
Imperial College London
Department of Computing

Tableau Compiled Labelled Deductive
Systems with an application to

Description Logics

by

Aikaterini Marazopoulou

Submitted in partial fulfilment of the requirements for the MSc
Degree in Advanced Computing of Imperial College London.

September 2009

Acknowledgements

I owe my sincerest gratitude to my thesis supervisor, Dr Krysia Broda, for
her insightful guidance towards the completion of this project. I am deeply in-
debted to her for the endless hours she spent with me during the summer, for her
inexhaustible enthusiasm, and for her constant encouragement.

I would also like to thank my family, my parents and my sister, for their
unlimited and unconditional support throughout the years. There are not enough
words to describe how grateful I am for all the things they have done for me.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION
LOGICS

AIKATERINI MARAZOPOULOU
SUPERVISED BY DR KRYSIA BRODA

Abstract. Labelled deductive systems (LDS) provide a unifying framework
for different logics of the same family. Compiled labelled deductive systems
extend the notion of LDS to provide a uniform proof system and semantics for
logics of different families. Usually, the proof system associated with a CLDS
is natural deduction. Such CLDSs have been well studied for several logics
(normal modal logics, substructural logics, fuzzy logics etc.). The purpose of
this project is to provide a tableau proof procedure for Compiled Labelled
Deductive Systems, something that, to the extend of our knowledge, has not
been formally done in the past. Moreover, we present a tableau CLDS for
several description logics.

Contents

1. Introduction 6
1.1. Related work 6
1.2. Our work 6
1.3. Structure of the report 7
2. First-order Logic 8
2.1. Syntax 8
2.2. Semantics 9
2.3. Herbrand Structures 11
3. Trees 12
3.1. Unlabelled Trees 12
3.2. Labelled Trees 14
4. Compiled Labelled Deductive Systems 16
4.1. Languages and syntax of a general CLDS 16
4.2. Semantics 18
5. Description Logics 19
5.1. Syntax of ALC 19
5.2. Semantics of ALC 19
5.3. Reasoning Tasks 19
5.4. More expressive description languages 22
6. A CLDS for the Description Language ALC 24
7. Tableau for ALC-CLDS 26
7.1. General Introduction 26
7.2. Preliminaries on tableaux for CLDS 26
7.3. Tableau Expansion Rules 28
8. An ALC-CLDS for an Empty Knowledge Base 33
9. ALC-CLDS Tableau for Reasoning under an Empty Knowledge Base 35
9.1. Soundness 35

5

6 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

9.2. Completeness 39
9.3. Termination 41
10. ALC-CLDS with a Non-Empty TBox 45
11. ALC-CLDS Tableau for Reasoning in the Presence of a Free TBox 47
12. Blocking 49
12.1. ALC-CLDS tableau with blocking 51
12.2. Termination 51
12.3. Soundness and Completeness 54
13. ALC-CLDS with a Non-Empty ABox 57
14. ALC-CLDS Tableau for Reasoning in the Presence of a Non-Empty

ABox 58
14.1. Termination 58
15. ALC-CLDS with Non-Empty Labelling Algebra 61
16. ALC-CLDS Tableau for Reasoning in the Presence of a Non-Empty

Labelling Algebra 63
16.1. Soundness 63
16.2. Completeness 65
16.3. Termination 66
17. CLDS for more expressive description languages 67
17.1. An ALCN -CLDS 67
18. Extending the CLDS framework to include more dimensions 74
18.1. Introduction in temporal Description Logics 74
18.2. ALCT -CLDS 75
19. ALC-CLDS and Logic Programming 78
20. Conclusions and Future Work 81
References 82

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 7

1. Introduction

1.1. Related work. The existence of a plethora of logical systems that vary
from each other in several ways (syntax of the underlying language, semantics, or
the notion of derivability relation just to name a few) is an undeniable fact. This
motivated Gabbay to introduce a general framework, Labelled Deductive Systems
(LDS) [17], that would allow the uniform representation of logics that belong to
the same family. The main idea of this approach is to annotate every formula
with a label that contains some “extra information”. For example, in the case of
modal logics, labels can refer to names of worlds and a modal formula could be
annotated with the worlds where it is true (of course, this is an oversimplification
of how modal logics are actually modelled as labelled deductive systems). In that
sense, LDS do not handle formulas but labelled formulas. Moreover, derivation
rules do not only apply to formulas, but to labels as well.

Compiled Labelled Deductive Systems (CLDS) is an extension of LDS intro-
duced by Russo in [23]. CLDS constitute a unifying framework for logics belong-
ing to different families. To be more specific, CLDS provide a common notion
of derivability relation and semantic entailment for families of different logics.
This is achieved by using a “compilation” technique into first-order logic, i.e.
by translating part of the CLDS into first-order logic, and using first-order se-
mantics. This unifying approach can be applied to any logic that is first-order
axiomatizable.

Various logics have been formalized as Compiled Labelled Deductive Systems.
Besides normal modal logics [23], CLDS have been studied for conditional log-
ics [11], as well as for Access Control Logic [12]. Moreover, there have been ap-
plications to substructural logics [9], propositional resource logics [8], and fuzzy
logics [1]. In the aforementioned cases, the proof system associated with the
CLDS was natural deduction. It has to be mentioned that there exists a brief
description of a tableau CLDS for hybrid logic [13], however the details of the
formalization and of the proofs were not fully worked out.

Since this project is considerably related to description logics, it seems ap-
propriate to present the related work in this area too. Description Logics (DL)
are in general knowledge representation formalisms. Knowledge representation
systems based on description logics contain a DL-knowledge base and provide
ways to reason about the content of the base (reasoning tasks). A DL knowledge
base consists of two components, the TBox that contains terminological infor-
mation (i.e. information about classes of objects) and the ABox which contains
assertional information (i.e. information regarding individuals). One of the most
important characteristics of description logics is that they are decidable. It is
crucial that there exist “efficient” algorithms for the reasoning tasks.

In description logics the vast majority of reasoning algorithms are tableau-
based algorithms. It has to be noted that there exist tableau algorithms for all
the description languages that we will use in this report see for example [3] for
the basic tableau algorithms, as well as [19] for a tableau algorithm for the very
expressive description language SROIQ (which is more expressive than the ones
we consider here).

1.2. Our work. In this report we present a tableau CLDS for description logics
which is based on the description language ALC. Like in the case of CLDS

8 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

for modal logics, the “basic” ALC-CLDS can be extended by adding axioms in
the labelling algebra that express certain properties of the roles. This allows
us to formalize a family of description languages in the CLDS framework and
capture their differences in the labelling algebra. Furthermore, we describe in
detail how the information of a knowledge base can be incorporated into the
CLDS-framework and how it can be used for reasoning.

Another important part of this work is that the proof procedure associated
with the ALC-CLDS is a tableau proof procedure. We formalize the notion of
tableau in the CLDS framework and we present a sound, complete, and termi-
nating tableau calculus for the ALC-CLDS. The formalization of the tableau and
the tableau rules, as well as the techniques used to prove the soundness and com-
pleteness of the tableau calculus for the ALC-CLDS could be generalized and
applied in a CLDS for another logic.

We also consider several interesting extensions of the ALC-CLDS. First of
all, we examine the case of CLDS for Description Languages with more concept
constructors. To be more specific, we present an outline of a CLDS for the
description language ALCN that contains number restrictions. Next, we roughly
describe a CLDS for temporal description logics. This is a first step towards
exploring how more than one labels can be used in a CLDS. Finally, we present a
small application of how description logic programs [18] can be described in the
ALC-CLDS.

1.3. Structure of the report. The next four sections of this report are dedi-
cated to preliminaries. All this introductory information is necessary in order to
keep this report as self-contained as possible. To be more specific, in section 2
we briefly introduce the basic notions of first-order logic. Section 3 focuses on
the formal description of trees that will be later used to formalize the notion of
tableau. The fourth section is a concise introduction to Compiled Labelled De-
ductive Systems and is kept to an abstract level. Finally, section 5 presents the
basic notions of description logics and of the language ALC in particular.

The main part of the report starts in section 6 with the introduction of the
basic CLDS for the description language ALC, the ALC-CLDS. The next section
contains a formal description of a tableau calculus for the ALC-CLDS. In section
8 we introduce the knowledge base in the ALC-CLDS and in section 9 we examine
how to simulate the reasoning tasks of description logics in the ALC-CLDS under
the empty knowledge base. Sections 10 and 11 address the case of ALC-CLDS
and the corresponding tableau in the presence of a non-empty knowledge base
that contains only terminological information. In this case the “naive” tableau
algorithm may not terminate. In order to obtain a decision procedure, we in-
troduce in section 12 a blocking technique. Similarly, sections 13 and 14 focus
on ALC-CLDS and the corresponding tableau calculus under a full knowledge
base (that contains assertional information as well). Finally, in sections 15 and
16 axioms are added in the labelling algebra of the CLDS.

The remaining sections describe some possible extensions and directions for
future work. To be more specific, section 17 studies the formalization of a more
expressive description language, and section 18 the formalization of temporal
description logics in the CLDS framework. Finally, section 19 contains a small

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 9

application regarding description logic programs, that combine description logics
and logic programming.

10 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

2. First-order Logic

In this section we will briefly describe the basic notions of first-order logic and
we will introduce the notation used in the rest of the report. This is not intended
to be an in-depth analysis of first-order logic and there are excellent textbooks
that cover this field in detail. The reason, however, we need to present some
first-order notions is that first-order logic is closely related to CLDS. To be more
specific, the semantics of CLDS are first-order semantics. Moreover, some of the
languages used in the CLDS may be first-order languages.

2.1. Syntax. We can distinguish between elements that are part of every first-
order language, and those that are different among them depending on the ap-
plication domain. The common elements in all first-order languages are the fol-
lowing:

• A (finite or countably infinite) set X of individual variable symbols. We
will use the letters x and y to denote individual variables (with appropriate
indices when necessary).
• The logical connectives ¬, ∧, ∨, and →.
• The quantifiers ∀ (universal quantifier), and ∃ (existential quantifier).
• The punctuation symbols ‘(’ (left parenthesis), ‘)’ (right parenthesis), and

‘,’ (comma).

On the other hand, the elements that vary from language to language are:

• A (finite or countably infinite) set of predicate symbols P = {P0, . . .}.
• A (finite or countably infinite) set of function symbols F = {f0, . . . , }.
• A (finite or countably infinite) set of constant symbols C = {c0, . . . , }.

A first-order language can be determined by specifying the set of predicate
symbols, the set of function symbols, and the set of constant symbols. We write
L〈P ,F , C〉 to denote the first-order language L determined by P ,F , and C (we
say that 〈P ,F , C〉 is the signature of L).

Every predicate symbol and every function symbol is associated with a positive
integer that represents the arity of the predicate or the function. We define a
mapping arity that associates every predicate and function symbol to its arity.
For example, arity(P0) = 2 means that P0 is a binary predicate symbol. When
no confusion arises, the arity of a predicate (of function) will not be explicitly
stated. To be more specific, if we write P0(t1), it is implied that P0 is a unary
predicate symbol (arity(P0) = 1).

Definition 1 (Term). Let L〈P ,F , C〉 be a first-order language. The set of terms
for this language is the smallest set that meets the following conditions:

• Any variable is a term of L〈P ,F , C〉.
• Any constant symbol (member of C) is a term of L〈P ,F , C〉.
• If f is a function symbol, arity(f) = n and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term of L〈P ,F , C〉.

Definition 2 (Atomic formula). Let L〈P ,F , C〉 be a first-order language. If P n ∈
P is a predicate symbol and t1, . . . , tn are terms of L〈P ,F , C〉, then P (t1, . . . , tn)
is an atomic formula of L〈P ,F , C〉.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 11

Definition 3 (Well-formed formulas). The set of well-formed formulas (or simply
formulas) of a first-order language L〈P ,F , C〉 is the smallest set that meets the
following conditions:

• Any atomic formula of L〈P ,F , C〉 is a formula of L〈P ,F , C〉.
• If φ and ψ are formulas of L〈P ,F , C〉 and x is an individual variable

symbol, then the following are also formulas of L〈P ,F , C〉:
¬φ (φ ∧ ψ) (φ ∨ ψ) (φ→ ψ) ∀xφ ∃xφ

Sometimes, φ ∧ ψ will be used as an abbreviation for (φ ∧ ψ). Similar abbre-
viations will be used for the the formulas (φ ∨ ψ) and (φ → ψ). Moreover, we
will use > as an abbreviation for (φ∨¬φ) and ⊥ as an abbreviation for (φ∧¬φ),
where φ is an arbitrary well-formed formula of a first-order language. Finally,
φ↔ ψ is an abbreviation for (φ→ ψ) ∧ (ψ → φ).

Definition 4 (Free-variable occurrences). Let φ, ψ be formulas of L〈P ,F , C〉.
We distinguish the following cases:

• If φ is an atomic formula, then the free-variable occurrences of φ are all
the variable occurrences in φ.
• The free-variable occurrences of ¬φ are the free-variable occurrences of φ.
• The free-variable occurrences of φ∧ψ, φ∨ψ, φ→ ψ are the free-variable

occurrences of φ and the free-variable occurrences of ψ.
• The free-variable occurrences of ∀xφ and ∃xφ are the free-variable occur-

rences of φ, excluding the occurrences of the variable x.

Definition 5 (Sentence). A sentence of L〈P ,F , C〉 is a formula of this language
that contains no free variables.

Finally, if an expression (a formula or a term) does not contain any variables
at all, free or not free, it is said to be ground.

2.2. Semantics.

Definition 6 (First-order structure). A structure for the first-order language
L〈P ,F , C〉 is a pair M = 〈D, I〉 where:

• D is a non-empty set, called the domain of M.
• I is a mapping, called an interpretation, that maps:

– Every constant symbol c ∈ C to some member of the domain cI ∈ D.
– Every n-ary function symbol f ∈ F to some n-ary function f I :
Dn → D

– Every n-ary predicate symbol P ∈ P to some n-place relation P I on
D (P I ⊆ Dn).

Definition 7 (Assignment). An assignment in a structure M = 〈D, I〉 is a
function A : X → D that maps every individual variable to an element of the
domain (xA ∈ D).

Definition 8 (Interpretation of terms). Let L〈P ,F , C〉 be a first-order language,
M = 〈D, I〉 a structure for L, and A an assignment in M. Every term t of L
can be associated with an element of the domain as follows:

• If t is a constant symbol c, then cI,A = cI .
• If t is an individual variable x, then xI,A = xA.

12 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

• If t is of the form f(t1, . . . , tn), then [f(t1, . . . , tn)]I,A = f I(tI,A1 , . . . , tI,An).

Definition 9 (x-variant). Let A and A′ be two assignments in a structure M.
We say that A is an x-variant of A′ iff A and A′ assign the same values to all
variables except possibly x. If y ∈ X :

A′(y) =

{
A(y) if y 6= x

d ∈ D if y = x

Definition 10 (Truth). A formula φ is said to be true in a first-order structure
M and under an assignment A in M (notation:M, A |=FOL φ) when:

If φ is an atomic formula:

M, A |=FOL P (t1, . . . , tn) iff (tI,A1 , . . . , tI,A2) ∈ P I

If φ and ψ are first-order formulas:

M, A |=FOL ¬φ iff not M, A |=FOL φ

M, A |=FOL φ ∧ ψ iff M, A |=FOL φ and M, A |=FOL ψ

M, A |=FOL φ ∨ ψ iff M, A |=FOL φ or M, A |=FOL ψ

M, A |=FOL φ→ ψ iff if M, A |=FOL φ then M, A |=FOL ψ

M, A |=FOL ∀xφ iff M, A′ |=FOL φ for all x-variants A′ of A

M, A |=FOL ∃xφ iff M, A′ |=FOL φ for some x-variant A′ of A

In the case of the abbreviations > and ⊥ it easy to show that:

M, A |=FOL> and M, A 6 |=FOL⊥

Notice that if φ is a sentence, then the assignment A does not affect the truth
of φ. To emphasize that, we will write M|=FOL φ to denote that φ is true in M
when φ is a sentence. In this case we say that M is a model of the sentence φ.

In this report we adopt the following notational convention. Let ∀xφ be a
sentence and M a first-order structure.

M|=FOL ∀xφ if and only if M, [x 7→ d] |=FOL φ for all d ∈ D,

where by [x 7→ d] we denote an assignment that maps x to an element d of the
domain. Similarly, if ∃xφ is a sentence,

M|=FOL ∃xφ if and only if M, [x 7→ d] |=FOL φ for some d ∈ D.

Definition 11 (Satisfiability). A formula φ is satisfiable if there exists a first-
order structure M and an assignment A in M such that M, A |=FOL φ.

Definition 12 (Valid). A formula φ is valid iff for every structure M for the
language and for every assignment A in M, φ is true in M under A.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 13

2.3. Herbrand Structures.

Definition 13 (Herbrand Universe). Let L = 〈P ,F , C〉 be a first-order language
and C 6= ∅ (if C = ∅ we consider C to contains a single constant symbol C = {c}).
Let U0 = C. For i ≥ 0, Ui+1 is defined inductively as follows:

Ui+1 = Ui ∪ {f(t1, . . . , ti) | t1, . . . , ti ∈ Ui and f ∈ F}.
The Herbrand Universe of L is U = limi→∞ Ui.

Similarly we can define the Herbrand Universe of a set S of first-order formulas.
To be more specific, U0 ⊆ C is defined as the set of constants that appear in S (or
if no constants appear in S it is considered to contain a single constant symbol
like before).

Definition 14 (Herbrand Base). The Herbrand Base of L if the set of ground
atomic formulas of the form P (t1, . . . , tn) where t1, . . . , tn are members of the
Herbrand universe of L.

Similarly, the Herbrand base of a set of formulas can be defined as the subset
of the Herbrand base that contains exactly the predicate symbols that appear in
the set of formulas.

Definition 15 (Herbrand Structure). Let L = 〈P ,F , C〉 be a first-order language.
A Herbrand structure for L is a first-order structure MH = 〈U ,H〉 where

• U is the Herbrand universe of L.
• H is a function (known as Herbrand interpretation) that maps

– Every constant c ∈ C to itself cH = c (c ∈ U).
– Every n-ary function symbol f ∈ F to the n-ary function fH :
Un → U such that fH(t1, . . . , tn) = f(t1, . . . , tn) (remember that
f(t1, . . . , tn) ∈ U).

Notice that the Herbrand interpretation H does not specify what should be
assigned to predicate symbols. Therefore, since what should be assigned to con-
stant and function symbols is fixed by definition 15, a Herbrand interpretation
can be determined by the set of ground atoms that are true or in other words,
by a subset of the Herbrand base.

14 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

3. Trees

Trees have an important role in this report, as tableaux will be defined as
labelled trees. In this section we will provide all the necessary definitions that
are related to trees (both labelled and unlabelled).

3.1. Unlabelled Trees. Let Σ be a set of symbols, known as the alphabet.
Members of Σ are usually called letters. A sequence of letters from an alphabet
Σ is known as a word over Σ. Words are represented by simply putting the letters
one after another. For example, ababa is a word over the alphabet {a, b}. In what
follows, we will often use the following notation: for some letter a ∈ Σ and some
k ∈ N, ak denotes a word that consists of k consecutive occurrences of letter a:

ak = aa . . . a︸ ︷︷ ︸
k times

Concatenation between two words u and v will be written either as uv or by using
a binary operator u · v. Moreover, the size (or length) of a word corresponds
(informally) to the number of letters that the word contains. We will not give a
formal definition since it is a rather intuitive notion. The size of a word w will
be denoted by |w|. For example, |abbbaaa| = 7. Finally, we will use the symbol ε
to denote the empty word, namely the word with size equal to 0.

Definition 16 (Substring). Let u, v be two finite words over an alphabet Σ. We
say that u is a substring of v if there exist two finite words w,w′ over Σ such that
v = wuw′.

Notice that if both w,w′ are the empty word then the substring coincides with
the word itself. If at least one of w,w′ is required to be a non-empty word, then
u is a strict substring of v.

In what follows, we will be mainly concerned with substrings of a word that
appear in “the beginning of the word”. Such substrings are referred to as prefixes
and a formal definition is given below.

Definition 17 (Prefix (finite words)). Let Σ be a countable alphabet and u,w
two finite words over Σ (u,w ∈ Σ∗). We say that u is a prefix of w (notation:
u ≤ w) if there exists a word v ∈ Σ∗ such that w = uv.

Example 18. Assume that we have the alphabet Σ = {a, b}. Some finite words
over Σ are the following: abbba, ab, and the empty word ε (obviously they are
not the only words of Σ).

The finite word aba is a word over Σ and is a substring of the word bababb.
This is because there exist words over Σ, the words b and bb, such that bababb
can be written as b · aba · bb.

The finite word ab is a word over Σ and is a prefix of abbba because there is a
word over Σ, the word ba, such that abb · ba is abbba. Similarly, ab is a prefix of
ab because ab = ab · ε. The finite word abb is a word over Σ and is a prefix of
abbba but not of ab. The prefixes of ab are the following words: ε, a, ab.

Now we are able to move on and define the notion of trees. Informally, a tree
is a set of words over an alphabet that meets certain closure conditions.

Definition 19 (Tree). A tree T is a set of words over an alphabet Σ (T ⊆ Σ∗)
that is prefix closed, i.e. if w ∈ T , then u ∈ T for all u ≤ w.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 15

ε

sss
sss

s
KKK

KKK
K

a

sss
sss

s
KKK

KKK
K

b c

aa ab ac ca

cab

Figure 1. Graphical representation of tree T1 = {ε, a, b, c, aa, ab, ac, ca, cab}.

Notice that the root of such a tree is the empty word ε. Moreover, a tree is
said to be finite if it is a finite set of words over an alphabet, or in other words,
if it contains finitely many nodes.

Example 20. Assume that Σ = {a, b, c}. The set of words

T1 = {ε, a, b, c, aa, ab, ac, ca, cab}
is indeed a tree. Its graphical representation is shown in figure 1. On the other
hand, the set of words T2 = {ε, a, ca} is not a tree. According to the definition,
since ca ∈ T2, all the prefixes of ca should be in T2. However, c is a prefix of ca
and c /∈ T2.

In the scope of this report we will only use binary trees, i.e. trees where each
node has at most two children. To define binary trees it is enough to restrict the
above general definition of trees (definition 19) to alphabets that contain only
two distinct symbols. Without loss of generality, we will consider binary trees to
contain words over the alphabet {0, 1}. We will also impose one more restriction
in order to obtain binary trees of a specific form. We will require every node that
has a child, to have a 0-child.

Definition 21 (Binary Tree). A binary tree is a set T ⊆ {0, 1}∗ that has the
following properties:

• It is prefix closed.
• If w1 ∈ T , then w0 ∈ T . That means that if a node has only one child,

that is the 0-child.

An example of a binary tree is presented in figure 2. Notice that the set
{ε, 0, 1, 00, 01, 11} although it is prefix closed, it is not a binary tree according to
definition 21. Since node 11 is in this set, node 10 should also belong to the set,
which does not. In other words, node 1 has a 1-child, but it has not a 0-child.

Every node of the tree uniquely identifies a finite path from the root of the tree
to this node. Therefore, given a node, we can define the corresponding path from
the root to that node as follows:

Definition 22 (Finite path). Let T be a tree and n a node of T . The (finite)
path that corresponds to n is the set pn = {v ∈ T | v ≤ l}.

If the node is a leaf, then the corresponding path is called branch. In other
words, a branch is a path to a leaf node. A leaf node is informally a node that

16 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

ε

oooooooo
OOOOOOOO

0

~~
~~

~
@@

@@
@

1

~~
~~

~

00 01 10

Figure 2. Graphical representation of the binary tree T = {ε, 0, 1, 00, 01, 10}

has no children. This is equivalent to saying that a leaf is a maximal element of
the tree w.r.t. ≤.

Definition 23 (Leaf node). Let T be a tree. A leaf node is a ≤-maximal element
of T .

Definition 24 (Finite branch). Let T be a tree, and l a leaf node of T . The
(finite) branch that corresponds to l is the set bl = {v ∈ T | v ≤ l}.

Since bl is defined as a set of nodes, we can use the notation |bl| to denote the
cardinality of the set, i.e. the number of nodes of the branch. Of course the same
holds for paths.

It is not hard to generalize the above description for infinite trees. An infinite
tree would be an infinite set of words over an alphabet. Notice that an infinite
tree does not contain infinite words. It consists of infinitely many finite words.
The following definition for infinite branches was taken from [3].

Definition 25 (Infinite branch). Let T be an (infinite) tree. An infinite branch
is a prefix closed subset of T such that for every i ≥ 0 there exists exactly one
node n ∈ T with |n| = i.

3.2. Labelled Trees. Informally, a labelled tree is an (unlabelled) tree which
has a label assigned to every one of its nodes.

Definition 26 (L-Labelled Tree). An L-labelled tree is a pair TL = 〈T , f〉 where
T is an unlabelled tree and f : T → L a function that maps every node of the
unlabelled tree to a member of the set L.

A node of the labelled tree TL = 〈T , f〉 is a pair 〈n, f(n)〉, where n ∈ T and
f(n) is the label of the node.

