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Abstract

Video games have become technologically more advanced over the years - exhibiting realis-
tic graphic capabilities coupled with engaging game play. Artificial Intelligence (AI) in video
games has arisen as an important factor in determining the quality of the game. With increas-
ing demand for more realistic computer controlled players, events and opponents capable of
exhibiting human-like characteristics, AI has been a significant area of interest for the games
industry and academics alike. Several methodologies exist to approach the modeling, scripting
and the design of AI for video games, aiming to make game-controlled entities more realistic
and intelligent. Behavior trees attempt to improve upon existing AI techniques by being sim-
ple to implement, scalable, able to handle the complexity of games, and modular to improve
reusability. This ultimately improves the development process for designing game AI.

In this project, we use behavior trees to design and develop an AI-controlled player for the
commercial real-time strategy game DEFCON. We approach the design of the behavior trees
using a methodology known as Behavior Oriented Design. We also intend for the AI to adapt
and learn to play the game of DEFCON by allowing it to evolve into a competitive player
using evolutionary machine learning techniques. The project aims to showcase the feasibility
of combining such machine learning techniques together with behavior trees as a practical
approach to developing a AI-bots in games.
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Chapter 1

Introduction

1.1 Motivation

An AI-bot is the term used to describe an automated player that is able to play a computer
or video game in place of a human player. Designing an AI-bot for computer games is a
complex task [10], but a challenging and rewarding area of the application of AI [20]. The
ability of AI in games to deliver an engaging experience has become an important aspect
of game development in the industry, and as such, numerous techniques and methods have
been invented and developed in order to deliver realistic game AI. However, as Jeff Orkin
remarked, that if the audience of the Game Developers Conference (2006) were to be polled on
the most common A.I techniques applied to games, one of the top answers would be Finite State
Machines (FSMs) [28]. As we will cover in Section 2.2, FSMs and its variants have limitations
in developing game AI, and a more flexible approach to game AI development is required to
handle the complexity of AI in modern games. Another area of interest is the application of
learning to game AI, including areas such as learning to play the game, learning about players
and optimizing for adaptivity [3]. With this in mind, we outline the motivations of the project
in order to address these issues.

1.1.1 Game AI Development using Behavior Trees

Behavior trees have been proposed as a new approach to the designing of game AI. Their
advantages over traditional AI approaches are being simple to design and implement, scalability
when games get larger and more complex, and modularity to aid reusability and portability.
Behavior trees have recently been adopted for controlling AI behaviors in commercial games
such as first-person-shooter Halo2 [15] and life-simulation game Spore [14]. In this project,
we wish to study the application of behavior trees in the implementation and design of an
automated player for DEFCON, a commercial real-time strategy game.

1.1.2 Machine Learning in Commercial Video Games

Despite being applied to computer games almost 30 years ago [31], and an increased awareness
of the application of AI as a necessary ingredient to make games more entertaining and chal-
lenging over the years, the application of machine learning techniques as a means of developing

6



AI for commercial games has had less of an impact than expected [3]. With various notable
projects succeeding in the application of machine learning techniques to game AI, such as Ar-
tificial Neural Networks [35] and Case-Based Reasoning [2] - we would like to investigate the
feasibility of applying machine learning to develop competitive AI players in games. Notably,
the application of genetic programming has seen positive results in the fields like robotics [22]
and computer board games like Chess [13]. An investigation into the feasibility of the appli-
cation of genetic algorithms in the development of a competitive automated AI player for a
current-generation commercial game would exemplify it as a viable means of AI development
that may be adopted by the video games industry.

1.2 Contributions

We outline the following contributions made in the development and delivery of this project as
follows:

• The development of a simple, but extensible behavior tree framework allowing the devel-
opment of automated AI players. We demonstrate the ability of the framework to control
and dictate the AI for the commercial real-time strategy game DEFCON, by Introver-
sion Software, when used in conjunction with the DEFCON Application Programming
Interface (API).

• The application of the Behavior Oriented Design (BOD) methodology to behavior trees
in the designing of a goal-oriented AI player for DEFCON, highlighting the practicalities
of BOD as an approach to developing an AI player that is able to handle the complexities
of a commercial game and run as a fully functional player. We make use of reactive plans
in our implementation, to allow the automated AI player to perform dynamic planning
to react differently based on game-play conditions using goal-prioritisation.

• Demonstration of the feasibility of incorporating genetic algorithms together with behav-
ior trees as a method of evolving a competitive AI player for the game of DEFCON.
Competitiveness, in this context, refers to the evolved AI’s ability to beat the standard
hand-designed AI written by the programmers at Introversion Software by more than 50%
of the time over a large number of games.

• A testing environment that allowed the distribution of processing over multiple computers
in order to reduce the time required for the evolution of the AI, dividing the number
of required runs of DEFCON between the computers. We also introduced redundancy
handling and illustrate the ability to automate the process as much as possible. Due to
resource constraints, the approach was implemented over 20 computers, but is scalable
to any number of computers, limited by the population size required in each generation
of the evolution process.

• Aiding in the improvement and refinement of the DEFCON API by identifying areas in
which functionality would be appropriate for AI developers to be able to make full use of
the API and to further encourage its adoption by hobbyists and members of academia as
a platform for the study and development of AI in games.
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1.3 Report Structure

We first provide an overview of the sources of inspiration and background information which
pertain to this project (Chapter 2). We then present the design choices for the behaviour trees,
how they were used to architect a hand-crafted AI-bot for DEFCON and how we proposed to
evolve them (Chapter 3). We then use the design choices made to implement our AI-bot, evolve
its behaviour trees and distribute the computation over multiple workstations (Chapter 4). The
experiments for which we evolved our behaviour trees are then outlined (Chapter 5), following
which, we present their results (Chapter 6) and then proceed to provide an analysis of the
results (Chapter 7). Finally, we conclude on the objectives met by this project and proposed
areas for future work (Chapter 8).
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Chapter 2

Background

In this chapter, we present information from various sources that provide a deeper understand-
ing of the methodologies, applications and technical information which were used over the
course of this project. We introduce the commercial real-time strategy game DEFCON in Sec-
tion 2.1, covering gameplay, game rules and an overview of existing automated AI players that
have been developed in the past. We also introduce the Application Programming Interface
that was used for this project.

Behaviour Trees, hierarchical structures used to encode AI, are explained in Section 2.2,
where we cover definitions, common design approaches and provide examples of their applica-
tion to AI development. Behaviour-Oriented Design (BOD) is introduced as a programming
methodology to approach AI behavioural design. We introduce its motivation, design process
and introduce the idea of reactive planning in Section 2.3. We also outline certain correspon-
dences between BOD and behaviour trees.

Genetic Algorithms are introduced in Section 2.4. We outline the general methodology,
operators and the concept of fitness functions as they pertain to genetic algorithms in this
section. Genetic Programming, where genetic algorithms are applied to computer programs, are
also introduced. Finally, we introduce a clustering algorithm known as the k-means algorithm
in Section 2.5.

2.1 DEFCON

DEFCON is a multiplayer real-time strategy game that allows players to take the roles of the
military commanders of one of six possible world territories. Players are given a set of units and
structures at their disposal, and it is up to them to manage these resources and inflict the biggest
amount of damage against opposing players. The game is split into 5 discrete intervals, named
from DEFCON5 to DEFCON1, and these intervals dictate the movements and manipulation of
units that are allowed. DEFCON is described as a genocide-em-up, a play on the term shoot-
em-up and beat-em-up often used to classify other game genres, such as first-person-shooters
and action games respectively, and since a large element of the game of DEFCON involves the
use of nuclear missiles to annihilate large populations of opponent players, it is an appropriate
term. Battles are fought in the sea and air, and the game involves strategic planning and
decision making in coordinating all these units in order to win. Figure 2.1 shows an in-game
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screenshot of a coordinated attack in DEFCON, taken from DEFCON’s official website1.

Figure 2.1: Global conflict erupts with a series of co-ordinated strikes in DEFCON

In this section, we begin by providing an overview of the game, covering basic game rules and
game play elements. We proceed to present existing automated players, or AI-bots, which are
presently available. Finally, we briefly cover the DEFCON API which was used for the purpose
of developing an AI-bot for this project. Further information on the game can be obtained from
both official DEFCON manual and Robin Baumgarten’s MSc Thesis “Automating the Paying
of DEFCON” [2].

2.1.1 Overview

Parties & Territories

A party represents the player, either human or AI-controlled, in the game of DEFCON. As
such, there are at least 2 parties in the game. Each party is assigned a territory at the start
of a DEFCON match, and this allocation is either done randomly or chosen by the user.

There are 7 available territories in each game, and each territory is controlled by up to 1
party. As such, in a game involving two players, two territories will be controlled by one player,
and the remaining five territories will remain unassigned to any party. Each controlled territory
possesses at least one city, and each city consists of a population size. The total sum of the
population for each territory is equal between all 7 player territories. The territory designates
the points on the map that a player may place ground installations and each player may only
do so in his or her respective territories. A portion of the sea, sea-territories, is associated
with each party, into which navy units may be placed in.

1Introversion Software’s Official DEFCON Site: http://www.introversion.co.uk/defcon/
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Units

Each party is allocated a fixed quantity of units that it may place and make use of throughout
the course of the game. Each unit possesses one or more states, which indicates the type of
actions it may execute. The units are classified into 3 groups, namely,

• Ground Installations

• Navy Units

• Aerial Units

Ground Installations

• RadarStation: Radars scan a wide range and display enemy units within their range on
the map.

• Silo: A silo contains 10 Long Range Ballistic Missiles (LRBMs) and can take 3 direct
hits before it is destroyed. A Silo has two modes:

– Nuclear Launch: A target on the map may be manually selected to launch a
missile. Upon launch, it can not defend itself, and reveals its position to other
players after launching its missiles.

– Air-Defense: Enemy air force units and nukes in range are automatically attacked,
in the decreasing priority of Nukes over Bombers over Fighters. If there are several
of the same class, it chooses the closest to its position.

• Airbase: Each airbase starts with 5 bombers, 5 fighters and 10 Short Range Ballistic
Missiles (SRBMs) by default. An Airbase has two modes:

– Launch Fighters: A target within range may be targeted, in which Fighter units
are launched. A recharge time of 20 seconds activates after the launch of a fighter,
which prevents the launch of a subsequent launch of another fighter during that
period.

– Launch Bombers: A target within range may be targeted, in which bomber units
are launched. A similar recharge time of 20 seconds exists for the launching of
bombers.

Air Forces

• Fighter: Fighters may attack other Fighters and Bombers, and may be used for scouting
to discover enemy installations. A Fighter has limited fuel, and automatically return to
any airbase or carrier upon completion of its objective, otherwise it will crash and is lost.

• Bomber: Bombers carry a single SRBM, and can be used to fly and deploy nukes at
close range. A Fighter has two modes:

– Naval Combat: Attacks visible enemy Navy units.

– Missile Launch: A missile is launched against a selected target.
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Navy Units

• Carrier: Each carrier tarts with 5 fighters, 2 bombers and 6 SRMBs. Can also launch
depth charges against submarines in the vicinity. Each has 3 modes:

– Fighter Launch: Hostile units within range may be targeted and Fighters are
launched.

– Bomber Launch: Hostile units within range may be targeted and Bombers are
launched.

– Anti-Submarine: A sonar scan is performed, and enemy submarines within range
are revealed, where a depth charge is released.

.

• Battleship: Battleships can only attack with conventional weapons, but are extremely
effective against other naval units and aircraft.

• Submarine: Submarines contain 5 Medium Range Ballistic Missiles (MRBMs) and are
either submerged or surfaced. They are invisible to radar while submerged, but must
surface to launch. They can be detected by sonar pings from carriers or other subs. Once
detected or surfaced they are very vulnerable to attack. Each submarine has 3 modes:

– Passive-Sonar: Submarine remains invisible to radar and can only be detected by
carriers in anti submarine status and other submarines in active sonar mode. It can
attack hostile naval units if they are visible to the party of the submarine.

– Active-Sonar: Similar to Passive-Sonar, except in addition, the submarine creates a
sonar scan, which reveals all naval units within a certain distance from the submarine.

– Launch Missile: A target within range may be attacked, where a missile is launched.
In this state, the submarines surfaces and is no longer invisible until all its missiles
have been depleted whereby it returns to Passive-Sonar mode.

DEFCON Levels

The course of the game of DEFCON spans over the course of 5 DEFCON phases, starting from
DEFCON5. In each DEFCON phase, certain actions and information are permitted whilst
others are not. Figure 2.2 provides a table, giving explanations for each of the DEFCON
phases and a description of what is involved in each.

Winning Conditions

Winning in the game of DEFCON involves attaining the highest score, and how these scores are
calculated differently according to the Scoring Mode which is decided at the start of a game.
The 3 scoring modes are:

• Default: 2 points awarded for every million of the opponent’s people killed. -1 point
penalty for every million people belonging to the player.

12



DEFCON
Level

Description Time

5 No hostile actions. Ground installa-
tions may be placed. Fleets may be
placed and moved within international
waters

3

4 Radar coverage will provide informa-
tion on enemy units if within range

3

3 Units and ground installations may no
longer be placed. Naval and Air attacks
not involving Missiles are permitted

3

2 This is essentially the same as in DEF-
CON 3

3

1 No units may be placed, and missile at-
tacks are now allowed. This phase con-
tinues until 80% of all missiles in the
game have been launched, after which
a victory timer counts down until the
end of the game.

-

Figure 2.2: Summary of DEFCON levels and permitted actions

• Genocide: 1 point is awarded for every million of the opponent’s people killed. No
penalty for losing a player’s own people.

• Survivor: 1 point is awarded for every million people surviving in the player’s territory.
The points start at 100 for both teams and decrease throughout the game.

2.1.2 Automated Players for DEFCON

Several implementations of automated players exist for DEFCON. These implementations of
AI-controlled players are often referred to as AI-bots2.

We cover two such bots in this section. Firstly, we describe the default one that ships
together with the game which allows human players to pit themselves against an opponent
without the need for a network connection with another human player. The second is the
result of a MSc project by Robin Baumgarten [2], which was developed using a combination of
AI techniques.

Introversion Bot

The default bot3 that comes with DEFCON is a deterministic, finite-state-machine driven
bot [2]. It consists of a set of 5 states and transits from one state to the next in sequence.
Upon reaching the final state, it remains in it until the end of the game. This is depicted in
Figure 2.3, The states and a brief description, as identified by Baumgarten [2] of what occurs
in each are:

2For the purpose of this report, the term AI-bot is used to refer to any AI-controlled player in DEFCON
3Henceforth termed as the Introversion AI-bot
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Figure 2.3: The sequence of states in the Introversion AI-bot

• Placement: Fleets and structures are placed. The fleet is randomly placed at predefined
starting positions. Structures are placed near cities. Once all units are placed, the AI
proceeds to the next state.

• Scouting: The AI tries to uncover structures of a random opponent by moving fleets
towards occupied territories and launching fighters towards them. Once 5 structures have
been uncovered, or a predefined assault timer 10 expires, the next state in invoked

• Assault: The AI starts to launch missile attacks with bombers and subs on the previously
chosen opponent. Once 5 structures have been destroyed or the assault timer expires or
the victory timer starts, the strike state is invoked.

• Strike: Silos launch their missiles and other missile carrying units continue to attack.
After these attacks have been initiated, the system changes into the final state.

• Final: In the final state, no more strategic commands are issued. Fleets continue to
approach random attack spots.

Robin Baumgarten’s AI-bot

In 2007, a bot was developed by Baumgarten [2] using a combination of case-based reasoning,
decision tree algorithms and hierarchical planning4. For the case-based reasoning system, high-
level strategy plans for matches were automatically created by querying a case base of recorded
matches and building a plan decision tree. A broad overview of the system design is depicted
in Figure 2.4.

The implementation of the bot can be described as a series of steps:

4Henceforth referred to as Robin’s Bot
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Figure 2.4: Overview of System Design of Robin Baumgarten’s Bot (from [2])

1. Upon assignment of territories for both players, the starting configuration is used as
similarity measure to retrieve a case from the case-base.

2. Plans from the retrieved case classified into a decision tree with plan attributes.

3. The decision tree determines a high-level plan coordinating groups of fleets, termed
metafleets, and are placed as dictated by the plan.

4. The placement of structures is controlled by an algorithm taking recent matches into
account by querying the case base.

