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Abstract

Techniques in Machine Learning have been applied to automate the process of scientific discov-
ery. Inductive Logic Programming(ILP), as one of the machine learning techniques, has particular
advantages in relational learning and has successful applications in various areas, such as system
biology. Learning in ILP comes down to search, while huge search space is a problem. The huge
search space problem becomes more significant in multi-clauses setting due to the dependency
among clauses.

The method presented in this report addresses this problem by effectively bounding the search
space using Top Directed Theory Derivation (TDTD), in which the logic program T theory is
used as declarative bias that defines the search space. Different from the methods based on Inverse
Entailment (IE), TDTD derives the hypothesized theory deductively. It is using clauses in T theory
to replace the hypothesized theory itself in the refutation for individual examples that make this
forward/deductive computation feasible. Benefitting from the completeness of deduction, TDTD
no longer suffers from the incompleteness maybe encountered in IE-based methods, but delegates
the completeness issue to T theory. Since it has been proved in this report that the given T
theory is complete with respect to the hypothesis language, the method presented in this report is
guaranteed to be complete.

TDTD also naturally accommodates non-OPL (Observation Predicate Learning) setting. Ab-
duction and Induction are integrated into the same phase in TDTD, so that abductive facts and
inductive rules can be learned at the same time. Thus learning problems, which are halted in cycle
integration due to the inapplicability of both abductive and inductive procedure, can be solved in
TDTD.

An new ILP system is implemented in this project for TDTD. Experimental evaluation on arti-
ficial data sets demonstrates its ability in learning multi-clauses problems correctly and efficiently.
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Chapter 1

Introduction

1.1 Multi-clauses Problems

”Observation Predicate Learning” (OPL)[16] is a usual Machine Learning setting, in which only
hypotheses that define the same predicate with examples are learnable. However, this assumption
strictly constraints the range of solvable problems. For example, in the grammar learning problem
given in [16], only predicate s is observable, while all the others like noun and np are not. Here
comes the need of integrating abduction and induction. Specifically, if given a problem setting
as fig there is a learning cycle alternates between two separate processes, abduction and
induction, to incrementally recover the incomplete theory.

Background Knowledge
C1:s(S1,S2) :- np(S1,S3), vp(S3,54), np(S4,S2).
C2: vp(S1,82) :- verb(S1,S2).

F1: det([a]S],S).

F2: det([the|S],S).
F3: noun([dog|S],S).
F4: noun([ball|S],S).
F5: verb([hits|S],S).
F6: verb([walks|S],S).
F7: prep([to]|S],S).

Positive Example E
s([a, dog, hits, a, ball],[]).
s([the,man,walks,a, dog],[]).

Target Hypothesis:
H1: np(S1,S2) :- det(S1,S3), noun(S3,S2).

Figure 1.1: Problem setting for Grammar Learning Problem

However, problems arise if the clause C1 is also missing, then the abductive procedure becomes
inapplicable due to the absence of inductive rules. This is a multi-clauses problem involving two
inductive rules C1 and H1 missing. This multi-clauses problem can be made more difficult by
having the fact det([a|S], S) left-out as well. In this case, cycle integration will be halted due to the
inapplicability of both abductive and inductive procedures. The only system that can solve this
problem should be the one both supporting multi-clauses and integrating abduction and induction
into the same phase.

!Different from that given in [I6], there is no clause like np(S1,92):- det(S1,93), ajd(S3,54), noun(S4,52) in the
background knowledge. This is to avoid solving the problem by the cycle integration which is explained in sectionm
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Although the above example is a simple toy example, the similar multi-clauses problems are
natural in automatic scientific discovery. For example, in modeling the inhibitory effects of toxins
in metabolic networks[27][28], as shown in fig The up and down arrows in the figure denote the
change of concentration in metabolite which is the only predicate observable. The target hypothesis
is about which metabolic reactions are adversely affected in the presence of the toxin. Since there
will be multiple such reactions unknown in one pathway, system capable of suggesting hypothesis
of multi-clauses is necessary for this task.
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Figure 1.2: A metabolic subnetwork involving metabolites affected by hydrazine[27]

The challenge in multi-clauses learning is huge search space results from the cross product op-
eration which accounts for the dependency among clauses. The multi-clauses problem will become
more difficult if it is the one mixed with both abductive facts and inductive rules, since it requires
a system learning abductive facts and inductive rules at the same time.

1.2 Overview of TDTD

Learning in Inductive Logic Programming (ILP) is essentially a search problem[17][13]. However,
due to the expressive power of First Order Logic (FOL), the hypothesis space is usually huge,
especially in the multi-clauses setting. Therefore, there are primarily two parts in ILP systems to
make search tractable. One is bounding the search space, which is role of the Top Directed Theory
Derivation (TDTD) presented in this report; the other is controlling the search, which is done by
greedy search algorithm.

As an example-driven method, TDTD bounds the search space effectively without the trade-off
for completeness. In TDTD, T theory, [18] which is a logic program, is used as declarative bias that
defines the hypothesis space. With T theory, the hypothesized theory can be derived deductively,
which is just the opposite to the IE-based methods. Thus benefitting from the completeness of
deduction, TDTD no longer suffers from the incompleteness encountered in IE-based methods, but
delegates the completeness issue to T theory. Since it has been proved in this report that the given
T theory is complete with respect to the hypothesis language, the method presented in this report
is guaranteed to be complete. The redundancy in upward theory refinement is also analyzed in this
report, thus the advantage of TDTD over IE-based method is confirmed.



Learning both abductive and inductive hypotheses at the same time using TDTD will encounter
subgoals that succeed with non-ground substitutions. While it requires all ground terms in IE-based
methods, this is not a problem in TDTD thanks to its top-directed search. Therefore TDTD not
only supports multi-clauses learning, but also naturally integrates abduction and induction into
the same phase.

The following goes through the previous grammar example, in which both C1, H1, and F1 are
missing from background knowledge to give a general idea about the whole algorithm. The aim of
the first two steps is to bound the search space by exclusively deriving the theories that entail the
examples together with background knowledge. The third step is doing greedy search to construct
the final theory.

1. First provide the declarative bias about hypothesis language before learning. In TDTD, this
declarative bias is represented by T theory.

Suppose the alphabet for this example include these predicates: [s, np, vp, det, adj, noun, verb] Then
T theory for this example is in fig ﬂ

T10: s(X,Y):- $body(X,Y).
T20: np(X,Y):- $body(X,Y).

T11: $body(X,FinalOut):- np(X,Y), $body(Y,FinalOut).
T13: $body(X,FinalOut):- det(X,Y), $body(Y,FinalOut).
T14: $body(X,FinalOut):- adj(X,Y), $body(Y,FinalOut).

T17: $body(X,FinalOut):- prep(X.Y), $body(Y,FinalOut).
Tnt0: $body(FinalOut,FinalOut).

Ta1: det([X|S],S)
Ta2: adj([X|S],S).

Tab: prep([X|S],S).
Figure 1.3: Top Theories for Grammar Example

2. Thenthis T theory is input to the system together with background knowledge B and
examples E in order to derive candidate hypothesized theories.

This involves the following 3 steps:
(1) Search for all possible refutations for the given example s([a, dog, hits, a, ball], []) with clauses
in T theory and B.
(2) Extract out multiple sequences from the refutation sequences.
(3) Deriving candidate theories by SLD-resolution and subsumption according to the derivation
sequence obtained in the last step.

Three of the derived theories are in fig

C1:s(S1,52) :- np(S1,S3), vp(S3,54), np(S4,S2).
t1 C2:np(S1,S2) :- det(S1,S3), noun(S3,S2).
C3: det([a|S],S).

C1:s(S1,S2) :- np(S1,S3), vp(S3,54), np(S4,S2).
t2 C2:np(S1,S2) :- adj(S1,S3), noun(S3,S2).
C3: adj([a|S],S).

C1:s(S1,S2) :- np(S1,S3), vp(S3,S4), np(S4,S2).
t3 C2:np(S1,S2) :- prep(S1,S3), noun(S3,S2).
C3: prep([a|S],S).
Figure 1.4: Three of the derived theories for s([a, small, dog, hits, a, ball], [])

2This is just part of the T theory, the complete one can be found in appendix
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3. Amongst all the derived candidates, the one that is most compressive will be chosen by
greedy search according to the heuristic of Minimum Description Length (MDL). Although all
the t1, t2 and t3 in fig will explain the example s([a, dog, hits, a, ball], []) with background
knowledge, but t1 covers other examples like s([the, man,walks, a, dog],[]), thus it will outperform
t2 and t3 according to MDL.

The greedy search will continue until all examples are covered or no compression is achieved.

1.3 Report Map

Actually, the above example is a snapshot for the whole project. Each step has its corresponding
chapter as follows:

1. At step one, you will find in chapter 3 about how to specify T theory for the declarative bias and
ensure that the top theory specified can compose all the hypothesis language within the declarative
bias.

2. At step two, if you are skeptical about whether the theory t derived in TDTD will explain the
seed example that generate it, or doubt whether all theories that entail the seed example can be
derived in TDTD, go to chapter 4 to check the soundness and completeness proof for TDTD. You
can also find all the details about TDTD algorithm in that chapter.

3. At step three, when doing greedy search, you may refer to chapter 5 to see what heuristic can
be used for making greedy choice. 4. Chapter 6 gives you more details about implementation.

5. There are experimental results for this grammar learning example, as well as an odd-even ex-
ample in Chapter 7.

1.4 Contribution

1. (a) Prove the completeness of T theory with respect to the hypothesis language;

(b) Prove the soundness and completeness of TDTD, thus prove the completeness of the
whole method.

2. Extension on the framework of Top Directed Hypothesis Derivation (TDHD) [18]

(a) Accommodate multi-clauses setting

i. Remove the constraint that clauses in B can not call hypothesized clauses;
ii. Design an algorithm for extracting multiple derivation sequences and prove its cor-
rectness.
iii. Analyze the redundancy in upward theory refinement under the multi-clauses set-
ting, thus confirm the more efficiency of TDTD

(b) Integrate abduction and induction into the same phase so that both abductive and
inductive hypothesis can be learned at the same time

i. Augment the SLD-derivation with subsumption for deriving abductive hypothesis
in TDTD;
ii. Allow subgoal to succeed with non-ground substitutions

3. A new ILP system is implemented for the TDTD described in this report. Program transfor-
mation is used to improve the efficiency.

4. Experimental results show that multi-clauses learning problems can be solved in TDTD cor-
rectly and efficiently.



Chapter 2

Background

2.1 Machine Learning

Definition [I4] A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

2.1.1 Bias Learning

Learning without bias is not only a matter of intractable search space, but also turns out to be
futile[14]. Because the learning will simply memorize all the training data and unable to make
inductive leap, thus it will fail to make any predication on unseen data. Two types of bias are
usually used, one is declarative bias, the other is search bias.

Declarative Bias

Declarative Bias specifies the alphabet for hypothesis language, thus defines the search space. It
can be explicitly specified by mode declaration as in Progol[15], or antecedent language in [5] . In
this project, it is represented by T theory. It can also be implicit incorporated into the learning
algorithms, such as considering only conjunctive hypotheses while ignoring disjunctive ones.

Search Bias

Search Bias means preferring one candidates hypothesis to another during the search. In greedy
search, the search bias is a preference for small sets of maximally general Horn Clauses. However,
it is only a heuristic approximation. Thus the result may not be optimal, that is, not the truly
shortest set of maximally general Horn Clauses.

2.1.2 Cross Validation

As definition machine learning improves with experience, therefore it is empirical. Thus its
reliability needs to be validated. This is can be done by testing the learning results on unseen data,
that is, measured by predictive accuracy. Predictive accuracy is calculated as the percentage of
correct predictions on the test data.

If the data available is abundant, then it is feasible to reserve a small part of data for testing.
However, if not, then cross validation is necessary.

Cross validation divides the data into N folds. It iterates on the N folds, at each iteration, one
fold is preserved for test, while the rest folds are used for training. Predictive accuracy is calculated
for each fold, and their results are averaged to give the final predictive accuracy.

Leave-one-out test strategy is a special case of cross validation, in which each example is assigned
for one fold. Therefore, at each iteration, only one example is reserved for test, while all the rest
are used for training.



2.2 Logic Programming

The following are referenced from [11] and [20],

2.2.1 Basic Concept and Notation

Definition A term is a constant, variable, or the application of a function symbol to the appro-
priate number of terms. A ground term is a term not containing variables.

An atom is the application of a predicate symbol to the appropriate number of terms.

A literal is an atom or the negation of an atom.

Definition A definite goal is a clause of the form
— Bla () Bn7

where n > 0 and each B; is an atom.

Each B; is called a subgoal of the goal.

Definition A definite clause is a clause of the form
A — Bl, ceny Bn
which contains precisely one positive literal A.
A is called the head and By, ..., B, is called the body of the clause.
A Horn clause is either a definite clause or a definite goal.
A unit clause consists of a single literal.

Definition A logic program is a finite set of clauses representing their conjunction.

2.2.2 SLD-Resolution

Definition Substitution

A substitution 6 is a finite set of the form {v;/t1,..,v,/tn}, where each v; is a variable, each t; is a
term distinct from v; and the variables vy, .., v, are distinct. Each element v;/t; is called a binding
for v;. 0 is called a ground substitution if the ¢; are all ground terms.

Definition An expression is either a term, a literal, or a conjunction or disjunction of literals. A
simple expression is a term or a literal

Definition Unification

Let ¥ be a finite set of expressions. A substitution @ is called a unifier for ¥ if ¥ is a singleton (a
set containing exactly one element). A unifier § for ¥ is called a most general unifier (mgu) for ¥
if, for each unifier 6 of ¥ , there exists a substitution I' such that § = XTI’

Details about unification algorithm can be found in [11]

Definition Let G be «— Ay, ..., A, ..., Ar and C be A <« By,..., Bq. Then G’ is derived from G
and C using mgu 6 if the following conditions hold:

(1) A, is an atom, called the selected atom, in G.

(2) 6 is an mgu of A,, and A. (3) G’ is the goal «— (A, ..., Am—1,B1,..., By, A1, ..., Ap)8 G’ is
called a resolvent of G and C.

SLD-resolution stands for SL-resolution for Definite clauses. SL stands for Linear resolution
with Selected function.