Example 27. Consider again the binary tree of figure 2: T = {ε, 0, 1, 00, 01, 10}.
Let L = {a, b, c} be the set of labels of the tree, and f a function that maps the
label a to a node if the node contains at least one 1, otherwise it assigns b. A
graphical representation of the labelled tree TL = 〈T , f〉 is shown in figure 3.

A branch of TL is a pair B = 〈bl, f〉, where bl is the branch of T whose leaf
node is l. A labelled node 〈n, f(n)〉 belongs to a labelled branch B iff n ∈ bl:

〈n, f(n)〉 ∈ B ⇔ n ∈ bl
In order to simplify the notation we will sometimes use the notation label ∈ B as
an abbreviation for “there exists a node n ∈ bl such that f(n) = label”:

label ∈ B iff there exists n ∈ bl such that f(n) = label

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 17

〈ε, b〉

oooooooo
OOOOOOOO

〈0, b〉

~~
~~

~
@@

@@
@

〈1, a〉

~~
~~

~

〈00, b〉〈01, a〉〈10, a〉

Figure 3. Graphical representation of the labelled tree TL =
〈T , f〉 = 〈{ε, 0, 1, 00, 01, 10}, f, {a, b, c}〉.

Similar definitions can be given in for a labelled path: P = 〈pn, f〉 where p is
the path from the root to node n. Moreover, we will say that a path P1 = 〈p1, f〉
is contained in P2 = 〈p2, f〉 and we will write P1 ⊆ P2 iff p1 ⊆ p2.

Example 28. Consider again the labelled tree of figure 3. The labelled branch
whose leaf node is 〈00, b〉 is B = 〈b00, f〉 = 〈{ε, 0, 00}, f〉. In this case, b ∈ B
because there exists a node labelled with b (actually all the nodes of this branch
are labelled with b). On the other hand, a /∈ B because there does not exist
a node of B that is labelled with a. Let P = 〈p0, f〉 be the path to node 0.
Obviously P ⊆ B.

18 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

4. Compiled Labelled Deductive Systems

Labelled Deductive Systems (LDS) were introduced by Gabbay [17] in an at-
tempt to provide a general framework for different logics that belong to the same
family and therefore, they share some semantical and proof-theoretical notions.
The basic idea is to annotate every formula of a logic with a label, which provides
more information for this formula.

Compiled Labelled Deductive Systems (CLDS) are based on the LDS frame-
work and provide a uniform representation for logics belonging to different fam-
ilies, but whose semantics is axiomatizable in first-order logic [10]. The notions
of CLDS as will be described in this report were introduced in [23] for a Modal
Labelled Deductive System (MLDS).

In this section we will describe the basic notions of CLDS in an abstract level.
By that, we mean that we will not specify the logic that the CLDS formalizes (for
example description or modal logics). Instead, we will use an arbitrary language
and we will later narrow down the description to CLDS for Description Logics.

4.1. Languages and syntax of a general CLDS. We will first describe the
language of a CLDS. The following definitions are given here as presented in [10].

Definition 29 (CLDS language). A CLDS language is an ordered pair 〈L#,LL〉
where L# is the language of the logic to formalize, and LL is the labelling lan-
guage.

The language L# could be a propositional or a first-order language. The la-
belling language LL could be a suitable fragment of a first-order language.

Definition 30 (Labelling language LL). A labelling language is a first-order
language LL〈P ,F , C〉.

Sometimes it is convenient to skolemize formulas of the labelling language. To
achieve that, we define a new language (the semi-extended labelling language)
which extends the labelling language with appropriate Skolem function symbols.

Definition 31 (Semi-extended labelling language). Given a CLDS language
〈L#,LL〉, the semi-extended labelling language that corresponds to LL is denoted
by Func(L#,LL) and is the language LL extended with a set of Skolem function
symbols.

Definition 32 (Labelling algebra). Let 〈L#,LL〉 be a CLDS language. A la-
belling algebra A is a first-order theory1 written in Func(L#,LL).

Definition 33 (Label). Given a CLDS language 〈L#,LL〉, a label is a ground
term of the semi-extended labelling language Func(L#,LL).

Generally, CLDS formulas are of two different types: declarative units which
express that a formula is associated with a specific label, and Relation-literals
that contain information on how labels are related to each other.

Definition 34 (Declarative unit). Let 〈L#,LL〉 be a CLDS language. A declar-
ative unit is a pair (a :λ) where a is a formula of L# and λ is a label.

In what follows we will sometimes use (a :λ) as an abbreviation for (a :λ).

1A theory is a set of sentences that is closed under logical consequence.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 19

Definition 35 (Relation-predicate). Let 〈L#,LL〉 be a CLDS language, R an
n-ary predicate of L#, and λ1, . . . , λn labels. A Relation-predicate is a predicate
of the form R(λ1, . . . , λn).

Sometimes we will make use of Relation-literals namely of literals2 of the form
R(λ1, . . . , λn) or ¬R(λ1, . . . , λn).

It has to be noted that in [10] the term R-predicate is used instead of Relation-
predicate because the labelling language contained only one predicate symbol,
R. However, since we will later use labelling languages that have more than one
predicate symbols, we opted the more general term Relation-predicate.

Definition 36 (CLDS-formula). Let 〈L#,LL〉 be a CLDS-language. A CLDS-
formula is either a declarative unit or a Relation-literal.

Notice that a CLDS language is not a set of CLDS-formulas.

Definition 37 (Diagram). Let 〈L#,LL〉 be a CLDS language. A diagram D is
a set of Relation-literals.

Definition 38 (Configuration). Let 〈L#,LL〉 be a CLDS language. A configu-
ration C is a pair 〈D,F〉 where D is a diagram and F is a function that maps
every label to a set of L#-formulas.

Equivalently, a configuration can be defined as a pair C = 〈D, S〉 where D is
the diagram and S a set of declarative units as follows:

S = {(a : t) | t is a label and a ∈ F(t)}.

More generally, a configuration can be defined as a set of CLDS-formulas C =
D ∪ S. In this case we can directly refer to the size of a configuration (i.e. the
number of Relation-literals and declarative units it contains) as the cardinality
of the set D ∪ S: |C| = |D ∪ S|.

It is easy to show that the above three definitions are equivalent. In what
follows we will use mainly the last one, however, all three of them may be used
depending on the context.

Definition 39 (Compiled Labelled Deductive System). Let 〈L#,LL〉 be a CLDS
language. A Compiled Labelled Deductive System (CLDS) is a tuple

〈〈L#,LL〉,A,R〉

where A is a labelling algebra, and R is a set of inference rules.

Inference rules are related to the proof system that will be used. In [10] the
proof system is natural deduction and the inference rules are defined accordingly.
Here we will use a tableau proof procedure, therefore the set of inference rules
will be a set of tableau rules. More details on the tableau rules will be provided
in the following chapters.

A CLDS for the language L# will be referred to as L#-CLDS.

2A literal is an atom or a negated atom.

20 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

4.2. Semantics. In order to provide a model-theoretic semantics for a compiled
labelled deductive system, the CLDS language is translated into first-order logic
and first-order semantics is used.

The main idea of the translation is that each declarative unit (a :λ) will be
translated to a unary predicate [a]∗(λ). Relation-literals are translated as them-
selves. The relationships between different monadic predicates are expressed by
first-order axiom schemata that reflect the semantics of the topmost operator of
each formula. The semi-extended language Func(L#,LL) enriched with the set of
all the monadic predicates that correspond to well-formed formulas of L# forms
the extended labelling language, which is used to describe the aforementioned
first-order axiom schemata.

Definition 40 (Extended labelling language). Let Func(L#,LL) be a semi-
extended labelling language, and let a1, . . . , an, . . . be an enumeration of L#-
formulas. The extended labelling language Mon(L#,LL) is defined as the language
Func(L#,LL) extended with the set {[a1]

∗, . . . , [an]∗, . . . } of monadic predicate
symbols.

Definition 41 (Extended algebra). An extended algebra A+ is a first-order theory
written in Mon(L#,LL) that extends the labelling algebra A of a CLDS with
axiom schemata on the monadic predicates.

Definition 42 (First-order translation of a configuration). Given a CLDS and
a configuration C = 〈D,F〉, the translation of C into first-order logic (notation:
FOT(C)) is the theory written in Mon(L#,LL) and defined as:

FOT(C) = D ∪DU
where DU = {[a]∗(λ) | a ∈ F(λ), λ is a label}.

Definition 43 (Semantic structure of a CLDS). Given a CLDS C and its asso-
ciated extended algebra A+, M is a semantic structure of C if and only if M is
a model of A+ (i.e. every formula of A+ is true in M).

According to this definition, a semantic structure for a given CLDS is a first-
order structure for the corresponding extended labelling language.

Now it is possible to define the notion of satisfiability for declarative units,
Relation-literals, and configurations.

Definition 44 (Satisfiability). Let C be a compiled labelled deductive system.
• A declarative unit (a :λ) is satisfiable iff there exists a semantic structureM

of C such that M |=FOL [a]∗(λ) (M is said to satisfy (a :λ)). We write:

M |=CLDS (a :λ)

• A Relation-literal ∆ is satisfiable iff there exists a semantic structure M of
C such that M |=FOL ∆ (M is said to satisfy ∆). We write:

M |=CLDS ∆

• A configuration C is satisfiable iff there exists a semantic structure M of C
such that M satisfies all declarative units and Relation-literals of C. We write:

M |=CLDS C

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 21

5. Description Logics

Description languages consist in general of two basic building blocks: concepts
that are used to represent classes of objects, and roles that describe the relation-
ships between different objects. Atomic concepts can be combined in order to
create more complex ones through the use of constructors. Similarly, in more
expressive description languages, complex roles can be created from atomic ones.

In what follows we will describe in a concise manner the basic notions of de-
scription logics. A more detailed introduction can be found in [3].

5.1. Syntax of ALC. ALC (Attributive Language with Complement) was intro-
duced in [24] and is one of the simplest non-trivial description languages. The
alphabet of ALC consists of a set of atomic concepts NC , a set of atomic roles
NR, the logical symbols u,t,∃,∀ and the punctuation symbols “.” (dot), “(” (left
parenthesis), “)” (right parenthesis). Concepts in ALC are formed according to
the following syntax rule:

C ::= A | ¬C | (C t D) | (C u D) | ∀r.C | ∃r.C

where the symbol A is used for atomic concepts, C for (complex) concepts, and r
for atomic roles.

5.2. Semantics of ALC. The semantics is defined in terms of an interpretation
I, which consists of a non-empty empty set ∆I (the domain of the interpretation),
and a function ·I that maps atomic concepts to a subset of the domain and atomic
roles to a subset of ∆I ×∆I :

AI ⊆ ∆I ,where A is an atomic concept

rI ⊆ ∆I ×∆I ,where r is an atomic role

This interpretation is inductively extended to concept descriptions.

[¬C]I = ∆I\CI

[C uD]I = CI ∩DI

[C tD]I = CI ∪DI

[∀r.C]I = {a ∈ ∆I | for all b, (a, b) ∈ rI implies b ∈ CI}
[∃r.C]I = {a ∈ ∆I | there exists a b such that: (a, b) ∈ rI and b ∈ CI}

We will use the following abbreviations: > = (At¬A) and ⊥ = (Au¬A). The
interpretation of these concepts is: >I = ∆I and ⊥I = ∅.

A concept C is satisfiable iff there exists an interpretation I such that CI 6= ∅
(in this case we say that I is a model for C).

5.3. Reasoning Tasks. A knowledge base expressed in description logics con-
sists of two components: the TBox that contains information about concepts and
how they are related to each other, and the ABox which contains information
about individuals.

22 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

5.3.1. Terminological Knowledge (TBox). A TBox is a finite set of statements of
the following four types [16]:

A=̇C Concept Definition

Av̇C Primitive Concept Specification

C=̇D Concept Equation

Cv̇D Concept Inclusion

A TBox that contains only primitive concept specifications and concept defini-
tions is called a simple TBox. We say that an atomic concept A directly uses
another atomic concept A′ if A′ appears in the left-hand side of the definition
of A. Let uses be the transitive closure of the relation directly uses. A TBox
contains a cycle if an atomic concept A uses itself [3]. If a TBox contains concept
equations and/or concept inclusions it is called a free TBox. Notice that concept
definitions and primitive concept specifications are special cases of concept equa-
tion and concept inclusion respectively. Therefore, a free TBox may also contain
concept definitions and primitive concept specifications.

Example 45. Assume that Mother , Female, and Person are atomic concept
names, and hasChild is an atomic role name. A TBox for this application domain
may contain the following statements:

Mother=̇Female u ∃hasChild .> (5.1)

Motherv̇Female (5.2)

Mother u ∀hasChild .Femalev̇Person u ∃hasChild .> (5.3)

The first one is a concept definition which says that someone is a mother if that
someone is a female and moreover has a child. Statement 5.2 is a primitive concept
specification. It captures the fact that every mother is female. Finally, 5.3 is a
concept inclusion according to which everyone that is a mother and has only
female children is also a person that has at least one child.

An interpretation I satisfies a statement A=̇C (similarly C=̇D) iff AI = CI

(CI = DI), and a statement Av̇C (Cv̇D) iff AI ⊆ CI (CI ⊆ DI). An interpre-
tation I is a model for a TBox if it satisfies all the statements of the TBox.

The reasoning tasks that are associated with the TBox are:
• Concept Satisfiability: A concept C is satisfiable with respect to a TBox T if

there exists a model I of T such that CI 6= ∅. If there exists no such interpretation
I, then the concept C is said to be unsatisfiable with respect to T .
• Subsumption: Concept C is subsumed by concept D with respect to a TBox
T (notation: C vT D) iff CI ⊆ DI for every interpretation I that is a model of
T .

Subsumption can be reduced to satisfiability. To be more specific, a concept C
is subsumed by a concept D if and only if the concept (C u ¬D) is unsatisfiable.

Example 46. Let T be the TBox presented in example 45 and assume that we
want to check if the concept Mother u ¬Female is satisfiable w.r.t. T . Suppose
that it is satisfiable w.r.t. T . That means that there exists an interpretation I
such that (Motheru¬Female)I 6= ∅, or equivalently MotherI∩(¬Female)I 6= ∅. It
follows that there exists an element of the domain d ∈ ∆I such that d ∈ MotherI

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 23

and d ∈ (¬Female)I . This means that d /∈ FemaleI . However, I must be a model
of the TBox since we have assumed that the initial concept is satisfiable w.r.t.
T . It follows that I satisfies axiom 5.2: MotherI ⊆ FemaleI . In other words, for
all elements d ∈ ∆I such that d ∈ MotherI it holds that d ∈ FemaleI . This is a
contradiction, therefore, the initial concept is not satisfiable w.r.t. T .

Notice however, that the concept is satisfiable w.r.t. the empty knowledge base.
We can define an interpretation such that there exists a d ∈ ∆I that belongs to
the interpretation of Mother but not in the interpretation of Female.

5.3.2. Assertional Knowledge (ABox). As we have mentioned earlier, the ABox
contains information regarding individuals. To include this kind of information
the alphabet of ALC is extended with a set of symbols for individuals, NI . In
what follows we will use the letters a, b to refer to individuals. To define the
corresponding semantics, the interpretation function ·I is extended in order to
map individuals to elements of the domain:

aI ∈ ∆I

At this point we have to mention that if the Unique Name Assumption (UNA)
is adopted, then if two individuals have different names, they are mapped to
different elements of the domain: a 6= b iff aI 6= bI . In the literature, some
authors enforce the UNA while others do not. In this report we will not adopt
the Unique Name Assumption. The reasons will become clear later, when a
tableau rule for number restrictions will be introduced (section 17).

An ABox contains concept assertions of the form C(a) meaning that the indi-
vidual a belongs to the interpretation of the concept C, and role assertions r(a, b)
which denote that the individual b is a filler of the role r for the individual a.

An interpretation I satisfies the assertion C(a) iff aI ∈ CI , and the assertion
r(a, b) iff (aI , bI) ∈ rI . I is a model for an ABox if it satisfies all the assertions
in the ABox. These definitions can be generalized for satisfiability w.r.t. a TBox.
To be more specific, an interpretation is said to satisfy an assertion of the ABox
w.r.t. a TBox, if it satisfies the assertion and in addition it is a model of the
TBox.

The main reasoning tasks associated with the ABox are the following.
• Consistency of the ABox: An ABox A is said to be consistent with respect

to a TBox T if there is an interpretation I that is a model of both A and T .
• Instance checking: Given an ABox A, an individual a is an instance of a

concept description C with respect to a TBox T if for every interpretation I that
is a model of both A and T , aI ∈ CI .

It is easy to see that instance checking can be reduced to ABox inconsistency [3].
To be more specific, a is an instance of C w.r.t. an ABox A and a TBox T if and
only if A ∪ {¬C(a)} is inconsistent w.r.t. T .

Example 47. Let MARY and ANN be individual names. Given the concept
and role names defined in the previous examples, a possible ABox A contains the
following statements:

Mother(ANN) (5.4)

Female(MARY) (5.5)

hasChild(ANN ,MARY) (5.6)

24 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

Ann is asserted to be a mother, Mary is female, and Mary is the child of Ann.
It can be easily seen that this is a consistent ABox w.r.t. T . However, if we add
the following assertion

¬Female(ANN) (5.7)

then A is not consistent w.r.t. T .

A final remark regarding the ABox is that the information contained in an
ABox is assumed to be incomplete. In other words, if something is not explicitly
asserted in the ABox, it is not assumed to be false. It is just unknown. In the
previous example, we do not know if Mary is a mother. In some interpretations
of A Mary is a mother and in some others she is not. That means that the ABox
has “open-world” semantics.

Finally, it is worth mentioning that the axioms of both the TBox and the ABox
are not ALC formulas (or more generally, they are not formulas of any description
language). They are rather axioms in a meta-language.

An ALC language can be determined by the set of atomic concept symbols,
the set of atomic role symbols, and the set of individual symbols that it con-
tains (NC ,NR and NI respectively). In what follows, we will use the notation
ALC〈NC ,NR,NI〉 to denote the ALC language that has the specified sets of
symbols.

5.4. More expressive description languages. In general, more expressive de-
scription languages can be obtained by extending ALC with additional concept
and role constructors, as well as with axioms for the roles.

First of all, we will briefly describe some commonly used concept constructors,
besides those already contained in ALC.
• Number restrictions (N). The number of fillers of a role r is restricted to

be smaller or equal (at most restrictions), or bigger or equal (at least restriction)
than a number n. The interpretation of such concepts is:

At most restriction: (≤n r)I = {a ∈ ∆I | ‖{b | (a, b) ∈ rI}‖ ≤ n}
At least restriction: (≥n r)I = {a ∈ ∆I | ‖{b | (a, b) ∈ rI}‖ ≥ n}

where ‖S‖ denotes the size of set S.
• Quantified number restrictions (Q). They extend number restrictions in the

sense that the number of fillers of r that belong to the interpretation of C is re-
stricted by n. The interpretation of concepts using quantified number restrictions
is:

At most restriction: (≤n r.C)I = {a ∈ ∆I | ‖{b | (a, b) ∈ rI and b ∈ CI}‖ ≤ n}
At least restriction: (≥n r.C)I = {a ∈ ∆I | ‖{b | (a, b) ∈ rI and b ∈ CI}‖ ≥ n}

Role constructors are used in order to create complex roles. Remember that
ALC contains only atomic roles (denoted by r). We will use the symbol R for
complex (not atomic) roles. Some common role constructors are the following:
• Inverse roles (I). Given an ALC-role R, we use the notation R− to denote

the inverse role of R. The interpretation of an inverse role is:

(R−)
I

= {(b, a) | (a, b) ∈ RI}.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 25

• Role intersection (∩). Given two ALC-roles R1 and R2 the intersection of
the roles (R1 ∩R2) is a new role interpreted as follows:

(R1 ∩R2)
I = RI1 ∩RI2 .

• Role chain (composition) (◦). Let R1 and R2 be two ALC-roles. Their
composition (R1 ◦R2) is a role defined as follows:

(R1 ◦R2)
I = {(a, b) | there exists c ∈ ∆I such that (a, c) ∈ RI1 and (c, b) ∈ RI2}

• Role complement (¬). Like the complement of a concept C is a concept ¬C
whose interpretation contains the domain elements that do not belong to the
interpretation of C, the complement of a role R is another role that is interpreted
as all the pairs of elements that do not belong to RI .

(¬R)I = (∆I ×∆I)\RI

Finally, it is possible to have role axioms which are used to assert that certain
roles have some properties. The most common role axioms are the following:
• Transitive roles (S). An axiom of the form Trans(R) is used to assert that

R is a transitive role.
• Role hierarchy (H). An axiom of the form R1v̇RR2 is used to denote that

RI1 ⊆ RI2 .
Notice that the role axioms resemble the axioms of the TBox in the sense that

they describe properties of the roles, like TBox contains statements regarding
properties of the concepts. This is why some authors introduce a new component
to the knowledge base, the RBox, that contains all the role axioms. In this case, a
knowledge base is a triple K = 〈T ,A,R〉. A more detailed description of RBoxes
can be found in [19].

As a convention, description languages are named by adding the names of
the extra constructors and role axioms they contain to the end of “ALC”. For
example, the description language that extends ALC with number restrictions
is ALCN . However, ALC extended with transitive roles is widely known as S.
Therefore, the language SHIN is the language ALC with transitive and inverse
roles, role hierarchy and number restrictions.

26 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

6. A CLDS for the Description Language ALC

In this section we will describe a Compiled Labelled Deductive System for the
description language ALC. Obviously, in this case L# is ALC. The labelling
language is a subset of the language given in definition 30. To be more specific, it
is a first-order language that contains a set of constant symbols, a set of individual
variables, and a set of predicate symbols, along with the logical connectives and
quantifiers. It contains no function symbols. From now on we will use the symbol
LALCL for this labelling language.

Definition 48 (Labelling language LALCL). Fix a language ALC〈NC ,NR,NI〉.
The labelling language of the CLDS for ALC〈NC ,NR,NI〉 is the first-order lan-
guage L〈P ,F , C〉 where:
• P is a set of binary predicate symbols. Each one of these predicates will

be the “equivalent” of an ALC-role. Therefore, the labelling language needs to
contain as many such predicates as the cardinality of NR. In order to highlight
this correspondence, we will use the notation Rr for the binary predicate of the
labelling algebra that corresponds to the ALC-role r.
• F = ∅: The labelling language contains no function symbols.
• C is a set of constants. We consider the set of constants to consist of two

disjoint sets of symbols: Cind that may be empty, and the non-empty set Cgen
that is considered to contain countably infinite elements (C = Cind ∪ Cgen). Ev-
ery constant of Cind corresponds to an ALC-individual. We will use the same
notation as in the case of predicate symbols: ca will denote the constant of the
labelling language that corresponds to the individual a. Obviously, |Cind | = |NI |.
Therefore, if the ABox is empty, Cind will be the empty set. Regarding the set
Cgen , we will use the notation c0, c1,. . . for its elements.

Therefore, the CLDS-language in this case is the ordered pair 〈ALC,LALCL 〉.
Example 49. Some examples of CLDS formulas for the language 〈ALC,LALCL 〉
are given below:

(C1 u C2) : ca declarative unit

Rr(ca, cb) Relation-literal

Generally, the semi-extended labelling language is obtained by extending the
labelling language with appropriate skolem function symbols. In the case of the
ALC-CLDS, however, the semi-extended labelling language is assumed to coincide
with the labelling language.

The labelling algebra A is a theory written in the semi-extended labelling
language of the CLDS Func(ALC,LALCL). It is used to capture some properties
of the ALC-roles.

Example 50. In this example, we will present some common axioms of the
labelling algebra for an ALC-CLDS.
• Reflexive roles: Let likes be a role that associates a person with another

person that he/she likes. For example likes(MARY ,ANN) means that Mary
likes Ann. Assuming that every person likes himself/herself, the role likes needs
to be reflexive. That can be expressed by adding in the labelling algebra the
following axiom:

∀x(likes(x, x))3

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 27

Table 1. Axioms of Mon(L#,LL) for the ALC-CLDS

Name Axiom

Ax-u ∀x ([C1 u C2]
∗ (x)→ ([C1]

∗ (x) ∧ [C2]
∗ (x)))

Ax-t ∀x ([C1 t C2]
∗ (x)→ ([C1]

∗ (x) ∨ [C2]
∗ (x)))

Ax-¬ ∀x ([¬C]∗ (x)↔ ¬[C]∗ (x))
Ax-∀ ∀x ([∀r.C]∗ (x)→ ∀y (Rr (x, y)→ [C]∗ (y)))
Ax-∃ ∀x ([∃r.C]∗ (x)→ ∃y (Rr (x, y) ∧ [C]∗ (y)))

• Irreflexive roles: Let hasMother be a role that associates a person with
his/her mother. It is a fact that no one can be his/her own mother, therefore this
role has to be irreflexive. That can be expressed with the following axiom of the
labelling algebra:

∀x¬hasMother(x, x).

• Transitive roles: Consider for example the role isYounger . The assertion
isYounger(MARY ,ANN) means that Mary is younger than Ann. Obviously this
is a transitive relation: if Mary is younger than Ann and Ann is younger than
John, then Mary is younger than John.

