
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Generatively Programming Galerkin Projections on
General Purpose Graphics Processing Units

By

Graham Markall

Supervisor: Prof. Paul Kelly
Second Marker: Dr. Tony Field

Submitted in partial fulfilment of the requirements for the MSc Degree in Advanced Computing
of Imperial College London

September 2009

Abstract

This report presents the results of a preliminary investigation into using abstract specifications of
finite element methods to generate code that performs the assembly of a system of linear equa-
tions on multicore architectures, with a focus on NVidia’s CUDA language. This investigation
has been conducted with the goal of integrating generated code into Fluidity, a general-purpose
computational fluid dynamics code. We survey and evaluate CUDA implementations of finite
element assembly, in particular examining the optimisations necessary for high performance, and
examine the state of the art in the automatic generation of finite element assembly code.

CUDA implementations of the assembly phase of Fluidity test programs that solve Poisson’s
Equation and an Advection-Diffusion equation are presented. We demonstrate a performance
improvement of almost an order of magnitude over a multicore CPU implementation for the
Advection-Diffusion equation on typical hardware performing computations using double-precision
arithmetic. We identify that the performance of the CUDA implementation is limited by the use
of atomic operations, and the use of the Compressed Sparse Row matrix format, both of which are
costly. We outline how further significant performance gains may be achieved by modifying our
implementation to overcome these limitations.

These implementations are used to guide the design of a prototype compiler, which we use
to demonstrate the feasibility of generating CUDA code from abstract specifications. We outline
further work based on the research we have conducted, with a long-term goal of converting the
low-level Fortran implementations of finite element assembly in Fluidity into high-level abstract
specifications, to facilitate the exploitation of future multicore architectures.

Acknowledgements

People who I would like to thank for their contributions to the success of this project are:

• Paul Kelly, who has dedicated a large number of hours to the supervision of this project.
His guidance, support, and helpful suggestions throughout the duration of this project have
been invaluable. I would also like to express gratitude for the support he gave me through-
out the first ISO, and general advice throughout the duration of the MAC course.

• David Ham, for many things, including: spending a large amount of time explaining the
finite element method and the Fluidity codebase; for writing the test problem without which
I would not have been able to demonstrate success in this project; for making time to answer
all my questions and read drafts of my report; for his guidance and encouragement; and for
making this project a possibility.

• Anton Lokhmotov, for spending a great deal of time examining drafts of my report and
providing lots of helpful suggestions and comments.

• Francis Russell, for many interesting discussions, and for prompting me to think about how
iteration might be captured in UFL.

• Lee Howes, Gerard Gorman and Patrick Farrell for their advice and suggestions regarding
the performance results, and for interesting discussions.

Contents

1 Introduction 1
1.1 Project Outline . 1
1.2 Contributions . 2
1.3 Presentation . 2

2 Background 3
2.1 Introduction . 3
2.2 The NVidia Tesla GPU Architecture and CUDA Programming Language 3

2.2.1 The Parallel Programming Model . 5
2.2.2 The Memory Hierarchy . 5
2.2.3 Introducing CUDA . 7
2.2.4 Remarks . 7
2.2.5 Other Multicore Architectures and Languages 8

2.3 The Finite Element Method . 8
2.3.1 Discretising the Domain . 9
2.3.2 Assembly and Solution . 9
2.3.3 Boundary Conditions . 10

2.4 Fluidity . 11
2.4.1 test laplacian . 11
2.4.2 test advection diffusion . 12

2.5 The Unified Form Language . 13
2.5.1 UFL Compiler Optimisations . 14

2.6 Summary . 14

3 Related Work 17
3.1 Introduction . 17
3.2 Finite Element Assembly on GPUs . 17

3.2.1 The Genesis of the Finite Element Method on Graphics Processors 17
3.2.2 Hyperelastic Material Simulation . 17
3.2.3 Discontinuous Galerkin on GPUs . 19
3.2.4 Soft Tissue Modelling in the SOFA Framework 21
3.2.5 High-Order Earthquake Modelling . 23
3.2.6 Finite Element in CPU/GPU Clusters . 23

3.3 Generating Execution Schedules for Tensor Contractions 23
3.4 PyCUDA . 24
3.5 Generative Programming/Automation of Finite Element Methods 25

3.5.1 Remarks . 25
3.6 Conclusions . 26

4 Implementation of Finite Element Assembly using CUDA 29
4.1 Introduction . 29
4.2 Initial Implementation of the assembly routine of test laplacian using CUDA . . . 29

4.2.1 The Assembly Loop in Fortran . 29

i

4.2.2 Implementation of Boundary Conditions . 31
4.2.3 Translation Methodology . 31
4.2.4 Integration with a GPU Conjugate Gradient Solver 33
4.2.5 Testing . 33
4.2.6 Initial Performance Results . 34
4.2.7 Optimising Kernels . 34
4.2.8 Ensuring Coalesced Memory Accesses . 36
4.2.9 Post-Optimisation Performance . 37

4.3 Implementation of the Assembly Phase of test advection diffusion Using CUDA 37
4.3.1 Kernels Used in this Implementation . 39
4.3.2 Testing . 40

4.4 Performance Results and Analysis . 43
4.4.1 Performance of the Assembly Phase . 43
4.4.2 Speedup and Throughput . 43
4.4.3 Overall GPU Performance . 45
4.4.4 Performance Improvement . 49

4.5 Conclusions . 52

5 A UFL Compiler for CUDA 53
5.1 Introduction . 53
5.2 Design . 53

5.2.1 The Backend . 53
5.2.2 A UFL Frontend . 54
5.2.3 Integration With Fluidity . 57

5.3 Implementation . 57
5.3.1 The Python Frontend . 57
5.3.2 The Code Generation Backend . 58

5.4 Testing . 59
5.4.1 Generation of Test Input for the Backend . 59
5.4.2 Generation of Test Input for the Frontend . 60
5.4.3 Generation of Further Inputs . 60

5.5 Conclusion . 61

6 Evaluation 63
6.1 Introduction . 63
6.2 Examination of the Implementations of the Assembly Phase 63
6.3 Discussion of the UFL Compiler . 64
6.4 Examination of UFL . 65
6.5 Summary . 66

7 Conclusions and Future Work 67
7.1 Conclusions . 67
7.2 Further Work . 67

7.2.1 Performance Optimisation of the GPU Implementations 67
7.2.2 Completion of Support for UFL . 67
7.2.3 Implementation of Additional Backends . 68
7.2.4 Generation of GPU Kernels . 68
7.2.5 Automated Exploration of Optimisations . 68
7.2.6 Development of Interface Code . 68
7.2.7 Capture of Iteration in UFL . 68

7.3 Manifesto . 68

A Optimised Kernel Library 69

ii

B UFL Codes for Advection and Diffusion 71
B.1 Advection . 71
B.2 Diffusion . 71

iii

iv

Chapter 1

Introduction

Fluidity [Gorman et al., 2008] is a general-purpose computational fluid dynamics package devel-
oped by the Applied Modelling and Computation Group in the Department of Earth Science
and Engineering at Imperial College. Explorations into using NVidia Graphics Processing Units
(GPUs) to accelerate iterative solvers in Fluidity have been performed [Markall and Kelly, 2009;
Perryman and Kelly, 2008] with results showing an order of magnitude speedup on typical hard-
ware. However, iterative solvers are a generic part of many computational science programs, and
a large research effort is devoted to using GPU hardware for their acceleration [Buatois et al., 2007;
Bolz et al., 2005; Wiggers et al., 2007; Cevahir et al., 2009; Wang et al., 2009]. For these reasons, it
is thought to be more profitable to focus our efforts on accelerating the Assembly phase, which is
specific to Fluidity.

There are several issues with using GPUs to accelerate applications. Doing so requires exten-
sive modification of existing code. This prohibits their use for accelerating many applications, as
making such modifications requires a large amount of effort. Often there is a large investment
in an existing codebase, and making these modifications requires that large portions of it are ob-
soleted. Also, although the CUDA language [NVidia, 2007] and the NVidia Tesla Architecture
[Lindholm et al., 2008] are presently dominant, this will change in the future. Further extensive
modifications must be made to an application each time a new architecture is targeted.

1.1 Project Outline

This project is an investigation into how Fluidity may be modified to exploit current and emerg-
ing multicore architectures by providing a hardware-independent abstraction for the specification
of numerical methods, in particular the finite element method [Sherwin et al., 2009]. Methods
described using this abstraction will be compiled by a source-to-source translator which rewrites
the abstract specification as a concrete implementation for the target architecture. This separation
of the specification of numerical methods and their low-level implementation provides two key
advantages:

• Methods specified in this language are “future-proofed”: since the specification provides
no description of the low-level implementation, re-targeting to future architectures only re-
quires the development of a new code-generation backend.

• The development of numerical methods is eased: programming numerical methods is of-
ten tedious and error prone, requiring much code that is not directly related to implement-
ing a new method, but is necessary in order to support its execution. Since a high-level
specification prescribes the numerical method purely in terms of mathematical operations,
the burden of writing low-level code is removed from the programmer. Mathematicians
may rapidly prototype new numerical methods, and programmers are free to concentrate
on other aspects of the software.

1

In this project we have focused on the NVidia Tesla architecture [Lindholm et al., 2008] only. The
work completed as part of this investigation divides into two stages:

1. GPU Implementations of the assembly phase for two Fluidity test programs were produced
(Chapter 4). These implementations provide proof that substantial performance improve-
ments may be obtained using GPUs for finite element assembly (Section 4.4), and form
the basis of experiments to determine how further improvements may be obtained (Section
4.4.4).

2. An implementation of a prototype compiler that generates target-specific output code from
a high-level specification has been developed (Chapter 5). This prototype demonstrates the
feasibility of generating code for different target architectures from a single high-level spec-
ification.

1.2 Contributions

• We survey existing approaches to the automatic generation of finite element assembly code
and evaluate them (Section 3.5). We also survey and evaluate the state of the art in GPU
acceleration of finite element assembly (Section 3.2).

• We describe the implementation of a library of kernels that perform common operations in
finite element assembly on the NVidia Tesla architecture. We present and evaluate strategies
that have been used to optimise the performance of this library (Chapter 4).

• We show how this library is used to implement the finite element assembly phase for a
variety of test problems, resulting in performance improvements of almost an order of mag-
nitude over the equivalent CPU implementation on typical hardware (Chapter 4).

• We present a prototype implementation of a compiler which compiles descriptions of a finite
element assembly phase (written in the Unified Form Language [Alnaes and Logg, 2009b])
into CUDA code which uses the kernel library previously described. We describe how the
compiler converts the abstract, declarative specification of UFL into an imperative form that
is used to generate CUDA code (Chapter 5).

• We evaluate the implementation of the UFL Compiler and show that this prototype demon-
strates that the construction of a fully-fledged UFL compiler that supports multiple backends
and optimisations is feasible and worthwhile (Section 6.3).

• We examine the Unified Form Language and show that it provides a sound platform for
further research in this area due to the level of abstraction that is provides (Section 6.4).

1.3 Presentation

The research conducted throughout this project has been presented at the 8th International Work-
shop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows, under the
title Fitting the Ocean onto a graphics card: towards running ICOM on massively parallel processors
[Markall et al., 2009].

2

Chapter 2

Background

2.1 Introduction

In this chapter we introduce the background material and concepts upon which our work is built.
We begin by introducing the NVidia Tesla architecture, and the CUDA programming language
used to develop software for this architecture. Subsequently, we provide a brief description of the
finite element method, and define the Galerkin Projection. We go on to introduce Fluidity, and
give an overview of the test problems, which we focus on throughout the remainder of the report.
Finally, we discuss the Unified Form Language.

2.2 The NVidia Tesla GPU Architecture and CUDA Programming Lan-
guage

The NVidia Tesla Architecture is a highly-parallel architecture made up of many minimally com-
plex processing elements which are specialised to perform arithmetic operations. In this report
we consider the most recent architecture, the GT200 architecture. Figure 2.1 shows an overview of
its design.

The GT200 has 10 Texture/Processor Clusters (TPCs), which each consist of three Streaming Mul-
tiprocessors (SMs). Each SM contains various components. The operation of each component in an
SM is as follows:

Compute Work Distribution. When a kernel is launched, this unit schedules individual units of
work (blocks) onto each SM.

Streaming Processor. Each SP is a pipelined processor which executes instructions on scalar operands.
Each SM has eight SPs that can perform integer or single-precision floating point arithmetic,
and one SP which can perform computations on double-precision floating-point operands.
The streaming processors also share a register file, consisting of 16384 registers, supporting
the execution of a large number of threads on each SM.

Multithreaded Issue. The MT Issue unit issues instructions to each of the SPs. Since there is only
one MT Issue unit, each SP in an SM must execute the same instruction concurrently.

Special Function Units. These units are specialised processors which perform mathematical op-
erations such as sine and cosine. We do not make use of the SFUs in this work, and do not
consider them further.

Caches. Each SM has an instruction cache, which is similar to the instruction cache of a typical
processor. The constant cache stores data that does not change throughout the execution of
a kernel.

3

.

SP

SP

SP

SP SP

SP

SP

SP

SP-DP

SFU SFU

Sh. Mem.

MT Issue

C Cache

I Cache

SM

SP

SP

SP

SP SP

SP

SP

SP

SP-DP

SFU SFU

Sh. Mem.

MT Issue

C Cache

I Cache

SM

SP

SP

SP

SP SP

SP

SP

SP

SP-DP

SFU SFU

Sh. Mem.

MT Issue

C Cache

I Cache

SM

SM Controller

Texture/Processor Cluster

Texture Unit

Texture L1 Cache

SP

SP

SP

SP SP

SP

SP

SP

SP-DP

SFU SFU

Sh. Mem.

MT Issue

C Cache

I Cache

SM

SP

SP

SP

SP SP

SP

SP

SP

SP-DP

SFU SFU

Sh. Mem.

MT Issue

C Cache

I Cache

SM

SP

SP

SP

SP SP

SP

SP

SP

SP-DP

SFU SFU

Sh. Mem.

MT Issue

C Cache

I Cache

SM

SM Controller

Texture/Processor Cluster

Texture Unit

Texture L1 Cache

Interconnection Network

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

. . .

Compute Work Distribution

Figure 2.1: NVidia GTX280 Architecture, as in [Lindholm et al., 2008]. Eight of the identical Tex-
ture/Processor clusters are omitted. SM: Streaming Multiprocessor. SP: Streaming Processor. SP-
DP: Streaming Processor (Double Precision). I/C Cache: Instruction and Constant Caches. MT
Issue: Multithreaded Issue.

4

Shared Memory. The Shared Memory is a software-controlled cache. It may be used by a pro-
grammer to store temporary data that is frequently used throughout a computation, in order
to increase performance by reducing accesses to the global (main) memory.

Texture Unit. The Texture unit contains a read-only cache. Areas of memory which are bound (by
the programmer) to Texture Memory are automatically serviced by this cache.

Interconnection Network. The GT200 architecture has eight banks of memory, necessitating an
interconnection network to allow each SM to access data in any of the banks.

2.2.1 The Parallel Programming Model

To make use of a GPU, the programmer writes small programs called kernels which execute on the
GPU hardware. These kernels are called by programs running on the CPU in the host machine.
The program running on the host is also responsible for transferring data to and from the memory
of the GPU.

The kernels are programmed using a Single-Instruction, Multiple-Thread (SIMT) programming
model. This model allows the programmer to divide work (usually data-parallel operations) be-
tween a large number of threads. Threads are grouped at several granularities:

Warps. A warp is a group of 32 threads that are all within the same block. Threads within a warp
all share the same program counter, and as a result must all execute the same instruction
concurrently. In the case where threads within a warp diverge in their execution path (for
example, when encountering an if/then/else construct), the execution of each branch is
serialised. It is important to minimise divergence within a warp to obtain maximum perfor-
mance.

Blocks. The next level of granularity is the thread block. Each block is mapped onto a particular
SM, and has an affinity to that SM for the lifetime of the kernel. Every thread within a block
has its own block-unique identifier (the Thread ID), which may be indexed in one, two, or
three dimensions. The choice of the number of dimensions in the index is influenced by
the algorithm being implemented. Consider an example of an image filter, which would be
likely to be implemented using 2D indexing. This will allow straightforward calculation of
the coordinates assigned to a particular thread based on its Thread ID.

The Grid. Only one grid exists, which contains all the thread blocks. Each block within the grid
has a block-unique identifier, which has one or two dimensions.

A schematic representation of a 2D grid with 2D thread blocks is shown in Figure 2.2. Each
thread and block has its unique identifier marked. The organisation of warps in this scenario is
omitted from the diagram.

The choice of the number of threads within a block and the number of blocks within the grid
are left to the programmer, subject to hardware limitations. Choosing the optimal number of
threads per block is aided by use of the CUDA Occupancy Calculator [NVidia, 2009c], a tool which
may be used to estimate the performance of different configurations. In order to ensure that each
SM has enough work to do to maximise its utilisation, it is important to use a large number of
blocks.

2.2.2 The Memory Hierarchy

The memory hierarchy in the Tesla architecture consists of several levels, which serve different
purposes. This is in contrast to a more typical architecture, in which successive levels of the
hierarchy have larger storage capacities, but increasing access latencies. A description of each
level of the hierarchy follows:

Global Memory. This is a large area of memory accessible by any thread and the host. Its contents
are stored in the DRAM behind the interconnection network. Accesses to Global Memory
have a latency of several hundred cycles.

5

Grid

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Block (1,1)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,2) Thread (1,2) Thread (2,2) Thread (3,2)

Figure 2.2: A two-dimensional grid of two-dimensional thread blocks. From [NVidia, 2007].

Registers. Local variables within kernels are stored in registers where possible. Registers may be
accessed within few cycles.

Local Memory. The compiler attempts to use registers for the local variables within kernels. When
a kernel has too many local variables, some of them are allocated into the DRAM. Although
local memory is stored in the same hardware as the global memory, its use is transparent
from a programming perspective, and only the thread owning a piece of data in Local Mem-
ory may access it. The latency of Local Memory accesses is the same as that of Global Mem-
ory accesses.

Shared Memory. The Shared Memory may be accessed more quickly than Global and Local Mem-
ories, but more slowly than registers. Threads within one block all access the same portion
of Shared Memory. Pre-fetching frequently used data into shared memory may improve
performance by reducing time spent waiting for accesses to Global Memory.

Texture Memory. The programmer may bind areas of data in global memory to Texture Memory.
When data is accessed from these areas using a texture fetch, the texture cache is automati-
cally used. This can increase performance for read-only data.

Constant Cache. The programmer may pre-load the constant cache with values which do not
change throughout the lifetime of a kernel. This may increase performance by reducing the
need to go to global memory for these constant values.

L2 Cache. The L2 cache is transparent to the programmer. Unlike a traditional L2 cache, it does
not provide faster access to data when a hit occurs. Instead, the latency of the L2 cache is
not significantly less than that of the DRAM, but overall performance is increased due to
reduced pressure on the main memory [Volkov and Demmel, 2008].

6

2.2.3 Introducing CUDA

The CUDA programming language is a set of extensions to the C programming language. These
extensions allow a programmer to write kernels which map on to the Tesla architecture. An API
is provided that contains functions for initialising the GPU, transferring data between the host
machine and the GPU, and for launching kernels.

To give a brief overview of kernels in CUDA, we consider an example. Figure 2.3 shows a
naı̈ve implementation of a kernel which computes y = αx + y for a scalar α and vectors x and y,
written in C. The code uses a loop which iterates over each element in the vectors.

void daxpy(double a, double *x, double *y, int n) {
for(int i=0; i<n; i++)
y[i] = y[i] + a*x[i];

}

Figure 2.3: DAXPY Kernel in C.

To convert this function to a CUDA kernel, the loop is partitioned so that each thread takes
on a portion of the work. Since each thread is within exactly one block, we can use the thread
and block indices to calculate a unique portion of the vector for the thread to work on, using the
THREAD_ID macro . This unique index is then used to initialise the induction variable for the loop.
Instead of each thread incrementing its induction variable by 1, it is increased by the total number
of threads. Figure 2.4 shows the CUDA implementation of a DAXPY kernel. This implementation
assumes that the threads and blocks have one-dimensional Thread IDs and Block IDs respectively.

#define THREAD_ID (threadIdx.x+blockIdx.x*blockDim.x)
#define THREAD_COUNT (blockDim.x*gridDim.x)

__global__ void daxpy(double a, double *x, double *y, int n) {
for(int i=THREAD_ID; i<n; i+=THREAD_COUNT)
y[i] = y[i] + a*x[i];

}

Figure 2.4: DAXPY Kernel in CUDA.

It is clear from this example that getting started with CUDA is a straightforward task for a
programmer already familiar with C. There are a minimal number of extra keywords in the lan-
guage that allow the use of shared memory, synchronisation between threads within a block, data
transfer etc., which we omit from this discussion; in-depth documentation of the API is provided
in [NVidia, 2009a].

2.2.4 Remarks

Although it is very easy to start using CUDA, optimising the performance of CUDA kernels is
non-trivial. Often the optimal configuration of thread and block size, and the level of the memory
hierarchy to use for items of data are not obvious. To optimise an implementation, a programmer
must experiment with various different choices. Debugging kernels is often tricky, with limited
tools available for this purpose at present. These factors all contribute to making the optimisation
process difficult and error-prone.