Definition SLD-derivation

Let X be a set of clauses and C a clause. A derivation of C from X is a finite sequence of clauses
Ry, .., Ry, = C, such that each R; is either in ¥, or a resolvent of two clauses in {R1,..., R;—1}. If
such a derivation exists, 3 -, C'. Thus C can be derived from .

SLD-refutation is a special case of SLD-derivation which derives empty clause [J.



2.3 Inductive Logic Programming

Inductive Logic Programming [I7][14] lies in the intersection of machine learning and logic pro-
gramming. As an machine learning technique, it has particular advantage in relational or structure
learning. Its representation scheme as logic program makes its learning results easy to understand.

The general problem setting for ILP is as follows [I7] . Given is background knowledge B and
examples E which comprises positive ET and negative E~. The aim of ILP systems is to find the
hypothesis H that the following conditions hold.

PriorSatisfiability. BANE™ EO
PosteriorSatis fiability. BANHANE- EO
Prior Necessity. B EET
PosteriorSuf ficiency. BAH[EE*

Prior Satisfiability requires the consistency in the given B and E; while Prior Necessity ensure
positive examples can be explained by background knowledge, otherwise, there is no need for
learning. The two posterior condition requires the learned hypothesis to cover all positive examples
while cover no negative examples.

Learning in ILP is essentially a search problem [I7]. The aim of ILP systems is to search through
hypothesis space to find the one holds for the two posterior conditions, while the huge search space
is a problem. The methods based on Inverse Entailment (IE) [I5] is one way to bound the search
space.

2.3.1 Inverse Entailment

IE[I5] treat induction as inverse of deduction, and compute hypothesis inversely as follows:

BA-EE -1 }-H
HE L

In Inverse Entailment, the search space is bounded by one most specific theory, denote it by
1. The IE-operator computing | varies amongst different IE-based ILP systems, but they all play
the role of bounding the search space. Incompleteness is a potential problem in the IE-operator.
The ILP systems based on IE are reviewed in later part.

After L is computed, the search space is bound by considering only the theories or clauses that
are more general than . This is done by refinement operator in the following subsection.

2.3.2 Refinement Operator

Clause refinement — Subsumption Lattice

Definition #-subsumption
clause C 0-subsumes clause D if there exists a substitution 8 such that D 3 C'0

Refinement operator was introduced in [24] for search a lattice of clauses ordered by #-subsumption.
The clause refinement can also be defined by relative subsumption [2I] and generalized subsumption
A -

Theory Refinement

As clause refinement can either be bottom-up or top-down, theory refinement can also be done
from either direction. Take the upward theory refinement [20] as example.

There are vary version of upward refinement operator defined for theory, but there are three
main possible operations. The combination of these three will lead to a refinement operator based
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on entailment:

1. Inverse resolution between two clauses in the theory

2. Subsumption for each clause in the theory which can be #-subsumption, relative subsumption
and generalized subsumption

3. Clause addition

After each refinement step, there is also cross product to account for dependency among clauses
in the theory. This cross product operation will greatly expand the search space.

Ordered Search Space

The search space generated by refinement operator is ordered either from general-to-specific or
specific-to-general[14]. The advantage of such ordering is the applicable of efficient pruning[15].
When one candidate hypothesis Hy is evaluated to have no compression, then those more specific
than Hj are certain not to get higher compression. Because they are more specific than Hy and
will not get higher coverage of examples. Thus the whole subspace of hypotheses that are more
specific than Hy can be pruned,

2.4 Multi-Clauses Learning

2.4.1 Multi-Clauses Learning Problems

Definition Multi-clauses learning problems If one learning problem needs more than one
hypothesized clause to explain each individual example, then it is a multi-clauses learning problem.

Note that "multi” does not refer to the number of clauses in the final learned theory, but
the number of missing clauses in the refutation sequence for individual example. There are two
situations that these two are different.

(1) Single clause in the final learned theory but used more than once in the refutation. This is
common in problems involving recursion. Such as the odd-even example[29], the target hypothesis
is actually only one clause, but it is used more than once in the refutation for the given example
odd(s(s(s(0))))-

(2) Multiple clauses in the final theory but only one of them is used in each refutation. This
happens because the relation among these clauses are disjunctive, and not every clause in the final
learned theory is used in the refutation for individual examples.

2.4.2 Limitation for Single-Clause ILP systems

Single clause ILP systems like Progol[15] and TopLog[I§] are unable to solve these multi-clauses
learning problems.

In Progol, this is due to its algorithm for building bottom clause. Bottom clause is conjunction
of ground literals, each of them is instantiated by calling themselves as a goal, that is, proved from
clauses in B. Therefore, in cases when another hypothesized clause or even more are needed to
succeed the goal, it will fail due to the absence of hypothesized clauses during learning.

In Toplog, it is the constraint that clauses in B cannot call clauses in T that prevent it from
solving multi-clauses learning problems.

The ability of Progol and TopLog to learn recursive concepts may be confusing. Recursive
hypothesis are composed of at least two clauses, one for base case, another for recursive case. Also,
both of these two clauses are used at the same time in the refutation, so it is a multi-clauses
learning problem. Then how can it be solved in single-clause systems? This is done by the trick
of reducing multi-clauses problems into single clause problems. Base clause is learned first from
examples about base case, that is, do not need recursive clause in refutation. After this newly
learned base clause is added to the background knowledge, the original multi-clauses problem is
reduced to a single-clause problem.
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However, this reduce method does not work all the time. In cases when examples about base
case are not provided, learning will be halted since it is not until the base clause is learned that the
recursive clause can be recovered. More importantly, not all multi-clauses problem can be reduced
to single-clause problem in this way, therefore it is crucial to have a generic algorithm capable of
solving multi-clauses learning problems.

2.4.3 Multi-Clauses ILP systems
CF-induction

CF-induction[8] is sound and theoretically complete for finding hypotheses. It is based on Inverse
Entailment and support full clausal logic.

BA-E |=CC(B,E) (2.3)
H = ~CC(B, E) (2.4)
(2.5)

Similar to bottom-clause in Progol, there is bridge-formula CC(B, E) in CF-induction to play
the role of bounding the search space. While in Progol the hypotheses considered are limited to
single clause, since only ground unit consequences are considered in building bottom clause.

In case of pure abduction, the bridge-formula CC(B, FE) is directly derived from the whole
set of NewCare(B,—-E, P). NewCarc(B,-E, P) denote the new characteristic clauses which are
newly derived when the seed example (new information) is added to the background knowledge B,
according to the production field specified by P.

The search space of abduction is much smaller than that of induction, because abductive hy-
pothesis are unit-clause, no generalization is needed. Therefore, SOLAR[I9] alone is enough for
abduction. SOLAR is one component called within CF-induction system for consequence finding.
It is a theorem prover based on SOL-resolution[7] .

Carc(BN—-FE)E-CC(B,E) (2.6)

For induction, the bridge-formula CC(B, E) can be derived from characteristic clauses Carc(BA
—F), which is consequences of B A =E. Unlike the bridge-formula in abduction which is the whole
set of NewCarc(B,—E, P), clauses in CC(B, E) are ground instances of the clauses that is a subset
of Carc(B A —FE). Thus further selection which not only select a subset of clauses, but also choose
the instances are needed after computing Carc(B A —F) using SOL-resolution. Unfortunately, this
selection process needs user-interaction. This problem has recently been studied in [30]. However,
full automation of this selection process is not achieved yet.

The selection process also have to take case of too strong bias in order to avoid excluding
correct hypotheses. For example, in the odd-even example given in [29] [§], if CC(B, E) is chosen
as: even(0) A (modd(s(0)) V even(s(s(0)))) A (—odd(s(s(s(0)))))
the learned hypothesis is H1 = odd(s(X)) < even(X).

However, another interesting hypothesis H2 will be ignored if only consider the above selection.

79 — {odd(s(X))%even(X)

0dd(X) « even(s(X))

H2 can be obtained by making a different selection as follows:
even(0) A(—odd(s(0))Veven(s(s(0)))) A(—odd(s(s(s(0))))Veven(s(s(s(s(0))))))A(—odd(s(s(s(0)))))
Note that there are two instances of the clause odd(X) V even(s(X)) in the above selection

After negation, the bottom formula becomes:
—even(0) V odd(s(0)) V odd(s(s(s(0))))

—even(0) V meven(s(s(0))) V odd(s(s(s(0))))
ﬂevenEO;\/odd( s(0 )2 —even(s(s(s(s (0())))) dd(s(s(s(0))))

—even(0) V meven(s(s(0))) V —even(s(s(s(s(0))))) V odd(s(s(s(0))))
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Then the first two clauses above will be generalized to the first clause in H2 as before, while
the third and fourth clauses above will be generalized to the second clause in H2 . H2 is a correct
theory which expresses the relation of predecessor.

The implementation of CF-induction also have difficulty in the generalization step. The search
space results from upward refinement operator is so huge that it is usually not completely imple-
mented. For example, clause addition is not considered. The undecidability of inverse resolution
also add complexity. Although it is proposed in [31] to replace the complex generalization with
single deductive operator, it has nothing to do with the huge size of search space, which is more
problematic.

Imparo and HAIL

Imparo[25] and HAIL[23] [22] are TE-based ILP systems. Imparo is the successor to HAIL.

The most specific theory that bound the search space are called kernel set in HAIL. Abductive
Procedure is applied first to compute a set of ground atoms A = «;...c.,, which explain the seed
example and form the heads of clauses in the kernel set. Then saturate procedure is applied to
each member of A to obtain the kernel set.

1 1
] < 1) 7"'75m1

o < 5711, ceey 5:}%

Figure 2.1: Kernel Set in HAIL

It is the incorporation of abudction that make the kernel set not limited to single clause as that
in Progol. However, the saturate procedure in HAIL is still purely deductive which is the same
as that in Progol. Thus HAIL will fail on the problems that need another or more hypothesized
clauses to explain the body atoms. Such as the example 1 given in [25]

Imparo extends on HAIL via a recursive inductive procedure. Induction on Failure (IoF) is
the proof procedure used in Imparo. The concept of secondary example is defined for the body
atoms that fail in the pure deductive procedure, that is, not direct consequences of the background
knowledge. For these secondary examples, IoF will recursively start a new inductive procedure
which has abduction followed by saturation. The recursive procedure continues until the base case
is reached, that is, the one can be explained by background knowledge alone, which is the same
as the pure deductive procedure in HAIL and Progol. Intuitively, for the atoms that can not be
directed explained by background knowledge, at least one more hypothesized clause is needed.
These recursively called clauses form the most specific connected theory denoted by 7' that bound
the search space.

Although Imparo improves on HAIL with enlarged range of solvable problems, it may encounter
problems when learning abductive facts and inductive rules at the same time. For example, learn-
ing the recursive concept of path-edge:

path(X,Y):- edge(X,Y).
path(X,Y):- edge(X,Z), path(Z,Y).

Suppose background knowledge B= {edge(c, d)},
M={modeh(x, path(+Node, — N ode)), modeh(x, edge(+Node, —Node),
modeb(x, edge(+Node, —Node)), modeb(*, path(+Node, —Node)}, and the target hypothesis in-
cludes both abdutive facts about edge and the inductive rules as above.

Given example path(a,b), A = {path(a,b)} after applying the abductive procedure. Then ap-

plying the saturate procedure, suppose trying modeb(*, edge(4+Node,-Node)) first, then the input
variable of predicate edge will be instantiated with ’a’. Since there is no edge in background knowl-
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edge start with node ’a’ like edge(a,c), the atom edge(a,Y) will fail with the deductive procedure,

thus IoF will recursively call edge(a,Y) as secondary example and start a new hypothesized clause

for it. Since the subgoal (secondary example) edge(a,Y) is non-ground, the hypothesized unit clause

edge(a,Y) is non-ground either, while ground term is required in this TE-based method. Similar

unground output variable will be encountered if trying modeb(*, path(+Node,-Node) first.
However, theories as following are candidate explanations for the example path(a,b).

tq
edge(a,c).
edge(d,b).
path(X,Y):- edge(X,Y).
path(X,Y):- edge(X,Z), path(Z,Y).
to
edge(a,sko).
edge(sko,b).
path(X,Y):- edge(X,Y).
path(X,Y):- edge(X,Z), path(Z,Y).

Note that the constant sko in ty is a skolemised term which invents a missing node [9]

Since it is the ground terms in the abductive facts that substitute the logical variable in the
subgoal, the absence of abductive facts lead to subgoal to succeed with non-ground substitution.
Therefore Imparo will encounter non-ground subgoals (second examples) when learning abductive
hypothesis. However, if it is a pure abduction problem, there is no problem since the abductive
procedure in Imparo will handle the binding of variables.

Similar to CF-induction, the generalization in Imparo and HAIL is incompletely implemented,
which consider only subsumption. Also, as an [E-based method, Imparo and HAIL suffer from the
redundancy problem in Upward Theory Refinement, which is analyzed in the following.

Redundant in Upward Theory Refinement

m(1).
xample = = e(1).
Example B Zg; E { ‘o
Cy:e(X) —m(X),n(X). C]:e(X) « m(X).
- Cy:n(X) —u(X),v(X). v Cy :n(X) «— u(X),v(X).
C3:u(X) « b(X). ! C3:u(X) « b(X).
Cy:v(X) « b(X). Cy:v(X) « b(X).

The theory t; on the left is one of the candidate theories in the search space. When the first
clause (1 is refined to Cf according to §-subsumption, the other 3 clauses Co, C5 and C4 remained
in the theory ¢} become unnecessary. Because the clause Cf alone is enough to explain the example
e(1) with background knowledge. In this case, ¢} is essentially redundant with t2, since they will
cover the same number of examples while | is more complex (has more numbers of literal).

Clause deletion which specializes the theory is not considered in the upward theory refinement,
thus ] will not have Cy, C5, Cy deleted to become t2. On the contrary, the upward theory
refinement will keep on refining on Co, C5, C4 to derive theories like the following t”; which are
also redundant with t2. The cross product operation will further expand this redundancy.
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C”1re(X) — m(X).
C"9:n(X) «— u(X).
C3:u(X) < b(X).
Cy:v(X) « b(X).

Even if C2 is in the background knowledge, that is, B becomes B’. It appears that the refinement
of C1 1 to C will not make the existence of C3 and C4 unnecessary as previous example. However,
since C7 is no longer connected to the clause Cy in the background knowledge, it also disconnects
with C3 and C4, thus still redundant with ¢,.