∀x0∀x1∀x2(isYounger(x0, x1) ∧ isYounger(x1, x2)→ isYounger(x0, x2))

• Serial roles: Consider the role hasMother that associates a person with
his/her mother. Since every person has a mother, hasMother is a serial role.
This can be expressed by adding the following axiom in the labelling algebra:

∀x0∃x1(hasMother(x0, x1))

It is worth mentioning that this can be expressed in ALC by the following axiom
in the TBox:

>v̇∃hasMother .>

Notice that the labelling algebra contains information regarding the ALC-roles.
Information for the concepts is expressed in the TBox.

The extended labelling algebra A+ is a theory written in Mon(ALC,LALCL)
that extends A. Its role is to “capture” the translation of ALC into first-order
logic. The axioms of A+ for the ALC-CLDS are presented in table 1. Notice that
most of the axioms are left to right implications and not equivalences. This is
mainly due to the reason that, as we will see later, tableau rules “deconstruct” a
formula. During the construction of the tableau we will never need to “build” the
conjunction of two formulas. The procedure works the other way around. The
conjunction of two formulas will be “broken down” to its containing formulas.

3According to the syntax rules of first-order logic as presented earlier in this work, the correct
syntax for this axiom would be: ∀xlikes(x, x). The parentheses have been added only to improve
readability.

28 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

7. Tableau for ALC-CLDS

7.1. General Introduction. In a few words, tableaux methods are formal proof
procedures. There exist tableau methods for several logics, including proposi-
tional and first-order logic, modal logics, hybrid logics, and description logics.
An introduction to the basic notions of tableaux methods as well as tableaux
methods for specific logics can be found in [14].

Generally, a tableau method begins with a formula (or a set of formulas). Then
the tableau is expanded using appropriate tableau rules until a closing condition is
met. Usually (but not always) the expansion of the tableau consists of “breaking
down” the initial formula into its subformulas.

7.2. Preliminaries on tableaux for CLDS. A CLDS tableaux will be repre-
sented as a labelled binary tree, whose labels are CLDS-formulas.

Definition 51 (CLDS-tableau). A CLDS-tableau is a CLDS-labelled tree TC =
〈T , f〉, where T is an unlabelled binary tree.

At this point it has to be made clear that the above definition presents the
necessary but not the sufficient conditions under which a tree is a CLDS-tableau.
In other words, every CLDS-tableau is a tree of the form described in defini-
tion 51, but not every such tree is a CLDS-tableau. A tree that corresponds to
a CLDS-tableau must fulfil some additional conditions that will be explained in
the following sections.

Since tableaux are defined as labelled trees, a branch of a tableau is in fact
a labelled branch. In what follows, we will drop the qualification “labelled” for
branches, when no confusion arises. If the branch refers to a labelled tree (a
tableau to be more specific), it is a labelled branch.

Definition 52 (Closed branch). Let TC be a CLDS-tableau. A branch B of TC
is closed if and only if one of the following holds:

(1) (a :λ) ∈ B and (¬a :λ) ∈ B for some declarative unit (a :λ).
(2) ∆ ∈ B and ∆ ∈ B for some Relation-literal ∆.

Equivalently, a tableau branch is said to be open if and only if it is not closed.
A CLDS-tableau is closed iff every branch of the tableau is closed. Similarly,

a CLDS-tableau is open iff it has at least one open branch.
It has to be noted that in description logics the definition of a closed branch

does not require the second condition of definition 52. That is because the ABox
contains only role assertions, namely it does not contain negated Relation-literals.

It is easy to establish a correspondence between a CLDS-configuration and
a branch of a CLDS-tableau. Recall that every branch of a CLDS-tableau is
labelled with a set of CLDS-formulas, and a configuration can be defined as a
set of CLDS-formulas. Therefore, the set of labels that appear on a branch can
define a configuration, and a configuration can be represented as a branch of a
CLDS-tableau.

Definition 53 (Corresponding configuration of a branch). Let TC be a CLDS-
tableau, and B a branch of TC . The corresponding configuration of B is the
configuration that contains exactly the CLDS-formulas that appear on the branch:

Cco(B) = {φ | φ ∈ B}

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 29

Definition 54 (Corresponding branch of a configuration). Let C be a CLDS-
configuration. The corresponding branch of C is a branch with as many nodes
as the number of formulas in C and whose nodes are labelled with exactly the
CLDS-formulas of the configuration:

Bco(C) = 〈b, f〉
where b is an unlabelled branch with as many nodes as the number of formulas
contained in the configuration: |b| = |C|, and f is a bijective function that maps
every node of the branch to a formula that belongs in configuration C (f : b→ C).

Proposition 55. Let C be a CLDS-configuration and B a branch of a CLDS-
tableau. If φ is a CLDS-formula, the following hold:

φ ∈ Bco(C) iff φ ∈ C and φ ∈ Cco(B) iff φ ∈ B

Proof. Directly from the way Bco(C) and Cco(B) are defined. �

Proposition 56. Let C be a CLDS-configuration and Bco(C) the corresponding
branch. The configuration that corresponds to Bco(C) coincides with C:

Cco(Bco(C)) = C
Similarly, let B be a branch of a CLDS-tableau, and Cco(B) the corresponding

configuration. The branch that corresponds to C(B) is identical to B:

Bco(Cco(B)) = B

Proof. We have to show that Cco(Bco(C)) contains the same CLDS-formulas as C.
From proposition 55: φ ∈ Cco(Bco(C)) iff φ ∈ Bco(C) iff φ ∈ C.

Similarly, we have to show that Bco(Cco(B)) contains the same labels as B.
From proposition 55: φ ∈ Bco(Cco(B)) iff φ ∈ Cco(B) iff φ ∈ B. �

Lemma 57. Let C be a CLDS-configuration and B(C) the corresponding branch.
If C is satisfiable, then Bco(C) is open.

Proof. This proof makes use of the axioms of the extended labelling algebra. In
the case of ALC-CLDS these axioms are presented in table 1. To be more specific,
only axiom Ax-¬ is used. This lemma can be proved for any CLDS system whose
extended labelling algebra contains the following (more general) form of axiom
Ax-¬:

Ax-¬(gen) ∀x ([¬a]∗ (x)↔ (¬[a]∗ (x)))

We will prove this lemma for a general CLDS whose labelling algebra contains
Ax-¬(gen).

Assume C is satisfiable. We have to show that B(C) is open. Since C is
satisfiable, there exists a semantic structure M = 〈D, I〉 such that M satisfies
all CLDS-formulas that belong to C (definition 44). Assume B(C) is not open.
That means that it is closed therefore, one of the following holds:

• There exist a formula a ∈ L# and a label λ such that (a :λ) ∈ B(C) and
(¬a :λ) ∈ B(C). Hence (from proposition 55)

(a :λ) ∈ C and (¬a :λ) ∈ C.
M satisfies all the formulas that belong to configuration C, thus

M|=CLDS(a :λ) and M|=CLDS(¬a :λ).

30 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

or equivalently M|=FOL[a]∗(λ) and M|=FOL[¬a]∗(λ). It follows that

λI ∈ [[a]∗]I and λI ∈ [[¬a]∗]I .

However, M satisfies Ax-¬(gen) of the extended labelling algebra:

M|=FOL ∀x ([¬a]∗ (x)↔ ¬[a]∗ (x))

which is equivalent to

M, [x 7→ d] |=FOL ([¬a]∗ (x)↔ ¬[a]∗ (x)) for all d ∈ D.
Since λI ∈ D, it follows that M, [x 7→λI] |=FOL([¬a]∗(x) → ¬[a]∗(x)).
That means that if M, [x 7→λI] |=FOL[¬a]∗(x), then it is the case that
M, [x 7→λI] |=FOL ¬[a]∗(x). However, M, [x 7→λI] |=FOL[¬a]∗(x) is equiv-
alent to λI ∈ [[¬a]∗]I which we have shown that it holds. Therefore,
M, [x 7→λI] |=FOL ¬[a]∗(x). or equivalently λI /∈ [[a]∗]I . This is a contra-
diction since we have shown that λI ∈ [[a]∗]I .
• There exists a Relation-literal such that Rr(λ, λ

′) ∈ B(C) and ¬Rr(λ, λ
′) ∈

B(C). Equivalently (from proposition 55)

Rr(λ, λ
′) ∈ C and ¬Rr(λ, λ

′) ∈ C.
M satisfies all the formulas that belong to C, therefore

M|=CLDS Rr(λ, λ
′) and M|=CLDS ¬Rr(λ, λ

′)

which is equivalent to

M|=FOLRr(λ, λ
′) and M|=FOL ¬Rr(λ, λ

′).

or equivalently M|=FOL(Rr(λ, λ
′) ∧ ¬Rr(λ, λ

′)) ⇔ M|=FOL⊥. That is
again impossible.

Therefore, Bco(C) is open. �

7.3. Tableau Expansion Rules. To begin with, it is assumed that all ALC-
concepts (that appear in the declarative units) are in negation normal form
(NNF). That means that negation (¬) appears only in front of atomic concepts
(and atomic roles, however, since we only deal with atomic roles this case will not
arise here). Every ALC-concept can be transformed to an equivalent concept in
NNF by using De Morgan’s rules

¬(C1 u C2) ≡ (¬C1 t ¬C2) ¬(C1 t C2) ≡ (¬C1 u ¬C2)

and the following well-known relationships between ∀ and ∃:
¬(∀r.C) ≡ ∃r.¬C ¬(∃r.C) ≡ ∀r.¬C

This transformation can be done in linear time [15], therefore it does not affect
the complexity of the reasoning algorithms for description logics (which is not
smaller than P-time [3]). This assumption reduces the number of the tableau
expansion rules, since there is no need to have rules that handle the negation.

Example 58. Consider for example the declarative unit (¬∀r1.∃r2(A1 u A2) :λ).
The ALC-part of this formula has to be transformed into NNF:

¬∀r1.∃r2.(A1 u A2) ≡ ∃r1.¬∃r2.(A1 u A2)

≡ ∃r1.∀r2.¬(A1 u A2)

≡ ∃r1.∀r2.(¬A1 t ¬A2)

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 31

Therefore, the CLDS-formula that will be used is (∃r1.∀r2.(¬A1 t ¬A2) :λ).

We will now present the basic the basic expansion rules of an ALC-CLDS
system. Let TAC = 〈T , f〉 be an ALC-CLDS tableau, B = 〈bl, f〉 an open branch
of TAC (remember that l is the leaf node of bl).

• The u-rule:
Informally, if the CLDS-formula ((C1 u C2) :λ) appears in the branch

B, and not both (C1 :λ) and (C2 :λ) appear in B, extend the branch with
whichever of those two formulas is missing, or with both of them if none
appears on the branch.

More formally, if ((C1 u C2) :λ) ∈ B then:
– If (C1 :λ) /∈ B and (C2 :λ) /∈ B then add two nodes to the end of B:
l0 labelled (C1 :λ) and l00 labelled (C2 :λ).

– If (C1 :λ) ∈ B and (C2 :λ) /∈ B then add a node to the end of B: l0
labelled (C2 :λ).

– If (C1 :λ) /∈ B and (C2 :λ) ∈ B then add a node to the end of B: l0
labelled (C1 :λ).

This rule is represented as follows:

〈n, ((C1 u C2) :λ)〉 , n ∈ bl
〈l0, (C1 :λ)〉 , 〈l00, (C2 :λ)〉

• The t-rule:
Informally, if the CLDS-formula ((C1 t C2) :λ) appears in the branch

B, and not both of the formulas (C1 :λ) and (C2 :λ) appears in B, extend
B with whichever of those two formulas is missing, or if both of them are
missing then “split” the branch and add one of them in each end of the
branch.

A more formal way to explain this rule is given below. If ((C1tC2) :λ) ∈
B then:

– If (C1 :λ) /∈ B and (C2 :λ) /∈ B then add two nodes to the end of B:
l0 labelled (C1 :λ) and l1 labelled (C2 :λ).

– If (C1 :λ) ∈ B and (C2 :λ) /∈ B then add a node to the end of B: l0
labelled (C2 :λ).

– If (C1 :λ) /∈ B and (C2 :λ) ∈ B then add a node to the end of B: l0
labelled (C1 :λ).

This rule is represented as follows:

〈n, ((C1 t C2) :λ)〉 , n ∈ bl
〈l0, (C1 :λ)〉 | 〈l1, (C2 :λ)〉

• The ∀-rule:
Informally, if the CLDS-formula (∀r.C :λ1) appears in the branch B,

and the formula Rr(λ1, λ2) also appears in the branch, then extend B
with a node labelled (C :λ2).

Formally, if (∀r.C :λ1) ∈ b and Rr(λ1, λ2) ∈ B then add a node to the
end of B: l0 labelled (C :λ2).

This rule is represented as follows:

〈n, (∀r.C :λ1)〉 , 〈n′, Rr(λ1, λ2)〉 , n, n′ ∈ bl
〈l0, (C :λ2)〉

32 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

• The ∃-rule:
Informally, if the CLDS-formula (∃r.C :λ1) appears in the branch B,

then extend B with two nodes labelled Rr(λ1, λ2) and (C :λ2), where λ2

is a CLDS label that does not appear already in the branch B.
Formally, if (∃r.C :λ1) ∈ B and there exists no label λ such that

Rr(λ1, λ) ∈ B and (C :λ) ∈ B then add two nodes to the end of B:
l0 labelled Rr(λ1, λ2) and l00 labelled (C :λ2), where λ2 is new in the
branch B.

This rule is represented as follows:

〈n, (∃r.C :λ1)〉 , n ∈ bl
〈l0, Rr(λ1, λ2)〉 , 〈l00, (C :λ2)〉

(λ2 is “new” to the branch)

The tableau expansion rules are the inference rules of the CLDS (remember
that a CLDS is a tuple 〈〈ALC,LALCL 〉,A,R〉). In what follows we will write
R = {(∀), (u)} for a set of inference rules that consists of the ∀-rule and the
u-rule (the same holds of course for the rest of the rules).

Now some remarks regarding the ∃-rule. In the case of the ALC-CLDS, the
CLDS labels are just the constants of the labelling language, i.e. C = Cind ∪ Cgen .
The labels that can be added to the tableau by an application of the ∃-rule, are
only the constants that belong to Cgen . Remember that the constants of Cind are
“reserved” for individuals of the ABox. We will consider a well-founded strict
total order on Cgen , denoted by ≺gen , and we will define an order ≺ on C as
follows:

≺=≺gen ∪{(cx, ci) | cx ∈ Cind , ci ∈ Cgen}.
In other words, the elements of Cind are considered to appear before the elements
of Cgen . It can be proved that ≺ is a well-founded order as well. The new labels
introduced by the ∃-rule will be introduced according to this ordering. Taking
this into consideration, the new label λ2 introduced by the ∃-rule is λ1 ≺ λ2. If
λ ≺ λ′ and λ 6= λ′ we say that λ′ is a successor of λ. We say that a label λ′ is
a direct successor of λ if λ′ is a successor of λ and for every label λ′′ if λ′′ is a
successor of λ, then it is also a successor of λ′. It is not hard to show that every
CLDS-label has exactly one direct successor.

Lemma 59. Let ≺ be a well-founded total ordering on a set S. Every element
of S has at most one direct successor w.r.t. ≺.

Proof. Let s ∈ S and assume that s has two (distinct) direct successors, say s1

and s2 (s1 6= s2). It follows that s ≺ s1 and s ≺ s2. Since ≺ is a total order it
is the case that either s1 ≺ s2 or s2 ≺ s1 (totality of ≺). Assume that s1 ≺ s2.
Notice that since s2 is a direct successor of s and s1 is a (direct) successor of
s, it should hold that s1 is a successor of s2: s2 ≺ s1. However, since ≺ is
antisymmetric, s1 ≺ s2 and s2 ≺ s1 implies that s1 = s2. This is a contradiction.
The proof in the case that s2 ≺ s1 is similar. �

A CLDS-label c is a direct Rr-successor of the CLDS-label c′ if there exists
a Relation-predicate Rr(c

′, c). More generally, c is said to be a Rr-successor of
c′ if it is a direct Rr-successor of c′ or if there exists a CLDS-label c′′ such that
Rr(c

′, c′′) and c′′ is an Rr-successor of c. Since there may exist more than one role
symbols in ALC and consequently more than one Relation-predicate symbols in

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 33

the labelling language, a label may have Rri-successors for several values of i. We
will use the term R-successor to refer to an Rri-successor for an arbitrary i.

Notice that the notion of a successor (w.r.t. ≺) is not the same as that of an Rr-
successor. The ≺ relation describes the order with which labels are introduced
to a branch the tableau, while the Rr-successors describe the structure of the
diagram, i.e. how labels are related to each other.

The t-rule is said to be a non-deterministic rule, as it creates two branches.
Similarly, the ∃-rule is a generating rule since it introduces a new label into the
branch. What appears above the line in the representation of the tableau rules is
the preconditions of the rule, i.e. the conditions under which a rule can be used.

We will say that a tableau rule is applied to a node n if 〈n, φ〉 appears on the
preconditions of the rule, where φ is an arbitrary CLDS-formula. According to
this convention, the ∀-rule applies to the nodes n and n′, while the rest of the
rules apply to node n. Sometimes we will say that a tableau rule is applied to a
branch and we will mean that it is applied to a node of the branch.

The application of an expansion rule to a tableau branch results in a new
tableau which differs from the original one only in the extended branch. Notice
that the definition of the rules makes sure that the resulting structure is prefix
closed, and in cases where only one child has to be added to a node, this is the
0-child.

Definition 60 (Initial Tableau for a Configuration). Given a configuration C,
the initial tableau for C is the corresponding branch Bco(C) = 〈b, f〉, where b is
the set of nodes {ε, 0, 00, . . . , 0|C|−1}.

What this definition says is that the initial tableau for a (finite) configuration C
is a tree that consists of a single branch b = {ε, 0, . . . , 0|C|−1} and is labelled with
exactly the formulas of C. Notice that b contains as many nodes as the formulas
that appear in C. The first node is ε, the root of the tree, the second is 01, the
third is 02, and the |C|-th is 0|C|−1.

Starting from the initial tableau for a configuration we apply tableau expansion
rules until none is applicable. The order with which the rules are applied is not
important.

Definition 61 (Tableau for a configuration C). Let C be a finite configuration.

• The initial tableau for C (see definition 60) is a tableau for the configura-
tion C.
• If TC is a tableau for C and T ′C results from TC by applying one of the

tableau expansion rules, then T ′C is a tableau for the configuration C.

Remark 62. If C0 is a configuration and TC is a CLDS-tableau for C0 (not
necessarily the initial one) then every branch B of TC contains the initial tableau
for C0. Stated otherwise, Bco(C0) ⊆ B for any branch B of TC . That means that
the initial configuration C0 is contained in the corresponding configuration of B:
C0 ⊆ Cco(B).

It has to be noted though, that technically Bco(C0) is not a branch any more
since the tableau has been expanded and the last node of Bco(C0) is not a leaf
node. However, we will use the same notation Bco(C0) to refer to the path that
corresponds to the initial configuration.

34 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

〈ε, (A : ca)〉

〈0, (∃r.A : cb)〉

〈02, ((A u A′) : ca)〉
(a) Initial tableau for C.

- 〈ε, (A : ca)〉

X 〈0, (∃r.A : cb)〉

〈02, ((A u A′) : ca)〉
∃-rule to 0

- 〈03, Rr(cb, c0)〉

- 〈04, (A : c0)〉
(b) Tableau for C after the
application of the ∃-rule to
node 0.

Figure 4. Tableaux for the configuration of example 63, C =
{(A : ca), (∃r.A : cb), ((A u A′) : ca).}

Example 63. Consider for example the initial configuration

C = {(A : ca), (∃r.A : cb), ((A u A′) : ca)}.
The initial tableau for C will be the corresponding branch, i.e. a branch with three
nodes each one labelled with a formula of C. It is not important which node is
labelled with which label. The initial tableau for C is presented in figure 4(a).

Assume that we apply the ∃-rule to node 0. Two nodes will be added to the
end of the branch. The new label introduced by the rule will be a constant of
Cgen , c0. The corresponding tableau, after the application of the ∃-rule, is shown
in figure 4(b).

The symbols that appear on the left side of the nodes are not part of the
tableau. We will use them as they make easier the application of the tableau
rules. The symbol X next to a node, means that the node has been expanded
and no more tableau-rules can be applied to it. On the other hand, the symbol -
denotes that the node is labelled with a formula such that no rules can be applied
to it (i.e. with a Relation-predicate, or with a declarative unit with an atomic
ALC concept). Moreover, the label “∃-rule to 0” is not part of the tableau and
it is used only in order to facilitate reading the tableau. This label means that
nodes 03 and 04 result from the application of the ∃-rule to node 0.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 35

8. An ALC-CLDS for an Empty Knowledge Base

In the case of Description Logics, reasoning is done with respect to a knowledge
base K = 〈T ,A〉 that consists of an ABox A and a TBox T . We will first handle
the simple case when the knowledge base is empty, i.e. both the ABox and the
TBox contain no axioms.

In this case, the available reasoning tasks are concept satisfiability and concept
subsumption (which can be reduced to concept unsatisfiability). We will now
prove that checking if an ALC concept C is satisfiable w.r.t. the empty knowledge
base is equivalent to checking whether the configuration {C : λ} is satisfiable,
where c ∈ C is an ALC-CLDS label. It has to be noted that in the proof of this
correspondence, the set of inference rules of the CLDS plays absolutely no role.

Proposition 64 (Correspondence between concept satisfiability w.r.t the empty
TBox in ALC and in ALC-CLDS). Let C be an ALC concept and fix an ALC-
CLDS system 〈〈ALC,LALCL 〉, ∅,R〉. C is satisfiable if and only if the configuration
C = {C :λ} is satisfiable.

Proof. (⇒) Assume the ALC concept C is satisfiable. That means that there
exists an interpretation I = 〈∆I , ·I〉 such that CI 6= ∅. The main idea is to use
the ALC interpretation I in order to construct a first-order structure M that
satisfies the initial configuration and is a semantic structure of the CLDS (i.e. it
satisfies the axioms of the extended labelling algebra).

Generally M = 〈D, I〉. We define the domain of M to be the domain of the
ALC interpretation:

D = ∆I

and the interpretation function I to agree with ·I on the interpretation of concepts
(unary predicates), roles (binary predicates), and individuals (constants):

[[C]∗]I = CI RI
r = rI cIa = aI .

M|=CLDS(C :λ) iff M|=FOL[C]∗(λ) or equivalently, λI ∈ [[C]∗]I . Therefore, the
initial configuration is satisfiable iff λ is interpreted as an element of the domain
that belongs to the interpretation of the unary predicate [C]∗. Such an element
exists because we have defined [[C]∗]I = CI which we have assumed is non-empty.
Hence I is defined to assign to constant λ an element of the domain that belongs
to [[C]∗]I .

It remains to show that M is a semantic structure for the CLDS, i.e. that it
satisfies the axioms of the extended labelling algebra (table 1).
• Ax-u:

M|=FOL ∀x ([C1 u C2]
∗ (x)→ ([C1]

∗ (x) ∧ [C2]
∗ (x))) iff

M, [x 7→ d] |=FOL[C1 u C2]
∗ (x)→ ([C1]

∗ (x) ∧ [C2]
∗ (x)) for all d ∈ D.

Assume that M, [x 7→ d] |=FOL[C1 u C2]
∗(x) for an arbitrary element d of the do-

main. We have to show thatM, [x 7→ d] |=FOL([C1]
∗(x)∧ [C2]

∗(x)) or equivalently,
that M, [x 7→ d] |=FOL[C1]

∗(x) and M, [x 7→ d] |=FOL[C2]
∗(x).

By definition,M, [x 7→ d] |=FOL[C1uC2]
∗(x) iff d ∈ [[C1uC2]

∗]I . However, from
the way we have defined I, [[C1 u C2]

∗]I = [C1 u C2]
I = CI1 ∩ CI2 . Therefore,

d ∈ CI1 ∩ CI2 which is equivalent to d ∈ CI1 and d ∈ CI2 . However d ∈ CI1
iff d ∈ [[C1]

∗]I and d ∈ CI2 iff d ∈ [[C2]
∗]I . Because d ∈ [C1]

∗ it follows that
M, [x 7→ d] |=FOL[C1]

∗(x) and similarly, M, [x 7→ d] |=FOL[C2]
∗(x).

36 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

• Ax-t: The proof is similar to the one for Ax-u and the details will be
omitted.
• Ax-¬:

M|=FOL ∀x ([¬C]∗ (x)↔ ¬[C]∗ (x)) iff

M, [x 7→ d] |=FOL ([¬C]∗ (x)↔ ¬[C]∗ (x)) for all elements d of the domain.

M, [x 7→ d] |=FOL[¬C]∗(x) iff d ∈ [[¬C]∗]I or equivalently d ∈ [¬C]I . That holds iff
d 6∈ CI which is equivalent to d 6∈ [[C]∗]I . Equivalently, M, [x 7→ d] 6 |=FOL[C]∗(x).
• Ax-∀:

M|=FOL ∀x ([∀r.C]∗ (x)→ ∀y ([r]∗ (x, y)→ [C]∗ (y))) iff

M, [x 7→ d] |=FOL ([∀r.C]∗ (x)→ ∀y ([r]∗ (x, y)→ [C]∗ (y))) for all d ∈ D.

