 (Print)
1611-3349 (Online), 2005 pp. 189—212. doi:10.1007/b105317. URL http://www.springerlink.
com/content/8d9etbvuymu8nubx/.

M. Kacprzak, A. Lomuscio and W. Penczek. From Bounded to Unbounded Model Checking for Tem-
poral Epistemic Logic. In Fundam. Inf. volume 63(2004)(2-3):pp. 221—240. ISSN 0169-2968.

Magdalena Kacprzak, Alessio Lomuscio and Wojciech Penczek. Verification of multiagent systems
via unbounded model checking. In AAMAS ‘04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems. IEEE Computer Society, Washington, DC, USA. ISBN
1-58113-864-4, 2004 pp. 638—645. doi:http://dx.doi.org/10.1109/AAMAS.2004.296.

(32] Joost-Pieter Katoen. Concepts, Alogirthms and Tools for Model Checking, Semester 1998—1999.

(33]

(34]

(35]

(36]

Saul Kripke. Semantical Considerations on Modal Logic. In In Proceedings A Colloquium on Modal and
Many-Valued Logics, Helsinki. 1962 .

L. Lamport. Proving the Correctness of Multiprocess Programs. In IEEE Trans. Softw. Eng. vol-
ume 3(1977)(2):pp. 125—143. ISSN 0098-5589. doi:http://dx.doi.org/10.1109/TSE.1977.229904.

A. Lomuscio, T. asica and W. Penczek and. Bounded model checking for interpreted systems: Prelim-
inary experimental results. In Formal Approaches to Agent-Based Systems, volume 2699 of Lecture Notes
in Computer Science. Springer Betlin / Heidelberg. ISBN 978-3-540-40665-5. ISSN 0302-9743 (Print)
1611-3349 (Online), 2002 pp. 115—125. doi:10.1007/b11729. URL http://www.springerlink.
com/content/qc9jeklam3w®tmgp/.

A.Lomuscio, F. Raimondi and M. J. Sergot. Towards model checking interpreted systems. In AAMAS
‘03: Proceedings of the second international joint conference on Autonomous agents and multiagent systems.

95


http://www.sciencedirect.com/science/article/B75H1-4J77J57-4/2/084089258526bf0b960e083ff42c4a74
http://www.sciencedirect.com/science/article/B75H1-4J77J57-4/2/084089258526bf0b960e083ff42c4a74
http://www.stanford.edu/~sahoo/Research/papers/subbu-deep-bmc.pdf
http://www.stanford.edu/~sahoo/Research/papers/subbu-deep-bmc.pdf
http://www.springerlink.com/content/cl2jyu4mfg269lr4/
http://www.springerlink.com/content/cl2jyu4mfg269lr4/
http://www.springerlink.com/content/8d9etbvuymu8nu6x/
http://www.springerlink.com/content/8d9etbvuymu8nu6x/
http://www.springerlink.com/content/qc9jek1am3w0tmgp/
http://www.springerlink.com/content/qc9jek1am3w0tmgp/

(37]

(38]

(39]

(45]

(46]

(48]

(49]

ACM, New York, NY, USA. ISBN 1-58113-683-8, 2003 pp. 1054—1055. doizhttp://doi.acm.org/10.
1145/860575.860792.

Alessio Lomuscio, Charles Pecheur and Franco Raimondi. Automatic verification of knowledge and
time with nusmv. In IJCAI 2007 pp. 1384—1389.

Alessio Lomuscio, Hongyang Qu and Monika Solanki. Towards verifying compliance in agent-based
web service compositions. In AAMAS ’08: Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC. ISBN 978-0-9817381-0-9, 2008 pp. 265—272.

Alessio Lomuscio, Hongyang Qu and Monika Solanki. Towards verifying contract regulated service
composition. In ICWS 08: Proceedings of the 2008 IEEE International Conference on Web Services. IEEE
Computer Society, Washington, DC, USA. ISBN 978-0-7695-3310-0, 2008 pp. 254—261. doizhttp:
//dx.doi.org/10.1109/ICWS.2008.115.

Alessio Lomuscio and Franco Raimondi. MCMAS: A Model Checker for Multi-agent Systems. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 3920/2006 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg. ISBN 978-3-540-33056-1. ISSN 0302-9743
(Print) 1611-3349 (Online), 2006 pp. 450—454. doi:r0.1007/11691372_31. URL http://www.
springerlink.com/content/hr800h4080771487/.