Example B = ZE

Cy:e(X) —m(X),n(X). C}:e(X) «— m(X).
ts = C3:u(X) <« b(X) th = Cs :u(X) « b(X).
Cy:v(X) «—Db(X) Cy:v(X) < b(X).

The redundancy discussed above will not be small due to the cross product operation which
dramatically expand the search space.

Top-down ILP systems

Contrary to the above IE-based methods, the two ILP systems reviewed in this section both start
with a overly general theory and are refined downwardly. Another difference is that they are based
on generate-and-test, rather than example-driven as IE-based methods.

HYPER[2] starts with a overly general theory which can have multiple clauses. However, the
downward refinement operator in HYPER considers only subsumption, thus the numbers of clauses
in the learning theory is fixed.

The numbers of clauses in the learning theory is not fixed in SPECTREII]. In addition, the
theory refinement in SPECTRE is based on entailment, clause deletion is also considered. Start-
ing with a overly general theory, SPECTRE keep on unfolding clauses in the initial theory until
no negative examples is covered while all positive examples are covered. As a generate-and-test
method, SPECTRE use information gain as heuristic, which is similar to FOIL, to decide which
literal to unfold. The disadvantage of SPECTRE are:

(1) It needs to be provided a overly general theory to start with.
(2 ) It makes no key distinctions between T and background knowledge, which leads to problems
in learning recursive programs in the early version of SPECTER.

Explanation-Based Generalisation (EBG)

TDTD share several similarities with EBG[10]:

(1) Search for refutation for the individual example at the initial stage of learning;

(2) Having terminal and non-terminal predicates (it is called operational and non-operational pred-
icates in EBG)

However, the key difference is: EBG is essentially deductive learning, which is essentially knowl-
edge compilation that aim at speeding up program performance; while TDTD is inductive learning.
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B = hasFeather(a)

H = bird(X) « hasFeather(X) £ = bird(a)

Figure 2.2: Bird example

2.5 Abduction, Induction and their integration

2.5.1 Deduction, Abduction and Induction

Deduction is based on the sound inference rule. In fig E = bird(a) can be derived from B and
H according to Modus Ponens or Resolution.

Unlike deduction that has sound inference rule, abduction and induction are empirical. Both
of Abduction and Induction can be viewed as inverse of Deduction, while abductive hypothesis
is about ground or existentially quantified facts which requires minimal answer, and inductive
hypothesis is about general rules. For example, in fig , B=hasFeather(a) can be abduced from
given example bird(a) with the general rule H. The general rule H = bird(X) < hasFeather(X)
can be induced from the given example bird(a) with the ground fact B = hasFeather(a).

2.5.2 Integration of Abduction and Induction
Necessity for Integration

”Observation Predicate Learning” (OPL)[I6] is a usual Machine Learning setting, in which only
hypotheses that define the same predicate with examples are learnable. Therefore, learning hypoth-
esis defining non-observable predicate requires integrating abduction into ILP systems. In addition,
theory completion[l0] as a task of recovering the incomplete theory T after observing examples E
need to learn both abductive and inductive hypothesis.

Cycle Integration

bl : 5(S1,52) : —np(S1,S3),vp(S3, 54),np(54, S2).
B _ b2 : np(S1,52) : —det(S1,53),ajd(S3,54), noun(S4,52).
N b3 : vp(S1,S2) : —verb(S1, S2).
B - { el : s([the, small, dog, hits, a, big, balll, []).
N e2 : s([a, dog, hits, a, ball], []).
g o— { H1 :np(S1,52) : —det(S1,.53), noun(S3, 52).
N H?2 : noun([dog|R], R).

The integration of abduction and induction has been extensively investigated from different
perspective.[6] One of them is cycle Integration which has successful applications[16] [28]. Cycle
Integration alternates between abduction and induction, which forms a cycle, so that the incomplete
theory can be recovered incrementally. Here is one example.

Suppose H is the target hypothesis which comprises both abductive fact and inductive rule.
Learning this problem need applying abduction first for example el. It is not until H2 is learned
that H1 can be learned from given example e2. In addition, learning process will be halted if
clause b2 is not in the background knowledge, since abductive procedure has no rule to carry out
abduction.
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Chapter 3

Top Theory as Declarative Bias

Declarative bias defines the hypothesis space. In TDTD, it is explicitly specified by Ttheory, which
is a logic program. The advantages of using T theory to represent the declarative bias are[18]:

(1) Having all the expressive power of a logic program

(2) Can be efficiently reasoned with using standard logic programming techniques.

(3) Make the declarative bias itself learnable[3] due to its form of logic program

This chapter gives details about T theory in TDTD. It compares T theory in TDTD to a
context-free grammar, and explain how to derive each hypothesized clause with the grammar-like
T theory. Also, it is proved that this grammar (T theory ) is complete with respect to the hypothesis
language.

3.1 Grammar like T theory

There are terminal and non-terminal symbols in a context-free grammar, correspondingly, there
are terminal and non-terminal literals in T. Terminal literals are of which the hypothesized clause
is composed; while the non-terminal literals will not appear in the hypothesized clauses, but they
are used for control purposes within T, such as, connecting terminal literals and binding variables.
Each head clause or body clause has one terminal literal and is responsible for the predicates
appeared in the derived clause. If no function symbols, the head clauses and body clauses are
enough for composing the hypothesized language; while other clauses with purely non-terminals
are responsible for binding the variable with function term or pervious appear substitutions.
There are three requirements on the specification of T theory:

1. Non-terminal literals can not appear in clauses in B or E, this ensure the clear distinction
between the T and B.

2. At least one non-terminal literals appear in each clause of T, otherwise it can not resolve
with other clauses in T to compose hypothesis language. One exception is those for abducible
predicates, they are unit clause, so only one terminal predicate.

3. At most one terminal literal is allowed in each clause of T, so that each clause is a basic unit
for composing hypothesis language.

Note here is no constraint that any predicate appearing in the head of some clause in T must
not occur in the body of any clause in B, which essentially avoid clauses in B to call clauses in T.
Actually, it is this constraint that prevent TopLog from learning multi-clauses problems.

3.1.1 Head Clause and Body Clause

These clauses with one terminal literal are directly relevant to its composing language, since it
contains the terminal literals that will appear in the language. According to whether they are head
and body of derived, they can be further distinguished as Head clause and Body clause.
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Definition Head Clause
Head Clauses in T are those having terminal literal as head.

Head clause is similar to the modeh in mode declaration. It corresponds to the head of derived
clauses. It is the only type of clauses in T that have terminal literal at head.

Definition BodyClause
Body Clauses in T are those having terminal literal as one of its body literals.

Body clause is similar to the modeb in mode declaration. The terminal literal in the body
clause will become the body of derived clauses. Body clauses always have non-terminal literal as
head, denote it by the predicate of $body.

The following figure is an example given in [I§].

T1 : mammal(X) < $body(X)

Ta : $body(X) « has milk(X), $body(X)
T3 : $body(X) « has_eggs(X), $body(X)
Thto : $body(X) —

modeh(mammal(+animal)).
modeb(has_milk(+animal)). T =
modeb(has_eggs(+animal)).

Figure 3.1: Mode declarations and corresponding T theory

T1 is a head clause, while T and T3 are body clauses. There is no function symbols in this
simple example and only unary predicates, thus this simple T theory is enough to derive clauses
as following. Details about deriving clauses will be given in next section

C; : mammal(X) < has milk(X), has_eggs(X).
C5 : mammal(X) < has milk(X).
C3 : mammal(X) < has_eggs(X).

3.1.2 Non-Terminal Literals

This section introduce each non-terminal literal in T according to their roles in composing language.
Although these non-terminal literals will not appear in the final composed language, they are
actually important for binding the variables in the derived clause.

Connecting Terminal Literals: $body

Let $body denote the non-terminal literal responsible for connecting terminal literals.
By resolving the pair of $body predicates, two terminal literals are connected into the same
clause. Such as resolving T; and T3 in fig will result in concatenating two terminal literals into

the same clause as follows
mammal(X) < has_milk(X), $body(X)

Since it is responsible for connection, the information shared among terminal literals are prop-
agated through this predicate, such as variable binding.In case of unary terminal predicates, it
can simply propagate that single variable like $body(X). While in non-unary case, variables or
constants appeared need to be collected so that input variable of later predicate can be bound to
them. Therefore, the variables in the predicate $body are lists that store all the terms appeared,
such as $body(InputSoFar, BodyVars). Here are two variables, InputSoFar as input variable
store those appear so far, whileBodyV ars is output variable that will return all the terms appear
in the body of clause.

There is one nullified clause composed by this predicate alone T, : $body(X). It has no effect
for terminal literals in the derived clause, but it is still required for resolving away the remaining
predicate $body in the deriving clause, so that the non-terminal predicate $body will not appear in
the final derived clause.
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Binding with function term: $bind

The T theory for binding the variable with function term is specified in fig[3.2] Lemmas [3.1.1] and
3.1.2| prove that this T theory is complete with respect to binding function term with any depth,
respectively for ground and non-ground term. Let s denotes arbitrary function symbol.

Lemma 3.1.1 The ground function terms with any depth can be derived by T, and T 3.

Proof (1) Base case: Ty : $bind(0,0).

(2) Assume ground term with depth of k can be derived, that is $bind(s¥(0),0) can be derived.
Then ground term with depth of (k+1), that is $bind( s**1(0),0) can be derived by resolving
$bind(sk(0),0) and T,z3. [}

Lemma 3.1.2 The non-grounded function terms with any depth can be derived by T o and T pi3:

Proof (1)Base case: T2 : $bind(X, X).

(2) Assume non-ground term with depth of k can be derived, that is $bind(s*(X),X) can be derived.
Then non-ground term with depth of (k+1), that is $bind( s**1(X),X) can be derived by resolving
$bind(s4(X),X) and Toes. |

Tt - $bind(0, 0).
Theo : $bind (X, X).
Thts : $bind (X, Z) «— X=s(Y), $bind(Y, Z).

Figure 3.2: T theory for binding variable with function term

T1:0dd(X) « $bind(X,Y), $body(Y)
T = T2 : $body(X) « even(X), $bind(X,Y), $body(Y)
Thto : $hody(X) «—

Figure 3.3: T theory for odd-even example

Here is one example using $bind. Following the SLD-derivation sequence of [T1, T3, Tne2, T2, Tne2s 1 nto),
the clause odd(s(X)) « even(X) will be derived.

Binding for Input Variables: memberBind and inputUpdate

In IE-based method, the input variables of each predicate in modeB are instantiated with previous
appeared ground term which is of the same type, then the list of previous appeared is updated with
its output variable after it succeeds with ground substitution. It is similar here since the terminal
predicate in the body clause corresponding to the predicates in modeB. Therefore, before calling the
terminal predicate in the body clause, it is unified with previous appeared term by logic program of
member Bind; after it succeeds, its output variables are used to update the list of InputSoFar by
logic program of inputUpdate. Logic programs about member Bind and inputUpdate are specified
in fig 34

Here is one example [3.5] using member Bind and inputUpdate. In body clause T3, before
calling the terminal predicate edge, its input variable is bound by member Bind. After the subgoal
of predicate edge succeeds, inputUpdate will update the list of InputSoFar with the substitution in
the output variable of edge. In head clause T1, the output variable of path is bound to one of the
variables in the Body which is returned in the list of BodyVars. Then the variables in the clause
are connected together.

Note that the difference here with IE-based method is that the substitution is not necessarily
ground. member Bind and inputUpdate only bind the variables in the clause together, while no
requirement of ground term. For example, when the facts about predicate edge are missing, it
will be replaced in the refutation for example path(a,b) by non-ground clause T, to denote one
abductive hypothesized clause. Then the subgoal of edge will succeed with non-ground substitution
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Thta : memberBind (X, [X|]).

T s : memberBind (X, [Y|List]) : —
X #Y,
memberBind (X, List).

T @ inputUpdate(X, [], [X]) : =

Tpe7 - inputUpdate(X, [Y|InList], [X|InList]) : —
X ==Y,

T @ inputUpdate(X, [Y|InList], [Y|NewInList]) : —
inputUpdate(X, InList, NewInList).

Figure 3.4: T theory for binding variable with previous appeared term

T1:path(X,Y): —
$body([X], BodyVars),
$memberBind(Y, BodyV ars)

To : $body([InputSoFar, BodyVars]) : —
$memberBind([X], InputSoFar),
path(X,Y),
inputUpdate(Y, InputSoFar, N Input),
$body ([N Input, BodyVars]).

Ts : $body([InputSoFar, BodyVars]) : —
$memberBind([X], BodyVars),
edge(X,Y),
inputUpdate(Y, InputSoFar, N Input),
$body ([N Input, BodyVars)).

Thto : $body(BodyV ars, BodyV ars).

Ta1: Sedge(X,Y).

Figure 3.5: T theory for path-edge example

as edge(a,Y), and update the list of InputSoFar with non-ground Y. Although it is non-ground, it
is bound with other variables through member Bind and inputUpdate. 1t is this difference make it
possible for TDTD to learn both abductive and inductive hypothesis at the same time.

Lemma 3.1.3 The input variable of body predicates can be bound to any term appeared before it
by Tnea and T s EI

Proof (1) Base case: T : member Bind(X, [X])) Input variable can be bound to the first element
in the list.

(2) Assume input variable can be bound to kth element in the list, then there will a sequence
as [nt5, nt5, nt5, nt5,...nt5, nt4 | to answer the goal memberBind(X,[... Xk— Rest]).

By resolving this goal with Tnt5, another element is added at the head of the list, thus there
is k+1 element before X. Therefore, X is bound to the (k+1) element in the list. [

3.2 Composing hypothesis language

3.2.1 SLD-resolution: non-unit clause

Composing the language by grammar is to connect the terminals while remove the non-terminals.
For the grammar like clauses in T theory, the non-terminals are removed by resolution. The focus
of current system is definite clause, thus SLD resolution is used for refutation of positive examples,
correspondingly, the SLD resolution is used for deriving hypothesis language.

Lthis predicate has the same effect as the build-in predicate member
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Let Dc denote the SLD-derivation sequence for clauses. Dc is extracted from SLD-refutation,
and it preserves the same order as that in the SLD-refutation sequence. The detail of SLD-derivation
can be found in section 77 and corresponding reference.