In addition, the programmer must write code to explicitly manage the transfer of data to and
from the GPU. Making use of shared memory involves additional complexity, as data must be
marshalled at the beginning and/or the end of the execution of a kernel. In general, the require-
ment of writing code to manage the memory hierarchy is a detriment to programmer productivity
[Howes et al., 2009b; Howes et al., 2009a].

7

Since the CUDA programming language is not portable to other architectures, the work in-
vested in optimising a CUDA program might be lost when moving to a new platform. Further-
more, future NVidia hardware may have different performance characteristics to the current gen-
eration, so optimised code may have to be re-tuned in the future.

2.2.5 Other Multicore Architectures and Languages

There are a number of other multicore architectures available or in development at present, each
of which have different programming models and languages. These include the Intel Larrabee
[Seiler et al., 2008], the Sony/Toshiba/IBM Cell Processor [Gschwind et al., 2006], and AMD’s
Stream architecture [Advanced Micro Devices, 2008]. It is clear that another architecture may
become dominant in the future, which must be considered when deciding whether to invest in
the development and optimisation of codes for the Tesla architecture.

In an attempt to standardise development for multicore architectures, The Khronos Group has
developed the OpenCL Specification [Khronos Group, 2008], which describes a language that may
be compiled to different multicore platforms. As with CUDA, OpenCL code must be optimised
for each different target architecture.

2.3 The Finite Element Method

The Finite Element Method is a numerical technique for computing the solution to Partial Differen-
tial Equations. In this section, we give a brief description of the main steps in the method. A more
complete introduction is given in [Sherwin et al., 2009]. We begin with a general linear problem,

L(u) = q (2.1)

where L(u) is a linear operator, which in general consists of differential operators (∂
∂X , ∂2

∂X2 , etc.).
The function L(u) is referred to as the trial function. In the exact solution to this equation, the left-
hand side is exactly equal to the right-hand side. When using a numerical method, an approximate
solution is usually computed, rather than the exact solution. In this approximate solution, the LHS
and RHS may not be exactly equal1. Denoting the computed solution uδ, we have

R(uδ) = L(uδ)− q (2.2)

where R(uδ) is the residual, or error in the solution. When the computed solution is exact, uδ = u,
and R(uδ) = 0. However, when a numerical approximation is produced, the form of R(uδ) is
unknown, so this term must be eliminated. To do this, we multiply the equation by a test function,
v, and integrate over the domain Ω:

∫
Ω

vR(uδ)dX =
∫

Ω
vL(uδ)dX−

∫
Ω

vqdX. (2.3)

Finally we eliminate the integral of the residual by setting it equal to 0, and are left with

∫
Ω

vL(uδ)dX =
∫

Ω
vqdX. (2.4)

We now have the so-called weak form of the linear differential equation in which the definition
of equality has been weakened: to satisfy this equation, instead of requiring L(uδ) = q, we only
require that both sides are equal after multiplication with an arbitrary function and integration
over the domain of the problem.

1in almost all non-trivial cases, they are not exactly equal.

8

2.3.1 Discretising the Domain

Although we have now relaxed the constraints for a candidate solution, finding an analytical so-
lution to Equation 2.4 will be challenging or impossible. In most cases, we must content ourselves
with an approximate numerical solution, evaluated at a finite number of points. However, the
form of Equation 2.4 defines the solution to exist within a continuous functional space. Therefore,
we need to find a way to convert from this infinite-dimensional, continuous space, to a finite-
dimensional discrete space.

In order to achieve this, we represent the solution uδ = ∑N−1
i=0 ûΦi where N is the number of

points in the discrete space, and each Φi is a basis function of the trial space. This gives us a way
of approximating the infinite-dimensional trial function as a point in a finite-dimensional space.
In Galerkin’s method, which we consider in this project, we choose v = ∑N−1

j=0 v̂Φj. This choice
makes the basis functions of the test function and the trial function the same, and the test space is
the same space as the trial space. The basis functions Φi are defined such that

Φi(xi) = 1, and ∀k : i 6= k, Φi(xk) = 0 (2.5)

where xi is the i-th node in a grid of discrete points in the domain. For example, in a 1D domain
we might define the basis functions such that they are piecewise linear as follows:

Φi =

x−xk−1
xk−xk−1

if x ∈ [xk−1, xk]
xk+1−x
xk+1−xk

if x ∈ [xk, xk+1]
0 otherwise.

(2.6)

We may alternatively define basis functions of higher order, provided that they are piecewise
continuous and satisfy the condition given in Equation 2.5. Figure 2.5 shows that in a four-node
1D domain, there are four basis functions, as defined in Equation 2.6.

1 2 3 4

Ba
si

s
Fu

nc
tio

ns

1

2

3

4

Nodes

0

1

0

1

0

1

0

1

Figure 2.5: Piecewise continuous linear basis functions of order 1 over a four-node, three element
one dimensional domain Ω.

2.3.2 Assembly and Solution

Having discretised the computational domain, we may now go about finding the solution in this
discrete domain. This amounts to computing the projection of the solution in the test space onto
the trial space. The left-hand side of Equation 2.4 defines an inner product between the test func-
tion v and the trial function L(u), which may be considered as a projection of v into L(u) (and

9

vice-versa). This projection is known as the Galerkin Projection. In practice, to evaluate this projec-
tion, we assemble a system of linear equations

Ax = b (2.7)

b is a known vector of coefficients of the basis functions of the solution in the test space. The
known matrix A defines the projection from the test space to the trial space. Finally, the unknown
vector x represents the solution in the trial space.

There is a correspondence between the right-hand side of Equation 2.4 and the vector b. Since
the function q is known, we may directly evaluate it at any point. In order to discretise the func-
tion, we treat it in the same way as the test and trial function spaces, and assume that its numerical
approximation is of the form qδ = ∑N−1

i=0 q̂iΦi. In the case where q is constant or linear, it is exactly
represented by qδ; otherwise, the function qδ needs to be approximated such that qδ = q at each
mesh point. As a result, the value of qδ is known at each node, and we can use this information to
construct the right-hand side vector b.

To assemble each row Ai of the matrix A, we integrate the left-hand side over each element
adjacent to the node i. This provides a row of A coupling adjacent nodes. In practice this is
achieved by integrating the left-hand side over each element, which produces an n × n matrix,
called an element-local matrix or just local matrix where n is the number of nodes per element. The
terms in this matrix are then added into the global matrix, A, at positions dependent upon the node
numbers of the element.

The left-hand side often consists of integrals that cannot be efficiently evaluated analytically, so
a numerical scheme such as Gaussian quadrature must be used. Since these quadrature schemes
evaluate a function over a predefined interval (for example, [1,−1] in Gaussian quadrature), it is
necessary to compute the transformation from this reference interval to the actual physical loca-
tion of each element. This transformation may be used to approximate the value of the integral
over the element in its physical space. For a more complete discussion of how element-local ma-
trices are computed, see [Sherwin et al., 2009].

Having assembled A and b, the system of equations may be solved. In most systems A is very
large and sparse. Since direct solution methods are often impractical for systems of this nature,
iterative solvers are preferred. When A is symmetric and positive-definite, the Conjugate Gra-
dient (CG) method [Shewchuk, 1994] is often the most efficient algorithm for finding a solution.
For other systems, the Generalised Minimum Residual (GMRES) method [Barrett et al., 1994] is
preferred.

2.3.3 Boundary Conditions

Often boundary conditions are a necessary condition for the existence of a unique solution to a
differential equation. Boundary conditions may be classified as follows:

Dirichlet BCs. Dirichlet BCs specify the exact value of the solution at a particular boundary node.
A crude way to impose a Dirichlet BC at node i is after the assembly of A, to zero out all
entries of the i-th row apart from the diagonal entry, which is set to 1, and to set the i-th
element of b to the prescribed value. In practice this is inefficient, and many implementations
avoid the assembly of entire rows where a Dirichlet BC is applied.

Neumann BCs. Neumann BCs specify the value of a derivative at a boundary node. A character-
istic of the finite element method is that if no boundary condition is explicitly applied to a
boundary node, a Neumann boundary condition ∂u

∂X = 0 is implicitly applied at that node.
The application of Neumann BCs usually involves surface integration over the boundary in
question, resulting in a terms which are added into b.

Robin BCs. Robin BCs are a weighted combination of Neumann and Dirichlet BCs. In practice,
they are rarely used.

In order to reduce the complexity of the implementation, the application of boundary condi-
tions has not been included in the software developed throughout this project.

10

2.4 Fluidity

The Fluidity [Gorman et al., 2008] code uses the finite element method to solve a wide vari-
ety of systems, including the compressible flow of Newtonian fluids in conservative and non-
conservative form on unstructured, adaptive meshes. It may be used for ocean modelling, solv-
ing the incompressible non-hydrostatic Boussinesq equations, including additional terms for tidal
simulation such as those representing the gravitational interaction of the Earth and Moon, and
equilibrium tide and Coriolis terms. As well as supporting the modelling of a wide range of
different problems, various finite element discretisations including continuous Galerkin, Petrov-
Galerkin, and discontinuous Galerkin are supported, using a variety of element types. For a com-
plete overview of these topics and a description of the code, refer to the Fluidity manual [Ham et
al., 2009].

A large effort has been devoted to parallelising Fluidity on distributed architectures using
MPI. The code is regularly tested against experimental data and theoretical test cases [Farrell et al.,
2009], ensuring the correctness of the solutions it produces. It may be noted that there has a large
investment of time, money and effort into the development of the Fluidity codebase.

In order to exploit multicore architectures such as the NVidia Tesla, a large portion of this
investment will be obsoleted, and further effort will be required as development, testing, and
tuning of CUDA code will be necessary. As stated in Section 2.2.4, the value of this additional
investment might be short-lived, as exploitation of emergent multicore architectures will require
further iterations of the development cycle. As a result, it is infeasible to port Fluidity to new
multicore architectures using the low-level programming languages and tools that are usually
provided for this purpose.

In the following two subsections, we describe the equations and their discretisations that are
solved in two test programs, test laplacian and test advection diffusion. We focus on these
two problems throughout the rest of this project.

2.4.1 test laplacian

The test laplacian program is the most minimal test program in Fluidity. The purpose of the
program is to solve the equation

∇2u = f (2.8)

over the unit square. The Neumann boundary condition ∂u
∂x = 1 is applied to one edge of the

square. The right-hand side function defined as

f (x, y) =
π

4

(
cos
(π

2
x
)

cos
(π

2
y
)

+
π

2
sin
(π

2
x
))

. (2.9)

To solve this equation using the finite element method, we multiply by a test function v and
integrate over the domain:

∫
Ω

v∇2udX =
∫

Ω
v f dX (2.10)

As it is not possible to use a second derivative in a bilinear form we need to integrate the left-hand
side term by parts to lower the order of the derivative. This leads to:

−
∫

Ω
∇v · ∇udX +

∫
∂Ω

v∇u · nds =
∫

Ω
v f dX (2.11)

This system may then be discretised, assembled, and solved, to find the value of u at each point
in the discrete domain. In the test program, the basis functions are equivalent to those defined in
Equation 2.6.

11

2.4.2 test advection diffusion

This test program has been written by David Ham, a member of the Applied Modelling and
Computation Group, for the purpose of comparison with a CUDA implementation. The program
determines the concentration of a tracer (such as saline, or dye) throughout the domain at a given
time, given an initial tracer concentration, and the velocity and diffusivity throughout the do-
main. The following description of the method is reproduced from the documentation of this test
problem [Ham, 2009b]. The system may be modelled using the advection-diffusion equation:

∂T
∂t

+∇ · (uT) = ∇ · µ · ∇T (2.12)

where T is the tracer concentration, u is a vector representing the velocity, and µ is a rank-2 tensor
of diffusivity. We may physically interpret the second left hand side term as one which describes
the advection of the tracer, and the right hand side term as describing the diffusion, both with
respect to time. Multiplying this equation by a test function q and integrating over the domain Ω
with boundary ∂Ω gives:

∫
Ω

q
∂T
∂t

dX +
∫

Ω
q∇ · (uT)dX =

∫
Ω

q∇ · µ · ∇TdX (2.13)

Integration of the advection and diffusion terms by parts gives:

∫
Ω

q
∂T
∂t

dX−
∫

Ω
∇q · uTdX +

∫
∂Ω

qTn · uds = −
∫

Ω
∇q · µ · ∇TdX +

∫
∂Ω

qn · µ · ∇Tds (2.14)

We fix the boundary condition to

∫
∂Ω

qTn · uds−
∫

∂Ω
qn · µ · ∇Tds = 0 (2.15)

which implies that the domain of the simulation is perfectly insulated: no tracer will leave the
domain by being advected or diffusing through the walls of the domain. A useful side-effect of
this boundary condition is that it is implicitly assembled into the system of equations, simplifying
the implementation. Applying this boundary condition to Equation 2.14 gives the following:

∫
Ω

q
∂T
∂t

dX−
∫

Ω
∇q · uTdX = −

∫
Ω
∇q · µ · ∇TdX (2.16)

To compute Tn+1 (the solution at time n + 1) given Tn (the solution at time n), we split the com-
putation into two parts: first, we compute the solution after advection, Ta, and use this result as
input to a scheme that computes the diffusion. We begin by considering the advection scheme.
Although it is possible to assemble and solve the system

∫
Ω

q
∂T
∂t

dX−
∫

Ω
∇q · uTdX = 0, (2.17)

which models the advection, this assembly will result in a matrix that is not symmetric positive-
definite. Solving this system requires the use of a method such as GMRES; however, there are no
efficient CUDA implementations of this method freely available, so we are restricted to making
use of the CUDA Conjugate Gradient solver [Markall and Kelly, 2009]. In order to work around
this problem, we use an explicit time-stepping scheme, the Runge-Kutta method [Weisstein, 2009].
Using a fourth-order Runge-Kutta scheme to integrate T with respect to time leads to the following
systems of equations:

12

∫
Ω

qT1dX = −∆t
∫

Ω
∇q · unTndX (2.18)∫

Ω
qT2dX = −∆t

∫
Ω
∇q · un+ 1

2 (Tn +
1
2

T1)dX (2.19)∫
Ω

qT3dX = −∆t
∫

Ω
∇q · un+ 1

2 (Tn +
1
2

T2)dX (2.20)∫
Ω

qT4dX = −∆t
∫

Ω
∇q · un+1(Tn + T3)dX (2.21)∫

Ω
qTadX =

∫
Ω

qTndX +
1
6

T1 +
1
3

T2 +
1
3

T3 +
1
6

T4 (2.22)

where Tn is the tracer concentration at the beginning of the timestep, Ta is the tracer concentration
at the end of the advection step, and un, un+ 1

2 and un+1 are the velocity at the beginning, middle
and end of the advection step. In the test advection diffusion program, the velocity at a point
is constant with time. In practice, this means that un = un+ 1

2 = un+1. As in test laplacian,
order 1 basis functions are used for the finite element discretisation.

After the assembly and solution of these five systems of equations, we now use the solution Ta

as input to the diffusion scheme. The diffusion step may be solved implicitly since the assembly
of this system does result in a symmetric positive definite matrix. For this step, we assemble and
solve the system:

∫
Ω

qTn+1dX =
∫

Ω
qTadX− 1

2

(∫
Ω
∇q · µ · ∇TadX +

∫
Ω
∇q · µ · ∇Tn+1dX

)
(2.23)

giving the solution Tn+1. Having found the solution for Tn+1, the entire process may be used to
compute Tn+2 and so on, until the solution at the desired timestep is reached.

2.5 The Unified Form Language

The Unified Form Language, or UFL [Alnaes and Logg, 2009a], originated from the research con-
ducted as part of the FEniCS project [Dupont et al., 2003; Logg, 2007]. In order to introduce the
language, we must first introduce the notion of linear and bilinear forms. For example, we might
introduce the notation

a(v, u) =
∫

Ω
∇v · ∇udX (2.24)

and we refer to a as a bilinear form, so called as it is linear in both its arguments. A linear form
takes a single argument in which it is linear. As we have seen in previous sections, use of the
finite element method requires the evaluation of linear and bilinear forms as in Equation 2.24,
the results of which produce local matrices which are summed into the global matrix. UFL is a
domain-specific language that provides the programmer with a convenient notation to express
these forms, without requiring any particular details about how to implement the evaluation of
these forms to be specified. The UFL compiler outputs code to evaluate these forms and perform
the global assembly, freeing the programmer from the tedious and error-prone process of writing
it by hand.

We will introduce the language with a small example, which specifies the assembly of the first
term in Equation 2.11. The following UFL code expresses the evaluation of the form a (which we
note represents the term of interest) with test and trial functions v and u as follows:

psi=FunctionSpace(mesh, "CG", 1)
v=TestFunction(psi)
u=TrialFunction(psi)
A=-dot(grad(v),grad(u))*dx

13

The statement psi=FunctionSpace(mesh, "CG", 1) specifies that psi is a function space de-
fined over some mesh (how the mesh mesh is obtained is not discussed in this example). The
parameters "CG", 1 tell the UFL compiler that the basis functions of the functional space are
piecewise continuous polynomials of order 1, as defined in Equation 2.6. v=TestFunction(psi)
and u=TrialFunction(psi) specify that v is a test function and u is a trial function, which are
both defined on the same mesh as psi. The final line specifies that the matrix A is assembled from
the form in Equation 2.24.

One of the main advantages of using UFL to specify a finite element method is that a UFL
specification describes the mathematical operations from a high level without describing how
these operators are implemented. Since the implementation of the method is left to the UFL com-
piler, the user of UFL does not have to worry about the specifics of the implementation which
would have to be considered when using a lower-level language such as Fortran or C++. A UFL
compiler targeting a particular architecture may be tuned to generate code which is optimised for
the specific performance characteristics of the that architecture.

2.5.1 UFL Compiler Optimisations

As a UFL Compiler is given a declarative specification rather than an imperative one, it is free
to make choices about how the generated code should implement the specification in order to
optimise performance. We shall consider an example of one of the choices the compiler may
make. It is not always efficient to assemble a matrix whenever the assignment of a bilinear form is
encountered. The optimal choice depends on how the resulting matrix is subsequently used. For
example, consider a portion of the assembly of the diffusion scheme described in Equation 2.23:

M=p*q*dx
rhs=action(M+0.5*d, t)
A=M-0.5*d

In this example the matrix M is not used as a matrix of coefficients in a solve (though this is
not evident from the above code), but is only used as an intermediary matrix for the construction
of the matrix A, and the right-hand side vector. Assembling a full sparse matrix for M will be very
costly in terms of memory usage, and possibly in terms of computation required to construct the
matrix sparsity pattern.

Since M is not directly required, an efficient schedule for executing this code may consist of
fusing the loops that assemble the right-hand side vector and the matrix. After this optimisation,
the elemental submatrices that make up the matrix M may be assembled for each element in the
mesh at each iteration of the loop - this elemental submatrix may then be used to compute M’s
action on the elemental sub-vector that contributes to the right-hand side vector, and also added
into the elemental submatrix calculation for A. At the end of an iteration of the loop, the elemental
submatrix of M is no longer required, and is freed. This scheme also avoids a Sparse Matrix-Vector
(SpMV) product being computed for a very large sparse matrix, replacing it with many small,
dense matrix-vector multiplications.

Whether it is more efficient to fully assemble M or to only ever assemble its elemental subma-
trices may not be determined from simply examining the two possibilities, but is instead depen-
dent upon the target architecture. In this example we seek not to demonstrate which algorithm
is better, but that there is an optimisation space to be explored, and further that the user of UFL
need not consider this optimisation space.

2.6 Summary

We have examined the NVidia Tesla Architecture and CUDA programming language, and it has
been seen that performance optimisation of CUDA code is time-consuming and error-prone. The
finite element method has been discussed in brief, and we have seen that it is a very flexible
method, but its implementation is complex as it consists of many steps. The Fluidity code has

14

been introduced, and we have described the two test problems that we focus on throughout this
report. Finally, we have introduced the UFL language, which allows finite element methods to be
specified at a high level, and isolates the description of a method from its low-level implementa-
tion.

15

16

Chapter 3

Related Work

3.1 Introduction

In this chapter we seek to examine and evaluate work related to that conducted as part of this
project. We draw on research in the following areas:

Recent developments in the implementation of finite element assembly on GPU hardware. The
application of these methods includes the simulation of hyperelastic materials, the imple-
mentation of the Discontinuous Galerkin method to solve electromagnetic scattering prob-
lems, soft tissue modelling for surgical simulation, and modelling of seismic waves in earth-
quakes.

Generative programming. We describe the Tensor Contraction Engine and the motivation for its
creation. We examine PyCUDA, a tool that may be used to automate the exploration of the
optimisation space of CUDA kernels. Finally, we describe the work on automation and code
generation of finite element methods, focusing particularly on the FEniCS project.

3.2 Finite Element Assembly on GPUs

3.2.1 The Genesis of the Finite Element Method on Graphics Processors

The first implementation of the finite element method using graphics processing hardware was
presented in [Rumpf and Strzodka, 2001], which implemented a nonlinear diffusion scheme. At
the time at which this work was done, graphics hardware was not designed with general purpose
computation in mind. In order to overcome the limitations of the hardware, mathematical oper-
ators had to be encoded as operations on textures. Due to the hardware limitations in the early
graphics hardware, the implementation presented was slower than an equivalent CPU implemen-
tation executed on an SGI Onyx2 with 4 195MHz R10000 processors.