Alessio Lomuscio and Marek Sergot. The bit transmission problem revisited. In AAMAS "02: Proceed-
ings of the first international joint conference on Autonomous agents and multiagent systems. ACM, New York,
NY, USA. ISBN 1-58113-480-0, 2002 pp. 946—947. doi:http://doi.acm.org/10.1145/544862.544961.

Alessio Lomuscio and Marek Sergot. A formalisation of violation, error recovery, and enforce-
ment in the bit transmission problem. In Journal of Applied Logic volume 2(2004)(1):pp. 93 — 116.
ISSN 1570-8683. doi:DOI:10.1016/j.jal.2004.01.005. The Sixth International Workshop on De-
ontic Logic in Computer Science, URL http://www.sciencedirect.com/science/article/
B758H-4C2R2K0-1/2/a86cd71f9a06e11819c2deddf21e6f5a.

Alessio R Lomuscio. Notes from the course, 303: Software Engineering - Systems Verification, Spring
2008. URL http://www.doc.ic.ac.uk/~alessio/teaching/08/sv/sv.html.

Stephan Merz. Model Checking: A Tutorial Overview. In Modeling and Verification of Parallel Processes
(editor F. Cassez et al.), volume 2067 of Lecture Notes in Computer Science, pp. 3—38. Springer-Verlag,
Berlin, 2001.

Chatles Pecheur and Franco Raimondi. Symbolic model checking of logics with actions. In (2007):pp.
113—128. doi:http://dx.doi.org/10.1007/978-3-540-74128-2_8.

W. Penczek and A. Lomuscio. Bounded model checking for interpreted systems, 2002. URL http://
www.doc.ic.ac.uk/~alessio/papers/Penczek-Lomuscio-TR.ps.

W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via bounded model
checking, 2003. URLhttp://citeseer.ist.psu.edu/article/penczek®3verifying.html.

Wojciech Penczek, Bozena Wozna and Andrzej Zbrzezny. Bounded model checking for the universal
fragment of CTL. In Fundam. Inf. volume 51(2002)(1):pp. 135—156. ISSN 0169-2968.

Franco Raimondi. Model Checking Multi-Agent Systems. Ph.D. thesis, 2006. http://www.cs.ucl.
ac.uk/staff/f.raimondi/pubs/thesis.pdf.

96


http://www.springerlink.com/content/hr800h4080771487/
http://www.springerlink.com/content/hr800h4080771487/
http://www.sciencedirect.com/science/article/B758H-4C2R2K0-1/2/a86cd71f9a06e11819c2deddf21e6f5a
http://www.sciencedirect.com/science/article/B758H-4C2R2K0-1/2/a86cd71f9a06e11819c2deddf21e6f5a
http://www.doc.ic.ac.uk/~alessio/teaching/08/sv/sv.html
http://www.doc.ic.ac.uk/~alessio/papers/Penczek-Lomuscio-TR.ps
http://www.doc.ic.ac.uk/~alessio/papers/Penczek-Lomuscio-TR.ps
http://citeseer.ist.psu.edu/article/penczek03verifying.html
http://www.cs.ucl.ac.uk/staff/f.raimondi/pubs/thesis.pdf
http://www.cs.ucl.ac.uk/staff/f.raimondi/pubs/thesis.pdf

(50]

(51]

(53]

(54]

(58]

(59]

Franco Raimondi. Notes from the course, GS03/4203: Verification and validation, 2007 — 2008. URL
http://www.cs.ucl.ac.uk/staff/F.Raimondi/teaching/.

Franco Raimondi and Alessio Lomuscio. A tool for specification and verification of epistemic properties
in interpreted systems. In Electronic Notes in Theoretical Computer Science volume 85(2004)(2):pp. 176 —
191. ISSN 1571-0661. doi:DOI:10.1016/S1571-0661(05)82609-X. LCMAS 2003, Logic and Commu-
nication in Multi‘Agent Systems, URL http://www.sciencedirect.com/science/article/
B75H1-4G6932F-5V/2/5e7d156deb72017230487£10e4e7d1£0.