The following lemmas show and prove the proposition of the SLD derivation of hypothesized
clause

Proposition 3.2.1 All and only non-terminal literals are resolved in the SLD derivation for non-
unit hypothesized clause.

Proof (1) prove all

Suppose there is one-terminal literal that not resolved. Then it will appear in the composed
language, thus disobey the requirement that non-terminal predicate can not appear in the derived
language.

(2) prove only

Assume terminal literals are resolved, then it will contradict the their property as terminal.

3.2.2 Subsumption: unit clause

The hypothesized clauses about abducible predicates are unit. It is also ground or existentially
quantified, rather than universally quantified.

The SLD-resolution alone is not enough to derive all the hypothesized clauses, such as those
about abducible predicates. This is due to the fact that SLD-resolution is only refutably complete,
but not deductively complete. According to the sumption theorem[20], this can be solved by
augmenting with subsumption

Since abduced hypothesis is ground or existentially quantified. Substitution or skolemization is
applied for derivation. It gets its variables bound from the refutaion

No matter whether the hypothesized clause C is derived by SLD-resolution or subsumption, it
always holds for T = C.

3.3 Completeness with respect to hypothesis language

Since the T theory defines the search space, it is important that all the clauses in the hypothesis
language can be derived from it, so that it is not at risk of excluding candidate hypothesis.

The following proves first that every clause with any length can be obtained by the T theory
in fig then by adding non-terminal literals about binding variables to where it is needed, all
the binding of variables within the clause can be achieved. Thus all the non-unit clauses in the
hypothesis language can be derived from the T theory in fig

Assume the problem setting of arbitrary numbers of predicates with arbitrary numbers of argu-
ments. The numbers of input and output variable in each predicate is also arbitrary. All variables
are standardized apart and no binding among any of them. Assume the T theory for this general
case is as that in fig Let predicate head denote the head of derived clause, and bp; denote the
body predicates.

To : head(Xhy, Xho, ..., Xhy, ) < $body(List)
Ty : $body(List) < bpl(X 1 oes X2 n1s Xdt1s oo X2 1), Sbody (N List)

To : $body(List) < bp2(X2,1, s X2 nos X2ut1s s X 2ino)» Sbody (N List)

T : $body(List) «— bpM(XM, ..., XM XM XM ), $body (N List)
Thto : $body(List).

Figure 3.6: One generic T theory without variable binding

Corollary 3.3.1 There is at least one unit clause in the SLD refutation.
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( T() : head(Xhml, ceey XhinNiu Xhouﬂ, ceeny XhoutNh) —
$b0dy([Xhm1, cevy Xhm]vh], BodyVars),
memberBind (X hoyp17, BodyVars), $bind(X howr1rs X hout1)s -+
member Bind(X hoynn, BodyVars), $bind(X houtnn s X PoutNn)-
T1 : $body(InputSoFar, BodyVars)
memberBind (X; 1,, InputSoFar), $bind(X m1'> Xt
memberBlnd( L w1 InputSoFar), $bind( X}, vy, lean)
bpl( znl? e lenND Xolutl’ B X(}utNl)
inputUpdate(X 2,1, InputSoFar, N Inputs; ), ..., inputUpdate(X L, yq, NInputsourni—1, -
T = $body(N Inputs, BodyVars).

T : $Sbody(InputSoFar, BodyVars) «—
membeerd(X%l,, InputSoFar), $bind(XM,,, XM), ..
memberBind (XM, InputSoFar), $bind( XM, X%Nl),
bpM(XF, .oy X%NM? Xoutts -+ Xoun ),
inputUpdate(X, Ouﬂ, InputSoFar, NInputsy), ..
inputUpdate(XM N NInputsouennr—1, NInputs)
$body (N Inputs, BodyV ars).

Theo : $body(BodyV ars, BodyV ars).

Figure 3.7: One generic T theory with Binding

Proof Suppose there is no unit clause in the refutation. The length of derived clause by resolution
never decrease, thus empty is not derivable, which contradict that empty is derived at the end of
refutation. |

Lemma 3.3.2 All the clauses composed of Predicate=[head, bp1, bp2, ... , bpm] without variable
binding can be derived from the T theory in the fig[3.4 .

Proof proof by induction on the length of clause

1. Base case: All unit clause can be derived. By resolving T1 and T4, non-ground unit clause
head(Xhy, Xho, ..., Xhy). can be derived.

2. Suppose theorem holds for clause with length k, and there is a corresponding derivation
sequence Dy, for it.

According to Lemma the only unit clause T, must be in the derivation sequence for any
clause. Replace it with T;(2 < i < M) and T4, then another terminal literal in T;(2 < i < M)
is added to the derived clause, therefore, its length is increased to k+1.

Therefore, all the clauses composed of Predicate=[head, bpl, bp2, ... , bpm] can be derived

Theorem 3.3.3 Complete T theory with respect to hypothesis language
All the non-unit clauses composed of Predicate=[head, bp1, bp2, ... , bpm] with any binding can
be derived from the T theory in the fig[3.7, together with those in fig[3.4 and TefvBind.

Proof. By lemmal[3.3.3, clauses like head : bpl,bp2, ..bpar can be obtained, but there is no binding
in its variables.

Add non-terminal literals about binding variables to where it is needed as in fig[3.74 In head
clause, the list that store terms appear so far are initialized with the substitution of input variables
in the head; when all the terms appear in the body of clause is returned in BodyVars, the output
variables in the head are bound to them by memberBind. In body clause, the input variables of
terminal literal bp; are unified with previously appeared term, function term can also be added if
necessary ($ bind(X,X) will be used if no function symbol).

According to lemmal[3.1.1],[3.1.3 and [3.1.3, they are complete for binding variables together and
also with function terms, therefore, non-unary clauses with variable binding together can be derived

from fig[3.7 .
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Therefore, the T theory specified in fig is complete with respect to the given hypothesis
language.

Note that T theory in fig 3.7 is a general case applicable for all. It can be simplified by
removing $bind if it is a problems setting without function symbols. Similarly, member Bind and
inputUpdate are not necessary in case that variable binding is fixed, such as unary predicates or

continuous connected like that in grammar learning example.
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Chapter 4

Top Directed
Theory Derivation

This chapter gives the algorithm for addressing the issue of bounding search space. Example-driven
algorithm is ideal for bounding search space, since the efficiency is gained without the trade-off
for completeness. In example-driven algorithm, only hypotheses hold for the equation EI are
generated, thus the search space is bounded. But how to derive only these candidate hypothesese?

BANH =E (4.1)

One way is through Inverse Entailment (IE). IE treat induction as inverse of deduction, thus
inversely compute bottom formula.Then all the hypothesese in the subsumption lattice bound by
bottom formula, that is, those are more general than bottom formula, hold for equation. But
there is a dangerous of incompleteness in the defined IE operator. Such as in the one implemented
in Progol, only hypothesese with single clause are derivable. In addition, even if the IE operator
defined is complete, the search space bound by bottom formula is still so huge that only incomplete
search at generalization step is performed.

On the contrary to IE, candidate hypotheses are derived deductively in TDTD. They are ex-
tracted from the refutation for positive examples. It sounds impossible at first instance. Since H
is unknown and on the left hand side of equation, then how can refutation for E be possible
without knowing H beforehand? However, it is realized in TDTD by replacing the hypothesized
theory with its grammar version in the refutation, and then derive itself from this grammar version.

Benefitting from the completeness of deduction, which is proved in subsumption theorem[20],
TDTD no longer suffers from the incompleteness issue in IE, but delegates the completeness issue
to the T theory. Also, under the multi-clauses learning setting the search space bound by TDTD
is smaller than that by bottom formula, as explained in section [4.5]

The following diagram on the left of fig illustrates the role of TDTD in the whole ILP
system, that is, bound the search space before starting search. The diagram on the right of fig
gives the framework for the TDTD algorithm, and the table E}about TDTD algorithm gives
more detail. It is similar to the framework introduced in [18] on which this project is extended.

In the following sections, details about the TDTD algorithm are given first, then the soundness
and completeness of TDTD are proved.

4.1 SLD refutation for positive example

4.1.1 Replaceability of Grammar Version

As discussed in section bias free learning is futile. Therefore TDTD start with the declarative
bias which assume that the target hypothesis H exists in the language specified by T. Since in ILP,

"Hypothesis H is a theory which can be multi-clauses or single clause, it is the union of theories t that account
for each individual example. E denote all the examples, which is contrary to e which denote individual example
2Step 0 in the table does not belong to TDTD, but input to it
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Declarative Bias T
B and E

SLD-refutation
for positive examples

4L
Multiple Derivation sequences
Extraction

[]
4L
Derivation
SLD-resolution and Subsumption

IDTD

Bound

Search Space
]

Control Search

Figure 4.1: TDTDframework

Provide declarative bias T, as well as B and E to the TDTD system

Search for SLD-refutation of —e with T and B, and obtain refutation sequence R
Reorder and Extract multiple derivation sequences Dy, from R

Derive candidate hypothesis according to the Dj, obtained in step(2)

using SLD-resolution and subsumption.

W

Table 4.1: TDTD algorithm

the target hypothesis H holds for equation(4.2))’| and all the clauses derived from T meet equa-

tion(4.3), TDTD start with the assumptions of equation(4.2)) and equation(4.3]). The lemma
proves that given these two assumptions, refutation for each positive example exists. From the per-

spective of grammar interpretation, this lemma justify that, the grammar version of hypothesized
clause can take up the place where it is needed in the refutation for positive example.

BAt e (4.2)
TEt
Lemma 4.1.1 Replaceability of Grammar Version. [1§/ E]

Assumptions and hold only if for each positive example e € E there exists an SLD
refutation R of —e from T, B.

Proof. Assuming there is no SLD refutation of —e from TandB.

According to , the following holds.

TABEBAt. (4.4)
Then from and it follows that for each positive example e € E
T,BEe. (4.5)

According to and that SLD-resolution is refutably complete [11] it follows that there exists
an SLD refutation R of —e from T,B. This contradicts the initial assumption, thus completes the

proof. |}

3t denote a subset of final theory H and e denote individual example
“4this lemma is called Example derivability in [I§]
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4.1.2 Subgoal succeed with non-ground substitution

Different with the IE-based method that require all ground terms in building 1, TDTD allow
subgoal to succeed with non-ground substitution during the refutation. There are 2 situations as
follows.

1. The non-ground term will finally be grounded by the binding propagated back from later
resolving. When unifying with the ground substitution in the output variable of the seed example,
such as 2%100+(30+2) in the given example wordnum([two,hundred,and, thirty,two,[],2*¥100-+(30+2) 7|
The unground variable D in the subgoal hundred([two,hundred,and,thirty,two|, [and,thirty,two],
D*100) and digit(two, D) will finally be grounded to 2 in the expression 2*100+(30+2) by the
binding propagated back. Thus the abducible fact digit(two, 2) is obtained.

2. The non-ground term is still left ungrounded and requires skolemisation. Such as the path-
edge example used before. edge(a, X) A edge(X,b) with X universally quantified is a suggested
explanation, while minimal answer is required in abductive hypothesis, therefore, further skolemi-
sation is needed in order to derive abductive hypothesis.

4.2 Multiple Derivation Sequences Extraction

4.2.1 Problems in Multi-clauses Extraction

After refutation is found, the next question is how to extract multiple derivation sequences from
the refutation sequence R. Unfortunately, it is not as easy as that in single-clause learning. Under
the assumption of single-clause learning, all clauses in T that appear in R belong to the single
hypothesized clause. However, in case of multiple sequences, how to isolate them from R become
a problem. Such as in fig[4.2] the refutation sequence for odd(s(s(s(0)))) is
[T1,Tnt3,Tnt2,72, B2,T1,Tnt3, Tnt2, T2, B1, Tnt2, Tnt0, Tnt2, Tnt0],
from which we can see
(1) Each Dci [T'1, Tnt3, Tnt2, T2, Tnt2, Tnt0] is not continuous but scatter in R.
(2) No obvious separation. Clauses in B seems to be a choice, but actually they are not ideal for
separation.
[T1,Tnt3, Tnt2, T2, —,T1,Tnt3, Tnt2, T2, —, Tnt2, Tnt0, Tnt2, Tnt0]
Neither [T'1, Tnt3, Tnt2,T2] nor [T'nt2, Tnt0, Tnt2, T'nt0] will derive a complete clause.

Then how to gather and correctly separate sequences? Let’s go through one example in fig to
see how does the extraction strategy proposed in the project work, and then justify the correctness
of this extraction algorithm.

Example Section

Now let’s start from the negation of odd(s(s(s(0)))). First, it calls the head clause T1 in T, which
is a start point for a new hypothesized clause, thus initiate a new list Dcl to record it. Next
subgoal has non-terminal predicate, so collect the clause Tnt3 matches that subgoal. Continue
until terminal predicate even is encountered. This is going to call either clauses in B or another
new hypothesized clause, in a word, it won’t belong to the current collecting sequence. Due to the
left-first computation rule in Prolog, query for that terminal subgoal even(s(s(0))) is executed first.
Thus collection for Dcl is temporarily paused here.

However collection for other Dci continues. Now it is a clause in B that is called. Since we are
only interested in extracting clauses in T, B2 which is labeled in black is not recorded. The next
subgoal is one terminal literal again, but it call one head clause, thus initiate another new list Dc2
for it. Then collection carries on as before until the subgoal calling head clause is succeed (END
sign in the fig [4.2).

Finally, two sequences are extracted. They are

This is number example given in [16]
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P

—E: odd(s(s(s(0))))

.......... )y RN NS
INITIALIZE @ 0dd(X/s(s(s(0)))):— $bind(X,Y).$body(Y/s(s(0))). END

$bind(s(X),Y):— $bind(X,Y).

@ $bind(X X).

body(X/s(s(O))):— even(X/s(s(0))),$bind(X,Y/X),$body (X/X)).
PAUSE

‘m ven(s(X)):— odd(X/s(0)). @. $bind(X X)

INITIALIZE \ odd(X/s(0)):~ $bind(X,Y),$body(Y/0). END

@ $bind(s(X),Y):— $de(X,Y).