Since modern GPUs are far more powerful than the hardware used in this study, and have
general purpose programming interfaces, the technical contributions of this work are largely un-
related to current techniques for the implementation of the finite element method on GPUs. We
shall see in the following subsections that performance improvements may be obtained when
using modern GPUs for finite element assembly.

3.2.2 Hyperelastic Material Simulation

It has recently shown that finite element assembly of the system of equations for the modelling
of a hyperelastic material [Ogden, 1997] can yield speedups of up to 15 times over a CPU imple-
mentation [Filipovic et al., 2009a; Filipovic et al., 2009b]. In this work, an implementation of the
assembly of equations modelling a St. Venant-Kirchhoff material using an NVidia 280GTX GPU
is presented. The authors identify that the operations which make up the assembly process are
massively parallel (since each element-local matrix may be computed in independently) but the

17

granularity of these operations does not have an ideal mapping on to the NVidia Tesla architec-
ture. The operations are referred to as medium-grained, since they are too large to be efficiently
computed by a single thread, but too small to be efficiently computed by an entire thread block.

In order to implement these medium grained operations, an implementation is described in
which small numbers of threads perform an algebraic operation for an element in parallel and
store the intermediate result into shared memory. The use of separate kernels for each mathemat-
ical operator allows the programmer to increase efficiency by choosing the optimum number of
threads to compute a result for each element on a per-operator basis. However, the negative side-
effect of this approach is that the implementation quickly becomes memory bandwidth-limited,
as a large number of intermediate values need to be passed between each kernel through global
memory.

A proposed solution to overcome this bottleneck involves fusing kernels and passing interme-
diate results in shared memory. This results in a performance gain as the pressure on the memory
bandwidth is reduced. An example of this optimisation is shown in Figure 3.1. On the left, the
unmodified kernels pass data through global memory. The output of kernel O1 is stored in global
memory and read by kernel O3. To create the right-hand implementation, these two kernels are
fused and the output from O1 is stored in shared memory, which is read back by the portion of the
new kernel that performs the operation O3.

The example shows that fused kernels may have used different numbers of threads to compute
the result for a single element. This can lead to inefficiency as in the fused kernel, some of the
threads will be idle whilst the reduced number of threads computes the work of one of the original
kernels. As a result, some kernel fusions may result in less efficient code than that which executes
each operation in a separate kernel and passes intermediate results through global memory.

Multiprocessor

Multiprocessor
O1: 3 threads
per element

O2: 9 threads
per element

O3: 1 thread
per element

O1: 3 threads
per element

O2: 9 threads
per element

O3: 1 thread
per element

O4: 1 thread
per element

O4: 1 thread
per element

Figure 3.1: Left: Individual kernels exchange data in global memory. Right: Fused kernels ex-
change data through global memory. From [Filipovic et al., 2009b]

When performing kernel fusions, there are also other tradeoffs that must be made to produce
the most efficient implementation. It may be expected that increasing the number of operations
performed by one kernel should result in an increase in speed due to the reduced memory band-
width requirement. However, as the size of a kernel increases, its use of registers and shared
memory also increases. This decreases the occupancy of the kernel, which can have a negative
impact on performance. Secondly, the order in which operations are composed whilst remaining
semantically equivalent has an effect on the resource usage of kernels. This design space must
also be explored in the search for optimal performance. Although the authors do not discuss the
automated exploration of these optimisation spaces, we observe that manual exploration is a time-
consuming and error-prone process, unlikely to discover the optimum with a reasonable amount
of effort.

18

The performance results presented by the authors show that the GPU accelerated implemen-
tation gives a speedup of 15 times over the CPU implementation when using an NVidia 280GTX
GPU and and Intel Core2 Quad Q9550 with 8GB RAM. The performance improvement from fus-
ing kernels yields a further improvement of 1.8 times over the unfused kernels. Unfortunately the
authors do not report the compilers they used, or even whether computations are performed in
single or double precision. Furthermore, the speedups presented are over a single core - bench-
marking the CPU implementation using multiple cores would provide a more representative base-
line against which the GPU implementation may be evaluated.

In conclusion, it is clear that increased performance may be obtained by using GPUs for finite
element assembly, though the magnitude of this performance increase is unclear. Ideal mapping
of the assembly algorithms on to the GPU hardware may be achieved by a careful choice of the
number of threads per element for each operation. Optimisation of a GPU implementation will
require testing the fusion of different combination of kernels, a task which ideally would be per-
formed by an optimising compiler.

3.2.3 Discontinuous Galerkin on GPUs

Discontinuous Galerkin (DG) methods [Donea, 2003] are a class of finite element methods in which
the majority of computation is applied locally to each element, and a flux function couples neigh-
bouring elements. This structure of the method maps well on to a GPU architecture, since it has a
high ratio of computation to data, and each element may be processed individually for most op-
erations. The method has been implemented on the NVidia Tesla architecture and benchmarked
against a CPU implementation [Klöckner et al., 2009].

The DG Method

We shall briefly summarise the DG method presented in the paper, which solves a linear hyper-
bolic system of conservation laws:

∂u
∂t

+∇ · F(u) = 0 (3.1)

where F is the flux function. The system is solved on a 3D mesh of tetrahedral elements by
timestepping the discrete equation

∂u
∂t

= −∑
ν

Dk,∂ν[F(uk)] + Lk[n̂ · F− (n̂ · F)∗]|A⊂∂Dk (3.2)

where ν is the set of elements, uk is the values of u on the element k, n̂ is the outward pointing unit
normal on the element face, (n̂ · F)∗ is some numerical flux in the normal direction, and Dk is the
domain of element k. The Differentiation and Lifting matrices, Dk,∂ν and Lk are defined by

Mk
ij =

∫
Dk

ΦiΦjdX (Mass)

Sk,∂ν
ij =

∫
Dk

Φi∂xν ΦjdX (Stiffness)

Mk,A
ij =

∫
A⊂∂Dk

ΦiΦjds (Face Mass)

Dk,∂ν = (Mk)−1Sk,∂ν (Differentiation)

Lk = (Mk)−1Mk,A (Lifting)

The DG method may be decomposed into four stages:

Flux Gather. This involves computation of the term [n̂ · F− (n̂ · F)∗]|A⊂∂Dk . This is the only oper-
ation in which the computation is not purely element-local.

19

Flux Lifting. This involves the computation of the element-local Lifting matrix Lk and its action
on the term computed in the Flux Gather stage.

Flux Evaluation. This is the evaluation of the Flux function F(uk) on each element k.

Local Differentiation. This stage involves computation of the local differentiation matrix Dk,∂ν

and its action on the Flux function computed in the Flux Evaluation stage.

The results of the Flux Lifting and Local Differentiation stages are summed into the matrix
A (as in Equation 2.7). Since the all nodes are only local to a single element, the structure of the
resulting matrix is blockwise diagonal with no coupling between blocks [Donea, 2003, p.125]. This
makes the matrix very easy to invert, and this process may be done on an elementwise basis.

GPU Implementation and Optimisation

The implementation of the method is mapped on to the GPU as four kernels, each corresponding
to one of the stages described in the previous subsection. We briefly outline some of the design
decisions and optimisations described in the publication, and avoid a restatement of the entire
description of the implementation.

It is stated that using the shared memory for storing element-local matrices leads to inefficiency
since it is too small to store matrices for a large number of elements. In the case of tetrahedral
elements with order 1 basis functions, each local matrix is a 4 × 4 matrix. The storage of one
matrix in single precision requires 64 bytes, so up to 256 element-local matrices may be stored on
the shared memory of one SM. Assuming one thread computes the output for a single element,
this allows 256 threads to occupy a single SM. This is a reasonable level of occupancy; however,
for the higher-order basis functions used in this implementation, the matrices quickly become
too large. For example, a tetrahedron with order-4 basis functions has 35 degrees of freedom, so
the local matrix is 35× 35. In this case, each local matrix element requires 4900 bytes of shared
memory, permitting the storage of only 3 element-local matrices in the shared memory of one SM.

Since the nodal data only requires a small amount of data for each element, the authors decided
that it may efficiently be prefetched into shared memory at the beginning of kernel execution, and
copying results back to main memory after computation has been performed. As the length (in
bytes) of element data for a single element is often not a factor of 16 or 32 (the size of a half-
warp and warp respectively), consecutive elements are placed adjacently in memory until their
combined length is close to 64 bytes, and padding is added. See Figure 3.2 for an example of this
layout. This layout allows coalesced accesses to be made when prefetching the data into shared
memory, whilst wasting a minimal amount of memory space and bandwidth.

Element

Element

Element

Element

Element

Element

.

Padding

 0

64

128

Figure 3.2: Padding of packed multiple elements to 64 bytes. From [Klöckner et al., 2009].

The authors explore the idea of fusing kernels. For example, the Gather and Lifting kernels
may be candidates for fusion since the output of the Gather stage is the input to the Lifting stage.
However, it is concluded that this would lead to inefficient kernels, since different numbers of
threads are used to compute each output value in the two kernels, leading to some threads idling
for a portion of the fused kernel execution. This is in contrast to the results presented in [Filipovic

20

et al., 2009a], where an increase in speed is reported even when kernels which use different num-
bers of threads per output are fused. We conclude that fusion of kernels should be explored when
optimising a CUDA implementation of the finite element method, since it may lead to increased
performance in some cases. However, in other cases it may be detrimental to performance.

The Flux Gather stage requires flux data to be fetched for each face of each element. Since
neighbouring elements share a face, the data for each face is required to be loaded from global
memory twice (see Figure 3.3). In order to reduce the memory bandwidth usage, a partitioning
scheme is used where small partitions of elements are created using a greedy algorithm. In the
Gather kernel, an entire partition is prefetched into shared memory before computation is per-
formed. As a result of this optimisation, data for faces on the interior of the partition are only
transferred once.

Figure 3.3: Flux between neighbouring elements.

Other optimisations that were explored include loop unrolling and constant folding, and us-
ing the texture cache to access the lifting matrix, as an alternative to using shared memory. The
exploration of some of these optimisations was facilitated by using the metaprogramming system
in PyCUDA (see Section 3.4).

Performance Results and Conclusions

Benchmarking of the implementation is performed using an NVidia 280GTX GPU and a single
core of an Intel Core 2 Duo E8400, both operating in single precision. The test problem is an elec-
tromagnetic scattering problem, which involves finding solutions to Maxwell’s Equations [Monk,
2003]. A speedup of between 24 and 57 times is shown, depending on the order of the method
used. These speedups appear impressive - however, the compiler and flags used for the CPU
implementation are not mentioned, and we may suspect that the CPU implementation is run-
ning sub-optimally. Additionally, benchmarking using a single core of a CPU does not provide a
representative baseline to compare against, since modern CPUs have up to eight cores.

In conclusion, we have seen that the DG method is amenable to speedup using GPUs, and
may form part of our further investigations into the implementation of the finite element method
on GPUs. Since the optimisations that were reported to have a beneficial effect on performance
differ from those described in the previous section, we conclude that optimising the implemen-
tation of finite element methods on GPUs requires a careful choice of techniques, and that there
is no clear strategy for determining which optimisations may be the most worthwhile to imple-
ment. Instead, experimentation must be performed to determine which optimisations result in
performance improvements for a given implementation.

3.2.4 Soft Tissue Modelling in the SOFA Framework

The Total Lagrangian Explicit Dynamics (TLED) method [Miller et al., 2007] is a finite element
method designed for modelling soft tissue for surgical simulations. The execution of the algo-
rithm consists of two main loops. The first loop iterates over each element in the mesh to compute
stress and strain forces, and the second loop iterates over nodes in the mesh, computing their new
positions based on these forces. This algorithm differs from the formulation of the finite element
method described in Section 2.3, which consists of an assembly phase and a solver phase. How-
ever, the computation of the stress and strain forces is a similar process to the assembly phase. A

21

full explanation of the TLED method is outside the scope of this report.
The first implementation of the TLED method was written in the NVidia Cg [NVidia, 2009b]

language [Taylor et al., 2008; Taylor et al., 2007], and executed on older GPU architectures, before
the availability of the Tesla architecture and CUDA. This implementation showed speedups of
16.4 times over the CPU for a model problem, and up to 14 times for a more realistic model of
displacements in a model brain.

The SOFA Framework

A subsequently-developed implementation of this algorithm was produced using the Simulation
Open Framework Architecture (SOFA) [Allard et al., 2007]. SOFA is a framework designed to fa-
cilitate the development of real-time simulations, in particular medical simulations. A complete
simulation is produced by composing individual behaviour models that contribute to different
aspects of the simulation. For example, one may combine a collision model, a visual model and a
haptic model to produce a simulation of a surgical procedure.

Each modelling area is further subdivided in a domain-specific decomposition. We focus on
the behaviour model, which is used to simulate the physical motion of tissue, and has the follow-
ing subdivisions: Degrees of Freedom, Mass, Force Field, and Solver. A component from each
of these divisions is selected in order to construct a complete behaviour model. Implementing
a new biomechanical model (such as the TLED method) requires a new Force Field module to
be developed in C++. The framework provides the programmer with a relatively high-level in-
terface to assist the development of their model, but it does not provide any abstractions from
implementation in the C++ language.

Implementation of the TLED method using SOFA and CUDA is described in [Comas et al.,
2008]. Use of the CUDA language instead of Cg facilitated the use of shared memory and the
texture cache to improve performance, though the specific details of optimisations are omitted.
Pinned memory is used to increase the data transfer speed to the GPU.

Performance Results

Benchmarking the SOFA implementation using a GeForce 8800GTX GPU shows a speedup of up
to 53.6 times over the CPU implementation on an Intel Core 2 Duo 2.4GHz when using single
precision arithmetic. Unfortunately the compiler used for the CPU implementation is not re-
ported, nor is the number of cores used for the simulation. We may suspect that a single core
was used to execute the CPU implementation. A speedup of 37 times for a simulation of an eye in
cataract surgery is reported. The accuracy of the simulation compared to the CPU is not discussed
- although some discrepancy is likely due to differences in the implementation of floating point
calculations, whether the solutions are qualitatively equivalent is not mentioned.

In order to demonstrate that the overhead of using the SOFA framework is very low, the TLED
algorithm is implemented as a standalone program. The execution time of the standalone program
is compared to the SOFA implementation for a test problem. It is shown that the use of SOFA adds
an overhead of approximately 8.4%, which is considered to be an acceptable increase due to the
ease of integration with other models which the SOFA framework permits.

Conclusion

We may conclude that the provision of a framework in which finite element methods may be
developed and composed with other models increases the ease with which they may be imple-
mented. However, this does not provide portability to other architectures, since the C++ code
which implements the Force Field for TLED makes calls to CUDA kernels. Additionally, making
changes to an algorithm implemented using C++ and CUDA will require a non-trivial effort, since
the algorithm is entwined with its implementation.

22

3.2.5 High-Order Earthquake Modelling

[Komatitsch et al., 2009] describes the implementation of a finite element earthquake model using
CUDA. We do not repeat all the optimisations described, as most of them are similar to those
already examined in previous sections. Rather, we shall describe an optimisation that we have
not previously discussed, involving a colouring of the elements to increase the efficiency of the
assembly phase.

As described in Section 2.3.2, each row of the global matrix is constructed from contributions
from a single node. When this matrix is constructed by the addition of local matrices into rows
and columns based on the node numbers of each element, there is potential for data races to occur.
Different threads that are working on the assembly of elements that share a node will both attempt
to update the same row. These concurrent updates can lead to an incorrect result being stored into
the matrix. One way to overcome this issue is to use atomic operations for the addition of terms
into the global matrix; however, these operations have a high cost, and may considerably slow
down execution.

An alternative to using atomic operations which prevents data races is to assign a colour to
each element in the mesh such that all elements of the same colour do not share any nodes. The
assembly phase is then executed once for each colour, and in each of these executions, no two
rows will attempt to update the same rows since none of the elements of a particular colour share
any nodes. Figure 3.4 shows an example of a small mesh with an appropriate colouring for this
scheme.

Figure 3.4: A colouring of a mesh such that no two elements of the same colour share a node.

Performance results for the implementation were gathered using an NVidia 280GTX GPU and
one core of an Intel Xeon E5345. A CPU implementation is used which is compiled using the GCC
compiler with the -O3 flag. This choice of compiler and flags is justified since it is demonstrated
that the binaries produced by GCC run more quickly than those produced by the Intel compilers
for this problem. Speedups of between 21 and 25 are reported, for computations performed in
single precision. It is shown that the results produced by the algorithm in single precision are
equivalent to those produced using double precision arithmetic.

3.2.6 Finite Element in CPU/GPU Clusters

An area of research related to the implementation of finite element assembly on GPUs involves
investigation into how the execution of finite element assembly may be efficiently mapped onto
heterogeneous clusters composed of CPU and GPU hardware. This work is motivated by the claim
that the speedups obtained using GPUs for computation in the finite element method are small
enough that the contribution of the CPU to the execution time is non-trivial. Some preliminary
investigations and discussion of this area are presented in [Becker et al., 2009]. Since we focus
on the implementation of finite element assembly on the GPU within this report rather than the
efficient distribution of the workload in a cluster, we do not consider this area further.

3.3 Generating Execution Schedules for Tensor Contractions

There are often many different execution schedules for computing the result of a tensor contrac-
tion expression, which vary in the amount of memory and computation required. Consider a
motivating example given in [Baumgartner et al., 2002], which is the tensor expression

23

Sabij = ∑
cde f kl

Aacik × Bbe f l × Cd f jk × Dcdel . (3.3)

The computation of this expression may be implemented naı̈vely using ten nested loops, requiring
4× N10 operations, if the range of each index is N. However, rearranging this expression gives

Sabij = ∑
ck

(
∑
d f

(
∑
el

Bbe f l × Dcdel

)
× Cd f jk

)
× Aacik (3.4)

which minimises the amount of computation required, requiring the evaluation of 6× N6 opera-
tions. However, this schedule requires a large amount of temporary storage for the results of the
bracketed expressions, which may exceed the memory capacity of a target machine. Schedules
which minimise the amount of computation tend to increase the storage requirements, and vice
versa. Target machines differ in computational and storage capacities, and the optimal sched-
ule depends on the availability of these resources. We see then, that the optimal expression to
compute will be somewhere in between those in Equations 3.3 and 3.4.

The Tensor Contraction Engine (TCE) [Auer et al., 2006] is a tool that may be used to search for an
optimal execution schedule for the evaluation of a tensor contraction expression. Given a tensor
contraction expression and the constraints of the target machine in a domain-specific language,
the TCE searches for an optimal schedule and generates an implementation in Fortran.

Although the function of the TCE is not directly related to the implementation of finite element
methods, we remark that it allows the user to provide an abstract specification of a mathemati-
cal operation without specifying its implementation. The TCE is free to make choices about the
implementation of the operation that result in the generation of optimised code for a given tar-
get. This may be compared to the operation of a UFL compiler, which also inputs specifications
of mathematical operations, and produces an implementation for a target machine as output. We
conclude that a UFL compiler may also be implemented such that the execution schedule of the
code it outputs is optimised for a target architecture, and that it may select optimisations that are
most likely to increase performance on this architecture.

3.4 PyCUDA

PyCUDA [Klöckner, 2009] is primarily an interface to CUDA for Python. However, it may also
be used for template-based metaprogramming, in order to explore some areas of the optimisation
space of CUDA kernels. To make use of this facility, the programmer writes a CUDA kernel with
a small amount of additional metadata. The PyCUDA system may then be used to instantiate this
template kernel at runtime, generating code to explore the following optimisations:

Constant Folding. Constant folding optimisations evaluate an expression at compile time and
replace any occurrences of the expression with a constant [Aho et al., 2006, p.536]. This
optimisation is advantageous on the Tesla architecture since it reduces register pressure.
This optimisation will often be useful for replacing loop bounds in implementations of the
finite element method. For example, a kernel in which threads cooperate to loop over all the
elements of the mesh will have reduced register usage if the number of elements is compiled
into the kernel at runtime.

Loop Unrolling. Loop unrolling reduces the number of conditional branch instructions executed
as part of a loop by repeating a loop body and adjusting the bounds of the induction variable
accordingly [Aho et al., 2006, p.735]. Since the optimisation decreases the total number of
instructions executed, a performance gain may be seen. However, this must be balanced
against the increase in code size, which may put pressure on the instruction cache.

Choice of Block Size/Work Per Thread. Although the CUDA Occupancy Calculator provides some
indication of grid and block dimensions that result in optimal occupancy, this is not a direct

24

indicator of performance. The thread block size must be chosen so as to distribute the work
between threads and such that the ratio between the amount of work done by each thread
and the overhead of thread creation is maximised. Since this choice is not immediately ob-
vious, a metaprogramming system capable of generating candidate kernels with varying
block and grid dimensions reduces the effort required on the part of the programmer.

In contrast to a domain-specific language, PyCUDA does not provide any abstraction from the
low-level implementation details of CUDA kernels. As a result, code written using PyCUDA is
limited to the NVidia Tesla architecture. Additionally, the optimisations which PyCUDA facili-
tates are only a small sample of many possible optimisations (see [Aho et al., 2006, ch.8-12] for
details of many of these). Use of a domain-specific language may provide more opportunities for
optimisation, since it allows assumptions to be made that are difficult to infer from implementa-
tions in low-level languages such as CUDA.

