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Abstract

We present new hardware designs of modular multiplication, modular exponentiation and pri-
mality test. These operations are the core of most public-key cryptosystems. The idea is to gather
the main strengths of existing designs in a highly parametric and new design. All the modules are
based on an original Montgomery modular multiplier.

Our multiplier is the first Montgomery multiplier design with variable pipeline stages and vari-
able parallelism by replication. To manage any number of pipeline stages, we create a flexible
pipeline control treating the triangular register array of the pipeline as FIFOs. All the adders and
subtractors of the multiplier can also be pipelined with any depth. The data dependencies in the
Montgomery algorithm prevent us from simply duplicating the processing block and performing
the computation in parallel. We cope with that problem by designing a replication control logic
performing the iterations by consecutive blocks through carry-save adders put in series.

We develop a model highlighting the effects of our pipelining and replication methods on the
throughput of a hardware design. Applied to our Montgomery multiplier, this model allows fast
parametrisation and integration of the multiplier into larger designs.

Our model is evaluated against synthesis results. It gives relevant insights about the design space
for our multiplier in terms of logic area, register area and throughput. The effect of each parameter
on the speed and area taken by our modules is quantified. The multiplier, exponentiator and the
prime tester are compared with existing software and hardware implementations. The implemen-
tation of our multiplier on a 150 MHz XC5VLX50T FPGA is more than 16 times faster than the
optimised software implementation on a 2.8 GHz Core 2 Duo E7400 CPU. The exponentiator and
prime tester achieve speedup of 1.5 times over their software implementations on the same CPU.
The exponentiator is up to 22.3 faster than existing hardware implementations. The prime tester
implementing the Rabin-Miller strong pseudoprime test is faster than existing designs of the same
algorithm with speedups from 1.1 times up to 13.6 times with only 10% area overhead.
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Chapter 1

Introduction

1.1 Motivation

Most crypto-systems rely on the ability to perform the same few basic operations. They often
consist of two main stages: the key generation which requires the ability to generate large prime
numbers and the encryption/decryption part.

Modular exponentiation is a common operation used by several public-key cryptosystems, such as
the Diffie-Hellman key exchange protocol and the Rivest, Shamir and Adleman (RSA) encryption
scheme. It is also, together with modular multiplication, the core of common prime tests such as
the Rabin-Miller strong pseudoprime test.

As security is becoming increasingly important, algorithms such as RSA need more and more
bits for the keys used to be secured. For data that need to be protected until 2030, [3] recommends
a 2048 bit key whereas a 3072 bit key is recommended for beyond 2031. This creates a need for
scalable designs working with any bitwidth.

Many new algorithms [4] and improvements of existing algorithms [5] for modular multiplication
have been presented during the last decade. This led to many hardware implementations of modular
multiplication [6], [1], [7], modular exponentiation [8], [9], [10] and primality testing [11]. Most
implementations target Field Programmable Gate Arrays (FPGAs) which offer rapid-prototyping
platforms to compare different designs and can be reprogrammed as needed.

Any hardware design is driven by three main constraints: speed, area and power. The relative
importance of these constraints on one another is not fixed and depends on the application. If
the main design goal is to do encryption/decryption of data at high throughput, speed will be put
forward. For embedded application, the area and power constraints are often considered first.

The major problem of the existing encryption hardware designs is that they cannot fully explore
the design space given by the large families of FPGAs available in the market, especially in terms
of the speed/area tradeoffs. In fact, most of them consider the influence of only one parameter
(the bitwidth, the number of pipeline stages) on these tradeoffs. Figure 1.1 shows the number of
FPGA slices available in the different members of the Xilinx Virtex-5 family. It goes from a small
and cheap FPGA with less than 5000 slices to a large and expensive chip with more than 50 000
slices. The vast range of area in a single FPGA family highlights the huge potential for design
space exploration. This introduces the need for parametric designs capable of exploring this space.

In this report, we develop a parametric hardware design of modular multiplication, modular
exponentiation and primality testing. Our design is based on the most interesting techniques used
in the existing designs. Each module is highly parametric. The parameters proposed allow one to
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Figure 1.1: Slices available in different members of the Xilinx Virtex-5 FPGA family

independently study the influence of each technique on the global performance of the module, cre-
ating a great potential for design space exploration. We develop a model of our modular multiplier
reducing its integration time in an existing or new hardware project.

1.2 Contributions

The major contributions are divided into the following parts from cryptographic designs to a
model-driven performance tuning tool of these designs.

1.2.1 Parametric Montgomery multiplier

A new synthesizable hardware design of the Montgomery modular multiplication is presented
(Chapter 3). This module is based on a parametric pipeline and the possibility to replicate the
main processing element in each pipeline block. It supports any bitwidth, any number of pipeline
stages and replications, covering a large design space. To improve the critical path of the multiplier,
each of its adders and subtractors can be pipelined.

Designing such a parametric pipeline in an optimised way is challenging compared to a pipeline
with a fixed depth. As a matter of fact, making the bitwidth and the number of pipeline stages
totally parametric leads to the possibility to encounter pipeline blocks of different sizes and dif-
ferent latencies. To make this parametric pipeline work, we design a pipeline control treating the
triangular register array as FIFOs of registers. It is capable of dealing with all these non-obvious
configurations.

Our parametric way of replicating the main processing element in each pipeline block also
presents some novel aspects. We demonstrate that the iterations performed in our Montgomery
multiplier are dependent on each others. Hence replication does not simply consist in duplicating the
hardware several times and perform the iterations in parallel. We put the replicated blocks in series
and treat the successive dependent iterations by groups. A special control ensures that the right
number of iterations is performed within each pipeline blocks and that the last result is extracted
from the appropriate replicated block. These features make our design the first Montgomery
multiplier with variable pipeline stages and variable parallelism by replication.

The degrees of freedom introduced by our parametric multiplier can be hard to master without
appropriate tools. We address this issue by developing a model (Chapter 4) which finds the best
number of pipeline stages and replications optimising the speed of the multiplier under a fixed area
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constraint. This model proves to give relevant insights about the design space for our multiplier.
It can be easily extended to any design based on the same pipelining and replication methods.

The influence of each parameter of the multiplier on the speed and area is studied in depth
(Chapter 5). This study shows that the throughput of the multiplier can be increased as needed by
increasing the number of pipeline stages. The only limitation is the area available in the FPGA.
On the contrary, we show that the number of replications cannot be increased infinitely due to a
critical path problem.

The implementation of our multiplier on a 150 MHz XC5VLX50T FPGA is more than 16 times
faster than an optimised software version running on a 2.8 GHz Core 2 Duo E7400 CPU.

1.2.2 Parametric modular exponentiator

A modular exponentiator using our multiplier is designed (Chapter 3). It takes full advantage
of the pipelining and replication features of the multiplier. We show that the optimum number of
multiplier pipeline stages for use with the exponentiator is 2 due to data dependencies in the algo-
rithm used. A potential improvement using the Montgomery multiplier with no final subtraction
is integrated and evaluated.

The performance of this exponentiator in terms of speed and area is studied and compared
to existing implementations (Chapter 5). The implementation of our exponentiator on a 150
MHz XC5VLX50T FPGA is 1.5 times faster than an optimised software version running on a
2.8 GHz Core 2 Duo E7400 CPU. A speedup of up to 22.3 is achieved over existing hardware
implementations.

1.2.3 Rabin-Miller strong pseudoprime test hardware

Finally, a prime tester using both the modular multiplier and exponentiator is designed (Chapter
3). It is a new hardware version of the Rabin-Miller strong pseudoprime test. This algorithm is
studied carefully to highlight its bottlenecks and find which parts are worth being optimised.

Our prime tester is evaluated against existing hardware and software implementations (Chapter
5). The implementation of our exponentiator on a 150 MHz XC5VLX50T FPGA is 1.6 times faster
than an optimised software version running on a 2.8 GHz Core 2 Duo E7400 CPU. It is faster than
existing hardware implementations of the same algorithm with speedups from 1.1 times up to 13.6
times with only 10% area overhead.

1.3 Thesis structure

This thesis is organized as follows. Chapter 2 presents the related work and background of
this thesis. In Chapter 3, our parametric multiplier, exponentiator and prime tester designs are
exhaustively described. Chapter 4 develops a model of our multiplier and describe our performance
tuning software. In Chapter 5 our three designs together with our multiplier model are evaluated
quantitatively and qualitatively.





Chapter 2

Background

This chapter covers background material to the project. Section 2.1 describes the principles of RSA
encryption and key generation. Section 2.2 and 2.3 present the existing algorithms for modular
multiplication and exponentiation and their most interesting hardware implementations. Finally,
section 2.4 shows different methods used for primality testing, focusing on the Rabin-Miller strong
pseudoprime test and section 2.5 sums up the chapter.

2.1 RSA

RSA (Rivest-Shamir-Adleman) is a public key encryption algorithm whose strength relies on the
difficulty of solving the following number-theoretic problems:

- Given N � p.q with p and q two large primes, try to factorise back N .

- Find P such that PE � C mod N given integers N , E, and C such that N � p.q where p
and q are two large primes, 2 ¤ E ¤ N is coprime to pp� 1qpq � 1q and 0 ¤ C   N

For integers of more than 1024 bits, solving these problems is computationally infeasible as of today.

The RSA algorithm consists of three parts: key generation, encryption and decryption.

2.1.1 RSA key generation

To compute the public key used for encryption and the private key used for decryption the following
steps are performed [12]:

1. Pick two large prime numbers p and q and keep them secret

2. Calculate N � p.q

3. Calculate the Euler’s totient function1 φpNq � pp� 1qpq � 1q and keep it secret

4. Calculate E and D such that E.D � 1 mod φpNq

The public key is pE,Nq and the private key pD,Nq.

2.1.2 Encryption/Decryption

The ciphertext C corresponding to the encryption of the plaintext P with the public key pE,Nq is:

C � PE mod N (2.1)

1Number of numbers less than N relatively prime to N .

13



14 CHAPTER 2. BACKGROUND

To decrypt the ciphertext C, one has to own the private key pD,Nq. C can then be decrypted as
follows:

P � CD mod N (2.2)

As a matter of fact, Euler proved that:

P � P k.φpp.qq�1 mod p.q for k P N (2.3)

As E and D are chosen so that E.D � k.φpp.qq � 1 (step 4 of the RSA key generation), we have:

CD mod N � pPEqD mod N

� PE.D mod N

� P k.φpp.qq�1 mod N � P

2.1.3 Key size

As said in section 2.1, as of today a key size of 1024 bits is enough for most application. More
precisely in [3], the use of a 1024 bit key is stated to be secure at least until 2010. For data that need
to be protected until 2030 a 2048 bit key is recommended whereas a 3072 bit key is recommended
for beyond 2031.

2.2 Modular exponentiation

Equations 2.1 and 2.2 show that the basic operation at the core of RSA encryption and decryption
is the modular exponentiation. A simple but commonly used algorithm for modular exponentiation
is given in algorithm 1.

Input: X,E,N with E � °n�1
i�0 ei2

i, ei P t0, 1u
Output: Zn � XE mod N
Z0 � 1, P0 � X1

for i � 0 to n� 1 do2

Pi�1 � P 2
i mod N3

if ei � 1 then4

Zi�1 � Zi.Pi mod N5

else6

Zi�1 � Zi7

end8

Algorithm 1: Exponentiation algorithm

To compute XE mod N the algorithm iterates on the bits of E from the LSB to the MSB. At
each iteration i, the variable Pi � X2i

mod N is squared modulo N to obtain Pi�1 � X2i�1
mod N .

If ei � 1, the accumulated product Zi is multiplied by Pi modulo N , otherwise it remains the same.
This step relies on the following formula:

XE mod N � X
°n�1

i�0 ei2
i

mod N (2.4)

�
n�1¹
i�0

Xei2
i

mod N (2.5)

After n iterations, n being the bitwidth of E, Zn contains XE mod N . In practice, if we do the
test of ei first, only two variables P and Z are needed.

2.3 Modular multiplication

Lines 3 and 5 of algorithm 1 show that the basic operation performed in modular exponentiation
is modular multiplication.
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2.3.1 Simple modular multiplication algorithm

A simple algorithm computing A.B mod N consists of two steps:

1. Compute R � A.B

2. Reduce P � R mod N

The common methods used for this algorithm are the Ofman’s and Booth’s methods for multipli-
cation (step 1) and the Barrett’s method for modular reduction (step 2). These algorithms and
their hardware implementations are detailed in [4].

2.3.2 Interleaved modular multiplication

Another way of performing a modular multiplication is to interleave the multiplication and reduc-
tion steps. The interleaved modular multiplication algorithm is given in algorithm 2.

Input: A � °n�1
i�0 ai2

i, B � °n�1
i�0 bi2

i, N � °n�1
i�0 ni2

i, ai, bi, ni P t0, 1u, 0 ¤ A,B ¤ N
Output: P � A.B mod N
P � 01

for i � n� 1 to 0 do2

P � 2.P3

I � ai.B4

P � P � I5

if P ¥ N then P � P �N6

if P ¥ N then P � P �N7

end8

Algorithm 2: Interleaved Modular Multiplication (adapted from [1])

This algorithm iterates on the bits of the operand A from the MSB to the LSB. For i � k
(k   n� 1), at the beginning of the iteration:

P � pan�1.2n�pk�2q � ...� ak�2.2� ak�1q.B mod N

P is multiplied by 2 and ak.B added to the result. Hence after line 5:

P � 2ppan�1.2n�pk�2q � ...� ak�2.2� ak�1q.B mod Nq � ak.B

Given that 0 ¤ B ¤ N , a maximum of two subtractions is needed to get P back between 0 and N ,
giving after line 7:

P � pan�1.2n�pk�1q � ...� ak�2.22 � ak�1.2� akq.B mod N

Therefore after n iterations, i � 0 and:

P � pan�1.2n�1 � an�2.2n�2 � ...� a0q.B mod N

� A.B mod N

A hardware implementation of this algorithm is given in [1].

2.3.3 Montgomery modular multiplication

Algorithm

The Montgomery algorithm is another widely used method for modular multiplication. A simple
version is presented in algorithm 3.