Assume M, [x 7→ d] |=FOL[∀r.C]∗ (x) for an arbitrary element d of the domain.
This holds if and only if d ∈ [[∀r.C]∗]I or equivalently d ∈ [∀r.C]I . This is
equivalent to

d ∈ {a ∈ ∆I | for all b such that (a, b) ∈ rI implies b ∈ rI}. (8.1)

We have to show that

M, [x 7→ d] |=FOL ∀y ([r]∗ (x, y)→ [C]∗ (y)) or equivalently that

M, [x 7→ d, y 7→ d′] |=FOL([r]∗ (x, y)→ [C]∗ (y)) for all elements d′ of the domain.

Assume M, [x 7→ d, y 7→ d′] |=FOL[r]∗ (x, y) for an arbitrary element d′ of the do-
main. That means that (d, d′) ∈ [[r]∗]I or equivalently that

(d, d′) ∈ rI . (8.2)

We now have to show that M, [x 7→ d, y 7→ d′] |=FOL[C]∗(y). That holds iff d ∈
[[C]∗]I which is equivalent to d ∈ CI . However, this holds from 8.1 and 8.2.
• Ax-∃: The proof is similar to the one for axiom Ax-∀.

(⇐) Assume the configuration C = {(C :λ)} is satisfiable. That means that there
exists a semantic structureM that satisfies the axioms of the extended labelling
algebra, and moreover M|=CLDS(C :λ) or equivalently M|=FOL[C]∗(λ). That
holds iff λI ∈ [[C]∗]I . We have to show that the ALC-concept is satisfiable i.e.
that there exists and interpretation I such that CI 6= ∅. We construct the ALC
interpretation I in relation with M exactly as before:

∆I = D CI = [[C]∗]I rI = RI
r aI = cIa.

According to this construction CI = [[C]∗]I 6= ∅ since we know that there exists
an element of the domain λI ∈ [[C]∗]I . �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 37

9. ALC-CLDS Tableau for Reasoning under an Empty Knowledge
Base

The first step is to present the simplest tableau calculus for ALC-CLDS, i.e. in
the case when the knowledge base is empty. In this case, since the ABox is empty,
the initial configuration is the empty configuration: C0 = 〈∅, ∅〉. Moreover, the
labelling algebra is considered to be empty.

The only available reasoning tasks when the ABox is empty are concept sat-
isfiability and concept subsumption. In order to check whether a concept C is
satisfiable, the CLDS-formula (C : c0), where c0 ∈ Cgen is the minimal element of
the set of labels w.r.t. ≺gen , is added to the (previously empty) initial configu-
ration: C ′0 = 〈∅, {(C : c0)}〉. If the tableau for C ′0 closes, then C is not satisfiable,
while if the complete tableau is open, C is satisfiable.

Subsumption can also be reduced to (un)satisfiability of a concept: a concept
C is subsumed by D iff the concept Cu¬D is unsatisfiable. In this case, the initial
configuration will be C ′0 = 〈∅, {((Cu¬D) : c0)}〉. If the tableau for C ′0 closes, then
C u ¬D is not satisfiable, therefore C is subsumed by D. If the complete tableau
for C ′0 is open, then C u ¬D is satisfiable and C is not subsumed by D.

Example 65. Suppose we want to check whether the ALC-formula

∃r1.∃r2.(A1 u ¬A2) u ∀r1.∀r2.(¬A1 t A2)

is satisfiable w.r.t. the empty knowledge base. That corresponds to checking the
satisfiability of the ALC-CLDS formula

(∃r1.∃r2.(A1 u ¬A2) u ∀r1.∀r2.(¬A1 t A2) : c0)

where c0 is the minimal label w.r.t. ≺gen . We start a tableau with the initial
configuration C = {(∃r1.∃r2.(A1 u ¬A2) u ∀r1.∀r2.(¬A1 t A2) : c0)}. A complete
tableau is presented in figure 5.

We will now give a detailed description of how this tableau was constructed.
Node ε is the initial tableau for C, i.e. it is labelled with the only formula of C.
Nodes 01 and 02 are derived by application of the u-rule to node ε. Nodes 03

and 04 result from node 02 by applying the ∃-rule. Nodes 02 and 04 trigger the
application of the ∀-rule which results to node 05. Nodes 06 and 07 result from
the application of the ∃-rule to node 04, and node 08 from the application of the
∀-rule to nodes 05 and 06. Finally, nodes 09 and 010 come from the application of
the u-rule to node 07, and nodes 011 and 0101 from the application of t-rule to
node 08. At this point the branch whose leaf is node 011 closes because of nodes
011 and 09, while the branch with leaf node 0101 closes because of nodes 0101 and
010. Since the tableau closes, the initial formula is not satisfiable.

9.1. Soundness. Soundness in the case of the tableau proof procedure means
that if a formula X is satisfiable, then every (complete) tableau for X is open.

Lemma 66 (Tableau rules preserve satisfiability). Let C be a satisfiable configu-
ration and TAC = Bco(C) = 〈b, f〉 the initial tableau for C. If a tableau expansion
rule can be applied to TAC , then the resulting tableau T ′AC will also be open.

Proof. We distinguish the following cases:

• The applied rule is u-rule:

38 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

X 〈ε, (∃r1.∃r2.(A1 u ¬A2) u ∀r1.∀r2.(¬A1 t A2) : c0)〉
u-rule to ε

X 〈01, (∃r1.∃r2.(A1 u ¬A2) : c0)〉

〈02, (∀r1.∀r2.(¬A1 u A2) : c0)〉
∃-rule to 01

- 〈03, r1(c0, c1)〉

X 〈04, (∃r2.(A1 u ¬A2) : c1)〉
∀-rule to 02,03

〈05, (∀r2.(¬A1 t A2) : c1)〉
∃-rule to 04

- 〈06, r2(c1, c2)〉

X 〈07, ((A1 u ¬A2) : c2)〉
∀-rule to 05,06

X 〈08, ((¬A1 t A2) : c2)〉
u-rule to 07

- 〈09, (A1 : c2)〉

- 〈010, (¬A2 : c2)〉
dddddddddddddd t-rule to 08

ZZZZZZZZZZZZZZ

〈011, (¬A1 : c2)〉
closed

〈0101, (A2 : c2)〉
closed

Figure 5. A tableau for checking the satisfiability of the CLDS-
formula (∃r1.∃r2.(A1 u ¬A2) u ∀r1.∀r2.(¬A1 t A2) : c0).

That means that there exists a node of Bco(C) that is labelled with a
formula of the form ((C1 u C2) : c0), otherwise, the u-rule would not be
applied. From proposition 55 ((C1 uC2) : c0) ∈ Bco(C) iff ((C1 uC2) : c0) ∈
C, therefore ((C1 u C2) : c0) ∈ C. C is satisfiable by assumption, thus
there exists a semantic structureM that satisfies all formulas of C. Since
((C1uC2) : c0) ∈ C,M|=CLDS((C1uC2) : c0). It follows thatM|=FOL[C1u
C2]
∗(c0).
M satisfies all the axioms of the extended labelling algebra, including

axiom Ax-u:

M|=FOL ∀x ([C1 u C2]
∗ (x)→ ([C1]

∗ (x) ∧ [C2]
∗ (x)))

and thereforeM, [x 7→ d] |=FOL ([C1 u C2]
∗ (x)→ ([C1]

∗ (x) ∧ [C2]
∗ (x))) for

all elements d of the domain. It follows that for cI0, which is an element
of the domain, it holds thatM, [x 7→ cI0] |=FOL[C1]

∗(x)∧ [C2]
∗(x) or equiv-

alently

M, [x 7→ cI0] |=FOL[C1]
∗(x) and M, [x 7→ cI0] |=FOL[C2]

∗(x).

It follows that

M|=FOL[C1]
∗(c0) and M|=FOL[C2]

∗(c0).

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 39

The resulting tableau T ′AC will consist of a single branch B′ which is
the branch Bco(C) together with two new nodes (see tableau expansion
rules), one labelled (C1 : c0), and one labelled (C2 : c0). The corresponding
configuration is Cco(B′) = C ′ = C ∪ {(C1 : c0), (C2 : c0)}. But M satisfies
C ′ as well. Therefore, from lemma 57 we can conclude that since C ′ is
satisfiable, the branch Bco(C ′) will be open. Since Bco(C ′) and B′ contain
exactly the same formulas (those of configuration C ′) and Bco(C ′) is open,
B′ will also be open. Hence T ′AC (which contains only branch B′) will be
open.
• If the applied rule is t-rule: It follows that there exists a node of Bco(C)

labelled with a formula of the form (C1 t C2 : c0) therefore, from proposi-
tion 55, (C1 t C2 : c0) ∈ C. Because C is satisfiable, it follows that there
exists a semantic structure M that satisfies all the formulas of C. That
means thatM|=CLDS(C1 tC2 : c0) or equivalentlyM|=FOL[C1 tC2]

∗(c0).
M satisfies Ax-t of the extended labelling algebra:

M|=FOL ∀x ([C1 t C2]
∗ (x)→ ([C1]

∗ (x) ∨ [C2]
∗ (x)))

and thereforeM, [x 7→ d] |=FOL ([C1 t C2]
∗ (x)→ ([C1]

∗ (x) ∨ [C2]
∗ (x))) for

all elements d of the domain. It follows that

M, [x 7→ cI0] |=FOL[C1]
∗(x) ∨ [C2]

∗(x)

which is equivalent to

M|=FOL[C1]
∗(c0) or M|=FOL[C2]

∗(c0). (9.1)

The resulting tableau T ′AC will consist of two branches. The left one
(Bleft = 〈bl0, (C1 : c0)〉) is the original branch extended with one node la-
belled (C1 : c0) and the right branch (Bright = 〈bl1, (C2 : c0)〉) is the original
one extended with a node labelled (C2 : c0). Regarding the correspond-
ing configurations of the branches, obviously Cco(Bleft) = C ∪ (C1 : c0) and
Cco(Bright) = C ∪ (C2 : c0). From 9.1, it follows that M|=CLDS Cco(Bleft)
or M|=CLDS Cco(Bright) and consequently either Bleft is open or Bright is
open. In both cases, T ′AC is open since it has at least on open branch.
• If the applied rule is ∀-rule: It follows that there exists a node in Bco(C)

labelled with a formula of the form (∀r.C : c0) and a node labelled with
a Relation-predicate Rr(c0, c

′) (c′ ∈ C). Therefore, (∀r.C : c0) ∈ C and
Rr ∈ C. Since C is satisfiable, there exists a semantic structure M
such thatM|=CLDS C or equivalentlyM|=CLDS(∀r.C : c0). It follows that
M|=FOL[∀r.C]∗(c0). Moreover, M|=FOLRr(c0, c

′).
M satisfies the axioms of the extended labelling algebra, thus it satisfies

axiom Ax-∀:

M|=FOL ∀x ([∀r.C]∗ (x)→ ∀y (Rr (x, y)→ [C]∗ (y)))

and therefore M, [x 7→ cI0] |=FOL ([∀r.C]∗ (x)→ ∀y (Rr (x, y)→ [C]∗ (y))) .
Note thatM, [x 7→ cI0] |=FOL[∀r.C]∗ (x) is equivalent toM|=FOL[∀r.C]∗ (c0)
which holds. It follows that M, [x 7→ cI0] |=FOL ∀y (Rr (x, y)→ [C]∗(y)) or
equivalentlyM, [x 7→ cI0, y 7→ d] |=FOL (Rr (x, y)→ [C]∗(y)) for all elements
d of the domain. Since c′I is an element of the domain,

M, [x 7→ cI0, y 7→ c′I] |=FOL (Rr (x, y)→ [C]∗(y)) .

40 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

This is equivalent to

M|=FOLRr(c0, c
′)→ [C]∗(c′).

BecauseM|=FOLRr(c0, c
′) it follows thatM|=FOL[C]∗(c′) which is equiv-

alent to M|=CLDS(C : c′).
The application of the ∀-rule to TAC results in a new tableau T ′AC which

consists of the original branch (i.e. TAC) extended with one node labelled
(C : c′). The corresponding configuration of this branch is C ∪ {(C : c′)}.
Obviously, M satisfies this configuration since it satisfies C and (C : c′).
Therefore, the corresponding branch (i.e. TAC) will be open.
• If the applied rule is ∃-rule: That means that there exists a node in Bco(C)

labelled (∃r.C : c0). Since C is satisfiable, there exists a semantic structure
such that M|=CLDS C. It follows that M|=FOL[∃r.C]∗(c0).

Moreover, M satisfies axiom Ax-∃ of the extended labelling algebra

M|=FOL ∀x ([∃r.C]∗ (x)→ ∃y (Rr (x, y) ∧ [C]∗ (y)))

therefore M, [x 7→ cI0] |=FOL ([∃r.C]∗ (x)→ ∃y (Rr (x, y) ∧ [C]∗ (y))).
M, [x 7→ cI0] |=FOL[∃r.C]∗(x) is equivalent to M|=FOL[∃r.C]∗(c0). It fol-

lows that

M, [x 7→ cI0] |=FOL ∃y (Rr (c0, y) ∧ [C]∗ (y))

or equivalently M, [x 7→ cI0, y 7→ d] |=FOLRr(c0, d) ∧ [C]∗(d) for some ele-
ment d of the domain. It follows that M, [x 7→ cI0, y 7→ d] |=FOLRr(x, y)
and M, [x 7→ cI0, y 7→ d] |=FOL[C]∗(y) for some element d of the domain.

The tableau that results from the application of the ∃-rule consists
of the original branch extended with two nodes labelled Rr(c0, c

′) and
(C : c′), where λ′ is a label that is new to the branch. The corresponding
configuration of the new branch is C ∪ {Rr(c0, c

′), (C : c′)}. Since c′ is new
to the branch, it has not been already interpreted as an element of the
domain. Therefore, we can define the interpretation of c′ to be the element
d of the domain that we have mentioned above. ThusM satisfies the new
configuration and the corresponding branch is open. �

Theorem 67 (Soundness of the ALC-CLDS tableau w.r.t. the empty knowledge
base). If C is a satisfiable configuration, every tableau for C which is open.

Proof. The main idea of the proof is to show that (i) the initial tableau of a
satisfiable configuration is open, and (ii) that every application of a tableau rule
to an open tableau, results in another open tableau.

(i) The fact that the initial tableau for a satisfiable configuration is open can
be derived directly from the definition of the initial tableau (definition 60) and
lemma 57.

(ii) Let TL be an open tableau for the configuration C. We need to show that
if we apply a tableau-expansion rule, the resulting tableau T ′L will also be open.

Since TL is open, it has at least one open branch. Let bopen be an open branch
of TL.
• If an expansion rule is applied to a branch b 6= bopen, then obviously T ′L will

still be open.
• Assume that an expansion rule is applied to branch b = bopen. From lemma 66

it can be derived that the resulting branch will also be open. �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 41

9.2. Completeness. The completeness of the tableau calculus can be summa-
rized in the following sentence: If a complete tableau for a formula X does not
close, then X is satisfiable.

Definition 68 (Downward saturated configuration). Let C be a CLDS configu-
ration. We say that C is a downward saturated set if the following hold:

• If ((C1 u C2) :λ) ∈ C, then (C1 :λ) ∈ C and (C2 :λ) ∈ C.
• If ((C1 t C2) :λ) ∈ C, then (C1 :λ) ∈ C or (C2 :λ) ∈ C.
• If ((∀r.C) :λ1) ∈ C and Rr(λ1, λ2) ∈ C, then (C :λ2) ∈ C.
• If ((∃r.C) :λ1) ∈ C, then there exists at least one CLDS-label λ2 such that
Rr(λ1, λ2) ∈ C and (C :λ2) ∈ C.

Definition 69 (“Hintikka” configuration). Let C be a CLDS configuration. We
say that C is a Hintikka configuration if it is a downward saturated set, and
moreover, it does not contain a formula and its negation.

Lemma 70. Every Hintikka configuration is satisfiable.

Proof. Let C be a Hintikka configuration. We show that it is satisfiable, i.e. that
there exists a CLDS semantic structure such that M|=CLDS C. M must satisfy
the axioms of the extended algebra and the first-order translation of every formula
in C.

Notice that by definition every formula in FOT(C) is atomic and grounded thus
FOT(C) defines a Herbrand interpretation:

[[C]∗]H = {d | d ∈ U and [C]∗(d) ∈ FOT(C)}
Rr
H = {(d, d′) | d, d′ ∈ U and Rr(d, d

′) ∈ FOT(C)}

where U is the Herbrand universe of FOT(C). In other words, MH |=FOL[C]∗(d)
iff d ∈ [[C]∗]H which is equivalent to [C]∗(d) ∈ FOT(C). In a similar way,
MH |=FOLRr(d, d

′) iff Rr ∈ FOT(C). Notice that U is the Herbrand universe
of the configuration’s translation. To be more specific, the only constants that
appear in FOT(C) are the constants of the semi-labelling language that appear
in C, i.e. the labels that appear in the configuration. Since the semi-extended
labelling language has no function symbols, it follows that U is exactly the set of
labels that appear in C.

Let MH = 〈U ,H〉 be the Herbrand structure (for Mon(L#,LL)) with H as
defined above. Obviously it satisfies every formula of the configuration C. We
have to show that it is a semantic structure of the CLDS, i.e. that it satisfies the
axioms of A+.
• Ax-u:

MH |=FOL ∀x ([C1 u C2]
∗(x)→ [C1]

∗(x) ∧ [C2]
∗(x)) iff

MH |=FOL ([C1 u C2]
∗(d)→ [C1]

∗(d) ∧ [C2]
∗(d)) for all elements d ∈ U .

Assume MH |=FOL[C1 u C2]
∗(d) for an arbitrary d ∈ U . We have to show

that MH |=FOL[C1]
∗(d) ∧ [C2]

∗(d) or equivalently that MH |=FOL[C1]
∗(d) and

MH |=FOL[C2]
∗(d).

MH |=FOL[C1uC2]
∗(d) iff [C1uC2]

∗(d) ∈ FOT(C). It follows that ((C1uC2) : d) ∈
C. That together with the fact that C is a Hintikka configuration implies that
(C1 : d) ∈ C and (C2 : d) ∈ C. Therefore, [C1]

∗(d) ∈ FOT(C) and [C2]
∗(d) ∈

42 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

FOT(C) and from the way H has been defined it follows that MH |=FOL[C1]
∗(d)

and MH |=FOL[C2]
∗(d).

It has to be noted that the Herbrand structure does not satisfy the converse
of this axiom. This is because C is a Hintikka configuration and according to
the definition if ((C1 u C2) : d) belongs to C, then both (C1 : d) and (C2 : d) belong
to C. However, if both (C1 : d) and (C2 : d) belong in C, it does not follow that
necessarily (C1 u C2 : d) is in C. This is the only step in the proof given above
that does not “work in both ways”.
• Ax-t: Similar to the proof for Ax-u.
• Ax-¬:

MH |=FOL ∀x ([¬C]∗(x)↔ ¬[C]∗(x)) iff

MH |=FOL ([¬C]∗(d)↔ ¬[C]∗(d)) for all elements d of the Herbrand universe.

Assume that MH |=FOL[¬C]∗(d) for an arbitrary d ∈ U . We have to show that
MH |=FOL ¬[C]∗(d).
MH |=FOL[¬C]∗(d) iff [¬C]∗(d) ∈ FOT(C). That means that (¬C : d) ∈ C and

since C is a Hintikka configuration, (C : d) /∈ C or equivalently [C]∗(d) /∈ FOT(C).
This is equivalent to MH |=FOL ¬[C]∗(d).

Notice that in every step of the proof we move using equivalence, not implica-
tion. Therefore, both directions have been proved. The difference from the other
axioms is that a formula belongs to a Hintikka configuration if and only if its
negation does not.
• Ax-∀:
MH |=FOL ∀x ([∀r.C]∗ (x)→ ∀y (Rr (x, y)→ [C]∗ (y))) iff

MH |=FOL ([∀r.C]∗ (d)→ ∀y (Rr (d, y)→ [C]∗ (y))) for all elements d ∈ U .

Assume that MH |=FOL[∀r.C]∗ (d) for an arbitrary d ∈ U . That means that
[∀r.C]∗(d) ∈ FOT(C) or equivalently that

((∀r.C) : d) ∈ C. (9.2)

We have to show that MH |=FOL ∀y (Rr (d, y)→ [C]∗ (y)) or equivalently that

MH |=FOL (Rr (d, d′)→ [C]∗ (d′))

for all elements d′ of the domain. Assume that MH |=FOLRr(d, d
′) for an arbi-

trary element d′ of the domain. We have to show thatMH |=FOL[C]∗(d′) or equiv-
alently that [C]∗(d′) ∈ FOT(C). MH |=FOLRr(d, d

′) means that (d, d′) ∈ Rr
H. It

follows that

Rr(d, d
′) ∈ C. (9.3)

From 9.2 and 9.3 together with the fact that C is a Hintikka configuration, it can
be derived that (C : d′) ∈ C. This means that [C]∗(d′) ∈ FOT(C).
• Ax-∃:
MH |=FOL ∀x ([∃r.C]∗ (x)→ ∃y (Rr (x, y) ∧ [C]∗ (y))) iff

MH |=FOL ([∃r.C]∗ (d)→ ∃y (Rr (d, y) ∧ [C]∗ (y))) for some element d ∈ U .

AssumeMH |=FOL[∃r.C]∗ (d) for an element d ∈ U . That means that [∃r.C]∗(d) ∈
FOT(C) or equivalently that

((∃r.C) : d) ∈ C. (9.4)

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 43

We have to show that MH |=FOL ∃y (Rr (d, y) ∧ [C]∗ (y)) or equivalently that

MH |=FOL (Rr (d, d′) ∧ [C]∗ (d′))

for some element d′ of the domain. However, C is a Hintikka configuration
therefore, because of 9.4, it follows that there exists a CLDS-label λ such that
Rr(d, λ) ∈ C and (C :λ) ∈ C. This means that Rr(d, λ) ∈ FOT(C) and [C]∗(λ) ∈
FOT(C). �

Definition 71 (Complete Branch). A branch of a tableau is said to be complete
when no tableau expansion rule can be applied to any node of the branch.

We say that a tableau is complete if all of its branches are complete.

Proposition 72. Every open and complete branch of an ALC-CLDS tableau
corresponds to a Hintikka configuration.

In other words, if B is an open and complete branch, then Cco(B) is a Hintikka
configuration.

Proof. Let B be an open and complete branch of an ALC-CLDS tableau and
assume that Cco(B) is not a Hintikka configuration. We distinguish the following
cases:
• ((C1 u C2) :λ) ∈ Cco(B) and (C1 :λ) /∈ C(B) or (C2 :λ) /∈ C(B). From propo-

sition 55 it follows that ((C1 uC2) :λ) ∈ B and (C1 :λ) /∈ B or (C2 :λ) /∈ B. That
means that the u-rule could be applied, therefore the branch is not complete.
Contradiction!
• ((C1 t C2) :λ) ∈ Cco(B) and (C1 :λ) /∈ C(B) and (C2 :λ) /∈ C(B). Similarly

to the previous case, from proposition 55 it follows that ((C1 t C2) :λ) ∈ B and
(C1 :λ) /∈ B and (C2 :λ) /∈ B. That means that the t-rule could be applied,
therefore the branch is not complete. Contradiction!
• ((∀r.C) :λ1) ∈ Cco(B) and r(λ1, λ2) ∈ Cco(B), but (C :λ2) /∈ Cco(B). Like in

the previous cases, the ∀-rule could be applied to B and we reach a contradiction.
• ((∃r.C) :λ1) ∈ Cco(B), however there exists no label λ2 such that r(λ1, λ2) /∈
Cco(B) or (C :λ2) /∈ Cco(B). In this case the ∃-rule could be applied. Contradic-
tion!
• A formula and its negation appear in CB. It follows that they would also

appear in B and thus it would be closed. Contradiction!
Therefore Cco(B) is a Hintikka configuration. �

Theorem 73 (Completeness of ALC-CLDS tableau w.r.t. the empty knowledge
base). If a configuration C is not satisfiable, then every complete tableau for C is
closed.

Proof. Let C be an unsatisfiable configuration and TAC a complete tableau for C.
Assume that TAC is open. That means that there exists a branch of TAC , say B,
that is open and complete. From proposition 72 it follows that the corresponding
configuration Cco(B) is a Hintikka configuration, and therefore it is satisfiable
(lemma 70). Configuration C is a subset of Cco(B) (see remark 62), therefore C is
also satisfiable. Contradiction! �

9.3. Termination. It remains to show that the algorithm for the construction of
an ALC-CLDS tableau terminates. In other words, every complete ALC-CLDS

44 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

tableau for a CLDS with an empty labelling algebra and when reasoning w.r.t.
an empty knowledge base, is finite.