3.5 Generative Programming/Automation of Finite Element Methods

Many tools which ease the process of programming finite element methods are available. These
tools include libraries such as Deal.II [Bangerth et al., 2007], Diffpack [Langtangen, 2003], and
Sundance [Long, 2003], as well as domain-specific languages such as Analysa [Bagheri and Scott,
2004], FreeFEM [Hecht et al., 2005] and GetDP [Dular and Geuzaine, 2005]. The level of automation
of the finite element method varies between these tools. For a more complete survey of each of
these packages, refer to the FEniCS lecture notes on automating the finite element method [Logg,
2007]. We have made mention of these tools to highlight the fact that there is a considerable choice
in languages and libraries for implementing the finite element method. We focus on discussing
The FEniCS Project [Dupont et al., 2003; Logg, 2007] in more detail, for the following reasons:

• It arguably provides the user with the highest level of automation of the implementation of
the finite element method compared to the other available tools.

• It provides a complete implementation of a UFL compiler.

The goal of the FEniCS project is to provide a general, efficient and simple set of tools for au-
tomating the solution of PDEs [Logg and Alnaes, 2009]. In order to demonstrate the ease with
which one can write a complete implementation of a finite element method in UFL using FEn-
iCS, Figure 3.5 shows the code required to solve Poisson’s equation. The majority of this code is
familiar from the description of UFL given in Section 2.5. In order to turn this into a complete
implementation of a finite element solver using FEniCS Dolfin [Logg and Wells, 2009], one only
needs to add extra code to define the mesh and boundary conditions, and to plot the solution.

This small piece of code contrasts heavily with the amount of code that would typically imple-
ment a solution to a similar problem: were one to implement a method to solve a similar problem
without making use of a domain-specific language or library, thousands of lines of code would
likely be required. However, this example is considerably more simple and compact than other
implementations of the same problem that do make use of a domain-specific library. For example,
the test laplacian program solves a similar problem using approximately 500 lines of Fortran
90 code whilst making use of the finite element method library that is built in to Fluidity, called
Femtools [Ham, 2009a].

3.5.1 Remarks

With regard to FEniCS, we highlight several points:

• Although the FEniCS tools make the development of codes that use finite element methods
quite straightforward, it can be difficult to use to perform tasks that are dissimilar to those
used in the finite element method.

25

from dolfin import *

mesh = UnitSquare(32, 32)

V = FunctionSpace(mesh, "CG", 1)

class DirichletBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

Define boundary condition

u0 = Constant(mesh, 0.0)

bc = DirichletBC(V, u0, DirichletBoundary())

Define variational problem

v = TestFunction(V)

u = TrialFunction(V)

f = Function(V, "500.0 * exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")

a = dot(grad(v), grad(u))*dx

L = v*f*dx

Compute solution

problem = VariationalProblem(a, L, bc)

u = problem.solve()

plot(u)

Figure 3.5: A complete Python script to solve Poisson’s Equation on a 2D domain, which defines
a mesh, boundary conditions, the functional spaces, the variational problem, and plots the com-
puted solution.

• At present, the UFL compilers included with FEniCS output code in C++ which is compiled
using a standard compiler such as the GNU or Intel compilers. However, since the UFL
specifications provide no implementation details, there are no barriers to the production of
multiple backends for the compiler that output code for specialised target architectures, such
as the Tesla architecture or the Cell processor.

• Since a complete implementation of UFL is provided as part of FEniCS, it is natural to con-
sider whether this implementation may be integrated into Fluidity, to allow the portions of
its code which implement the finite element method to be migrated from Fortran to UFL,
so that the development of different UFL compiler backends eventually allows Fluidity to
exploit other architectures. However, this is infeasible since the underlying data structures
used in Fluidity and FEniCS have been developed separately, and as such are incompatible.
Modification of the underlying data structures of either of these projects to allow their inte-
gration is a significant undertaking, as is the development of an interface layer between the
two representations. These issues prohibit the effective integration of Fluidity and FEniCS.

3.6 Conclusions

We may draw the following conclusions from our literature review:

• The implementation of finite element assembly using GPUs can yield large speedups over
the equivalent CPU implementations. In each of the implementations described in Section
3.2, speedups of over an order of magnitude have been obtained.

• In order to achieve maximal speedups from the use of GPUs, it is necessary to explore a
variety of optimisations, including:

– Making use of the different levels of the Tesla memory hierarchy, including shared
memory and the texture cache.

26

– Using different formats for packing element data together and padding the data to meet
alignment requirements.

– Mesh partitioning and colouring.

– Fusion of kernels and array contraction.

Since different authors report different optimisations to be beneficial to performance, and
that there exist a variety of optimisations, determining the most optimal implementation of
a given method is likely to involve substantial work.

• Due to the variety of finite element methods, and size of the optimisation space, the auto-
mated exploration of this space is necessary for efficient implementation of these methods
on GPUs to be tractable.

• Generative programming of the finite element method based on specifications of mathemat-
ical operations that have been abstracted from implementation details permit the automated
exploration of optimisations.

• In order to produce a tool to generate implementations of finite element methods from an
abstract specification, preliminary work involving manual translation of a finite element
method to the GPU is required. The implementations produced as part of this work may be
used as a guide to the expected output from the tool, and will provide insight as to how the
optimisation space should be explored.

The remainder of this report discusses the work that has been completed towards the last
point. The following chapter discusses the manual translation of the two test programs, test laplacian
and test advection diffusion, to CUDA, whilst Chapter 5 describes the implementation of a
prototype tool for generative programming of finite element methods on GPUs.

27

28

Chapter 4

Implementation of Finite Element
Assembly using CUDA

4.1 Introduction

Implementations of finite element assembly routines using CUDA for the two test programs
(test laplacian and test advection diffusion) were produced. The motivation for produc-
ing these hand translations is as follows:

• To produce a UFL compiler that outputs CUDA code, it is necessary to have an expectation of
the output it produces. Manual implementation of the test programs using CUDA provides
us with reference implementations with which we may compare the generated code.

• Producing a hand-written implementation allows experimentation with different optimisa-
tions and alternate ways of structuring the code before we are committed to a firm choice
about the output from the compiler. Also, we are able to use this implementation to foresee
any issues with the integration of CUDA code with Fluidity.

• A pre-requisite for the development of the prototype UFL compiler is a library of optimised
kernels capable of performing the operations that make up finite element assembly routines.
Writing these reference implementations includes the development of such a library, which
may be re-used by generated code.

The implementation of the assembly phase of test laplacian was performed first, as it is
the most simple test case. Later, the assembly phase for the more representative test program,
test advection diffusion, was implemented. This implementation made use of most of the
kernels developed for the CUDA implementation of test laplacian.

The remainder of this chapter describes the implementation of the assembly routines and the
optimised CUDA kernel library. Performance results are presented for the test advection diffusion
implementation, which compare favourably to the CPU implementation. We do not examine the
performance of test laplacian in detail, as it is a very simple test case and its utilisation of the
GPU is poor. This does not stand against the case for using GPUs for finite element assembly,
since it is not representative of most finite element codes.

4.2 Initial Implementation of the assembly routine of test laplacian

using CUDA

4.2.1 The Assembly Loop in Fortran

We begin by examining the implementation of the assembly phase in its original form, which is a
loop over all the elements in the mesh, making calls to the following functions:

29

transform to physical. This kernel implements the transformation of a basis function and its
derivatives into the physical space occupied by the element, and computes the Jacobian
for the transformation. Its outputs are stored in dshape_psi, which stores the transformed
derivatives of the shape function, and detwei, which stores the Jacobian for the transforma-
tion multiplied by each quadrature point.

dshape dot dshape. Computes
∫

Ωe ∇a · ∇bdX. This kernel requires dshape_psi and detwei as
input. The output of this function is a local matrix.

csr addto. Adds a local matrix into a global matrix. In this program, the result of dshape_dot_dshape
is added into the global matrix A.

shape rhs. This computes the
∫

Ωe v f dX. This kernel requires detwei as input. The output of this
function is an element-local vector.

scalar field vaddto. This function adds an element-local vector into a global vector. In the test
program is adds the result of shape_rhs into the right-hand side vector.

Each of these functions performs a suitable amount of computation to implement them as
single kernels, and the resulting structure for the GPU-based assembly code partially mirrors the
structure of the original Fortran source code.

The structure of the loop must be changed for the CUDA implementation. To fully utilise the
GPU hardware, it is necessary to perform many tasks in parallel - a suitable level of granularity
in this case is to use one thread per element, with many threads operating in parallel. Since only
one kernel may execute at once on the GPU, the loop structure of the assembly phase must be
flattened, and each kernel performs its computation on all elements before the next kernel may be
launched. A consequence of this design is that arrays in global memory must be used to store the
intermediate results for each element. Figure 4.1 shows an overview of control flow and data flow
in the original and GPU implementations.

transform_
to_physical

dshape_
dot_dshape csr_addto shape_rhs

scalar_
field_vaddto

1 Result 1 Result

1 Result

1 Result

if this_ele < num_ele

Exit

(a) Original Fortran Implementation.

transform_
to_physical

dshape_
dot_dshape csr_addto shape_rhs

scalar_
field_vaddto

Global Memory

Exit

(b) CUDA Implementation

Figure 4.1: Control flow (solid lines) and Data flow (dotted lines) in versions of the
test laplacian program.

30

4.2.2 Implementation of Boundary Conditions

The boundary condition affects the right-hand side vector, b, which is the sum of two vectors:

b = bint + bbc (4.1)

where bint is the contribution from nodes in the interior of the domain, and bbc is a contribution
from the boundary condition. In order to work around the need for boundary condition to be
evaluated on the GPU, a scheme was implemented that uses the original Fortran code to assemble
the boundary condition vector, bbc whilst the GPU assembles the vector bint. After these computa-
tions have completed, bbc is uploaded to the GPU, and added to bint using a kernel that performs
vector addition.

Since the work done to calculate boundary nodes grows much more slowly than the amount
of work for interior nodes as the size of the mesh increases, the contribution to the total work of
the boundary condition becomes negligible. Therefore, using the host to evaluate the boundary
condition does not significantly affect the performance of the GPU implementation. Additionally,
the boundary condition has no effect on the matrix A, and its entire assembly takes place on the
GPU.

4.2.3 Translation Methodology

In order to ease the translation from Fortran to CUDA, the element assembly loop of test laplacian
was initially converted to equivalent C code, which is linked into the Fortran source code in its
original place. This intermediate step also permitted interoperability problems between Fortran
and C to be discovered and rectified without the additional complexity of working with CUDA.

Because Fortran and C are not fully interoperable [Reid, 2009], several issues were encoun-
tered during this translation phase. The following is a brief summary of the issues and their
workarounds. For a more complete discussion of these issues, see [Markall, 2009].

Calling Conventions. Fortran uses the call-by-reference convention whereas C uses the call-by-
value convention. C functions that are called from Fortran must be written such that all
their parameters are received as pointers to values, rather than as values. Also, user-defined
functions in Fortran are suffixed with an underscore by the compiler to prevent their names
from clashing with any intrinsic functions. In order for the linker to correctly link the C and
Fortran object files, the C function declarations must be suffixed by an underscore in the
source code.

Array Indexing. Fortran arrays are stored in a column-major format, whereas C arrays are row-
major. Fortran arrays also generally begin at index 1 whilst C arrays begin at index 0. In
simple cases, these differences may be accounted for by subtracting one from the array index
and reversing the order of indices when accessing elements of an array from a C function.

Array Descriptors. In general, Fortran allows the programmer great flexibility in handling arrays.
This is achieved by using array descriptors, which are run-time data structures describing
the shape of an array, its dimensions, and the range of its indices, amongst other things.
Unfortunately the format of array descriptors are not part of any Fortran standard, and
varies between compiler vendors. However, it was observed that when an array is passed
on the stack, a pointer to the actual array data is placed in the same location that a C function
expects to receive a pointer to the data. Therefore, it is possible to pass arrays from Fortran
functions to C functions. In the case where a multidimensional array that varies in size is
passed to a C function, additional arguments must be passed which specify the size of each
dimension, and arithmetic to calculate the correct offset must be included in the C function.

Derived types and structs. Fortran derived types and C structs essentially provide the same func-
tionality to a programmer, in that they both allow the creation of a type that aggregates
storage of a number of pieces of data. Derived types and structs can be used interoperably,

31

provided that they do not contain multidimensional arrays, since the array descriptor for
Fortran changes the alignment of all the data in the structure. In order to overcome this is-
sue, data stored in derived types with multidimensional arrays was marshalled into a set of
single-dimensional arrays before being passed to the C function.

Sub-arrays. Fortran allows a programmer to specify an operation on a subset of an array with
a notation which uses the “:” symbol to denote all the elements in a particular dimen-
sion. Converting Fortran functions that use this notation to C functions requires compli-
cated loop nests to ensure that the correct items of data are operated on, which are often
non-contiguous.

In order to make the subsequent conversion from C to CUDA straightforward, each of the C
kernels were written such that they consist of an outer loop which iterates over all of the elements
in the mesh. This eases the translation to CUDA as this outer loop may be partitioned so that
each thread performs one iteration in parallel with all the other threads. For example, the C
implementation of the csr_addto kernel is shown in Figure 4.2

void csr_addto(...)
{
for(int i=0; i<num_ele; i++) {

for(int x=0; x<3; x++) {
for(int y=0; y<3; y++) {

int mpos = pos(glob_mat_findrm, glob_mat_colm,
node_nums[i*3+x], node_nums[i*3+y]);

glob_mat_val[mpos]=glob_mat_val[mpos]+loc_mat[i*9+y*3+x];
}

}
}

}

Figure 4.2: The csr addto kernel implemented in C.

The parameters have been omitted for brevity. The kernel adds a 3× 3 local matrix into the
global matrix by looping over each element of the local matrix and adding its value into the correct
location of the global matrix depending upon the node numbers of the current element. Since the
global matrix is represented using the Compressed Sparse Row (CSR) [Silva, 2005] format, the
function pos performs a bisection search to calculate the correct position in the array of values to
add to. Compare this with the equivalent CUDA kernel in Figure 4.3.

__global__ void csr_addto(...)
{
for(int i=THREAD_ID; i<num_ele; i+=THREAD_COUNT) {

for(int x=0; x<3; x++) {
for(int y=0; y<3; y++) {

int mpos = pos(node_nums[EleIdx(i,x,n)], node_nums[EleIdx(i,y,n)]);
atomicDoubleAdd(&global_matrix_val[mpos],local_matrix[Idx(x,y,i,n)]);

}
}

}
}

Figure 4.3: The csr addto kernel implemented in C.

In the CUDA implementation, THREAD_ID and THREAD_COUNT are macros as defined in Figure
2.4, and Idx and EleIdx are macros to calculate array indices. The atomic addition is required

32

since many threads are executing in parallel, more than one thread may attempt to add to the same
location at once. We can clearly see the similarity between these two kernels, which demonstrates
that structuring the C code such that the outer loop may easily be parallelised eases the translation
to CUDA.

4.2.4 Integration with a GPU Conjugate Gradient Solver

In order to obtain maximum benefit from using the GPU to perform computations, it is necessary
to ensure that it is used for as many parts of the computations as possible. With a view to achiev-
ing this goal, a CUDA implementation of a Conjugate Gradient (CG) solver [Markall and Kelly,
2009] was used to replace the standard PETSc [Balay et al., 2008] solver which is normally used in
Fluidity programs.

The original Fortran source contained a call to the function petsc_solve which invokes the
CG solver in PETSc. This call was replaced with the function gpucg_solve, that calls the GPU CG
solver, specifying the matrix A (which is already in the global memory of the GPU) as the matrix
to use for the solve. This function also takes a Fortran array, where the solution is to be stored.
When the solver has completed, the solution is copied back into this array. Subsequently, control
flow is returned to the original Fortran source, which outputs the solution to disk.

4.2.5 Testing

Testing the correctness of the CUDA assembly routines was performed by execution of the orig-
inal and modified test laplacian programs for a variety of mesh sizes, and comparing their
output. test laplacian provides a function for computing the total error in the solution, mea-
sured against an analytical solution. Comparison of the total error in each solution showed that
the versions produce solutions with error terms equal to 7 significant figures. Since many threads
are working in parallel on assembling the matrix, the order in which values are added to the global
matrix will vary on each run of the assembly phase. As a result, the cumulative error in the solu-
tions varies for each run of the CUDA implementation for digits beyond the 7th significant figure.
This level of discrepancy is expected due to the non-commutativity of floating point operations,
and is not indicative of an error in the program.

Figure 4.4 shows an example of the output produced by the Fortran and CUDA versions of the
code. Note that the solutions appear identical.

(a) Original CPU Implementation. (b) GPU Implementation.

Figure 4.4: Solutions computed using the CPU and GPU implementations of the assembly phase
in test laplacian.

33

4.2.6 Initial Performance Results

Once a naı̈ve translation of the Assembly phase in test laplacian had been produced, it was
benchmarked against the CPU implementation to examine its performance. The execution time of
the assembly phase for the GPU and CUDA implementations for varying mesh sizes is shown in
Figure 4.5. We can see that the CUDA implementation requires approximately 33% less execution
time than the original implementation.

Making use of a GPU is often expected to result in much greater levels of performance. In order
to increase the performance of a CUDA implementation, we must attempt to discover which por-
tions of code execute slowly, and the reasons why they do so. Use of the CUDA profiler showed
that approximately 50% of the total time taken for the element assembly loop involved transferring
data from the host to the GPU. It was thought that one opportunity for performance optimisation
involved reducing this overhead.

One way of doing this is to try to overlap data transfer with computation. This may be
achieved by converting the structure of the assembly routine in test laplacian to perform oper-
ations in the following sequence:

• Initially copy enough data to the GPU to begin executing the transform_to_physical ker-
nel.

• Whilst the transform_to_physical kernel is executing, copy data required by subsequent
kernels.

• Execute the kernels dshape_dot_dshape, csr_addto, shape_rhs and scalar_field_vaddto.

The expected result of making this change is to decrease the time between beginning to copy
data, and the GPU beginning execution of this data. It was hoped that copying data required by
transform_to_physical would take only a small proportion of the total time taken to copy data,
and therefore result in a substantial increase in performance. The performance of the CUDA im-
plementation of test laplacian before and after making this modification is also shown in Figure
4.4 - it is clear that this attempt at optimisation does not reduce the execution time substantially,
and even increases it in some cases. Furthermore, even if this optimisation had substantially re-
duced the execution time in test laplacian, it will not improve the overall performance of more
representative problems in which assembly is performed multiple times on the same data.

4.2.7 Optimising Kernels

In order to increase the performance of the CUDA implementation, it was also necessary to ex-
amine the performance of individual kernels in order to make optimisations. The CUDA Profiler
was used to examine the performance of each kernel, and the CUDA Occupancy calculator was
used to estimate the effects of optimisations that reduce register usage. In general, kernels that
use fewer registers allow greater SM occupancy, which allows more threads to execute in parallel,
and thus increases performance. Specific optimisations which were explored include:

• Reduction in the storage of redundant data. Throughout the testing and debugging process,
it was noted that several data structures store repeated data, as a consequence of the domain
of the problem and the elements occupying linear space. Kernels which made use of this
repeated data were modified to use only a single copy of the repeated data items. As well
as reducing register usage by removing the need for an index variable, reducing the amount
of data used reduces pressure on memory bandwidth. In particular, the reduced variables
include:

– X_quad_weight stores the weights of quadrature points for numerically evaluating inte-
grals. In test laplacian, there are three quadrature points used, which are all weighted
equally. The kernels that make use of this variable used an index into an array to access
the value at one of three points. To optimise the use of this variable, it is stored as one
scalar value per element, and the index variable used to access it is removed.

34

0

2

4

6

8

10

12

14

16

18

0 250000

500000

750000

1000000

1250000

1500000

A
ss

em
bl

y
Ti

m
e

(s
)

Number of Elements

CPU
Naive
Overlapped

Figure 4.5: Assembly times for the CPU implementation, Naive CUDA implementation and the
Overlapping CUDA implementation of test laplacian for varying mesh sizes.

– The variable detwei (the Jacobian multiplied by quadrature weights at each point) is
also derived from X_quad_weight and also was stored as an array of three values per
element. Its representation was also reduced to one scalar value per element.

– The derivatives of the shape functions (dshape_psi) are also repeated for each quadra-
ture point. Its representation was reduced from an 18-entry vector per element to a
6-entry vector.

• The remaining outer loops in kernels were fused where possible. These loop fusions reduce
the overhead of updating the induction variable and checking the stopping condition. In the
dshape_dot_dshape kernel, a loop interchange was necessary to make the loop fusion valid.

• Using texture memory can increase performance, particularly for memory accesses where
coalescence is not achieved. The sparsity structure of the matrix was bound to texture mem-
ory, since it is accessed in a near-random pattern by the csr_addto kernel, which performs
a bisection search when it calls the function pos (see Figure 4.3). The original and modi-
fied search loops are shown in Figure 4.6. In the modified version, the array access to colm
have been replaced with a call to tex1Dfetch accessing tex_colm, which is the same area of
memory as colm, bound to texture memory.

