
Smelling of ROSES

ROles - Specification, Exploration and Scrutiny

Master’s Dissertation

Azalea Raad
Imperial College London

ar106@doc.ic.ac.uk

Supervised by
Professor Sophia Drossopoulou

scd@doc.ic.ac.uk





Acknowledgements

I would like to thank my supervisor, Sophia Drossopolou, for all her help
in refining and inspiring the work in this report. I would also like to thank
Susan Eisenbach, not only for her help with this project, but also for the
years of support and wisdom I have received from her throughout my degree.

My thanks also go to Krysia Broda for her passion and enthusiasm in
the many projects we have worked on together and to my personal tutor
Paul Kelly for the foundation he provided for me in my first year. I would
also like to mention Margaret Cunningham, Steve Ingram and Amy Allison
for providing so much reassurance and help whenever it was needed.

Finally, I would like to thank everyone in the department who has taught,
instructed and assisted me throughout my degree, and inspired in me the
love I now have for my subject.





Abstract

As computer programs shift towards highly distributed and parallel environ-
ments, the importance of reliable and safe communication rises and hence
the challenges of safe concurrent computing march to the forefront of mod-
ern computing research. One of the most prominent of these is the provision
of a verification method for inter-process communication which has proven
extremely challenging and has led to one of the most common bugs in con-
current computing - synchronisation bugs.

Session types have been proposed as a means of solving this problem via
efficient type-checking. Several variants of session types have been studied
for various use-cases; these have all attempted to exploit the benefits of type
checking by binding the interacting participants to strictly-typed protocols,
forcing them to conform to the said protocol and hence guaranteeing the
communication safety. However, these approaches have various constraints
and limitations, and a more suitable solution is sought.

This project specifies Roles, a language based on a form of session types
suited to dynamic multiparty communication with a number of interesting
and useful features. We define the syntax and the operational semantics of
Roles, present its type system and conjecture about its properties before
evaluating it with respect to contemporary approaches.
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Chapter 1

Introduction

Communication has become one of the most crucial aspects of computation
since programs are increasingly geared towards distributed data access and
parallelism. However, the task of providing a reliable communication system
comes with its difficulties. Communication between programs leads to the
most common bug in programming; those relating to synchronisation. A
programmer assumes the communicating parties will hold a compatible and
consistent conversation. Nevertheless, they can easily fail at this task due
to incorrect timing. Failure at sending or receiving a message at the correct
time by either of the attending parties can lead to a synchronisation bug
which can only be detected at runtime.

One of the methods in which participants in a communication system can
interact is by sending messages to one another over a channel. A channel is
a medium of communication between participants over which they exchange
messages. If the two parties communicating over a channel do not reach an
agreement about the time a message must be communicated, a synchroni-
sation bug can occur. Session types have been proposed to solve the said
problem by introducing the benefits of strong typing into communication.

A type system is an invaluable component of a programming language
since it prevents certain erroneous and undesired program behaviour (type
errors). Session Types as proposed by Kohei Honda in [30] yield a mecha-
nism of safe communication by producing a typed foundation for structured
and well-behaving communication-based programming. Session types pro-
vide us with a means of ensuring the safety of communication by specifying
strictly-typed protocols that govern the behaviour of a communication sys-
tem and guarantee the expected behaviour by forcing the conformance to
the specified protocols.
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Session types have been studied over the last decade [30, 55, 5, 16, 24, 33,
9] for a wide range of process calculi and programming languages, focusing
on binary (two-party) sessions. However, in order to specify the behaviour
of larger and more complicated systems, multiple channels must be defined
usually with the same session type since they specify the behaviour of a
single channel (involving two parties) at a time. They force us to define
dedicated channels between each pair of communicating parties and hence
result in complex systems. Thus, understanding the communication, reason-
ing about the system and establishing the safety properties becomes much
more challenging.

Global session types [32] provide a solution to this problem by specifying
the communication protocol in terms of participants, unlike dyadic session
types where the interaction protocol was defined per channel. With this ap-
proach reasoning about and understanding the communication within large
systems is much easier, since they reduce the number of session types de-
clared considerably. Nevertheless, one of the limitations of global session
types is that they do not cater for dynamic joining/leaving of the partici-
pants. Once the communication starts, the number of parties must remain
the same throughout the communication. No participant is allowed to leave
the system until the communication session ends and newcomers will be
prevented from joining an ongoing session. Consequently, the number of
participants in a communication system must be known upon initiation of
the communication and this approach does not allow for the number of
parties to be unknown. We believe that these are invaluable properties of
any communication system given their prevalence in many use-cases and it
would be highly favoured for any communication language to support them.