Unlike the interleaved modular multiplication, this algorithm iterates on the bits of A from the
LSB to the MSB. At iterations i, ai.B is added to the accumulated product P . If P is odd, N is
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Input: A � °n�1
i�0 ai2

i, B � °n�1
i�0 bi2

i, N � °n�1
i�0 ni2

i, ai, bi, ni P t0, 1u, n0 � 0,
0 ¤ A,B ¤ N

Output: P � A.B.2�n mod N
P � 01

for i � 0 to n� 1 do2

P � P � ai.B3

P � P � p0.N4

P � P div 25

end6

if P ¥ N then P � P �N7

Algorithm 3: Simple Montgomery Algorithm for modular multiplication

added to P . This does not change the result as the calculation is done modulo N . As N is odd2,
P becomes even and can be divided by 2 without remainder.

For i � 0, after execution of line 4, P has a maximum bitwidth of n� 1 and P ¤ 2N . The shift
right makes sure that P is n-bit width and P ¤ N after execution of line 5.

For i � 1, after execution of line 4, P has a maximum bitwidth of n� 2 and P ¤ 3N . The shift
right makes sure that P is pn� 1q-bit width and P ¤ 2N after execution of line 5.

For i ¥ 2, after each iteration, the bitwidth of P remains n � 1 bits and P ¤ 2N . Hence only
one subtraction is needed at the end of the algorithm if P ¥ N (line 7).

The drawback of the Montgomery algorithm is that it actually computes A.B.2�n mod N
introducing an extra 2�n factor which has to be eliminated. The common method to remove this
factor is to convert the inputs in N-residue [8] as follows:

Ar � A.2n mod N

Br � B.2n mod N

It can be done by Montgomery multiplying the inputs by the constant Nr � 22n mod N .

The result of the Montgomery multiplication of Ar by Br becomes:

Pr � A.B.2n mod N

Pr is converted back to a normal representation by Montgomery multiplying it by one.

Use of the Montgomery multiplier for modular exponentiation

When using the Montgomery multiplier for modular exponentiation (see algorithm 1) P0 and Z0

have to be converted to N-residue before running the loop and Zn has to be converted back at
the end of the algorithm. This only leads to three extra modular multiplications compared to the
2n performed in the main loop. Hence the cost of these conversions can be neglected for large
bitwidths.

No final subtraction

Even if only one final comparison and subtraction are needed in the Montgomery algorithm, the
extra hardware required is quite area-consuming.

To solve this problem, [7] uses a (n+3)-bit Montgomery multiplier to compute the modular
multiplications of the exponentiation. With such an design, it is shown that the result of the
exponentiation is strictly less than the modulus N with a probability 1� 2�pn�2q. With a common
bitwidth n of 1024:

2�pn�2q � 10�309

Hence this probability can be considered equal to 1.
2When using this algorithm for encryption/decryption N is odd as the product of two odd numbers.
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Hardware implementations

Many hardware implementations of the Montgomery algorithm have been achieved for FPGA. We
describe here some major contributions.

[8] presents the ARSA core, a scalable RSA architecture taking advantage of the high-speed
adder/subtractor logic of Altera FPGAs in arithmetic mode. The Montgomery multiplier of the
ARSA core uses two simple adders along with two multiplexers for the input selection. The quicker
version of the ARSA core runs at 200 MHz and takes an area of 900 Altera Logic Elements (LE).
It is capable of computing a 1024-bit modular exponentiation in about 80 ms. This design is very
small but slow. Our exponentiator design is close to the one presented in this paper. However,
in order to make it much faster, we do not perform an n-bit multiplication using a

n

k
bit block

requiring several passes through the same block, as is done in [8].
In [6] and [1], a comparison between a Montgomery multiplier implementation with two carry-

save adders (CSA) and one with a single CSA is done. A carry-save adder takes three numbers x,
y and z and add them together to obtain two numbers: the sum s and the carry c. A n-bit CSA
consists of n full-adders and performs the addition x�y�z � c�s in Op1q time. For comparison, a
standard ripple adder has a latency in Opnq due to the need for carry propagation. The redundant
representation ps, cq used by the CSA leads to no need for carry propagation making the CSA faster
than a conventional adder. The one-CSA implementation turns out to take half the area of the two-
CSA implementation with better speed performance. [1] also compares these two implementations
with an interleaved modular multiplication design. The one-CSA implementation takes the same
area than the interleaved modular multiplication version but is a bit slower for bitwidths greater
than 512 bits. We need to be careful with these results which were obtained in 2002 on a Virtex
II FPGA which is now out of date. An implementation of the one-CSA multiplier on a current
FPGA should be fast and not too area-consuming. The main weakness of this design is that it
is not parametric. Our design adds pipeline and replication capabilities to this implementation to
explore as much design space as possible.

Another interesting design is presented by Blum in [7]. The full multiplier uses a systolic array
of processing elements, each of them being a Montgomery multiplier cell with no final subtraction.
This implementation is much more area consuming than a one-block implementation but is also
faster. According to [8], this implementation takes more than ten times the area of an ARSA core
for a bitwidth of 1024, and is twice faster. With our design, one can choose between a version with
or without final subtraction. We do not use a systolic array but a pipeline instead.

In [13], a parametric Montgomery multiplier design is presented. The parameters are the num-
ber of processing elements, the radix and the number of words used. Our multiplier explores new
possibilities by applying variable pipelining and variable replication to the Montgomery multipli-
cation algorithm.

Finally, [11] presents a scalable pipelined Montgomery multiplier whose number of processing
elements can be chosen according to the area availability and the speed requirements. Every
pipeline element of this design undergoes two stall operations. Moreover, the way the pipeline is
organised leads to the need of a quite complex RAM decoder. Our pipeline organisation is simpler
and no extra stall cycle is introduced by adding a new pipeline block.

2.3.4 Performance comparison

A comparison of the previous modular multiplication algorithms in term of the product hardware
area by time (AT) is done in [6]. The simple method for modular multiplication has an AT
complexity of Opn2 log n2q where n is the bitwidth of the inputs A and B and of the modulus N .
The interleaved modular multiplication method is log n better with an AT in Opn2 log nq. The
Montgomery algorithm has the best asymptotic AT complexity in Opn2q. These results make the
Montgomery multiplier used in almost all designs relying on modular multiplication.

Power consumption is also an important feature of embedded designs [14] and has to be taken
into account together with speed and area when talking about performance.
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2.4 Primality tests

The first step of RSA key generation presented in section 2.1.1 relies on the ability of the encryption
system to generate large prime numbers. Testing random numbers for primality is a common
method.

2.4.1 Naive methods

A simple primality test for an integer n consists in checking whether any integer m from 2 to
?
n

divides n. The efficiency of this test can be improved with several methods like skipping all the
even numbers except 2. As 2 divides all the even numbers, if an even number divides n then 2
divides n indeed. However, for large primes this method is impractical. For instance the version

skipping the odd numbers requires about
?
n

2
divisions and is therefore very slow.

2.4.2 Probabilistic methods

Probabilistic methods determine whether or not a number is prime with a certain probability of
error. More precisely, all numbers declared composite3 by these tests are not prime whereas a
number declared prime can be composite with a small probability.

The Rabin-Miller strong pseudoprime test

A common probabilistic test is the Miller-Rabin strong pseudoprime test given in algorithm 4. This
test relies on the fact that if we can find an integer a such that:

ad � 1 mod p

and

a2jd � �1 mod p for all 0 ¤ j ¤ r � 1

then an odd integer p, written as p � 2rd� 1, is composite.
Monier and Rabin have shown that if k tests are performed on a composite number, then the

probability that this number passes each test is less or equal to:

P � 1
4k

(2.6)

Input: p � 2rd� 1 odd integer, k parameter determining the accuracy of the test
Output: composite if p is composite, prime if p is probably prime
for i � 0 to k � 1 do1

Choose a random integer a with 1 ¤ a ¤ p� 12

if ad � 1 mod p or a2jd � �1 mod p for some 0 ¤ j ¤ r � 1 then3

continue4

else5

return composite6

end7

return prime8

Algorithm 4: Rabin-Miller strong pseudoprime test (from [2])

Instead of using random numbers, the first k prime numbers can be used. This is shown in
algorithm 5.

To reduce the probability of errors, prime testers often combine several probability tests. For
instane, the PrimeQ Mathematica function[2] uses a Lucas test combined with the Rabin-Miller

3A composite number is a number that can be written as a product of more than one prime factor, that is a
non-prime number.
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Input: p � 2rd� 1 odd integer, set P of |P | first primes
Output: composite if p is composite, prime if p is probably prime
for i � 0 to |P |� 1 do1

a � P ris2

if ad � 1 mod p or a2jd � �1 mod p for some 0 ¤ j ¤ r � 1 then3

continue4

else5

return composite6

end7

return prime8

Algorithm 5: Rabin-Miller strong pseudoprime test deterministic variant

test. More information on the Lucas Test can be found in [15].

A hardware implementation of the deterministic variant of the Rabin-Miller test is done in [11]
using a pipelined Montgomery multiplier. It can test a 1024-bit number in less than 2s and takes
about 9000 slices of a Virtex II FPGA. It uses the pipelined multiplier presented in the same paper.

2.5 Summary

This chapter has presented the background material and the related work of this report. The
important steps of the RSA key generation and encryption processes have been put forward. The
most relevant algorithms used for modular multiplication, modular exponentiation and primality
testing have been described together with their existing hardware designs and implementations.
Most designs in this thesis are inspired by these hardware implementations, retaining the best and
more interesting parts of each of them.

In the next chapter, we present our new parametric hardware implementation of the modular
multiplication, modular exponentiation and primality test.





Chapter 3

Hardware design and implementation

This chapter presents our hardware designs of the Montgomery multiplication, the modular expo-
nentiator and the Rabin-Miller prime tester. Section 3.1 describes our design goals and objectives.
Section 3.2 summarizes our overall design choices. In section 3.2, our Montgomery multiplier design
is described in depth. In sections 3.4 and 3.5, our multiplier is integrated into two modules used
by most public key cryptosystems: a modular exponentiator and a new design of the Rabin-Miller
prime tester. Section 3.6 puts forward the tools used for implementation and testing of our design.
Finally, section 3.7 sums up the chapter.

3.1 Requirements

Our goal is to create hardware modules for the major steps of RSA key generation and encryp-
tion/decryption. Our main targets are FPGAs.

3.1.1 Key generation

For the key generation part of the RSA, we focus on the first step: the generation of large prime
numbers (see section 2.1.1). This part is in fact the most time-consuming of all four. Step 2 and 3
are simple multiplications and step 4 can be performed using the extended euclidean algorithm1.
The main input of our prime tester is a number to test. The module has to support every power
of two bitwidths up to at least 2048 bits leading to a maximum bitwidth of 4096 bits for the key.
That should be enough to keep data confidential for the next two decades as presented in section
2.1.3. The output of the module is a flag indicating whether the number is prime or not. Moreover
the module has to be highly parametric in order to adapt to many speed and area requirements
and many FPGA families.

3.1.2 Encryption/Decryption

Our design also has to support RSA encryption/decryption. The inputs are the plaintext P (re-
spectively ciphertext C), the public key E (respectively private key D) and the modulus N . This
module has to support inputs of up to at least 4096 bits. Its output is the ciphertext C (respectively
plaintext P ). We also want this module to cover as much design space as possible.

3.1.3 Summary of the design requirements

To sum up, our final implementation should:

1. be able to generate prime numbers given a random number source

2. be able to perform RSA encryption/decryption

1A shift version of the extended euclidean algorithm is presented in [16] for instance
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3. be highly parametric covering a large design space from a slow but area-efficient to a very
fast but area-consuming solution

4. be able to be tuned to the area/speed requirements of many projects

5. have easily modifiable parameters that can be set without having to make major changes in
the code

6. be protected against major attacks

3.2 Overall design choices

3.2.1 Modular Multiplier

Section 2.1 shows that the core of most algorithms used in the RSA key generation and encryp-
tion/decryption parts is the modular multiplication. Therefore the choice of this module clearly
impacts the overall performance of our system. The pre-analysis of section 2.3.4 clearly demon-
strates that the primary choice for modular multiplication is the Montgomery multiplier. It is the
basic block of our modular multiplication design.

To make the multiplier faster and more parametric than existing designs, our basic cell is
pipelined and replicated. The number of pipeline stages and replications are the two most important
parameters of our Montgomery multiplier. Both methods are explained in depth throughout the
chapter.

3.2.2 Prime tester

The prime tester is a hardware implementation of the deterministic variant of the Rabin-Miller
primality test. This algorithm is relatively simple as it only uses modular multiplication and
exponentiation. This creates a great potential for design reuse. As a matter of fact, our design
already uses modular multiplication and exponentiation for encryption. Hence only a few extra
area for logic should be needed to implement this primality test. What is more, this method has a
low probability of error for a few number of tests as shown in section 2.4.

The use of our multiplier makes our prime tester capable of challenging existing implementations
while remaining simple. Its main parameters are:

- the number of pipeline stages of the multiplier

- the number of replications of the processing element of the multiplier

- the number of primes used to test the input

3.3 Montgomery multiplier design

This section presents our Montgomery multiplier design. Our multiplier supports any bitwidth and
any number or pipeline stages. We design a simple and flexible pipeline control. Inside a pipeline
block, the main processing element can be replicated any number of times to increase the speed of
the multiplier.

3.3.1 Basic block

Algorithm

The basic block of our design is a one-CSA based Montgomery multiplier. As shown in section
2.3.3, the carry save adder is faster than a ripple carry adder with no area overhead. Algorithm 6
from [6] is used.

Lines 4 to 7 of this algorithm are the equivalent of lines 3 and 4 of algorithm 3. The four
following cases are considered:
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- If ai � 0 and S and C are both odd or both even, then the intermediate result is even and S
and C are left unchanged.

- If ai � 0 and only one of S and C is even, the other being odd, N is added to make the
intermediate result even.

- If ai � 1, B has to be added to S and C. This intermediate result will be even if exactly one
of S, C and N is even or the three of them are. In that case, N does not need to be added
to this intermediate result.

- If ai � 1 and if exactly one of S, C andN is odd or the three of them are, then the intermediate
result if odd and N has to be added.