• Warp Serialisation occurs when different threads within a warp take different branches of
a conditional statement. This occurs whilst performing the bisection search in csr_addto,
since each thread is independently performing a search. Since rows of the matrix are short (in
practice always less than 16 elements long), an alternative strategy involves using an entire
half-warp to cooperate in performing a linear search of a row to find the correct element.
However, this strategy was found to be inefficient. This is partially because rows are often
very short, with only 6-7 elements. Furthermore, once the correct element in the matrix has
been located, 15 threads of the half-warp are idle whilst the thread that found the correct
element performs an atomic addition.

• Kernels were originally written to be capable of performing computations on two- or three-
dimensional elements with varying numbers of nodes. In order to achieve this generality,
the loops in the kernels have variable upper bounds; for example, a loop over the nodes

35

while(upper_pos-lower_pos>1) {
this_pos=(upper_pos+lower_pos)/2;
this_j = colm[row+this_pos];

if(this_j==j)
return this_pos+base;

else if(this_j>j)
upper_j=this_j, upper_pos=this_pos;

else if(this_j<j)
lower_j=this_j, lower_pos=this_pos;

}

(a) Original Implementation.

while(upper_pos-lower_pos>1) {
this_pos=(upper_pos+lower_pos)/2;
this_j = tex1Dfetch(tex_colm,

row+this_pos);

if(this_j==j)
return this_pos+base;

else if(this_j>j)
upper_j=this_j, upper_pos=this_pos;

else if(this_j<j)
lower_j=this_j, lower_pos=this_pos;

}

(b) Using Texture Memory.

Figure 4.6: Versions of the pos function.

of an element requires the upper bound to be equal to the number of nodes. To reduce
register usage, kernels specific to triangular elements in two dimensions were produced.
This allowed the variable upper bounds to be replaced with a constant, reducing register
usage. Continuing the previous example, loops that iterate over the nodes of an element
have an upper bound of 3 after this optimisation has been made.

• The use of shared memory for storage of values which are re-used throughout the execution
of a kernel was considered. However, in this implementation, almost all of the data that is
loaded from main memory is used exactly once, prohibiting the use of shared memory to
increase performance. The items of data which are reused are few enough to be able to fit
into the registers, so no performance will be gained from storing them in shared memory.

4.2.8 Ensuring Coalesced Memory Accesses

To obtain high performance on the Tesla architecture, it is important to ensure that memory ac-
cesses are coalesced as much as possible. To ensure that memory accesses are coalesced, kernels
must be programmed such that groups of 16 threads all access memory within a 64-byte window
concurrently. Non-coalesced accesses may only utilise as little as 1

16 th of the available memory
bandwidth.

In the naı̈ve translation of test laplacian, data which was extracted from the mesh was
placed into arrays with the same ordering as in the mesh data structures. This layout prevents
threads within a half-warp from performing accesses within a 64-byte window concurrently, and
as a result preventing coalesced accesses from occurring. As an example of why this happens,
we consider the array X_ele, which stores the coordinates of each node of each element. Since
we are using 2D triangular elements, we have three nodes in two dimensions, which requires 6
floating-point values per element. These six values for a single element are stored adjacently in the
array. When every thread within a half-warp tries to access a coordinate value for each element,
addresses in memory that are not adjacent are accessed. Since the same coordinate value for each
element are actually spaced six elements apart in memory, the individual threads within a warp
do not access adjacent values (see Figure 4.7(a)).

In order to rectify this performance problem, we optimise this memory access pattern by trans-
posing the data on the host before it is transferred to the GPU. The host is preferred for performing
this transposition since doing so requires a scatter operation to be performed, to which the mem-
ory system of the host is far more suited. When using the resulting layout, threads which all access
the same coordinate for each element now access adjacent elements in memory, resulting in coa-
lesced reads (see Figure 4.7(b)). The transposition was applied to all of the mesh data structures
in order to maximise coalescence throughout the execution of the assembly phase.

36

{
{{ { { {. . .

 1 2 3 n-2 n-1 n

Element number:

Thread ID:

 1
 2
 3

 n-2
 n-1
 n

. . . .

. . .

{ {

{ 1 2 3

 n
-2

 n
-1

 n

Thread ID:

 1:n 1:n 1:nElement number:
(a) Non-coalesced

{
{{ { { {. . .

 1 2 3 n-2 n-1 n

Element number:

Thread ID:

 1
 2
 3

 n-2
 n-1
 n

. . . .

. . .

{ {

{ 1 2 3
 n

-2
 n

-1
 n

Thread ID:

 1:n 1:n 1:nElement number:

(b) Coalesced

Figure 4.7: Data layouts which lead to non-coalesced and coalesced accesses in kernels. Numbers
indicate the Thread ID accessing each value.

4.2.9 Post-Optimisation Performance

Having made the optimisations described in the previous two sections, the performance of the
CUDA implementation was again measured for varying mesh sizes. In order to determine the
fraction of time taken to perform the transfer of data from the host to the GPU, the code that
performs assembly on the GPU was commented out and the benchmarks run a second time. These
performance results were obtained on a machine with an Intel Core 2 Duo E8400 with 2GB of RAM
and an NVidia 280GTX GPU. The CPU implementation was compiled using GCC 4.4.0 with the
-O3 flag, and the CUDA implementation was compiled using NVCC 2.2. The performance results
are shown in Figure 4.8.

It can be seen from these results that the copy operation now dominates the GPU version.
Discounting the time taken for copying data, the GPU accelerated assembly computation is ap-
proximately 31 times faster than the CPU implementation. The time taken by the copy phase will
be amortised in the test advection diffusion benchmark since it will perform many assembly
steps beginning from the same initial data. As such, this large overhead is not of concern.

4.3 Implementation of the Assembly Phase of test advection diffusion

Using CUDA

The main portion of the test advection diffusion program consists of a loop which computes
the solution for one time step at each iteration. Given the solution at time n, the the solution at
time n + 1 is computed. The body of the loop consists of the following phases (also see Figure 4.9):

Advection Phase. Each of the systems described in Equations 2.18 to 2.22 is assembled and solved.
The solution from the final solve is used as the input to the diffusion phase.

Diffusion Phase. The system described in Equation 2.23 is assembled and solved. The solution
from the solve is the solution at time n + 1, and is used as input to the Advection phase for
the next iteration of the loop.

In order to make efficient use of the GPU hardware, this loop must be ported such that it runs
entirely on the GPU. Transferring data back and forth between the host and GPU between each

37

0

10

20

30

40

50

60

0 1000000

2000000

3000000

4000000

5000000

A
ss

em
bl

y
Ti

m
e

(s
)

Number of Elements

CPU
GPU
Copy Only

Figure 4.8: Time taken to perform assembly in test laplacian with optimised coalesced kernels.

Assemble
Advection

System for Ti

Solve
Advection

System for Ti

Solve
Advection

System for Ta

Assemble
Diffusion
System

Solve
Diffusion
System

i=1,2,3,4

Assembly

Solver

if time < endtime

Exit

Start

Figure 4.9: Control flow in the assembly loop of test advection diffusion.

38

assembly and solve is unnecessary, and will greatly slow down the execution of loop. As we have
already seen, the process of copying data dominates the computation in test laplacian.

The structure of the CUDA implementation is as follows. Before the loop begins execution,
all the initial conditions are transferred to the GPU. The main loop begins execution, and no data
is transferred back to the host during or between iterations. At the end of the computation, the
solution at the current (final) timestep is transferred back to the host. Since one may be interested
in the solution not just at the final timestep, but at some intermediate times, the solution at the
end of specific timesteps may optionally be transferred to the host. The control flow of the CUDA
implementation is shown in Figure 4.10.

Transfer Initial

Conditions

to GPU

Assemble

Advection

System for Ti

Solve

Advection

System for Ti

Solve

Advection

System for Ta

Assemble
Diffusion

System

Solve
Diffusion

System

Transfer
Solution to

Host (Optional)

 Exit

i=1,2,3,4

if Time=Endtime

Assembly

Solver

Data Transfer

Figure 4.10: Control flow in the GPU implementation of the assembly phase in
test advection diffusion.

4.3.1 Kernels Used in this Implementation

Several of the kernels that were developed whilst implementing the assembly phase in test laplacian
were re-used for the assembly phase in test advection diffusion . These include:

• transform_to_physical

• csr_addto - this kernel is renamed to matrix_addto in this implementation for consistency
with other kernels performing similar operations.

• scalar_field_vaddto - this kernel is renamed to vector_addto, also for consistency with
other kernels.

The implementation of several more kernels was also necessary. Required kernels which nu-
merically evaluate integrals included:

dshape dot vector shape. Computes
∫

Ωe ∇v · xudX over an element e, where x is a vector, and v
and u are test and trial functions.

dshape tensor shape. Computes
∫

Ωe ∇v · µ · udX over an element e, where µ is a rank-2 tensor
and v and u are test and trial functions.

shape shape. Computes
∫

Ωe vudX over an element e where v and u are test and trial functions.

39

Extra kernels that perform the addition of local matrices into the global matrix included:

matrix addto diffusion. This kernel sums two local matrices before adding them into the global
matrix. It is required since two local matrix contributions make up the global matrix when
assembling the diffusion system. The first of these is from the left-hand side term and the
second is the last term in the right-hand side of Equation 2.23. This kernel is not strictly
required, since the original matrix_addto kernel may be called once for each local matrix
contribution. However, doing this is inefficient as it requires the matrix sparsity pattern to
be searched twice as many times as using a single kernel.

matrix addto sum diag. This kernel sums each row of a local matrix and adds the results into the
main diagonal of the global matrix. It is required since in practice, mass lumping [Sherwin et
al., 2009, p.5-3] is used in test advection diffusion.

Other kernels that were required included:

advection rhs. This kernel is used to compute the right-hand side of Equations 2.18 to 2.21. The
operations involved in this computation include:

• Calculation of the divergence of a vector field, which essentially requires a matrix-
matrix multiplication and a sum reduction of the result. The vector field in this case
is the velocity field.

• Summation of two local matrices to produce a new local matrix.

• A matrix-vector multiplication using the new local matrix.

Since this kernel is made up of fairly generic operations, it may also have been split into
kernels which perform each of these operations separately, passing these results between
kernels using global memory. This may result in better performance due to decreased reg-
ister usage increasing occupancy. Exploring whether doing so is beneficial is part of future
work, and may be explored much more efficiently using an automated tool to explore this
optimisation space.

diffusion rhs. This kernel computes the right-hand side vector in the diffusion system of equa-
tions. Two steps are performed in this computation. First, two local matrices are summed.
The resulting local matrix is multiplied by a local vector. As with the advection_rhs kernel,
the most efficient implementation may consist of using two generic kernels to compute the
same result. However, since this kernel is very small, it is unlikely that this will be the case.

scatter rhs values. When the data is transferred to the GPU, the host extracts data from the
field containing the tracer concentration, T, for each node of each element. This data is
placed into an array that stores the value at each node for each element. This storage layout
results in the duplication of some data, since several elements often share a single node. This
becomes an issue after the solve has taken place, since the vector of solutions contains one
solution value per node. The scatter_rhs_values kernel performs the task of copying the
solution at each node into an array that stores the solutions for each node per element. This
new array is in the correct layout to be used as input to the next iteration of the loop.

It is noted that the majority of the new kernels which were required perform generic tasks in
finite element assembly. Each of these kernels is likely to be re-usable for the implementation of
methods to solve other equations.

4.3.2 Testing

Testing the CUDA implementation of the main loop of test advection diffusionwas performed
by using it to solve a model problem, and comparing its output to the original implementation
solving the same problem. The model problem consists of a square domain with a vector field

40

specifying velocity within the domain, and a tensor field specifying the diffusivity. An initial
concentration of some tracer is advected and diffused according to these fields.

In the model problem, the domain is a square with coordinates ranging from (-1.2, -1.2) to (1.2,
1.2). The velocity at a given point is is defined by the function:

V =

[
y cos(πr

2)
−x cos(πr

2)

]
if r < 1

[
0
0

]
otherwise

(4.2)

where x and y are the coordinates of the point, and r the distance from the centre of the domain.
This velocity field is visualised in Figure 4.12(a). Diffusivity is defined as the rank-2 unit tensor
everywhere in the domain. The initial tracer concentration is specified by the function:

Tinitial =

{
1 if r < 1

4

0 otherwise
(4.3)

where r is the distance from the point (-0.5,0). The solution is computed for 50 timesteps beginning
from these initial conditions on an unstructured mesh with 14336 elements. The mesh is shown in
Figure 4.11. Since advection and diffusion are computed separately, we may run the simulation
solving for advection, diffusion or advection and diffusion. Figures 4.13 to 4.15 show the initial
condition, and the expected result after 50 timesteps for each of these configurations. The initial
condition appears different in each case since the scale of the legend has been matched with that at
the final timestep. The errors introduced by the numerical scheme are responsible for the solution
values moving outside the range [0,1].

Figure 4.11: The mesh used for testing the CUDA implementation of the assembly phase in
test advection diffusion.

The results of testing showed the output from the CUDA implementation to agree with that
from the CPU implementation to at least 6 significant figures in all cases. These small discrepan-
cies are again expected due to the non-commutativity of floating point arithmetic. These differ-
ences are slightly larger than for test laplacian since the solution at each timestep is used as the
input to the next timestep, compounding the errors.

41

(a) Entire domain. (b) Close-up showing direction.

Figure 4.12: The Velocity field used in the test advection diffusion test problem.

(a) Initial Time. (b) Final Time.

Figure 4.13: Concentration profiles of the Tracer in the advection problem.

(a) Initial Time. (b) Final Time.

Figure 4.14: Concentration profiles of the Tracer in the diffusion problem.

42

(a) Initial Time. (b) Final Time.

Figure 4.15: Concentration profiles of the Tracer in the advection-diffusion problem.

4.4 Performance Results and Analysis

Performance results were gathered using a machine with an Intel Core 2 Duo E8400 processor,
2GB of RAM and an NVidia 280GTX GPU. The Intel 10.1 C++ and Fortran Compilers were used
to compile the CPU versions of the code, since they produce much more efficient code than the
GNU compilers. The most recent versions of the Intel compilers, 11.1, were not used as they do
not correctly compile Fluidity. The nvcc compiler included with CUDA 2.2 was used to compile
the GPU code. Each test was run five times, and the averages of these five runs are reported. All
computations were performed using double precision arithmetic, since it has been shown that the
use of single precision arithmetic for the assembly phase is not sufficient [Markall and Kelly, 2009].

Versions of the code were benchmarked using a range of square meshes of increasing fineness,
running the system for 200 timesteps starting with the initial tracer concentration defined in Equa-
tion 4.3. The initial time is recorded as the time before the host begins to extract the data from the
mesh. The final time is recorded after the solution at the final timestep has been transferred back
to the host. As a result, these timings capture all the overheads of making use of the GPU, includ-
ing the extraction of data from the mesh, the transposition of data on the host, the transfer of data
to the GPU, and the transfer of the solution back to the host. In order to accurately compare the
performance of the computations, no intermediate solutions were transferred from the GPU to the
host.

4.4.1 Performance of the Assembly Phase

In order to assess the performance of the code produced for this project, we begin by examining
the performance of the assembly phase only. These times were obtained by commenting out code
that calls the solver. Figure 4.16 shows the time taken for assembly of advection and diffusion,
whilst Figures 4.17 and 4.18 show the time taken only to assemble the advection system and the
diffusion system respectively.

The assembly of the advection system takes approximately 4.5 times longer than the diffusion
system, since the explicit timestepping scheme requires the assembly of four systems, whereas the
implicit diffusion scheme only requires the assembly of one system. We see that in all cases the
GPU implementation is significantly faster that the CPU implementation.

4.4.2 Speedup and Throughput

We see that once the startup costs are amortised, there is a speedup of about 16 times over 1
CPU core or 8 times over 2 cores. Figure 4.19 shows the speedups of the CPU over the GPU,
whilst Figure 4.20 shows the throughput of each implementation in terms of elements per second.
We see that the throughput of the GPU implementation is poor in terms of throughput for the

43

0

100

200

300

400

500

600

700

800

900

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

GPU
CPU 1 Core
CPU 2 Cores

Figure 4.16: Time taken by the assembly phase in running the Advection-Diffusion system for 200
timesteps.

0

100

200

300

400

500

600

700

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

GPU
CPU 1 Core
CPU 2 Cores

Figure 4.17: Time taken by the assembly phase in running the Advection system for 200 timesteps.

44

0

20

40

60

80

100

120

140

160

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

GPU
CPU 1 Core
CPU 2 Cores

Figure 4.18: Time taken by the assembly phase in running the Diffusion system for 200 timesteps.

smaller mesh sizes. This is a consequence of the startup cost of using the GPU. This startup cost
is amortised over longer runs, making the GPU favourable for larger problems.

There is a consistent speedup of 16 times over one CPU core and 8 times over two cores for the
larger meshes. Although the CPU implementation was only tested on a machine with two cores,
we can project that if the performance scales perfectly up to 8 cores, the GPU implementation
will still be approximately twice as fast as the CPU implementation. In practice, we will not see a
perfect speedup, and the return from adding more cores will diminish.

It is interesting to note that the throughput of the CPU implementations seem to decrease
slightly as the problem size increases, whilst the throughput of GPU implementation increases
with the problem size. We can easily attribute the behaviour of the GPU’s performance to the
amortisation of startup costs over long runs, including the transposition and transfer of data. We
may speculate that as the problem size increases, the CPU performance may be lowered due to a
reduction in cache hits.

4.4.3 Overall GPU Performance

We also examine the performance of the Assembly phase on the GPU in the context of the overall
speedup obtained from using the GPU. Here, we report the total time taken to run each simulation
for 200 timesteps, which includes the time taken to perform the assembly and the solution phases.
Figures 4.21 to 4.23 show total simulation time for the CPU and CUDA implementations solving
the advection-diffusion, advection, and diffusion systems.

Figure 4.24 shows the speedups obtained from using the CUDA implementation for the entire
simulation. We see an overall speedup slightly less than that obtained for the assembly phase
alone, due to the lower performance of the CG solver. There is reason to believe that the perfor-
mance of the CG solver can be improved [Markall and Kelly, 2009], but this has not been the focus
of this project.

Since we achieve these speedups for the assembly and solve phases, it is clearly a worthwhile
task to further investigate the use of GPUs for the implementation of the finite element method.
We believe that the implementation we have produced has the potential for further performance
increases. In the next subsection we examine the performance of the assembly phase to determine
where bottlenecks exist and suggest optimisations that may reduce their impact.

45

0

2

4

6

8

10

12

14

16

18

50000

100000

150000

200000

250000

300000

Sp
ee

du
p

Number of Elements

Adv.-Diff. vs. 1 Core
Adv.-Diff. vs. 2 Cores

Adv. vs. 1 Core
Adv. vs. 2 Cores

Diff. vs. 1 Core
Diff. vs. 2 Cores

Figure 4.19: Speedup in the assembly phase from using the GPU for each problem over 1 and 2
CPU cores.

0

5000

10000

15000

20000

25000

30000

50000

100000

150000

200000

250000

300000

Th
ro

ug
hp

ut
(E

le
m

en
ts

/s
)

Number of Elements

Adv. GPU
Adv. CPU 1 Core
Adv. CPU 2 Core

Diff. GPU
Diff. CPU 1 Core

Diff. CPU 2 Cores

Figure 4.20: Throughput of assembly phase for each architecture and problem.

46

0

200

400

600

800

1000

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

GPU
CPU 1 Core
CPU 2 Cores

Figure 4.21: Total time running the Advection-Diffusion system for 200 timesteps.

0

100

200

300

400

500

600

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

GPU
CPU 1 Core
CPU 2 Cores

Figure 4.22: Total time running the Advection system for 200 timesteps. Results for the 1 CPU
version for meshes larger than approximately 200000 elements are not shown, since the solver
fails on these systems for unknown reasons.

47

0

20

40

60

80

100

120

140

160

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

GPU
CPU 1 Core
CPU 2 Cores

Figure 4.23: Total time running the Diffusion system for 200 timesteps.

0

2

4

6

8

10

12

50000

100000

150000

200000

250000

300000

Sp
ee

du
p

Number of Elements

Adv.-Diff. vs. 1 Core
Adv.-Diff. vs. 2 Cores

Adv. vs. 1 Core
Adv. vs. 2 Cores

Diff. vs. 1 Core
Diff. vs. 2 Cores

Figure 4.24: Overall speedup obtained using the GPU for each problem over 1 and 2 CPU cores.

48

0

10

20

30

40

50

60

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

Atomic
Non-Atomic

Figure 4.25: Times taken by the assembly phase for Advection-Diffusion on the GPU using atomic
and non-atomic additions.

4.4.4 Performance Improvement

One area which is suspected to be the cause of relatively poor performance is the addition of
values into the global matrix and vector. Since many threads add to these structures in parallel,
atomic operations are required, which are expensive. In order to determine the overhead of these
operations, we run the assembly phase of the advection-diffusion system again with these atomic
operations replaced with non-atomic ones. Figure 4.25 shows a comparison of the time taken to
assemble systems with varying numbers of elements.

It is clear that the atomic operations have a high overhead - we can see that for equivalent
problems, the execution of the version using non-atomic operations is approximately twice as
fast. It is not possible to use the non-atomic version without further modifications, since data
races will occur and incorrect results will be summed into the matrix. However, if elements of the
mesh were coloured such that no two elements of the same colour share a node, the non-atomic
additions could be used since there will be no possibility for races. A colouring of a mesh may be
computed offline, before the computation begins. This optimisation has been used to successfully
increase the performance of the implementation described in [Komatitsch et al., 2009] (see Section
3.2.5).