First of all, remember that ALC concepts are strings over the alphabet of ALC
It is obvious that the number of atomic concept symbols and the number of
atomic role symbols that appear in a concept C is bounded by the length of C.

We will now define the notion of subconcept. Informally, a subconcept of a
given concept is a “smaller” concept contained in the given one. Subconcepts
are the equivalent of subformulas. However, since ALC-formulas are commonly
referred to as concepts, the name subconcept is more appropriate. In order to
give a formal definition for subconcepts, we first have to define the notion of
substrings.

Definition 74 (Subconcept). Let C be an ALC concept. We say that C′ is a
subconcept of C if it is an ALC concept and moreover, it is a substring of C.

Given an ALC-concept C we will use the notation sub(C) to denote the set of
all the subconcepts of C:

sub(C) = {C′ | C′ is a subconcept of C}.

Lemma 75. The number of subconcepts of an ALC concept is finite.

Proof. Only a sketch of the proof will be presented here since it is a quite common
result. Fix an ALC concept C. The proof is by structural induction on C.
• (Base case) If C is an atomic concept then obviously, sub(C) = {C} which is

a finite set.
• Assume that the proposition holds for two arbitrary ALC concepts C1 and

C2. If C = ¬C1, then sub(C) = sub(C1) ∪ {¬C1} which is finite. Similarly, it can
be proved that the set sub(C) is finite if C is of the form C1 u C2, C1 t C2, ∃r.C1,
or ∀r.C1. Details will be omitted. �

Since sub(C) is a finite set, its powerset is also finite. To be more precise, the
size of ℘(sub(C)) is equal to 2|sub(C)|.

Consider the case of an ALC-CLDS tableau TAC for the configuration C =
{(C :λ0)}. The labelling algebra of the CLDS as well as the knowledge base are
considered to be empty. It is easy to see that for every node of TAC which is
labelled with a declarative unit of the form (a :λ), a is a subconcept of C. This
can be proved using the tableau rules and the observation that a subconcept of a
subconcept of C is also a subconcept of C (in other words, the subconcept relation
on a set of concepts is transitive). The details of the proof will be omitted. From
the above it can be derived that every set S(λ), where λ is an arbitrary CLDS-
label that appears in the tableau, is a set of subconcepts of C:

S(λ) ∈ ℘(sub(C)).

It follows that there may exist only 2|sub(C)| different such sets and that every such
set is itself finite.

Lemma 76. Every CLDS-label is associated with a finite set of concepts.

Proof. From the above analysis, for an arbitrary CLDS-label λ, S(λ) ∈ ℘(sub(C))
and every set in ℘(sub(C)) is finite. �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 45

Lemma 77. Let TAC be an ALC-CLDS tableau and B a branch of TAC for the
initial configuration C = {(C :λ)}. If the number of CLDS-labels that appear on
B is finite, then B contains a finite number of nodes labelled with declarative
units.

Proof. Assume that B contains finitely many different CLDS-labels: λ0 ≺ λ1 ≺
. . . ≺ λn. From lemma 76 it follows that every CLDS-label λi (1 ≤ i ≤ n)
is associated with a finite set of subconcepts of C, namely S(λi). Moreover,
there exist no two nodes in the tableau labelled with the same declarative unit
(the tableau rules add nodes only if they don’t already appear in the tableau).
It follows that there exists a finite number of nodes that are labelled with a
declarative unit that contains λi. Since by assumption there are finitely many
CLDS-labels, and we have shown that each one appears in finitely many nodes,
it follows that there exist finitely many nodes labelled with declarative units. �

Proposition 78. The number of nodes labelled with Relation-literals that are
added by the application of a tableau rule to a branch is smaller than or equal to
the number of nodes labelled with declarative units that are added to the branch
by the same application.

Proof. This can be easily proved by examining the tableau rules. Assume that
we apply the:

• u-rule. In this case two nodes labelled with declarative units are created
while no nodes labelled with Relation-literals are added.
• t-rule. As before, only nodes labelled with declarative units are created.
• ∀-rule. Only one node labelled with a declarative unit is created.
• ∃-rule. Two nodes are created, one labelled with a declarative unit and

one labelled with a Relation-literal.

In any case, the number of introduced nodes labelled with Relation-literals is
smaller than or equal to the number of introduced nodes labelled with declarative
units. �

Proposition 79. Let TAC be an ALC-CLDS tableau for the initial configuration
C = {(C :λ)}. The number of nodes of TAC that are labelled with Relation-literals
is smaller than the number of nodes that are labelled with declarative units.

Proof. This can be easily derived. It obviously holds for the initial tableau for
C, which consists of a single node labelled (C :λ). Assuming that it holds for a
tableau T ′AC for C it can be shown that it holds for the tableau T ′′AC that results
from TAC by the application of a tableau rule, using proposition 78. The details
of the proof will be omitted. �

Corollary 80. Let TAC be an ALC-CLDS tableau for the initial configuration
C = {(C :λ)} and B a labelled branch of TAC . If B contains finitely many CLDS-
labels, then it is finite.

Proof. Assume that B contains a finite number of (different) CLDS-labels. From
lemma 77 it follows that B contains a finite number of nodes labelled with declar-
ative units. From proposition 79 it can be derived that the number of nodes that
are labelled with Relation-literals is also finite. Therefore, in total B contains
finitely many nodes. �

46 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

The following definition will be very useful in the proof of termination.

Definition 81 (∃-nesting degree). Let C be an ALC-concept. The ∃-nesting
degree of C is equal to the maximum number of ∃ symbols that appear in those
subconcepts of C which are of the form ∃r.D (where r is an arbitrary ALC-role
and D an arbitrary ALC-concept).

Example 82. Assume that C is the concept ∃r1.A1 u ∃r2.∃r1.∃r2.A2. In this
case, C has the following subconcepts of the form ∃r.D: ∃r1.A1, ∃r2.∃r1.∃r2.A2,
∃r1.∃r2.A2, and ∃r2.A2. The number of ∃ symbols that appear in these concepts
is 1, 3, 2, and 1 respectively. Therefore, the ∃-nesting degree of C is equal to 3
because of the subconcept ∃r2.∃r1.∃r2.A2.

Obviously, a concept cannot have more ∃-symbols than the length of the con-
cept. Therefore, the ∃-nesting degree of a concept is bounded by the length of
the concept. This is of course a very loose bound.

As a final step before the actual proof of termination, we consider König’s
lemma, a standard result of graph theory. We will state here without proof a
special case of this lemma that refers to trees (and not generally to graphs), as
we intend to use it with tableaux (i.e. labelled trees).

Lemma 83 (König’s Lemma). A finitely branching tree (namely a tree where
every node has finitely many children) is infinite (i.e. it has infinitely many nodes)
if and only if it has an infinite branch.

We can now move on to prove termination.

Theorem 84 (Termination). Every ALC-CLDS tableau for checking the satis-
fiability of the initial configuration C = {(C :λ0)} w.r.t. the empty knowledge
base.

Proof. Let TAC be such a tableau and assume that it is not finite. Since ev-
ery ALC-CLDS tableau is a binary tree (therefore every node has at most two
children), it follows from König’s Lemma that TAC contains at least one infi-
nite branch. Let B be an infinite branch of the tableau. If B contained finitely
many CLDS-labels, then according to lemma 80, B would be finite. Therefore,
B contains infinitely many CLDS-labels.

The number of R-successors of a label is bounded by the maximum nesting
degree of ∃-concepts in C. Since B has infinitely many CLDS-labels, it follows
that there exists a subconcept of C with infinite nesting degree of ∃-concepts.
This leads to a contradiction, since the nesting degree of C is bounded by the
length of C which is assumed to be finite. �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 47

10. ALC-CLDS with a Non-Empty TBox

We will consider the most general case, namely the case of a free TBox (that
may contain cycles). It is well known in the field of description logics that a
TBox that contains several general inclusion axioms can be reduced to a TBox
that contains only one general inclusion axiom [4]. To be more specific, let

T = {C1v̇D1, . . . ,Cnv̇Dn}
be a free TBox. This is equivalent to the TBox T ′ that contains only one axiom:

T ′ = {>v̇ ((¬C1 t D1) u . . . u (¬Cn t Dn))}.
From now on, we will use the symbol CT to denote the concept that appears

in a free TBox. Namely CT = ((¬C1 t D1) u . . . u (¬Cn t Dn)) and a free TBox
will be of the form

T = {>v̇CT }.
The information of the TBox has to be incorporated in the CLDS framework.

We have considered the following three alternatives. The first option is to create a
new part in the CLDS framework that would contain the information of the TBox.
However, this would require changes in the structure of the CLDS framework
as presented in [10]. Since CLDS is destined to be a unifying framework, this
alternative was abandoned.

The information of the TBox could also be incorporated in the initial con-
figuration of the ALC-CLDS. However, the axioms of the TBox are not ALC-
formulas and therefore, they cannot be directly expressed in the CLDS-language.
For example, Cv̇D is (syntactically) a correct axiom for the TBox, however the
expression ((Cv̇D) :λ) (where λ is a label of the labelling language) is not a
CLDS-formula!

The third approach, and the one we opted for, is to include the axiom of the
TBox in the extended labelling algebra Mon(L#,LL). This approach provides a
unifying representation, since the extended labelling algebra contains all the gen-
eral information for a specific problem: axioms for the roles and for the concepts.
However, recall that the labelling algebra is a first-order theory. Therefore, the
axiom of the TBox has to be translated into first-order logic. To be more specific,
the following axiom is added to the extended labelling algebra:

Ax-v̇ ∀x[CT]∗(x)

First of all we will show that checking whether a configuration C = {(C :λ)} is
satisfiable w.r.t. a TBox T = {>v̇CT } is equivalent with checking the satisfia-
bility of C w.r.t. T . The following proposition is the analogous of proposition 64
that established the correspondence between ALC and ALC-CLDS in the case of
the empty TBox.

Proposition 85 (Correspondence between concept satisfiability w.r.t a free TBox
in ALC and in ALC-CLDS). Let C be a concept of ALC, 〈〈ALC,LALCL 〉, ∅,R〉 an
ALC CLDS system, and T = {>v̇CT } a free TBox. C is satisfiable w.r.t. T if
and only if the configuration C = {C :λ} is satisfiable.

Proof. (⇒) Assume that C is satisfiable w.r.t. T . That means that there exists
an interpretation I such that CI 6= ∅ and I is a model of T , i.e. it satisfies the
single axiom that this TBox contains: ∆I ⊆ CIT . We have to show that the

48 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

configuration C is also satisfiable. In other words, we want to show that there
exists a semantic structureM = 〈D, I〉 that satisfies the axioms of the extended
labelling algebra andM|=CLDS C. We defineM as in the proof of proposition 64.
The domain of M is the domain of the ALC interpretation:

D = ∆I

and the interpretation function I agrees with ·I on the interpretation of concepts
(unary predicates), roles (binary predicates), and individuals (constants):

[[C]∗]I = CI RI
r = rI cIa = aI .

Obviously, M satisfies configuration C. It remains to show that it satisfies the
axioms of the extended labelling algebra. The case of axioms Ax-u, Ax-t, Ax-¬,
Ax-∀, and Ax-∃ is identical to that in the proof of proposition 64 and we will not
repeat them here. However, M has now to satisfy axiom Ax-v̇.

M|=FOL ∀x[CT]∗(x) iff

M, [x 7→ d] |=FOL[CT]∗(x) for all elements d of the domain.

This is equivalent to d ∈ [[CT]∗]I . However, the ALC-interpretation I satisfies
the TBox axiom: ∆I ⊆ CIT . From the wayM has been defined this is equivalent
to D ⊆ [[CT]∗]I and since d ∈ D it follows that d ∈ [[CT]∗]I .

(⇐) Assume configuration C = {(C :λ)} is satisfiable. That means that there
exists a semantic structureM that satisfies the axioms of the extended labelling
algebra, and moreover M|=CLDS(C :λ) or equivalently M|=FOL[C]∗(λ). This
holds if and only if λ ∈ [[C]∗]I . We have to show that the ALC concept C is
satisfiable w.r.t. the TBox T . We construct an ALC-interpretation I based on
M exactly as before.

∆I = D CI = [[C]∗]I rI = RI
r aI = cIa.

According to this construction CI = [[C]∗]I 6= ∅ since we know that there exists
an λ ∈ [[C]∗]I . It remains to show that I is a model of T , i.e. that ∆I ⊆ CIT . M
satisfies the axiom Ax-v̇ of the extended labelling algebra M|=FOL ∀x[CT]∗(x)
or equivalently d ∈ [[CT]∗]I for every element d of the domain D. From the way
I has been defined, it follows that d ∈ CIT for every element d ∈ ∆I . �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 49

11. ALC-CLDS Tableau for Reasoning in the Presence of a Free
TBox

It is also necessary to extend the tableau calculus that we have presented with
one new rule that will handle the existence of an axiom in the TBox. Recall that
the axioms of the TBox are in a sense a “universal modality” and every individual
has to satisfy them. This gives rise to the tableau rule described below.

• The v̇-rule:
Informally, if the TBox contains the axiom >v̇CT , label λ appears in a

branch B and (CT :λ) does not, then extend B with a new node labelled
with this declarative unit.

Formally, we say that a label λ appears in a branch B if there exists
an ALC concept CT such that (CT :λ) ∈ B or if there exists a Relation-
predicate Rr such that either Rr(λ, λ

′) ∈ B or Rr(λ
′, λ) ∈ B. If a label λ

appears in B, then add one new node to the end of B l0 labelled (CT :λ).
The rule is represented as follows:

(λ appears in the branch)

〈l0, (CT :λ)〉
It can be shown that the ALC-CLDS tableau with this additional rule is sound

and complete. To prove soundness it is necessary to extend the proof of lemma 66
to include the new tableau rule. In other words, it is enough to show that the
v̇-rule preserves satisfiability:

Lemma 86. The v̇-rule preserves satisfiability.

Proof. Let C be a satisfiable configuration and TAC = Bco(C) the initial tableau
for C. We have to show that if Bco(C) is open, then the resulting tableau after
the application of this rule will also be open.

If we apply the rule to the initial tableau of C, the resulting tableau will have
a single branch T ′AC = B′ where Cco(B′) = C ∪ {(CT :λ)}. Since C is satisfi-
able, there exists a semantic structure M that satisfies all the axioms of the
extended labelling algebra, therefore it satisfies Ax-v̇: M|=FOL ∀x[CT]∗(λ) or
equivalently M, [x 7→ d] |=FOL[CT]∗(x) for all elements d of the domain. It fol-
lows that M, [x 7→λI] |=FOL[[CT]∗]I(x) or in other words, λI ∈ [CT]∗. and there-
fore, M|=FOL[CT]∗(λ) or equivalently M|=CLDS(CT :λ). Since M|=CLDS C and
C ′ = C ∪ {(CT :λ)} we conclude that M|=CLDS C ′. That means that C ′ is satisfi-
able and thus the corresponding branch is open. �

In order to prove the completeness we have to extend the definition of a down-
ward saturated configuration (definition 68).

Definition 87 (Extension of definition 68). We add the following case to the
definition for downward saturated configurations:

• If a CLDS-label λ appears in C, then (CT :λ) ∈ C.

It is also necessary to modify the proof lemma 70, which states that every
Hintikka configuration is satisfiable, in order to include the new axiom of the
extended labelling algebra.

Proof. (Extension of the proof for lemma 70.)

50 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

• Ax-v̇: MH |=FOL ∀x[CT]∗(x) if and only if MH |=FOL[CT]∗(d) for all el-
ements d of the Herbrand universe of FOT(C). Assume that there ex-
ists an element d ∈ U such that MH 6 |=FOL[CT]∗(d). That means that
[CT]∗(d) /∈ FOT(C). Equivalently, (CT : d) /∈ C. However, d is in the
Herbrand universe of FOT(C) which means that d appears in C. Since
C is a Hintikka configuration, according to definition 87, (CT : d) ∈ C.
Contradiction! �

Finally, in order to prove completeness it is necessary to extend the proof of
proposition 72 that every open and complete branch corresponds to a satisfiable
configuration.

Proof. (Extension of proof for proposition 72)

• Assume that λ appears in B and (CT :λ) /∈ C. The v̇-rule can be applied,
therefore the branch is not complete. Contradiction! �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 51

12. Blocking

Although the extra tableau rule and the new axiom in the extended labelling
algebra result in a sound and complete tableau procedure for the ALC-CLDS
when reasoning w.r.t. a free TBox, they are not enough to guarantee that this is
a decision procedure, namely that a tableau can be constructed with an algorithm
that always terminates. Consider the following example:

Example 88. Let T = {>v̇∃r.A} be a (free) TBox and assume that we want to
check whether the concept A is satisfiable w.r.t. T . The initial configuration is
C = {(A : c0)}. The corresponding tableau is shown in figure 6(a). Node 01 results
from the application of the v̇-rule to node ε. Nodes 02 and 03 come from the
application of ∃-rule to node 01. Node 04 results from applying the v̇-rule to node
03 and so on. This procedure will not terminate. However, notice that the labels
of nodes 03, 04, and 05 are similar to those of nodes ε, 01, and 02 respectively.
To be more specific, they are the same if we replace c1 by c2, and c0 by c1 in the
labels of the first three nodes. This repetition is observed in the rest of the nodes
as well.

Although we have not defined yet the notion of blocking, it is not hard to
understand intuitively how the tableau would be if we used blocking. As shown
in figure 6(b)), the application of tableau rules stops at node 04. Notice that
the symbol 7 is not part of the tableau. It is used in order to denote that the
corresponding node is blocked.

To prevent these loops in tableaux, a technique known as blocking or loop
checking is employed. This is commonly used in tableaux for description logics

- 〈ε, (A : c0)〉
v̇-rule for c0

X 〈01, (∃r.A : c0)〉
∃-rule to 0

- 〈02, r(c0, c1)〉

- 〈03, (A : c1)〉
v̇-rule for c1

X 〈04, (∃r.A : c1)〉
∃-rule to 04

- 〈05, r(c1, c2)〉

- 〈06, (A : c2)〉
v̇-rule for c2

X 〈07, (∃r.A : c2)〉
∃-rule to 07

...
(a) Without blocking.

- 〈ε, (A : c0)〉
v̇-rule for c0

X 〈01, (∃r.A : c0)〉
∃-rule to 0

- 〈02, r(c0, c1)〉

- 〈03, (A : c1)〉
v̇-rule for c1

7 〈04, (∃r.A : c1)〉
(b) With blocking.

Figure 6. An ALC-CLDS tableau for checking the satisfiability
of concept A w.r.t. to the TBox T = {>v̇∃r.A} (example 88).

52 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

〈ε, r(λ, λ′)〉

〈01, (A1 :λ′)〉

〈02, ((A1 t A2) :λ)〉

〈03, r(λ, λ′′)〉
ZZZZZZZZZZZZZZ

dddddddddddddd

〈04, (A1 :λ)〉 〈031, (A2 :λ)〉

Figure 7. An ALC-CLDS tableau for example 89.

(see for example [3] and [4]) as well as in tableaux for hybrid logics [7, 6], and
certain modal logics [5].

The main idea behind blocking is to try and detect where a cycle will occur
and block the application of generating rules (i.e. of the ∃-rule). Informally, if a
node n is blocked by a node n′, then the application of a generating rule to n will
create a cycle. In other words, there is no need to add new successors to node
n as it could use the successors of n′. In the remaining of this section we will
formally describe how blocking works in a CLDS-tableau. Notice that we won’t
restrict the description to ALC-CLDS tableaux. It will be a general approach
that can be applied to any CLDS-tableau.

Fix a CLDS C = 〈〈L#,LL〉, ∅,R〉 for the language L# and a CLDS-tableau
TC = 〈T , f〉. Every node of TC is labelled with either a declarative unit, or with
a Relation-literal. A CLDS-label may appear in several declarative units, each
time is used as a label for a different L#-formula. As a first step, we define a
function S that maps every CLDS-label that appears in TC to the set of L#-
formulas that it labels (S : L → ℘(L#), where L is the set of labels that appear
in TC):

S(λ) = {a | n ∈ T and f(n) = (a :λ)}.
Obviously, a is a formula of L#.

Example 89. Assume that L# is ALC and TAC is the ALC-CLDS tableau shown
in figure 7. Only three different CLDS-labels appear in TAC : λ, λ′, and λ′′. The
value of S for each CLDS-label is:

S(λ) = {(A1 t A2),A1,A2} S(λ′) = {A1} S(λ′′) = ∅
Notice that since λ′′ does not appear in any declarative unit but only in Relation-
literals, S(λ′′) is the empty set.

This function S will be used to define what it means for a CLDS-label to be
blocked.

Definition 90 (Blocked CLDS-label). A CLDS-label λ is said to be blocked if
there exists a CLDS-label λ′ such that

(i) S(λ) ⊂ S(λ′), or
(ii) S(λ) = S(λ′) and λ′ ≺ λ.

What this definition says is that a CLDS-label is blocked if it carries less
“L#-information” than another CLDS-label (case (i) of the above definition).

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 53

However, if two CLDS-labels contain the same “L#-information” (namely S(λ) =
S(λ′)) we assume that the one that appears earlier in the tableau blocks the one
that appears later (case (ii)). This assumption is necessary in order to avoid
cyclic blocking: λ would block λ′ and λ′ would block λ. An example is necessary
to better understand how this definition works.

Example 91. Consider again the tableau of figure 6(a). In this case the following
hold:

S(c0) = {A,∃r.A} S(c1) = {A,∃r.A} S(c2) = {A,∃r.A}

Obviously, S(c0) = S(c1) = S(c2). Moreover, c0 ≺ c1 ≺ c2. Therefore, according
to definition 90, label c0 blocks c1 and c2, and label c1 blocks c2.

The minimal label w.r.t. ≺ that blocks λ is said to be the main blocking label
of λ. In the above example, the main blocking label of c2 is c0.

Now we can give a definition for blocked nodes. Notice that in essence, blocking
forbids the application of a generating rule to a node. Therefore, it makes sense
to talk about blocking a node only when a generating rule can be applied to this
node. For example, there is no point in saying that a node labelled (C1tC2 :λ) is
blocked since the only tableau rule that can be applied to this node is the u-rule.
In other words, just because the CLDS-label that appears in a node is blocked,
this does not necessarily mean that the node is blocked.

Definition 92 (Blocked node). A node is said to be blocked if the following
conditions are met:

(i) A generating rule can be applied to the node.
(ii) The CLDS-label that appears in the node, λ, is blocked.

12.1. ALC-CLDS tableau with blocking. As far as the tableau calculus for
ALC-CLDS is concerned, in order to take blocking into consideration we have to
make sure that generating rules can be applied to a node only when the node is
not blocked. In the case of the ALC-CLDS tableau rules that we have presented,
it is necessary to change the preconditions only of the ∃-rule.

• The (blocking) ∃-rule:
Informally, if the CLDS-formula (∃r.C :λ1) appears in the branch B and

the node labelled with this formula is not blocked, then extend B with
two nodes labelled Rr(λ1, λ2) and (C :λ2), where λ2 is a CLDS label that
does not appear already in the branch B.

Formally, if 〈n, (∃r.C :λ1)〉 ∈ B, n is not blocked and there exists no
label λ such that Rr(λ1, λ) ∈ B and (C :λ) ∈ B then add two nodes to
the end of B: l0 labelled Rr(λ1, λ2) and l00 labelled (C :λ2), where λ2 is
new in the branch B.

This rule is represented as follows:

〈n, (∃r.C :λ1)〉 , n is not blocked

〈l0, Rr(λ1, λ2)〉 , 〈l00, (C :λ2)〉
(λ2 is “new” to the branch)

12.2. Termination. We now have to prove that a tableau calculus that contains
the blocking ∃-rule is sound, complete, and that it terminates. We will first prove
termination as it will be used in the proof of completeness. We start with some
preliminary definitions and lemmas that will be useful in the proof of termination.

54 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

Let TAC be an ALC-CLDS tableau for the configuration C = {(C :λ0)} and
assume that the knowledge base consists of a non-empty TBox T = {>v̇CT }. It
is easy to see that for every node of TAC which is labelled with a declarative unit
of the form (a :λ), a is a subconcept of C or a subconcept of CT . Thus for every
CLDS-label λ that appears in the tableau the set S(λ) is a set of subconcepts of
C and subconcepts of CT :

S(λ) ∈ ℘(sub(C) ∪ sub(CT)).

It follows that there may exist only 2|sub(C)|+|sub(CT)| different such sets and that
every such set is itself finite.

Lemma 93. Every CLDS-label is associated with a finite set of concepts.

Proof. From the above analysis, for an arbitrary CLDS-label λ, S(λ) ∈ ℘(sub(C)∪
sub(CT)) and every set in ℘(sub(C) ∪ sub(CT)) is finite. �

Lemma 94. Let TAC be an ALC-CLDS tableau and B a branch of TAC for the
initial configuration C = {(C :λ)}. If the number of CLDS-labels that appear on
B is finite, then B contains a finite number of nodes labelled with declarative
units.