Input: A � °n�1
i�0 ai2

i, B � °n�1
i�0 bi2

i, N � °n�1
i�0 ni2

i, ai, bi, ni P t0, 1u
Output: P � A.B.2�n mod N
S � 01

C � 02

for i � 0 to n� 1 do3

if ps0 � c0q and ai � 0 then I � 04

if ps0 � c0q and ai � 0 then I � N5

if ps0 ` c0 ` b0q � 0 and ai � 1 then I � B6

if ps0 ` c0 ` b0q � 1 and ai � 1 then I � B �N7

S,C � S � C � I8

S � S div 29

C � C div 210

end11

P � S � C12

if P ¥ N then P � P �N13

Algorithm 6: Fast Montgomery Algorithm for modular multiplication

Only one final basic addition is needed in line 12 to convert P back to a normal representation.
If the Montgomery multiplier is used alone, the final subtraction of line 13 also has to be performed.

Design

The diagram of a multiplier cell is given in figure 3.1. A counter gives the value of the current
iteration. Lines 4 to 7 of algorithm 6 are implemented as a 4-to-1 n-bit multiplexer with special
control lines selecting the value of I corresponding to the current iteration. The input B � N is
precomputed with an n-bit adder. Two registers are used to store the intermediate values of C and
S. A multiplexer is used to select the value of ai in each iteration. Line 8 is implemented with the
carry-save adder. Another adder is used to perform the final addition of line 12. The comparator
compares the result of the addition with the modulus N . If this result is greater than N , N is
selected as the second input of the subtractor, otherwise this input is set to zero. The start and
reset signals allow the control of the multiplier. done signals the availability of the result. For a
complete description of how to use the multiplier cell and the corresponding timing diagrams, see
the specification of this module in appendix A.

Finite State Machine

The finite state machine (FSM) of the Montgomery multiplier basic cell is given in figure 3.2.

The FSM consists of four states, the current state being updated at each positive edge of the
clock:

- IDLE: the multiplier is waiting for work.
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Figure 3.1: Diagram of a Montgomery Multiplier cell

- LOADING: the registers containing the values of S and C are initialised and the iteration
counter is reset.

- RUNNING: the modular multiplication is being performed. At each iteration the new values
of S and C are computed, shifted right and stored in the corresponding registers.

- FINISHED: the modular multiplication is finished and the done signal asserted.

The inner mult done signal indicates that all the iterations have been performed. Note that
if reset is deasserted, the LOADING state always lasts one clock cycle (no transition condition
between LOADING and RUNNING). Also note that in the FINISHED state, the start signal
has to be deasserted to get back to the IDLE state, enabling a new modular multiplication to be
performed.
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Figure 3.2: Finite state machine of the Montgomery Multiplier cell

3.3.2 Pipelining the design

Idea

After I obtained a working Montgomery multiplier block, I realised that the algorithm used could
be easily pipelined. Pipelining increases the throughput2 of a design by dividing a block into sub-
blocks, each of them performing a part of the operations done by the initial block. Registers are
inserted between sub-blocks to save their outputs for treatment by the following block as soon as
the latter is ready. Pipelining increases the area taken by a design as extra registers are needed.
The sum of the area taken by each sub-block is also often bigger than the area taken by the block
alone due to routing area overhead.

Looking closely at algorithm 6, we see that each iteration depends on the result of the previous
one. Hence this algorithm cannot be easily parallelizable. However we can divide the number of
iterations between different pipeline blocks. For instance for a bitwidth of 32 bits, we can choose to
implement 4 pipeline stages. In that case, the first sub-block could perform the first 8 iterations (0
to 7) using the first 8 bits of A, the second sub-block iterations 8 to 15 using bits 8 to 15 of A, etc.
After having finished its iterations, sub-block 1 passes its final values of C and S to sub-block 2
which begins its computation. Then sub-block 2 passes its values to sub-block 3, and so on. After
the last block has completed its iterations, the final addition and subtraction can be performed and
the done signal set. The only changes that we have to add to the basic cell are:

- the ability to load the S and C registers from inputs

- a parametric number of iterations

We also need to remove the adder and the subtractor from each cell. This hardware is now placed
after the last pipeline stage. The basic structure of the pipeline omitting the control and pipeline
logic is presented in figure 3.3.

The design presented in [11] has each of its processing elements performing only one iteration at
a time. This implies a complex RAM control to give the correct input to each processing element
at the right time. As said before, such a design introduces pipeline stalls. In our design, a pipeline
block performs a fixed part of the iterations. This leads to a simpler memory control and no need
for stalling.

2Number of results by unit of time
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Figure 3.3: Basic structure of a 32 bit pipelined Montgomery multiplier with 4 pipeline stages

To make the module parametric without having to change the code, the Verilog construct
generate is used. It enables the programmer to instantiate and connect submodules according to
the values of the parameters.

Pipeline design and control

In order to explore as much design space as possible, I design a parametric pipeline that can run
with any bitwidth and any number of pipeline blocks less than the bitwidth. The pipeline can also
run at any fill rate.

Let us consider a multiplier with n-bit inputs. Let us call p the number of desired pipeline stages.
My first idea was to use p blocks each performing t

n

p
u iteration and add an extra block performing

the last n mod p iterations if n mod p � 0. However this idea turned out to be under-efficient. For
n mod p � 0, an extra block is added leading to a non-negligible area overhead.

A less area-consuming solution is to add an iteration to the first n mod p pipeline block. This
leads to n mod p blocks computing t

n

p
u � 1 iterations, and pn � n mod pq blocks computing t

n

p
u

iterations. That is the solution I chose.
A pipeline control dealing with blocks of different sizes is challenging to design. This control

manages the updates of two types of registers: the registers between blocks and the triangular
register array. When every block takes the same number of clock cycles c to process its data and
the pipeline always runs full, this control can basically be reduced to a clock running at a period
equal to c time the period of the system clock. It is not the case for our problem.

The case of the registers between block is quite simple to deal with. We constraint the start
signal of the pipelined multiplier to be asserted only during one clock cycle (see appendix A for
more information of how to use this module). Then we update these registers at each done signal
of the immediately preceding Montgomery cell. An example of this mechanism is shown in figure
3.4. It represents the pipeline filling phase of a 8-bit multiplier with 4 pipeline stages. The inputs
and outputs of the multiplier (xi corresponds to A and yi to B) and the start and done signals
of each cell are depicted. We can see that a cell is started one cycle after the done signal of the
previous cell has been raised. This delay enables all the start signals to be aligned for regular
cases. The start signal of the first cell corresponds to the start signal of the whole multiplier.
The done signal of the multiplier corresponds to the done signal of the last cell. The done signal
of a given cell asserts the write enable signal of the immediately following registers.

The register triangular structure consists of arrays of registers controlled as FIFOs. The inputs
enter all the FIFOs at the same time when the done signal of the very first cell is triggered. The
element at the head of the FIFO of a given cell has to leave when the cell has finished to use it,
which is the case when its done signal is triggered. In practice, extra registers keep the first empty
slot of each FIFO, acting as pointers. When an element leaves the FIFO, the FIFO registers are
updated accordingly (register i takes the value of register i � 1) and the corresponding pointer
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Figure 3.4: Control signals of the registers between blocks for a 8-bit multiplier with 4 pipeline
stages

is decremented by 1. When an element enters the FIFO, the register indexed by the pointer is
updated with the value of this element and the pointer incremented by 1. A complete example of
how this control works is presented in figure 3.5. Figure 3.5a shows the filling phase of a four stage
pipeline followed by a draining phase. Figures 3.5b to 3.5m represent the state of the FIFO register
array at some important times.

3.3.3 Replicating the processing element

Pipelining improves the throughput of the design but not its latency, that is the time between the
first input to enter the multiplier and the first result to be computed. To create a more flexible
design, I added the possibility to replicate the CSA as many times as needed.

Replication consists in duplicating a hardware element several times in order to reduce the
processing time. At equal frequencies, replication decreases the latency of the design by a factor
of r, the total number of replicated processing elements3. The area overhead is less than r because
only a part of the cell has to be replicated. In practice, replicating the design increases the critical
path making the maximum frequency at which the multiplier can run decrease. Experimental
results of this effect are presented in section 5.1.1.

We consider a Montgomery cell like the ones of figure 3.3. Figure 3.1 shows that the main
processing element of the multiplier is the CSA. The idea is that instead of computing only one
sum at each iteration, we can compute r ¡ 1 sums, reducing the number of iterations by about
of factor of r. This is equivalent to unrolling the loop of algorithm 6 by r. The corresponding
algorithm is shown in algorithm 7.

However, the data dependencies in the Montgomery algorithm prevent us from simply duplicat-
ing the CSAs and performing the iterations in parallel. Instead, several CSAs along with the shift
logic are put in series. The I-selector is also replicated as the value of I is different for each CSA
and at each iteration. An example schematic for r � 2 focusing on the CSAs and the I-selectors of
a cell is presented in figure 3.6

3.3.4 Pipeline and replication

For a bitwidth of n bits, any level of pipelining p and replication r can be chosen. Each of the p
pipeline blocks has r CSAs.

Pipelining the multiplier reduces the bitwidth of the input A processed by each pipeline block
by a factor of p. Replicating each pipeline block reduces the number of iterations by about r. Hence

3r � 1 when the processing element has not been replicated
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(a) Waveform of the example (the inputs are 5 bit width and the pipeline has 4 stages)

(b) The pipeline has been reset:
the FIFO is empty.

(c) The done signal of multiplier 1 is trig-
gered (see number 1 in figure (a)): the in-
puts enter the FIFOs.

(d) The done signal of multiplier 2 is trig-
gered (see number 2): the first element of
its FIFO leaves the queue.

(e) The done signal of multiplier
1 is triggered (see number 3): the
inputs enter the FIFOs.

(f) The done signal of multiplier 3 is trig-
gered (see number 4): the first element of
its FIFO leaves the queue.

(g) The done signal of multiplier 2 is trig-
gered (see number 5): the first element of
its FIFO leaves the queue.

(h) The done signal of multiplier
4 is triggered (see number 6): the
first element of its FIFO leaves
the queue.

(i) The done signal of multiplier 1 is trig-
gered (see number 7a): the inputs enter
the FIFOs. At the same time the done sig-
nal of multiplier 3 is triggered (see number
7b): the first element of its FIFO leaves the
queue.

(j) The done signals of multiplier 2 (see
number 8a) and 4 (see number 8b) are trig-
gered: the first elements of their respective
FIFOs leave the queues.

(k) The done signal of multiplier
1 is triggered (see number 9): the
inputs enter the FIFOs.

(l) The done signal of multiplier 3 is trig-
gered (see number 10): the first element of
its FIFO leaves the queue.

(m) The done signal of multiplier 2 is trig-
gered (see number 11): the first element of
its FIFO leaves the queue.

Figure 3.5: Example of evolution of the triangular register structure
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Input: A � °n�1
i�0 ai2

i, B � °n�1
i�0 bi2

i, N � °n�1
i�0 ni2

i, ai, bi, ni P t0, 1u, p � t
n

r
u

Output: P � A.B.2�n mod N
S0 � 01

C0 � 02

for i � 0 to p� 1 do3

for j � 0 to r � 1 do4

if psj,0 � cj,0q and ai�j � 0 then Ij � 05

if psj,0 � cj,0q and ai�j � 0 then Ij � N6

if psj,0 ` cj,0 ` b0q � 0 and ai�j � 1 then Ij � B7

if psj,0 ` cj,0 ` b0q � 1 and ai�j � 1 then Ij � B �N8

Sj�1, Cj�1 � Sj � Cj � Ij9

Sj�1 � Sj�1 div 210

Cj�1 � Cj�1 div 211

end12

S0 � Sr13

C0 � Cr14

end15

for j � 0 to n mod r � 1 do16

if psj,0 � cj,0q and ap�j � 0 then Ij � 017

if psj,0 � cj,0q and ap�j � 0 then Ij � N18

if psj,0 ` cj,0 ` b0q � 0 and ap�j � 1 then Ij � B19

if psj,0 ` cj,0 ` b0q � 1 and ap�j � 1 then Ij � B �N20

Sj�1, Cj�1 � Sj � Cj � Ij21

Sj�1 � Sj�1 div 222

Cj�1 � Cj�1 div 223

end24

P � Spn mod rq � Cpn mod rq25

if P ¥ N then P � P �N26

Algorithm 7: Fast Montgomery Algorithm for modular multiplication with loop unrolling

Figure 3.6: Focus on the CSAs and I-selectors of a multiplier cell for r � 2

the following constraint has to be respected when choosing r and p:

p.r ¤ n (3.1)
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3.3.5 Latency and throughput of the multiplier

For a bitwidth of n, p pipeline stages and r replications, the latency of the multiplier in clock cycles
is:

Lmultpn, p, rq � pn mod pq
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�����
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n

p

V

r

�
�����
� 2

�
��� pp� n mod pq
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���
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�����

Z
n

p

^

r

�
�����
� 2

�
��� pp� 1q (3.2)

where rxs represents the ceil of x and txu the floor of x.

After the first result, if the pipeline is kept full, one result is given every:

Nmultpn, p, rq �

�
�����

R
n

p

V

r

�
�����
� 2 clock cycles (3.3)

Hence the throughput of the multiplier is φmult � 1
Nmult

multiplication per clock cycle.

3.4 Exponentiator design

We implement algorithm 1 in hardware using the Montgomery multiplier presented earlier for
all modular multiplications. The exponentiator makes full use of the pipeline and replication
capabilities of the multiplier. We find the optimal number of pipeline stages for the multiplier
making the exponentiator fast without wasting area.

3.4.1 Simple version

First a simple version with a non-pipelined multiplier block is designed. As mentioned earlier, the
Montgomery algorithm computes A.B.2�n mod N . To remove this factor, both operands have to
be converted to N-residue, which amounts to Montgomery multiply each of them by a precomputed
factor Nr � 22n mod N . So, the result of the multiplication is still in N-residue format.

To perform the exponentiation, P0 and Z0 of algorithm 1 are first converted to N-residue. The
loop is then executed normally. At the end of the algorithm, Zn is converted back by Montgomery
multiplying it by 1. Hence, an exponentiation needs in the worst case 2n� 3 multiplications.