5. With everything placed, an attack on the opponent’s mainland is prepared establishing
where and when to attack.

6. A synchronised attack is performed, and the game ends

7. The end-game results, plan used, fleet movement and structure information are extracted
into the case and retained in the case base.

The coordination of fleets used in Robin’s AI-bot involved the grouping of fleets into meta-
fleets, where each meta-fleet then followed the plan that was generated for it (Step 3). Each plan
described two large scale movements for these meta-fleets, dictating the placement, movement
and targets of the fleets. For performing the placement of structures (Step 4), Robin’s AI-bot
implemented a process to analyse the performance of each silo, radar and airbase placed in
each case retrieved and determined an effectiveness score. For example, after retrieving a case
from its case-base, the system proceeded to note the individual positions that the silos were
placed, calculating its effectiveness by using a weighted average of the performance of the silo
in aspects such as the number of enemy missles it shot at and the amount of time it survived
before being destroyed. The sum of each silo’s effectiveness formed the overall score which the
silo placements acquired for each case. The best performing case’s silo placements were then
used for the match.

The synchronised attack performed (Step 6) by Robin’s AI-bot was a result of several
hand-coded calculations to allow the nukes that were launched by a combination of carriers,
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submarines, airbases and silos to arrive at the enemy at the same time to inflict maximum
damage. The implementation made use of an influence map to determine the best locations to
attack and trigonometrical calculations to allow the bombers and fighters to arrive at the same
time as the rest of the nukes.

We will soon cover the different approach in which we took in the development of our AI-
bot. We approached the fleet coordination using a simple, but effective method (Sections 5.2.4
and 6.3) which allowed allowed it to avoid having to rigidly following a given plan (Section 2.3.2).
We adopted an evolutionary approach to allow the AI-bot to learn to improve its performance
with as little human intervention as possible. For example, as we will see later, the timings of
the attacks made by our AI-bot were not hand-coded to be synchronised, but were a result of
evolving individuals that were initially set with random timings. (Section 6.4 and Section 7.4).

Robin’s AI-bot was implemented using the source-code of DEFCON, which gave it access
to game state information that was required for various calculations, like the effectiveness value
mentioned above. Our AI-bot implementation made use of the DEFCON API, and required us
to use the API to retrieve similar game state information via an indirect means (Section 4.2.1).
Chapters 3 and 4 both cover the design and implementation approaches used in the development
of our AI-bot.

2.1.3 DEFCON API

A partnership between Introversion Software and Imperial College has resulted in the devel-
opment of an Application Programming Interface (API) for DEFCON5. The API provides an
interface to DEFCON’s methods and function calls, and is used to produce a dynamic-link li-
brary (.dll) file that contains an AI-bot implementation which can then be included as a module
for DEFCON to access to run as an automated player.

The API provides a way for AI developers to build AI-bots without having to work with
the source-code of DEFCON directly. At the time of writing, the API is at version 1.51, and
provides the base framework upon which this project is based. By making use of the API to
develop the AI-bot for our project, we hope to contribute and improve the API, as well as
encourage the adoption of the API by others to develop their own AI-bots.

2.2 Behaviour Trees

Behaviour trees provide a way to define intelligent control of characters in video games. Its
key characteristics are being simple to define, scalable to exhibit complex AI and modular
for reusability [8]. This is achieved by introducing a set of constructs which a behavior tree
is composed of. Behaviour trees are goal-oriented, with each tree associated with a distinct,
high-level goal which it attempts to achieve. Behaviour trees can be linked together, allowing
the implementation of complex behaviours by first defining smaller, sub-behaviours.

In this section, we look at the motivation for behaviour trees, making comparisons to other
traditional forms of defining game AI used in practice. We then cover the basic constructs that
are used to create behaviour trees with examples. We have adopted a similar convention for the
style and design representing the types of nodes in behaviour trees from Alex J. Champandard’s

5API and documentation available from http://www.doc.ic.ac.uk/˜rb1006/projects:api
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presentation “Behavior Trees for Next-Generation Game AI” [7].

2.2.1 Motivation

A traditional approach to developing AI-controlled players for games has been to use Finite
State Machines (FSM). We shall describe the use of FSMs with an example.

Figure 2.5: Basic FSM of a guard soldier

Figure 2.5 illustrates the FSM used to control the behaviour of a simple guard soldier. The
FSM handles its ability to be on guard, attack an enemy when it spots one and return to its
base once it has been able to eliminate the enemy. The FSM requires 3 states and 3 transitions
in order to dictate this behaviour. Supposing we want to add an additional functionality for
this guard soldier, such that whenever it is low on health, it would try to refill its health points
by using a health pack. We will thus extend the FSM to include this additional state as shown
in Figure 2.6.

Figure 2.6: Extended FSM of a guard soldier, with an ability to heal itself
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It can be seen that the number of states have now doubled in order to accommodate this
new functionality. The number of transitions required to link these states has also increased.
Thus, it can be seen that if the subject grows in complexity, the number of states that is
required to encode the behaviour of the automated player increases, along with the number
of transitions between the states. This led to the introduction of Hierarchical Finite State
Machines (HSFMS), which were used to overcome these drawbacks and improve scalability by
grouping states to share these transitions to develop larger and more complex AI systems. This
is illustrated in Figure 2.7.

Figure 2.7: Hierarchical FSM of a guard soldier

We now have two high-level states, where the guard soldier can either be on patrol or using
a health pack. Within the on-patrol state are several sub states which dictate its behaviour. We
have managed to reduce the number of states and transitions that are required. However, these
transitions still have to be defined carefully in order for them to be reused because, supposing
we wanted to define an additional behaviour, and realise that a portion of this new behaviour
consists of states that are in principle, similar to the states that were defined before. Reusing
older states would involve a rather tricky task of identifying transitions which are compatible
for this new set of behavioural states before providing links to transit between them.

One solution to this problem would be to allow states to be reused easily, without worrying
about transitions being invalid when they are reused for different portions of the AI logic - es-
sentially increasing the modularity. A Behaviour Tree enables such modularity by encapsulating
logic transparently within the states, making states nested within each other and thus forming
a tree-like structure such as in Figure 2.8, and restricting transitions to only these nested states.
This exhibits what is termed as latent computation [7]. The root node branches down to
more nodes until the leaf nodes are reached, and these leaf nodes are the base actions that
define the behaviour of the AI from a state beginning at the root. The concept of an AI state
is now seen as a high level AI behaviour, or task, whereby the links to nested children nodes
define sub-tasks which make up the main behaviour. The leaf nodes are essentially then a group
of basic actions that define a behaviour.
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Figure 2.8: A Tree of modular Behaviours (image from [8])

These behaviour tasks are formally constructed out of 2 classes of constructs6. The Primitive
constructs form the leaves of the tree, and define low level actions which describe the overall
behaviour. The composite constructs provide a standard way to describe relationships between
child nodes, such as whether all should be executed or only a subset of them. In the next
section, we cover these constructs, describing in detail their usage and applicabilities.

2.2.2 Primitive Constructs

Primitive constructs form the leaves of a behaviour tree, and they define low-level basic actions.
They form interface between the computations made by AI-controlled player and the main
game, and are wrappers over function calls that are used to execute an action within the game
world, or query the state of the game.

Actions and Conditions

Two primitive constructs consist of 2 types:

1. Actions - which cause an execution of methods or functions on the game world, e.g. move
a character, decrease health, ...

2. Conditions - which query the state of objects in the game world, e.g. location of char-
acter, amount of Health points, ...

These actions and conditions form the definitions of behaviour tasks. For example, in Figure
2.9, we define a behaviour tree task Deduct Money From Player.

Figure 2.9: A Behaviour Task - Deduct Money From Player

6As such, these constructs are also referred to as tasks or task nodes
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The main task is decomposed into two child tasks, the left child being a Condition that the
player has money to start with, and the right child being an Action which deducts the money
from the player in the game. Each of these actions and conditions can either succeed or fail,
which in turn define whether the high-level behavioural task succeeds or fails.

2.2.3 Composite Constructs

We have introduced the notion of tasks, and how conditions and actions are used as child nodes
to define these tasks. However, behaviour tasks of these sorts are limited to very basic tasks.
We are interested in increasing the complexity of these behaviour tasks and this is achieved
by building branches of the tree to organise the children nodes. These branches are essentially
the composite constructs of behaviour trees, and their main purpose involves organising the
children nodes of each task. The composite tasks consist of,

1. Sequences

2. Selectors

3. Decorators

Sequences

Figure 2.10: Sequence Example - Attack Available Enemy

Figure 2.10 shows a Sequence node, consisting of 3 children nodes, each being a primitive
type. A Sequence essentially imposes an ordering on the execution of its children nodes. In
this example, it first checks if there is an enemy in range. Secondly, it draws a weapon before
finally attacking the enemy. Note that the order of execution is important, since logically, a
weapon has to be drawn before it can be used to fire at an enemy. Thus, in order to determine
if the entire Sequence has executed successfully, each one of its children nodes has to execute
successfully in the order that they are specified.

If in the event that an enemy is present, but the AI player does not have a weapon to draw,
the second child task node fails, resulting in an automatic failure of the entire Sequence. The
third child node, in this case, does not need to be checked or executed. Sequences can be seen
to perform implicit pre-condition checking to prevent potentially unexpected behaviour from
occuring (i.e. an AI player attempting to shoot before drawing a weapon).
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Figure 2.11: Selector - Attack Enemy

Selectors

The second type of composite we introduce is the Selector. Figure 2.11 shows a Selector

node, consisting once again of 3 children nodes. The first thing to notice is that there is no
formal ordering on these children nodes. The reason is because, a Selector essentially chooses,
or picks, one of its children nodes to be executed. This child node can be selected randomly,
probabilistically, or using priorities. For this example, we assume that each child node has an
equal probability of being selected.

On execution of a child node, the Selector succeeds only if at least one of its children nodes
succeed. In our example, the game AI selects from 3 alternatives to complete the task Attack
Enemy. If it first picks Attack with Gun, the corresponding Action executes. Supposing
the Action fails, perhaps due to the AI player not possessing a gun at this point, the Selector

node does not immediately fail, but rather, it picks the next child node to execute.

Continuing with our example, supposing the next Action it picks is Attack with knife.
Assuming the AI player possesses a knife at this point and executes the action successfully, the
Selector node then returns as successful. The Selector only fails when none of its children
execute successfully. This can be seen as exhibiting an opposite behaviour to that of Sequences.
Sometimes, we assign priorities to each of the child task nodes. A Selector that selects its
child task nodes in the order of decreasing priority is termed a Priority Selector.

2.2.4 Decorators

We have so far seen primitive and composite tasks which are used to design and define our
behaviour trees. Decorators are a class of tasks inspired by the software design pattern of
the same name. Just as how decorators in software design aim to wrap over an existing class,
adding additional features on top of, but without modifying, the existing class, behaviour tree
Decorators aim to extend existing defined behaviour trees to improve its functionality.

This is best illustrated with an example - consider the behaviour tree in Figure 2.10. Sup-
posing that in order to achieve a more realistic AI, we want the AI player to exhibit this
Attack Available Enemy behaviour for only a certain duration of time within the game,
such that there are points when the AI player is considered off-guard, to mimic how a human
player would not always choose to attack an enemy even though one were present.

If we were to try to design a behaviour tree to exhibit this behaviour, we could try mod-
ifying our existing behaviour tree to include several more Condition tasks linked together by
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Figure 2.12: An approach to handling timed behaviours

a Selector into the existing Sequence, with each Condition checking for specific points of
time within the game, such as in Figure 2.12. This, however,is undesirable on three accounts.
Firstly, it breaks the simplicity of designing behaviour trees because of the need to tediously
create multiple Condition nodes. Next, this is definitely not scalable because if we were to
increase the time duration to execute this behaviour, more Condition tasks have to be added.
Lastly, it breaks the rule of modularity since we are unable to reuse this Behaviour for a different
time duration other than that covered by the existing Conditions.

Decorators are thus the solution to this problem. What occurs is that we define a type
of Decorator - a Timer, which executes it’s child node for a specified duration of time. The
existing behaviour does not need to be modified in any way, except that the Timer Decorator

is linked as the parent to the existing Behaviour Tree, as depicted in Figure 2.13. Now, the
Behaviour is simple to create because it only involves the addition of a single Decorator Timer,
and maintains its modularity since the original behaviour of Attack Available Enemy has
not been modified in any way. Scalability does not pose a problem since there are no addi-
tional nodes to add. This exhibits the usefulness of Decorators to extend the functionality of
behaviour trees, and more examples of types of Decorators include Counters which track and
execute behaviours a certain number of times or Debug Decorators which output information
about the corresponding child tasks. A non-exhaustive list of different types of Decorators

can be found on page 95 of the Appendix.

Lookup Decorators

From the above discussion on Decorators, one noticeable point is that Decorators never
appear as the leaves of a behaviour tree, since their functionality essentially depends on their
children’s tasks. However, one type of Decorator always appears as a leaf node and that is
the Lookup Decorator, or Lookups.

Lookups attempt to further increase the modularity and reusability of behaviour trees by
using such Lookups to search for particular sub-behaviour tasks rather than explicitly stating
them in the tree. This can be illustrated by first considering the Behaviour Tree in Figure 2.14,
describing a behaviour of an AI player in a game in which it plans to place structures on a
given map or terrain.

The Behaviour takes the form of a Sequence. First it picks a structure to place, then it
decides on a location for the structure and finally, it places it. The first two tasks involve
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Figure 2.13: Using timer decorators to handle timed behaviours

Figure 2.14: Behaviour for AI Placing Structures

Selectors, basically because we might design the AI in such a way that it has different imple-
mentations of deciding which structure to place. An example would be picking the structure
that has the fewest remaining number or an alternative could be picking one with the highest
remaining number. Similarly for the second task, we have different implementations from which
we wish to select from in deciding the location to place the structure. For example, placing
structures nearer the sea areas, closer to cities or closer together.

We are not interested from a high level perspective about the sequence of actions which are
required to execute the different implementations of these tasks, we merely want the behaviour
tree to decide for us and accomplish the tasks Pick Structure Type to Place and Pick
Location to Place. The idea is then to associate these different implementations into a
lookup table, grouped by their high-level task which they are accomplishing, and replace the
children nodes of the main Sequence by Lookup Decorators, as shown in Figure 2.15.

In grouping these implementations, into a hierarchy of tables, we begin to move towards a
hierarchical goal-oriented architecture. These high level tasks can be viewed as high level goals
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Figure 2.15: Using Lookups to modularise Behaviours

which the Behaviour ultimately wants to achieve, and does so by decomposing down to smaller
sub-goals in order to achieve the high level goal. In Section 2.3, we formalise this approach
using a theoretical methodogy called Behaviour Oriented Design.

2.3 Behaviour Oriented Design

Behaviour Oriented Design (BOD) is a development methodology proposed by Joanna Bryson
[6] which aims to design and construct so called complete complex agents(CCA) in a modular
fashion. The methodology serves as an improvement over current ardhitectures for these CCA.
In this section, we provide an overview of BOD, its proposed approach to designing an AI
which focuses on iterative rapid prototyping and how such an architecture would allow the AI
to exhibit functionality such as reactive planning, which we will show to be desirable when
attempting to design automated players.

What interests us most about BOD is its close correspondence with behaviour trees, which
we introduced in Section 2.2, such as the similar functionality of BOD’s plan elements –
Action Patterns and Competences, to the Sequences and Selectors of behaviour trees re-
spectively. We are thus able to design behaviour trees that are able to perform similar types
of reactive planning that BOD allows (Section 2.3.2).

2.3.1 Methodology

Using BOD, we approach a modular and behaviour-oriented approach to coding the AI. This is
achieved by Behaviour Decomposition – the approach of breaking down the complex high-level
behaviour into smaller sequences or groups of sub-behaviours. The problem that often arises
when taking this approach is determining how exactly to decompose a behaviour. For example,
we might wonder how much decomposition is necessary, how many sub-behaviours is ideal to
define the top-level behaviour and also how complex should they be. BOD approaches this via
a cyclic development process involving a set of guidelines for this decomposition.
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We present the two main aspects of this development process, namely the Initial Decompo-
sition and subsequent Iterative Development as proposed by Bryson [6]. This methodlogy is
later used to design the hand-crafted behaviour trees for our AI-bot (Chapter 3).