Proof. Assume that B contains finitely many different CLDS-labels: λ0 ≺ λ1 ≺
. . . ≺ λn. Every CLDS-label λi (1 ≤ i ≤ n) is associated with a finite set of
concepts (lemma 93). Moreover, there exist no two nodes in the tableau labelled
with the same declarative unit (the tableau rules add nodes only if they don’t
already appear in the tableau). It follows that there exists a finite number of nodes
that are labelled with a declarative unit that contains λi. Since by assumption
there are finitely many CLDS-labels, and we have shown that each one appears
in finitely many nodes, it follows that there exist finitely many nodes labelled
with declarative units. �

We will now prove that there exist a maximum number of labels in a tableau
branch that can be unblocked. Notice that the following proposition is about
unblocked labels and not unblocked nodes.

Proposition 95. Let TAC be an ALC-CLDS tableau for the initial configuration
C = {(C :λ0)} and B a branch of TAC . B contains at most 2|sub(C)|+|sub(CT)| labels
that are not blocked.

Proof. Assume for contradiction that B contains more CLDS-labels that are not
blocked. Suppose that it contains only one more such label, i.e. in total it con-
tains 1 + 2|sub(C)|+|sub(CT)| labels that are not blocked. However, there exist only
2|sub(C)|+|sub(CT)| different sets of ALC subconcepts that can be associated with a
CLDS-label. That means that there exist at least two CLDS-labels, say λi, λj,
that are associated with exactly the same set of ALC concepts: S(λi) = S(λj).
Since we have assumed that labels are introduced to a tableau branch according
to the strict total order ≺, it follows that either λi ≺ λj or λj ≺ λi. That means
that either λi blocks λj, or that λj blocks λi. This is a contradiction since we
have assumed that both labels are not blocked. �

We will show that proposition 78 also holds when the TBox is not empty.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 55

Proposition 96. The number of nodes labelled with Relation-literals that are
added by the application of a tableau rule to a branch is smaller than or equal to
the number of nodes labelled with declarative units that are added to the branch
by the same application.

Proof. It is sufficient the proof to proposition 78 with the case of v̇-rule. Assume
that we apply the:

• v̇-rule. Only a node labelled with a declarative unit is created.

In any case, the number of introduced nodes labelled with Relation-literals is
smaller than or equal to the number of introduced nodes labelled with declarative
units. �

Proposition 79 and corollary 80 need no modification.

Lemma 97. Let TAC be an ALC-CLDS tableau for the initial configuration
C = {(C : c0)}, and c a CLDS-label that appears in TAC . The number of direct
Rr-successors of c is equal to the number of unblocked nodes of the tableau that
are labelled with a declarative unit of the form (∃r.C : c), where C is an arbitrary
ALC-concept.

Proof. By definition, the number of direct Rr-successors of c is equal to the num-
ber of Relation-predicates of the form Rr(c, c

′) that appear in the tableau. Every
such predicate has been added to the tableau through the application of the ∃-
rule to a node labelled (∃r.D : c), where D is an arbitrary ALC-concept. However,
the ∃-rule can only be applied to unblocked nodes. �

We can now move on to prove termination.

Theorem 98 (Termination). Every ALC-CLDS tableau for checking the satisfi-
ability of the initial configuration C = {(C :λ0)} w.r.t. a free TBox is finite.

Proof. Let TAC be such a tableau and assume that it is not finite. Since ev-
ery ALC-CLDS tableau is a binary tree (therefore every node has at most two
children), it follows from König’s Lemma that TAC contains at least one infinite
branch. Let B be an infinite branch of the tableau. If B contained finitely many
CLDS-labels, then according to corollary 80, B would be finite. This cannot
be the case, since we have assumed that B is an infinite branch. Therefore, B
contains infinitely many CLDS-labels.

We have already proved that a branch contains at most 2|sub(C)|+|sub(CT)| un-
blocked labels (see proposition 95). Moreover, every label is associated with a
finite set of concepts (lemma 93). Therefore, for a given CLDS-label λ and a
given ALC role r, the number of ALC concepts of the form ∃r.D (D is an ar-
bitrary concept) that appear in S(λ) is finite. It follows that every unblocked
label will have a finite number of direct Rr-successors. Furthermore, the num-
ber of Relation-predicate symbols that appear in the tableau is also finite (is the
number of Relation-predicate symbols that appear in the concept of the initial
configuration plus the number of Relation-predicate symbols that appear in the
concept of the TBox). Assume that Rr1 , . . . , Rrn are all the Relation-predicates
symbols that appear in the tableau. Since the number of direct Rri-successors is
finite for all 1 ≤ i ≤ n, it follows that the number of direct R-successors of λ is
finite as well.

56 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

Let m denote the maximum number of direct R-successors that an unblocked
label has. That means that there exist maximumm×2|sub(C)|+|sub(CT)| CLDS-labels
as direct R-successors of the unblocked labels. On the other hand, a label that is
blocked will have no R-successors at all because no generating rules can be applied
to a node with a blocked label. That means that in total the maximum number
of CLDS-labels is 2|sub(C)|+|sub(CT)| (the unblocked labels) plus m×2|sub(C)|+|sub(CT)|

(the direct R-successors of the unblocked labels). This is a contradiction, since
we have assumed that B contains infinitely many CLDS-labels. �

12.3. Soundness and Completeness. To prove soundness it is enough to show
that the blocking ∃-rule preserves satisfiability. The proof is identical to the that
of the non-blocking ∃-rule in lemma 66 since the only difference between the
blocking and the non-blocking rule is in the preconditions of the rules.

On the other hand, the proof of completeness is more complicated. It has to
be noted that if it is possible to block nodes, then we cannot use Hintikka config-
urations to prove completeness as it was the case in the tableau calculus without
blocking. This is because if blocking is used in a branch, then the corresponding
configuration is not a Hintikka configuration. Consider for example the tableau
shown in figure 6(b). The corresponding configuration is not a Hintikka one be-
cause although it contains the declarative unit (∃r.A : c1) it does not contain a
Relation-predicate Rr(c1, c2) nor a declarative unit (A : c2).

We will instead prove the following proposition.

Proposition 99. If B be an open and complete branch of anALC-CLDS tableau,
then the corresponding configuration Cco(B) is satisfiable.

Proof. It has to be noted that this proposition is the analogous of lemma 70
together with proposition 72 that are used to prove the completeness of the ALC-
CLDS tableau when reasoning under the empty TBox. The basic idea of the proof
is similar to the proofs of the aforementioned lemma and proposition, however
blocking has to be taken under consideration.

In order to show that Cco(B) is satisfiable we have to show that there exists
a semantic structure that satisfies all the CLDS-formulas of the configuration.
Let MH be the Herbrand structure with H on unary predicates defined as in
lemma 70:

[[C]∗]H = {d ∈ U | [C]∗(d) ∈ FOT(Cco(B))}
where U is the Herbrand universe of FOT(C). However, the interpretation of
binary predicates is defined in a different way in order to take blocking into
account:

Rr
H = {(d, d′) ∈ U2 | Rr(d, d

′) ∈ FOT(Cco(B)), or

d′′ is the main blocking label of d and Rr(d
′′, d′)}

The idea behind this definition is quite simple. If d is blocked by d′′ and d′ is
a direct successor of d′′, then do not create new successors for d, but instead
“assign” to d the successors of the node that is blocking it. To better understand
how this interpretation works see example 101.

Obviously, MH satisfies every formula of Cco(B) and it remains to be shown
that it satisfies the axioms of the extended labelling algebra. The proof is identical
to that of lemma 70 for all the axioms of the extended labelling algebra (including

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 57

the extension for Ax-v̇) with the exception of Ax-∃. This case will be presented
in detail here.

• Ax-∃: We want to show that MH satisfies the Ax-∃:

MH |=FOL ∀x ([∃r.C]∗ (x)→ ∃y (Rr (x, y) ∧ [C]∗ (y))) iff

MH |=FOL ([∃r.C]∗ (d)→ ∃y (Rr (d, y) ∧ [C]∗ (y))) for every d ∈ U .

AssumeMH |=FOL[∃r.C]∗(d) for an arbitrary d ∈ U . We have to show that
MH |=FOL ∃y (Rr (d, y) ∧ [C]∗ (y)) or equivalently thatMH |=FOLRr(d, d

′)
and MH |=FOL[C]∗(d′) for some element d′ ∈ U . That means that there
exists a node in B labelled (C : d′) and a node labelled Rr(d, d

′) for some
element d′ ∈ U .

Since MH |=FOL[∃r.C]∗(d), it follows that (∃r.C : d) ∈ Cco(B). That
means that there exists a node in B labelled (∃r.C : d). Let n be this
node: 〈n, (∃r.C : d)〉 ∈ B. We distinguish the following two cases:

– Assume that n is not blocked. Since B is a complete branch, the
∃-rule has been applied to the node n labelled (∃r.C : d), therefore there
exist in B a node labelled Rr(d, d

′) and a node C(d′), where d′ is some
element of the domain.

– Assume that n is blocked. That means that there exists a node,
say n′ labelled (a′ :λ′), that blocks n. From definition 92 it follows that
S(d) ⊆ S(λ′). Since n is labelled with (∃r.C : d) it follows that the ALC-
formula ∃r.C belongs to S(d). Therefore, ∃r.C also belongs to S(λ′). That
means that there exists a node, say n′′ labelled (∃r.C :λ′). If n′′ is is not
blocked, then the (blocking) ∃-rule can be applied to it. Therefore, there
exist two nodes labelled r(λ′, λ′′) and C(λ′′). From the way we have defined
the interpretation of binary predicates, it follows that since d is blocked by
λ′ and r(λ′, λ′′), (d, λ′′) ∈ Rr

H. In other words, MH |=FOLRr(d, λ
′′) and

MH |=FOL[C]∗λ′′. On the other hand if n′′ is blocked then we can repeat
the same procedure and find a node that blocks n′′. However, since we
have prove termination, the number of nodes in B is finite, therefore this
procedure cannot “go on forever”. At some point we will reach a node
that is not blocked. �

Now the completeness of the tableau calculus is straightforward.

Theorem 100 (Completeness of ALC-CLDS tableau w.r.t. a free TBox). If a
configuration C is not satisfiable, then every complete tableau for C is closed.

Proof. Assume C is an unsatisfiable configuration and TAC a complete tableau
for C. Suppose TAC is open. It follows that there exists a branch B of TAC
that is open and complete. Then according to proposition 99 the corresponding
configuration of B is satisfiable. Since C is contained in Cco(B) it can be derived
that C is satisfiable. Contradiction! �

An example is necessary in order to better understand how the interpretation of
Relation-predicates is used to create a model in the case that blocking is available.

Example 101. Suppose we want to check whether the ALC concept A is satisfi-
able w.r.t. to the TBox T = {>v̇∃r.∃r.A}. A complete tableau for this problem

58 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

- 〈ε, (A : c0)〉
v̇-rule for c0

X 〈0, (∃r.∃r.A : c0)〉
∃-rule to 0

- 〈02, Rr(c0, c1)〉

- 〈03, (∃r.A : c1)〉
v̇-rule for c1

X 〈04, (∃r.∃r.A : c1)〉
∃-rule to 03

- 〈05, Rr(c1, c2)〉

- 〈06, (A : c2)〉
v̇-rule to c2

7 〈07, (∃r.∃r.A : c2)〉
∃-rule to 04

- 〈08, Rr(c1, c3)〉

7 〈09, (∃r.A : c3)〉
v̇-rule to c3

7 〈010, (∃r.∃r.A : c3)〉
(a) A complete tableau for
checking the satisfiability of
the concept A w.r.t. T =
{>v̇∃r.∃r.A}.

c0

��
c1

~~}}
}}

}}
}}

 A
AA

AA
AA

A

c2 c3
(b) Diagram of the con-
figuration that corre-
sponds to the (single)
branch of the tableau.
c2 is blocked by c0 and
c3 by c1.

c0

��
c1

~~}}
}}

}}
}}

 A
AA

AA
AA

A

c2

//

c3ee XX

(c) Representation of
Rr

H.

Figure 8. Tableau and diagram representation for example 101.

is shown in figure 8(a). The ALC-information that each label carries is:

S(c0) = {A,∃r.∃r.A} S(c1) = {∃r.A,∃r.∃r.A}
S(c2) = {A, ∃r.∃r.A} S(c3) = {∃r.A,∃r.∃r.A}.

Obviously, c2 is blocked by c0 and c3 is blocked by c1.
The H-interpretation of Rr if we do not take blocking into consideration would

contain only the following elements: (c0, c1), (c1, c2), (c1, c3). The representation
of the corresponding diagram is shown in figure 8(b). However, this interpretation
would not satisfy for example the declarative unit (∃r.A : c3).

If we take blocking into consideration, the H-interpretation of Rr would also
contain (c2, c1), (c3, c2), and (c3, c3). That is because c0 is the main blocking
label of c2. Thus c2 would have as Rr-successors the Rr-successors of c0, i.e. c1.
Similarly, c3 would have as Rr-successors the Rr-successors of c1, i.e. c2 and c3.
The diagram in this case is shown in figure 8(c). The dotted arrows represent the
Rr-successors that are added due to blocking.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 59

13. ALC-CLDS with a Non-Empty ABox

Up to now we have been concerned with knowledge bases whose ABox is empty.
In what follows we will examine how to integrate the assertional component of
description logics into the CLDS framework.

The statements of the ABox can be represented in the ALC-CLDS system as
CLDS-formulas in the initial configuration. To be more specific, every concept
assertion C(a), can be expressed as a declarative unit (C : ca) in the initial config-
uration. Similarly, a role assertion r(a, b) will become a Relation-literal Rr(ca, cb)
in the initial configuration.

Fix a knowledge base K = 〈T ,A〉. We will use the notation C(A) to denote
the configuration that corresponds to A:

C(A) = {(C : ca) | C(a) ∈ A} ∪ {Rr(ca, cb) | r(a, b) ∈ A}
First of all we will show the correspondence between ABox consistency in ALC
and configuration satisfiability in ALC-CLDS. In what follows we will consider
the (more general) case of ABox consistency w.r.t. a TBox. The case of the empty
TBox is obviously a special case of this analysis.

Proposition 102 (Correspondence between ABox consistency in ALC and con-
figuration satisfiability in ALC-CLDS). Let K = 〈T ,A〉 be a knowledge base and
C(A) be the corresponding configuration. A is consistent w.r.t. T if and only if
C(A) is satisfiable.

Proof. (⇒) Assume that A is consistent w.r.t. T . That means that there exists
an ALC interpretation I that is a model of both the ABox and the TBox. We
construct a semantic structure for the ALC-CLDS M = 〈D, I〉 exactly like we
have done in the proof of correspondence in the case of the empty knowledge base
and of the free TBox (propositions 64 and 85 respectively):

D = ∆I [[C]∗]I = CI RI
r = rI cIa = aI .

I satisfies every assertion of the ABox and every axiom of the TBox. Therefore,
for any concept assertion C(a) ∈ A it is the case that aI ∈ CI . From the wayM
has been defined, this is equivalent to ca ∈ [[C]∗]I or equivalentlyM|=FOL[C]∗(ca).
Similarly, for any role assertion r(a, b) ∈ A it follows that (aI , bI) ∈ rI or equiv-
alently (cIa, c

I
b) ∈ RI

r . It follows that M|=FOLRr(ca, cb).
It remains to show thatM is a semantic structure for the ALC-CLDS, namely

that it satisfies the axioms of the extended labelling algebra. The proof is exactly
like in the case of proposition 85 and we won’t repeat it here.

(⇐) Assume that C(A) is satisfiable. We have to show that A is consistent.
Given the semantic structure for the CLDS M we define an ALC interpretation
I exactly as above. Obviously it satisfies all the assertions of the ABox. �

60 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

14. ALC-CLDS Tableau for Reasoning in the Presence of a
Non-Empty ABox

The presence of a non-empty ABox results in an initial configuration that may
contain more than one formulas. That means that the initial tableau will not
consist of just one node, as it was the case until now. Instead, it will generally
be a single branch with more than one nodes. However, the tableau calculus as
defined so far does not at any point make use of the fact that the initial tableau
was a single node. Therefore, the generalization to tableau for a non-empty ABox
is rather trivial. The tableau rules are the same, as well as the proof of soundness
and completeness. However, the proof of termination as presented in the case
of a free TBox (with blocking) needs some minor adaptations. We will present
these changes here in detail.

14.1. Termination. Fix a finite configuration C and let TAC be an ALC-CLDS
tableau for C. It is obvious that for every node of TAC which is labelled with a
declarative unit of the form (a :λ), a is a subconcept of one of the concepts that
appear in the initial configuration or in the TBox. It follows that for every CLDS-
label λ that appears in TAC the set S(λ) consists of subconcepts of the concepts
that appear in C and of the concept CT . To be more specific, if C1, . . . ,Cn are all
the concept names that appear in C, then:

S(λ) ∈ ℘(sub(C1) ∪ . . . ∪ sub(Cn) ∪ sub(CT)).

From lemma 75, each one of the sets sub(C1),. . . , sub(Cn), sub(CT) is finite. That
means that the union of these sets is also finite as well as the powerset of the
union. To be more specific, the size of ℘(sub(C1) ∪ . . . ∪ sub(Cn) ∪ sub(CT)) is
equal to 2|sub(C1)|+...+|sub(Cn)|+|sub(CT)|. Therefore, the following holds:

Lemma 103. Every CLDS-label is associated with a finite set of declarative
units.

The following lemma is a generalization of lemma 77 that handles an arbitrary
initial configuration.

Lemma 104. Let TAC be an ALC-CLDS tableau for the initial configuration C
and B a branch of TAC . If the number of CLDS-labels that appear on B is finite,
then B contains a finite number of nodes labelled with declarative units.

Proof. Let C1, . . . ,Cn be the concept names that appear in the initial configura-
tion C. Assume that B contains finitely many different CLDS-labels: λ0 ≺ λ1 ≺
. . . ≺ λn. Every CLDS-label λi (1 ≤ i ≤ n) is associated with a set S(λi) of
subconcepts of the concepts that appear in the initial configuration. We have
shown that there exists a finite number of such sets, and each one of them is
finite. Therefore, since there exist no two nodes in the tableau labelled with
the same declarative unit, it follows that there exists a finite number of nodes
that are labelled with a declarative unit that contains λi. Since by assumption
there are finitely many CLDS-labels, and we have shown that each one appears
in finitely many nodes, it follows that there exist finitely many nodes labelled
with declarative units. �

We also have to generalize proposition 95 to include the case when the initial
configuration does not consist of a single declarative unit.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 61

Proposition 105. Let TAC be an ALC-CLDS tableau for an initial configuration
C and B a branch of TAC . B contains a finite number of labels that are not
blocked.

Proof. The initial configuration is a finite set of CLDS-formulas, therefore it con-
tains a finite number of Relation-literals and a finite number of declarative units,
say numrp and numdu respectively. Let C1, . . . ,Cn be the concept names that
appear in the initial configuration. According to the above analysis, there exist
2|sub(C1)|+...+|sub(Cn)|+|sub(CT)| different sets of concepts that can be associated with
a CLDS-label, therefore there can only be 2|sub(C1)|+...+|sub(Cn)|+|sub(CT)| unblocked
labels. �

We also need to extend proposition 79.

Proposition 106. Let TAC be anALC-CLDS tableau for the initial configuration
C and B a labelled branch of TAC . If there exists a finite number of nodes in B
labelled with declarative units, then the number of nodes in B labelled with
Relation-literals is also finite.

Proof. The number of Relation-literals in the tableau is the number of those that
exist in the initial configuration and those that have been added through the
application of the tableau rules. According to proposition 78 the Relation-literals
created from application rules are less than the declarative units created from the
rules. Therefore, if the number of declarative units created by the rules is finite,
so is the number of Relation-literals created by the rules. Moreover, since the
initial configuration is finite, it follows that the number of nodes labelled with
declarative units and the number of nodes labelled with Relation-literals (i.e. all
the nodes of the tableau) is finite. �

Corollary 107. Let TAC be an ALC-CLDS tableau for the initial configuration
C and B a labelled branch of TAC . If B contains finitely many CLDS-labels, then
it is finite.

Proof. From lemma 104 it follows that B contains a finite number of nodes la-
belled with declarative units. From the above analysis it can be derived that the
number of nodes that are labelled with Relation-predicates is also finite. There-
fore, in total B contains finitely many nodes. �

Now we are able to generalize theorem 98.

Theorem 108 (Termination). Every ALC-CLDS tableau for checking the satis-
fiability of an initial configuration C w.r.t. a free TBox is finite.

Proof. Let TAC be such a tableau and assume that it is not finite. Since ev-
ery ALC-CLDS tableau is a binary tree (therefore every node has at most two
children), it follows from König’s Lemma that TAC contains at least one infinite
branch. Let B be an infinite branch of the tableau. If B contained finitely many
CLDS-labels, then according to corollary 107, B would be finite. This cannot
be the case, since we have assumed that B is an infinite branch. Therefore, B
contains infinitely many CLDS-labels.

A branch contains at most 2|sub(C1)|+...+|sub(Cn)|+|sub(CT)| unblocked labels (see
proposition 105). Moreover, every label is associated with a finite set of concepts
(lemma 103). Therefore, for a given CLDS-label λ and a given ALC role r, the

62 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

number of ALC concepts of the form ∃r.D (D is an arbitrary concept) that appear
in S(λ) is finite. It follows that every unblocked label will have a finite number
of direct Rr-successors created by the application of the ∃ rule. Furthermore, the
number of Relation-predicate symbols that appear in the tableau is also finite (is
the number of Relation-predicate symbols that appear in the concept of the initial
configuration plus the number of Relation-predicate symbols that appear in the
concept of the TBox). Assume that Rr1 , . . . , Rrn are all the Relation-predicates
symbols that appear in the tableau. Since the number of direct Rri-successors
is finite for all 1 ≤ i ≤ n, it follows that the number of direct R-successors of λ
created by the application of generating rules is finite as well. Since the number
of role assertions that there exist in the ABox is finite, it follows that the number
of direct R-successors of λ (those created by the rules and those that are due to
role assertions of the ABox) is finite.

Let m denote the maximum number of direct R-successors that an unblocked
label has. That means that there exist maximum m × 2|sub(C)|+|sub(CT)| CLDS-
labels as direct R-successors of the unblocked labels. On the other hand, a label
that is blocked will have no R-successors at all because no generating rules can be
applied to a node with a blocked label. That means that in total the maximum
number of CLDS-labels is 2|sub(C1)|+...+|sub(Cn)|+|sub(CT)| (the unblocked labels) plus
m×2|sub(C1)|+...+|sub(Cn)|+|sub(CT)| (the direct R-successors of the unblocked labels).
This is a contradiction, since we have assumed that B contains infinitely many
CLDS-labels. �

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 63

15. ALC-CLDS with Non-Empty Labelling Algebra

Until now we have only considered CLDSs whose labelling algebra was the
empty set. In this section we will examine an ALC-CLDS with a non-empty
labelling algebra. Remember that the labelling algebra contains formulas of the
semi-extended labelling language. In the case of the ALC-CLDS, the labelling
language is a first-order language with the signature 〈P , ∅, C〉, where P is a set of
binary predicates that correspond to the roles of the ALC language of the CLDS.
It follows that the labelling algebra can only contain information regarding the
roles. In other words, the labelling algebra is the equivalent of the RBox of
description logics.

The labelling algebra is assumed to contain only universally quantified definite
Horn clauses. This is because such formulas can be written as implications and
consequently the creation of tableau rules is straightforward.

Example 109. Consider for example that the labelling algebra contains the
following universally quantified definite Horn clause that expresses transitivity of
Rr:

∀x∀y∀z (¬Rr(x, y) ∨ ¬Rr(y, z) ∨Rr(x, z)) .

This can be written equivalently as

∀x∀y∀z ((Rr(x, y) ∧Rr(y, z))→ Rr(x, z)) .

Intuitively, we need a tableau rule that whenever Rr(x, y) and Rr(y, z) appear in
a branch, the CLDS-formulas Rr(x, z) will be added to the branch.

With universally quantified Horn clauses it is possible to express some com-
monly used role axioms and role constructors (see tables 2(a) and 2(b) for exam-
ples). Notice that in the case of role intersection, the axiom

∀x∀y ((Rr1(x, y) ∧Rr2(x, y))↔ Rr1∩r2(x, y))

is not itself a universally quantified Horn clause. However it can be written
equivalently as the conjunction of three universally quantified Horn clauses:

∀x∀y((Rr1(x, y) ∧Rr2(x, y))→ Rr1∩r2(x, y))

∀x∀y(Rr1∩r2(x, y)→ Rr1(x, y))

∀x∀y(Rr1∩r2(x, y)→ Rr2(x, y))

It is not possible, however, to express all the desired properties as universally
quantified Horn clauses. Some examples of constructors that cannot be expressed
with such clauses are presented in table 2(c).

Notice that if the labelling algebra is not empty, then the corresponding de-
scription language that the CLDS describes is not ALC anymore. For example, if
the labelling algebra asserts the transitivity of some roles, then the corresponding
description language will be ALC with transitive roles, namely the language S.
However, we will still refer to the CLDS as an ALC-CLDS as the description
language contains exactly the constructors of ALC.