@ $bind(X,X).
@ body(X/0):— even(X/0) $bmd(X Y/X)$ body(Y/X

PAUSE. | N\ ooeeenns l @ @ $body(X).

\
Ven 0.

AN

Figure 4.2: Applying Multiple Sequence Extraction Algorithm for Odd-Even Example

$b0dy(X)
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[T1, Tnt3, Tnt2, T2, Tnt2, Tnt0land|[T1, Tnt3, Tnt2, T2, Tnt2, Tnt0[]

Each of them still preserve the same order as that in the refutation sequence R. Actually, they are
nested relation, rather than random scatter

[T1,Tnt3, Tnt2, T2, —[T1,Tnt3, Tnt2, T2, —, T'nt2, Tnt0], Tnt2, Tnt0]

4.2.2 Extraction Algorithm and its Correctness Prove

Collect along the refutation:

1. Start Point: head clause is sign for a new hypothesized clause.
2. Middle: collect only if it is clause in T with non-terminal predicate as head.
3. End: the same as the subgoal that calls head clause

Table 4.2: Multiple Sequence Extraction Algorithm

The SLD derivation sequence D.i preserve the same order as that in the refutation R, so the
collection for each Dj, follow along the refutation. In order to collect for each Dy, its start and
end point should be identified. Also during the collection, it should be able to identify which one
belongs to it while which one should be ignored. The following 3 rules solve these problems and
compose the algorithm for multiple Dy, extraction.

Let HC}eqq denote the head of hypothesized clause. Record each Dj in a list and collect it
along with the refutation for positive training example:

(1) Start rule. Whenever a head clause is encountered in the refutation sequence R, according
to the following proposition [4.2.2] it marks the start point for a new Dj. Therefore, a new list is
initialized to record the Dj, start with it.

(2) Middle collection rule. During the collection, only clauses in T with non-terminal predicate
as head are recorded; while ignore if its head is terminal predicates, that is, clauses in B and head
clauses in T are ignored. This middle collection rule is based on the proposition that only resolution
between non-terminal predicates happens in the SLD derivation of hypothesized clause. Therefore,
the collection should skip the refutation sequence for the subgoal of terminal literals.

(3) Stop rule. Collection for Dj, with HCheqq as head finish when the refutation for subgoall
+— HCl}eqq finishes.

The following corollary and propositions prove the correctness of above extraction algorithm.

Corollary 4.2.1 The clause derived by SLD-resolution has the same head as that of the first clause
in the derivation sequence

Proof Assume they have different head, then the head of first clause must be resolved away,
otherwise, there will be two positive literals in the resulting clause which contradicts the definition
for Horn clause.

Since the head literal is positive, there should be a negative literal in one input clause to resolve
with it. However, this contradict the the computational rules of SLD which requires resolving with
the head of input clause which is positive.

Therefore, they should have the same head. |

Proposition 4.2.2 One clause in the refutation sequence R is the start point for the derivation
sequence Dy, (first clause in Dy ) if and only if it is a head clause in T

Proof (1) if part. (if head clause, then must be start point) Assume it is not the first clause
in the SLD derivation sequence Dy, then according to the definition of SLD derivation, as input
clause, the head of this head clause should resolve with the previous resolvent. Since the head of
head clause is a terminal literal, this contradict to the proposition that only resolution between

5Tt is the case that the same hypothesized clause is used twice in the refutation, therefore the two sequences are
the same, so after removing duplicates, only one clause remains in derived theory t: odd(s(X)):- even(X)
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non-terminal predicates happens during the derivation. Therefore, head clause can not appear else
where except the start point.

(2) only if part. (top clause must be head clause) According to the previous corollary, the
derived hypothesized clause has the same head as that of the first clause D;. The head of derived
clause is a terminal predicate, therefore the first clause in the derivation must be a clause with
terminal predicate as head. Since the only clause in T that has terminal predicate in head is the
head clause, the first clause in the derivation must be head clause. [ |

Proposition 4.2.3 Collection for SLD derivation sequence Dy, whose derived clause has HCheqq
as head should stop when the refutation for subgoall «— HCheqq finishes.

Proof Prove by refutation: suppose this proposition is not correct, then there are two possibilities:

(1) collection for Dy, is still unfinished when the end of refutation sequence Rh is reached This
means there are elements in Dj that is not in Rh. However, D; essentially derives from the
reordering of Rh, and is a subset of it. Therefore, the assumption that there are elements in Dy,
that is not in Rh will contradict the fact that Dy, is a subset of Rh.

(2) another situation is over finished, that is, the collection over collect that not belong to it,
but to other Dps. Suppose that there are elements in collection that not belongs to the collecting
Dy, but other Dys.

Dy, = Dy Doyer, let Dyyer denote the part that is over collected and belong to other Dy,.
According to the proposition the first clause in Dg,er must be a head clause with terminal
predicate as its head, this contradict the middle collection rule that only clauses with non-terminal
heads are collected and recorded. Therefore, over collection will not happen. |

it is the assumption come from declarative bias, but not arbitrary reorder — it is the specific way
of SLD derivation that ensure the correctness whether the derive holds remains to be a question.
by reorder and resolving the non-terminals, the derived still

let R denote. reordering theorem. if there is a refuation, then R derive from the

4.3 Hypothesized Clause derivation

After the derivation sequence is extracted, the candidate hypothesis can be derived by applying
the SLD resolution on non-unit sequence or subsumption on unit ones.

This part is actually composing the hypothesis language with grammar, so the same as that in
the section of last chapter.

4.4 Soundness and Completeness of TDTD

Theorem 4.4.1 Soundness of TDTD The theory tE] holds for equation if it is derived by
the TDTD algorithm

Proof. Assume the theory t derived by the TDTD algorithm does not hold for equation , that
18, there is no refutation of e by clauses from t and B.

Theory t is derived by TDTD, so at the first step of its derivation, there is one SLD-refutation
of —e via R.

(1) Non-unit hypothesized clause is derived by applying SLD-resolution to the derivation se-
quence extracted from R.

According to the independence of computation rule of SLD-resolution, empty is still derivable
after reordering R. Therefore, there are pairs of complement literals among the clauses appeared in
R.

According to the proposition that all and only non-terminal literals are resolved during
this derivation, only pairs of non-terminal literals in T are resolved away.

"t is related to individual examples, and it is a subset of final theory H which covers all examples
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Since non-terminal literals do not appear in clauses in B, thus the other pairs of terminal literals
are not affected, thus there are still paris of complement literals left if replacing all clauses in T
that appear in R. Therefore, empty is still derivable.

(2) Unit clause gets its variables substituted as that in the refutation, so the refutation R is not
changed if replace the clause in T with this grounded version, thus empty is still derivable.

Therefore, there is one refutation of e by clauses from t and B. Thus t holds for equation

Theorem 4.4.2 Completeness of TDTD Provided that the given T theory t is complete with
respect to hypothesis language,
the theory t holds for equation only if it is derived by the TDTD algorithm

Proof. Assume the theorem is false, that is, there is one theory t holds for equation but can
not be derived by the TDTD algorithm.

given assumption that the given T theory is complete with respect to the hypothesis language,
then the theory holds for , according to lemma there is refutation R exist,

Then by reordering and multiple sequence extraction, clauses in theory t can be derived by SLD-
resolution or subsumption.

Therefore, contradict the assumption that theory t can not be derived.

Since the condition for this theorem is the completeness of T theory with respect to hypothesis
language, the completeness issue is delegated to T theory.

4.5 Search Space Analysis

The search space bound by TDTD is compared with that by IE-based method in this section.

4.5.1 Multi-Clauses Setting

The advantage of TDTD is to support multi-clauses setting, but this is trade-off for much bigger
search space. However, it is still tractable as shown by experiments in Chapter 7. Although IE-
based methods are also example-driven, there is redundancy in its search space due to the upward
theory refinement, which is discussed in section [2.4.3

Take the example in section again. Clauses Cy, C5 and Cy are no longer connected to Cf
via predicate n, thus will not involve in the refutation for seed example with C{. Therefore they
will not appear in the theory that has C{. Thus the redundant ones like #| and t”; will not be
derived in TDTD.

Cy:e(X) — m(X),n(X).
no= o Eg; - Eg;ym B = { Cf:e(X) —m(X).
Cy:v(X) < b(X).
Cf:e(X) — m(X). C] :e(X) «— m(X).
v Cy :n(X) «— u(X),v(X). oo Cy :n(X) «— u(X).
! C3:u(X) « b(X). ! C3:u(X) « b(X).
Cy:v(X) <« b(X). Cy:v(X) « b(X).

Therefore, the search space bound by TDTD will be smaller by avoiding the redundancy. Dif-
ferent from the incomplete generalization in IE-based method, such as omitting clause addition or
inverse resolution which are at risk of excluding correct learning results, the smaller search space
in TDTD is not a trade-off for the completeness, because it is redundant ones unconsidered,.

4.5.2 Single-clause Setting

In the single-clause setting, provided that the T theory is complete with respect to the hypothesis
language, the search space bound by TDTD|§| are exactly the same as that by bottom clause.

8TDTD is actually the same as TopLog under the single-clause setting
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Lemma 4.5.1 Same Space in Single-clause Setting The search space bound by TDTD and
that by bottom clause are exactly the same in the single-clause setting, provided that the T theory
18 complete with respect to the hypothesis language.

Proof.

The IE operator in Progol is complete with respect to relative subsumption[29]. Therefore, the
search space bound by bottom clause is complete for single-clause.

Assume the search space bound in TDTD is bigger than that of bottom clause, according to
the soundness of TDTD, there is one hypothesized clause derived in TDTD while not inside that
bound by bottom clause. This is contradict to the completeness of bottom clause in the single-clause
setting.

Now assume the search space bound in TDTD is smaller. According to theorem[{.].3, provided
that the given T theory t is complete with respect to hypothesis language, TDTD is complete for
deriving hypothesized clauses. However, according the soundness of bottom clause, if the space
bound by TDTD is smaller, then there are at least one hypothesized clause not included in TDTD,
which contradict the completeness of TDTD.

Therefore, the two space are exactly the same.

The same space can also be interpreted from the perspective of treating top theory as grammar.
For each clause within the space bound by bottom clause, there is a corresponding grammar version
denoted by T theory, thus can be derived in TDTD.

Although the size of two spaces are exactly the same, there is advantage in that bound by
bottom clause. Because it is organized in subsumption lattice so that efficient pruning can be
applied. Therefore, in the single-clause setting, Progol will outperform TopLog and TDTD.
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Chapter 5

Greedy Search for Final Theory

5.1 Covering Algorithm

Although it is theory that derived for each individual example, covering algorithm is still necessary
for constructing the final theory. For example, the given example s([a,dog, hits,a,ball],[]) will
only derive theories that including the clause np(S1,52):- det(S1,S3), noun(S3,S2). While theories
including the clause np(S1,52):- det(S1,53), adj(S3,54), noun(S4,S2) will only be generated by
example like s([the, small, dog, hits,a,ball],[]).

The covering algorithm used is in table which is the similar to that in [15]. Clearly, this
covering algorithm terminates in at most |F| iterations. It may also terminate when there is no
compression which will happen when the size of training data is small.

0. Let T denote the final theory, which is empty when initialized;

let ts be the set of theories derived by one seed example;

if E= (), return T;

Let e be the first example in E, and derive ts using TDTD algorithm ;

Choose from ts the one that maximumly increase the score of T and add to the background knowledge;
Remove from E the examples that coverd after adding the newly chosen theory;

Go to 1.

U e

Table 5.1: Covering Algorithm
Note that redundant clauses are removed when adding newly chosen theories to the background
knowledge. Redundancy is defined as follows: [15]

Definition Redundant clauses
Let C be a clause and T be a set of clauses.
C is redundant in T'(JC if and only if T = C

The covering algorithm makes the greedy choice at local scale, that is, amongst theories
generated by one seed example, thus it will make a choice that is locally optimal while not globally.
In addition, not only the running time, but also the final learning results will be dependent on the
order of given examples. Despite of these disadvantages, it is more efficient than making greedy
choice at global scale [I8]which requires seeding on all the positive examples.

5.2 Minimum Description Length as Heuristic

Minimum Description Length (MDL) is used as heuristic for greedy search. Let Ne denote the
numbers of examples covered; '+’ and -’ respectively denote positive and negative examples; |T|
denote the number of literals in theory T. Then the MDL is defined as follows:

Nejy — Ne_ —|T)| (5.1)

32



When there is no noise in the training data, the target theory should not cover any negative
examples, thus MDL can be simplified to

Ney —|T)| (5.2)

The complexity of theory T is measured as that in [I5] and [I8], that is, the number of literals
in T which is denoted by |T|. Note that complex score is calculated after removing redundancy.

However, the complexity measured by number of literals is too simple to account for the gener-
ality of theory. For example, both even(s(s(0))) and even(s(s(X))) are unit clause, that is, the same
length, but the later is more general than the previous one. Although this example can be solved
by considering the variables in the clause, here is a situation that generality varies even with same
number of variables and literals. In the following 3 theories, t2 is more general than both t1 and
t3, although they have the same score of minimum description length.

t1: odd(s(A)) < even(A).even(s(B)) < odd(B).odd(s(0)).
t2: odd(s(Ai) — even(A).even(s(B)) < odd(B).even(0).

t3: odd(s(A)) < even(A).even(s(s(B))) « even(B).even(0).
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Chapter 6

Implementation

6.1 Program Transformation

Both T and B are definite clauses, Prolog interpreter should have been enough. However, there
are certain functions not available. One usual way is to manipulate at meta-level, but this will
compromise efficiency. Therefore in this system, program transformationp_-] is used, which make use
of the quick variable binding in Prolog, thus add little overhead.

The following give the details about how to handle the unavailable while necessary functions
by program transform.

6.1.1 Record SLD-Derivation Sequences

In the implemented system, the derivation sequence are directly extracted out along the refutation,
but in order to illustrate how it is implemented, the following start with how to record the refutation
sequence with program transform before talking about how to directly extract them.

Record Refutation Sequence by Program Transform

Two arguments are preserved in each predicate for this record. RSoFar denotes the input variable
which gives the record before calling the goal of this predicate, while the other R as output variable
is used for returning the record when the query is answered.

Here is one example for unit clause:

$body(X).
$body(R, [ntO|R], X).