However, implementing this algorithm directly is not safe. Let us suppose we use our algorithm
to decrypt a ciphertext C with the private key pD,Nq. At each iteration i, if di � 1 two multipli-
cations are performed. If di � 0 only one multiplication is performed. An opponent could therefore
try to time the decryption operation and get information on D. To protect our design against such
a timing attack, the second multiplication in the loop is always done even if it is not necessary.
This leads to a total of 2n� 3 multiplications for each exponentiation.

Design

The design of our exponentiator is represented in figure 3.7. At each iteration, P and Z are stored on
a dual-read 1-bit address RAM. The representation of this RAM allows the designer to implement
it on an available RAM block of the FPGA if he wants to take advantage of this feature. Otherwise
this RAM will be implemented in registers. Usually, using available block RAMs reduces the area
taken by the design but also reduces its speed.

Two multiplexers select the inputs of the Montgomery multiplier. The iterations are managed
through a simple counter. The control logic controls the multiplexers. At iteration i, the control
logic also sets the write and address signals of the RAM according to the value of ei.
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Figure 3.7: Montgomery exponentiator

Finite State Machine

The state machine of the exponentiator is given in figure 3.8. The mult done indicates that the
current multiplication is finished. The exp done signal is asserted when all the iterations of the
main loop have been performed.

Figure 3.8: State machine of the simple exponentiator
(the reset signal is omitted to keep it simple)

The exponentiator has the following states:

- IDLE: the exponentiator is waiting for work.

- LOADING: the iteration counter is reset.
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- PRE 1: Z0 is converted to N-residue. The inputs of the multiplier are 1 and the constant Nr.

- PRE 2: P0 is converted to N-residue. The inputs of the multiplier are X and Nr.

- RUNNING 1: At each iteration i, the new value of Z is computed. The inputs of the multiplier
are Z and P . If ei � 1 the RAM is updated with the new value of Z.

- RUNNING 2: At each iteration, the new value of P is computed. Both inputs of the multi-
pliers are given the previous value of P . The RAM is updated accordingly.

- POST: all the iterations has been performed. Z is converted back to a normal representation.
The inputs of the multiplier are Z and Nr.

- FINISHED: the exponentiation is finished. The done signal is raised.

Note that the main loop is mapped to the states RUNNING 1 and RUNNING 2 which are
executed cyclically. At iteration i, the new value of Z (Zi�1) is computed before the new value of
P (Pi�1). This prevent us from saving the previous value of P (Pi) for the calculation of the new
Z (Zi�1).

3.4.2 Using the Montgomery multiplier with no final subtraction

As mentioned in section 2.3.3, when used with an n-bit exponentiator, the subtractor can be
removed if a n� 3 multiplier is used. The intuition is that performing some extra iterations should
reduce the value of the accumulated product and make it less than the modulus.

More precisely, let us remove the last subtraction of algorithm 3 (line 7) and let us consider for
instance line 3 of algorithm 1. After the first iteration, P1 ¤ 2N . Hence the inputs of the multiplier
in the second iteration are less or equal to 2N . That makes P ¤ 3N in the multiplier for i   n.
For i ¡ n, P   2N as ai is equal to 0 in these last cases. Therefore, the useful part of Z in the
exponentiator is always less than 2N and has a bitwidth less than n� 1.

The last conversion of Z back to a normal representation makes it less than the modulus. Recall
that this conversion amounts to Montgomery multiply Z by 1 � p0...01qb. After the first iteration
of this product, we have P   4N . Then from the second iteration P   2N , as ai � 0. If at any
iteration k, p0 � 0, N will not be added to P . Hence this will lead to P   N for all i ¡ k and the
result will be strictly less than N . The probability that p0 � 1 at each iteration is very low for the
bitwidths used in RSA, making this trick safe.

The tradeoffs between using a subtractor with a n-bit multiplier or using a n� 3 bit multiplier
with no subtractor will be explored in section 5.1.2.

3.4.3 Using the pipelined multiplier

The exponentiator described so far can use a multiplier with any number of replications and pipeline
stages with or without final subtraction. However, the exponentiator waits for the last multipli-
cation to be completed before starting a new one. Hence it does not use the multiplier’s pipeline
to speed up the computation. The final step of the design is to make it take full advantage of the
multiplier’s pipeline capabilities.

Optimal number of pipeline stages

We first analyse the dependencies in algorithm 1 to figure out how much the multiplier has to be
pipelined for use with the exponentiator. We have the following dependencies:

1. Pi�1 depends on Pi

2. Zi�1 depends on Pi and Zi
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These dependencies make it clear that only two pipeline stages can be used if we want to keep
the multiplier’s pipeline full. Moreover, Pi has to be calculated before Zi as it is used by both Zi�1

and Pi�1. Hence, the pipeline is first filled with the conversion of P0 to N-residue, then with the
conversion of Z0. At this point the pipeline is full and the iterations are performed, keeping it full.
When the last operation, computing Zn, enters the pipeline, this one begins to drain. The filling
and draining phases of the pipeline are represented in figure 3.9.

The last multiplication is the conversion of Zn back to normal representation. The pipeline is
only used at half its maximum throughput for this last operation. We could possibly still reduce
the time taken by an exponentiation by about 100{2n percent by allowing a new exponentiation to
begin while this conversion is being performed. However, it would make the exponentiator more
complex to gain less than 0.5% speed at a common bitwidth of 1024 bits. That is why it is not
done here.

Figure 3.9: Filling and draining phases of the multiplier pipeline when used with the exponentiator

Design

Using the pipeline of the multiplier requires quite a few changes to the design of the exponentiator.
First a counter is added to count the number of multiplications performed. It is used to stop filling
the pipeline at the end of the main loop.

The FSM is modified. The RUNNING 2 state is removed. The exponentiator is in the RUN-
NING 1 state during the full loop. This state machine is now only used to reset the counters and
set the done signal.

For control of the pipelined multiplier, another state machine is introduced. It has the following
states and effects on the signals:

- EMPTY: the pipeline is empty

- P: P is alone in the pipeline (first diagram of figure 3.9)

- Z-P: P is in stage p of the pipeline and Z in stage l with p ¡ l (second diagram). When the
multiplication is finished, P is written in the RAM.

- P-Z: P is in stage p of the pipeline and Z in stage l with p   l (third diagram). When the mul-
tiplication is finished, if the Z in the pipeline corresponds to Z0 of algorithm 1 (initialisation),
Z is written in the RAM unconditionally. Otherwise it is written if ei � 1.

- Z: Z is alone is the pipeline (last diagram). This only occurs for the computation of the last
Z (corresponding to Zn of algorithm 1). It is written in the RAM if en � 1.

With this new control, any bitwidth and any pipeline length can be used. Being able to use any
pipeline length is useful to confirm experimentally that the best pipeline length is 2 (see section
5.2.1).

3.4.4 Critical path

By performing early syntheses of the design, I realised that the exponentiator was running at a very
low maximum frequency (around 30 MHz for a bitwidth of 512 bits) compared to the multiplier



34 CHAPTER 3. HARDWARE DESIGN AND IMPLEMENTATION

(around 200 MHz for the same bitwidth). An analysis of the results given by the synthesis tool
puts forward two interesting things.

First the path from the C and S registers of the multiplier to the RAM of the exponentiator
(saving the intermediate values of P and Z) passes through the final adder and subtractor of the
multiplier. The latency of these adders/subtractors are clearly a bottleneck when the bitwidth
becomes large as they have to be crossed by the signals in one clock cycle.

Second, the path from the exponentiator RAM to the C/S registers goes through the adder
computing the value of I in the multiplier. For the same reasons the latency of this adder is also a
bottleneck.

To cope with these two problems, these adders/subtractors are replaced by pipeline ones. The
depth of the pipeline is a parameter. For instance, for a bitwidth of 512, if 4 pipeline stages are
chosen for the adders, we only need to cross a 512{4 � 128 bit adder at each clock cycle. However,
this method leads to some extra cycles to compute an exponentiation.

The advantages and drawbacks of using the pipeline adders/subtractor are presented in section
5.2.1.

3.4.5 Time to perform an exponentiation

For a bitwidth of n, p numbers of pipeline stages (with p ¤ 2) and r replications, the time to
perform an exponentiation in clock cycles (neglecting the extra cycles introduced by the use of
pipeline adders) is:

Lexppn, p, rq � 2.Lmultpn, p, rq � p2n� 1q.Nmultpn, p, rq � 2.pn� 2q � 1 (3.4)

where Lmultpn, p, rq and Nmultpn, p, rq are defined in formulae 3.2 and 3.3 respectively.

3.5 Prime tester design

The prime tester designed gathers both the multiplier and exponentiator presented before. The
pipeline and replication capabilities of the multiplier are optimally used thanks to an in-depth
analysis of the Rabin-Miller primality test.

3.5.1 Algorithm

I implemented the deterministic variant of the Rabin-Miller primality test presented in algorithm
5. A more detailed version of this algorithm, closer to the implementation, is given in algorithm 8.

The first loop of line 3 finds d and s such that p � 2sd� 1. The primality tests are performed
in the outer most for loop (line 7). Lines 12 and 14 show that we need a modular exponentiator
to perform these tests. The test of line 17 only requires modular multiplication. As a matter of
fact, in line 12 we get the value of ad mod p. Moreover the following relation holds:

a2j�1d mod p � pa2jd mod pq2 mod p (3.5)

Hence at each iteration j of the inner loop, we just need to Montgomery multiply a2jd mod p by
itself. As the exponentiator is not used during this loop, we only use one multiplier to save area.
This multiplier is either used by the exponentiator or in standalone mode.

3.5.2 Design

Components

A diagram containing the basic blocks and connections of the prime tester is presented in figure
3.10. To keep it clear the control wires of the multiplexers and the logic computing s and d (basically
a shifter and a comparator) are omitted.

The exponentiator is only used to compute ad mod p. The multiplier is used both by the
exponentiatior and to compute the values of a2jd mod p. These values are stored in the register int
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Input: Prime number p to test, set P of the |P | first primes
Output: composite if p is composite, prime if p is probably prime
d � p� 11

s � 02

while d0 � 0 do3

d � d ¡¡ 14

s � s� 15

end6

for i � 0 to |P |� 1 do7

a � P ris8

next � 09

if p � a then10

return prime11

if ad mod p � 1 then12

continue13

if ad mod p � p� 1 then14

continue15

for j � 1 to s� 1 do16

if a2jd mod p � p� 1 then17

next = 118

break19

end20

if next � 0 then21

return composite22

end23

return prime24

Algorithm 8: Detailed Rabin-Miller deterministic algorithm

value. The first value stored (j � 0) comes from the exponentiator and the others (j ¡ 0) from
the multiplier. The selection of the value to store in the int value register is done by a multiplexer.

The multiplier is also used for various conversions:

• The conversion of p� 1 to p-residue for comparison with a2jd mod p in the inner most loop.
This value is computed once at the beginning and stored in a register.

• The conversion of ad mod p to p-residue before it is used to compute a2d mod p in the inner
most loop

The operands of the modular multiplication are chosen by two multiplexers. Two multiplexers
are also used for selection of the operands of the comparator. The comparator is used for four
different comparisons (lines 10,12, 14 and 17 of algorithm 8).

The values of the first prime numbers are stored in a ROM whose address is selected by the
control logic. The control logic manages the iterations of each loop through counters. It contains
the FSM of the prime tester.

The reset signal resets all the registers and the FSM of the module. The start signal starts
the primality test and the done signal is raised when the test is finished. The result signal is set
to 0 is the number is composite and 1 if it is probably prime.

Finite State Machine

The FSM of the prime tester is given in figure 3.11. The reset signal, which sets the module back
to IDLE state, is omitted.
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Figure 3.10: Schematics of the prime tester

Figure 3.11: Finite state machine of the prime tester

The states of the prime tester are:

- IDLE: the module is waiting for work.

- LOADING: s is initialized to 0.

- PRE 1: the values of d and s are found and p� 1 is converted to p-residue.

- RUNNING 1: p � a is tested.

- RUNNING 2: ad mod p is calculated and ad mod p � 1 is tested.

- RUNNING 3: ad mod p � p� 1 is tested.
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- PRE 2: ad mod p is converted to p-residue.

- RUNNING 4: the inner most for loop is performed.

- FINISHED: the primality test is finished. The done signal is raised and result is set accord-
ingly.

The transition signals are:

- mult done: the current multiplication has just finished.

- exp done: the current exponentiation has just finished.

- cmp: if 1 the inputs of the comparator are equal.

- test finished: the outer most loop is finished.

- subtest finished: the inner most loop is finished.

- no subtest: the inner most loop has no iteration (it is the case when s   2).

When the prime tester is waiting for work in IDLE state, a start signal changes the state to
LOADING. s is initialized to 0 in one clock and the module goes to the PRE 1 states where the
values of s and d are calculated and p � 1 is converted to p-residue. When this is done, the state
changes to RUNNING 1.

In RUNNING 1, if p � a, p is declared prime: the prime tester goes to the FINISHED state
and result is set to 1. Otherwise its goes to RUNNING 2 where ad mod p is computed.

In RUNNING 2, once ad mod p has been computed:

• If ad mod p � 1 and there is no more iteration of the outer most loop left, the test is finished
and p is declared prime.

• If ad mod p � 1, the state changes to RUNNING 3.

In RUNNING 3 :

• If ad mod p � p � 1 and there is no more iteration of the outer most loop left, the test is
finished and p is declared prime.

• If ad mod p � p�1 and there is more iterations to execute, we go back to RUNNING 1 where
the next iteration begins.

• If there is no more iteration of the outer most loop left and the inner most loop does not need
to be executed, the test is finished and p is declared prime if the last ad mod p computed was
equal to p� 1, composite otherwise.

• If ad mod p � p� 1 and the inner loop needs to be executed, we go to PRE 2.

In state PRE 2, ad mod p is converted to p-residue and the state changes to RUNNING 4.

In RUNNING 4, the iterations of the inner most loop are done:

• If a2jd mod p � p � 1 for one j and the outer most loop is not finished, we go back to
RUNNING 1 where the next iteration begins.

• If a2jd mod p � p� 1 for one j and the outer most loop is finished, the test is finished and p
is declared prime.