Initial Decomposition

1. Specify at a high level what the agent is intended to do

2. Describe likely activities in terms of sequences of actions. These sequences are the basis
of the initial reactive plans

3. Identify an initial list of sensory and action primitives from the previous list of actions

4. Identify the state necessary to enable the described primitives and drives. Cluster related
static elements and their dependent primitives into specifications for behaviours. This is
the basis of the behaviour library.

5. Identify and prioritize goals or drives that the agent may need to attend to, This describes
the initial roots of the reactive plan hierarchy

6. Select a first behaviour to implement.

The initial decomposition process can be seen to be goal-directed, with the initial task being
the high-level goal that it intends to achieve, and the sequences of actions representing the
execution required to achieve this goal. Several other AI methods bear similarities to this, such
as Hierarchical Task Networks (HTN) [18] and Goal Trees [17]. Figure 2.16 shows an example
of a HTN, and it can be seen to bear the characteritics of BOD’s task decomposition. We shall
soon present and see that behaviour trees may also be designed to exhibit such goal-directed
behaviours.

(a) Top level task Hour decomposed into
sequence of subtasks and actions

(b) Sub-task Get Food is further decom-
posed

Figure 2.16: Hierarchical Task Network

The main motivation for such a goal-directed planning architecture arises from the second
of two general philosophies of game AI [10]. The first holds the belief that AI has to be strictly
controlled using techniques such as finite automata like Finite State Machines and scripting.
The reason for this is to give the AI developers a close control over the direction of the AI,
what it is enabled to do in each state or situation and for predictable behaviour to ease the
process of testing and debugging.

The second philosophy, and the one which BOD pertains to, reasons that it is essentially
impossible to adequately dictate and describe every possible every possible action from every
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possible state. We have shown earlier that this is indeed true for finite state machines. Thus,
it proposes that it is better to develop a reasoning AI that understands the basic rules of the
game and makes its own decision based on the world as it perceives it, in the hope that the
emergent behaviour would be more effective and believable than if specified by hand.

Iterative Development

The development process for the BOD methodology involves the following steps:

1. Select a part of the specification to implement next.

2. Extend the agent with that implementation:

• code behaviours and reactive plans, and

• test and debug that code

3. Revise the current specification

2.3.2 Reactive Planning

Planning involves defining the sequence of actions that will achieve a goal [30]. Many of these
actions are often potentially executable given a situation or event, although it might not be
logically or physically possible for them to execute together. Thus, there exist the requirement
to explicitly specify the conditions for which each action may be expressed, which is the case
for both the Subsumption Architecture [4] and the Agent Network Architecture [24].

This requirement grows as the complexity of the given domain becomes larger with more
and more behaviours added. Reactive planning attempts to address this by describing using
sequences of events to describe each behaviour in what are termed as action-selection se-
quences. These sequences may be interrupted, preventing the completion of an intended action
sequence, as a result of two categories of events [5]:

• Some combination of alarms, requests or opportunities may make pursuing a different
plan more relevant.

• Some combination of opportunities or difficulties may require the current sequence to be
reordered.

In order to address the occurrences of such events when defining a sequence in a reactive plan,
BOD introduces the use of three types of plan elements to approach reactive planning. The
three types are:

• Action Patterns: things that do not strictly need to be checked at all

• Competences: things that only need to be checked in particular context

• Drive Collections: things that need to be checked regularly
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Figure 2.17: Action Pattern (Image from [5])

Plan Elements

Action Pattern: This is a sequence of primitives, which may be either actions or sensory
predicates. They are useful for for allowing an agent designer to keep the system as simple as
possible and speed optimizations of elements that reliably run in order. In Figure 2.17 above,
the action pattern shows the behaviour of an artificial monkey.

Figure 2.18: Competence (Image from [5])

Competence: These encode a prioritisation in place of a temporal ordering as with normal
sequences, and this allows an added flexibility in the exhibited behaviour. Figure 2.18 above
illustrates a competence for the same artificial monkey, but with a prioritization of actions
which increases in the direction of the vertical arrow. In this example plan, the monkey will
eat a peeled banana if handed one. If given a banana it will peel it or, given none of the above,
it will attempt to get a banana. The competence terminates when either the goal is achieved,
or if none can be achieved.

Figure 2.19: Drive Collection (Image from [5])
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Drive Collection: These provide a means of arbitrating between plan elements or goals and
handle contextual changes which occur both in the environment and internally to allow changes
between rather than within plans. It is designed never to terminate and executes on every tick
of the program cycle, where the highest priority drive-collection element that is triggered passes
the control to the next plan element. When initialised, the focus is placed on the top most
element of the plan. Figure 2.19 demonstrates this.

Basic Reactive Plans

A Basic Reactive Plan (BRP) has been identified by Bryson as an idiom or pattern found in
numerous influential reactive planning architectures [5]. BRPs are based on a few assumptions,
including:

• The agent has a goal to be achieved

• A set of actions exists that enables the agent to be capable of executing which can lead
to achieving the goal

A prioritised list of the set of actions constitues the BRP, with the action with the highest
priority being the one that consummates the goal, and each subsequent action in decreasing
priority enabling the action that is more important than it.

Figure 2.20: A Basic Reactive Plan (Image from [5])

Figure 2.20 above shows an example of a BRP, an example covered Bryson [5]. The agent
of interest has a highest goal to get married, indicated by the value 1 in the priority list on the
left. One can understand the BRP as follows:

• To get married, the agent needs a fiancé and needs to be in church

• If the agent is together with her fiancé, they will go to church (Priority: 2)

• If the agent’s fiancé is available,

– If the agent were engaged, she would look for her fiancé (Priority: 3)

– Otherwise, if the agent were not engaged,

∗ but receiving attention, the agent would attempt to get engaged (Priority: 4)

∗ but not receiving attention, the agent would simply flirt (Priority: 5)
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The approach outlined above allows the designer to focus on the context and situation where
each action is executable, rather than having to recognise the possible transitions between the
action states, due to the invariant that no higher priority action would have fired when a current
one is being considered. The designer only has to hand-code one situation per action required,
stating the minimum conditions for which that action will be executed.

Correspondences with behaviour trees

Figure 2.21: Action Pattern as a Behaviour Tree Sequence

We can see that action patterns can be represented in behaviour trees as Sequences. Fig-
ure 2.21 illustrates the corresponding Sequence for the Action Pattern.

Figure 2.22: Competence as a Behaviour Tree Selector

Figure 2.22 shows the corresponding Selector for the Competence. It is worthwhile to
note that the Selector is in fact a Priority Selector - where it places a priority values of
decreasing value from left to right on its children task nodes. By outlining such correspondences,
we identify the applicability of behaviour trees to the BOD methodology. In Section 3.2 of
Chapter 3, we outline the design of the behaviour trees using the BOD approach for the
automated AI player covered in this project. We also present applications of reactive planning
for the purpose of coordinating behaviours for choosing appropriate times for attacking in the
AI-bot.

29



2.4 Genetic Algorithms

Genetic algorithms are a form of machine learning that is based on natural biological evolution.
In applications used for classifying data correctly, multiple candidate hypotheses are evolved
and generated from preceding populations using a combination of genetic operators such as
recombination and mutation which mimic the inheritance of chromosomes in organisms. The
process is often repeated over numerous generations until a threshold of optimality is reached.
In this section, we introduce genetic algorithms as a a machine learning approach. We begin
by formally introducing the terms and concepts of genetic algorithms, including an overview of
a prototypical genetic algorithm and common genetic operators. Following this, we introduce
Genetic Programming as an application of such genetic algorithms to computer programs.

2.4.1 Methodology

Genetic algorithms were inspired by the biological process of evolution. It serves to find near
optimal solutions to complex non-linear problems [21]. The approach usually begins by starting
with an initial population of solutions to the problems. These solutions are rated on how
optimal they are, termed its fitness, and subsequent populations are produced by a set of
genetic operators. This is allowed to repeat over numerous runs, or generations, until a
satisfactory performance is achieved. Informally, this can be described as a series of steps [21]:

1. Create a first-generation of the population of random organisms

2. Test them on the problem we are trying to solve, and rank them according to fitness. If
the best organisms have reached our performance goals, stop.

3. We produce the offspring organisms for the next generation via any combination of the
following methods

• Carrying forward offspring from the previous generation.

• Producing new offspring by genetic operators such as crossovers and mutation to the
fittest individuals as identified in step 2. (covered in Section 2.4.4)

• Creating entirely new offspring to introduce variety and prevent local maxima con-
vergence.

4. With this new set of individuals, we then repeat from step 2.

Mitchell [27] covers these steps similarly using Algorithm 1 on page 31.

2.4.2 Fitness

Fitness is a numerical measure of the performance of the organisms concerning the problem
at hand [27], and the fitness function is defined as an objective function that quantifies the
optimality of a solution to the target problem [29], assigning a fitness value to it.

Often, the fitness function is used in the selection process as outlined in Algorithm 1 above,
to provide a means for ranking each candidate in the population based on their fitness. Selection
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Algorithm 1 Prototypical Genetic Algorithm
1:
2: INPUT : Fitness {A function that assigns an evaluation score, given a hypothesis}
3: INPUT : Fitness threshold { A threshold specifying the termination criterion}
4: INPUT : p {The number of hypotheses to be included in the population }
5: INPUT : r {The fraction of the population to be replaced by Crossover at each step}
6: INPUT : m {The mutation rate}

7: {Initialise population}
8: P ⇐ Generate p hypotheses at random

9: {Evaluate}
10: for each h in P do
11: Compute) Fitness(h)
12: end for

13: while max(Fitness(h) less than Fitness threshold do
14: {Create new generation PS }
15: 1.Select : Probabilistically select (1− r)(p) members of P to add to PS

16: 2.Crossover : Probabilistically select (ṙp)/2 pairs of hypotheses from P.
17: For each pair, produce two offspring by applying the Crossover operator.
18: Add all offspring to PS

19: 3.Mutate : Choosempercent the membersoPS with uniformprobability.
20: For each, invert one randomly selected bit in its representation.
21: 4.Update : P ← PS

22: 5.Evaluate :
23: for each h in P do
24: Compute) Fitness(h)
25: end for

26: end while

27: return hypothesis with highest fitness

within a population based on fitness attemps to select “fitter” candidates over others, whether
for direct insertion to the next generation, or to generate offsprings with the use of genetic
operators prior to insertion. In Section 3.3, we cover the various fitness functions that were
used for the evolution of the DEFCON bot used in this project.

2.4.3 Selection

Selection involves picking a subset of the existing population to carry forward to the next
generation. Three common forms of selection [27] are:

• Fitness Proportionate Selection

• Tournament Selection

• Rank Selection
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In fitness proportionate selection, individuals from the population are selected based on the
ratio of its fitness to the fitness of the other individuals present in the current population. Thus,
the probability of selecting an individual x from a population of n individuals is described by
the equation:

P (x) =
Fitness(x)∑n
i Fitness(xi)

In tournament selection, a number n of individuals are picked to compete. They are ranked
according to their fitness, and are assigned a probability of being selected as follows:

P (x) = p× (1− p)rank−1

In rank selection, the individuals are sorted according to their fitness. The probability of
selecting an individual is then proportional to its rank in this list, rather than its fitness.

2.4.4 Genetic Operators

Genetic operators are used to produce offspring for a new generation. In Genetic Algorithms,
these genetic operators can be illustrated by operations on bit-string hypotheses, as illustrated
by Mitchell [27]. The two common operators are identified as:

• Recombination, consisting of

– Single-Point Crossover

– Two-Point Crossover

– Uniform Crossover

• Mutation

Recombination

In Recombination, two parents are selected and two offspring are produced by copying the i’th
bit from each of the parent, where the choice of which parent to receive the bit is defined by a
cross-over mask. By varying the mask, offspring are able to inherit varying portions from the
parents, and in doing so, aids in the diversity for the next generation.

Figure 2.23: Single-point Crossover

In single-point crossover, the parent sequence is divided into two portions. The first offspring
receives the first 5 bits from the first parent, and the remaining 6 offspring from the second -
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illustrated in Figure2.23 above as the underlined bits. The second offspring does the converse,
receiving the first 5 bits from the second parent and the last 6 bits from the first.

Figure 2.24: Two-point Crossover

In two-point crossover, the parent sequence is divided into 3 intermediate portions. The first
offspring receives the first 2 bits from the first parent, the following 5 bits from the second
parent, with the last 4 bits from the first once again. The second offspring can be seen to do
the converse.

Figure 2.25: Uniform Crossover

In uniform crossover, the offspring receive bits uniformly sampled from either parent, usually
by randomising the crossover mask. This is illustrated in Figure 2.25

Mutation

The mutation operator produces offspring by modifying just a single parent. In this case, the
parent is either selected by probabilistic or uniform selection, and an offspring is produced by a
single, random modification to a bit. As shown in Figure 2.26, the seventh bit of the parent is
flipped from 0 to 1, and the resulting bit string is the offspring to be used in the next generation
of evolution. The occurence of mutation in a population is determined by a mutation rate,
which determines the probability of a mutation occuring. The selection of the portion of an
individual that is mutated is also determined probabilistically.

Figure 2.26: Point Mutation
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2.4.5 Genetic Programming

When members of the population are no longer bit strings, but are in essence actual com-
puter programs, the application of genetic algorithms to these programs is known as genetic
programming. These are typically represented by trees, where nodes represent function calls
and arguments form the children of these nodes. As an example, consider the trees shown in
Figure 2.27.

Figure 2.27: Recombination of Genetic Programs

The trees at the top denote the parent programs, and those below are the evolved offspring
programs produced as a result of a recombination operations. The parent trees encode the
following functions:

sin(x) + 2(x+y)

sin(x) +
√

x2 + y

After recombination, the offspring programs generated are:

sin(x) + 2(x2)

sin(x) +
√

(x + y) + y
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2.5 Cluster Analysis

2.5.1 k-means Clustering

The k-means algorithm is used to perform k-means clustering, in which a set of N data points
are grouped into k clusters in an I -dimensional space [23]. Each cluster k is parameterised by
its mean m(n). For more information, there exists a good numerical example of the application
of the k-means algorithm in [36]. The employed technique is the iterative refinement technique,
which consists of two steps:

1. Assignment Step: Each of our data points is assigned to the cluster k̂(n) with the closest
mean.

k̂(n) = argmin
k

{
distance(m(k), x(n))

}
2. Update Step: Each cluster’s parameterising mean is updated to be the centroid of all

the data points within it.

m(n) =

∑
xi∈k̂(n)∣∣∣k̂(n)

∣∣∣
The two steps are repeated until the assignments of the data points no longer change. An

application of this clustering algorithm is to the coordinates on a world map, each denoted
by a longitude and latitude value specifying a specific location on the map. Given two points
x = (lonx, laty) and y = (lony, laty), the distance between them can be calculated using the
equation:

distance(x, y) =
√

(lonx − lony)2 + (latx − laty)2

The application of the k-means algorithm was used in the analysis of the placement and
movement positions that were resulted from the evolution of our AI-bot in this project (Chap-
ter 7).

2.6 Summary

We have covered the game of DEFCON in this chapter, together with an introduction to
behaviour trees as a tool for designing AI-bots. We then introduced the BOD methodology as
a formal approach that can be used to approach behaviour tree design. These were used in the
designing of the hand-crafted behaviours for the initial development of our AI-bot (Chapter 4).
The application of genetic programming forms the basis of the approach to evolving these
behaviour trees, which we cover in Chapter 3 (Section 3.3). Implementation details of the
areas of evolution, pertaining to the automated AI bot we developed in order to improve its
competitiveness as a player, are covered in Chapter 5 (Section 5.2).
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Chapter 3

Design

Recall that the purpose of this project was to design and implement behaviour trees to control
the behavior of an automated player for DEFCON and together with an evolutionary approach,
proceed to evolve these initial hand-crafted behaviours to produce a competitive AI-bot. There-
fore, in this chapter, we present the design approaches undertaken in the development of the
various components. We give a schematic overview of the system design of the behaviour tree
framework that was developed in section 3.1, outlining its implementation and how it was used
to interface with the DEFCON API. In section 3.2, we describe the design process which was
used to design and hand-craft the behaviour trees for the AI bot using the BOD methodology
and a form of design denoted as goal-directed reasoning. Section 3.3 outlines the application of
genetic programming to the hand-crafted behaviour trees, using genetic operators and fitness
functions, for the purpose of evolving them.