With the labelling algebra restricted to universally quantified Horn clauses
we can express description languages that are subsets of SHI, i.e. ALC with
transitive roles (S), role hierarchies (H), and inverse roles (I). Such descrip-
tion languages have been studied and there exist tableau procedures that decide
them [20].

64 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

Table 2. Axioms of the labelling algebra for the ALC-CLDS

(a) Role axioms of the RBox expressed as axioms of a labelling algebra with universally
quantified Horn clauses.

Property RBox Axioms Axiom

Transitivity Trans(r) ∀x∀y∀z ((Rr(x, y) ∧Rr(y, z))→ Rr(x, z))
Reflexivity ∀xRr(x, x)
Symmetry ∀x∀y (Rr(x, y)→ Rr(y, x))

Role Hierarchy r1v̇Rr2 ∀x∀y (Rr1(x, y)→ Rr2(x, y))

(b) Role Constructors expressed in a labelling algebra with universally quantified Horn
clauses.

Property Constructor Axiom

Inverse Role r− ∀x∀y (Rr(x, y)↔ Rr−(y, x))
Role Intersection r1 ∩ r2 ∀x∀y ((Rr1(x, y) ∧Rr2(x, y))↔ Rr1∩r2(x, y))

(c) Role Constructors that can be expressed in a labelling algebra but not with universally
quantified Horn clauses.

Property Constructor Axiom

Role Composition r1 ◦ r2 ∀x∀y∃z (Rr1(x, y) ∧Rr2(y, z)↔ Rr1◦r2(x, z))
Role Complement ¬r ∀x∀y (Rr(x, y)↔ ¬R¬r(x, y))

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 65

16. ALC-CLDS Tableau for Reasoning in the Presence of a
Non-Empty Labelling Algebra

In the case the labelling algebra is not empty it is necessary to extend the
tableau calculus we have presented so far with rules that will handle the axioms
of the labelling algebra. For every axiom of the labelling algebra, a new tableau
rule has to be added. However, all such rules follow a general scheme: the
preconditions of the rule are the formulas that appear on the left hand side of
the implication, and the formula that will be added to the tableau is the formula
at the right hand side of the implication.

In what follows we will consider a labelling algebra that contains a finite number
of axioms of the general form:

∀x1, . . .∀xn
(
(Rr1(x1, x2) ∧ . . . ∧Rrm(xn−3, xn−2))→ Rrm+1(xn−1, xn)

)
In this case the tableau calculus will be extended with a finite number of rules
(one for each axiom of the labelling algebra). Every such rule will have the general
form described below.

• Formally, if Rr1(c1, c2) ∈ b and . . . and Rrm(cn−3, cn−2) ∈ B then add a
node to the end of B: l0 labelled Rrm+1(cn−2, cn).

This rule is represented as follows:

〈n1, Rr1(c1, c2)〉, . . . , 〈nm, Rrm(cn−3, cn−2)〉 , n1, . . . , nm ∈ bl
〈l0, Rrm+1(cn−2, cn)〉

In what follows we will refer to the above axiom as the Role-axiom and to the
rule as the Role-rule.

It is worth mentioning that in the case the labelling algebra is not empty, the
tableau may not terminate without blocking. Consider the following example.

Example 110. Let C be a CLDS whose labelling algebra contains a transitivity
axiom for the binary predicate Rr:

∀x∀y∀z ((Rr(x, y) ∧Rr(y, z))→ Rr(x, z))

Assume that we are interested in knowing whether the concept (∃r.A∧∀r.∃r.A) is
satisfiable. The corresponding tableau is presented in figure 9. The information
that is associated with each label is:

S(c0) = {(∃r.A u ∀r.∃r.A),∃r.A,∀r.∃r.A}
S(c1) = {A,∃r.A}
S(c2) = {A,∃r.A}

Therefore, label c2 is blocked by c1. It follows that node 09 is blocked and the
∃-rule cannot be applied. The tableau shown in figure 9(b) is a complete tableau
and is also finite.

16.1. Soundness. To prove that the tableau calculus extended with the new
rules is sound, it is sufficient to prove that every new rule preserves satisfiability.
In other words, lemma 66 has to be extended with the case of the new rules.
Since all the rules for the role axioms have are of the same form, it is enough to
show that one rule (with the general form) preserves satisfiability.

66 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

X 〈ε, ((∃r.A u ∀r.∃r.A) : c0)〉
u-rule for c0

X 〈0, (∃r.A : c0)〉

〈02, (∀r.∃r.A : c0)〉
∃-rule to 0

- 〈03, Rr(c0, c1)〉

- 〈04, (A : c1)〉
∀-rule to 02,03

X 〈05, (∃r.A : c1)〉
∃-rule to 05

- 〈06, Rr(c1, c2)〉

- 〈07, (A : c2)〉
transitive Rr,03,06

- 〈08, Rr(c0, c2)〉
∀-rule to 02,08

X 〈09, (∃r.A : c2)〉
∃-rule to 09

- 〈010, Rr(c2, c3)〉

- 〈011, (A : c3)〉

...
(a) Tableau without blocking

X 〈ε, ((∃r.A u ∀r.∃r.A) : c0)〉
u-rule for c0

X 〈0, (∃r.A : c0)〉

- 〈02, (∀r.∃r.A : c0)〉
∃-rule to 0

- 〈03, Rr(c0, c1)〉

- 〈04, (A : c1)〉
∀-rule to 02,03

X 〈05, (∃r.A : c1)〉
∃-rule to 05

- 〈06, Rr(c1, c2)〉

- 〈07, (A : c2)〉
transitive Rr,03,06

- 〈08, Rr(c0, c2)〉
∀-rule to 02,08

7 〈09, (∃r.A : c2)〉
(b) Tableau with blocking: c2 is blocked
by c1.

Figure 9. Tableaux for example 110.

Lemma 111 (Extension of lemma 66: Tableau rules preserve satisfiability). Let
C be a satisfiable configuration and TAC = Bco(C) = B = 〈b, f, Blab〉 the initial
tableau for C. If a tableau rule can be applied to TAC , then the resulting tableau
T ′AC will also be open.

Proof. Only the case of the Role-rule will be examined here.

• The applied rule is the Role-rule:
That means that there exist m nodes in Bco(C) labelled Rr1(c1, c2),

. . . , Rrm(cn−3, cn−2). It follows that Rr1(c1, c2), . . . , Rrm(cn−3, cn−2) also
belong in the configuration C. Since C is satisfiable, there exists a se-
mantic structure M that satisfies all the CLDS-formulas of C. There-
fore, M|=CLDS Rr1(c1, c2), . . . , M|=CLDS Rrm(cn−3, cn−2). Equivalently,

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 67

M|=FOLRr1(c1, c2), . . . , M|=FOLRrm(cn−3, cn−2). It follows that

M|=FOLRr1(c1, c2) ∧ . . . ∧Rrm(cn−3, cn−2).

However,M satisfies the axioms of the extended labelling algebra, which
include the axioms of the labelling algebra. That means that M satisfies
the Role-axiom and therefore M|=FOLRrm+1(cn−1, cn).

The resulting tableau T ′AC consists of a single branch B′ which is the
branch Bco(C) extended with a node labelled Rr(cn−1, cn). The corre-
sponding configuration is Cco(B′) = C∪{Rr(cn−1, cn)} and it can be easily
seen that M satisfies this configuration as well. Therefore B′ is also an
open branch. �

16.2. Completeness. The proof of completeness for this tableau calculus follows
the same line as the completeness proof of the tableau calculus in the case of the
free TBox. It is enough to extend proposition 99 to include the Role-axiom.

Proof. (Extension of proof for proposition 99.) Recall that a semantic structure
M has been defined with

[[C]∗]H = {d ∈ U | [C]∗(d) ∈ FOT(Cco(B))}
Rr
H = {(d, d′) ∈ U2 | Rr(d, d

′) ∈ FOT(Cco(B)), or

d′′ is the main blocking label of d and Rr(d
′′, d′)}

where U is the Herbrand universe of FOT(C). We need to show thatM satisfies
the Role-axiom:

M|=FOL ∀x1, . . .∀xn
(
(Rr1(x1, x2) ∧ . . . ∧Rrm(xn−3, xn−2))→ Rrm+1(xn−1, xn)

)
iff

M|=FOL (Rr1(d1, d2) ∧ . . . ∧Rrm(dn−3, dn−2))→ Rrm+1(dn−1, dn)

for every d1, . . . , dn ∈ U . Assume M|=FOLRr1(d1, d2) ∧ . . . ∧ Rrm(dn−3, dn−2) or
equivalentlyM|=FOLRr1(d1, d2) and . . . andM|=FOLRrm(dn−3, dn−2). It follows
that for each one of these binary predicates there exists a node of B labelled with
the predicate. Since the tableau is complete and all the predicates appear in the
branch, the Role-rule has been applied, therefore, Rrm+1(dn−1, dn) also appears

in the branch. From the way the H has been defined, (dn−1, dn) ∈ Rr
H which is

equivalent to M|=FOLRr(dn−1, dn).
The same can be done for every tableau rule that corresponds to an axiom of

the labelling algebra. Therefore, a tableau calculus with a finite number of such
rules is complete. �

Blocking does not play any role in the proof of completeness, and the above
proof could have been done by extending the definition of Hintikka configurations
(as was the completeness proof in the case of the free TBox without blocking).
This is not unexpected, since blocking stops the application of generating rules.
However, the Role-rule is not a generating one. Consider again example 110.
The cycle that has been created due to the transitive role will be detected and
stopped in node 09 which is labelled with an ∃-formula.

68 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

16.3. Termination. It remains to show termination. The proof is similar to
that for the termination in the presence of a free TBox and of an ABox. Again,
we have to prove that when a branch of an ALC-CLDS tableau contains finitely
many CLDS-labels, then the number of nodes labelled with Relation-predicates
is finite. We will continue with the proof of this statement, which is obviously
more general than proposition 79.

Proposition 112. Let C be an ALC-CLDS with a non-empty labelling algebra
and K = 〈T ,A〉 a knowledge base. Let TAC be an C-tableau for an initial config-
uration C. If a branch B of TAC contains a finite number of CLDS-labels, then it
also contains a finite number of nodes labelled with Relation-predicates.

Proof. First of all, the number of Relation-predicate symbols that appear in the
branch is finite. That is because every Relation-predicate symbol that appears in
the tableau appears in the ABox (i.e. the initial configuration), the TBox, or the
labelling algebra. In other words, there is no way to create new Relation-predicate
symbols other than those that appear in the aforementioned places.

Assume that there exist numR different Relation-predicate symbols and let n
denote the number of CLDS-labels that appear on the branch (n is by assumption
finite). It is easy to see that with numR Relation-predicate symbols and n CLDS-
labels we can have numR × n× n different Relation-predicates.

Since the tableau rules do not allow the addition of a Relation-predicate in the
tableau if it already appears in it, it follows that there can only be n2 × numR

Relation-predicates in the branch. �

The proof of termination for theorem 108 needs to be modified in the case the
labelling algebra is not empty. To be more specific, the direct R-successors of
unblocked labels do not only originate from concepts of the form ∃r.D and the
assertions of the ABox, but additionally from the Role-rules. However, we can
still use the argument that there is a finite number of unblocked CLDS-labels, and
each one of them will have a finite number of direct R-successors that result from
the application of generating rules. Moreover, the number of direct R-successors
due to role assertions in the ABox is also finite. We also have to consider the
direct R-successors that will be added from the axioms of the labelling algebra.
Since every axiom adds at most one R-successor to a label, and there are finitely
may role axioms, it follows that the number of R-successors that can be added
from the role axioms is finite. Therefore, there still exists a finite number of
CLDS-labels.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 69

17. CLDS for more expressive description languages

The CLDS that we have presented for ALC can be easily extended for descrip-
tion languages with more concept constructors. In this section we will briefly
describe a system for a description language with number restrictions (N).

17.1. An ALCN -CLDS. ALCN is the language ALC extended with number
restrictions. An ALCN -CLDS is tuple 〈〈ALCN ,LALCNL 〉, ∅,R〉, where the la-
belling language LALCNL is the same as LALCL (the labelling language in the case of
ALC-CLDS) and in addition it includes equality. The reason for that will become
apparent later. In the case of the empty knowledge base the set of inference rules
is

R = {(u), (t), (blocking-∃), (∀), (≤), (≥)}.
Notice that R contains two new tableau rules, (≤)-rule and (≥)-rule, that handle
the constructors for the number restrictions, in addition to the tableau rules of
the ALC-CLDS when reasoning under the empty knowledge base.

In the presence of constructor for number restrictions it is necessary to be
able to distinguish if two CLDS-labels (i.e. constants of the labelling language)
are mapped to the same element of the domain. Remember that we have not
adopted the Unique Name Assumption, therefore if the interpretation of two
labels is different this has to be made explicit. To achieve that we allow inequality
assertions between CLDS-labels: λi 6= λj iff λIi 6= λIj (this is the reason why the
labelling language needs to contain equality). This is commonly used in tableaux
for description languages that contain number restrictions (see for example [4]).
Unique Name Assumption is usually not adopted, especially if number restrictions
are used, because such an assumption results in a less flexible approach. After
all, it can be imposed when necessary by using the inequality assertions. This
will be made clear later with example 115.

Moreover, a concept that contains number restrictions can be written in Nega-
tion Normal Form. For example the concept ¬≤n r is equivalent to ≥n+1 r and
similarly, ¬≥n r is equivalent to ≤n−1.

AnALCN -CLDS tableau is defined in a similar way to theALC-CLDS tableau,
but in addition, it may contain nodes labelled with inequality assertions. To be
more specific, an ALCN -CLDS tableau is a labelled tree whose nodes are labelled
(i) with declarative units of the form (C :λ) where C is an ALCN concept, or
(ii) with Relation-literals, or (iii) with inequality assertions.

We will now describe in more detail the tableau rules introduced for the number
restrictions. Fix an ALCN -CLDS tableau T CLDSALCN and a labelled branch B of
T CLDSALCN whose leaf node is l.

The (≤)-rule: Informally, if a node of B is labelled with a declarative unit
of the form (≤n r :λ), and λ has more than n Rr-direct successors that
are not asserted to be different from each other (at least not all of them),
then some of them will have to correspond to the same element of the
domain. Therefore, for every possible combination of λ with one of its
direct Rr-successors that we are not sure they are different form λ, we
create a new tableau where the direct successor coincides with λ.

More formally, if there exists a node inB labelled (≤n r :λ) and there ex-
istm > n nodes labelled with Relation-predicatesRr(λ, λ

′
1), . . . , Rr(λ, λ

′
m)

(λ′i ≺ λ′j for all 1 ≤ i < j ≤ m) but there exists λ′i and λ′j such that they

70 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

are not asserted to be different (namely there exists no node in B labelled
λ′i 6= λ′j), then for every pair of nodes λ′j, λ

′
i create a new tableau identical

to T CLDSALCN and substitute every occurrence of λ′j with λ′i.
The application of this rule results to one or more new tableaux. In

this case, the initial configuration is satisfiable if and only if one of the
tableaux is open. If all tableaux close, then the initial configuration is not
satisfiable.

The (≥)-rule: Intuitively, if there exists a node labelled (≥n r :λ) and λ
has less than n direct Rr-successors, it is necessary to add enough new
Rr-successors for λ in order to satisfy the constraint. The new successors
that will be added must be distinct from each other and from λ. Notice
that the addition of enough new successors can be achieved by adding
only one successor every time. If there are still not enough successors,
then the rule will be still applicable.

More formally, if there exists in B a node labelled (≥n r :λ) and there
exist no CLDS-labels λ′1, . . . , λ

′
n such that Rr(λ, λ

′
i) ∈ B (1 ≤ i ≤ n) and

(λ′i 6= λ′j) ∈ B (1 ≤ i < j ≤ n), then add to B two nodes 〈l0, Rr(λ, λ
′)〉

and 〈l00, λ 6= λ′〉, where λ′ is a label that is new to the branch B.

The (≥)-rule is a generating rule since it introduces a new label into the branch.
On the other hand, the (≤)-rule is a non-deterministic one. It also has to be
made clear that these rules are a straightforward expression of the corresponding
tableau rules for description logics. They have just been “translated” to fit into
the CLDS framework.

It is also necessary to modify the definition of a closed branch. In addition to
the conditions described in definition 52, a branch of an ALCN -CLDS tableau is
said to be closed if it contains a node labelled with a declarative unit (≤n r :λ)
and a node labelled (≥m r :λ) with n < m.

We will now present some examples of ALCN -CLDS tableaux. The first one
demonstrates the use of at-most number restrictions, the second one focuses on
the use of at-least restrictions, and the last one exemplifies how the non-adoption
of the Unique Name Assumption is in a way more expressive in the a case of
number restrictions.

Example 113. Assume that we want to check whether the ALCN concept

((∃r.A1 u ∃r.A2) u (∃r.¬A1 u ≤1 r))

is satisfiable w.r.t. the empty knowledge base. Intuitively, it is easy to see that
this concept is not satisfiable because if there was an individual that belonged to
the interpretation of the concept, then this individual would have at most one
direct Rr-successor (due to the at-most number restriction) where A1, A2, and
¬A1 must hold. However, this would obviously lead to a contradiction.

We will now try to construct a complete ALCN -CLDS tableau to check the
satisfiability of this concept. The first steps of the construction of the correspond-
ing tableau are presented in figure 10. In this tableau, there exist three direct
Rr-successors of c0: c1, c2, and c3. However, none of them are asserted to be
different. Therefore, according to the ≤-rule, we have to create a new tableau for
each pair of direct Rr-successors of c0. To be more specific:
• For the pair c1, c2 we create a new tableau where every occurrence of c2 has

been substituted by c1. The new tableau is shown in figure 11(a). It has to be

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 71

X 〈ε, (((∃r.A1 u ∃r.A2) u (∃r.¬A1 u ≤1 r)) : c0)〉
u-rule to ε

X 〈0, ((∃r.A1 u ∃r.A2) : c0)〉

〈02, ((∃r.¬A1 u ≤1 r) : c0)〉
u-rule to 0

X 〈03, (∃r.A1 : c0)〉

X 〈04, (∃r.A2 : c0)〉
u-rule to 02

X 〈05, (∃r.¬A1 : c0)〉

- 〈06, (≤1 r : c0)〉
∃-rule to 03

- 〈07, Rr(c0, c1)〉

- 〈08, (A1 : c1)〉
∃-rule to 04

- 〈09, Rr(c0, c2)〉

- 〈010, (A2 : c2)〉
∃-rule to 05

- 〈011, Rr(c0, c3)〉

- 〈012, (¬A1 : c3)〉

Figure 10. Tableau for example 113 before the application of the
≤-rule.

noted that in this figure we only show a part of the tableau that contains the
aforementioned changes. The nodes that are not shown are identical to the corre-
sponding nodes of the tableau of figure 10. We will use the notation T CLDSALCN [c2/c1]
to refer to this tableau.
• For the pair c1, c3 a new tableau, T CLDSALCN [c3/c1], is constructed where every

occurrence of c3 has been substituted by c1. The (partial) resulting tableau is
presented in figure 11(b).
• Finally, the tableau of figure 11(c) is constructed for the pair of labels c2, c1.

Every occurrence of c2 has been substituted by c1.
In order for the original concept to be satisfiable, al least one of the three

aforementioned tableaux has to be open (once completed of course). However,
T CLDSALCN [c3/c1] is closed. It remains to examine the tableaux for the other two
pairs. T CLDSALCN [c2/c1] is not closed and the ≤-rule is again applicable since c0 has
two direct Rr-successors, c1 and c3. The resulting tableau, T CLDSALCN [c2/c1][c3/c1],
is shown in figure 12(a) and is closed. Similarly, the application of the ≤-rule
to tableau T CLDSALCN [c3/c2] results in the closed tableau T CLDSALCN [c3/c2][c2/c1] of fig-
ure 12(b).

Notice that the ≤-rule is non-deterministic since it explores several options in
order to find a suitable model for the initial configuration. In the above example,

72 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

...

- 〈06, (≤1 r : c0)〉
∃-rule to 03

- 〈07, Rr(c0, c1)〉

- 〈08, (A1 : c1)〉
∃-rule to 04

- 〈09, Rr(c0, c1)〉

- 〈010, (A2 : c1)〉
∃-rule to 05

- 〈011, Rr(c0, c3)〉

- 〈012, (¬A1 : c3)〉
(a) Tableau T CLDS

ALCN [c2/c1]:
after the first application of
the ≤-rule, c2 has been re-
placed by c1 in T CLDS

ALCN . This
is an open tableau but not
complete, since the ≤ rule is
applicable.

...

- 〈06, (≤1 r : c0)〉
∃-rule to 03

- 〈07, Rr(c0, c1)〉

- 〈08, (A1 : c1)〉
∃-rule to 04

- 〈09, Rr(c0, c2)〉

- 〈010, (A2 : c2)〉
∃-rule to 05

- 〈011, Rr(c0, c1)〉

- 〈012, (¬A1 : c1)〉
closed

(b) Tableau T CLDS
ALCN [c2/c1]:

after the first application of
the ≤-rule, c3 has been re-
placed by c1. The tableau
is closed because of nodes 08

and 012.

...

- 〈06, (≤1 r : c0)〉
∃-rule to 03

- 〈07, Rr(c0, c1)〉

- 〈08, (A1 : c1)〉
∃-rule to 04

- 〈09, Rr(c0, c2)〉

- 〈010, (A2 : c2)〉
∃-rule to 05

- 〈011, Rr(c0, c2)〉

- 〈012, (¬A1 : c2)〉
(c) Tableau T CLDS

ALCN [c3/c2]:
after the first application of
the ≤-rule, c3 has been re-
placed by c2. The tableau is
not closed yet and the ≤ rule
is applicable.

Figure 11. Tableaux for example 113 after the first application
of the ≤ rule.

these alternatives are (i) c1 and c2 are mapped to the same element, and then c3 is
also mapped to the same element, (ii) c1 and c3 are mapped to the same element,
and (iii) c2 and c3 are interpreted as the same element of the domain, and then c2
is interpreted as this element as well. Compared to the other non-deterministic
rule, the t-rule, it has to be said that ≤-rule changes a whole branch of the
tableau, while t-rule only extends a branch is two different ways. This is why
in the case of the t-rule we can create a tree, while in the case of the ≤-rule we
have to create a set of tableaux, i.e. a forest.

Example 114. Assume that we want to check the satisfiability of the ALCN
concept ≥2 r. Obviously, this is a satisfiable concept. The corresponding tableau
is shown in figure 13.

Example 115. We will now provide an example that makes clear why we chose
not to adopt the Unique Name Assumption. Assume that we want to know
whether the ABox A = {r(a, b), r(a, c),≤1 r(a)} is consistent. Under the UNA
it obviously is inconsistent since a has two different successors b and c. On the
other hand, if the UNA is not adopted, b and c can be interpreted as the same
element of the domain and therefore A is not inconsistent. Therefore, if the UNA
is not used, we are able to “hold more information”. Moreover, one can argue
that the UNA can be explicitly imposed by using inequality assertions.

Consider for example the ALCN -CLDS tableau for the configuration

C = {Rr(ca, cb), Rr(ca, cc), (≤1 r : ca)}

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 73

...

- 〈06, (≤1 r : c0)〉
∃-rule to 03

- 〈07, Rr(c0, c1)〉

- 〈08, (A1 : c1)〉
∃-rule to 04

- 〈09, Rr(c0, c1)〉

- 〈010, (A2 : c1)〉
∃-rule to 05

- 〈011, Rr(c0, c1)〉

- 〈012, (¬A1 : c1)〉
closed

(a) Tableau after the appli-
cation of the ≤-rule to the
tableau of figure 11(a): c3

has been replaced by c1.
This is a closed tableau be-
cause of nodes 08 and 012.

...

- 〈06, (≤1 r : c0)〉
∃-rule to 03

- 〈07, Rr(c0, c1)〉

- 〈08, (A1 : c1)〉
∃-rule to 04

- 〈09, Rr(c0, c2)〉

- 〈010, (A2 : c2)〉
∃-rule to 05

- 〈011, Rr(c0, c1)〉

- 〈012, (¬A1 : c1)〉
closed

(b) Tableau after the appli-
cation of the ≤-rule to the
tableau of figure 11(c): c3

has been replaced by c1. The
tableau is closed because of
nodes 08 and 012.

Figure 12. Tableaux for example 113 after the second application
of the ≤ rule.

X 〈ε, (≥2 r : c0)〉
≥-rule to ε

- 〈0, Rr(c0, c1)〉

- 〈02, c1 6= c0〉
≥-rule to ε

- 〈03, Rr(c0, c2)〉

- 〈04, c1 6= c2〉

Figure 13. A complete tableau for example 114.

that corresponds to the aforementioned ABox A. The corresponding tableau for
C is presented in figure 14.

The soundness and completeness of the above ALCN -CLDS tableau calculus
can be easily proved with the same techniques that we have used so far. To
be more specific, it is necessary to add in the extended labelling algebra axiom

74 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

- 〈ε, Rr(ca, cb)〉

- 〈0, Rr(ca, cc)〉

〈02, (≤1 : ca)〉
(a) Tableau without
UNA. The ≤-rule is
applicable.