• If a2jd mod p � p� 1 for all j, the test is finished and p is composite.
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Using the pipeline multiplier

The multiplier of the prime tester can be used with any number of replications and pipeline stages.
So far the pipeline capabilities of the multiplier is only used by the exponentiator, that is for
the calculation of ad mod p. We could adapt the prime tester to take advantage of the pipeline
capabilities of the multiplier for the calculation of the a2jd mod p � p� 1. However we can easily
show that for n large enough, most of the time is spent in the calculation of ad mod p. As a matter
of fact, if the number under test is a random odd number, the mean value of s is:

1�
n�2̧

k�0

1
2k�1

� n� 1
2n�1

(3.6)

For n ¡ 32, this sum is very close to 2. Hence the average number of modular multiplications
performed in the inner most loop is s�1 � 1, whereas 2n�3 modular multiplication are performed
by the exponentiator at each iteration of the outer most loop. Using the pipeline capabilities of the
multiplier for the inner loop multiplications is therefore irrelevant. On average the pipeline would
not be full anyway.

3.6 Tools used and design cycle

I use Verilog for all the RTL implementations. It is the most commonly used language in the design
of logic chips at the RTL level. The open source verilog compiler Icarus Verilog 0.9 [17] is used
to compile and simulate the design.

I chose to program each module using a lot of small iterations, most of them consisting of a
full cycle from design to synthesis. First, a small non-working version of the module is written in
Verilog. This version defines the parameters and the IOs. Then, for complex modules two or three
types of tests are written.

The first one is a behavioural simulation of the module under test written in Verilog. This test
generates waveforms representing the different signals of the design against the simulation time.
This test does not intend to validate the accuracy of the design. It is used for debugging purpose
only.

The second type of tests aims at validating each module through extensive testing. The cosim-
ulation features of MyHDL v0.6 [18] are used. MyHDL is a python package allowing description of a
design in a HDL language very close to Verilog. Cosimulation allows one to write the benchmark
for the design under test in Python and to interface it with the Verilog module, simplifying the
testing process. Each important sub-module of the main module is tested. For modules with few
possible inputs, every combination is verified. For other modules, the number of tests and the
values of the parameters can be chosen and the tests are run with random inputs. Small bitwidths
(up to 128 bits) are used for the tests to run in a reasonable amount of time. The use of such a
testing method enableds me to verify my hardware design in a way similar to what can be done
for a software implementation. An example of the output of a cosimulation test is given in figure
3.12. It is very similar to the output of a standard software test package as JUnit for Java.

The last type of tests is used for large bitwidths when a Verilog simulation using Icarus
turns out to be too computationally expensive. These tests use Verilator [19]. Verilator is a
Verilog cycle-accurate simulator which is up to 100 times faster than Icarus. It compiles Verilog
synthesizable code into optimized C++ code. I wrote C code interfacing to this simulator to test
the multiplier, exponentiator and prime tester modules for bitwidths greater than 128 bits. These
tests were written after implementation of the modules.

3.7 Summary

In this chapter we have presented our parametric design of the Montgomery modular multiplier, the
module exponentiator and the prime tester. We have described a new way of pipelining the Mont-
gomery multiplier. The exponentiator and the prime tester are designed so that they can take full
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Tests that the module CSA g i v e s the expected r e s u l t s . . . Width : 32
Sub�Test 1 : OK

ok
Tests that the adder module g i v e s the expected r e s u l t s . . . Width : 32

Sub�Test 1 : OK
ok
Tests that the mexp module g i v e s the expected r e s u l t s . . . Width : 64

P i p e l i n e s t a g e s : 1
Number o f r e p l i c a t i o n s : 1

Add/Sub s t a g e s : 1
Nr 635674421822711691
X: 14496276229477140291
E: 6076922425146223785
M: 2518536961650531611
Result : 867809050818571727
Clock c y c l e s : 9172

Sub�Test 1 : OK
ok
����������������������������������������������������������������������

Ran 3 t e s t s in 7 .056 s

OK

Figure 3.12: An example output of a cosimulation test

advantage of this pipeline. We have also applied replication to the pipeline blocks of the multiplier
in an original way introducing a great potential for speeding up the modular multiplication.

These three designs are highly parametric in the sense that the following parameters can be
given almost any value:

- the bitwidth of the inputs of each module

- the number of pipeline stages of the multiplier

- the number of replication of the carry-save adder in each pipeline block of the multiplier

- the pipeline depths of the adders/subtractors of the multiplier

- whether or not the final subtraction in the multiplier is performed when used by the expo-
nentiator for RSA encryption/decryption

- the number of primes used in the Rabin-Miller primality test

The next chapter develops a model of our multiplier allowing the designer to quickly tune this
module to its design goals by giving insights about the optimal values of the number of pipeline
stages and replications. In the last chapter, our three designs are evaluated quantitatively and
qualitatively.





Chapter 4

Design space exploration and
performance tuning tools

In this chapter we develop a model of our multiplier giving insights about the variations of area
and throughput with the pipeline depth and the number of replications. Section 4.1 presents our
model. In section 4.2, our model is integrated in an easy-to-use software. Section 4.3 sums up the
chapter.

4.1 Modelling a design with pipelining and replication

In this section, we quantify the impacts of pipelining and replication on a design. Our goal is
to have information about the best parameters to choose in order to synthesize our Montgomery
multiplier on a given FPGA. Using a model reduces the number of syntheses needed to find the
optimal parameters of the multiplier. Therefore, it also reduces the integration time of the module.
This analysis is inspired by [20].

Let us first do a recap on pipelining and replication.

4.1.1 Pipeline and replication

The configuration chosen for this analysis is depicted in figure 4.1. It is similar to the design of our
multiplier.

Pipelining introduces an area overhead due to the need of registers between pipeline blocks,
and a triangular register structure for some IOs. Pipelining increases the throughput of the design
and the maximum clock speed.

Replication consists in duplicating a hardware element several times in order to reduce the
processing time. Replication decreases the latency of the design by a factor of r, the total number
of replicated processing elements, with an area overhead of ρ.r. This overhead is less than r, that
is 0   ρ ¤ 1. That is due to the fact that the control logic and internal registers may not all need
to be duplicated.

4.1.2 Latency and Throughput

We consider the general case of a block which needs to perform s iterations to complete a particular
operation (a multiplication for example) if no replication is introduced. The latency of such an
iteration is tp,e. This corresponds to c clock cycles at a frequency f :

tp,e � c

f
(4.1)

The main processing element of this block can be replicated by a factor of r in order to decrease
the latency of the block. Hence the total latency of an operation is:

tp � s

r
.tp,e (4.2)
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Latency corresponds to the time taken by the system to compute the first result. Pipelining
often increases the latency as extra cycles are needed to manage the pipeline. In our case this
phenomenon can be neglected compared to the time spent in real computation.

The throughput of the block depends on both the pipeline length p and the replication
factor r 1:

φenc � p.r

tp,e.s
(4.3)

Replicating and pipelining a design reduces the effective number of iterations needed to be
computed in each block, leading to the following constraint:

r.p ¤ s (4.4)

We assume here that the total size Sp of the inputs whose processing is dispatched between pipelined
blocks is equal to s. One iteration uses one bit of this input.

Figure 4.1: Design for p � 4 and r � 2

4.1.3 Frequency

In our design, we pipeline the iterations performed by the algorithm. For instance if s � 1024
and p � 4, each pipeline stage will perform 256 iterations, the size of the “non-pipelined” inputs
remaining the same. Hence the size of the processing element in each sub-block is the same for all
p. Even if the size of the hardware managing the iterations decreases, the critical path is not likely
to be reduced a lot. Therefore we assume that f does not depend on p.

1This formula does not consider the extra cycles introduced by particular implementation as it is the case for the
formulae given in section 3.3.5. It is therefore an approximation of the real throughput of our multiplier.
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On the contrary, replication is more likely to have a negative effect on the critical path. The
processing element is replicated and extra hardware is needed to manage the iterations. Therefore,
let us suppose that the frequency variations can be modelled the following way:

fprq � f0

1� λpr � 1q (4.5)

with f0 the frequency for r � 1 and λ representing the stiffness of the decrease. This represents a
parabolic decrease of the frequency with r and particularly fits our multiplier.

4.1.4 Area

We decompose the area taken by our design into two parts:

- Al the area taken by logic

- Ar the area taken by registers

Al can be approximated by:

Al � s.pp1� pr � 1qρqAl,e (4.6)

where Al,e is the area taken by the logic for s � 1, p � 1 and r � 1.

This approximation is relevant when s is proportional to the width of the inputs as it is
the case for modular multiplication and exponentiation algorithms. If this condition holds,
doubling s doubles the size of the adders, multiplexers, etc, approximately doubling the area.

To calculate Ar we need to derive the total register size (see figure 4.1):

S � p.Sd � 1
p
Sp

p�1̧

i�0

i� p.Si

� p.Sd � 1
2
pp� 1qSp � p.Si (4.7)

Si is the total size of the registers internal to a pipeline block. Sd is the size of a register between
two pipeline blocks.

Hence:

Ar � S.Ar,e (4.8)

where Ar,e is the area taken by a one-bit register.

4.1.5 Constraints

The following constraints are used:

- Maximum available area for logic Al,max

- Maximum available area for registers Ar,max

- Minimum frequency fmin at which the design has to run
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4.1.6 Optimizations

Throughput

The problem of optimizing the throughput of the design can be formulated this way:

maximize:

φenc � p.r

s.c

f0

1� λpr � 1q (4.9)

such that:
Al ¤ Al,max (4.10)
Ar ¤ Ar,max (4.11)
f ¥ fmin (4.12)
p.r ¤ s (4.13)

Given a search interval for r and p, this problem can be solved easily. For instance, a graphical
approach is presented in section 5.5.1.

4.1.7 Application to the multiplier

If we apply this model to the pipelined multiplier, each block of the pipeline (Block i of figure 4.1)
corresponds to a multiplier cell. The replicated element (Block i j of figure 4.1) is the CSA with
the associated multiplexers.

Some parameters are fixed by the way the multiplier is designed. As a matter of fact, if the
bitwidth of the multiplier is equal to n:

• Sp � n corresponds to the bitwidth of A

• Sd � 2n corresponds to the bitwidth of B plus the bitwidth of M

• Si � 2n corresponds to the bitwidth of C plus the bitwidth of S which are stored internally

One iteration is performed at each clock cycle. Hence c � 1. Al and Ar depends on the FPGA
used. For instance, they can correspond respectively to the number of Slice LUTs and number of
Slice registers available if we use a Xilinx FPGA. fmin is fixed by the designer.

The other parameters are harder to determine. For a Xilinx FPGA it is save to fix Ar,e � 1
Slice Register. Al,e and ρ can be approximated without synthesis if we have a good knowledge of
the FPGA used (basically if we known how many LUTs each sub-block of the multiplier takes).
However it is hard to find f0 and λ without experiments. To find f0, at least a synthesis with r � 1
has to be done. To find λ, we can run few syntheses for some values of r and do an interpolation.
Hence, even if some syntheses have to be performed, the integration time of the multiplier can still
be reduced by using our model.

4.2 Performance tuning software

In this section, we present a software integrating our multiplier model. It enables the designer to
quickly tune the multiplier to the needs of its project.

4.2.1 Design

The “Multiplier parameters finder” software is coded in Python. The user interface is defined in
XML with Glade. Using Glade totally separates the user interface definition from the core of the
program, making the program clearer.

The “Multiplier parameters finder” has two main features:
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1. Find the optimal number of replications and pipeline stages of the multiplier according to
our model.

2. Run syntheses around the values of the r and p given by our model in order to possibly find
a better optimum.

The inputs of the first feature are the different parameters of our model, discussed in the
previous section. The outputs are the values of r and p given by our model and the corresponding
logic/register area, maximum frequency and throughput values.

The inputs of the second feature are the minimum and maximum values of r and p for which
we want to run syntheses. The outputs are the optimum synthesized values of r and p in this range
together with the corresponding logic/register area, maximum frequency and throughput values.

finder

− __init__()
+ optimization()
+ synthesis()
+ quit()
+ clear_buffer()
− _update_parameters()
− _load_parameters()
− _save_parameters()
+ s_print()

synthesizer

− __init__()
+ run()
+ stop()
− _synthesize()
− _create_synth_data()
− _check_synth_info()
+ s_print()
− _clean()

1 1

1

optimizer

− __init__()
+ Al()
+ Ar()
+ phi()
+ phi_real()
+ freq()
+ optimize()
+ find_max()

Figure 4.2: UML diagram of the “Multiplier parameters finder” software

The UML diagram of our software is given in figure 4.2. The finder class associates functions
to the user interface events and is the entry point of the program. It is composed of an optimizer
object which performs the optimization of our model through the optimize() function. This
function is called by the optimization() function of the finder class with the parameters given
by the user. Its results are printed in the user interface.

The finder class also has a synthesizer object whose role is to interface with the synthesis
software2 in order to perform the syntheses asked by the finder. The synthesis process can be run
and stop thanks to the eponymous functions. This behaviour is managed by the finder through
the synthesis() function. This function:

- takes the ranges for r and p given by the user

- runs the simulation and gets their results
2The synthesizer interfaces with ISE synthesis tools.
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- finds the optimal values of r and p for the synthesized designs thanks to the optimizer’s
find max() function

- prints the results in the user interface

Note that the function optimize() uses our model’s approximation of the throughput (returned
by the function phi()) whereas find max() uses the real multiplier throughput (returned by the
function phi real()).

4.2.2 User interface

Figure 4.3: User interface of the “Multiplier parameters finder” software

The user interface is represented in figure 4.3. It consists of three panels. The left most panel
enables the user to choose the parameters of the model and to run the optimisation by clicking on
the Optimize button. The central panel gives the results of the optimisation. Finally the right
most panel gives the necessary controls to synthesize the multiplier for different values of r and p
around the values given by the model. The user chooses the directory containing the Verilog files
of the multiplier and the synthesizer. Then the user clicks on the Run button. Once the syntheses
are started, this button is changes to a Stop button enabling the user to abort the synthesis. The
optimal values of r and p are also printed in this panel after all the syntheses have been performed.