3.1 Behaviour Tree Framework

3.1.1 Behaviour Tree Design

We present the behaviour tree data structure that was designed and implemented for the
purpose of this project. Our implementation makes use of the Composite Design Pattern
and the UML class diagram in Figure 3.1 shows our implementation. We take note of the
following:

• The nodes of a behaviour tree are of the abstract class TaskNode.

• Two derived classes, Primitive and Composite, inherit from the TaskNode class.

– Concrete classes Action and Condition are derived from Primitive

– Concrete classes Selector, Sequence and Decorator are derived from Composite
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Figure 3.1: UML Diagram for behaviour trees

3.1.2 System Design

The entire system consists of two main components - the DEFCON API and the behaviour
trees. As we can see from Figure 3.2, the API’s Bot class makes use of the behaviour trees in
order to execute AI logic and behavior. At the same time, the behaviour trees need to be able
to access the API calls to perform checks on the game state as well as executing commands.

Figure 3.2: Dependence of both the behaviour tree and the Bot’s API on each other

Thus, in order to adhere to one of the core dependency principles of having non-cyclic de-
pendencies between classes, we have made use of the abstract client pattern, which is illustrated
by Figure 3.3.
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Figure 3.3: Abstract Client Pattern to prevent cyclic dependcies

In this case, the behaviour trees make use of what we term a MemoryModule abstract
class, and this leads to modularizing the behaviour trees, making them reusable for any other
application that may require it, and not being restricted just for the DEFCON API. An entirely
seperate application, or game, which wanted to make use of the behavior trees would simply
need to expose its game interface(i.e. via an API) as a derived class of the MemoryModule
abstract class. After which, the application’s methods and tasks would be encapsulated within
TaskNodes specific to itself.

3.2 Encoding DEFCON

3.2.1 Goal-Directed Reasoning

To design the behaviour trees for our AI-bot, we employed the Behaviour-Oriented Design
methodology introduced in chapter 2(section 2.3). We outline how the approach was applied to
behaviour trees in our AI-bot development, detailing the design process for both the topology
of the behaviour trees and the leaf task nodes that were used.

Designing the behaviour trees

The first thing to identify is the top-most goal that we want to achieve for our AI. Quite simply
put, this top most goal would be to Win the Game. We then identify what are the sequences
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or groups of actions that this top level goal can be decomposed into, before recursively breaking
down these subgoals down to primitive tasks such as Actions and Conditions.

This is an example of Goal-Directed Reasoning – we identify both a target goal state and
the set of moves that might generate this goal state. The process is repeated for all predecessor
states until the initial state is reached.

In Figure 3.4, we have identified our top most goal of our behaviour tree to be, as we
mentioned, Win the Game. This is decomposed into 5 sub-goals which are named DEFCON
5 to DEFCON 1. What this means is that, in order to achieve the top level goal of Win the
Game, we have to essentially Behave Optimally in DEFCON 5, Behave Optimally in DEFCON
4, ... and so on. This covers the first 2 steps of the initial decomposition process introduced
in Section 2.3.1. Note that we group these set of DEFCON goals with a Selector node rather
than a Sequence node, because we want the AI to choose the associated DEFCON plan for
each DEFCON state the game is in. Using a Sequence would make the behaviour tree fail once
the game has proceeded to DEFCON 4, and is not the correct behavior we wish to exhibit.

Figure 3.4: The Goal-Oriented behaviour tree with its initial decomposition

Looking at these sub-goals, we identify the need for a sensor primitive, or in behaviour tree
terms, a Condition task node, that performs a conditional check of the current DEFCON state
of the game. From here, we group these different sub-goals by registering them with lookup
tables used to group and modularize the behaviour trees into a hierarchy. We may then choose
to use Lookup Decorators to locate these trees to enable reusability. This covers steps 3 and
4 of the initial decomposition process (from section 2.3.1). Figure 3.5 shows the original tree,
now including the Condition nodes for each branch, as well as how they might be grouped into
a lookup table. Thc collection of lookup tables form the behavior library.

Finally, as we mentioned, the use of Selectors was required to accomplish steps 5 and 6.
Priorities are assigned to each branch corresponding to each DEFCON state, and we assign a
higher priority to DEFCON 5 and continue in a decreasing order towards DEFCON 1, since
at the start, we always begin in DEFCON 5. This concludes the initial decomposition of the
task Win the Game.
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Figure 3.5: Each sub-goal introduces a set of primitives and other subgoals

Subsequent Iterations

With the completion of the initial decomposition, we test to ensure that all new introduced
nodes are working correctly before moving on to the next phase of the iteration. A similar
process is then replicated for each subgoal, decomposing the task further into subtasks until
we reach a point when further decomposition is no longer permissible, which in the case of
behaviour trees, is when we have reached the leaves of the tree where only primitive task nodes
exist. We now present the complete behavior tree of one of the branches, namely DEFCON
5.

Figure 3.6: Complete behaviour tree for Task: DEFCON5

Figure 3.6 below shows the complete behavior tree for the DEFCON5 task. As we can see,
the entire task consist of a sequence of actions. First, it checks whether the current DEFCON
state of the game is DEFCON 5 using Condition IsDEFCON(5). Next, it picks a structure
type to place within the game world, leaving the choice randomly to the Selector Build a
Structure. This task is broken down into 3 sub-tasks – to place a silo, to place a radar and
to place an air-base.

In order to place a structure, what involved is a Sequence first checking if there exist any
available structures of the chosen type to be placed with a Condition. Next, it performs as
Action to choose random coordinates to place the structure. Finally, upon picking the location,
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the AI proceeds to place the structure at the designated location with yet another Action.

During the designing of the task DEFCON5, we have identified both the composites re-
quired, but more importantly, the primitive task nodes that are required to be constructed.
These nodes, IsDEFCON, PickLocation and Build Structure at Location were iden-
tified as required primitives - which were then constructed and added into the list of actions
and primitives for the entire AI. This process was repeated for each of the DEFCON tasks, and
resulted in a cumulatively constructed library of primitive Actions and Conditions.

3.2.2 Reactive Planning in DEFCON

By adopting a goal-directed, behavior-oriented approach to the designing of our behaviour
trees, we now present how the application of reactive planning ( discussed in Section 2.3.2 )
was used to allow the developed bot to perform dynamic planning in order to exhibit different
behaviors at appropriate times in a simple, modular manner. We shall present an example of
one of the behaviour trees which was used to dictate the attacking behavior of the submarines
used during the game. Figure 3.7 below is a sub-tree taken from one of the final behavior trees
used in our final bot implementation.

Figure 3.7: Reactive Planning to Coordinate Submarine Attacks

From this we can see that, our top most goal is to attack an enemy structure. We achieve
that by a Sequence consisting of two sub-goals. First, we have to choose whether to attack
a City or a Silo. Secondly, after making our choice, we proceed to try to attack it, shown in
the right hand sub-tree of the figure. However, because the MRBMs carried by the Submarines
have limited range, there is a possibility that despite picking a target, we will not be able to
select the target to attack due to it being out of range. The condition node TargetInRange

checks this. So, in order to achieve our goal, we might have to move our unit nearer the chosen
target structure from our current position.

This behavior is possibly due to the PrioritySelector used in the right sub-tree, and be-
cause of such a prioritisation of actions, we demonstrate that this resembles the Basic Reac-
tive Planning paradigm (introduced in section 2.3.2), since the action with the lower priority
(Moving Submarine Closer) , aids in allowing the action with the higher priority (Attack the
Target) to be able to succeed and achieve the overall goal of attacking an enemy structure. We
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apply this form of reactive planning in various portions of our completed behaviour trees, as
we will cover in Chapter 4(section 4.1).

3.2.3 Implementing the Leaf Task Nodes

We shall now focus on the leaves of the trees which were presented which are the concrete imple-
mentations of the basic behaviour tree primitives - Actions & Conditions. We reference the
tree in Figure 3.6, and using the node IsDefcon to describe how the tree node interfaces with
the DEFCON API, it will become clear how the rest of the nodes were similarly implemented.
Listing 3.1 exhibits the implementation of the corresponding Condition node. We have two
local variables, namely the MemoryModule and the textttDefconLevel in lines 5-6. The memory
module contains all the game related state information, and more importantly, the pointer to
the game API m Game, seen to be initalised in line 18.

1
2 class I sDefcon : public Condit ion
3 {
4 private :
5 DefconMemory∗ MemoryModule ;
6 Funct∗ Game;
7 stat ic s t r i n g CONDITION NODE TYPE;
8
9 int DefconLevel ;

10
11 public :
12 IsDefcon ( DefconMemory∗ module , int d e f c o n l e v e l )
13 virtual Status Run ( ) ;
14 } ;
15
16 Status IsDefcon : : Run( )
17 {
18 Game = MemoryModule−>m Game ;
19
20 Status s t a t u s = STA FAILED ;
21
22 i f ( Game−>GetDefcon ( ) == DefconLevel )
23 {
24 s t a t u s = STA COMPLETED;
25 }
26 return s t a t u s ;
27 }

Listing 3.1: Code Implementation of IsDefcon

Upon invocation of the Run() method on the Task Node, the node performs an API call in
line 22, to query the actual state of the game via the API. After this, it compares the actual
in-game DEFCON level to the variable in question, namely DefconLevel, and then returns
whether the node has Succeeded or Failed. This shows how each node in the behaviour tree
encapsulates the API calls within itself, and also allows internal computation or processing
prior to returning whether a node has Succeeded or not - an example of latent computation.

The remaining leaf nodes that were implemented follow a simple pattern of construction.
Each node is a class containing a reference to the game via its MemoryModule variable. Then, it
possesses a set of local variables which it requires for its computation. For example, for placing
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a unit, the node for the Action - PlaceStructure would require the type of structure that
it will attempt to place in game when its Run() function is invoked during the execution of its
corresponding behaviour tree.

3.3 Evolutionary Approach

The behaviour trees resulting from the initial phase of design was capable of playing the game of
DEFCON automatically. However, we will soon see that the resulting bot did not play optimally
(Section 5.2), and was not, in our definition, a competitive player. In order to achieve our goal
of attaining a competitive bot, we employed the use of Genetic Programming(Section 2.4) to
our resulting behaviour trees, with the intention of evolving the bot into a more competitive
player. As we will demonstrate in our evaluation in Chapter 7, this approach was indeed feasible
in achieving this.

We now outline the application of genetic programming to behaviour trees as a general
approach in this section. The general idea is to have an initial population of games played by
the Random bot, collect the information of decisions that the AI made throughout the course
of the game, pick the behaviour trees of those games which the bot performed well in, and
use them for the next generation of runs by the application of genetic operators. Behaviour
trees are suited for this approach because, as we will show, its tree structure allows genetic
operators to be performed on them suitably. Also, the trees can be explicitly viewed in order to
determine how exactly the AI behaved in a given game - making an analysis of how its behavior
and performance are co-related easier.

3.3.1 Genetic Operators

We now demonstrate how genetic operators (Section 2.4.4) are applied on behaviour trees. We
consider the sub-tree of the tree PlaceStructures involving the placement of Silos. For the
purpose of this explanation, all Action nodes are assumed to be PlaceSilo(x,y) nodes, where
the arguments are labelled at each node.

Recombination

Figure 3.8 is an example of single-point crossover, where the dashed lines on the parent trees
identify the point at which the recombination occured. From the diagram, it is clear to see that
each offspring has a mixture of nodes from their parents. Figure 3.9 shows offsprings generated
when two-point crossover was used. In this diagram, recombination occurs at two points,
resulting in a greater mixture of nodes being passed from parent to offsprings. Figure 3.10
illustrates uniform crossover, where the nodes are combined uniformly from the two parents.
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Figure 3.8: Single-Point Crossover

Figure 3.9: Two-Point Crossover

Figure 3.10: Uniform Crossover
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Mutation

Mutations are employed to produce unpredictable random changes in individuals, modifying
its attributes, so as to allow the individual to vary across generations. In this case, mutations
can be useful to reintroduce placement coordinates that might have been lost due to being part
of an unfavourable individual early in the evolution process. Mutations are also a good way
to prevent against a local convergence, which tends to happen in small populations which very
quickly become saturated with individuals that are locally optimal. Once again, a mutation
rate would determine that percentage of the population of individuals that would be mutated.

(a) Mutation by inserting new values

(b) Mutation by modifying existing values

Figure 3.11: Mutations in Action nodes of behaviour tree

Figure 3.11 demonstrates mutation occuring for a node in the behavior tree. The coordinate
values might be entirely regenerated, or perhaps, modified slightly. Figures 3.11(a) and 3.11(b)
illustrate this respectively.

3.3.2 Fitness Function

As we will cover later in our experiments in chapter 5, we identify different aspects of the AI-
bot’s game-play which we wanted to improve. The notion of how well the bot performs during
each game corresponds to the fitness of the bot in each of those game-play aspects. A natural
inclination would be to simply use whether the bot won or lost as a measure of fitness for each
of the identified areas of which we identified or improvement. However, the reason why we do
not employ this shared fitness function is due to the fact that by decomposing the bot into
the areas of improvements, the fitness measure of “winning the game” may be too distant a
measure to appropriately quantify the fitness of the AI bot’s behavior.

We would want to disable the portion of the behaviour tree which begins launching attacks,
since we are merely interested in its defence potential. The chances of winning the game would
be virtually zero in this case since the AI would not be attempting to attack at all. A different
approach could then be proposed - in which all the behaviour trees of the AI are activated.
In this case, even though a measure of “winning the game” would be appropriate, there are
certain points to consider, including:
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• A large population size would be required

• To reach an optimal solution, a large amount of time would be required as the number of
generations would predictably be larger

In our approach, we have thus decided to evolve portions of the behaviour trees used for each
of the identified areas of improvements. We will then attempt to combine these trees together,
with the intention that by performing well in these each individual portions, the overall play
of the AI would be improved.

3.4 Summary

We have covered the system design of our behaviour tree implementation which we used, outlin-
ing how the it allowed the behaviour trees to work with the DEFCON API for the development
of our AI-bot. We then outlined the approach that was undertaken in the designing of the
behaviour trees which were required by our AI-bot, using a combination of goal-directed rea-
soning and reactive planning. We then covered how evolutionary genetic operators could be
applied to such behaviour trees. In the following chapter, we make use of the design choices to
implement our AI-bot.
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Chapter 4

Implementation

With the design of the system and its components covered in the previous chapter, in this
chapter, we describe the implementation details undertaken for the development of our AI-
bot. We present the completed set of hand-crafted behaviour trees and task nodes AI-bot in
section 4.1, and how we made use of the eXtensible Markup Language (XML) format to store
these behavior trees. Next, the implementation considerations of applying evolution to the
resulting behaviour trees are covered in Section 4.2, covering an example of how a tree might
be automatically generated. Finally, we introduce our distributed system which was used to
divide the workload of running the DEFCON games over multiple computers in Section 4.3.
This was required to reduce the computation time required to evolve the AI-bot.

4.1 Behaviour trees for DEFCON

By application of the BOD and goal-directed design process, we were able to eventually develop
and produce a set of behaviour trees that were sufficient to act as an automated player for
DEFCON. In summary, our final implementation consisted of:

• 10 behaviour trees

• 20 DEFCON Tasks - categorised into

– 10 Action Task Nodes

– 7 Condition Task Nodes

– 3 Decorator Task Nodes

The resulting set of behaviour trees, together with the task nodes, allowed us to modularise
the behavior of the AI into discrete goal-directed components, which enabled us to engage the
process of evolution on them in a simple manner. This meant that we were able to disconnect the
portions or subset of behaviour trees that were not required for a particular set of experiments
in order to have a controlled experiment. We shall present, over the following sub-sections, the
final set of behaviour trees and Task Nodes that were developed and the method of storage for
the behaviour trees.
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4.1.1 Completed Set of Behaviour Trees

• PlaceStructures: Responsible for the placement of silos, radars and airbases

• PlaceFleets: Responsible for the placement of fleets.