In order to determine how the GPU implementation may be improved so that it has higher
performance, we also examine the performance of individual kernels. The CUDA Profiler was
used to record profile data for the assembly phase of the advection-diffusion problem with a mesh
consisting of 231562 elements. First, we examine the relative amount of time spent in each GPU
kernel to determine which ones are more performance-critical. Figure 4.26 shows a plot of these
times.

We can see that almost all of the GPU time is spent performing “addto” operations, where
local matrices and vectors are summed into the global matrix and vector. Combined, these ker-
nels occupy over 84% of the entire assembly phase, so are clearly the most performance criti-
cal. The matrix_addto and matrix_addto_sum_diag kernels occupy more execution time than
matrix_addto_diffusion because they are used four times in the assembly phase. matrix_addto_sum_diag
has less work to do than matrix_addto, as it only has to search the sparsity structure of the global
matrix three times instead of the nine that matrix_addto requires. vector_addto is called five
times in the assembly phase. Although it does not have to search a sparse matrix, it indirectly

49

0 5 10 15 20 25 30 35 40

matrix addto
matrix addto sum diag

vector addto
matrix addto diffusion

dshape dot vector shape
shape shape

transform to physical
advection rhs

scatter rhs values
dshape tensor dshape

diffusion rhs
daxpy

memcpyDtoD aligned
gather rhs values

GPU Time (%)

Figure 4.26: Relative time spent executing each kernel in the Advection-diffusion assembly phase.
(Orange: with atomic operations. Blue: with non-atomic operations).

accesses elements of the global vector. This gives poor memory performance due to a lack of
coalescing, and hence its execution takes a relatively large amount of time.

It is also of note that the atomic addto is partially responsible for the large proportion of exe-
cution times of these kernels, since they are the only kernels that contain this operation. Searching
the sparsity structure of the matrix was originally thought to be the cause of the performance is-
sues in these kernels, partially due to warp serialisation. However, the profiler also shows that
only 20% of the branches diverge. This is probably due to the matrix containing relatively short
rows (approximately 6.8 non-zeroes per row [Markall and Kelly, 2009]).

We see from Figure 4.26 that the proportion of time spent inside the non-addto kernels is
doubled when non-atomic operations are used. We see a decrease in the spent executing the
addto kernels, though not uniformly across all of them. We make the following observations:

• The proportion of time spent executing matrix_addto remains relatively unchanged be-
tween the atomic and non-atomic versions. This kernel now dominates the execution time
since it has to search the sparsity structure of the matrix 9 times per element.

• The proportion of time spent executing matrix_addto_sum_diag is reduced by one third.
Since it only searches the sparsity pattern three times per element, it is less dominant than
the matrix_addto kernel.

• The proportion of time spent executing the matrix_addto_diffusion kernel is relatively
unchanged, since it also requires 9 searches of the sparsity pattern per element.

• The proportion of time spent executing vector_addto is greatly reduced. Since the matrix is
not accessed in this kernel, most of its execution time was previously spent performing the
atomic addition.

We may also examine the usage of the available memory bandwidth of each kernel. Figure
4.27 shows the memory bandwidth utilisation of each kernel. The four addto kernels all show
very poor memory bandwidth utilisation. Since there is very little computation performed in
these kernels, this reinforces the notion that the atomic operations carry a heavy penalty, since
the memory performance is limiting the speed of these kernels. We note that when non-atomic

50

0 20 40 60 80 100 120 140

matrix addto
matrix addto sum diag

vector addto
matrix addto diffusion

dshape dot vector shape
shape shape

transform to physical
advection rhs

scatter rhs values
dshape tensor dshape

diffusion rhs
daxpy

memcpyDtoD aligned
gather rhs values

Memory bandwidth (GB/s)

Figure 4.27: Memory throughput of each kernel in the Advection-diffusion assembly phase. (Or-
ange: with atomic operations. Blue: with non-atomic operations).

operations are used, the memory bandwidth performance of all these kernels increases by an order
of magnitude. However, their overall memory performance is still poor, due to lack of coalescing
when searching the sparsity pattern of the matrix. The vector_addto kernel shows a much greater
increase as it does not require the sparsity pattern to be searched.

The other kernels generally show good utilisation of the theoretical maximum memory band-
width, suggesting that they are bandwidth bound. In order to increase the performance of these
kernels, it will be necessary to increase their efficiency in using the available memory bandwidth.
One method of increasing their utilisation of memory bandwidth involves fusing two or more ker-
nels, and using shared memory or registers to pass the intermediate values between them instead
of writing data back to arrays in global memory. However, increasing the size of kernels lowers oc-
cupancy, so the size of kernels must be traded off against their reduction in global memory usage.
We see that the occupancy is relatively high for most kernels (Figure 4.28) in this implementation,
which may permit fusions to increase performance. Exploration of the space of possibilities by
hand is likely to be tedious and error prone - the ability to automate this optimisation process
strengthens the case for the use of an automated tool that can explore this space.

An alternative method of decreasing the memory bandwidth requirements involves storing
nodal data in a more efficient way. Currently, because data is extracted from the mesh for each
node per element, there is some repetition of nodal data as each element is stored separately.
This leads to the transfer of data for each node approximately 5-6 times per node, since each node
belongs to 5-6 elements. A more efficient scheme involves partitioning the mesh into small chunks
of adjacent elements, whose nodal data is small enough to fit in shared memory. At the beginning
of a kernel, threads may cooperate to load a partition into shared memory, before the computation
is performed for each element from the data in shared memory. This scheme will still lead to
data being transferred multiple times for node boundaries, but decreases the total data transfer.
Unfortunately the small size of the shared memory will limit the size of partitions, which will limit
the effect that this optimisation may have.

51

0 0.2 0.4 0.6 0.8 1

matrix addto
matrix addto sum diag

vector addto
matrix addto diffusion

dshape dot vector shape
shape shape

transform to physical
advection rhs

scatter rhs values
dshape tensor dshape

diffusion rhs
daxpy

memcpyDtoD aligned
gather rhs values

Occupancy

Figure 4.28: Occupancy of each kernel in the Advection-diffusion assembly phase. (Orange: with
atomic operations. Blue: with non-atomic operations).

4.5 Conclusions

We have implemented a library of optimised CUDA kernels for finite element assembly, and made
use of this library in the conversion of the assembly phase of the two test programs to a CUDA
implementation1. Integration of these assembly phases with the Fortran source codes has been
achieved. We have shown that the structure of the original Fortran source for the assembly phase
is similar to that of the CUDA implementation, with the exception of the parallelism in the CUDA
implementation.

Testing has shown that the CPU and CUDA implementations produce equal results up to an
expected level of precision, and that the CUDA implementation yields a speedup of approxi-
mately 8 times over 2 CPU cores for the assembly phase in test advection diffusion. The over-
all speedup gained from using the GPU in test advection diffusion is approximately 6 times
over the 2 CPU core implementation. Although we do not show such performance increases in
the assembly phase of test laplacian, this is not of concern since it is not highly representative
of the finite element routines in Fluidity.

We have discussed optimisations that increase the performance of the assembly phase in CUDA,
noting that ensuring coalesced memory access is particularly important. We have examined the
performance of the CUDA implementation of the assembly phase of test advection diffusion,
and shown that there are two main performance bottlenecks:

• The use of atomic operations for the addition of local matrices into the global matrix. This
may be overcome by colouring the elements of the mesh such that no two elements of the
same colour share a node, and performing additions into the global matrix for each colour
in turn.

• The need to search the sparsity pattern of the global matrix when adding in terms from the
local matrix. This issue may be overcome by using an alternative storage format.

The development of these manual translations facilitates the development of a UFL compiler
by providing code that we use as a guide to what the compiler should output. We discuss the
development of this compiler in the following chapter.

1See Appendix A for a summary of the kernels used in the assembly phase of each test program.

52

Chapter 5

A UFL Compiler for CUDA

5.1 Introduction

In this chapter we present a preliminary investigation into the implementation of a UFL compiler
that outputs CUDA code. The development of this prototype compiler is based on the exam-
ination of the GPU-accelerated assembly routines for each of the test problems. This allowed
development of the prototype compiler to be oriented towards generating one of these codes. As
a result, code generated by the compiler makes use of the optimised kernel library described in
Chapter 4.

The purpose of this investigation is not to provide a starting point for developing a fully-
fledged compiler, but instead to discover issues that may be encountered during the design and
implementation of such a compiler. As such, the resulting prototype compiler is limited in the
range of UFL codes it can compile, but serves as a proof that generation of CUDA code from UFL
specifications is feasible and practical.

5.2 Design

The design of the compiler is based around two main goals:

Completeness. We require the UFL compiler to be complete enough to generate at least one of
the test codes.

Platform-Independence. Although we only intend to produce a compiler that outputs CUDA
code, it should be designed such that modification to produce output for an alternative ar-
chitecture is feasible. This is important since part of the motivation for using UFL is that it
allows specification of a method uncoupled from any specific hardware implementation.

In order to meet these goals, the compiler is to be split into two parts. The frontend of the com-
piler will parse UFL and generate an intermediate representation (IR) of the code that is sufficiently
expressive to represent the computation which must be performed. The backend will take its input
from the frontend, and perform a translation from the IR to CUDA code. As development of the
compiler was driven by generation of the code of the test problems, the design of the backend
took place first. The design of the frontend followed, based on the information required by the
backend.

5.2.1 The Backend

Examination of the CUDA code that implements each of the test problems reveals that they all
have a similar basic structure, which consists of four functions, each performing a separate task:

Initialisation. Performs allocation of memory for all variables on the GPU, binds texture memory,
and uploads the matrix sparsity pattern to the GPU.

53

Element Streaming. Performs copying of data for the Assembly phase from the host to the GPU.

Assembly. This function launches kernels to perform the required computations for the Assembly
phase.

Finalisation. Performs deallocation of un-needed variables and un-binds texture memory.

In order to minimise the development effort for the prototype compiler, the CUDA code-
generation backend was designed to be hardcoded to output four functions, each performing
one of the operations described above. For the backend to know what code to generate in each of
these functions, it requires lists of parameters to be passed to it that describe requirements in each
of three categories:

Stream Variables. These are variables that are to be copied from the host to the GPU in the Ele-
ment Streaming function. Their name, type, and their size as a multiple of the number of
elements is required. An example of this type of variable is the list of node numbers of each
element.

Internal Variables. An internal variable is one which stores data that is computed on the GPU and
consumed by other GPU kernels only. The name, type, and size of each of these variables
are also required. A example of an internal variable is the element-local matrix. Its value is
generated by a kernel that evaluates a bilinear form, and is used as input to the kernel which
adds values into the global matrix. Internal variables are specified separately to stream
variables, since stream variables are copied over from the host in the Element Streaming
function, whereas internal variables are only use by kernels in the Assembly function.

Kernels and Parameters. A list of the kernels to be launched and their parameters is also re-
quired. This list of kernels is translated into kernel calls in the Assembly function.

As well as the variables specified in the input, the backend adds some extra variables to these
lists, which are always required. These include data structures that store the matrix and right-
hand side vector being assembled, and code that copies the matrix sparsity pattern from the host
is added.

5.2.2 A UFL Frontend

The list of variables and kernels, and their parameters forms the IR that is used to pass information
from the frontend to the backend. The frontend must be capable of generating this list of variables
and kernels from a UFL specification. The following sections detail how this is achieved.

Directed Acyclic Graphs

A Directed Acyclic Graph (DAGs) is a data structure commonly used to represent expressions [Aho
et al., 2006, p.359]. Operations and operands are represented as nodes in the graph, and the de-
pendences between nodes in the expression are represented by edges. Specifications of forms in
the UFL Language may be represented as DAGs. We will consider an example UFL statement:

A=dot(grad(v),grad(u))*dx

The corresponding DAG for this expression is shown in Figure 5.1(a). In this DAG, the solid
lines indicate those implied in the evaluation of the right-hand side, whereas the dotted line indi-
cates a dependence as a result of the assignment of the right-hand side to A. We can see the edges
in this graph represent the following dependences:

• In order to assign A, ∇v · ∇u must be computed.

• In order to compute ∇v · ∇u, we must have access to ∇v and ∇u.

54

v u

∇v ∇u

∇v∙∇u

A
(a) Mathematical
operation DAG.

transform_to
_physical

transform_to
_physical

<no operation> <no operation>

dshape_dot
_dshape

matrix
_addto

(b) Kernel call DAG.

Figure 5.1: DAGs representing the UFL statement A=dot(grad(v),grad(u)*dx.

• In order to have access to ∇v and ∇u, we must have access to v and u.

The DAGs of mathematical operations may be converted to a list of kernels by performing
a syntax-directed translation [Aho et al., 2006, p.53], since there is roughly a 1:1 correspondence
between nodes in the DAG and kernels that compute their result. One of several cases may be
encountered at each node, and we deal with each one accordingly:

Test/Trial Functions. Encountering a node representing a test or trial function (such as v or u in
Figure 5.1(a)), indicates that at some later node, the shape functions or their derivatives,
and the Jacobian for the transformation to physical space will be required. Calling the
transform_to_physical kernel ensures that these requirements will be satisfied.

Gradients of Test/Trial Functions. A test or trial function will have appeared earlier in the DAG
and forced a call to transform_to_physical, producing the transformed derivatives of the
shape function for the test or trial function. Therefore, we take no action when this type of
node is encountered.

Functions. Functions that are not test or trial functions have a scalar value dependent on their
position in the mesh. When encountering a node of this type, we need take no action
since the field will have been extracted from state by an earlier call to scalar_fields or
vector_fields (see Section 5.2.3).

Dot Products. The action taken when a dot product is encountered depends on the operands of
the dot product. In the assembly routines we have considered, the integrand may take one
of four possible forms (where a and b may be test or trial functions, c is a function and µ a
tensor):

• a · b: In this case we must invoke the kernel shape_shape on the operands

• ∇a · ∇b: In this case we must invoke the dshape_dot_dshape kernel.

• ∇a · cb: In this case we must invoke the dshape_dot_vector_shape kernel.

• ∇a · µ · ∇b: In this case we must invoke the dshape_tensor_dshape kernel.

Conversion of the DAG of mathematical operations to one of kernel calls is accomplished by
visiting each node in the graph and swapping mathematical operations for kernel calls using the

55

rules outlined above. The final stage of the frontend will consist of converting this graph of kernels
to a list of kernels suitable for passing on to the backend. The complete algorithm is detailed in
Algorithm 1.

Algorithm 1: Generation of a list of kernel calls starting from an integrand.
Input: An integrand, I
DAG = Graph(I) ;
KernelList = An Empty List ;
for Each node N in DAG do

if N a test or trial function then
Name = Field name of N ;
Append transform to physical(Name) to KernelList ;

else if N is a dot product then
O1 = First operand of N ;
O2 = Second operand of N ;
if O1 and O2 are Gradients of test/trial functions then

Append dshape dot dshape(O1,O2) to KernelList ; /* Returns Result */

else if O1 and O2 are test/trial functions then
Append shape shape(O1,O2) to KernelList ; /* Returns Result */

. . . ; /* Two further cases omitted */
Append csr addto(Result) to KernelList;

else if N is a product then
Name = Function name associated with N ;
Append Name to KernelList ; /* Returns Result */
Append scalar field vaddto(Result) to KernelList ;

Return Depth First Ordering(KernelList)

Variable Name Generation

As well as providing a list of kernels to the backend, the frontend must produce a list of variable
names as described above. These names must be generated such that they are unique, and kernel
parameters must reference the variable names such that they operate on the correct data. In order
to ensure the uniqueness of variable names and their correctness as kernel parameters, we the
following conventions for the generation of names:

• For internal variables, we base their name on the name of the field being operated on and a
description of the type of output produced by the kernel. For example, since the dshape_dot_dshape
kernel produces an output that is a local matrix, the form of the output variable name is
lmat_<op1_fname>_<op2_fname> where opX_fname is the name of the field associated with
the operand X.

• Stream variables are named after the data they represent and the field they come from. For
example, from a field named Tracer, a variable storing the shape functions would be called
Tracer_n, and the derivatives of the shape functions would be called Tracer_dn. This fol-
lows the convention in Fluidity, in which n and dn generally represent a shape function and
its derivatives.

Variable names are generated as each node in the graph is visited. To ensure that all variable
names are passed to the backend, a lists of the Stream and Internal variables are kept, with each
new variable added to the appropriate list as it is generated.

56

5.2.3 Integration With Fluidity

All of the GPU-accelerated assembly routines in the test problem make use of an external Fortran
module which acts as an intermediary between the data structures defined by the Fluidity API
and the data structures used in the GPU implementation. Code generation of this intermediate
module would be likely to be relatively straightforward, since its implementation in each case
consists of a loop over the elements in the mesh, which copies data from the Fluidity mesh data
structures into a separate location using the alternative storage layout described in Section 4.2.8.
Because of the trivial nature of the intermediate Fortran modules, it is unnecessary to produce a
proof-of-concept code generator for these portions of code.

A more challenging problem is that of how we allow the programmer to specify which Fluidity
data structures to access in the UFL codes. UFL itself does not provide any method for access to
external data. It is therefore necessary to extend to UFL specification to make it fit for this purpose.

The Fluidity API provides a state dictionary, which allows for the access of any data structure
that is part of the simulation status to be accessed by name. This is fortunate, as it allows us to
extend the UFL specification in such a way that the user specifies fields that are the source of
their data by name. For example, the user may wish to access a scalar field named psi (as used
in test laplacian). We may support this action, and similar actions for other types of fields by
providing a notation as in the following example:

psi=state.scalar_fields("psi") /* Extract a scalar field */
coord=state.vector_fields("coordinate") /* Extract a vector field */
diffusivity=state.tensor_fields("mu") /* Extract a tensor field */

This now allows the user to perform the usual UFL operations on the variable psi, such as:

v=TestFunction(psi)
u=TrialFunction(psi)
f=Function(psi)

This extension proves to be sufficient for access of all the data structures required in the test prob-
lems. Although there are other types of data pertaining to the state of the simulation in exis-
tence, these are only used in more complex simulations. The notation state.<x> is expected to be
straightforward to extend to provide support for accessing these other data types.

5.3 Implementation

5.3.1 The Python Frontend

The FEniCS project provides an implementation of the UFL language written in Python. This pro-
vides a good starting point for implementing a UFL compiler. Using this distribution of UFL, it
becomes possible to execute a UFL specification in the Python interpreter, leading to the construc-
tion of data structures representing the UFL script. This allows us to avoid writing a parser for
UFL.

The UFL distribution provides algorithms for working with these data structures, in particular
algorithms.graph. We make use of this package in the following ways to deal with representa-
tions of bilinear forms:

• We use the class algorithms.graph.Graph to convert the terms in a form to a DAG repre-
senting the integrand.

• Subsequently, we use algorithms.graph.depth_first_ordering() to serialise the DAG.

• Each different mathematical operator is represented by a different class. For example, ∇ is
represented by the class Grad. When we visit each node in the serialised DAG, we test to see

57

if it is an instance of one of the classes representing the operators we are testing for. Once we
have determined the class of the node, we can easily infer which kernel to add to the kernel
schedule list.

Since we intend to use the UFL distribution, which requires a UFL script to be executed to
use it as input, we needed to find a way to force the execution of a UFL script to result in code
generation. In order to achieve this, we needed to find suitable method which would be present
in each of the UFL scripts for the test problems that we could define such that it calls the code
generator. Examination of the UFL for each test problem reveals that they all end with a solve
statement, therefore this is the natural choice for such a function. The syntax of the function is
solve(x, A, b) where A is a form specifying how the matrix is assembled, b is a form specifying
how the right-hand side vector is assembled, and x will store the result.

The implementation of the solve function is as shown in Algorithm 2. The function GenerateKernels
is an implementation of Algorithm 1, which also creates lists of variable names as it traverses the
DAG. Since the algorithm will create several duplicates of some kernels, and of the variables,
it is necessary to remove these duplicates before calling the backend. Although duplication of
the kernels will not cause the generated code to produce incorrect answers, it will result in more
computation than is necessary.

Algorithm 2: Frontend portion of the code generator (built into solve function).
Input: LHS A, Unknown vector x, Known vector b
LHSInt← Integrand in A ;
[LHSKernels, LHSInternalVars, LHSStreamVars]← GenerateKernels(LHSInt) ;
RHSInt← Integrand in A ;
[RHSKernels, RHSInternalVars, RHSStreamVars]← GenerateKernels(RHSInt) ;
Kernels← LHSKernelVars + RHSKernelVars ;
InternalVars← LHSInternalVars + RHSInternalVars ;
StreamVars← LHSStreamVars + RHSStreamVars ;
Uniqify(Kernels) ;
Uniqify(InternalVars) ;
Uniqify(StreamVars) ;
Backend(Kernels, InternalVars, StreamVars) ;

Implementation of the state class for access to fields within Fluidity was achieved by defining
its methods scalar_fields and vector_fields such that they return an object of type Element.
This object has an extra attribute, name, which stores the name of the field. When the kernel and
variable generation algorithms visit nodes in the DAG, this field is preserved, and is used to find
the field name that the node refers to.