The following are another examples for non-unit clause, in which number 10 is the ID for this
clause. Then after calling the goal odd([], R, s(s(s(0)))), R will return the whole refutation sequence
for the goal odd(s(s(s(0)))).

$body(X) : —even(X).
$body(RSoFar,R, X) : —even([2|RSoFar|, R, X).

odd(X) : —$bind(X,Y), $body(Y).
odd(RSoFar,R,X) : —bind([10|RSoFar], R1,X,Y),body(R1,R,Y).

The previous examples will record all the clauses in the refutation, but what about those not
to be recorded, such as clauses in B. Even thought the clause itself is not recorded, it still need be

Tt is also called partial evaluation[Z6]
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transformed in order to propagate the record. Here are another three examples for the unrecorded
clauses.

verb([walks|S], S)
verb(R, R, [walks|S], S)

vp(S1,S82) : —verb(S1,52).
vp(RSoFar, R, S1,52) : —verb(RSoFar, R, S1,52).

vp(S1, S2) : —verb(S1, S3), prep(S3, 52)
vp(RSoFar, R, S1,52) : —verb(RSoFar, R1,51,S3),prep(R1, R, S3,52).

Notice that no ID is put at the head of record list compared to the recorded one.

You may notice this way of collection, which always put new record at the head of list will
result in a reverse order. Actually, this is not a problem since this record can be used backwardly
to derive the hypothesized clause. Details about derivation will be given later

Direct extraction

The record above only give a linear sequence in which multiple clauses are mixed, thus need further
work in order to extract each derivation sequence directly. Here two pairs of variables are needed.
One pair ClaRSoFar and ClaR for single clause which is a list, the other pair TrSoFar and Tr
for theory which is a list of lists. ClaRSoFar will record the derivation sequence for one clause
according to the multiple extraction algorithm explained in section it is directly added into
TrSoFar once finish, so that they are directly extracted out. Examples for this are in appendix.

6.1.2 Control the SLD-refutation Search
Numerical Constraint

Since arithmetic execution is expensive in Prolog, while variable matching is much quicker, piano
number is used for decreasing on counter. {s(Limit), Limit} is comparable to NLimit is Limit-1.
For all the following control that related to counter, another argument in predicate is preserved for
storing the counter which is in the form of piano number.

1. Depth Limit
The left-first computational rule in SLD-refutation has the effect of depth-first search. However,
this depth-first search may run into infinite loop, like the following path-edge example, thus need
depth limit. Iterative Deepening Search is a choice here, but for most of the problems encountered
so far, the search tree is not deep, thus the overhead in Iterative Deepening Search will outweigh
its benefits, so in the current system only a maximum depth limit is imposed.
path(X,Z):- path(X, Y), edge(Y,Z).
path(X,Y):- edge(X,Y).

Transformed version with Depth Limit
path(s(DL), X,Z):- path(DL, X,Y), edge(DL, Y,Z).
path(s(DL), X,Y):- edge(DL, X)Y).

The only drawback is the heavily nested function term, such as s(s(s(s(0)))). Since there
is build-in mechanism in YAP to constrain the maximum depth, the depth limit is imposed as
depth_bound_call(user:Goal, DepthLimit) in the current system.

2. Limit on the times appeared in the clause
Clauses like mammal(X) : —has-milk(X), has-milk(X), has-milk(X), has-milk(X). will be de-
rived if no constrain on the times that certain literal is allowed in the clause. Therefore there are a
series of arguments specifying the maximum times that each predicate is allowed. There seems to
be an order, but just an order of specification, and has nothing to do with the order these predicates
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appeared in the clause. Here is one example.

T1 : mammal(X) : —$body([s(0),s(0)], X)

Ta : $body([s(N1),N2], X) : —has_milk(X), $body([N1, N2], X)
T3 : $body([N1,s(N2)],X) : —has_eggs(X), $body([N1,N2], X)
TntO : $b0dy(X)

3. Limit on clause length The length of clauses in First Order Logic can be infinite, so a
constraint is needed. It can be controlled by constraint on the number of body clauses [3.1.1]
This is handled in the non-terminal predicate $body, since it is responsible for connecting terminal
literals.

In the following example, the maximum length is specified in the head clause as s(s(0))=2, while
actually it allows only one body literal. This is because after resolving with two body clauses, such
as
odd(s(s(X))) : —even(s(X)), odd(X), $body(0, X).

It decreases to 0, while still need at least s(0) to match with Tnt0, thus it will fail in deriving the
clause with length 2.

T10: odd(X) : —bind(X,Y), body(s(s(0)),Y).
T20: even(X) : —bind(X,Y), body(s(s(0)),Y).
T1: body(s(LenLimit), X) : —even([X), bind(X,Y ), body(R2, R,Y).
T2 : body(s(LenLimit), X) : —odd(|X), bind(X,Y), body(R2,R,Y).
Tnt0 : body(s(LenLimit), X).

This length limit is somewhat redundant with the previous Limit on the times appeared in the
clause, because the length of clause will be under control with constrain on the times appeared.
However, it is still necessary in some situation. Such as in the grammar learning example, to avoid
directly parse the sentence to words by words like s:- det, adj, noun, verb, prep, det, noun, by
specifying the Length Limit to 4, such clauses will be discarded.

Integrate Constraint

Integrate constraint can be implemented within the transformed program by disallow those vio-
late it. This way, the theories including the clause that violate the integrate constraint will be
discarded before fully derived, thus it is more efficient than the generate-and-test. For example,
the Hrl\ == [nt2,10] in the following program will discard the theories include clauses odd(X):-
even(X) which contradict the integrate constraint that a natural number can not be odd and even
at the same time; it also discard the theories including tautology odd(X):- odd(X).

odd(TrSoFar, [Hr|Tr,X):-

$ bind([10], Hr1,X,Y),

Hrl\ == [nt2,10],

$body(TrSoFar,Tr,Hr1,Hr,[s(0),s(0)],Y).

6.2 Theory Derivation

6.2.1 SLD-derivation

Compare the following two logic programs, hlnterpreter/2 and hlnterpreter/3. Both are recursive,
and they have the same efficiency. But the first one is bottom-up, while the second one is top-down.
Since the derivation sequence extracted is in a reversed order, so it is the first one used.

hinterpreter([Headl],Cla0):-

topCla(HeadI,Cla0).
hnterpreter([I |Indexes],NewH):-
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hInterpreter(Indexes,H),
topCla(I,Cla),
resolve(H,Cla,NewH).

hnterpreter([],H,H).

hInterpreter([I|Indexes],HSoFar ,H):-
topCla(I,Cla),
resolve(HSoFar,Cla,UpdatedH),
hlnterpreter(Indexes,UpdatedH,H).

The derivation follows the left-most computation rule in Prolog, therefore, the head of input
clause resolve with the most left literal that match with it. Building control predicate once is used
to avoid backtrack which may lead to resolving with non-left-most

resolve([Head1|Body1],[Head2|Body2],[Headl|NewBody]):-
once((append(Bodyl1A,[Atom1|Body1B],Body1),Atom1=Head2)),
concatenateLists([BodylA,Body2,Body1B],NewBody).

6.2.2 Subsumption

Derivation using subsumption is to substitute the variable in the T clause with that in refutation.
Since the substitution is recorded in the derivation sequence, it is easy to get it. In the following
example, a3 is the ID for this T clause, the associated X record the substitution in the refutation,
then the variable X in the predicate noun get the same substitution.

topCla(a3-X, [noun([X]|S],S)]).

6.3 Greedy Search

6.3.1 Score

In greedy search, each candidate theory is scored according to the minimum description length, the
one with maximum score will be chosen.

Since there is no noise in the artificial data used, by discarding the theories cover negative
examples, the MDL is simply Ne; — |T| where Ney is the numbers of positive examples covered
and |T'| denote the number of literal in the theory.

While the covering algorithm focuses on the positive examples uncover, so it is uncover list
Uncover recorded, thus the score will be Total — |Uncover| —| T|. Since the exact value is not
interested, but their comparable value, therefore the score can be further simplified as |Uncover| +
|T’| then the previous maximum one becomes minimum.

6.3.2 Removing Redundancy

In order to remove redundant clause, it need a procedure that can identify whether one clause
C is redundant with the set of clauses T. According to the definition 7?7 of redundancy, it can be
identified by checking whether C can be entailed by T. Proved by refutation, TU—-C' = 0, therefore,
it is implemented as follows.

Skolemise clause C

Assert the skolemised atom in the body of clause C

Call the head of clause C as goal

Clause C is redundant to current background knowledge if the goal succeed, otherwise not

e e

Table 6.1: Redundancy Check

37



Chapter 7

Empirical Evaluation

The purpose of the experiments in this chapter is to evaluate the performance of TDTD system in
the multi-clauses setting. These experiments are carried out using artificial data on Linix Machine
with Intel Core 2 Duo @ 2.13 GHz with 2Gb RAM.

7.1 Mutually dependent concept: odd-even example

7.1.1 Materials

The original odd-even example given in [29] is

B bl : even(0). el
B = { b2 : even(s(X)) < odd(X). E = odd(s(s(s(0))))

Figure 7.1: Yamamoto’s odd-even example

It is unsolvable for single-clause ILP systems like Progol and TopLog, because the single hy-
pothesized clause is used more than once in the refutation, thus a special case of multi-clauses
learning problem.

In this experiment, the previous odd-even example is modified further to be more difficult.
Suppose both of the clauses bl and b2 are unknown, then nothing remains in the background
knowledge. Therefore, the challenge here is to learn a mutually dependent concept: in order to
learn predicate odd, knowledge about even is needed while it is unknown; similarly, learning concept
about even can not be carried out when nothing is known about odd.

The T theory and its transformed version for this odd-even example are given in appendix [A]

The integrity constraints for this example are as follows.
1. No tautalogy like even(X)«— even(X) and odd(X)+«+odd(X).
2. A natural number can not be even and odd at the same time. thus discard theories include the
clauses like even(X)«—odd(X) and odd(X) «even(X).
3. Non-unit clauses is not allowed to be ground, in other words, among all the ground clauses, only
unit ones are allowed. Thus theories including clauses like odd(s(0))« even(0) are discarded.
Another constraint is about the length of clause. By restricting it to be no more than 2,
clauses like odd(s(s(X))) «even(s(X)), odd(X) is not considered although they are consistent with
examples. Actually, even if they are considered, they will be removed during redundancy check.
Because they are subsumed by either odd(s(X))« even(X). or odd(s(s(X))) < odd(X).

All the above constraints are incorporated into transformed version of T theory as shown in

appendix
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7.1.2 Methods

Two experiments are carried out on this odd-even example:

(1) Measure the predictive accuracy.
Because not only the size of training data, but also the variety within it will affect the learning
results, thus randomly sample 10 times for same size of training data, and their results are averaged.
Leave-one-out cross validation was used.

(2) Measure running time.
Due to the covering algorithm used, the running time will vary with the seed examples, so run
this experiment with different seed examples to see how the search space varies with different seed
example.

The training data used for experiments are natural numbers from 2 to 9 which is also given in
appendix. There are 8 positive and 8 negative, so 16 in total.

7.1.3 Results and Analysis

Mutually Dependent Concept: Odd-Even
100 T T T

80

40

Predictive accuracy (%)

20

[T

0 ] ] ] ]
0 20 40 60 80 100

Training Examples(%)

Figure 7.2: Predictive Accuracy for odd-even Example

Predictive Accuracy

As shown in fig (1) It achieves 100% when there is sufficient data. The learning result is also
correct. Actually, it suggests 3 hypotheses as follows.
t1: odd(s(A)) <« even(A). even(s(B)) < odd(B). odd(s(0)).
t2: odd(s(A)) < even(A). even(s(B)) « odd(B). even(0).
t3: odd(s(A)) < even(A). even(s(s(B))) « even(B). even(0).

Although these 3 got the same score according to the MDL, t2 is more general than both t1
and t3 .
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(2) As there is less training data, not only the predictive accuracy decreases, but also more
incorrectﬂ results are produced, such as:

even(s(s(X))) < even(X)
tincorrect = 6?./671(8(8(0))).
odd(s(X)).

Examining the output of derived theories, the real correct theories are still derived and exist in
the search space, but they are all more complex than the incorrect ones. When there is no negative
examples to rule out odd(s(X)), also not enough positive examples to make the real correct theory
get much higher coverage, the complexity of theory will dominate the MDL score, which make the
incorrect ones outperform instead.

Running Time

Learning Odd and Even

I I I I I I I
1600 [~

1400 - —

1200 -1

1000 -

800 - -

Running Time (ms)

600 -

400 |- .

200 —

oL—+ | A
o 1 2 3 4 5 6 7 8

Natural Number

Figure 7.3: Running Time for odd-even Example

The running time increases exponentially, as shown in fig This is because as the seed
example is further away from 0, the search space expand quickly. For example, for odd(5) theories
like the following will be derived:

odd(s(A)) « even(X)
oty = { even(s(s(s(X))))  odd(X)
odd(s(0)).

Actually, this problem can be solved by using multiple examples as seed, that is, generalizing
on more than one example at the same time, so that only their common ones are derived. Thus the
theories which are only generated for particular example like that for odd(5) will not be generated.

'Incorrect means not the same as our target hypothesis, but it still covers all the training examples with the
remained clauses in background knowledge.
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7.1.4 Further discussion

1. Accommodate non-OPL setting. Actually, single example of odd is enough to learn both concepts
about odd and even, that is, the whole theory can be derived by only one example. But if there
are only examples about predicate odd, the following theory will turn out to be more compressive.
Therefore, examples about even is still given.
y B odd(s(s(X))) < odd(X)
oddatone =\ odd(s(0))
2. Advantage of example-driven. If add the clause $bind(X, s(Y)) < $bind(X,Y) to the T, one
interesting theory will be derived:
. _ { 0dd(X) « even(s(X)).
presue odd(s(X)) < even(X).
Although it is term expansion and has risk of non-termination, benefit from the example-driven,
it still derive theories without additional control.

7.2 Grammar Learning example: Integrating abduction and in-
duction

7.2.1 DMaterials

There is a hierarchical structure in parsing grammar, as shown in fig Each line labeled with C;
indicates a relation between them. The complete theory is given in fig . There are 23 clausesE]
in total, 6 of them is general rules, while 17 are ground facts. For all the predicates in this theory,
except the predicate S, all the others are non-observable. Thus Progol5 need applying abduction
before learning general rules about the non-observable predicates like NP. However, in situation that
multi-clauses are missing, such as both C1 and C3 in fig are both missing, abduction is inapplicable
for Progol5 when given the example s([a, small, dog, hits, a,ball], []).