• MoveFleets: Responsible for the movement of placed fleets to a target destination

• CarrierAttack: Responsible for switching carriers to bomber launch mode and attacking
the enemy at a specific time

• AirBaseDefence: Responsible for sending fighters to scout random locations or attack
any enemy that is within radar coverage

• AirBaseAttack: Responsible for switching airbases to bomber launch mode and attacking
the enemy at a specific time

• SubDefence: Responsible for switching the submarine units to active sonar mode

• SubAttack: Responsible for switching submarine units to launch mode and attacking the
enemy using nukes at a specific time

• SiloNukeLaunch: Responsible for switching silos to launch mode and attacking the enemy
using nukes at a specific time

We shall now go through in detail how the SiloNukeLaunch behaviour tree was imple-
mented. The rest of the behaviour trees, including similar explanations can be found in page 97
of the Appendix. Figure 4.1 shows the behaviour tree used to allow the AI-bot to switch to
launch mode and attack the enemy with its silos. Looking at the root of this behaviour tree, it
consists of a sequence with two child nodes. The first checks if the current time corresponds
to to the AI-bot’s SILONUKETIME, a specific timing which the AI-bot uses to denote the time
to launch an attack. We shall cover in Section 5.2.5 of Chapter 5 that this was a time which
we attempted to evolve in order to improve the AI-bot’s performance.

If the time within the game is less than the time specified in the IsTime node, then the
behaviour tree fails and no further action is taken. If the game time is greater than, or equals
to, the specified time, then the behaviour tree proceeds on to the second sequence node. It
checks that the AI-bot does possess a silo, and then selects one of its silo units if it does. The
next step invloves a priority selector. It first check the left node (since by our convention,
the priority of the children in a priority selector diagram decreases from left to right), and
proceeds to check if the silo which it selected is in launch mode. If it isn’t, the left hand tree of
the priority selector fails and the right branch is then run. The AI-bot will now perform
the action of setting the state of the silo to its launch mode.

Supposing that the silo was already in launch mode, allowing the condition node to succeed,
then following that, the AI-bot would choose an enemy city and select it as a target for a nuke
attack. The pattern exhibited by the priority selector is another example of a basic reactive
plan (Section 2.3.2).
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Figure 4.1: Behavior Tree: SiloNukeLaunch

4.1.2 Completed Set of Task Nodes

Actions

• BuildFleet: Builds a Fleet of a certain composition and at a specified location

• ChooseTargetofType: Randomly picks an enemy unit of specified type as the active
target

• MoveUnit: Moves a fleet unit to a target location

• PickFleetComposition: Picks a fleet composition of a specified fleet unit type and
saves it in memory

• PickCoordinates: Picks random longitude and latitude coordinates and saves it in
memory

• ChooseTargetofType: Picks at random an enemy unit of a specified type

• PlaceStructure: Builds a structure of specified type at a specified location

• SelectOwnFleet: Selects a fleet belonging to the AI player

• SelectOwnUnit: Selects a unit belonging to the AI player

• SelectTarget: Selects specified target unit as an active target

• SetState: Sets the state of specified unit to a specified state
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Conditions

• CurrentState: Returns successfully if the current unit is in the specified state. Fails
otherwise.

• HaveUnit: Returns successfully if AI-bot posseses specified unit. Fails otherwise.

• IsDefcon: Returns successfully if current DEFCON level in-game is the same as the
specified DEFCON level. Fails otherwise.

• IsTime: Returns successfully if current game time(in seconds) is the same as the specified
time. Fails otherwise.

• StateCount: Returns successfully if the number of activations in the specified unit’s
target state is at least the specified number. Fails otherwise.

• TargetInRange: Returns Successful if the specified target is within attack range of
specified unit. Fails otherwise.

• UnitsAvailable: Returns Successful if the AI-bot has the specified number of ground
installation units to be placed. Fails otherwise.

Decorators

• Counter: Runs child Behavior Tree the specified number of times.

• Timer: Runs child Behavior Tree if in-game time is greater or equals to specified time.

4.1.3 Storage & Retrieval

Saving from behaviour trees to XML

In order to load and save constructed behaviour trees, we used eXtensible Markup Lan-
guage(XML) files to encode the information of the behaviour trees used, due to its suitability
for encoding nested structures such as trees.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>

2 <Behavior>

3 <Sequence>

4 <IsTime invokeTime=” 0 .0 ” enumTime=”DTIME NukeLaunch” timeFromMem=” true ”> />

5 <Sequence>

6 <HaveUnit type=”TypeSilo ”></HaveUnit>

7 <SelectOwnUnit type=”TypeSilo ”></SelectOwnUnit>

8 <Pr i o r i t y S e l e c t o r>

9 <Sequence p r i o r i t y=”10”>

10 <CurrentState s t a t e=”STATE SILONUKE” fromMem=” true ”></CurrentState>

11 <Se l e c t o r>

12 <Sequence>

13 <ChooseTargetOfType type=”TypeCity”></ChooseTargetOfType>

14 <Se l ec tTarge t type=”TARGET UNIT” coordsFromMem=” f a l s e ”

15 unitFromMem=” true ” fromMem=” true ”></ Se l ec tTarget>

16 </Sequence>

17 </ S e l e c t o r>

18 </Sequence>

19 <SetState s t a t e=”STATE SILONUKE” p r i o r i t y=”2” fromMem=” true ”></ SetState>

20 </ P r i o r i t y S e l e c t o r>

21 </Sequence>

22 </Sequence>

23 </Behavior>

Listing 4.1: XML File for Behavior Tree of SiloNukeLaunch
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Listing 4.1 above shows an example of an XML file used to encode the tree for SiloNuke-
Launch. As a convention, each behavior tree is encoded between the tags <Behavior></Behavior>.
Each type of Behavior Tree node, whether composite or simple, is encoded as an XML entity,
with its arguments and parameters as attributes. Some additional attributes, such as fromMem,
timeFromMem and coordsFromMem are used to indicate if the values are to be read explicitly
from the behaviour trees, or if the value should be read from the Memory Module.

To illustrate its meaning, consider the ChooseTargetOfType entity and SelectTarget en-
tity on lines 13 and 14 respectively. What the former does is to query the game state for any
target enemy city. If successful, the AI-bot requires some way of remembering which enemy
city it had picked and this is done by storing the information in its memory. On execution of
SelectTarget on line 14, note that unitFromMem has been set to “true”. Thus, there is no
need to specifically state which unit has to be targeted in this particular node and instead, the
Behavior Tree AI understands that the enemy unit it should be targeting should have already
been saved in memory prior to the execution of the current node. Because the entire action
of choosing an enemy unit and then actively targeting it is constructed as a Sequence, the
Behavior Tree implicitly asserts that a unit would have been selected before being targeted and
attacked. Failing which, the execution would have ended after the ChooseTargetOfType node
had failed.

Loading from XML to behaviour trees

In reverse, the process of loading a Behavior Tree from its corresponding XML file consists of a
recursive method invoked when building the AI at the beginning when DEFCON is launched.
This method, BuildAndLink is illustrated below.

Algorithm 2 Method BuildAndLink

Require: INPUT : XML root
1: root node⇐ BuildNodeFromXML(XML root)
2:
3: for each child element XML child of XML root do
4: {Recursively call method on child}
5: child node = BuildAndLink(XML child)
6: child node.parent = root node
7: root node.child = child node
8: end for
9: return root node
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4.2 Evolution System Implementation

In this section, we cover implementation details pertaining to the data collection and evolution
process in order to perform the evolution of behaviour trees.

4.2.1 Data Extraction

In order to keep track of the performance of our AI bot, we needed to be able to keep trace of
the state of a DEFCON game, providing information on game objects like units being created
or destroyed. We made use of both the Update() and CreateEvent() methods corresponding
to the in-game updates and event system respectively.

Game Update Ticks

In DEFCON, the game engine performs game update ticks at regular intervals, and at each of
these ticks, the state information on all objects within the game is updated. The engine then
proceeds to render all the game related objects based on the information computed from the
last tick. As such, our AI-bot’s perception of the game state had to be updated whenever such
ticks occur, which corresponds together with the Update() method of the API.

The three main updates to the AI bot is as follows,

• UpdateUnits, used to

– Keep track of units that were placed by our AI

– Keep track of enemy units that become visible within our radar coverage

• UpdateFleets, maintains information regarding

– Updated fleet positions

– Updated fleet compositions

– Updated fleet active targets

• UpdateEnemyCities, used to

– Keep an updated list of enemy cities

Some information, such as enemy units being destroyed, were not suited to be collected dur-
ing the game update because the removal of units visible during an update tick can correspond
to an enemy unit simply being out of Radar coverage or an enemy unit being destroyed. An
elegant solution to this problem was to make use the event system, as described next.

API Event System

The API event system allows us to keep track of in-game events such as when units are destroyed
or hit, or when a launch is detected. A full list of the type of events that can be tracked is in
page 95 of the Appendix.
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1 void Bot : : AddEvent ( int eventType , int causeId , int t a r g e t Id ,
2 int unitType , f loat l ong i tude , f loat l a t i t u d e )
3 {
4 s t r i n g sEventType = GetEventString ( eventType ) ;
5 int unitType = m game−>GetType ( t a r g e t I d ) ;
6 s t r i n g sUnitType = GetEnumString ( unitType ) ;
7 int causeType = m game−>GetType ( cause Id ) ;
8 s t r i n g sCauseType = GetEnumString ( causeType ) ;
9 int targetTeamId = m game−>GetTeamId ( t a r g e t I d ) ;

10 int causeTeamId = m game−>GetTeamId ( cause Id ) ;
11 |

Listing 4.2: CreateEvent method in the API

Listing 4.2 above shows the method CreateEvent within the API. The types used for the
event system differ differently to those used within the API, and as such, lines 4-10 includes
the code that was included to combined the API method calls together with the event system
to collect the required information from each game. The three main events that we needed to
keep track of were as follows:

• EventNukeLaunchSilo: To identify an enemy Silo structure that was not within our radar
coverage and add it to the list of viewable objects.

• EventNukeLaunchSub: To identify an enemy Submarine that was not within our Radar
coverage and add it to the list of viewable objects.

• EventDestroyed: To keep a counter of units belonging to both our AI and the enemy, in
order make use of the information for our fitness functions.

4.2.2 Behavior Tree Evolution Example

Figure 4.2: Two behaviour trees prior to recombination

We will cover an example of how the behaviour trees might be evolved. Figure 4.2 shows
two behaviour trees which are responsible with the same goal – the placement of fleet units.
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Using the left behaviour tree as a reference, what occurs is a sequence that first checks if the
current DEFCON level is 4, and then proceeds to the priority selector if it is so. The priorities
of each child node in the priority selector follows our convention of decreasing from left to
right, and as such, the behaviour will attempt to place fleet units of the specified compositions
at each of the specified locations once. Looking at the left most action node, it will attempt
to place a fleet composed of 3 carriers and 3 battleships at longitude 24.0 and latitude 31.9.
The parent counter decorator ensures that the action is only executed once. We also denote
the absence of a fleet unite type with a dash “-” character.

Figure 4.3: The same behaviour trees, with branches selected for recombination

Assuming that the two behaviour trees were part of the same population, and were selected
for recombination. Figure 4.3 illustrates the two branches that were from each of the behaviour
trees. A recombination occurs between the trees, causing the selected portions of the trees to
cross-over. Figure 4.4 shows one of the resulting offspring from this recombination process.
Do note that now, instead of placing a second fleet at (22.0,-10.8) with a composition of 4
submarines as it did in Figure 4.2, now it places a second fleet at (7.90,12.2) with a composition
of 6 submarines.

Figure 4.4: One of the offspring from the recombination between the two parent behaviour
trees.

Suppose that the evolved behaviour tree from Figure 4.4 was selected for mutation during
the next evolution stage of the subsequent generation. Figure 4.5 illustrates how incremental
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Figure 4.5: An incremental mutation occuring in one of the behaviour trees

mutation could occur to the behaviour tree, resulsting in a different topology. Instead of placing
4 fleet units, the behaviour tree will now cause the AI-bot to place 5 fleet units. The longitude,
latitude and fleet compositions used for the new branch (highlighted in green) were generated
randomly during this mutation process.

Figure 4.6: Two compositions selected for recombination from parent behaviour trees

Finally, we consider a different example of how recombination could have been applied
to the two behaviour trees from Figure 4.2. Consider the scenario where recombination was
applied to the PlaceFleet nodes in such a way that a crossover of fleet compositions would
occur. Figure 4.6 illustrates the two nodes whose fleet compositions have been selected for
recombination. A cross over between the fleet compositions might then occur in the manner
illustrated in Figure 4.7. Figure 4.8 shows the offspring behaviour trees after the recombination.
The fourth fleet placed by the behaviour tree will be at the same location, but will consist of
a different composition this time.
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Figure 4.7: The recombination of fleet compositions

Figure 4.8: Resulting offspring behaviour trees after fleet composition

4.3 Distributed Processing and Parallelisation

• We have to repeat the process for all 4 areas of improvements

• 100 generations of 100 games may not be sufficient to reach an optimum performance

• With 6 possible starting locations and 5 corresponding enemy positions, we have to repeat
it 30 times to allow the bot to play in every position optimally

In this section, we will outline the method used to distribute the computation over more
than just 1 computer, in order to reduce the amount of computation time required to evolve
the system.

4.3.1 Overview

We identify two main components of the system,

• The Server, responsible for combining the results from each client, performing the evolu-
tion of the behaviour trees and dividing the evolved trees for each subsequent generation
for the clients. The server resides on a shared folder accessible by all the clients.

• The Client, responsible with running the individual games of DEFCON using the be-
haviour trees received from the server. After which, the results from each game are
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collected and sent to the server for the evolution process. Each client resides on a single
workstation, each with access to the shared directory of which the server resides.

4.3.2 Client

Each client computer consists of a working copy of DEFCON, a set of behaviour trees for which
the AI-bot is to run. The results at the end of the game are recorded by the client before being
sent to the server.The client then waits and continues to poll the server’s shared space for a
unique file containing the next set of behaviour trees to run. Upon detecting that the file exists,
it moves it from the shared folder into its own computer and begins the runs of DEFCON. This
is illustrated by the pseudo-code in Listing 4.3

In i t i a l i s e NumberOfRuns

: Running
for ( 1 to NumberOfRuns )

Run DEFCON
Save to Resu l t s Log

Tag Resu l t s Log with Cl i en t number N
Send Resu l t s Log to Server ’ s Shared Folder

:Wait
while ( next set o f t r e e s not yet a v a i l a b l e )

wait

Copy next set o f t r e e s from Server ’ s Shared Folder

GOTO Running

Listing 4.3: Pseudocode for Client N

4.3.3 Server

The Server resides on a shared space accessible by all the clients. The reason for this is to
allow the merging of the results from each of the clients into a single file, following which, the
performance of each tree is measured and the next generation of trees is evolved. The server
keeps track of the number of clients it has, and divides the trees evenly between the clients and
tags them with each Client’s unique number. The divided files are left on the shared folder and
await retrieval from each of the client’s. This method highlights the fact that the server does not
keep track of the location of each individual client. The reason for this is to make the server’s
role as independent from the clients’ as possible, allowing us to replace client workstations as
we needed, especially in the cases when some of them had faults.The pseudo-code in Listing
4.4 below outlines the Server process in more detail.
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set c u r r e n t g e n e r a t i o n
set max generat ions
set n u m b e r o f c l i e n t s

: AWAIT CLIENT FILES
while ( c u r r e n t g e n e r a t i o n < max generat ion )

for ( i : { 1 . . n u m b e r o f c l i e n t s } )
i f ( p a r t i does not e x i s t )

wait

merge the par t s i n to combined r e s u l t s

evo lve the next gene ra t i on o f t r e e s

s p l i t the new genera t i on in to numb er o f c l i en t par t s

c u r r e n t g e n e r a t i o n++

GOTO AWAIT CLIENT FILES

:END

Listing 4.4: Pseudocode for Server

4.3.4 Redundancy

In our proposed distributed system, the workload of running the games and collecting the
results have been placed on the individual client computers, while the combining, evolving and
dividing of the results are left to the server. In such an approach, there is a need for some form
of redundancy or error handling in the event of a workstation crash or a single run of DEFCON
failing.

Workstation Crashes or Reboots

As mentioned earlier, we have separated the roles of the Clients and the Server and as such,
in the event of a workstation crashing, we merely need to run the Client process on a new
workstation while the failing workstation reboots. It is easy to identify which workstation has
failed by looking at the part which the server is still waiting for.

Individual DEFCON runs

On certain occasions, a game of DEFCON might experience errors, resulting in the failure to
give the output of results for a particular behavior tree. This would cause the population size
of a particular generation to decrease, requiring us to take some form of action to enable us to
perform the evolution of the results for its subsequent generation.