The choice to return an Element object was driven by the requirements of the constructor for
the classes TestFunction and TrialFunction, and similar classes. Normally a UFL user would
initialise one of these functions using code similar to the following:

ele=Element("Lagrange", "triangle", 1)
v=TestFunction(ele)

The choice to return an Element type satisfies all of the constructors for these functions. The
type of element (triangular elements with degree 1 Lagrange polynomials as basis functions) does
not matter in our implementation, since these attributes of the Element are discarded when the
DAG of mathematical operations is converted to a DAG of kernels.

5.3.2 The Code Generation Backend

The backend is implemented using the ROSE Compiler Infrastructure [Quinlan et al., 2009a].
ROSE is intended as a toolkit for building source-to-source translation tools. However, it is possi-
ble to build an Abstract Syntax Tree (AST) [Aho et al., 2006, p.41] representing a program in ROSE’s

58

IR, SAGE III. The interface provided by ROSE for building an AST is relatively straightforward;
one may construct objects representing AST nodes, and use the provided methods to insert them
at specified points in the AST. For a full description of the ROSE APIs, see [Quinlan et al., 2009b].

The backend represents each variable using instances of a class Variable, and each kernel
launch using a class Kernel. Lists of Internal and Stream variables, and the list of kernel launches
are represented using standard STL data structures. The backend expects its input to be passed
in the form of these data structures, necessitating an interface layer between the frontend and the
backend. The Simplified Wrapper and Interface Generator (SWIG) [Beazley, 1996] was used to create
a Python interface to the required classes and the backend, in the form of a Python module. This
Python module is loaded by the frontend and is also used to call the backend. The implementation
of the backend operates in the following way:

• A new AST with an empty source file is created. Each of the variable lists are iterated over,
and for each variable, a global variable declaration is created and inserted into this source
file in the AST. The list of kernels is referred to in order to generate forward declarations for
each of the kernels that are to be called. Each kernel declaration needs to be prepended by
the keyword __global__, which is not part of standard C or C++ supported by ROSE. In
order to get around this, ROSE’s mechanism for inserting arbitrary strings at points in the
AST was used to insert the extra keyword before each declaration.

• The Element Streaming function is created and inserted into the AST, which receives as many
parameters as there are stream variables. For each Stream variable, a call to CudaMemcpy is
inserted into the function, to copy the data from the host to the GPU.

• When generating the Assembly function, the list of kernel calls is iterated over to deter-
mine which kernels need to be called. Since CUDA kernels are launched using the syntax
kernel_name<<<BlockDim,GridDim>>>(...), it was necessary to append the string in triple
chevrons to the name of each kernel before it is inserted into the AST. Although this is tech-
nically not legal C++, the generated code is syntactically-correct CUDA code.

• To generate the Initialisation function, the backend iterates over each of the lists of variables,
and inserts a cudaMalloc statement for each one. This ensures that space for each variable is
allocated before it is used. Additionally, calls to cudaMemcpy copy the matrix sparsity pattern
over to the GPU, and calls to cudaBindTexture bind it to texture memory.

• Generation of the Finalisation function is partly similar to the Initialisation function. For
each of the Internal and Stream variables, a call to cudaFree is inserted. Calls to un-bind the
matrix sparsity pattern (using cudaUnBindTexture) are inserted, but the matrix is not freed
using cudaFree, since it will be required by the solver phase.

• Finally, two #include statements are added to include code stored in external files, which
does not change. These are gpu_declarations.h, which determines the size of thread blocks
and the grid, and gpu_static.h, which contains functions to add the boundary contribution
from the CPU to the GPU right-hand side vector.

After the construction of the AST, the ROSE “Unparser” is called. The Unparser traverses the
AST and writes the output code to disk. As this implementation of the compiler is a prototype, the
output is coded to be written to a file called gpu_assemble.cu, since a choice of output filename
is not important.

5.4 Testing

5.4.1 Generation of Test Input for the Backend

It is possible to perform testing of the backend by writing a standalone C++ program that gener-
ates STL data structures containing the Internal and Stream variables, and a list of kernel launches

59

and their parameters. For example, the code shown in Figure 5.2 specifies a particular invocation
of the matrix_addto kernel. The parameters val and size_val are part of the data structures
representing the matrix, ele_psi is the node numbers of each element of the field psi, lmat is
an element-local matrix, and n is the number of elements. In order to test the backend, similar
constructs to the one shown above were used to create a test input to the backend which was ex-
pected to cause it to output a code equivalent to the implementation of test laplacian described
in Section 4.2. The output code was tested to verify that it ran correctly and produced the same
results as the hand-translation of test laplacian.

stringList *params = new stringList();
(*params).push_back(string("val"));
(*params).push_back(string("size_val"));
(*params).push_back(string("ele_psi"));
(*params).push_back(string("lmat"));
(*params).push_back(string("n"));
launchList.push_back(kernelLaunch("matrix_addto",params));

Figure 5.2: Code to construct an invocation of the matrix addto kernel in the IR.

5.4.2 Generation of Test Input for the Frontend

In order to test the frontend, a UFL implementation equivalent to the assembly phase of the
test laplacian test program was written. The code for this implementation is shown in Figure
5.3

P = state.scalar_fields("psi")
v=TestFunction(P)
u=TrialFunction(P)
f=Function(P)
f.name="shape_rhs"
A = dot(grad(v),grad(u))*dx
RHS = v*f*dx
solve(P, A, RHS)

Figure 5.3: UFL Code equivalent to the assembly phase in test laplacian, used for testing the
frontend.

This code was executed using the frontend, which caused the code generator to be invoked.
The resulting output code was again equivalent to the hand-translation of test laplacian and
produced the same results, showing that the implementation of the UFL compiler functions cor-
rectly in this case.

5.4.3 Generation of Further Inputs

In order to further test the UFL compiler, we may consider producing a UFL script to solve the
Helmholtz Equation. The Helmholtz Equation is:

∇2u− λu = f (5.1)

This is clearly similar to the equation solved by test laplacian , with the addition of an
extra term. Solving of this equation using the finite element method is also very similar, which is
achieved by assembling and solving a discretisation of the following equation:∫

Ω
∇v · ∇udX + λ

∫
Ω

vudX = −
∫

Ω
v f +

∫
∂Ω

v∇uds (5.2)

60

In order to change the UFL implementation of test laplacian shown above to solve this
equation (when λ = 20), a change to the assignment to A is necessary:

a = (dot(grad(v), grad(u))+(20)*dot(v,u))*dx

The modification of this term results in a larger and more complex DAG. Due to time con-
straints, it was not possible within the project to add enough extra logic to the kernel scheduling
algorithm of the frontend to successfully compile this UFL code using the frontend. However, it
is possible to emulate the desired behaviour of the frontend. This is achieved by modifying the
C++ test code described above to add extra kernel calls to shape_shape and matrix_addto, which
causes the extra term to be assembled into the matrix.

To test the correctness of this generated code, code implementing the same problem was gen-
erated using FEniCS Dolfin to provide a reference output. The solutions to the equation produced
by FEniCS Dolfin and the generated code are shown in Figure 5.4. It can be seen from these two
plots that the solutions are very similar. The slight discrepancy, which can be seen as a difference
of 0.001 in the maximum value on the legend is due to the coarseness of the mesh used in the FEn-
iCS implementation. However, this result shows that the code generator has generated correct
code to solve the Helmholtz equation.

(a) Generated by FEniCS. (b) Generated by the UFL Compiler output.

Figure 5.4: Visualisation of solutions to the Helmholtz Equation with λ = 20.

5.5 Conclusion

We have discussed the design and implementation of a UFL compiler that outputs CUDA code.
The design has been closely guided by the manual implementations discussed in the Chapter 4.
In order that the compiler may generate code for different target architectures, it is composed of
a frontend, which inputs UFL code and produces an intermediate representation, and a backend
which generates code from this intermediate representation.

The compiler has been tested with a UFL specification of the test laplacian program. The
output from the compiler was found to be equivalent to the manual implementation of the as-
sembly phase in test laplacian. The backend was also tested with an input which caused it
to generate code to solve the Helmholtz equation. The solution produced by this code and an
implementation of the same problem in FEniCS Dolfin were found to be equivalent.

Although the compiler only supports a limited subset of UFL, it has been shown that the
generation of CUDA code from high-level UFL specifications is feasible. The addition of support

61

for other parts of the language, which will allow the compiler to compile UFL code representing
the assembly phase of test advection diffusion1, is left for future work.

1See Appendix B for the UFL code representing the assembly phase in test advection diffusion

62

Chapter 6

Evaluation

6.1 Introduction

In this chapter we seek to evaluate the work of the project. We compare the implementation
described in Chapter 4 to the others discussed in Chapter 3, and discuss how the UFL compiler
demonstrates the feasibility of generating CUDA code from UFL specifications. We also explore
whether continued research in the direction of this project is worthwhile and feasible.

6.2 Examination of the Implementations of the Assembly Phase

We may regard the experimental implementations of the assembly phase as being successful in
showing that the use of GPUs and CUDA in particular leads to improvements in performance in
finite element assembly. We have seen in Section 4.4 that the implementation increases the speed
of the assembly phase by approximately 8 times. Although this speedup of almost an order of
magnitude has been obtained, it is clear that more could be done to improve the performance of
the CUDA implementation. We briefly highlight optimisations that might be used improve the
performance of our implementation which have been reported in other work:

Fusion of Kernels. In Section 3.2.2, optimisation of an implementation is discussed in which ker-
nels implementing different operations are fused. We have also seen that the majority of
kernels in the implementation are limited by memory bandwidth (Section 4.4.4) due to the
storage of intermediate results in shared memory. It can therefore be concluded that we
could further improve performance by implementing kernel fusion optimisations.

Mesh Partitioning. In Section 3.2.3, dividing the mesh into partitions small enough to fit in to
shared memory is discussed. Since node data is loaded once per element in our implemen-
tation, loading partitions of elements into shared memory will decrease memory bandwidth
pressure since nodes interior to to the partition will only need to be transferred once.

Packing of Elements. The storage layout described in Section 3.2.3 and pictured in Figure 3.2
allows elements in a partition to be efficiently loaded into shared memory. In our imple-
mentation, the layout of element data is such that the data for every element at a given node
is consecutive in memory. This data layout will require a gather operation if a partitioning
scheme is used, since data for a single element is not contiguous. In order to implement
a partitioning scheme, we must also use a data layout for element data similar to the one
shown in Figure 3.2.

Element Colouring. In Section 3.2.5, a colouring of elements such that no two elements of the
same colour share a node is described. Our performance analysis (Section 4.4.4) shows that
the atomic operations have a very high cost. Use of this colouring and assembly of each
colour in turn will eliminate the need for these atomic operations, bringing an increase in
performance.

63

Matrix Storage. Although none of the implementations discussed in Chapter 3 mention the ma-
trix storage format, the choice of alternative storage formats should be evaluated. It is shown
in Section 4.4.4 that the most expensive operation once atomic operations have been elimi-
nated is the need to search the sparsity pattern of the global matrix, which is stored in CSR
format. An alternative storage format that requires less operations to find the location of a
particular element of the matrix may be more efficient on the GPU.

6.3 Discussion of the UFL Compiler

We have seen in Section 5.4 that the implementation of the UFL compiler is able to produce output
equivalent to the manual implementation of the assembly phase for test laplacian. The imple-
mentation is limited due to time constraints within the project, and there are no technical barriers
to supporting a larger subset of UFL so that the compiler may be used to generate code for the
test advection diffusion assembly routine.

It is questionable whether the most pragmatic design has been used for architecture of the
compiler. Since the frontend consists of a mechanism for both reading in a UFL file and producing
a list of kernel calls that are to be generated, this limits the flexibility of the backend. For example,
the list of kernels that make up a CUDA implementation may differ greatly from the list of kernels
that would be used to make up a Cell implementation of the same assembly process. This is likely
to make the implementation of backends for a diverse set of architectures difficult.

Defining the intermediate representation to be more similar to the DAGs produced by the
ufl.algorithms package may be considered a better choice than defining it as a list of kernel calls.
This will allow each backend to perform its own target-specific manipulations of the DAG before
choosing which kernels should be used for the implementation. Additionally, since the DAG
preserves the mathematical operators and their operands, this allows the backend to generate
specialised kernels that implement any operator or combination of operators specified in the DAG.

A deviation from the UFL specification which the compiler implements involves the specifica-
tion of a function. In UFL, the right-hand side function used in test laplacian (Equation 2.9) is
specified using the following declaration:

f=Function(P, "(2*1.25*pi*cos(0.5*pi*x[0]))*cos(pi*x[1])+0.5*pi*sin(0.5*pi*x[0])")

However, the implementation of this function by the compiler would require the generation
of a specialised kernel that evaluates this function over the domain. Alternatively, it may be com-
posed of a large number of generic kernels that perform basic mathematical operations, which
would be quite inefficient and would require substantial manual work to implement in the com-
piler and kernel library. In order to overcome this issue, the following code is used instead:

f=Function(T)
f.name="shape_rhs"

In this code we specify that in order to evaluate the function f, we should call the kernel
shape_rhs, which has been written in CUDA by the programmer. This clearly causes an issue
since it breaks the abstraction from the implementation which UFL provides. However, since it is
sometimes difficult to express more general computations in UFL, including the facility to call an
arbitrary kernel may allow a programmer additional flexibility where necessary. We stress that the
ability to define a function in UFL without having to resort to calling a kernel should be included
in the UFL compiler as part of future work.

Finally, we note that the UFL compiler does not generate Fortran source necessary to integrate
the CUDA assembly routine with a program written using the Fluidity APIs. The present imple-
mentation requires the programmer to write code which extracts the necessary data from the mesh
data structures, perform a transposition of this data, and call the CUDA assembly functions. As
we have outlined in Section 5.2.3, there is enough information present in the UFL specifications to
generate a Fortran module that implements these operations. The development of an addition to
the backend that outputs code to perform these tasks is left for future work.

64

6.4 Examination of UFL

In deciding whether and how to continue the work that has been completed throughout this
project, it is necessary to question whether the UFL is an appropriate choice of language upon
which to base our work. We argue that UFL provides an appropriate starting point for the devel-
opment of tools for generation of finite element assembly code, but the language must eventually
be extended with additional facilities. We support this claim with the following arguments:

• It is straightforward to express finite element methods using UFL, as the notation it pro-
vides is very close to that of the mathematical formulation of a finite element method. For
example, we have seen in Section 5.4 that the assembly and solution of the system solved
by test laplacian may be specified using less than 10 lines of UFL, which have a close
correspondence to the variational form of the problem given in Equation 2.11.

• Since UFL does not allow the programmer to give any specification regarding the implemen-
tation, the same source may be compiled to multiple target architectures without modifica-
tion. This also permits automated exploration of the optimisation spaces, using techniques
analogous to those used by the Tensor Contraction Engine to optimise the evaluation of ten-
sor expressions for a particular target (Section 3.3). Additionally, the exploration of these
optimisations using the compiler does not break the abstraction provided by UFL.

• UFL is a versatile language for the specification of finite element methods, allowing any
problem that can be specified in the weak form to be described, using a variety of element
types (although we have focused on order 1 piecewise continuous polynomial elements in
this project), including those for DG methods. Since the Finite Volume and Finite Difference
methods may also be formulated in terms of the finite element method with an appropriate
choice of basis functions [Sherwin et al., 2009, p.2-5], we claim that UFL might be also be
used to specify these types of method.

• In spite of its versatility in the aspects described above, the UFL language does not provide
support for describing iteration in a method. In order to overcome this, we must either en-
sure that iteration is specified externally to a UFL specification, or we must augment the
language with constructs to specify iteration. The first approach is likely to break the ab-
straction provided by UFL. For example, if the description of a single iteration were captured
using UFL, and iteration expressed in program written in a low-level language that makes
calls to the generated code, unnecessary data transfer will be difficult to avoid. Consider an
example loop written in Fortran:

do timestep=1,FINALTIME
call advection_diffusion_step(solution(timestep), solution(timestep+1))

end do

In this example the advection_diffusion_step function computes the solution at time
n + 1 given the solution at time n, where solution is a vector storing the solution at each
point at each time. It is highly likely that unnecessary data transfer between the GPU and
the host will occur at every timestep, which is likely to be unnecessary if the solution at
every timestep is not desired. In order to prevent this occurring, a complicated data-flow
analysis will be required to prevent the unnecessary transfers. Furthermore, determining at
which point data should be transferred may not be possible without additional knowledge
unavailable to the compiler.

Therefore, it is clear that the addition of constructs for iteration is necessary. The design of
these constructs is left for future work, since they must be carefully chosen so that they do
not break the abstractions already in place, but do not preclude flexibility in the compiler’s
choice of optimisations, and the generation of code for a variety of targets.

65

6.5 Summary

We have discussed the manual implementations of the assembly phases, and we conclude that
although considerable speedups have been obtained, we may further improve our performance
results by using additional optimisations. We have concluded that the UFL compiler demonstrates
the feasibility of generating CUDA code from UFL, although its design requires modification for
future work. Finally, we have shown that UFL is a viable platform for further developments in
the area of this project.

66

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have demonstrated the following contributions throughout this report:

• We have surveyed and evaluated existing approaches to automatically generating finite ele-
ment assembly code, and discussed the state of the art in GPU acceleration of finite element
assembly (Chapter 3).

• We have described the implementation of a library of kernels used in the assembly phase on
the NVidia Tesla architecture. Strategies that have been used to optimise performance have
been discussed (Chapter 4).

• We have shown how this library is used in the assembly phase for a variety of test problems,
resulting in performance improvements of almost an order of magnitude over the equivalent
CPU implementation on typical hardware (Chapter 4).

• We have described a prototype implementation of a UFL compiler which outputs CUDA
code, and how the conversion from UFL to CUDA is performed (Chapter 5).

• We have evaluated the implementation of the UFL Compiler and shown that the construc-
tion of a flexible UFL compiler which supports multiple backends and optimisations is fea-
sible and worthwhile (Section 6.3).

• We have shown that the Unified Form Language is a viable platform for further research in
this area (Section 6.4).

7.2 Further Work

7.2.1 Performance Optimisation of the GPU Implementations

We may attempt to further optimise the GPU implementations described in Chapter 4 using the
techniques outlined in Section 6.2. These optimisations include kernel fusions, mesh partition-
ing, element packing and padding, element colouring, and the investigation of alternative matrix
storage formats.

7.2.2 Completion of Support for UFL

The compiler described in Chapter 5 supports a fairly limited subset of the UFL specification at
present. Increasing its coverage of the specification will allow the generation of a wider variety of
finite element assembly routines. It is of interest to attempt to compile the UFL for the assembly
phase of test advection diffusion and make comparisons with the hand-written code.

67

7.2.3 Implementation of Additional Backends

The prototype UFL Compiler presently only supports a CUDA target. Other target architectures,
such as the Cell processor or multicore CPUs may be supported by the development of new back-
ends. Before these alternative backends may be implemented, the intermediate representation
requires modification so that it more effectively communicates information about the mathemati-
cal operations specified in a UFL script from the frontend to the backend.

7.2.4 Generation of GPU Kernels

At present, the library of kernels described in Chapter 4 is used as the basis for generated assembly
routines. This limitation requires a programmer to develop new kernels to implement operations
not supported by the library. In order to overcome this limitation, the addition of the capability
to generate kernels based on a mathematical specification needs to be developed. This will also
allow the specification of functions to be given in UFL rather than in a low-level language such as
CUDA (Section 6.3).

7.2.5 Automated Exploration of Optimisations

As we have seen in Sections 3.3 and 2.5, the UFL compiler may make decisions about how any
given specification of a method is implemented. We may extend the implementation of the com-
piler so that it applies different transformations to the generated code in order to discover an
optimal implementation. For example, the CUDA backend may be used to perform fusion of var-
ious kernels. Alternatively, a backend targeting a multicore processor may be able to make use
of SSE intructions to improve performance. Combined with the functionality to generate kernels,
the compiler may also be used to explore other transformations such as loop unrolling or constant
folding.

7.2.6 Development of Interface Code

At present, a programmer has to write a Fortran module which extracts data from the mesh and
calls the code generated by the UFL Compiler. The compiler may be augmented with the capabil-
ity to automatically generate a Fortran module for this purpose. This will allow a programmer to
integrate generated code with Fluidity in a much more straightforward manner; they need only
to include a use statement referencing the generated code, and pass the state dictionary of Flu-
idity to the generated routine when required. This facility will greatly ease the integration of the
generated code with the Fluidity codebase.

7.2.7 Capture of Iteration in UFL

As described in Section 6.4, it is not possible to express iteration using UFL. It is necessary to ex-
amine how iteration might be captured before extending the UFL specification, as the best strategy
for doing so is non-obvious.

7.3 Manifesto

It is intended that the research conducted throughout this project is to be used as a platform
from which to work towards the integration of high level specifications into the Fluidity code-
base. This integration will permit the use of generated code for solving complex fluid dynamics
simulations involving multiple phases (water, air, solids etc.) and and fields (temperature, pres-
sure, density, salinity, etc.). The high-level specifications will be used to generate highly-optimised
target-specific code, resulting in performance greater than may be obtained by human effort. The
high level of abstraction will enable the frontiers of the finite element method to be explored by
facilitating the coupling of finite element simulations with those from other domains.

68

Appendix A

Optimised Kernel Library

The kernels used in the assembly phase for each of the problems is shown in the tables presented
in this Appendix.