The text area at the bottom gives the following information about each synthesis:

• for which values of r and p the multiplier is being synthesized
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• the state of the synthesis: done or aborted

• the maximum frequency, logic and register area for each synthesis performed

4.3 Summary

In this chapter, a model of a design using our pipelining and replication techniques has been
elaborated. With some a priori information about the design, it can deduce an approximation of
the optimal numbers of pipeline stages and replications optimising the throughput of the design.

To verify that this model fits well our Montgomery multiplier, we have created a simple program
putting together our model and some synthesis functionalities of the ISE toolsuite. Our software
is also useful to the designer who wish to integrate our Montgomery multiplier into its design. In
that case, one can use it to quickly tune the multiplier to the design requirements.





Chapter 5

Results and evaluation

In this chapter, our designs and multiplier’s model are evaluated quantitatively and qualitatively.
Section 5.1 shows the design space explored by our multiplier and compares an n-bit multiplier
with final subtraction against the (n+3)-bit version without final subtraction. Section 5.2 evaluates
our exponentiator. We highlight the benefits of using pipelined adders and subtractors for its
multiplier. We also study the effects of pipelining and replicating the multiplier on the performance
of the exponentiator. Section 5.3 shows results about the design space explored by our prime
tester and its performance against the number of pipeline stages and replications of the multiplier.
Section 5.4 is a short analysis of the power consumption of our three modules. Section 5.5 evaluates
our multiplier’s model against real synthesis results. Finally, section 5.6 compares the performance
of our synthesized designs against existing software and hardware implementations and section 5.7
sums up the chapter.

For all experiments involving synthesis, we use Xilinx ISE WebPack 11.1 with “speed” as the
optimisation mode and “normal” as the optimisation level. We use a Xilinx XC5VLX50T FPGA.

5.1 Multiplier

5.1.1 Impacts of pipelining and replication

We set n � 512 and synthesize the multiplier (with no final subtraction) for r from 1 to 12 and p
from 1 to 6. We do not use larger bitwidths for our experiments because it would take too long to
run all the syntheses.
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Figure 5.1: Maximum frequency of the multiplier against the logic area for n � 512, p P r1, 6s and
r P r1, 12s

The plots show respectively how the number of pipeline stages (p) and the number of replications
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(r) affect the area and speed of the multiplier.
Figure 5.1 shows the maximum frequency at which the design can run against the area taken

by the logic. We can see that the area increases with both the number of pipeline stages and
the number of replications. As predicted, the first plot shows that when the number of pipeline
stages doubles, the logic area doubles. The second plot shows that the variation of area with the
number of replications is less important. In fact, only a portion of the total area is affected by the
replication. The second plot also confirms that the maximum frequency does not depend a lot on
the number of pipeline stages.
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Figure 5.2: Design space explored by the multiplier for n � 512, p P r1, 6s and r in r1, 12s

Figure 5.2 puts forward the design space explored by our multiplier by plotting the achievable
throughput against the logic area for the considered values or r and p. The second plot shows that
at equal r, the throughput always increases with the number of pipeline stages. Apart from some
outliers, the first plot shows that the throughput also increases with the number of replication at
equal p for r ¤ 10. However, for r ¡ 10, the throughput seems to reach an asymptote and even
decrease for certain values of p. This behaviour happens when the lose of maximum frequency due
to the increase of the critical path outweighs the decrease in the number of iterations needed to
compute a multiplication.

The first plot of figure 5.2 shows some surprising points. For example, for p � 5 and r � 12,
the throughput and the area are abnormally low compared to the general trend. We suspect this
behaviour to be due to the optimisations performed by the synthesizer which basically tries to
optimise the speed of the module under area constraints. These optimisations are not under full
control of the user indeed.

5.1.2 Final subtraction against n� 3 multiplier

Figure 5.3 represents the throughput and the latency of the multiplier against the area taken
by the logic for a 512-bit multiplier with final subtraction and a 515-bit multiplier without final
subtraction.

We see that using the n�3 multiplier instead of the n multiplier with final subtraction decreases
the throughput of our multiplier. This is not due to the fact that we perform 3 more iterations but
to a decrease in the maximum frequency. In fact using a 515 bit multiplier increases the critical
path of the multiplier. More surprisingly, the area taken by a multiplier without subtraction is
not always less than the area taken by a multiplier with final subtraction. This is only the case
for r P t1, 3, 5u. This phenomenon is certainly due to the fact that the synthesis software more
easily optimizes the area for submodules bitwidths that are a multiple of 2, leading to the same
area performance for n � 512 as for n � 515 when r P t2, 4u, even if the subtractor is removed for
n � 515.
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Figure 5.3: Final subtraction versus n� 3 multiplier for p � 2 and r in r1, 6s

5.2 Exponentiator

5.2.1 Overhead introduced by the exponentiator logic

The critical path problem

As predicted, the exponentiator takes about the same logic area as the multiplier, the area taken
by the control logic of the exponentiator being negligible (see figure 5.4). It is not the case for
the maximum frequency which is reduced considerably if pipeline adders/subtractors are not used.
This is shown in figure 5.5.
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Figure 5.4: Logic area of the multiplier and the
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Figure 5.5: Maximum frequency of the multiplier
and the exponentiator against r for a bitwidth of
512 bits and p � 1

Advantages of the pipeline adders

Figure 5.6 compares the maximum frequencies reachable for different depths of the adders’ pipeline.
If we use normal adders, the frequency is very low and does not depend on r. Using 2-stage pipeline
adders increases the frequency by a factor of 2 to 3. We can see that for above 8 pipeline stages, the
latency of the adders are no longer affecting the critical path. The gain of increasing the number
of adder pipeline stages is almost null.

Another interesting observation is that for more than 2 pipeline stages, all the frequencies seem
to converge when r increases. An analysis of the synthesis results shows that the more r increases,
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the more the delay due to routing increases along the critical path. For r � 13 the routing delay
overweights the gate delay through the adders, making all the frequencies converging to the same
point.
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Figure 5.6: Influence of the pipeline adders on the maximum frequency of the exponentiator

Effect of the pipeline adders on the latency and throughput of the design

Figures 5.7 shows that the number of cycles taken by an exponentiation slightly increases with the
pipeline depth of the adders. However, even if the numbers of clock cycles increases, the latency of
the exponentiator clearly decreases when we use the pipelined adders as shows figure 5.8. This last
figure also confirms that using more than 8 pipeline stages for the adders is useless in the conditions
of our experiment and can even have a negative impact on the latency. As a matter of fact, the
number of clock cycles keeps on increasing whereas the maximum frequency does not increase any
more.

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 1  2  3  4

C
lo

ck
 c

yc
le

s

Number of replications

Non-pipelined adders
2 pipeline stages
4 pipeline stages
8 pipeline stages

Figure 5.7: Clock cycles taken by the exponentia-
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5.2.2 Using pipelining and replication

In this section, we set the pipeline depth of the adders to 4. For a bitwidth of 512 bits, this value
is relevant as shown in the last section.
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Figures 5.9 and 5.10 show the influence of the number of multiplier pipeline stages (p) and
replications (r) on the exponentiator. Compared with a non-pipelined multiplier, using a multiplier
with 2 pipeline stages decreases the latency of the exponentiator by almost a factor of 2. For p ¡ 2
the number of clock cycles and the latency is no longer improved by increasing the number of
pipeline stages. As a matter of fact, the exponentiator cannot keep the multiplier’s pipeline full as
was demonstrated in section 3.4.3. Therefore, there is no advantage to using more than 2 pipeline
stages for the multiplier in that case, as this will increase the area taken by the design with no or
even a negative effect on its latency.

Figure 5.9 also shows that the number of clock cycles is almost divided by 2 when the number
of replications doubles. Figure 5.10 highlights another interesting point: when r increases the
latency seems to reach an horizontal asymptote. This behaviour has already been observed with
the throughput of the multiplier. We recall that this phenomenon happens when the decrease of
maximum frequency with r begins to overweight the decrease in clock cycles.
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5.3 Prime tester

5.3.1 Global performance

Figure 5.11 shows the design space explored by the prime tester. It plots the maximum frequency
against the logic area taken by our design.

We see that the prime tester takes more area than the exponentiator at equal p and r. This
increase in area is due to the extra logic needed to perform the primality test: in particular an
n-bit comparator and an n-bit subtractor (to compute p� 1).

The maximum frequency of the prime tester is slightly lower than the one of the exponentiator.
This certainly comes from the increase in the routine delay introduced by the extra hardware.

5.3.2 Use of the pipelined multiplier

Figure 5.12 and 5.13 show the mean number of clock cycles taken by a prime test on a 512-bit
number together with its latency for different values of p and r. A pipeline depth of 4 is used for
the adders/subtractors of the multiplier.

Unlike the other modules, the number of clock cycles taken by the prime tester depends on
the number under test. The results of clock cycles are obtained by simulation of the design using
Verilator. Note that the simulation of a prime test takes a very long time for a 512-bit number.
Hence, each point corresponds to a mean on only 10 tests.
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(the pipeline depth of the adders is set to 4)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2  4  6  8  10  12

M
ea

n 
nu

m
be

r 
of

 c
lo

ck
 c

yc
le

s

Replications

p=1
p=2
p=3
p=4

Figure 5.12: Mean clock cycles taken by the prime
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(the adders pipeline depth is set to 4)
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Figure 5.13: Mean latency of a prime test against
p and r

(the adders pipeline depth is set to 4)

Figure 5.12 confirms that using the pipeline capabilities of the multiplier through the expo-
nentiator decreases the number of clock cycle needed to perform a prime test in a non-negligible
maniere, at least for r ¤ 5. The fact that we cannot distinguish this trend for r ¥ 6 may be due to
the fact that not enough points could be taken to compute the mean number of clock cycles.

For the same reasons as the exponentiator, using a pipeline depth of more than 2 is useless.
When we double the number of replications, the number of clock cycles is divided by a bit less than
2. The horizontal asymptote is less obvious in figure 5.13 than it was for the exponentiator and
the multiplier. However, the prime tester uses these two modules. Therefore, its latency cannot
decrease infinitely with the number of replications as figured out in section 5.2.2.

5.4 Power consumption

In this section we use Xilinx XPower Estimator to get a gross approximation of the power consumed
by our three modules. We only consider the power consumed by the logic cells and the RAMs. To
allow a fair comparison we keep the frequency constant at an arbitrary value of 150 MHz. The
leakage power is equal to 560 mW for every module and every value of r and p. This analysis
based on the synthesis results has a limited accuracy and only the relative consumptions can be
considered safely.



5.4. POWER CONSUMPTION 55

Figures 5.14 to 5.16 show that the general trend is an increase of power consumption with
the number of replication and the number of pipeline stages. This increase is directly linked to
the increase of the number of Slice LUTs and Slice registers taken by the module. However for
r ¤ 2 the power consumption of the prime tester is higher with 1 than with 2 pipeline stages.
This phenomenon also appears in the exponentiator power consumption for r � 1. The way the
exponentiator control is designed for p � 1 makes the synthesis tool implement the registers saving
the intermediate values of P and Z in a RAM, whereas they are implemented as simple registers
for p � 2. For r ¤ 2 and p � 1, the power consumed by this RAM overweights the increase of logic
power consumption for r ¤ 2 and p � 2, which explains this strange trend.

In figure 5.17, we can see that our prime tester consumes more than our exponentiator which
consumes more than our muliplier at equal p and r. This trend is simply explained by the extra
hardware introduced in the upper level modules, resulting in an increase in logic area and therefore
in power consumption.
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(the adders pipeline depth is set to 4)
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Figure 5.15: Total logic+RAM power consump-
tion of the exponentiator against p and r

(the adders pipeline depth is set to 4)
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Figure 5.16: Total logic+RAM power consump-
tion of the prime tester against p and r

(the adders pipeline depth is set to 4)
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5.5 Evaluation of our performance tuning tools

5.5.1 Accuracy of the model

Parameters

Let us consider our Montgomery multiplier with final subtraction. We choose a bitwidth of 512
bits leading to:

• s � 512

• Sp � 512

• Sd � 1024

• Si � 1024

We still use a Xilinx XC5VLX50T FPGA, for which:

• Al,max � 28 800 Slice LUTs

• Ar,max � 28 800 Slice Registers

The algorithm used imposes c � 1 and by running pre-syntheses we determine:

• Ar,e � 1 Slice Registers

• Al,e � 9 Slice LUTs

• ρ � 33%

• λ � 0.20

Finally we do a synthesis for r � 1 and p � 1 to determine f0 � 226 MHz and we impose
fmin � 100 MHz.

Frequency

Figure 5.18 compares the variations of the maximum frequency obtained experimentally to our
model. It shows that our model is quite accurate for most values of p. However, we had to run
pre-syntheses to get the right trend of the frequency. Getting this trend without prior syntheses
turns out to be very hard. The idea is to get some points by doing several syntheses and extrapolate
in order to get the global frequency trend.
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Area

The predicted areas taken by the registers for different values of p are very close to the real ones
as shows figure 5.19. The mapping one-bit register/one slice register is always respected indeed.
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The offset of 512 bit is due to the fact that in our actual design, the last register of the pipeline
only saves M instead of B and M . As a matter of fact, B is not used by the logic (final addition
and subtraction) connected to the output of the pipeline. Note that the registers used for the state
machine are also not taken into account.

Our model is less accurate to predict the area taken by the logic (figures 5.20 and 5.21). These
figures show that the variations of the number of Slice LUTs are not perfectly linear with r and p.
It should be in part due to the optimisations performed by the synthesis software which tries to
find the best occupation ratio of the slices.
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Figure 5.20: Area taken by the logic against r for
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Figure 5.21: Area taken by the logic against p for
r � 3

Throughput

Figure 5.22 represents the area taken by logic (shaded color tones) in Slice LUTs and the throughput
predicted by our model (at each intersection of the grid) in Mop/s against r and p. The values of
r and p optimising the throughput under the constraints of equations 4.10 to 4.13 are, according
to our model:

rmodel � 4
pmodel � 3

Model Experiments
f (MHz) 141 138
φenc (Mop/s) 3.31 3.08
Al (Slice LUTs) 27509 27102
Ar (Slice registers) 6656 6193

Table 5.1: Theoretical and experimental results for rmodel � 4 and pmodel � 3

Table 5.1 sums up our theoretical and experimental results for these values of r and p. All the
parameters are predicted will less than 10% of error. The real optimum is actually:

φenc,opt � 3, 8 Mop/s

for:

ropt � 4
popt � 4
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and for which:

fopt � 128 MHz
Al,opt � 26306 Slice LUTs
Ar,opt � 8511 Slice registers

Our model is therefore closed to the real optimum. It did not actually find the real optimum as the
optimisations performed by the synthesis tool for r � 4 made the multiplier fit in less logic area
for p � 4 than for p � 3 (26306 Slice LUTs versus 27509 Slice LUTs).