Franco Raimondi and Alessio Lomuscio. Verification of Multiagent Systems via Ordered Binary Deci-
sion Diagrams: An Algorithm and Its Implementation. In AAMAS ’04: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems. 2004 pp. 630—637.

Franco Raimondi and Alessio Lomuscio. Towards symbolic model checking for multi-agent systems via
obdds. In Formal Approaches to Agent-Based Systems, volume 3228 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg., ISBN 978-3-540-24422-6. ISSN 0302-9743 (Print) 1611-3349 (Online),
2005 pp. 213—221. URL http://www.springerlink.com/content/h5tnkadaw®bgxOmy/.

Franco Raimondi, Alessio Lomuscio and Hongyang Qu. MCMAS vo.9.6: User Man-
val. URL http://dfn.dl.sourceforge.net/sourceforge/ist-contract/mcmas-0.9.6.
2.tar.gz.

Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams. In ICCAD ’93: Pro-
ceedings of the 1993 IEEE/ ACM international conference on Computer-aided design. IEEE Computer Society
Press, Los Alamitos, CA, USA. ISBN 0-8186-4490-7, 1993 pp. 42—47.

Marek Sergot. Notes from the course, 499: Modal and temporal logic, Autumn 2008. URL http://
www.doc.ic.ac.uk/~mjs/teaching/499.html,.

M. Sitjani, A. Movaghar, A. Shali and F. S. de Boer. Model Checking, Automated Abstraction,
and Compositional Verification of Rebeca Models. In Journal of Universal Computer Science vol-
ume 11(2005)(6):pp. 1054—1082.

Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.4.1, May, 2005. URL http://www.
cs.ubc.ca/~ajh/courses/cpsc513/cudd.ps.

Francesca Toni. Notes from the course, 474: Multi-agent Systems, Autumn 2008. URL http://www.
doc.ic.ac.uk/~ft/teaching.html.

Ingo Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000. ISBN 0-89871-458-3.

Michael J. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

Bozena Wozna, Alessio Lomuscio and Wojciech Penczek. Bounded model checking for deontic inter-
preted systems. In Electronic Notes in Theoretical Computer Science volume 126(2005):pp. 93 — 114. doi:
DOI:10.1016/j.entcs.2004.11.015. Proceedings of the 2nd International Workshop on Logic and Com-
munication in Multi-Agent Systems (2004), URL http://www.sciencedirect.com/science/
article/B75H1-4FKXPY9-K/2/0a4c45371£53831ab07794690ed1fael.

97


http://www.cs.ucl.ac.uk/staff/F.Raimondi/teaching/
http://www.sciencedirect.com/science/article/B75H1-4G6932F-5V/2/5e7d156deb72017230487f10e4e7d1f0
http://www.sciencedirect.com/science/article/B75H1-4G6932F-5V/2/5e7d156deb72017230487f10e4e7d1f0
http://www.springerlink.com/content/h5tnkadaw0bgx0my/
http://dfn.dl.sourceforge.net/sourceforge/ist-contract/mcmas-0.9.6.2.tar.gz
http://dfn.dl.sourceforge.net/sourceforge/ist-contract/mcmas-0.9.6.2.tar.gz
http://www.doc.ic.ac.uk/~mjs/teaching/499.html
http://www.doc.ic.ac.uk/~mjs/teaching/499.html
http://www.cs.ubc.ca/~ajh/courses/cpsc513/cudd.ps
http://www.cs.ubc.ca/~ajh/courses/cpsc513/cudd.ps
http://www.doc.ic.ac.uk/~ft/teaching.html
http://www.doc.ic.ac.uk/~ft/teaching.html
http://www.sciencedirect.com/science/article/B75H1-4FKXPY9-K/2/0a4c45371f53831ab07794690ed1fae0
http://www.sciencedirect.com/science/article/B75H1-4FKXPY9-K/2/0a4c45371f53831ab07794690ed1fae0

08



Web References

[63] About CUDD: The U. Colorado BDD Package. http://www.ece.cmu.edu/~ee760/760docs/
cuddvl.pdf.

[64] Advanced Model Checking. http://www-i12.informatik.rwth-aachen.de/i2/amc09/.
[65] Akka. http://staff.science.uva.nl/~lhendrik/SystemDescription.html.