- 〈ε, Rr(ca, cb)〉

- 〈0, Rr(ca, cb)〉

X 〈02, (≤1 : ca)〉
(b) Tableau without
UNA. After the appli-
cation of the ≤-rule in
tableau 14(a).

- 〈ε, Rr(ca, cb)〉

- 〈0, Rr(ca, cc)〉

- 〈02, (≤1 : ca)〉

- ca 6= cb
closed

(c) Tableau where the
UNA is imposed by in-
equality assertions.

Figure 14. A complete ALCN -CLDS tableau for the configura-
tion of example 115.

schemata that will capture the semantics of the constructors for number restric-
tions:

Ax-(≤) ∀x∀y1 . . . ∀yn+1

(
[≤n r]∗(x)→

(∧
1≤i≤n+1

Rr(x, yi)→
∨

1≤i<j≤n+1

(yi = yj)
))

Ax-(≥) ∀x∃y1 . . . ∃yn
(

[≥n r]∗(x)→
(∧

1≤i≤n

Rr(x, yi)
∧

1≤i<j≤n

(yi 6= yj)
))

The proof of termination is similar as well and it requires the use of blocking.
In this case both the (∃) and the (≥) rule are generating rules, therefore, if a
node is blocked none of those two rules can be applied to the node.

Example 116. [Example adapted from [4]] Assume that we want to check the
satisfiability of the configuration

C = {r(a, a), (∃r.A : a), (≤1 r : a), (∀r.∃r.A : a)}.
The first steps of the construction of a tableau for this configuration are presented
in figure 15(a). At this stage, ca has two successors, ca and c0, and they have to
be “merged” into one. Therefore, according to ≤-rule, c0 has to be substituted
by ca. The resulting tableau is shown in figure 15(b). If we apply the ∀-rule then
node 09 is added that is blocked because S(c1) = {A,∃r.A} ⊂ S(c). If we did not
use blocking, then we could apply the ∃-rule to node 09 and obtain a successor of
c1. Then we could merge c1 with ca because c1 is also a Rr-successor of ca. This
procedure would not terminate.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 75

X 〈ε, Rr(ca, ca)〉

X 〈0, (∃r.A : ca)〉

〈02, (≤1 r : ca)〉

〈03, (∀r.∃r.A : ca)〉
∃-rule to 0

- 〈04, Rr(ca, c0)〉

- 〈05, (A : c0)〉
∀-rule to 03

X 〈06, (∃r.A : c0)〉
∃-rule to 06

- 〈07, Rr(c0, c1)〉

- 〈08, (A : c1)〉
(a) Tableau before the appli-
cation of the ≤-rule

X 〈ε, Rr(ca, ca)〉

X 〈0, (∃r.A : ca)〉

〈02, (≤1 r : ca)〉

〈03, (∀r.∃r.A : ca)〉
∃-rule to 0

- 〈04, Rr(ca, ca)〉

- 〈05, (A : ca)〉
∀-rule to 03

X 〈06, (∃r.A : ca)〉
∃-rule to 06

- 〈07, Rr(ca, c1)〉

- 〈08, (A : c1)〉
∀-rule to 03,07

7 〈09, (∃r.A : c1)〉
(b) Tableau after the applica-
tion of the ≤-rule: c0 has been
substituted by ca. Now it is
possible to apply the ∀-rule to
nodes 03, 07.

Figure 15. Tableaux for example 116.

76 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

18. Extending the CLDS framework to include more dimensions

The basic idea behind Labelled Deductive Systems was to annotate every for-
mula with a label that carries some “extra information”. The next logical step
was to associate a formula with more information, or in other words, with more
than one labels.

Just to put this abstract description in a context, consider the following ex-
ample (this is an informal example and the notions have not been properly
formalized yet). Suppose Happy is a concept which describes that someone is
happy. We could annotate this concept with the name of a person that is happy:
(Happy : MARY). However, Mary may not be always happy. In other words, we
would like to be able to specify when Mary is happy. If we want to say that Mary
is happy now, for example, we could write something like (Happy : MARY , now).

In this section we will present an outline of how “multiple dimensions” can
be represented in the CLDS framework. To be more specific, we will describe a
CLDS for a description logic that has been extended with a temporal dimension.

18.1. Introduction in temporal Description Logics. Generally, Description
Logics are used to represent knowledge regarding a specific application domain.
However, in many cases, this knowledge changes over time. This is the reason
why several extensions of Description Logics with a temporal dimension have been
proposed. For a survey of the most important temporal extensions of Description
Logics reader is referred to [2].

In this section we will focus on a ALCT , a description language that extends
ALC with point-based temporal operators [21]. To be more specific, the available
temporal operators are 3 (sometime in the future), 2 (always in the future), #
(tomorrow, next time point), U (until), and U (reflexive until).

The ALCT concepts are the familiar ALC concepts plus the concepts that can
be constructed using the temporal operators.

Definition 117 (ALCT Concept). EveryALC concept is also anALCT concept.
Moreover, if C and D are ALCT concepts, then so are the following:

3C 2C #C CUD CUD.

In general, temporal formulas are interpreted over flows of time. A flow of time
is a pair F = 〈T , <〉, where T is a non-empty set of elements and < is a strict
total order on T . This flow of time will be part of the ALCT interpretation.
Informally, it will be used to interpret the temporal part of ALCT concepts.

Definition 118 (ALCT Interpretation). An ALCT interpretation is a tuple
I = 〈F ,∆I , ·I〉, where F = 〈T , <〉 is a flow of time, ∆I a non-empty set called
the domain of the interpretation, and ·I a function that maps atomic concepts to
subsets of ∆I × T and atomic roles to subsets of ∆I ×∆I × T .

As usual, the ALCT interpretation I is extended to handle the case of com-
plex concepts. We will only present the interpretation of concepts that contain
temporal operators, as the rest of them are interpreted exactly like in the case of

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 77

ALC (see section 5.2).

(3C)I = {(a, t) ∈ ∆I × T | there exists a t′ ∈ T such that

(t ≤ t′) and (a, t′) ∈ CI}

(2C)I = {(a, t) ∈ ∆I × T | for all t′ ∈ T such that (t ≤ t′)

it follows that (a, t′) ∈ CI}

(#C)I = {(a, t) ∈ ∆I × T | there exists a t′ ∈ T such that

(t < t′) and (a, t′) ∈ CI

and there exists no t′′ ∈ T such that t < t′′ < t′}

(CUD)I = {(a, t) ∈ ∆I × T | there exists a t′ ∈ T such that

(t < t′) and (a, t′) ∈ DI

and for all t′′ ∈ T , t < t′′ < t′ implies (a, t′′) ∈ CI}

(CUD)I = {(a, t) ∈ ∆I × T | there exists a t′ ∈ T such that

(t ≤ t′) and (a, t′) ∈ DI

and for all t′′ ∈ T , t ≤ t′′ < t′ implies (a, t′′) ∈ CI}

18.2. ALCT -CLDS. First of all, we will define the language of theALCT -CLDS.
Remember that a CLDS-language is a pair 〈L#,LL〉 (see definition 29). In the
case ofALCT -CLDS, L# isALCT . The interesting part, however, is the labelling
language. Intuitively, we need two labelling languages, one that will be used for
labels that contain information about individuals, and one that will be used for
labels that contain time information. Therefore, we adjust the definition of the
CLDS-language in order to take both labelling languages into consideration.

Definition 119 (ALCT -CLDS language). The language of an ALCT -CLDS is a
tuple 〈ALCT ,Lind,Lt〉, where Lind〈P , ∅, C〉 is a first-order language that coincides
with LALCL (the labelling language in the case of ALC-CLDS), and Lt〈{<}, ∅, Ct〉
is a first-order language whose set of predicate names and constant names are
disjoint from those of Lind.

In what follows will use the symbol c to refer to the elements of C (i.e. the
constants of the labelling language Lind), and the symbol t to denote the constants
of the labelling language Lt.

As usually, labels are defined as the ground terms of the labelling languages.
Since we have two labelling languages, there exist two types of labels. Notice that
because the labelling languages contain no function symbols, the labels of Lind
are just the constants of Lind, and similarly, the labels of Lt are the constants of
Lt. Moreover, the set of predicates of Lind does not contain binary predicates as it
was the case for ALC-CLDS, but instead it consists of ternary predicate symbols.
However, each predicate symbol of P still corresponds to an ALCT role. Thus
we will use the same notation for elements of P that we employed in the case of
ALC-CLDS: Rr is the ternary predicate that corresponds to the ALCT role r.

We can now adapt the definition of CLDS-formulas in the case of the ALCT -
CLDS.

78 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

Table 3. Axioms of Mon(L#,LL) for the ALCT -CLDS.
t < t′ < t′′ is used as an abbreviation for (t < t′) ∧ (t′ < t′′).

Name Axiom

Ax-u ∀x∀t ([C1 u C2]∗ (x, t)→ ([C1]∗ (x, t) ∧ [C2]∗ (x, t)))
Ax-t ∀x∀t ([C1 t C2]∗ (x, t)→ ([C1]∗ (x, t) ∨ [C2]∗ (x, t)))
Ax-¬ ∀x∀t ([¬C]∗ (x, t)↔ ¬[C]∗ (x, t))
Ax-∀ ∀x∀t ([∀r.C]∗ (x, t)→ ∀y (Rr (x, y, t)→ [C]∗ (y, t)))
Ax-∃ ∀x∀t ([∃r.C]∗ (x, t)→ ∃y (Rr (x, y, t) ∧ [C]∗ (y, t)))
Ax-3 ∀x∀t ([3C]∗ (x, t)→ ∃t′ ((t ≤ t′) ∧ [C]∗ (x, t′)))
Ax-2 ∀x∀t ([3C]∗ (x, t)→ ∀t′ ((t ≤ t′)→ [C]∗ (x, t′)))
Ax-# ∀x∀t ([#C]∗ (x, t)→ ∃t′ ((t < t′) ∧ [C]∗ (x, t′) ∧ ¬∃t′′ (t < t′′ < t′)))
Ax-U ∀x∀t ([CUD]∗ (x, t)→ ∃t′ ((t ≤ t′) ∧ [C]∗ (x, t′) ∧ ∀t′′ (t ≤ t′′ < t′)→ [C]∗(x, t′′)))
Ax-U ∀x∀t ([CUD]∗ (x, t)→ ∃t′ ((t < t′) ∧ [C]∗ (x, t′) ∧ ∀t′′ (t < t′′ < t′)→ [C]∗(x, t′′)))

Definition 120 (ALCT -CLDS formulas). An ALCT -CLDS formula is either
(i) a declarative unit of the form (C : c, t) where C is an ALCT concept, c is a
label of Lind, and t is a label of Lt, or (ii) a Relation-literal of the form t < t′, or
(iii) a Relation-literal of the form Rr(c1, c2, t).

A configuration for an ALCT -CLDS is defined as a set of ALCT -CLDS for-
mulas. It can also be defined as a set of declarative units, and a set of Relation-
predicates (known as the diagram).

The labelling algebra of an ALCT -CLDS is a first-order theory written in
Lind ∪ Lind. It has to be noted that by the union of two languages L1 and L2 we
mean the union of their well-formed formulas:

L1 ∪ L2 = {φ | φ is an L1 formula or φ is an L2 formula}.

In the general case, the labelling algebra would be a theory written in the union
of the semi-extended labelling languages. However, as in the case of ALC-CLDS,
the semi-extended labelling language coincides with the labelling language itself.

Regarding the translation of a declarative unit into first-order logic, since every
declarative unit uses two labels (and not one) it will be translated as a binary
(instead of unary) predicate. For example, if (C : c, t) is an ALCT -CLDS declar-
ative unit, then its first-order translation will be [C]∗(c, t). It is now possible to
define the extended labelling language of the CLDS as the semi-extended labelling
language together with the set {[C0]

∗, . . . , [Cn]∗, . . .} of binary predicate symbols
(as usual, C0, . . . ,Cn, . . . is considered to be an enumeration of ALCT -concepts).

The extended labelling algebra of the ALCT -CLDS is a theory written in the
extended labelling language. The axioms of the extended labelling algebra for the
ALCT -CLDS are presented in table 3. Like in the case of the ALC, these axioms
“capture” the translation of ALCT concepts into first-order logic. The first five
axioms of table 3 are similar to the axioms of the extended labelling algebra in
the case of ALC-CLDS. The only change is that now the predicate symbol [C]∗

is a binary and not a unary predicate. The rest axioms cover the cases of the
temporal operators. It can be easily verified that they express the semantics of
the temporal operators as discussed in the previous section.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 79

A semantic structure for an ALCT -CLDS is a first-order structure for the
corresponding extended labelling algebra.

80 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

19. ALC-CLDS and Logic Programming

The combination of Description Logics with Logic Programming has been
widely studied. Such a combination would be very useful, especially in the area of
the Semantic Web, as it would allow reasoners (or agents) that use logic program-
ming to reason about information represented in some description language [22].
In this section, we will focus on Description Logic Programs that were introduced
in [18].

Description Logic Programs are defined as the intersection of Description Logics
and Horn logic programs. A Horn logic program is a set of rules of the form

H ← B1 ∧ . . . ∧Bn (n ≥ 0)

where H, B1,. . . ,Bn are atoms. H is referred to as the head of the rule, while the
B1 ∧ . . . ∧Bn as the body of the rule. Notice that negation is not allowed in the
head nor in the body of the rules.

The authors of [18] specify a fragment of description logics that can be ex-
pressed in terms of Horn logic programming rules. Towards that direction, they
first specify the type of TBox and ABox axioms that can be expressed as rules of
Horn logic programs, and then they introduce a recursive mapping T that maps
axioms of the TBox and the ABox to the corresponding logic programming rules.

The TBox axioms that can be described as Horn logic programming rules are
axioms of the form Cv̇D where
• C is an atomic concept, or a complex concept of the form C1 u C2, or ∃r.C1,

and
• D is either an atomic concept, or a complex concept of the form D1 uD2, or

D1 t D2, or ∀r.D1.
These conditions are summarized in table 4. Informally, every such axiom will be
mapped to a rule of the form D← C. It is not hard to see that if C and D fulfil
the requirements of table 4, then the rule D ← C can be written as one or more
Horn logic program rules. In what follows, if a concept C is of one of the forms
specified in the second column of table 4 we will say that is a Body-appropriate
rule, while if it belongs to one of the forms specified in the third column the table,
we will say it is a Head-appropriate rule.

If C, D are complex concepts, A an atomic concept, and r an atomic role, the
mapping T is defined as follows:

Table 4. Allowed types for the concepts C and D of a TBox axiom
Cv̇D in order for this axiom to be expressed as a Horn logic program
rule.

Concept Type C (Body-appropriate) D (Head-appropriate)

Atomic X X
Conjunction X X
Disjunction X 7
Universal X 7
Existential 7 X
Negation 7 7

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 81

T (Cv̇D) = Th(D, x)← Tb(C, x)

Th(A, x) = Tb(A, x) = A(x)

Th(C u D, x) = Th(C, x) ∧ Th(D, x)

Th(∀r.C, x) = Th(C, x)← r(x, y)

Tb(C u D, x) = Tb(C, x) ∧ Tb(D, x)

Tb(C t D, x) = Tb(C, x) ∨ Tb(D, x)

Tb(∀r.C, x) = Tb(C, y)← r(x, y)

At this point, an example is necessary to better understand how this mapping
works.

Example 121. Assume that a TBox T contains the following axioms:

T = {A1 u A2v̇A3,A1v̇∀r.A2,∃r.A2v̇A3}.

First of all, every axiom is of the form specified in table 4. Therefore, it can be
expressed as a set of Horn logic program rules. The application of T to the TBox
axioms, results in the following logic programming rules:

A3(x)← A1(x) ∨ A2(x)

(A2(y)← r(x, y))← A1(x)

A3(x)← A2(y) ∧ r(x, y)

This can be written equivalently as the following set of Horn logic programming
rules:

A3(x)← A1(x)

A3(x)← A2(x)

A2(y)← r(x, y) ∧ A1(x)

A3(x)← A2(y) ∧ r(x, y)

What the above method has accomplished is to express a TBox (not any given
one, but one of the specific form described) to a set of rules for logic programming.

The authors of [18] consider also ABoxes that contain role assertions and con-
cept assertions of the form C(a), where C a head-appropriate concept. The map-
ping T is extended in order to map ABox assertions to facts (i.e. logic program-
ming rules with the empty body). This can be done since C is assumed to be a
head-appropriate concept, and therefore it can appear to the head of a rule.

T (C(a)) = Th(C, a)

T (r(a, b)) = r(a, b)

This approach has many limitations. First of all the TBox must contain axioms
of the specific form described above, and moreover, it must be acyclic.

Example 122. Consider for example the ABox

A = {(A1 u A2)(a), r(a, b), r(b, c)}.

82 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

Concept A1 u A2 is a head-appropriate concept. The corresponding Horn logic
program rule is:

(A1 u A2)(a)←
which can be equivalently written as:

A1(a)←
A2(a)←

The rules for the role assertions are

r(a, b)← and r(b, c)← .

Since we have the ABox and the TBox as in the form of Horn logic programming
rules, it is now possible to run an LP reasoning engine to answer questions w.r.t.
this knowledge base. The main kind of supported queries are atom queries, i.e. if
a belongs to the interpretation of a concept. It is also possible to ask for all the
elements that belong to the interpretation of a concept.

Example 123. Given the TBox and the ABox defined above, and the corre-
sponding logic programming rules, it is easy to write a Prolog program for this
knowledge base.

a_3(X):-a_1(X).

a_3(X):-a_2(X).

a_2(Y):-a_1(X),r(X,Y).

a_3(X):-a_2(Y),r(X,Y).

a_1(a).

a_2(a).

r(a,b).

r(b,c).

Now we can run several queries. For example if we want to know whether b is an
instance of C3, we run the query, a_3(b). and the answer is Yes. However the
answer is No to the query a_3(c).

Moreover, since we have already expressed in a previous section some axioms
of the RBox and some role constructors as Horn clauses, we can use them as logic
programming rules.

Example 124. Consider again the code mentioned in the previous example,
extended with one more rule which asserts that r is transitive:

r(X,Z):-r(X,Y),r(Y,Z).

This time as expected the answer to the query a_3(c). is Yes.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 83

20. Conclusions and Future Work

To conclude, we have presented a tableau CLDS for the description language
ALC when reasoning w.r.t. a non-empty knowledge base and when the labelling
algebra contains universally quantified Horn clauses. The formalization of tableau
CLDS and the machinery for the proofs of soundness, completeness, and termi-
nation of the tableau algorithm can be generalized and used for tableau CLDS
for other logics.

In the case of CLDS for modal logics (MLDS), this formalization was in a sense
“more expressive” than standard modal logics. To be more specific, it is a well-
known fact there is no modal formula that can characterize irreflexive frames.
However, as it is shown in [23], a MLDS is applicable to any modal frame logic,
including irreflexive frames. In the case of Description Logics, on the other hand,
one has the liberty to add any role and concept constructor he/she wishes, and
any role axiom in the RBox. Therefore, it is possible to explicitly declare that a
role is irreflexive, by inserting an appropriate axiom in the RBox.

Regarding future work, it would be interesting to formally present a tableau
CLDS for another logic, for example for hybrid logics, using the formalization
introduced here. Moreover, regarding the tableau CLDS for description logics,
the complexity of the tableau algorithms presented here has to be investigated.
It has to be noted that our objective was not to present the most efficient tableau
algorithms, thus many improvements can be done in this field. Another direction
for future research is to consider more complex labelling algebras and more com-
plex labelling languages. Finally, it would be challenging to allow CLDS-labels
to be terms of the labelling language and not only ground terms. In this case, we
would have to make use of free-variable tableaux.

84 AIKATERINI MARAZOPOULOU SUPERVISED BY DR KRYSIA BRODA

References

[1] A unified compilation style natural deduction system for modal, substructural and fuzzy
logics. In Discovering World with Fuzzy Logic: Perspectives and Approaches to Formaliza-
tion of Human-consistent Logical Systems. Springer-Verlag.

[2] Alessandro Artale and Enrico Franconi. A survey of temporal extensions of description
logics. Annals of Mathematics and Artificial Intelligence, 30(1-4):171–210, 2000.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuiness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook. Cambridge University Press, 2003.

[4] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69, 2000.

[5] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook of Modal
Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., New
York, NY, USA, 2006.

[6] Thomas Bolander and Patrick Blackburn. Termination for hybrid tableaus. J. Log. Com-
put., 17(3):517–554, 2007.

[7] Thomas Bolander and Torben Braüner. Tableau-based decision procedures for hybrid logic.
J. Log. Comput., 16(6):737–763, 2006.

[8] Krysia Broda. A decidable CLDS for some propositional resource logics. In Computational
logic: logic programming and beyond: essays in honour of Robert A.Kowalski, Part II,
volume 2408, pages 135–159. Springer, 2002.

[9] Krysia Broda, Marcelo Finger, and Alessandra Russo. Labelled natural deduction for sub-
structural logics. Logic Journal of the IGPL, 7(3):283–318, 1999.

[10] Krysia Broda, Dov M. Gabbay, Luis C. Lamb, and Alessandra Russo. Compiled Labelled
Deductive Systems: A Uniform Representation of Non-Classical Logics. Research Studies
Press, 2004.

[11] Krysia Broda, Dov M. Gabbay, Luis C. Lamb, and Alessandra M. Russo. Labelled natural
deduction for conditional logics of normality. Logic Journal of the IGPL, 10(2):123–163,
2002.

[12] Krysia Broda and Alessandra Russo. Compiled Labelled Deductive Systems for Access
Control (2005). In We Will Show Them: Essays in Honour of Dov Gabbay, volume 1,
pages 309–338. College Publications, 2005.

[13] Krysia Broda and Alessandra Russo. A tableau compiled labelled deductive system for
hybrid logic. Automated Reasoning Workshop ARW07, 2007. Extended Abstract.

[14] Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, editors. Hand-
book of Tableau Methods. Springer, 1999.

[15] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The complexity
of concept languages. Inf. Comput., 134(1):1–58, 1997.

[16] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning
in description logics. pages 191–236, 1997.

[17] Dov M. Gabbay. Labelled Deductive Systems, volume 1. Oxford Clarendon Press, 1996.
[18] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic

programs: combining logic programs with description logic. In WWW ’03: Proceedings of
the 12th international conference on World Wide Web, pages 48–57, New York, NY, USA,
2003. ACM.

[19] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In
Proceedings, Tenth International Conference on Principles of Knowledge Representation
and Reasoning, Lake District of the United Kingdom, June 2-5, 2006, 2006.

[20] Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

[21] Schild Klaus. Combining terminological logics with tense logic. In EPIA ’93: Proceedings
of the 6th Portuguese Conference on Artificial Intelligence, pages 105–120, London, UK,
1993. Springer-Verlag.

[22] Boris Motik and Riccardo Rosati. A faithful integration of description logics with logic
programming. In IJCAI, pages 477–482, 2007.

TABLEAU CLDS WITH AN APPLICATION TO DESCRIPTION LOGICS 85

[23] Alessandra Russo. Modal logics as labelled deductive systems. PhD thesis, Department of
Computing, Imperial College London, 1996.

[24] Manfred Schmidt-Schaubß and Gert Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

	1. Introduction
	1.1. Related work
	1.2. Our work
	1.3. Structure of the report

	2. First-order Logic
	2.1. Syntax
	2.2. Semantics
	2.3. Herbrand Structures

	3. Trees
	3.1. Unlabelled Trees
	3.2. Labelled Trees

	4. Compiled Labelled Deductive Systems
	4.1. Languages and syntax of a general CLDS
	4.2. Semantics

	5. Description Logics
	5.1. Syntax of ALC
	5.2. Semantics of ALC
	5.3. Reasoning Tasks
	5.4. More expressive description languages

	6. A CLDS for the Description Language ALC
	7. Tableau for ALC-CLDS
	7.1. General Introduction
	7.2. Preliminaries on tableaux for CLDS
	7.3. Tableau Expansion Rules

	8. An ALC-CLDS for an Empty Knowledge Base
	9. ALC-CLDS Tableau for Reasoning under an Empty Knowledge Base
	9.1. Soundness
	9.2. Completeness
	9.3. Termination

	10. ALC-CLDS with a Non-Empty TBox
	11. ALC-CLDS Tableau for Reasoning in the Presence of a Free TBox
	12. Blocking
	12.1. ALC-CLDS tableau with blocking
	12.2. Termination
	12.3. Soundness and Completeness

	13. ALC-CLDS with a Non-Empty ABox
	14. ALC-CLDS Tableau for Reasoning in the Presence of a Non-Empty ABox
	14.1. Termination

	15. ALC-CLDS with Non-Empty Labelling Algebra
	16. ALC-CLDS Tableau for Reasoning in the Presence of a Non-Empty Labelling Algebra
	16.1. Soundness
	16.2. Completeness
	16.3. Termination

	17. CLDS for more expressive description languages
	17.1. An ALCN-CLDS

	18. Extending the CLDS framework to include more dimensions
	18.1. Introduction in temporal Description Logics
	18.2. ALCT-CLDS

	19. ALC-CLDS and Logic Programming
	20. Conclusions and Future Work
	References