Figure 7.4: Hierarchical structure in Grammar Learning

2The facts conj([and|S], S) is not included since it does not appear in the given example. Therefore the complete
theory here is one clause less than that in Progol5
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C1 s(S1,S2) :- np(S1,S3), vp(S3,54), np(S4,S2).
C2 s(S1,S2) :- np(S1,S3), vp(S3,54), np(S4,S5), prep(S5,S6), np(S6,S2).

C3 np(S1,S2) :- det(S1,S3), noun(S3,S2).
C4 np(S1,S2) :- det(S1,S3), adj(S3,54), noun(S4,S2).

C5 vp(S1,S2) :- verb(S1,S2).
C6 vp(S1,S2) :- verb(S1,S3), prep(S3,52).

det([alS],S).
det([the|S],S).

adj([big|S],S).
adj([small|S],S).
adj([nasty|S],S).

noun
noun
noun
noun

[man|S],S).
[dog|S].S).
[houselS],S).
[ball|S],S).

N

verb([takes|S],S).
verb([walks|S],S).
verb([hits|S],S).

prep([at|S],S).
prep([to]S],S).
prep([on|S].S).
prep([in]|S],S).
prep([into|S],S).

Figure 7.5: Complete Theory for Grammar Learning Example
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The T theory and its transformed version for this example is given in appendix [B]

In this T theory, there is no input list but a single variable. Because sentence is continuouslyfﬂ
parsed. Therefore, binding variables is much simplified, thus no need to record all the variables or
constants appeared before, but only the output variable of preceding atom.

Integrity Constraints:

1. Suffix requirement. For each predicate, its output should be suffix of its input.

2. The noun phrase must be related to noun, similarly, verb phrase should have relation with verb.
3. Predicate ’s’ is not directly related to noun and verb, since they are primitive and incorporated
in noun phrases and verb phrases

Another constraint is about the length of hypothesized clause. In order to avoid directly parse
the sentence words by words, its length is restricted to one less than that of original sentence.

7.2.2 Methods

This experiment is to test the ability of TDTD system to recover complete theory in fig after
a randomly chosen subset of it is left-out.

Performance was compared when randomly chosen subset of size 3, 6, 9, 12 were left out. For each
size 10 randomly chosen left-out subsets were sampled and the results were averaged. Performance
was measured on all the 33 examplesﬂ given in Progol5 which are randomly chosen. Leave-one-out
cross validation was used to measure the predictive accuracy.

7.2.3 Results and Analysis

Theory Recovery in Grammar Learning using 33 examples

+
+
+

100

80 -

Predictive accuracy (%)

40 .

0 | | | |
50 60 70 80 90 100

Remaining background clauses (%)

Figure 7.6: Predictive Accuracy for Grammar Learning Example

Predictive Accuracy

Fig7.6| gives the predictive accuracy. It is uniformly 100% for different sizes of left-out samples.
It indicates that for all the samples, even when half is left-out, the missing theory can still be
completely reconstructed. The 100% is due to sufficient training data. Although 33 is not a big

3For the atoms in the body of clause, its output is the input for the next one
4Examples in this experiment exclude the sentences that have word of plural form
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Theory Recovery in Grammar Learning using 33 examples
20000

15000 = -1

10000 = -1

Running Time (ms)
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Remaining background clauses (%)

Figure 7.7: Running Time for Grammar Learning Example

number, but in terms of this simple language grammar, it is adequate. If the size of training data
decreases, the predictive accuracy will drop down as well.

Running Time

Although the predictive accuracy does not vary among different sizes of left-out, the learning time
has big difference. As shown in fig [7.7] the running time increases dramatically as more clauses
were left-out. This results from the increasing search space. Even for the same size of left-out, the
search space also vary greatly, as shown by the standard deviation in the fig [7.7]

Despite of the significant increase in running time, for all the samples in the experiment, the
maximum one takes 36895ms (less than 40s). Therefore, this experiment demonstrates the ability
of TDTD system to reconstruct the incomplete theory even when half is missing.

7.2.4 Further Discussion

Due to its 100% recovery even when half is left-out, you may wonder its performance when 3/4 are
left-out or even all are left-out. As expected, when further more clauses are left out, the search
space explodes. At the extreme case that all clauses are left-out, it led to out of stack in YAP
interpreter, thus nearly incomputable.

The exploded space is not the only problem. It also tends to learn incorrect results when further
more are left-out. Fig give one example of incorrect learning results.

Among all the 3468 derived theories for the seed example in fig there are t; and t3. By
explaining the phrase "walks to” as noun phrase, t; which is one clause less than the real correct
one to, thus £; outperform ¢y according to MDL.

Although it remains to characterize the exact left-out boundary that TDTD is able to recover
within reasonable running time, as well as give correct results, the fig and fig demonstrate
its ability in reconstruct the whole theory when less than half is left-out.
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Original Incomplete Theory (5 clauses remained):
det([alS],S).

adj([big|S].S).

noun([man|S],S).

verb([takes|S],S).

prep([at[S],S).

Seeded Example: s([the,dog,walks,to,the,man],[]).

t1

s(A,B):- np(A,C),np(C,D),np(D,B).
np(E,F):- det(E,G),noun(G,F).
det([the|H],H).

noun([to|I],I).

det([walks|J],J).

noun([dog|K].K).

2

s(A,B):- np(A,C),vp(C,D),np(D,B).
np(E,F):- det(E,G),noun(G,F).
vp(LJ):- verb(LLK),prep(K,J).
det([the[H],H).

prep([to|L],L).
verb([walks|M],M).
noun([dog|N],N)]].

Figure 7.8: Incorrect learning results
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Chapter 8

Future Work and Conclusion

Generalization on multiple examples simultaneously

As shown in the experiment of odd-even example, the search space varies with different seed exam-
ples. Therefore, if generalizing on multiple examples simultaneously, only their common ones are
derivable, thus the search space will be further constrained.

Ordering in Search Space

Although the search space is effectively bounded in TDTD, candidate theories are derived all at
once and there is no ordering like subsumption lattice in the search space. Then efficient pruning
discussed in section is not applicable in TDTD.

Different from refinement operator whose operational result is decidable, the way that theories
are derived in TDTD make it difficult to predict the effect of using certain clause in T. In single-
clause case, the length of clause is related to the depth of refutation, thus iterative deepening search
seems to be a solution. However, in the setting of multi-clauses, it tends to derive more general
theories when the refutation search goes deeper, which contradicts that in single-clause setting.
In addition, extra control on refutation search will run at the risk of excluding target hypotheses.
However, considering the significant efficiency gained from pruning, finding a way to organize the
search space in TDTD is well worth further work.

Beam Search

Greedy Search greedily chooses the candidate theory with maximum score, but problems arise when
more than one candidate theories get the same score that is maximum. Current implementation
simply chooses one of them, which will ignore other correct ones. One solution is to start beam
search for the bunch of candidate theories with maximum score. Due to the huge search space
in multi-clause, this will be quite expensive. However, to preserve the completeness of the whole
system, this is indispensable.

Automatic Construction of T Theory

In TDTD, T theory is input to the system as background knowledge and training examples. Cur-
rently, it is specified by the user, but this is error-prone. While the T theory defines the search
space, it is important to make sure that the T theory input to the system is correct. Thus an
automatic construction of T theory that takes the burden off users is necessary.

Extension to full clausal logic

The learning problems dealt with so far are all definite clauses. In addition, efficiency can be
gained for dealing with definite clauses compared to full clauses, accommodating full clausal logic
is not considered in the current system. However, the whole framework of TDTD is not restricted
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to definite clauses. It can be extended to full clauses by replacing SLD-resolution[7] with Model
Elimination (ME)[12].

Conclusion

As shown by the experiments, multi-clauses problems can be learned in TDTD correctly and
efficiently. As an example-driven method, it effectively bounds the search space. Benefiting from
its top-directed framework, it does not suffer from the redundancy that results from upward theory
refinement. In addition, its efficiency is not a trade-off for completeness. As proved in the report,
TDTD is complete provided the given T theory is correct.

Its ability to learn multi-clauses problems makes it naturally integrates abduction and induction
into the same phase, so that both abductive hypothesis and inductive hypothesis can be learned at
that same time.
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Appendix A

Input Files for Odd-Even Example

% for reconstruct H
topCla(10,[odd(X),$bind(X,Y),$body(Y)]).
topCla(20,[even(X),$bind(X,Y),$body(Y)]).
topCla(1,[$body(X),odd(X)]).
topCla(2,[$body(X),even(X)]).
topCla(nt0,[$body(X)]).
topCla(nt1,[$bind(0,0)]).
topCla(nt2,[$bind(X,X)]).
topCla(nt3,[$bind(s(Y),Z), $bind(Y,Z)]).

:- dynamic even/1, odd/1. % declare as dynamic predicate for later assertion
Yommmmmmmmm e empty --------mmmmmmeen %

ex(1,even(PianoNum),1):- numMap(2,PianoNum).
ex(2,0dd(PianoNum),1):- numMap(3,PianoNum).
ex(3,even(PianoNum), 1):- numMap(4,PianoNum).
ex(4,0dd(PianoNum),1):- numMap(5,PianoNum).
ex(5,even(PianoNum), 1):- numMap(6,PianoNum).
ex(6,0dd(PianoNum),1):- numMap(7,PianoNum).
ex(7,even(PianoNum), 1):- numMap(8,PianoNum).
ex(8,0dd(PianoNum),1):- numMap(9,PianoNum).

ex(9,0dd(PianoNum),0):- numMap(2,PianoNum).
ex(10,even(PianoNum),0):- numMap(3,PianoNum).
ex(11,odd(PianoNum),0):- numMap(4,PianoNum).
ex(12,even(PianoNum),0):- numMap(5,PianoNum).
ex(13,odd(PianoNum),0):- numMap(6,PianoNum).
ex(14,even(PianoNum),0):- numMap(7,PianoNum).
ex(15,0dd(PianoNum),0):- numMap(8,PianoNum).
ex(16,even(PianoNum),0):- numMap(9,PianoNum).

% PIANO NUMBER MAPPING

% numMap(integer,pianoNum)

numMap(0,0):- !. % to avoid -1,-2...

numMap(D,s(P)):-
D>0,
DO is D-1, Figure A.1: Input File for Odd-Even Example
numMap(DO,P).
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TRANSFORMED VERSION

odd(TrSoFar,[Hr|Tr],X):-
$bind([10],Hr1,X,Y),
Hr1\==[nt2,10], % prune odd(X):-odd(X).and odd(X):- even(X).
$body(TrSoFar, Tr,Hr1,Hr,[s(0),s(0)],Y).

even(TrSoFar,[Hr|Tr],X):-
$bind([20],Hr1,X,Y),
Hr1\==[nt2,20], % prune even(X):-even(X).and even(X):- odd(X).
$body(TrSoFar, Tr,Hr1,Hr,[s(0),s(0)],Y).

$body(TrSoFar, Tr,Hr,[ 1|Hr],[N1,s(N2)],X):-
Hr=[Last|_],Last\==ntl,
odd(TrSoFar,Tr,X).

$body(TrSoFar, Tr,Hr,[2|Hr],[s(N1),N2],X):-
Hr=[Last|_],Last\==ntl,
even(TrSoFar, Tr,X).

$body(Tr, Tr,Hr,[nt0|Hr], ,X).

$bind(Hr,[nt1[Hr],0,0).

$bind(Hr,[nt2|Hr],X,X).

$bind(HrSoFar,Hr,s(Y),Z):-
$bind([nt3|HrSoFar],Hr,Y,Z).

:- dynamic even/1, odd/1. % declare as dynamic predicate for later assertion
Yommmmmmm o empty -------------------- %

gEx(1,even([],Tr,PianoNum)):- numMap(2,PianoNum).
gEx(2,0dd([],Tr,PianoNum)):- numMap(3,PianoNum).
gEx(3,even([],Tr,PianoNum)):- numMap(4,PianoNum).
gEx(4,0dd([],Tr,PianoNum)):- numMap(5,PianoNum).
gEx(5,even([],Tr,PianoNum)):- numMap(6,PianoNum).
gEx(6,0dd([],Tr,PianoNum)):- numMap(7,PianoNum).
gEx(7,even([],Tr,PianoNum)):- numMap(8,PianoNum).
gEx(8,0dd([],Tr,PianoNum)):- numMap(9,PianoNum).

Figure A.2: Transformed Input File for Odd-Even Example
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Appendix B

Input Files for Grammar Learning

% for reconstruct H
topCla(10,[s(X,Y),body(X,Y)]).
topCla(20,[np(X,Y),body(X,Y)]).
topCla(30,[vp(X,Y),body(X,Y)]).

topCla(11,[body(X,FinalOut),np(X,Y),body(Y,FinalOut)]).
topCla(12,[body(X,FinalOut),vp(X,Y),body(Y,FinalOut)]).
topCla(13,[body(X,FinalOut),det(X,Y),body(Y,FinalOut)]).
topCla(14,[body(X,FinalOut),adj(X,Y),body(Y,FinalOut)]).
topCla(15,[body(X,FinalOut),noun(X,Y),body(Y,FinalOut)]).
topCla(16,[body(X,FinalOut),verb(X,Y),body(Y,FinalOut)]).
topCla(17,[body(X,FinalOut),prep(X,Y),body(Y,FinalOut)]).
topCla(18,[body(X,FinalOut),conj(X,Y),body(Y,FinalOut)]).

topCla(al-X,[det([X]|S],S)]).
topCla(a2-X,[adj([X]|S],S)]).
topCla(a3-X,[noun([X]|S],S)]).
topCla(a4-X,[verb([X]|S],S)]).
topCla(a5-X,[prep([X|S],S)]).
topCla(a6-X,[conj([X]|S],S)]).

topCla(nt0,[body(FinalOut,FinalOut)]).

:- dynamic s/2, np/2, vp/2, det/2, adj/2, noun/2, verb/2, prep/2, conj/2.