[66] BEEM: BEnchmarks for Explicit Model checkers. http://anna.fi.muni.cz/models/.
[67] BuDDy: A BDD package. http://buddy.sourceforge.net/manual /main.html.

[68] CUDD: Colorado University Decision Diagram Package. http://vlsi.colorado.edu/~fabio/
CuUDD/.

[69] Eclipse. http://www.eclipse.org/.

[70] Flex. http://flex.sourceforge.net/.

[71] GNU Bison. http://www.gnu.org/software/bison/.
[72] Graphviz. http://www.graphviz.org/.

[73] Lufthansa Technik: Aircraft maintenance. http://www.lufthansa-technik.com/
applications/portal/lhtportal/lhtportal.portal?requestednode=424&_
pagelLabel=Template7_8& nfpb=trued&webcacheURL=TV_I/Media-Relations/
Media-Archive/Archive-Press-Releases/Previous-Press-Releases/
Press-Releases-1997/Maintenance_e.xml.

[74] MCMAS 0.9.6.2. http://dfn.dl.sourceforge.net/sourceforge/ist-contract/
mcmas-0.9.6.2.tar.gz.

[75] MCMAS vo0.9.8.2: User Manual. http://www-1ai.doc.ic.ac.uk/mcmas/manual .pdf.

[76] NuSMV User Guide. http://nusmv.irst.itc.it/NuSMV/papers/sttt_j/html/node21.
html.

[77] PDMC - Parallel and Distributed Methods in verifiCation. http://pdmc.informatik.
tu-muenchen.de/.

[78] Rebeca : Reactive Objects Language. http://khorshid.ece.ut.ac.ir/~rebeca/.

[79] The DDDMP package. http://fmgroup.polito.it/quer/research/tool/tool. . htm.

929


http://www.ece.cmu.edu/~ee760/760docs/cuddv1.pdf
http://www.ece.cmu.edu/~ee760/760docs/cuddv1.pdf
http://www-i2.informatik.rwth-aachen.de/i2/amc09/
http://staff.science.uva.nl/~lhendrik/SystemDescription.html
http://anna.fi.muni.cz/models/
http://buddy.sourceforge.net/manual/main.html
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://www.eclipse.org/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.graphviz.org/
http://www.lufthansa-technik.com/applications/portal/lhtportal/lhtportal.portal?requestednode=424&_pageLabel=Template7_8&_nfpb=true&webcacheURL=TV_I/Media-Relations/Media-Archive/Archive-Press-Releases/Previous-Press-Releases/Press-Releases-1997/Maintenance_e.xml
http://www.lufthansa-technik.com/applications/portal/lhtportal/lhtportal.portal?requestednode=424&_pageLabel=Template7_8&_nfpb=true&webcacheURL=TV_I/Media-Relations/Media-Archive/Archive-Press-Releases/Previous-Press-Releases/Press-Releases-1997/Maintenance_e.xml
http://www.lufthansa-technik.com/applications/portal/lhtportal/lhtportal.portal?requestednode=424&_pageLabel=Template7_8&_nfpb=true&webcacheURL=TV_I/Media-Relations/Media-Archive/Archive-Press-Releases/Previous-Press-Releases/Press-Releases-1997/Maintenance_e.xml
http://www.lufthansa-technik.com/applications/portal/lhtportal/lhtportal.portal?requestednode=424&_pageLabel=Template7_8&_nfpb=true&webcacheURL=TV_I/Media-Relations/Media-Archive/Archive-Press-Releases/Previous-Press-Releases/Press-Releases-1997/Maintenance_e.xml
http://www.lufthansa-technik.com/applications/portal/lhtportal/lhtportal.portal?requestednode=424&_pageLabel=Template7_8&_nfpb=true&webcacheURL=TV_I/Media-Relations/Media-Archive/Archive-Press-Releases/Previous-Press-Releases/Press-Releases-1997/Maintenance_e.xml
http://dfn.dl.sourceforge.net/sourceforge/ist-contract/mcmas-0.9.6.2.tar.gz
http://dfn.dl.sourceforge.net/sourceforge/ist-contract/mcmas-0.9.6.2.tar.gz
http://www-lai.doc.ic.ac.uk/mcmas/manual.pdf
http://nusmv.irst.itc.it/NuSMV/papers/sttt_j/html/node21.html
http://nusmv.irst.itc.it/NuSMV/papers/sttt_j/html/node21.html
http://pdmc.informatik.tu-muenchen.de/
http://pdmc.informatik.tu-muenchen.de/
http://khorshid.ece.ut.ac.ir/~rebeca/
http://fmgroup.polito.it/quer/research/tool/tool.htm