Neither dyadic nor global session types provides us with flexible enough
abstractions in order to model large systems with sophisticated patterns
of interaction. They are also limited in their ability to express broadcast
semantics. Communication between parties with multiple members (many-
to-many, or many-to-one) is possible in both approaches, but only when
the exact number of participants is known. Global session types requires
this information statically, but even in the looser case of session types it is
extremely hard to receive on large numbers of channels simultaneously, and
equally difficult to create channels during a conversation. Very few attempts
([46]) at implementing session types have tried to capture this behaviour.
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1.1 Aims

Although dyadic and global session types have taken the right step towards
safe communication by introducing the benefits of typing into communica-
tion, they both have their constraints and limitations. This project intro-
duces the notion of roles [27] for modelling multi-party communication sys-
tems. Roles allow for an arbitrary number of participants as well as dynamic
leaving of members so long as they conform to the type-safety constraints.
Communication between different parties is defined in a conversation within
which different roles are introduced. Conversations also specify channels be-
tween the roles and their types. Communication is broadcast by definition
and caters for many-to-many communication since channels are defined be-
tween different roles and a message addressed at a particular role is aimed
at every participant of that role. We believe that the notion of Roles will
provide us with a highly flexible abstraction language when used to model
large complicated multi-party systems, and that it will result in far more
concise definitions compared to those of existing approaches.

The aim of this project is to introduce a new language for modelling
multi-party communication systems based on the ideas put forward in [27],
referred to as Roles. Roles allow for an arbitrary number of participants as
well as dynamic joining or leaving of members so long as they conform to the
type-safety constraints. Communication between different parties is defined
in a conversation within which different roles are introduced. Conversation
also specifies channels between the roles and their types. Communication is
broadcast by definition and caters for many-to-many communication since
channels are defined between different roles and a message addressed at a
particular role is aimed at every participant of that role. Broadcast se-
mantics is an important feature of a language since it helps us avoid code
duplication and repetition in channel specification when the same message is
to be sent to or received from a group of participants (cf. sections 2.5.4 and
2.6.4). We believe that the notion of Roles will provide us with a highly flex-
ible abstraction language when used to model large, complicated multi-party
systems, and that it will result in far more concise definitions compared to
those of existing approaches.

The rest of this report is organised as follows. In chapter 2 we will
provide some background information on the communication safety issues
and will discuss existing solutions. We will analyse the work by Honda
et al on various incarnations of session types as well as other works in a
similar vein. Using a standard set of examples which test the expressiveness
of a formalism for interprocess communication, our analysis will weigh the
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strengths and weaknesses of these approaches.
In chapter 3 we familiarise the reader with our notion of roles in broad-

cast communication. We then proceed to define the syntax of the Roles lan-
guage, specify its operational semantics and lastly present its type system
together with its conjectured properties. Finally, in chapter 4 we evaluate
each component of the Roles language specification in turn, discuss the chal-
lenges of the project and ultimately suggest further areas of work to develop
the Roles language.
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Chapter 2

Background

This chapter will introduce the motivating work for this project. We begin
by assessing the ways in which concurrent computation can be modelled
and analysed, before introducing some of the problems which the first session
types work tried to tackle. We then introduce both dyadic session types and
global session types, showing their limitations. Finally, we consider other,
contemporary approaches to the problem of safe concurrent communication.

2.1 Models of Concurrent Computation

Concurrent computation is now the backbone of many fields of modern com-
puter science, including multicore programming [48, 44], cloud computing
[23], compiler optimisation [14], quantum computing [42] and is considered
a key component of computing in education [11] as a result.

Safe communication between programs is growing in importance as pro-
grams are progressively shifting towards highly distributed and parallel en-
vironments. Nevertheless, providing safe and reliable communication has
proved a challenging task and has attracted the focus of many researchers.
The push towards concurrent computation is encouraged by two equally
landmark changes in the last two decades - the move from serial program-
ming to parallel programming that marked the end of Herb Sutter’s ’free
lunch’ [47]; and the massive expansion of the Internet which now forces pro-
grams to routinely engage in massively distributed communication across a
vast and unreliable network.