% 23 in total % comment it out if it is left-out in the experiments
s(S1,S2) :- np(S1,S3), vp(S3,54), np(S4,S2). %[0,11,12,11,10]
s(S1,S2) :- np(S1,S3), vp(S3,S4), np(S4,S5), prep(S5,S6), np(S6,S2).
np(S1,S2) :- det(S1,S3), noun(S3,S2).

np(S1,S2) :- det(S1,S3), adj(S3,S4), noun(S4,S2). % [0,15,14,13,20]
vp(S1,S2) :- verb(S1,S2). %[0,16,30]

vp(S1,S2) :- verb(S1,S3), prep(S3,S2).

det([a]S],S).
det([the|S],S).

adj([big|S],S).
adj([small|S],S).
adj([nasty|S],S).

noun(
noun(
noun(
noun(

man|S],S).
dog|S],9).
house|S],S).
ball|S],S).

—_ e, —

verb([takes|S],S).
verb([walks|S],S).
verb([hits|S],S).
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prep([at|S],S).
prep([to|S],S).
prep([on|S],S).
prep([in|S],S).
prep([into|S],S).

ex(1,s([the,dog,walks,to,the,man],[]),1).
ex(2,s([the,man,walks,the,dog],[]),1).
ex(3,s([a,dog,hits,a,ball],[]),1).
ex(4,s([the,man,walks,in,the,house],[]),1).
ex(5,s([the,man,walks,into,the,house],[]),1).
ex(6,s([the,man,hits,the,dog],[1),1).
ex(7,s([a,ballhits,the,dog],[]),1).
ex(8,s([the,dog,walks,on,the,house],[]),1).
ex(9,s([the,man,hits,at,the,ball],[]),1).
ex(10,s([the,big,man,hits,at,the,ball],[]),1).
ex(11,s([the,small,dog,walks,on,the,house],[]),1).
ex(12,s([the,small,dog,walks,in,the,house],[]),1).
ex(13,s([the,small,dog,walks,into,the,house],[]),1).
ex(14,s([the,small,man,hits,the,dog],[]),1).
ex(15,s([the,big,man,hits,the,dog],[]),1).
ex(16,s([a,ball,hits,the,small,dog],[]),1).
ex(17,s([the,nasty,man,hits,the,dog],[]),1).
ex(18,s([the,man,hits,the,nasty,dog],[]),1).

% More complex positive examples.
ex(19,s([a,man,hits,the,ball,at,the,dog],[]),1).
ex(20,s([the,man,hits,the,ball,at,the,house],[]),1).
ex(21,s([the,man,takes,the,dog,to,the,ball],[]),1).
ex(22,s([a,man,takes,the,ball,to,the,house],[]),1).
ex(23,s([the,dog,takes,the,ball,to,the,house],[]),1).
ex(24,s([the,dog,takes,the,ball,to,the,man],[]),1).
ex(25,s([the,man,hits,the,ball,to,the,dog],[]),1).
ex(26,s([the,man,walks,the,dog,to,the,house],[]),1).

ex(27,s([a,dog,walks,the],[]),0).
ex(28,s([a,man,walks,the],[]),0).
ex(29,s([a,man,walks,the,walks],[]),0).
ex(30,s([a,man,walks,the,house,a],[]),0).
ex(31,s([a,man,walks,the,dog,at],[]),0).
ex(32,s([the,man,walks,the,dog,to,the],[]),0).
ex(33,s([the,dog],[1),0).
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TRANSFORMED VERSION

Sk okokskok k. TOP THEQRY %% % %k sttt ootk

s(TrSoFar,[Hr|Tr],S1,S2):-
length(S1,K), numMap(K,LengthLimit), % constraint on clause length
$body(TrSoFar,Tr,[ 10],Hr,LengthLimit,[s(s(s(0))),s(s(0)),s(s(0)),s(s(0)),0,0,s(s(0)),s(s(0))],S1,S2).
% disallow connect to noun,verb

np(TrSoFar,[Hr|Tr],S1,S2):-
numMap(5,LengthLimit),
$body(TrSoFar,Tr,[20],Hr,LengthLimit,[0,0,s(0),s(0),s(0),0,s(0),s(0)],S1,S2),
% disallow connect to np(11),vp(12),verb(16)
member(15,Hr). % np should include noun

vp(TrSoFar,[Hr|Tr],S1,S2):-
numMap(5,LengthLimit),
$body(TrSoFar,Tr,[30],Hr,LengthLimit,[0,0,s(0),s(0),0,s(0),s(0),s(0)],S1,S2),
%disallow connect to np(11),vp(12),noun(15)
member(16,Hr). % vp should include verb

$body(TrSoFar, Tr,HrSoFar,Hr,s(LengthLimit),[s(N1),N2,N3,N4,N5,N6,N7,N8],PreOut,FinalOut):-
np(TrSoFar,Tr1,PreOut,OutVar),
$body(Tr1,Tr,[11|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],0utVar,FinalOut).

$body(TrSoFar, Tr,HrSoFar,Hr,s(LengthLimit),[N1,s(N2),N3,N4,N5,N6,N7,N8],PreOut,FinalOut):-
vp(TrSoFar,Tr1,PreOut,OutVar),
$body(Tr1,Tr,[12|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],0OutVar,FinalOut).

$body(TrSoFar, Tr,HrSoFar,Hr,s(LengthLimit),[N1,N2,s(N3),N4,N5,N6,N7,N8],PreOut,FinalOut):-
det(TrSoFar, Tr1,PreOut,OutVar),
$body(Tr1,Tr,[13|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],0OutVar,FinalOut).

$body(TrSoFar,Tr,HrSoFar,Hr,s(LengthLimit),[N1,N2,N3,s(N4),N5,N6,N7,N8],PreOut,FinalOut):-
adj(TrSoFar,Tr1,PreOut,OutVar),
$body(Tr1,Tr,[14|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],OutVar,FinalOut).

$body(TrSoFar,Tr,HrSoFar,Hr,s(LengthLimit),[N1,N2,N3,N4,s(N5),N6,N7,N8],PreOut,FinalOut):-
noun(TrSoFar, Tr1,PreOut,OutVar),
$body(Tr1,Tr,[15|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],0OutVar,FinalOut).

$body(TrSoFar, Tr,HrSoFar,Hr,s(LengthLimit),[N1,N2,N3,N4,N5,s(N6),N7,N8],PreOut,FinalOut):-
verb(TrSoFar,Tr1,PreOut,OutVar),
$body(Tr1,Tr,[16|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],0OutVar,FinalOut).

$body(TrSoFar, Tr,HrSoFar,Hr,s(LengthLimit),[N1,N2,N3,N4,N5,N6,s(N7),N8],PreOut,FinalOut):-
prep(TrSoFar,Tr1,PreOut,OutVar),
$body(Tr1,Tr,[17|HrSoFar],Hr,LengthLimit,[N1,N2,N3,N4,N5,N6,N7,N8],OutVar,FinalOut).

$body(Tr, Tr,Hr,[nt0|Hr],s(_), ,FinalOut,FinalOut).
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% comment it out if it is left-out

s(TrSoFar,Tr,S1,S2) :- np(TrSoFar,Tr1,S1,S3), vp(Tr1,Tr2,S3,S4), np(Tr2,Tr,S4,S2).

s(TrSoFar,Tr,S1,S2) :- np(TrSoFar,Tr1,S1,S3), vp(Tr1,Tr2,S3,S4), np(Tr2,Tr3,54,S5),
prep(Tr3,Tr4,S5,S6), np(Tr4,Tr,S6,S2).

np(TrSoFar,Tr,S1,S2) :- det(TrSoFar,Tr1,S1,S3), noun(Tr1,Tr,S3,S2).

np(TrSoFar,Tr,S1,S2) :- det(TrSoFar,Tr1,S1,S3), adj(Tr1,Tr2,S3,S4), noun(Tr2,Tr,S4,S2).

vp(TrSoFar,Tr,S1,S2) :- verb(TrSoFar,Tr,S1,S2).

vp(TrSoFar,Tr,S1,S2) :- verb(TrSoFar,Tr1,S1,S3), prep(Tr1,Tr,S3,S2).

det(Tr,Tr,[a|S],S):- !.
det(Tr,Tr,[the|S],S):- !.
det(Tr,[[al-X]|Tr],[X]|S],S):-
\+word(X), % still need for avoid re-parsing known word
(member([ClaID-X],Tr)->
ClalD==al;
Foo=1 % if not appear before, then no constraint

)

adj(Tr,Tr,[big|S],S):- .
adj(Tr, Tr,[small|S],S):- !.
adj(Tr, Tr,[nasty|S],S):- !
adj(Tr,[[a2-X]|Tr],[X]S],S):-
\+word(X),
(member([ClaID-X],Tr)->
ClalD==a2;
Foo=1 % if not appear before, then no constraint

).

noun(Tr,Tr,[man|S],S):- !.
noun(Tr,Tr,[dog|S],S):- !.
noun(Tr,Tr,[house|S],S):- !.
noun(Tr,Tr,[ball|S],S):- !.
noun(Tr,[[a3-X]|Tr],[X|S],S):-
\+word(X),
(member([ClalD-X],Tr)->
ClalD==a3;
Foo=1 % if not appear before, then no constraint

).

verb(Tr, Tr,[takes|S],S):- !.
verb(Tr, Tr,[walks|S],S):- !.
verb(Tr, Tr,[hits|S],S):- !.
verb(Tr,[[a4-X]|Tr],[X]|S],S):-
\+word(X),
(member([ClaID-X],Tr)->
ClalD==a4;
Foo=1 % if not appear before, then no constraint
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prep(Tr,Tr,[at[S],S):- !
prep(Tr, Tr,[to|S],S):- !.
prep(Tr,Tr,[on|S],S):- !
prep(Tr, Tr,[in|S],S):- !.
prep(Tr, Tr,[into|S],S):- !.
prep(Tr,[[a5-X]|Tr],[X|S],S):-

\+word(X),
(member([ClalD-X],Tr)->

ClaID==a5;

Foo=1 % if not appear before, then no constraint
).

% known word
word(X):- det([X]|ST,S).
word(X):- conj([X|S],S).
word(X):- adj([X]|S1],S).
word(X):- prep([X]|S],S).
word(X):- noun([X|S],S).
word(X):- verb([X]|S],S).

gEx(1,s([],Tr,[the,dog,walks,to,the,man],[])).
gEx(2,s([],Tr,[the,man,walks,the,dog],[])).
gEx(3,s([],Tr,[a,dog,hits,a,ball],[])).
gEx(4,s([],Tr,[the,man,walks,in,the,house],[])).
gEx(5,s([],Tr,[the,man,walks,into,the,house],[])).
gEx(6,s([],Tr,[the,man,hits,the,dog],[])).
gEx(7,s([],Tr,[a,balL,hits,the,dog],[1)).
gEx(8,s([],Tr,[the,dog,walks,on,the,house],[])).
gEx(9,s([],Tr,[the,man,hits,at,the,ball],[])).
gEx(10,s([],Tr,[the,big,man,hits,at,the,ball],[])).
gEx(11,s([],Tr,[the,small,dog,walks,on,the,house],[])).
gEx(12,s([],Tr,[the,small,dog,walks,in,the,house],[])).
gEx(13,s([],Tr,[the,small,dog,walks,into,the,house],[])).
gEx(14,s([],Tr,[the,small,man,hits,the,dog],[])).
gEx(15,s([],Tr,[the,big,man,hits,the,dog],[])).
gEx(16,s([],Tr,[a,ball,hits,the,small,dog],[1)).
gEx(17,s([],Tr,[the,nasty,man,hits,the,dog],[])).
gEx(18,s([],Tr,[the,man,hits,the,nasty,dog],[])).

% More complex positive examples.
gEx(19,s([],Tr,[a,man,hits,the,ball,at,the,dog],[])).
gEx(20,s([],Tr,[the,man,hits,the,ball,at,the,house],[])).
gEx(21,s([],Tr,[the,man,takes,the,dog,to,the,ball],[])).
gEx(22,s([],Tr,[a,man,takes,the,ball,to,the,house],[])).
gEx(23,s([],Tr,[the,dog,takes, the,ball,to,the,house],[])).
gEx(24,s([],Tr,[the,dog,takes,the,ball,to,the,man],[])).
gEx(25,s([],Tr,[the,man,hits,the,ball,to,the,dog],[])).
gEx(26,s([],Tr,[the,man,walks,the,dog,to,the,house],[])).

Figure B.1: Input File for Grammar Learning Example

57



	Introduction
	Multi-clauses Problems
	Overview of TDTD
	Report Map
	Contribution

	Background
	Machine Learning
	Bias Learning
	Cross Validation

	Logic Programming
	Basic Concept and Notation
	SLD-Resolution

	Inductive Logic Programming
	Inverse Entailment
	Refinement Operator

	Multi-Clauses Learning
	Multi-Clauses Learning Problems
	Limitation for Single-Clause ILP systems
	Multi-Clauses ILP systems

	Abduction, Induction and their integration
	Deduction, Abduction and Induction
	Integration of Abduction and Induction


	Top Theory as Declarative Bias
	Grammar like  theory
	Head Clause and Body Clause
	Non-Terminal Literals

	Composing hypothesis language
	SLD-resolution: non-unit clause
	Subsumption: unit clause

	Completeness with respect to hypothesis language

	Top Directed Theory Derivation
	SLD refutation for positive example
	Replaceability of Grammar Version
	Subgoal succeed with non-ground substitution

	Multiple Derivation Sequences Extraction
	Problems in Multi-clauses Extraction
	Extraction Algorithm and its Correctness Prove

	Hypothesized Clause derivation
	Soundness and Completeness of TDTD
	Search Space Analysis
	Multi-Clauses Setting
	Single-clause Setting


	Greedy Search for Final Theory
	Covering Algorithm
	Minimum Description Length as Heuristic

	Implementation
	Program Transformation
	Record SLD-Derivation Sequences
	Control the SLD-refutation Search

	Theory Derivation
	SLD-derivation
	Subsumption

	Greedy Search
	Score
	Removing Redundancy


	Empirical Evaluation
	Mutually dependent concept: odd-even example
	Materials
	Methods
	Results and Analysis
	Further discussion

	Grammar Learning example: Integrating abduction and induction
	Materials
	Methods
	Results and Analysis
	Further Discussion


	Future Work and Conclusion
	Appendices
	Input Files for Odd-Even Example
	Input Files for Grammar Learning