I00



Appendix A

BMC Implementation in MCMAS

// A pair of a formula - pair.first = actlk, pair.second = ectlk

KA

typedef std::pair<modal_formula *, modal_formula *> modal_formula_p_pair;

// A vector of formula pairs
typedef std::vector<modal_formula_p_pair> modal_formula_p_pair_vector;

Figure A.1: The extended type system of MCMAS

// Pairs of formulae we need to check
modal_formula_p_pair_vector *bmc_formulae;

// Pairs of formulae which we’ve found counterexamples to
modal_formula_p_pair_vector *bmc_false_formulae;

// Initialise them
bmc_formulae = new vector<modal_formula_p_pair>;
bmc_false_formulae = new vector<modal_formula_p_pair>;

Figure A.2: New global variables to store formulae to prove

I01




// Loop over all the given formulae
for (unsigned int i = 0; i < is_formulae->size(); i++)

{

// Pick up the ACTL formula
modal_formula *actl = &(*is_formulae)[i];

// Push through any existing negations
modal_formula *actl_pushed = actl->push_negations(0);

// Create the negation of the formula
modal_formula *actl_pushed_negated = new modal_formula(3,
actl_pushed);

// Push those negations through
// We now have an ECTL formula
modal_formula *ectl = actl_pushed_negated->push_negations(0);

// Double check that we’ve got an ACTL and ECTL
if (actl->is_ACTLK_BMC() && ectl->is_ECTLK_BMC(Q))
bmc_formulae->push_back(modal_formula_p_pair(actl, ectl));

Figure A.3: The calculation of the ECLTK formulae from the ACTLK

102




void check_formulae_BMC(void)

{
// _init atom old holds at the the intial states
string str = "_init";
(*is_evaluation)[str] = is_istates;
// Construct iota
modal_formula *init = new modal_formula(new atomic_proposition(&str));
// Where we’re going to store the results
BDD result;
for (modal_formula_p_pair_vector::iterator iter =
bmc_formulae->begin();
iter != bmc_formulae->end();)
{
// Dereference the iterator
modal_formula_p_pair temp = (modal_formula_p_pair) (*iter);
// Construct iota -> phi
modal_formula * f = new modal_formula(4, init, temp.second);
// Check the implication
result = f->check_formula();
// Delete the formulae
if ()
delete f;
// If phi holds in the initial state
if (result == reach)
{
// We’ve found a counterexample to the original formulae
// We save it in the vector of falsified formulae
bmc_false_formulae->push_back(temp);
// And remove it from the formulae to check
// and update iter to be the next item in the vector
iter = bmc_formulae->erase(iter);
continue;
}
// Move the iterator on
++iter;
}
// Delete the init formula
if (init)
delete init;
}

Figure A.4: A function to check all the ECTLK formulae

103




void bdd_bmc(void)
{

// The current reachable states are the initial states
reach = in_st;

// ql is the new set of next states
BDD gl = bddmgr->bddZero();

// Initial next states is the initial states
BDD nextl = in_st;

// Start at a depth of 0
int k = 0;

// Whilst we still have formulae to check
while (!bmc_formulae->empty())

{
// Check them with respect to the current reach
check_formulae_BMCQ);
// If we satisfy them, we exit the loop
if (bmc_formulae->empty())
continue;
// We’re now searching a deeper bound
++k;
// Construct the next set of states
for (unsigned int i = 0; i < agents->size(); ++1i)
nextl *= (*VvRT)[i];
nextl = Exists(v, nextl);
nextl = nextl.SwapVariables(*v, *pv);
nextl = Exists(a, nextl);
// Construct the new set of reachable states
// From the union of the current reach and the next
ql = reach + nextl;
// If the set of reachable states hasn’t change
// We’ve reached a fixed point
if (gl == reach)
{
cout << "Fix point reached" << endl;
break;
}
else
reach = ql; // If not, store the new reachable states
}