These two factors - the Internet’s growth and the increased focus on
parallel computation on local machines - has forced programmers to work
in more complicated domains than they are used to, where operations that
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were previously taken for granted - such as information exchange between
two processes - is now fraught with complication. The desire to simplify,
abstract or otherwise remove these complications for the programmer is what
drives much research into concurrent computation today.

2.1.1 Concurrent Paradigms

Methods of communication between concurrent components in a program
fall into two main categories.

• Shared Memory In this approach a common location in memory is
available to processes, perhaps analogous to a shared message box of
sorts. Shared memory can be seen as a powerful approach to concur-
rent communication, since the shared regions can be used as regular
memory to the processes using them. However, because of the need
for a universally accessible storage area these systems cannot be dis-
tributed outside of a single physical machine, since there is no suitable
location for the shared memory area. This makes shared memory a far
less desirable approach in the long-term, as computing tends towards
a more distributed nature.

• Message Passing This paradigm provides a system of messaging
that processes can use to send information to one another. These
messages may contain information on critical sections, locking states
or otherwise - the point is that these messages are the only means
by which processes can exchange information. Much work has been
done in the field of message-passing, particularly work into automat-
ing the conversion of serial programs to concurrent systems employing
messaging [54, 4]. This approach is employed in a few programming
languages and the vast majority of calculi. Our notion of Roles is
a part of this paradigm, although when used with the object-oriented
paradigm, inter-thread communication can take place via shared mem-
ory.

Although exploratory work has been done to unite the two approaches
[35], message-passing is often found to be easier to reason with due to its
familiar analogy of message exchange in real world situations. Some research
has been done to compare the two that backs up this theory [36].
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2.1.2 Analysis of Message Passing Techniques

In order to reason about message-passing ideals, various process algebrae
have been employed. Process Algebrae are useful formalisms for exploring
properties of communications systems such as behavioural equivalence and
synchronisation. In general, an algebra is a mathematical formalism for
performing operations on sets of values. In the case of process algebra, the
values are the processes themselves. The term algebra implies certain prop-
erties of the operations that may be performed on these values - properties
such as commutativity and distributivity.

Well-known process algebrae such as CSP[28] and CCS[37] have been
used for years, but more recent calculi, particularly the π-calculus, are prov-
ing extremely useful in the analysis of concurrent systems. The π-calculus
[40, 41] was proposed as the next step after CCS, developed as it was by
Robin Milner who was the original proponent of CCS. Its proposal came in
two papers [40, 41], and then formed the basis of a book by Milner on the
topic [39], and has since been extended to such diverse fields as cryptogra-
phy [3], molecular biology [45] and even business theory with the short-lived
Business Process Modelling Language.

One key step forward that the π-calculus took from its predecessors
was the concept of process mobility. The π-calculus allows for channels
themselves to be communicated as values between processes, a property
called session delegation. That is to say, a process can pass a conversation-
in-progress to another process who continues the conversation in their place.
Delegation allows a programmer to dynamically distribute a single session
among multiple processes in a well-structured way.

The π-calculus has been shown to be a universal model of computation
[38], a property also known as Turing completeness that is shared with
the lambda calculus and Turing machines. This simply means that the π-
calculus can be used to produce the result of any arbitrary calculation. Its
minimality and completeness has made the π-calculus a popular choice for
describing communication systems and has been widely used as a base to
describe the syntax of several session types variants.

Basic Pi-Calculus Syntax

The basic constructs of the π-calculus syntax are outlined below where P
and Q are processes.

• P | Q defines concurrent action. Both processes P and Q may take
action.
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• c(x).P is an input. Process P receives an input on channel c and binds
it to the variable x.

• c̄〈y〉.P is an output. Process P outputs message y on the channel c.

• !P is replication. A replicated process can create a copy of itself - that
is, another P .

• (νx)P is the allocation of a new constant x within process P . Con-
stants are new channels of communication in π-calculus .

• 0 is the null process. A process that is equal to this has finished
executing.

2.2 Communication Safety Issues

When two parties attempt to exchange information with one another, two
common problems often occur. The first of these occurs when both partici-
pants are expecting to receive a message from the other, resulting in a lack
of progress by either. The second of these occurs when there is a conflict
between the format or data type of a piece of exchanged information.

We now illustrate these two problems using a subtle variation on a com-
mon situation; we describe a collaboration pattern that appears in many
web service business protocols. Figure 2.1 shows the sequence diagram, for
the protocol which models the purchase of a book, between the seller of the
book and a potential buyer.