5.5.2 Shortcomings of this model

Even if this model is detailed, it has several shortcomings. First, we assumed that increasing the
length of the pipeline increases the value of the throughput by the same factor. That is true if we
can always maintain the pipeline full. In practice, this is limited by the data dependencies between
consecutive values as shown in section 3.4.3.

Second, we realised in sections 5.5.1 and 5.5.1 that the area taken by the logic does not follow
a simple law and is dependent to the optimisations made by the synthesis tool.

Finally, the values of ρ, f0, λ, Ar,e and Al,e are quite hard to determine without running
pre-syntheses.

5.5.3 Possible uses

This model can help us tuning our parametric RSA design when targeting a particular FPGA.
By giving insights about the speed/area tradeoffs, the use of this model clearly reduces the time-
consuming experiments needed to find the best parameters. In that case a rough estimation of the



5.6. IS OUR DESIGN BETTER THAN EXISTING IMPLEMENTATIONS? 59

frequency and area are sufficient. What matters is to capture the trends of f , Al and Ar. Section
5.5.1 demonstrate that these requirements are met.

Our model can also be useful to find the best values for p and r at an early stage of the design,
that is without being able to do experiments yet. In that case, a sub-optimal solution fitting into
the FPGA (as in section 5.5.1) may be preferred to a better one whose area consumption turns out
to be under-estimated. This constraint can be met by taking care of choosing values for Al,e and
ρ that are over-estimated enough and a gross approximation for f0 and λ.

5.6 Is our design better than existing implementations?

5.6.1 Software

We compare the implementation of our modular multiplier, modular exponentiator and primality
test on a XC5VLX50T FPGA with the software implementations of the GMP multiprecision arith-
metic library [21] version 4.2.4. The functions of this library performing modular exponentiation
and primality test are respectively mpz powm and mpz probab prime p. The software modular mul-
tiplication is performed with low level multiplication and modulus functions. All these functions
are very optimised and fast.

The machine used has an Intel Core 2 Duo CPU E7400 running at 2.80GHz. Each core has a
L1 32 KB instruction cache and 32 KB data cache. A 3MB 8-way set associative cache is shared
by both cores. The machine has 3 GB of DDR2 RAM. The test program is compiled with the Intel
Compiler v11.0 using the compilation option fast. The runtimes given are an average on 10 000
tests with random inputs on 512 bits.

Multiplier

The mean runtime for the software to perform a 512-bit multiplication is 1.96 µs. Figure 5.23 gives
the speedup obtained by using our hardware multiplier over the software version for different values
of r and p. It shows that the more we increase the number of pipeline stages, the higher speedup we
get. This is also true for the number of replications until we reach the asymptote evoked previously.
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The best results given by this experiment is a speedup of 16 for p � 6 and r � 8. This speedup
can be improved as desired by increasing the number of pipeline stages, the only limitation being
the area available on the FPGA.
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Exponentiator

The mean runtime for the software version to perform a 512-bit exponentiation is 0.65 ms. Figure
5.24 compares this mean runtime to the latency of our hardware exponentiator for p P r1, 2s and a
pipeline depth of 4 for the adders.
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Figure 5.24: Exponentiator: software versus hardware version

For p � 1, our design cannot beat the software implementation. For p � 2, from r � 4 our
design running at around 100 MHz and taking about 16 000 Slice LUTs is faster than the software
version on a Core 2 Duo running at 2.80 GHz with a 1.5 speedup. However the asymptote reached
by the latency could prevent us from finding an r such that our exponentiator can beat every
software implementation on every processor.

Note that we could certainly improve the way the exponentiator manages the pipelined multi-
plier to gain some clock cycles and still reduce the latency of the exponentiator.

Prime tester

The mean runtime to test a random number in software is 0.15 ms. At first glance, this result
seems very surprising. In fact, on average the software takes less time to perform a primality test
than to compute a single exponentiation! It turns out that the primality test implemented in the
mpz probab prime p is done in two stages:

• First, some trial divisions are performed on the number under test

• If the number under test is not divisible by any of the numbers tried in the first test, the
Rabin-Miller test is performed

Note that a last test may also be performed to confirm that the number is prime. This last step
can for instance be a Lucas test. Such a test is not done by the mpz probab prime p function [21].

To understand the results given by the software, let us do a quick analysis of a three-stage
prime tester. A possible configuration is represented in figure 5.25. The first block performs trial
divisions. It takes a time t1. The second block is a primality test (like a Miller-Rabin test) and
takes time t2. The third block confirms the result of block 2 when the latter finds a possible prime
number. It takes time t3.

Let P � tp0, .., pku the set of the k�1 first prime numbers with p0 � 2 and N a random number
of size n. We have the following probability1:

P pp � N @p P P q �
k¹
i�0

p1� 1
pi
q (5.1)

(5.2)

1� meaning “divides”
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Figure 5.25: A prime number generator

From the prime number theorem, if N is close to 2n, we also have:

P pN is primeq � 1
lnp2nq �

1
n.lnp2q (5.3)

Hence neglecting the fact that test 2 is not 100% accurate, the mean time taken to determine if N
is prime is:

tm � t1 �
k¹
i�0

p1� 1
pi
qt2 � 1

n.lnp2q t3 (5.4)

Figures 5.26 and 5.27 give the mean time spent in block 2 and 3 for different values of n and k.
The time spent in block 1 is always t1.

The time spent in block 3 quickly decreases with the bitwidth. For a common bitwidth of 512,
it is less than 1% of t3.

The time spent in block 2 decreases with the number of primes used for trial division. For
trial divisions with 20 prime numbers, it is around 13% of t2. Note that it also means that by
using trial divisions with the 20 first prime numbers, more than 80% of the non-primes are declared
composite in the first stage. If we manage to perform fast trial divisions, we can clearly reduce the
average runtime of a prime tester to less than the time taken by an exponentiation. That is why
the software implementation is so fast.

This result also shows that the simple trial division process is very important and should be
implemented before integrating our Rabin-Miller prime tester into a complete RSA cryptosystem.

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

%
 t

2

Number of prime numbers used

Figure 5.26: Time spent on block 2 for different
values of p

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 128 256 512 1024

%
 t
3

Bit width

Figure 5.27: Time spent on block 3 for different
values of n



62 CHAPTER 5. RESULTS AND EVALUATION

To confirm the previous analysis we now run tests giving only prime numbers as input to the
prime tester. Doing so obliges the software implementation to perform the Rabin-Miller test and
enable us to fairly compare both implementations. This time, the mean software runtime increases
to 5.8 ms.

Figure 5.28 compares our hardware implementation with the GMP software implementation
when only prime numbers are given as inputs to test. As with the exponentiator, a pipeline depth
of 1 cannot beat the software implementation. For p � 2, our design is faster than the software
implementation when r is greater than 4 with a speedup of around 1.6. The asymptote, due to the
fact that we cannot increase the number of replications infinitely and keep reducing the latency
still appears.
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Figure 5.28: Prime tester: software versus hardware version

5.6.2 Hardware

Scaling

For speed comparison of our module with existing implementation, we need to scale our results
to the FPGAs used. We use the results of table 5.2 which gives the critical path and maximum
frequency after synthesis of our 512 bit exponentiator on different FPGAs.

Critical path Maximum frequency
VirtexE XCV600E 27.323ns 36.599MHz
Spartan3 XC3S2000 22.397ns 44.649MHz
Virtex5 XCV5VLX507 6.835ns 146.304MHz

Table 5.2: Scaling data

Exponentiation speed

Table 5.3 compares our exponentiator speed with the implementations presented in section 2.3.3.
We use a pipeline depth of 4 for the adders of the Montgomery multiplier.

This table shows that our exponentiator design is faster than the one-CSA design of [1]. Without
scaling the results, our exponentiator is also faster than any other design presented in section 2.3.3.
Even if we could not scale Fry’s design, the speedup comparison is quite fair as the ARSA core was
synthesized on a modern Altera FPGA. On the contrary, we cannot compare fairly our design with
Blum’s design which was synthesized in 1999 on a FPGA that is no longer supported by Xilinx
tools. If we had implemented Blum’s design on a modern FPGA for comparison, the speedup would
have been certainly less than 2.6.
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Implementation FPGA Clock (MHz) Time (ms) Speedup
Scaled Scaled

Time (ms) Speedup
Our design (p � 1, r � 1) XC5VLX50T 147.3 3.6 1 - -
Amanor [1] XVC2000E-6 43.3 16.1 4.5 14.4 1.1
Blum (fastest) [7] XC4000 56.5 9.4 2.6 N/A a N/A a

Fry (ARSA 128) [8] Stratix/Cyclone 200 80.0 22.3 N/A b N/A b

aThe scaling could not be done because the XC4000 is no longer supported by Xilinx synthesis tools
bNot enough information is given in [8] on the FPGA used to be able to scale our result

Table 5.3: Comparison of our exponentiator with other implementations for n=512 bits

Prime tester

Table 5.4 compares our prime tester implementation (the adders pipeline depth is still set to 4)
with the prime tester of [11] which also uses pipelining and implements the deterministic variant
of the Rabin-Miller test.

Implementation FPGA
Logic Area Clock Time (ms) Scaled

(Slices) (MHz) Time (ms)
Ours (p � 1, r � 1) XC5VLX50T 9 840 122.5 16.8 -
Ours (p � 1, r � 2) XC5VLX50T 10 744 113.8 9.3 -
Ours (p � 1, r � 4) XC5VLX50T 13 638 113.8 7.6 -
Ours (p � 2, r � 1) XC5VLX50T 9 254 123.5 8.5 -
Ours (p � 2, r � 2) XC5VLX50T 11 907 123.5 6.8 -
Ours (p � 2, r � 4) XC5VLX50T 19 731 123.5 3.3 -
Cheung [11] (non-scalable design) XC3S2000 10 153 10.5 25.3 7.7
Cheung [11] (scalable design 8 PE) XC3S2000 2 736 25.2 937.8 285.9
Cheung [11] (scalable design 32 PE) XC3S2000 9 146 26.7 378.1 115.3

Table 5.4: Comparison of our prime tester with the implementations done in [11] for n=512 bits

Our design is faster than Cheung’s non scalable design for p � 2 and r ¥ 2. For r � 2, it is 10%
faster. However it takes a bit more area. For r � 4, by less than doubling the area, we divide the
time to perform a test by more than 2 and get a speedup of 2.3 over Cheung’s non scalable design.

If we compare our design with Cheung’s scalable prime tester, for p � 2 and r � 1, we get a
speedup of 13.5 over the 32 PE version, both design taking the same area.

This table also highlights a shortcoming of our design which cannot fit in less than 9000 slices
for a 512-bit prime test. Cheung’s scalable design can fit in 2000 slices. This is due to the fact that
Cheung’s multiplier enables the total size of the processing elements to be less than the number of
iteration to be performed. In that case the last processing element transfers its result to the first
to continue the computation of the multiplication.

In a context where the area constraint is much stronger than the speed contraint, Cheung’s
scalable design can turn out to be better than ours. On the contrary, if we want to perform a fast
prime test with a moderate area constraint, our design is better.

5.7 Summary

In this last chapter, our hardware designs and implementations have been evaluated in depth. The
design space explored by our design together with the speed improvements of the multiplier with
the number of pipeline stages and replications have been put forward.

We have confirmed experimentally the analyses done in section 3.4.3, 3.4.4 about:

- the optimal number of multiplier pipeline stages when using it with the exponentiator
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- the benefits of using pipelined adders/subtractors on the critical path

Our model of the multiplier has been evaluated against experimental results and proves to be
useful to give insights about the variations of area and throughput with the number of pipeline
stages and the number of replications.

Finally our multiplier, exponentiator and prime tester have been compared to existing soft-
ware and hardware implementations. They all turn out to be faster than the equivalent soft-
ware implementations on a modern CPU. Our Montgomery multiplier implemented on a 150 MHz
XC5VLX50T FPGA is indeed more than 16 times faster than the optimised software implemen-
tation on a 2.8 GHz Core 2 Duo E7400. The synthesis results of our exponentiator give relevant
speedups of up to 22.3 against existing hardware implementations. With moderate area constraints,
our Rabin-Miller prime tester is also faster than previous hardware designs [11] of the same algo-
rithm with a speedup of 13.6 times with less than 10% area overhead.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have presented a new implementation of three modules which are the core of
many encryption algorithms: the Montgomery modular multiplier, the modular exponentiator and
the prime tester. Our multiplier is the first Montgomery multiplier design with variable pipeline
stages and variable parallelism by replication. A flexible pipeline has been designed for the mul-
tiplier. This pipeline supports any number of pipeline stages and can run at any fill rate. Inside
a pipeline block, the carry-save adders have been replicated and put in series. This allowed us to
treat consecutive iterations by blocks, avoiding data dependency problems. Both features make
this multiplier highly parametric and capable of exploring a large design space, from a slow but
area-efficient to a very fast but area-consuming multiplier. Our multiplier can fit in a large fam-
ily of FPGAs. Its parametric bitwidth, number of pipeline stages and replication also makes it
suitable for use on future FPGAs and with future public-key designs where the key size will reach
more than 4096 bits. In terms of performance, the implementation of our multiplier on a 150 MHz
XC5VLX50T FPGA is more than 16 times faster than the optimised software implementation on
a 2.8 GHz Core 2 Duo E7400 CPU. This speedup can still be increase by increasing the number
of pipeline stages. The only limitation is the area available on the FPGA used. However, the
multiplier cannot be replicated infinitely without any negative effects on the critical path. This
result shows that pipelining is more scalable that replication.