Kernel Laplacian Helmholtz Advection Diffusion
dshape_dot_vector_shape X
dshape_tensor_dshape X
dshape_dot_dshape X X
shape_shape X X

Table A.1: Kernels implementing bilinear forms and their use in test problems

Kernel Laplacian Helmholtz Advection Diffusion
matrix_addto X X X X
matrix_addto_diffusion X
matrix_addto_sum_diag X
vector_addto X X X X

Table A.2: Kernels implementing addto operations and their use in test problems

Kernel Laplacian Helmholtz Advection Diffusion
shape_rhs X X
advection_rhs X
diffusion_rhs X

Table A.3: Kernels which evaluate the RHS of equations and their use in test problems

69

Kernel Laplacian Helmholtz Advection Diffusion
transform_to_physical X X X X
daxpy X X
scatter_rhs_values X X

Table A.4: Kernels which provide “utility” functions and their use in test problems

70

Appendix B

UFL Codes for Advection and Diffusion

These codes are written by David Ham. They are included for completeness, and for the reader to
refer to in the context of chapter 5.

B.1 Advection

T=state.scalar_fields(Tracer)
U=state.vector_fields(Velocity)
UNew=state.vector_fields(NewVelocity)

We are solving for the Tracer, T.
t=Function(T)
p=TrialFunction(T)
q=TestFunction(T)

#The value of the advecting velocity U is known.
u=Function(U)
unew=Function(UNew)

#Mass matrix.
M=p*q*dx

#Solve for T1-T4.
rhs=dt*dot(grad(q),u)*t*dx
t1=solve(M,rhs)

rhs=dt*dot(grad(q),(0.5*u+0.5*unew))*(t+0.5*t1)*dx
t2=solve(M,rhs)

rhs=dt*dot(grad(q),(0.5*u+0.5*unew))*(t+0.5*t2)*dx
t3=solve(M,rhs)

#Solve for T at the next time step.
rhs=action(M,t) +1.0/6.0*t1 + 1.0/3.0*t2 + 1.0/3.0*t3 + 1.0/6.0*t4
t=solve(M,t)

B.2 Diffusion

Assuming the definitions above, the UFL code for the diffusion step is:

mu=state.tensor_fields(TracerDiffusivity)

71

i,j=indices(2)

M=p*q*dx
d=-grad(q)[i]*mu[i,j]*grad(p)[j]*dx

A=m-0.5*d
rhs=action(M+0.5*d,t)

t=solve(A,rhs)

This UFL specification makes use of the Einstein summation convention, in which repeated
indices are summed over their range in an expression.

72

Bibliography

[Advanced Micro Devices, 2008] Inc. Advanced Micro Devices. ATI Stream SDK User Guide, 2008.

[Aho et al., 2006] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[Allard et al., 2007] Jérémie Allard, Stéphane Cotin, François Faure, Pierre-Jean Bensoussan,
François Poyer, Christian Duriez, Hervé Delingette, and Laurent Grisoni. Sofa an open source
framework for medical simulation. In Medicine Meets Virtual Reality (MMVR’15), Long Beach,
USA, February 2007.

[Alnaes and Logg, 2009a] Martin Alnaes and Anders Logg. UFL.
http://www.fenics.org/wiki/UFL, Retrieved 23 Jul 2009, 2009.

[Alnaes and Logg, 2009b] Martin Alnaes and ANders Logg. UFL Specification and User Manual.
http://www.fenics.org/pub/documents/ufl/ufl-user-manual/ufl-user-manual.pdf, Re-
trieved 15 September 2009, 2009.

[Auer et al., 2006] A.A. Auer, G. Baumgartner, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Co-
ciorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, et al. Automatic code generation
for many-body electronic structure methods: the tensor contraction engine. Molecular Physics,
104(2):211–228, 2006.

[Bagheri and Scott, 2004] Babak Bagheri and L. Ridgway Scott. About Analysa. Technical Report
TR-2004-09, University of Chicago, 2004.

[Balay et al., 2008] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.0.0, Argonne National Laboratory,
2008.

[Bangerth et al., 2007] W. Bangerth, R. Hartmann, and G. Kanschat. deal. IIA general-purpose object-
oriented finite element library. ACM New York, NY, USA, 2007.

[Barrett et al., 1994] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[Baumgartner et al., 2002] G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata,
C.C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, and P. Sadayappan. A high-level approach
to synthesis of high-performance codes for quantum chemistry. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–10. IEEE Computer Society Press Los Alami-
tos, CA, USA, 2002.

[Beazley, 1996] David M. Beazley. SWIG : An Easy to Use Tool for Integrating Scripting Languages
with C and C++ . http://www.swig.org/papers/Tcl96/tcl96.html, Retrieved 9 September
2009, 1996.

73

http://www.fenics.org/pub/documents/ufl/ufl-user-manual/ufl-user-manual.pdf
http://www.swig.org/papers/Tcl96/tcl96.html

[Becker et al., 2009] Aaron Becker, Isaac Dooley, and Laxmikant Kale. Flexible Hardware Mapping
for Finite Element Simulations on Hybrid CPU / GPU Clusters. In SAAHPC : Symposium on
Application Accelerators in HPC, July 2009.

[Bolz et al., 2005] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, page 171, New York, NY, USA, 2005. ACM.

[Buatois et al., 2007] Luc Buatois, Guillaume Caumon, and Bruno Levy. Concurrent Number
Cruncher: An Efficient Sparse Linear Solver on the GPU. In High Performance Computation Con-
ference (HPCC), Springer Lecture Notes in Computer Sciences, 2007. Award: Second best student
paper.

[Cevahir et al., 2009] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. Fast Conjugate Gradients
with Multiple GPUs. In 9th International Conference on Computational Science, pages 893–903,
2009.

[Comas et al., 2008] Olivier Comas, Zeike A. Taylor, Jérémie Allard, Sébastien Ourselin, Stéphane
Cotin, and Josh Passenger. Efficient Nonlinear FEM for Soft Tissue Modelling and Its GPU Im-
plementation within the Open Source Framework SOFA. In ISBMS ’08: Proceedings of the 4th in-
ternational symposium on Biomedical Simulation, pages 28–39, Berlin, Heidelberg, 2008. Springer-
Verlag.

[Donea, 2003] J. Donea. Finite Element Methods for Flow Problems. Wiley Interscience, 2003.

[Dular and Geuzaine, 2005] P. Dular and C. Geuzaine. GetDP Reference Manual, 2005.

[Dupont et al., 2003] T. Dupont, J. Hoffman, C. Johnson, R. C. Kirby, M. G. Larson, A. Logg, and
L. R. Scott. The FEniCS project. Technical Report 2003–21, Chalmers Finite Element Center
Preprint Series, 2003.

[Farrell et al., 2009] Patrick Farrell, Colin Cotter, and Matthew Piggott. Fluidity Test Cases. http:
//amcg.ese.ic.ac.uk/index.php?title=Test_cases, Retrieved 11 September 2009, 2009.

[Filipovic et al., 2009a] Jiri Filipovic, Igor Peterlik, and Jan Fousek. GPU Acceleration of Equa-
tions Assembly in Finite Elements Method - Preliminary Results. In SAAHPC : Symposium on
Application Accelerators in HPC, July 2009.

[Filipovic et al., 2009b] Jiri Filipovic, Igor Peterlik, and Jan Fousek. GPU Acceleration of Equa-
tions Assembly in Finite Elements Method - Preliminary Results. In SAAHPC : Symposium on
Application Accelerators in HPC - Poster Session, July 2009.

[Gorman et al., 2008] Gerard Gorman, Matthew Piggot, and Patrick Farrell. About Fluidity.
http://amcg.ese.ic.ac.uk/index.php?title=FLUIDITY, 2008.

[Gschwind et al., 2006] Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins, Yukio
Watanabe, and Takeshi Yamazaki. Synergistic Processing in Cell’s Multicore Architecture. IEEE
Micro, 26(2):10–24, 2006.

[Ham et al., 2009] David Ham, Matthew Piggot, and Christopher Pain. Fluidity/ICOM Manual,
revision 11245. http://amcg.ese.ic.ac.uk/cgi-bin/viewvc.cgi/trunk/manual/fluidity_
manual.pdf?revision=11245&root=fluidity&pathrev=11245, Retrieved 10 September 2009,
2009.

[Ham, 2009a] David Ham. The Femtools Manual, Revision 10934. http://amcg.ese.ic.ac.uk/
cgi-bin/viewvc.cgi/trunk/femtools/doc/femtools_manual.pdf?revision=10934&root=
fluidity, Retrieved 11 September 2009, 2009.

74

http://amcg.ese.ic.ac.uk/index.php?title=Test_cases
http://amcg.ese.ic.ac.uk/index.php?title=Test_cases
http://amcg.ese.ic.ac.uk/cgi-bin/viewvc.cgi/trunk/manual/fluidity_manual.pdf?revision=11245&root=fluidity&pathrev=11245
http://amcg.ese.ic.ac.uk/cgi-bin/viewvc.cgi/trunk/manual/fluidity_manual.pdf?revision=11245&root=fluidity&pathrev=11245
http://amcg.ese.ic.ac.uk/cgi-bin/viewvc.cgi/trunk/femtools/doc/femtools_manual.pdf?revision=10934&root=fluidity
http://amcg.ese.ic.ac.uk/cgi-bin/viewvc.cgi/trunk/femtools/doc/femtools_manual.pdf?revision=10934&root=fluidity
http://amcg.ese.ic.ac.uk/cgi-bin/viewvc.cgi/trunk/femtools/doc/femtools_manual.pdf?revision=10934&root=fluidity

[Ham, 2009b] David A. Ham. Documentation for the Advection-Diffusion Test Problem. http:
//www.doc.ic.ac.uk/~grm08/testad.pdf, Retrieved 14 September 2009, 2009.

[Hecht et al., 2005] F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuka. FreeFEM++ Manual,
2005.

[Howes et al., 2009a] Lee Howes, Anton Lokhmotov, Alastair F. Donaldson, and Paul H.J. Kelly.
Decoupled Access/Execute metaprogramming for GPU-accelerated systems. In Symposium on
Application Accelerators in High Performance Computing (SAAHPC), 2009.

[Howes et al., 2009b] Lee W. Howes, Anton Lokhmotov, Alastair F. Donaldson, and Paul H.J.
Kelly. Deriving Efficient Data Movement From Decoupled Access/Execute Specifications. In
Proceedings of the 4th International Conference on High Performance and Embedded Architectures and
Compilers (HiPEAC), volume 5409 of Lecture Notes in Computer Science, pages 168–182. Springer,
2009.

[Khronos Group, 2008] The Khronos Group. OpenCL 1.0 Working Specification, 2008.

[Klöckner et al., 2009] A. Klöckner, T. Warburton, J. Bridge, and J.S. Hesthaven. Nodal discon-
tinuous Galerkin methods on graphics processors. Journal of Computational Physics, In Press:–,
2009.

[Klöckner, 2009] Andreas Klöckner. PyCUDA Documentation. http://mathema.tician.de/
software/pycuda, Retrieved 9 September 2009, 2009.

[Komatitsch et al., 2009] Dimitri Komatitsch, David Michéa, and Gordon Erlebacher. Porting a
high-order finite-element earthquake modeling application to NVIDIA graphics cards using
CUDA. J. Parallel Distrib. Comput., 69(5):451–460, 2009.

[Langtangen, 2003] Hans Petter Langtangen. Computational Partial Differential Equations, Numeri-
cal Methods and Diffpack Programming. Springer-Verlag, 2003.

[Lindholm et al., 2008] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–55, 2008.

[Logg and Alnaes, 2009] Anders Logg and Martin Alnaes. The FEniCS Project. http://www.
fenics.org, Retrieved 9 September 2009, 2009.

[Logg and Wells, 2009] A. Logg and G. N. Wells. DOLFIN: Automated finite element comput-
ing. http://www.fenics.org/pub/documents/dolfin/papers/dolfin-2009.pdf, Retrieved
15 September 2009, 2009.

[Logg, 2007] A. Logg. Automating the finite element method. Arch. Comput. Methods Eng.,
14(2):93–138, 2007.

[Long, 2003] K.R. Long. Sundance rapid prototyping tool for parallel PDE optimization. Large-
scale PDE-constrained optimization, page 331, 2003.

[Markall and Kelly, 2009] Graham Markall and Paul H. J. Kelly. Accelerating Unstructured Mesh
Computational Fluid Dynamics Using the NVidia Tesla GPU Architecture. ISO Report, Imperial
College London, 2009.

[Markall et al., 2009] Graham Markall, David A. Ham, and Paul H. J. Kelly. Fitting the Ocean on
to a Graphics Card: Towards Running ICOM on Massively Parallel Processors. Presented at the
8th International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and
Ocean Flows, September 2009.

[Markall, 2009] Graham Markall. Porting Fortran to CUDA. https://spo.doc.ic.ac.uk/twiki/
bin/view.cgi/External/PortingFortranToCUDA, Retrived 9 September 2009, 2009.

75

http://www.doc.ic.ac.uk/~grm08/testad.pdf
http://www.doc.ic.ac.uk/~grm08/testad.pdf
http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda
http://www.fenics.org
http://www.fenics.org
http://www.fenics.org/pub/documents/dolfin/papers/dolfin-2009.pdf
https://spo.doc.ic.ac.uk/twiki/bin/view.cgi/External/PortingFortranToCUDA
https://spo.doc.ic.ac.uk/twiki/bin/view.cgi/External/PortingFortranToCUDA

[Miller et al., 2007] Karol Miller, Grand Joldes, Dane Lance, and Adam Wittek. Total Lagrangian
explicit dynamics finite element algorithm for computing soft tissue deformation. Communica-
tions in Numerical Methods and Engineering, 23(2):121–134, 2007.

[Monk, 2003] Peter Monk. Finite Element Methods for Maxwell’s Equations. Clarendon, 2003.

[NVidia, 2007] NVidia. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide,
2007.

[NVidia, 2009a] NVidia. NVIDIA CUDA Reference Manual, Version 2.2. http:
//developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Reference_
Manual_2.2.pdf, Retrieved 10 September 2009, 2009.

[NVidia, 2009b] NVidia. The Cg Homepage. http://developer.nvidia.com/page/cg_main.
html, Retrieved 9 September 2009, 2009.

[NVidia, 2009c] NVidia. The CUDA Occupancy Calculator. http://news.developer.nvidia.
com/2007/03/cuda_occupancy_.html, Retrieved 9 September 2009, 2009.

[Ogden, 1997] R. W. Ogden. Non-Linear Elastic Deformations. Dover Publications, 1997.

[Perryman and Kelly, 2008] Tristan Perryman and Paul H. J. Kelly. Accelerating Fluidity Using
the GPU. UROP Report, Imperial College London, 2008.

[Quinlan et al., 2009a] Dan Quinlan, Chunhua Liao, Thomas Panas, Robb Matzke, Markus
Schordan, Rich Vuduc, and Qing Yi. ROSE: A Tool For Building Soruce-to-Source Trans-
lators. User Manual (version 0.9.4a). http://www.rosecompiler.org/ROSE_UserManual/
ROSE-UserManual.pdf, Retrieved 15 September 2009, 2009.

[Quinlan et al., 2009b] Dan Quinlan, Chunhua Liao, Thomas Panas, Jeremiah Willcock, Robb
Matzke, Markus Schordan, Rich Vuduc, and Qing Yi. ROSE HTML Reference. http://www.
rosecompiler.org/ROSE_HTML_Reference/index.html, Retrieved 15 September 2009, 2009.

[Reid, 2009] John K. Reid. Interoperability [of Fortran] with C. http://www.fortran.bcs.org/
2002/interop.htm, Retrieved 9 September 2009, 2009.

[Rumpf and Strzodka, 2001] M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hard-
ware. In In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym 01, pages 75–84.
Springer, 2001.

[Seiler et al., 2008] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa,
Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: a many-core x86 architecture for visual
computing. ACM Trans. Graph., 27(3):1–15, August 2008.

[Sherwin et al., 2009] Spencer Sherwin, Ian Matthews, and Colin Cotter. Finite Element Methods,
MSc. Short Course. Department of Aeronautics, Imperial College London, 2009.

[Shewchuk, 1994] Jonathan R Shewchuk. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. Technical report, Pittsburgh, PA, USA, 1994.

[Silva, 2005] Malik Silva. Sparse matrix storage revisited. In CF ’05: Proceedings of the 2nd conference
on Computing frontiers, pages 230–235, New York, NY, USA, 2005. ACM.

[Taylor et al., 2007] Zeike A. Taylor, Mario Cheng, and Sébastien Ourselin. Realtime Nonlinear
Finite Element Analysis for Surgical Simulation Using Graphics Processing Units. In In Pro-
ceedings of the 10th International Conference on Medical Image Computing and Computer Assisted
Intervention (LNCS 4791), pages 701–708. Springer Berlin/Heidelberg, 2007.

76

http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Reference_Manual_2.2.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Reference_Manual_2.2.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Reference_Manual_2.2.pdf
http://developer.nvidia.com/page/cg_main.html
http://developer.nvidia.com/page/cg_main.html
http://news.developer.nvidia.com/2007/03/cuda_occupancy_.html
http://news.developer.nvidia.com/2007/03/cuda_occupancy_.html
http://www.rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://www.rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.fortran.bcs.org/2002/interop.htm
http://www.fortran.bcs.org/2002/interop.htm

[Taylor et al., 2008] Z.A. Taylor, M. Cheng, and S. Ourselin. High-Speed Nonlinear Finite Element
Analysis for Surgical Simulation Using Graphics Processing Units. Medical Imaging, IEEE Trans-
actions on, 27(5):650–663, May 2008.

[Volkov and Demmel, 2008] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[Wang et al., 2009] Mingliang Wang, Hector Klie, Manish Parashar, and Hari Sudan. Solving
Sparse Linear Systems on NVIDIA Tesla GPUs. In 9th International Conference on Computational
Science, volume 5544 of Lecture Notes in Computer Science, pages 864–873. Springer, 2009.

[Weisstein, 2009] Eric W. Weisstein. The Runge-Kutta Method. http://mathworld.wolfram.com/
Runge-KuttaMethod.html, Retrieved 9 September 2009, 2009.

[Wiggers et al., 2007] W. A. Wiggers, V. Bakker, A. B. J. Kokkeler, and G. J. M. Smit. Implementing
the conjugate gradient algorithm on multi-core systems. In J. Nurmi, J. Takala, and O. Vainio,
editors, Proceedings of the International Symposium on System-on-Chip (SoC 2007), Tampere, pages
11–14, Piscataway, NJ, November 2007. IEEE.

77

http://mathworld.wolfram.com/Runge-KuttaMethod.html
http://mathworld.wolfram.com/Runge-KuttaMethod.html

	Introduction
	Project Outline
	Contributions
	Presentation

	Background
	Introduction
	The NVidia Tesla GPU Architecture and CUDA Programming Language
	The Parallel Programming Model
	The Memory Hierarchy
	Introducing CUDA
	Remarks
	Other Multicore Architectures and Languages

	The Finite Element Method
	Discretising the Domain
	Assembly and Solution
	Boundary Conditions

	Fluidity
	test_laplacian
	test_advection_diffusion

	The Unified Form Language
	UFL Compiler Optimisations

	Summary

	Related Work
	Introduction
	Finite Element Assembly on GPUs
	The Genesis of the Finite Element Method on Graphics Processors
	Hyperelastic Material Simulation
	Discontinuous Galerkin on GPUs
	Soft Tissue Modelling in the SOFA Framework
	High-Order Earthquake Modelling
	Finite Element in CPU/GPU Clusters

	Generating Execution Schedules for Tensor Contractions
	PyCUDA
	Generative Programming/Automation of Finite Element Methods
	Remarks

	Conclusions

	Implementation of Finite Element Assembly using CUDA
	Introduction
	Initial Implementation of the assembly routine of test_laplacian using CUDA
	The Assembly Loop in Fortran
	Implementation of Boundary Conditions
	Translation Methodology
	Integration with a GPU Conjugate Gradient Solver
	Testing
	Initial Performance Results
	Optimising Kernels
	Ensuring Coalesced Memory Accesses
	Post-Optimisation Performance

	Implementation of the Assembly Phase of test_advection_diffusion Using CUDA
	Kernels Used in this Implementation
	Testing

	Performance Results and Analysis
	Performance of the Assembly Phase
	Speedup and Throughput
	Overall GPU Performance
	Performance Improvement

	Conclusions

	A UFL Compiler for CUDA
	Introduction
	Design
	The Backend
	A UFL Frontend
	Integration With Fluidity

	Implementation
	The Python Frontend
	The Code Generation Backend

	Testing
	Generation of Test Input for the Backend
	Generation of Test Input for the Frontend
	Generation of Further Inputs

	Conclusion

	Evaluation
	Introduction
	Examination of the Implementations of the Assembly Phase
	Discussion of the UFL Compiler
	Examination of UFL
	Summary

	Conclusions and Future Work
	Conclusions
	Further Work
	Performance Optimisation of the GPU Implementations
	Completion of Support for UFL
	Implementation of Additional Backends
	Generation of GPU Kernels
	Automated Exploration of Optimisations
	Development of Interface Code
	Capture of Iteration in UFL

	Manifesto

	Optimised Kernel Library
	UFL Codes for Advection and Diffusion
	Advection
	Diffusion