Figure A.5: The first half of the BMC method in MCMAS

104

R R R R R SR SR R R R R R R O o o o S A R R o

RO R R RO R O R G R SR S R O R AR R R T O S R O R R R R




BRI R O R R R R R O I R S R S R R G R T S O R O R R O

E R o o O Ok O O R R A o o o o o S R O R o o o o O O O

// When we reach here, we’ve either:
// Reched a fix point of the state space
// Or disproved all of the formulae

// If we’ve disproven any formulae with BMC
if (bmc_false_formulae->size())

{
// We print them out
cout
<< "The following formulae have been verified"
<< "using BMC on the negation:"
<< endl;
for (modal_formula_p_pair_vector::iterator iter =
bmc_false_formulae->begin();
iter != bmc_false_formulae->end(); ++iter)
{
modal_formula_p_pair temp = (modal_formula_p_pair) (*iter);
modal_formula actl = *temp.first;
cout << " Formula " << actl.to_string()
<< " is FALSE in the model" << endl;
}
}

// If we have remaining unchecked formulae
if (!bmc_formulae->empty())
{
// Clear the old formulae
is_formulae->clear();

// And construct a new is_formulae vector

for (modal_formula_p_pair_vector::iterator iter =
bmc_formulae->begin();
iter != bmc_formulae->end(); ++iter)

modal_formula_p_pair temp = (modal_formula_p_pair) (¥*iter);
modal_formula actl = *temp.first;
is_formulae->push_back(Cactl);

}

// Use the regular check_formulae method
check_formulae();

Figure A.6: The second half of the BMC method in MCMAS. Printing out the values for each formula, and a
final check for formulae we have been unabled to falsify

105




	Introduction
	The Problem
	An Illustrative Scenario

	Motivation
	Contributions

	Background
	Temporal Logics
	Linear Temporal Logic
	Computational Tree Logic

	Multi-Agent Systems
	"Agents"
	Interpreted Systems
	A logic of knowledge

	Model Checking
	Explicit Model Checking
	Counterexamples and witnesses
	Symbolic Model Checking
	BDDs and Variable Orderings
	Alternatives to BDD Based Model Checking
	Model Checking Multi-Agent Systems
	BMC for Multi-agent Systems
	Current Model Checking Technology
	BDD based BMC

	Distributed Model Checking
	Grid Based BMC with "Seed" States

	Verifying correctness in real life models
	The Train-Gate-Controller Model


	Preliminaries
	Discussion on Prior art
	CUDD Specifics
	MCMAS Internals
	Global Variables
	Important Classes
	Satisfiability checking within MCMAS

	Models

	Original Contributions
	BDD based BMC
	BDD based BMC with "early termination"
	Variations on BDD-BMC
	An Implementation

	SAT k-bar
	BDD based SAT k-bar

	Distributed Verification of ACTLK
	The key idea of grid based BDD-BMC
	Outline of grid based BDD-BMC
	Uniqueness of the Approach
	Distributing MCMAS
	Consideration of other connectives

	A scalable model
	The Faulty Controller
	The Faulty Train
	Specifications


	Evaluation
	Fixed Point Methods on Non-total Transition Relations
	SATex
	SATeg
	SATef
	SATeu

	SAT K-bar on Truncated Paths
	Correctness of the Algorithm SAT K-bar

	Model Checking of AGCTLK with Seed States
	Performance and Benchmarking
	An initial investigation
	The Faulty Train Gate Controller
	MCMAS 0.9.8.5 Examples
	Length of Counterexample Found
	Stress Testing MCMAS

	Evaluation of One-Shot BMC
	Evaluation of Distributed MCMAS
	Depth of seed states
	Number of slaves
	Disk space overhead

	Qualitative Evaluation
	Effectiveness of deliverables
	Elegance of solution
	Scalability


	Conclusions
	Project Review
	Contributions
	Comparisons
	Limitations, challenges and applications

	Further Work
	Adding a visualiser to MCMAS
	Counterexample generation for K-bar
	Common and distributed Knowledge
	Heuristics for seed state generation
	Itersection based BMC
	Saving Reach to disk in "one shot" BMC
	More models/benchmarks
	Better Use of CUDD


	Bibliography
	Web References
	BMC Implementation in MCMAS