We have modelled the effects of pipelining and replication on the area, maximum frequency
and throughput of a particular design. This model particularly fits our multiplier but can be
easily extended to any design which uses our methods for pipelining and replication. It gives
valuable insights about the variations of logic area, register area and throughput with the number
of pipeline stages and replications. The model has been integrated in a software, allowing rapid
parameterisation of our multiplier.

We have designed a modular exponentiatior integrating our mutiplier. Modular exponentiation
is a very important operation in cryptography. It is used in RSA encryption/decryption, in the
Diffie-Hellman key exchange protocol and most prime testers. During this integration, pipelined
adders and subtractos were added to the multiplier. The use of pipelined adders and subtractors
reduces the critical path and enables the exponentiator to run faster with a negligible area overhead.
By taking full advantage of the pipelining and replication features of the multiplier, our modular
exponentiator is faster than a very optimised software version running on a 2.8 GHz Core 2 Duo
E7400 CPU by a factor of 1.5. This speedup is limited by two factors. First, increasing the number
of replications increases the critical path which can create a decrease in the speed of the design
for a high number of replications. Second, the data dependencies in the exponentiation algorithm
used limit the maximum number of multiplier’s pipeline stages to 2 in order to keep the pipeline
full. Speedups from 1.1 up to 22.3 over existing hardware implementations have also been put
forward. These last results make our exponentiator particularly well-suited for high throughput
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cryptosystem designs as well as any other design requiring fast hardware modular exponentiation.

Using our parametric version of modular multiplication and exponentiation, a hardware version
of the Rabin-Miller strong pseudoprime test has been implemented. The pipeline depth of the
multiplier and its number of replications, together with the number of first primes used for the
test are parametric. This module covers a large design space and is faster than a very optimised
software implementation on a 2.8 GHz Core 2 Duo E7400 CPU by a factor of 1.6. This speedup is
limited by the same two factors as the exponentiator. Our prime tester is also faster than existing
hardware implementations with speedups from 1.1 times up to 13.6 times with only a 10% area
overhead. The parametric nature of our prime tester makes it suitable for various applications from
RSA key generation to the test of large primes such as Mersenne prime numbers [22].

6.2 Future Work

Future extensions to the work done in this thesis are planned. First, we could try to make our
multiplier still more parametric by trying to decompose it as a systolic array as done in [7]. Trying
to combine pipelining, replication and a systolic array for each pipeline block could enlarge the
design space for our multiplier. We could for instance represent each pipeline block as a systolic
array and replicate inside a cell of the systolic array. It would still increase the granularity of our
design.

To improve the speed of our design, we could try to recursively apply pipelining and replication to
the exponentiator and prime tester. In fact, as using more than 2 pipeline stages for the multiplier
when used inside the exponentiator is useless, replicating and pipelining the exponentiator itself
could solve this speed limitation. Of course, the number of pipeline stages of the exponentiator
would now be limited by the data dependencies inside the prime tester, which itself could be
pipelined and replicated. It would be interesting to extend our model to take into account these
different levels of pipelining and replication and to develop a software allowing the optimisation and
configuration of our three modules. To extend the design space towards very low area, a method
reusing the same pipeline blocks alternately, the last block looping back to the first one, could
also be tried as in [11]. Another interesting idea would be to enable the user to implement any
storage element either as simple registers or as RAMs to better exploit device specific resources.
New FPGAs are doted with more and more dedicated block RAMs indeed.

With these new features, our modular multiplier, modular exponentiator and Rabin-Miller prime
tester could be put together to produce a highly parametric RSA coprocessor. Using the right
parameters, such a coprocessor could meet any speed/area requirement and fit in almost any
FPGA.

Our pipelining and replication methods together with the corresponding model are generic. Even-
tually, we could automate this technique and apply it to any design such as DES encryption, FIR
filter, etc. The idea would be to create a system taking as inputs the design’s basic cell as well as
information about the part of the cell which can be replicated. This information could for example
be given directly in the Verilog file as special comments. The system could then automatically
generate Verilog files corresponding to a design pipelined and replicated any number of times. Ul-
timately, with some information about the FPGA targeted, the design with the optimal number
of pipeline stages and replications could be generated and synthesized automatically from a basic
cell.

A power consumption model could also be integrated in order to take into account the three
main constraints of any hardware design: speed, area and power consumption. The idea would be
to give insights on the effects of pipelining and replication on the power consumption of a design.
As is done for finding the trends of the maximum frequency, we would certainly have do run some
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pre-syntheses and even place-and-route operations for some values of r and p and then interpolate.
Another solution would be to interface with the tools proposed by the vendors as Xilinx XPower
Estimator. These tools can give useful power consumption information early in the design process.
A combination of both approaches could be considered. Still in terms of power analysis, we could
also try to figure out if the glitch effects [23] enable our pipelined design to consume less than a
non-pipelined version [24].

A last possible and challenging extension of our work would be to use the runtime reconfiguration
capabilities of FPGAs. Instead of fixing the parameters of our modules at synthesis time, we could
make them reconfigurable at runtime. For example, the bitwidth of our prime tester could be
adapted to the bitwidth of the numbers to test directly at runtime. The number of pipeline stages
and replications of our multiplier could also be modified at runtime to get the optimum throughput
depending on how it is used: in standalone mode, by the exponentiator or by the prime tester.
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Appendix A

Specifications

A.1 Montgomery multiplier

A.1.1 Function

The Montgomery multiplier performs modular multiplication with odd modulus for any bitwidth
of the inputs. It supports any number of pipeline stages and replications of the main processing
element, the only condition being:

p.r ¤ n

with n the bitwidth, p the pipeline depth and r the number of replications. Its adders and
subtractors can also be pipelined.

The Montgomery multiplier module is implemented in the mmult full.v Verilog file.

A.1.2 Inputs/Outputs

Figure A.1: Montgomery Multiplier interface

The inputs/outputs of the Montgomery multiplier are shown in figure A.1. They are:

• clock i: input for the clock.

• reset i: when this signal is asserted, the multiplier is reset.

• start i: when this signal is asserted, the computation starts with the given inputs for the
operands and the modulus.

• x i: first operand of the multiplication.

• y i: second operand of the multiplication.

• m i: modulus.

• ready o: this signal is asserted when the multiplier is ready to receive new inputs.
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• done o: this signal is asserted when the current multiplication has finished.

• p o: result of the multiplication.

A.1.3 Parameters

The module has the following parameters:

• WIDTH: bitwidth of the multiplier.

• NB BLOCKS: number of pipeline stages.

• WIDTH ITER: bitwidth of the number of iterations performed by a cell:

log2

�
WIDTH

NB BLOCKS



� 1.

• FINAL SUB: determine if the final subtraction is done (in this case this parameter has to be
set to 1) or not (set to 0).

• ADD SUB STAGES: depth of the adders/subtractors pipeline.

• WIDTH STAGES: bitwidth of the number of adders/subtractors pipeline stages:
log2 pADD SUB STAGESq � 1.

• NB REP: number of replications.

A.1.4 Timing diagram

0ps 20ns 40ns 60ns

clock_i

reset_i

start_i

x_i

y_i

m_i

ready_o

done_o

p_o

1 2 3 4 5 6 7 8 9

Figure A.2: Multiplier timing diagram

The timing diagram of figure A.2 shows how the multiplier should be used:

- the reset i signal is set (1)

- the reset i signal is taken into account (2): the ready o, done o and p o signals are initialised

- the inputs are given to the multiplier and the start i signal is asserted (3)

- the multiplier begins the computation of the first multiplication (4). The ready o signal is
set to 0. The start i signal has to be deasserted before the multiplier becomes ready again.
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- When the multiplier is ready to receive new inputs (5), the inputs for the second multiplication
can be given and the start i signal asserted (6).

- The start i signal is taken into account (7) and the second multiplication starts. The
start i signal has to be deasserted.

- In (8) the first multiplication is finished. The done o signal is asserted during one clock and
p o contains the result of the multiplication. This result is valid from (8) to (9).

A.2 Exponentiator

A.2.1 Function

The exponentiator performs modular exponentiation for any bitwidth of the inputs. It supports
any number of pipeline stages and replications for its multiplier under the condition:

p.r ¤ n

with n the bitwidth, p the pipeline depth and r the number of replications. However, using
a pipeline depth greater than 2 is suboptimal as the pipeline of the multiplier cannot be totally filled.

The exponentiator module is implemented in the mexp.v Verilog file.

A.2.2 Inputs/Outputs

Figure A.3: Exponentiator interface

The inputs/outputs of the exponentiator are shown in figure A.3. They are:

• clock i: input for the clock.

• reset i: when this signal is asserted, the exponentiator is reset.

• start i: when this signal is asserted, the computation starts with the given inputs for the
operand, the exponent and the modulus.

• x i: operand of the exponentiation.

• e i: exponent.

• m i: modulus.

• nr i: Montgomery constant (22n mod m i, n bitwidth)

• done o: this signal is asserted when the exponentiation is finished.

• res o: result of the exponentiation.
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A.2.3 Parameters

The module has the following parameters:

• WIDTH: bitwidth of the multiplier.

• WIDTH ITER: bitwidth of the number of iterations performed by the exponentiator:
log2 pWIDTHq � 1.

• PIPELINE STAGES: number of pipeline stages of the multiplier.

• LOG PIPELINE STAGES: bitwidth of the number of pipeline stages of the multiplier.

• FINAL SUB: determine if the final subtraction of the multiplier is done (in this case this
parameter has to be set to 1) or not (set to 0).

• ADD SUB STAGES: depth of the multiplier’s adders/subtractors pipeline.

• WIDTH STAGES: bitwidth of the number of adders/subtractors pipeline stages:
log2 pADD SUB STAGESq � 1.

• NB REP: number of replications in the multiplier.

A.2.4 Timing diagrams

clock_i

reset_i

start_i

x_i

e_i

m_i

nr_i

done_o

res_o

1 4 6 752 3

Figure A.4: Exponentiator timing diagram

The timing diagram of figure A.4 shows how the exponentiator should be used:

- the reset i signal is set (1)

- the reset i signal is taken into account (2): the done o and res o signals are initialised

- the reset i signal is deasserted

- the inputs are given to the exponentiator and the start i signal is asserted (4)

- the exponentiator begins its computation. The start i signal is deasserted (5).

- The exponentiation is finished (6). The done o signal is asserted during one clock and res o
contains the result of the exponentiation. This result is valid until a new exponentiation is
started.
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A.3 Prime tester

A.3.1 Function

The prime tester performs a deterministic Rabin-Miller primality test for any bitwidth of the
number under test. It supports any number of pipeline stages and replications for the multiplier
used under the condition:

p.r ¤ n

with n the bitwidth, p the pipeline depth and r the number of replications. However, using a
pipeline depth greater than 2 is suboptimal as the pipeline of the multiplier is not totally filled on
average.
A ROM stores the values of the first primes used for the test.

The prime tester module is implemented in the prime tester.v Verilog file.

A.3.2 Inputs/Outputs

Figure A.5: Prime tester interface

The inputs/outputs of the prime tester are shown in figure A.5. They are:

• clock i: input for the clock.

• reset i: when this signal is asserted, the prime tester is reset.

• start i: when this signal is asserted, the test of the given number starts.

• p i: number under test.

• nr i: Montgomery constant (22n mod p i, n bitwidth)

• done o: this signal is asserted when the test is finished.

• result o: result of the test: 0 if the number is composite, 1 if it is probably prime.

A.3.3 Parameters

The parameters of this module are:

• WIDTH: bitwidth of the multiplier.

• WIDTH ITER: bitwidth of the number of iterations performed by the exponentiator:
log2 pWIDTHq � 1.

• NB PRIMES: number of primes used for the test.

• PRIMES DATA WIDTH: data width of the prime ROM.

• PRIMES ADDR WIDTH: address width of the prime ROM.
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• PIPELINE STAGES: number of pipeline stages of the multiplier.

• LOG PIPELINE STAGES: bitwidth of the number of pipeline stages of the multiplier.

• ADD SUB STAGES: depth of the multiplier’s adders/subtractors pipeline.

• WIDTH STAGES: bitwidth of the number of adders/subtractors pipeline stages:
log2 pADD SUB STAGESq � 1.

• NB REP: number of replications in the multiplier.

A.3.4 Timing diagrams
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Figure A.6: Prime tester timing diagram

The timing diagram of figure A.6 shows how the prime tester should be used:

- the reset i signal is set (1)

- the reset i signal is taken into account (2): the done o and result o signals are initialised

- the reset i signal is deasserted (3)

- the number under test is given to the prime tester and the start i signal is asserted (4)

- the prime tester begins the test. The start i signal is deasserted (5).

- The prime test is finished (6). The done o signal is asserted during one clock and result o
contains the result of the test: 0 if the number is composite, 1 if it is probably prime. This
result is valid until a new prime test is started.
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Software manual

B.1 Features

The “Multiplier parameters finder” has two main features:

1. Find the optimal number of replications and pipeline stages of the multiplier according to
our model.

2. Run syntheses around the values of the r and p given by our model in order to possibly find
a better optimum.

B.2 User interface

Figure B.1 represents the different components of the user interface:

• Zone (1) gathers the different parameters of the model used for the optimisation.

• The user clicks on the button “Optimize” (2) after having completed all the fields of zone (1)
in order to launch the optimisation.

• The results of the optimisation are given in zone (3).

• After having obtained these results, the user can perform real syntheses to confirm them.
The range of p and r in zone (4) are automatically filled according to the results given by
the model. However, the user can change them as desired. Note that syntheses can also be
run independently of the model’s results. In that case, only the iterations field of zone (1)
matters. It corresponds to the bitwidth of the multiplier .

• Zone (5) enables the user to choose the folder where the Verilog files of the multipliers are
located and the synthesis tool used. The software only supports xst from the ISE synthesis
toolsuite.

• Clicking on the button “Run” (6) launches the syntheses. Information about the process are
given in the area (8).

• Once the syntheses are complete, the optimal values of r and p in the synthesis range are
printed in zone (7) together with the corresponding values of the logic/register area, maximum
frequency and throughput.
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Figure B.1: Components of the user interface
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