Two approaches can be used in order to resolve this situation,namely:
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1. Take an average of available results to estimate results for any failed run

2. Fill in results of failed runs with a set of back-up results, produced by:

• Generating a second set of the current generation’s population

• Run a small number of games

• Use results from this back up set to replace failed runs

The second approach was implemented in our approach, used in conjunction with the ex-
isting client and server system. By implementing such error control and backup measures, we
were able to automate as much of the evolution process as possible, allowing us to leave the
workstations to work autonomously, without the need of a person to manually perform the
tasks required for each run.

4.3.5 Scalability

The system consists of scripts that are theoretically scalable to up to any number required,
limited only by the population size in each generation. For example, with a population size of
100, this system is scalable up to 102 workstations, one for each run of DEFCON, the Server
and the Backup machine.As we will cover in the section on the experimental setup in Chapter
5, the system was tested on a total of 20 Client Computers, 1 Server and 1 Backup workstation.

4.4 Summary

In this chapter, we have used the design choices from Chapter 3 to implement the hand-crated
behaviour trees that were required for our AI-bot. We presented the complete set of behaviour
trees and leaf task nodes that were developed and outlined how we used XML files to store
these behaviour trees. We outlined the implementation of the evolution system used to evolve
the behaviour trees, showing how the game state information was retrieved from the API via
two method calls. An example of how a behaviour tree was evolved was presented, showing how
the a resultant tree was automatically generated after the application of genetic operators and
selection. Finally, we outlined the distributed system which was used in order to perform the
multiple runs required for the evolution process. In the next chapter, we cover the experimental
design used to evolve various aspects of our AI-bot.

59



Chapter 5

Experimental Design

In this chapter, we cover the experimental set up which we employed to perform the evolution
of the bot. We first provide information about resources that were used, including computer
specifications and in-game options that were set for the purpose of our experiments. These
are all covered in 5.1. We then cover the main experiments that were performed, with the
purpose of improving our AI bot, in Section 5.2. We detail the areas of which the AI bot was
evolved, identifying appropriate fitness functions that were used in order to measure the AI-bot’s
performance as it evolved. The results and graphs that were obtained from the experiments
outlined in this chapter are provided in Chapter 6. An analysis into the significance of the
results of the experiments are then covered in Chapter 7.

5.1 Setup

5.1.1 Game Options

We made use of Introversion Software’s DEFCON ( Demo v1.43 ) together with API ( v1.56
beta ). The API was continuously revised, beginning at version v1.51, with input from this
project. Figure 5.1 shows the main lobby screen highlighting the main game options used for
the experiments.

We chose the following game options:

1. The opponent’s starting position was fixed as South America

2. Our bot’s starting position was fixed as Africa

3. Debug mode was turned off

4. Bot information was turned to Full

5. Default Game and Scoring mode was used

6. API command line parameters (not shown in figure) which were used included

• fastserveradvance: Used to reduce the amount of time between ticks

• norender: Turns off rendering of game objects
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Figure 5.1: Experimental Setup

These options may be set automatically by inserting them as command line parameters
when running the DEFCON executable that is provided with the API. A full list of commands
are listed in page 96 of the Appendix.

5.1.2 Distribution

We distributed the running of DEFCON games over 20 computers, connected together via
the department’s Local Area Network. Each of these computers ran our client scripts used to
regulate the number of games that ran. In this case, with our proposed population size of a
hundred individuals, each computer ran 5 games.

We used a separate computer, with similar specifications, to act as the server. This computer
was responsible for the storage and merging of the results from the client computers. A final
computer was used to run the back-up games to cope with games that failed to run or crashes.

5.1.3 Computer Specifications

The specifications of each computer that our experiment was run on is as follows,

• Operating System: Microsoft Windows Vista Business (SP1)

• Processor: Intel Pentium 4 3.60 GHz

• Memory: 1.00 GB

• Graphics Card: nVidia GeForce 7600 GS
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5.2 Experiments

5.2.1 Introduction

The Problem

The constructed Behavior Trees from the previous section resulted in an AI player that is
capable of playing the entire game of DEFCON, making moves and decisions such as placing
units, moving units and selecting enemy targets - although its choices are based on random
choices and calculations rather than informed decision.

Figure 5.2: Performance of Random bot

From the graph in Figure 5.2, the prototype bot performs relatively poorly. There are
several reasons for this,

• The placement of land structures are not maximising the player;s ability to do well.
Specifically:

– Silos are being destroyed easily by enemy units, preventing them from providing
defence against air attacks and also preventing the AI from launching LRBMs for
its offensive attack.

– Radar stations placed do not maximise the area of coverage, making the AI unable
to detect enemy units in time.

– The AI is not placing the maximum number of units it is able to, putting itself at a
disadvantage by not maximising its resources

• Fleet units are moving to random positions on the map so that:

– Battleships are unable to attack enemy sea units sufficiently

– Carriers are not close enough to the enemy territory to send fighters to scout and
uncover more enemy units

– Submarines are too far away from enemy buildings to launch an attack

• The timings of the attacks are randomly assigned, thus reducing the chance of a coordi-
nated attack to be able to inflict maximum damage to the enemy.
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Identified Areas to Improve

With the identification of shortfalls in the AI-bot above, we we identified the 4 key areas which
we wanted to improve upon, namely:

1. Placement of silos to maximise its defence against enemy air units

2. Placement of radar Stations to maximise the number of enemy units spotted throughout
the course of the game

3. The placement and subsequent movement of the player’s fleet units, with the intention of
improving:

• The number of enemy sea units destroyed

• The number of enemy buildings destroyed

• The number of cities attacked, and populations destroyed

4. The timings of the attacks for the 4 main offensives, namely:

• Submarine attacks using MRBMs

• Bomber attacks from Carriers using SRBMs

• Bomberattacks from Air Bases using SRBMs

• Silo attacks using LRBMs

As such, we performed four main evolution experiments with the following common properties,

• The population size of games was 100

• The selection ratio was 0.5

• The recombination rate was 0.5

• The mutation rate was 0.05

In each experiment, the number of generations varied between 80 and 250. The numbers
outlined in this section were values deemed practical for the experiments which were required,
given the resource and time constraints of this project. Ultimately, the obtained results were
sufficient to perform an analysis of the performance of the evolved bot, in addition to fulfilling
the objectives set out at the beginning of obtaining a competitive bot.
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5.2.2 Silo Placement

Figure 5.3: Silo Placement, Defence and Attack

Silos are ground installations which play a significant role in both attack and defence. When
in Air-Defence Mode, silos actively shoot down enemy air units and try to limit the damage on
the player’s city populations and units. In Launch Mode, silos provide the heaviest firepower
for attacking enemy units and city populations. Its effectiveness at both defence and attack is
dictated not only by each individual silo’s absolute position, but also their positions relative to
one another. With such a significant role, we are interested in obtaining placement positions
that would maximise their collective effectiveness. We have chosen to focus on the defensive
aspect of the Silos.

Fitness Function: Defence Potential

In order to measure how well a certain position system worked, we define the defence potential
of a position by the total number of air units that were successfully destroyed for a given game.
These air units consist of

• Enemy Nukes

• Enemy Fighters

• Enemy Bombers

Thus, a behavior tree driven bot placing Silos in a certain position is deemed fitter than
another if its defence potential is higher - meaning that a greater number of air units were
destroyed.

Evolution Area: Placement Positions

For each run, we keep track of the positions that each of the silos were placed in. The genetic
operators are used to recombine the positions, mixing the positions which one Behavior Tree
had with that of another in order to produce the next generation’s set of placement positions.
For the initial run, the placement position for each Silo were assigned randomly.
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Figure 5.4: Radar Placement & Coverage

5.2.3 Radar Placement

While radars do not have a direct influence on a player’s attack or defensive abilities, they
provide an indirect means of support by uncovering enemy units. This allows the AI player to
then react appropriately to the situation, for example, by sending fighters to enemy sea units
or to be able to shoot down nukes earlier. In Figure 5.4 above, we exhibit that coverage of the
Radars are determined by their positions. An investigation into a good positioning system for
the Radars is thus the focus of this set of runs.

Fitness Function: Uncovered Enemies

Uncovered Enemies refer to the enemy sea units, making a total observable number of 36. A
slight difference in the tracking of units is that we only observe the total number of units seen
before the start of DEFCON1. The reason to allow ample time for retaliation by our AI-bot
to react and behave after detecting the enemy units. For example, when enemy Submarine
units attack, they surface and become visible, and are added to the total. However, we deemed
this particular type of detection not to be particularly advantageous to our AI-bot. Thus, the
fitness of an individual was taken to be the number of uncovered enemies uncovered before the
start of DEFCON 1.

Evolution Area: Placement Positions

Similar to the silo placements above, we prepare individuals for each subsequent generation
by performing genetic operations on the placement positions of the Radars dictated by the
behavior trees, with the intention of evolving towards an optimal position placement of the
radar stations.
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5.2.4 Fleet Unit Placement & Movement

Figure 5.5: Fleets in DEFCON performing various roles

The fleets in DEFCON differ from ground installations and are more complex to evolve due
to their ability to move around to different sea locations on the map. Thus, we are concerned
not just with the initial positioning of the fleets but also their subsequent movements which
increased the AI’s effectiveness in their abilities to attack, defend or scout enemy territories.
Figure 5.5 above shows from left to right, subs attacking using MRBMS, carriers scouting
enemy territories with Fighters and battleships attacking other enemy units.

We model this complexity by making use of two Behavior Trees - one to designate the
starting positions of the fleets and the other to designate its target position which it intends
to reach. We do not consider explicitly any subsequent movements after a fleet has reached
its target position. This may initially seem to be restrictive of fleet movement behavior, but
as covered in Section 3.2, reactive planning is used to dictate subsequent movements from
an initial target position. Also, as we see in the evaluation presented later, this approach
(Chapter 6, Section 6.3) proved to be sufficiently effective. A final area of consideration involves
the composition of each fleet that was placed. As the fleets in DEFCON allow any combination
of Submarines, Battleships or Carriers, an investigation into the effects of having different fleet
compositions to the AI’s performance was of particular interest.

Fitness Function: Weighted Average

The fitness of each run consisted of evaluating how well the bot performed in 3 areas, namely,

• The number of enemy buildings uncovered

• The number of enemy buildings destroyed

• The number of enemy sea units destroyed

In order to give an overall aggregate value to how well a bot performed based on its results
in each of these three areas, we perform linear normalisation to the result using the following
equation:

scorei =
x− xmin

xmax − xmin

66



Where i here refers to the which area of interest we are evaluating. The min and max values
are also specific to the scenario. For example, supposing that in a game, a total of 2 silos, 5
radars and 1 airbase is destroyed:s, 5 radars and 1 airbase is destroyed:

scoredestroyed buildings =
(2 + 5 + 1)− 0

17− 0
=

8

17
= 0.471

Given that the maximum number of buildings that can be destroyed would be 17 since there
are a total of 6 placed silos, 4 airbases and 7 radar stations. Naturally, the minimum number
destroyed would be if none of them are destroyed. Finally, in order to obtain an aggregated
fitness across the three areas, we calculate the fitness by the following equation,

fitness = 100×
∑

weighti × scorei

We used an equal weighting for each of the scores and made them add up to 1. The resulting
fitness value would thus be between 0 and 100.

Evolution Areas: Locations, Composition & Timings

Similar to both silo and radar placements, we vary the placement and target positions of each
fleet across generations by the use of genetic operators such as recombination and mutation.
Additionally, the genetic operators were applied to the composition of fleets.

5.2.5 Timing & Synchronisation

Finally, we aimed to combine the trees used for the previous 3 sections resulting in a fully
functional bot, for comparison with the original Random bot which we introduced earlier.
Upon combining the trees, one final aspect involved the study of how the timings of the attacks
affect the bots performance in the game. The four key timings involved are

1. Submarine MRBM launch timing

2. Carrier bomber launch timing

3. AirBase bomber launch timing

4. Silo LRBM launch timing

Fitness: Overall Game Performance

By combining the best performing Behavior Trees that perform optimally in their respective
areas, an assessment of how well the bot performs in trying to win the game was appropriate.
We used the difference between the final end-game scores as an indicator of how well the AI-
bot performed. A larger difference would mean that a win was convincing, whereas a smaller
difference would mean that the win was close. The fitness function makes use of the similar
linear normalisation function:
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fitness =
difference− kmin

kmax − kmin

difference = scoreAI−bot − scoreenemy

kmin = −250

s

kmax = +250

The values for k minand k max were determined empirically, and denote the maximum
difference in the end-game scores observed when losing and winning respectively. A worked
example would be to consider a game where the AI player has obtained a score of 67, and the
opponent has a score of 22. Thus, the resulting difference would be 45, whilst the denominator
would work out to be 250− (−250) = 500. Thus, the fitness is worked out as follows,

fitness =
45 + 250

500
= 59

Evolution Area: Timings

The genetic operators were applied to the values of the 4 key timings as mentioned above.

5.3 Summary

In this chapter, we have outlined the various experiments that were performed with the purpose
of evolving our AI-bot. The different experiments attempted to focus on specific areas of game
play for which we wanted our AI-bot to perform well in, and as such, employed the use of
different fitness functions to assess its performance in the different areas. The results from
these experiments are presented in the next chapter, where we make use of graphs and charts
to give a summary of the results over the generations of evolution. In Chapter 7, we provide
an analysis into these results in order to provide insight and explain the emergence of certain
behaviours by our AI-bot.
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Chapter 6

Results

In the previous chapter, we detailed the set of experiments which were conducted in order
to evolve the behavior trees of the original, hand-crafted AI-bot (Chapter 4, Section 3.2).
In this chapter, we shall present the results from these experiments. Section 6.1 presents the
results in optimising silo placement positions, section 6.2 then presents the results in optimising
radar placement positions. The performance of the AI-bot in evolving its coordination of
fleet movements and compositions are presented in section 6.3. We present the results from
attempting to find the appropriate timings of attacks for the AI-bot’s units in Section 6.4.
Finally, section 6.5 presents the results from combining the best performing behavior trees
from each of the individual experiments and producing the final version of our AI-bot. This
chapter provides the raw data obtained from the experiments of Chapter 5 using graphs and
charts. The analysis of the results presented in this chapter are covered in Chapter 7.

6.1 Silo Placements

Figure 6.1: Graph of “Enemy Air Units Shot Down” across Generations
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Figure 6.2: Graph of “Enemy Air Units Shot Down” across Generations

Figure 6.3: Comparison of Distribution of “Enemy Air Units Shot Down” at Initial and Final
Populations
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In the experiments to discover optimal placement positions for the AI-bot’s silos, we used
the number of enemy units shot down throughout the course of the game as a fitness measure.
We used a population size of 100, and set both the selection ratio and recombination rate to be
50%, along with a mutation rate of 5%. We ran the experiment over 80 generations. Figure 6.1
shows how the mean fitness of the population varied over the generations. To have a better
idea of the performance of the AI-bot, the mean counts of each unit type destroyed in each
generation is presented in Figure 6.2. Figure 6.3 illustrates the difference in performances of
the AI-bot between the initial and final stages of evolution. Table 6.1 depicts the final, best
performing placement positions from the behaviour trees.

(13,30) (43,2) (37,5) (33,25) (34,13) (22,17)

Table 6.1: Final Silo Placement Positions – (Longitude, Latitude) pairs

6.2 Radar Placements

Figure 6.4: Graph of “Enemy Units Seen by DEFCON 1” across Generations

In the experiments to discover optimal placement positions for the AI-bot’s radars, we used
the number of enemy sea units detected before the phase of DEFCON 1 as a fitness measure.
We used a population size of 100 and again set the selection ratio and recombination rate at
50%. The mutation rate was set to 5%. Figure 6.4 shows how the mean fitness of the population
varied over the generations. In order to make a comparison between the performance of the AI-
bot between the initial and final phases of evolution, we categorised the AI-bot’s performance
in the following way:
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Figure 6.5: Chart showing distribution of Enemy Units Seen at the Initial and Final Populations

• Very High: When the AI-bot was able to detect between 19-24 enemy units.

• High: When the AI-bot was able to detect between 13-18 enemy units.

• Moderate: When the AI-bot was able to detect between 7-12 enemy units.

• Few: When the AI-bot was able to detect between 1-6 enemy units.

• None: When the AI-bot was unable to detect any units.

The reason for using such a categorisation allows us to determine whether the AI-bot showed
an improvement by having a higher percentage of games in which it managed to detect a greater
number of enemy units. By possibly having more games in which the AI-bot detected Very
High and High numbers of enemy units and correspondingly less games in which the AI-bot
detected Few or None of the enemy units, we would infer that the AI-bot has improved. The-
oretically, the maximum number of observable units is 36. However, based on our experiments,
we observed that before the course of DEFCON 1 the default opponent never surfaced its sub-
marine units. And since before DEFCON 1, no nuke attacks are permitted, enemy submarines
are thus unable to be detected from launching nuke attacks either. Thus, we have used the
value 24 as the theoretical maximum for this experiment, and derived the different levels of
performance empirically based on that. Finally, Table 6.2 contains the final, best performing
placement positions obtained from the behaviour trees.

(14,-21) (24,-31) (-5,5) (14,-7) (-15,25) (-4,23) (-10,9)

Table 6.2: Final Radar Placement Positions – (Longitude, Latitude) pairs
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6.3 Fleet Placement & Movement

In the experiments to discover optimal placement and movement positions, along with ideal
compositions for DEFCON fleets, we used the weighted average of the number of enemy struc-
tures uncovered, enemy structures destroyed and enemy sea units destroyed as a fitness measure.
In this experiment, an equal weighting was assigned to each of the three individual scores. We
used a selection ratio of 50% and a 50% recombination rate. The mutation rate was set at 5%.
The experiment was evolved over 200 generations using the distributed system from Chapter 4
(Section 4.3).

Figure 6.6 shows how the mean fitness of the population varied over the generations. We
then make comparisons between the initial and final populations, presenting the performance
of the AI-bot in each of the three individual areas in Figure 6.7. Finally, Figure 6.8 shows the
best performing set of fleet positions and compositions obtained from the behaviour trees. A
total of 6 fleets were placed, and using the top-left box as an example, it means that one of the
fleets was composed of 3 submarines, 3 battleships and 0 carriers. It was placed at the location
(-20.00, 40.60) and its target ocation was (-32.00,22.88). The rest of the fleets can be inferred
from the diagram in a similar way. Figure 6.13 shows the results from the best performing
behaviour trees.

Figure 6.6: Graph of Fitness across Generations

73



Figure 6.7: Graph of Fitness across Generations

Figure 6.8: Optimal Fleet Compositions and Movement Positions
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Figure 6.9: Results from the Best Performing Behaviour Trees for Fleet Movements

6.4 Timing & Synchronisation of Attacks

In the experiments to discover optimal timings for performing attacks using submarines, bombers
and nukes, we used the normalised value of the difference between the AI-bot’s and the op-
ponent’s score as a fitness measure. We used a selection ratio of 50% together with a 50%
recombination rate. The mutation rate was set at 5%. The experiment was evolved over 100
generations using the distributed system. We made use of the optimal silo and radar place-
ment positions from Section 6.1 and Section 6.2 respectively, together with the fleet placement,
movement and compositions from Section 6.3. We fixed the airbase placement positions by
randomly generating the following positions, shown in Table 6.3. We mention the evolution of
airbase placements as a potential area of improvement in Section 8.2 of Chapter 8.

(5.5,22.3) (23.0,8.8) (25.3,-0.9) (23.4,-19.8)

Table 6.3: Fixed Airbase Placement Positions – (Longitude, Latitude) pairs

Figure 6.10 shows the variation of means of both the AI-bot’s score and the opponent’s score
over the generations, and Figure 6.11 presents the variation of the mean difference between the
scores as the AI-bot evolved. The mean fitness was measured across the generations, and this is
shown in Figure 6.12, and the mean number of games won by our AI-bot over the generations
is shown in Figure 6.13. Finally, the final timings that were obtained from the behaviour trees
are presented in table 6.4
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Figure 6.10: Graph showing End-game Scores across Generations

Figure 6.11: Graph showing Score Difference across Generations
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Figure 6.12: Graph showing Mean Fitness across Generations

Figure 6.13: Graph showing Average Game Wins across Generations
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Silo Nuke Time Carrier Nuke Time Airbase Nuke Time Silo Nuke Time
2767s 3312s 4460s 4331s

Table 6.4: Mean Results of Final Combined AI-bot in across 100 Games

6.5 Overall A.I. Behavior

Mean AI-bot Score Mean Enemy Score Mean Difference Mean Fitness
66.14 61.91 +4.23 50.846

Table 6.5: Mean Results of Final Combined AI-bot across 200 Games

From the evolved behaviour trees from the previous 4 sections, we are now in place to
combine the best performing behaviour trees from each experiment to produce a final AI-bot.
We ran a total of 200 games using this final, evolved AI-bot in order to assess its performance
in the overall game of DEFCON. The difference between the scores obtained by both the AI-
bot and the opponent was used as an indicator of how well the AI-bot had performed. This
difference is termed as the winning margin, and we categorise it into 5 different groups:

• Very Low: This is the category when the winning margin is between 1-25.

• Low: This is the category when the winning margin is between 26-50.

• Moderate: This is the category when the winning margin is between 51-75.

• High: This is the category when the winning margin is between 76-100.

• Very High: This is the category when the winning margin is greater than 100.

In this set of experiments, we make note of the frequency in which either the AI-bot or the
default opponent won and classified each win into one of the above categories. These results
are shown in Figure 6.14. The overall performance of the AI-bot in terms of the percentage of
games won is shown in Figure 6.15. Finally, Table 6.5 gives the mean fitness of the AI-bot in
this final set of experiments, using the same fitness measure as used in Section 6.4.

6.6 Summary

We have presented the performance of the AI-bot as it evolved in the various areas of its
game-play in the game of DEFCON. We have successfully evolved the AI-bot’s behaviour trees
in the areas which we set out to – silo placement positions, radar placement positions, fleet
movements and compositions and timing of attacks. We made use of the best performing
trees and combined them to produce a final AI-bot and subsequently ran tests, using this
combined implementation, against the default opponent once again in order to collect statistics
on its overall performance. In the next chapter, we provide an analysis of the results from
this chapter in order to provide insight into the performance of the AI-bot as it evolved in the
different experiments, providing proposed explanations for the exhibition of certain behaviours.
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Figure 6.14: Comparison of Average Winning Margins

Figure 6.15: Overall Performance of Final AI-bot
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Chapter 7

Analysis of Results

From the previous chapter, we presented the results from the experiments conducted in Chap-
ter 5, for which we chose to evolve our existing AI-bot. In this chapter, we aim to perform an
analysis of the significance of the results that have been collected, making use of the k-means
clustering algorithm (Section 2.5) to perform cluster analysis on the various evolved positions.
We also provide insight into the relationship between the results and the behaviours exhibited
in our AI-bot. Sections 7.1 and 7.2 cover the analysis of the silo and radar placement exper-
iments respectively. Section 7.3 analyses the results from the fleet placement, movement and
composition experiment. Section 7.4 then provides an analysis on the timings of attacks exper-
iment. The analysis of the combined overall performance of the AI-bot is covered in section 7.5.
In each of the sections from 7.1 to 7.4, we first analyse the average results from the entire set of
evolved poplulations. Following which, we analyse the best-performing behaviour trees in each
experiment.

7.1 Silo Placements

By evolving the behaviour trees determining silo placement positions, we were able to see a
general increase in fitness over the 80 generations for which the behaviour trees were evolved, as
shown in the graph in Figure 6.1 (Section 6.1). This means that the AI-bot was able to shoot
down and destroy a greater number of enemy air units as it evolved its silo placement positions.
This is further exemplified in Figure 6.3 (Section 6.1), where it can be seen, by comparing the
performance of the AI-bot between its initial and final stages of evolution, that on average,
the AI-bot showed a 41.1% increase in the number of nukes shot down together with a 129.5%
increase in the number of bombers destroyed. The reason a decrease in the number of fighters
was observed could be due to the silos being placed further away from the enemy as it evolved,
and given that fighters do not have large flying range, most of them failed to reach the areas
which our AI-bot’s silos were being placed. An interesting point is that in terms of the number
of fighters destroyed, only a relatively small 3.5% increase was observed. Figure 7.1 shows an
in-game screenshot of the best performing silo placement positions that were obtained from the
final evolved set of behaviour trees.

In order to give some insight into the placement positions, Figure 7.2 shows that the silos
can be grouped into 3 clusters. The final iteration of the application of the k-means algorithm
which determined these clusters in showed in Figure 7.3. Page 103 of the Appendix contains the
graphs for each iteration of the algorithm. Intuitively, we can also observe that the silos have
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Figure 7.1: In-game view of the final silo placement positions
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been placed at the edge of the continent furthest away from the enemy, reducing the chance of
detection during the default enemy opponent’s scouting stage (Chapter 2, Section 2.1.2).

Figure 7.2: The silos can be clustered into 3 groups as shown
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Figure 7.3: Final iteration of the k-means algorithm for silo placements. The red markers
denote the means of each cluster, and the blue markers indicate the silo placement positions

7.2 Radar Placements

In evolving the behaviour trees for positioning a player’s radars, there was a increase in mean
fitness over the 100 generations as shown in Figure 6.4 (Section 6.2), which meant that the
AI-bot’s ability to position its radars in order to maximise the detection of enemy units showed
improvement. Based on the chart in Figure 6.5, we can see that compared to the first population
prior to being evolved, the population in the final generation was able to, on average, detect a
greater number of enemy units. Only in 4% of the games in the final generation was the AI-bot
unable to detect any units at all, compared to 20% at the beginning. Figure 7.4 shows an in-
game screenshot of the radar placement positions that were obtained from the best performing
evolved behaviour trees.

In order to give some insight into the placement positions, Figure 7.5 shows that the radars
can be grouped into 2 clusters, from the results shown in the final iteration of k-means algorithm
shown in Figure 7.7. The radars were placed on the edge of the continent closer to the enemy,
contrary to the silo placement positions (Section 7.1 above), due to the enemy being located
to its west. The two clusters seem to coincide with the positioning and movement of units as
performed by the enemy opponent, which were observed to occur throughout the experiments.
The default opponent generally places its units in such a way that it approaches the AI-bot’s
territory via 2 directions. Figure 7.6 shows the general movement directions of the opponent.
Thus, the 2 clusters resulting from the positioning of the radars exhibited by the best performing
behaviour trees suggest they maximised the chance of detecting the enemy’s sea units as they
approached from the 2 directions.
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Figure 7.4: In-game view of the final radar placement positions

Figure 7.5: The radars can be clustered into 2 groups as shown
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Figure 7.6: General movement direction made by opponent

Figure 7.7: Final iteration of the k-means algorithm for radar placements. The red markers
denote the means of each cluster, and the blue markers indicate the radar placement positions

85



7.3 Fleet Placement & Movement

Figure 7.8: In-game view showing Fleet placement and target movement positions

In evolving the positions of fleets for which they were placed and moved, the AI-bot was
shown to have improved in performance, with an increase in fitness over the 200 generations
for which it was evolved, as shown in Figure 6.6 (Section 6.3). It can be seen that between 0
to 50 generations, there was an increase in fitness, but between 60-100, a drop in fitness was
observed. However, by performing the evolution over an additional 100 generations, we were
able to observe that the fitness did increase significantly. From the results showing how well the
AI-bot performed in the three areas contributing to the overall fitness measure in Figure 6.7
(Section 6.3), it is interesting to note that the most significant increase in performance was for
the destruction of enemy sea units. We believe that the individuals performing well in sea-units
destruction began to dominate the populations in each generation, thus resulting in a relatively
smaller increase in the mean number of detroyed and uncovered silos, and even a decrease in
the mean number of uncovered and destroyed airbases and radars, between the first and last
generation of individuals.5

We shall attempt to explain this behaviour by providing insight on the way the fleets were
positioned and moved based on the final, best-performing behaviour trees. The positions are
shown in Figure 7.8 and the red lines show the approximate path the fleets would take in moving
towards their respective target positions (denoted with red crosses). By using the k-means
clustering algorithm, we note that when placed, the fleets can be categorised into 3 different
clusters (Figure 7.9), but on reaching the target positions, the fleets are then categorised into 2
clusters (Figure 7.10). Figures 7.11 and 7.12 show the final iteration of the k-means algorithm
as it was applied to the placement and target locations respectively.
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Figure 7.9: When placed, the fleets are clustered into 3 groups

In placing the fleets in three clusters, we observe that in each cluster, both submarine and
carrier units are present. Battleships are only present in the top-most and bottom-most of the
clusters, and never placed in such a way that a fleet was composed entirely of them. Upon
moving to the target positions, the 2 clusters possess all three types of fleet units in them.
The presence of 2 clusters suggests that in order to maximise the number of enemy sea units
destroyed, the fleets would need to move towards the 2 general directions of which the enemy
approaches (Section 7.2 above). The AI-bot was thus able to have a balanced set of offences as
it encountered the enemy.

Figure 7.10: When moved, the fleets are clustered into 2 groups
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Figure 7.11: Final iteration of the k-means algorithm for fleet starting positions. The red
markers denote the means of each cluster, and the blue markers indicate the fleet starting
positions.

Figure 7.12: Final iteration of the k-means algorithm for fleet target positions. The red markers
denote the means of each cluster, and the blue markers indicate the fleet target positions.
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7.4 Timing & Synchronisation

Figure 7.13: Two stages of attack from the evolved timings

Combining the best performing behaviour trees from the previous experiments, we evolved
the times in which the AI-bot launched nukes in an offensive attack for 4 key units – submarines,
carriers, airbases and silos. From the graph in Figure 6.13 (Section 6.4), we see that there was
an increase in the percentage of games won by the AI-bot over 100 generations as the AI-
bot evolved. This is further exmpelified in the graph in Figure 6.10 and Figure 6.11 (both
from Section 6.4) as the mean difference between the AI-bot’s end-game score and the default
opponent’s end-game score reduced as it evolved. This showed the significance of the timing of
attacks, since the same behaviour trees were used to dicate the silo placements, radar placements
and fleet movements.

In studying the timings obtained by the best-performing behaviour trees, we observe that
the timings defined two stages of attack – one using sea units (carriers and submarines), and
the other using ground installations (silos and airbases). This is shown in Figure 7.13. Often,
the enemy’s sea units would engage in combat with the AI-bot’s units at around the hour mark
(3600s), and cause a reduction in the number of submarines and carriers left for our attack.
Thus, the AI-bot chose to perform its nuke attacks by sea-units before this occurs, so as to be
able to inflict the maximum possible damage by having its full strength of fleet units.

For the second stage of attack, we observed that the enemy usually performs its full-scale
nuclear attacks at around 5400s. This corresponds to the expiration of its internal attack timer
(Section 2.1.2). This is the period of time in which the enemy is unable to defend itself against
incoming nuke attacks, and as such, the evolved timings of our AI-bot seem to take advantage
of this. The silo and airbase attack times of 4460s and 4331s (Section 6.4) are effective because
it considers the time it would take for the nukes and bombers to reach the enemy territory at
approximately 5400s, since the airbases are located slightly nearer to the enemies than the silos
are.
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7.5 Overall Behaviour

Combining the best performing behaviour trees, we were able to produce an AI-bot that was
capable of beating the default opponent 55% of the time (Figure 6.15, Section 6.5). However,
we are also interested in how convincing our victories, or defeats, were and thus made use of
the winning margin to analyse that. From Figure 6.14 (Section 6.5), we observe that there was
a high percentage of games (49.43%) that our AI-bot lost where the margin was very low.
Conversely, our AI-bot beat the default opponent with a low margin approximately 6.24%
more often than the default AI opponent did.

However, the opponent managed to win by both a high and very high margin a larger
number of times. This would also suggest that our AI-bot did not beat the default opponent
by an extremely convincing margin as often as the opponent beat our AI-bot. Overall, both
our AI-bot and default opponent managed to beat each other by a moderate margin a similar
amount of times. Table 6.5 summarises the performance of our AI-bot, showing that on average,
our AI-bot beat the default opponent by a margin of approximately +4.23 points.

7.6 Summary

In this chapter, we have analysed the results from the previous chapter, drawing certain conclu-
sions and insight into the performance of the AI-bot as it evolved. In general, the AI-bot was
able to perform better in each of the experiments and areas which it was evolved in. Combining
the best performing behaviour trees from each of these experiments, we were able to produce
an AI-bot that was capable of beating the default AI opponent approximately 55% of the time.
In terms of placement and movement positions, we employed the k-means clustering algorithm
to group the set of positions and provided an explanation of why those clusters emerged. We
also observed the significance of the timing of the attacks to winning the game. In the next
chapter, we provide an overview of the targets met by this project, and the significance of the
findings which we have made from the experiments and results that were obtained. We will
also provide areas for improvements and lessons learned from this project.
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Chapter 8

Conclusion

8.1 Conclusion

We have shown that, by combining the use of behaviour trees and employing an evolutionary
approach, we have been able to successfully produce a competitive AI-bot that was capable of
beating the original, hand-coded default AI-bot in the game of DEFCON more than 50% of the
time (Section 6.5). This would signify that employing such an approach is indeed feasible in
the development of automated players for commercial games, which were the key motivations
of this project (Section 1.1). This had implied that the time that would have been spent by
both designers and programmers in trying to design and tweak intelligent automated players
to be focused on other aspects of game development.

While we are not suggesting that there would no longer a need for AI programmers or
designers, theoretically, less time would be required of them to spend on fixing and tweaking
their programs in order to produce competitive automated players in their games. An approach
would instead involve designing simple automated players that are merely able to play the game,
and leave the evolution process to evolve the automated player into one that was competitive by
running matches against a default opponent, if available, or against human players. The project
exemplified the first approach as we first hand-crafted the AI-bot using a set of behaviour trees
which allowed it to play the game of DEFCON, making decisions and choices at random (Section
4.1). After which, the AI-bot was evolved into one that was able to play competitively in various
aspects of the game (Chapter 6), exhibiting intelligent decisions in the way that it approached
the game in order to become a better player (Chapter 7). In the absence of a default opponent
or human players, there is the possibility of running matches of games between two different
sets of hand-crafted AI-bots, or even against itself [33].

We have also observed that in order to perform the experiments, a large amount of time
and resources were required to run the games in order to evolve the AI-bot. In several of the
experiments, fluctuations in performance occurred between generations, and usually only after
a larger number of generations were we able to conclude that there was a general increase in
performance. With services offering application processing for rent, such as Amazon’s Elastic
Computer Cloud1, the feasibility of performing even larger numbers of evolution at higher
speeds is possible, making it possible for commercial game companies to evolve better and more
competitive automated players than what this project could achieve, given its time, resource

1For more information , visit http://aws.amazon.com/ec2/
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and economical constraints.

8.2 Limitations & Future Work

In this section, we outline several limitations and constraints identified in the development
of our AI-bot. We also identify the areas where improvements and further work would be
applicable.

8.2.1 Considering Other Starting Positions

The approach that we took allowed us to evolve an AI-bot to be able to play the game of
DEFCON competitively using the given set of starting positions for both the AI-bot and the
default opponent. Due to the resource and time constraints, we were unable to perform the
evolution for each of the different combinations of starting positions. However, the results from
our experiments have shown that it is possible to extend this implementation and repeat them
for the various starting locations, allowing for the evolution to proceed for the AI-bot to be
able to play competitively in all permutations of starting positions possible, thus no longer
restricting its optimal performance to the fixed set of starting positions.

8.2.2 Opponents

In this project, we used the default Introversion opponent throughout the entire set of ex-
periments. Even though some variation exists, as the default opponent alters its game play
randomly, by placing units at different locations and attacking at different times, it still follows
a fixed finite state machine that dictates its behaviour throughout the course of the game.
There is the problem that evolving against a single opponent would make our evolved AI-bot
competitive only against the default opponent. It would have been good to be able to perform
experiments against other AI-bots, and against human players. This would allow the AI-bot to
evolve into a competitive player against all different types of opponents. The DedCon project2

attempts to store the logs from matches between players, allowing replaying of matches where
the players follow the exact same moves, and this would be useful in both having a larger
opponent base to evolve against as well as for controlling the environment which the AI-bot is
evolving in. Given that so far, no other AI-bot has been produced using the DEFCON API,
we were unable to have the luxury of testing against other AI-bot implementations. Robin
Baumgarten’s bot was implemented directly using the source code of DEFCON, and not using
the DEFCON API, which also prevented us from competing against it.

8.2.3 Other Gameplay Aspects

We have evolved four areas of our AI-bot’s game play and have managed to produce positive
results, but there exist several aspects of DEFCON that we have not considered. Firstly, we
did not attempt to evolve optimal airbase placement locations, which play the roles of both
performing a nuke attack, as well as re-filling the carriers with bombers should they have been

2Dedicated Server for DEFCON - http://dedcon.homelinux.net/
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destroyed. Given that the demo version of DEFCON was used, we were unable to consider
games involving more than 2 players. Such games involve forming alliances and cooperation
with other players (or AI-bots), and would definitely be interesting for the application of AI
techniques that would allow AI-bots to be able to co-operate and decide when to break and
form alliances. Finally, there is the consideration of the different game and scoring modes which
DEFCON permits, which we were unable to explore too, with the demo version.

8.2.4 Further Applications of Behaviour Trees

Our behaviour tree implementation was developed by us, with the aims of being a simple, but
sufficiently powerful, framework for us to develop our AI-bot for DEFCON. We have not covered
all the possible elements of the use of behaviour trees, including the use of parallel nodes,
which are used to constantly check for game-conditions whilst performing some other actions.
We were able to make up for this using sequence to performing the checking of conditions
because the amount of time required to traverse the behaviour tree was small enough to fit into
a single game tick. However, when dealing with a larger number of trees, the traversal may be
required to span over several ticks, and as such, there are some applications and games where
the use of parallel nodes are useful in designing intelligent behaviours.

The second area involves the evolution of sub-trees such that each sub behaviour tree dic-
tates a behaviour which matches a certain style of play – examples being more defensive,
attack-orientated, cooperative or merely making random decisions at appropriate points. Our
implementation only considered the transition between two stages, from being defensive to
launching an attack, which had to occur in that order. It would be interesting to see the ap-
plication of the evolution of sub-trees using lookup decorators to allow the AI-bot to exhibit
behaviours which are more complex and allow it to exhibit adaptive game play styles to match
opponents. An application of evolution to make further use of the lookup decorators to evolve
the higher-level branches of the trees and explicitly performing genetic operators on them would
be an interesting approach.

8.2.5 DEFCON Competition

The IEEE Symposium on Computational Intelligence and Games 2009 (IEEE CIG09) event
consists of a DEFCON competition3 in which AI-bots that have been implemented using the
DEFCON API would be able to compete against each other in order to determine the best
performing one. We believe that with further refinement, that our AI-bot would be a suit-
able competitor at this event, with the added hope that it might emerge victorious in the
competition.

8.3 Closing Remarks

Overall, we believe that this project has been successful, not only in developing a competitive
AI-bot, but also exhibiting the use of a different approach to designing competitive automated
players in games – an evolutionary approach. We were able to work under the resource, econom-
ical and time constraints which commercial game companies would possibly not be as restricted

3Competition page at http://www.ieee-cig.org/
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by, to show that the evolutionary approach using behaviour trees was feasible and effective.
The fact that this project was applied to a commercial game such as DEFCON would possibly
allow the game industry to consider such an approach seriously. We are definitely excited to
see the progress of automated player development using AI techniques that is to come, and
hope to see this project to be an inspiration to the development of other novel and interesting
techniques that would be able to further push the boundaries of AI in games.
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Appendix

List of Decorators

This presents a non-exhaustive list of proposed Decorators types, as suggested by Alex J.
Champandard [9].

• Filters: These prevent a behavior from activating under certain circumstances.

– Limit the number of times a behavior can be run

– Prevent a behavior from firing too often with a timer

– Temporarily deactivate a behavior by script

– Restrict the number of behaviors running simultaneously

• Managers & Handlers: These are decorators that are responsible for managing whole
subtrees rather than single behaviors.

– Deal with the error status code and restart planning or execution

– Store information for multiple child nodes to access as a blackboard

• Control Modifiers: These decorators are used to pretend that the execution of the child
node happened differently

– Force a return status, e.g. always fail or always succeed

– Fake a certain behavior, i.e. keep running instead of failing or succeeding

• Meta Operations: Such decorators are useful during development, and can be inserted
into a tree automatically when needed.

– Debug breakpoint; pause execution and prompt the user

– Logging; track this node execution and print to the console

List of EventTypes

The following presents the list of EventTypes that are detected by the DEFCON API event
system:
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• EventPingSub: Event when a submarine uses its sonar to detect enemies.

• EventPingCarrier: Event when a carrier uses its sonar to detect enemies.

• EventNukeLaunchSilo: Event when a silo nuke launch is detected.

• EventNukeLaunchSub: Event when a submarine nuke launch is detected.

• EventHit: Event when a unit is hit by gunfire from battleships.

• EventDestroyed: Event when a unit is destroyed.

• EventPingDetection: Event when a sonar detection of an enemy is detected.

• EventCeasedFire: Event when a ceasefire is called.

• EventUnceasedFire: Event when a ceasefire no longer holds.

• EventSharedRadar: Event when parties begin to share radar coverage.

• EventUnsharedRadar: Event when parties no longer share radar coverage.

• EventNewVote: Event when a new vote is cast by a party.

• EventTeamVoted: Event when a vote is cast by a party or alliance.

• EventTeamRetractedVote: Event when a vote retracted by a party of alliance.

• EventVoteFinishedYes: Event when voting has ended

• EventVoteFinishedNo: Event when voting has not yet ended.

Command Line Parameters

The following are command line arguments that may be used when running the executable
with the DEFCON API:

• maxgametime=n: Sets the maximum in-game time to n seconds before the victory
timer starts.

• internalais=n: Sets the number of internal ais used.

• internalaiterritory=n: Sets the territory of an internal default opponent, and repeat-
able for the number of default opponents required. The internalais from above is
automatically set to the correct size.

• repeat=n: Repeats the game n times. If set, the current game will end immediately
after the victory timer ends and return to the host screen. DEFCON will exit when all
the games have been completed.

• fastserveradvance: Enables a quicker server update.
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Complete Set of Behaviour Trees Used

Figure 8.1: Behavior Tree: PlaceStructures

Figure 8.1 (PlaceStructures): The behaviour tree executes by first checking if the current
DEFCON level in the game is 5. If so, it will proceed to place silos, radars and airbases
in that order using a priority selector. The left most sequence places 6 silos at their
specified locations, the middle sequence places 7 radars at specified locations and the right
most sequence places 4 radar stations at specified locations.

Figure 8.2: Behavior Tree: PlaceFleets

Figure 8.2 (PlaceFleet): The behaviour tree executes by first checking if the current DEF-
CON level in the game is 4 and if so, it will proceed to place the fleet units using the priority

selector. The counter decorator node prevents the AI-bot from placing the same fleet twice
by restricting the number of times its child is allowed to execute to 1. The behaviour tree copes
with the failure to place fleets because of the priority selector, which ensures that if it fails
to place a fleet unit from once branch, it would proceed on to try to place the next fleet as
specified by the next branch.
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Figure 8.3: Behavior Tree: MoveFleets

Figure 8.3 (MoveFleets): The behaviour tree executes by first checking if the current DE-
FCON level in the game is 3, and then it proceeds to move all of its fleets to their specified
target locations.

Figure 8.4: Behavior Tree: CarrierScout

Figure 8.4 (CarrierScout): The behaviour tree excutes whenever the current DEFCON level
within the game is either 3 or 2. If so, it proceeds to select a carrier unit belong to the AI-bot.
It then checks that the carrier is in “fighter launch” mode. It then chooses any visible enemy
silo, radar, airbase or city as a point for it to launch its fighters at. It proceeds to check if the
selected building or city is within range before setting it as its active target.
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Figure 8.5: Behavior Tree: CarrierAttack

Figure 8.5 (CarrierAttack): The behaviour tree executes by first checking if the in-game
time corresponds to its predefined CARRIERATTACKTIME – denoting the time at which the AI-bot
would launch bombers from its carrier units against the enemy. When it is past this specified
time, the AI-bot will select a carrier which belongs to it. It will then check the carrier it selected
is in bomber launch mode, failing which, the priority selector cause the left hand branch to
fail, leading to the right hand branch which sets the state of the carrier to the required bomber
launch mode. In the event the carrier was in the required mode, it would check if it possessed
5 bombers (state activations) using the StateCount node. It then chooses either an enemy silo
or city to attack. If the chosen enemy building is in range, it then selects it as its target for a
bomber launch.

Figure 8.6: Behavior Tree: AirBaseDefence
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Figure 8.6 (AirBaseDefence): The behaviour tree executes by first checking if the in-game
time corresponds to its predefined AIRBASEATTACKTIME – denoting the time at which the AI-bot
would launch bombers from its airbases against the enemy. It it is, the behaviour tree does not
proceed on due to the priority selector succeeding at its first child node. This prevents the
air bases from switching back into a defensive mode when its AIRBASEATTACKTIME has past.
In the situation that the in-game time is still earlier than the specified time, the behaviour
tree would continue to check if it was in any DEFCON level, before selecting an air base unit
belonging to the AI-bot. It then proceeds to the sequence checking if the air base was in fighter
launch mode, and that it had at least 1 fighter to launch, using the StateCount node. It will
then if any enemy sea units have been detected and send fighters to attack them. Otherwise,
it randomly picks coordinates to launch its fighters to scout.

Figure 8.7: BehaviorTree: AirBaseAttack

Figure 8.7 (AirBaseAttack): The behaviour tree executes by first checking if the current
in-game time has reached its pre-selected AirBaseAttackTime. If so, it selects an air base unit
and proceeds on to the priority selector. It checks that the selected air base is in bomber
launch mode, and that it has 5 bombers for launch using the StateCount node. It then chooses
either an enemy silo or city to attack before selecting it as a target for its bombers. We do not
check whether the target is in range in this instance since bombers are able to cover the entire
map. On the occasion that the air base was not in its bomber launch mode, the left hand sub
tree of the priority selector would have failed, leading to it changing the state of its air
base to the required mode.

Figure 8.8 (SubDefence): The behaviour executes by first checking if the in-game time has
reached its pre-selected SubAttackTime. If so, the behaviour tree does not proceed on further
because the priority selector would have succeeded based on its first child node. If the in-
game time was less than the specified SubAttackTime, then the behaviour tree would proceed
to select a submarine unit belonging to the AI-bot. It would then switch its current state to
the active sonar mode if it wasn’t already in it.
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Figure 8.8: Behavior Tree: SubDefence

Figure 8.9: Behavior Tree: SubAttack

Figure 8.9 (SubAttack): The behaviour tree executes by first checking if the in-game time
has reached its pre-selected SubAttackTime. If so, it proceeds to select a submarine belonging
to the AI-bot. It then proceeds to the priority selector. It checks if the selected submarine
is in its launch mode, and that it has 5 available nukes for launch, using the StateCount node.
It then chooses an enemy city or silo to attack. It proceeds to check if the selected city or silo
is within range, and proceeds to launch its nukes against it. If not, it moves the submarine
unit towards it. On the occasion that the submarine was not in its launch mode, the left hand
subtree of the first priority selector from the top would have proceeded to its right hand
sub tree in order to set the submarine to the required state.
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Figure 8.10: Behavior Tree: SiloNukeLaunch

Figure 8.10 (SiloNukeLaunch): The explanation for this tree was covered in page 49 of the
report.

Application of the k-means algorithms to the various ex-

periments

We present the following figures:

• Figure 8.11: This shows the iterations as the k-means algorithm was applied to the
evolved silo positions (Section 7.1.

• Figure 8.12: This shows the iterations as the k-means algorithm was applied to the
evolved radar positions (Section 7.2.

• Figure 8.13: This shows the iterations as the k-means algorithm was applied to the
evolved fleet placement positions (Section 7.3.

• Figure 8.14: This shows the iterations as the k-means algorithm was applied to the
evolved fleet target positions (Section 7.3.
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Figure 8.11: Application of k-means Algorithm over several iterations. The red markers indicate
the mean values of each of the clusters, and the blue markers show the positions of each silo.
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Figure 8.12: Application of k-means Algorithm over several iterations. The red markers indicate
the mean values of each of the clusters, and the blue markers show the positions of each radar.
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Figure 8.13: Application of k-means Algorithm over several iterations. The red markers indicate
the mean values of each of the clusters, and the blue markers show the positions of each fleet’s
starting position.
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Figure 8.14: Application of k-means Algorithm over several iterations. The red markers indicate
the mean values of each of the clusters, and the blue markers show the positions of each fleet’s
target position.
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