First the buyer sends the title of the book which he is interested in to
the seller. In some cases, the seller might have different versions of the same
book in stock with different prices - he might have the same book pressed by
different publishers or he might have it in both paperback and hardcover.
So in order for the seller to provide the buyer with the best quote, the
buyer must provide the seller with the highest amount he is willing to pay.
The seller then will filter the options accordingly, and communicate back
all available options priced less than or equal to the highest price indicated
by the buyer. If the buyer is happy with the recommended price, then he
sends his address to the buyer together with his final choice and the seller
informs him of the delivery date. If the buyer is not interested in any of the
suggested options, the communication ends.

Now, assume that the connection between seller s1 and buyer b1 is es-
tablished and that the following scenario takes place.
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Buyer Seller

Title

Price

OK

Address

Delivery date

Quit
}branch

Max. Price

Figure 2.1: Sequence diagram for purchasing a book

• b1 is interested in Atlas Shrugged by Ayn Rand and hence he sends
the “Atlas Shrugged” message to s1.

• b1 is not aware of s1’s sale policy and he does not provide him with
maximum price he’s willing to pay towards postage and packaging.
Hence he is waiting for the price of the requested item.

• s1 receives this message. However, he is still waiting for a secondary
message from b1 containing the highest amount he is willing to pay.

• Both s1 and b1 are waiting for each other without progress, hence a
deadlock has occurred.

The above scenario failed due to the absence of a common protocol or an
agreement between the two parties. If buyer b1 was aware of s1’s sale policy;
that is to say, if at some point in the past prior to the program execution at
either site an agreement had been reached by the two of them with regards
of the flow of the transaction, this problem could be easily avoided.

Now consider a modification to the above example. Suppose now that s2
does not require the buyer to communicate the highest desired price. Now
consider b2, who wishes to purchase a book but will not pay more than ten
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pounds. b2 is expecting an integer value to compare with his maximum
price. The following scenario can violate the safety of the communication.

• b2 is interested in Atlas Shrugged by Ayn Rand and hence he sends
the “Atlas Shrugged” message to s2.

• s2 receives this message. He currently sells this book at RRP of seven
pounds. He sends a message back to b2 containing the string value
“seven GBP”.

• b2 receives s2’s message and he compares it to the integer value 10.

• The program on b2’s side halts prematurely since the two values are
incompatible.

Again, the failure of this scenario is down to the lack of a consistent
contract between b2 and s2. If a protocol had been designed to govern the
behaviour of both the buyer and the seller by which both parties were bound
to abide by this problem could have been circumvented. A simple solution
to the second example would be a protocol which restricted the types of the
data exchanged.

Session types provide a solution to these problems and will be discussed
in the next chapters.

2.3 Session Basics

A session is a sequence of interactions between two communicating parties
also referred to as a conversation [32]. For two parties to communicate, first
a connection must be established between them. At this point the session
starts and the communicating parties may interact with each other using a
channel. As the name suggests, a channel is a communication medium over
which participants may interact by sending and receiving messages. Each
session is composed of a series of communications between the attending
parties interleaved with local computations on each side. Communication
between the parties is in the form of sending and receiving values.

Throughout the interactions between two parties, the underlying type
system (Session Type) enforces a perfect correlation between sending and
receiving actions. In other words whenever a party sends a value, the other
receives it and vice versa. This property of the session is referred to as the
duality of the communication.
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2.4 Session Types Design Space

When designing a language for describing interprocess communication, there
are many decisions to be made about what properties and functionality that
language will have. This section explores some of the decisions that must
be made, and that we will have to consider in our design of Roles.

1. Underlying Paradigm Broadly speaking, there are three underlying
paradigms which one can adopt when designing a language for session
types. The first is the functional paradigm, as demonstrated by Sack-
man et al in [46] and Vasconcelos et al in [52]. The second approach
is by way of the π-calculus , an approach favoured by Honda et al in
their work in [32]. Finally, some approaches attempt to employ an
object-oriented paradigm. This work can be seen in work by Dimitris
et al in [17]. The choice of paradigm is important because it affects
future use of the work, and directly impacts where and how it may be
implemented.

2. Progress The progress property holds true for a communication sys-
tem if that system can never reach a state of deadlock ; that is, all
communications eventually succeed. Progress is a desirable property
for communication systems as it makes them considerably more reli-
able - however, ensuring this property places a heavy burden on the
type system. The issue to consider here is whether or not to ensure
progress in spite of this.

3. Synchronicity Communication between two processes is either syn-
chronous or asynchronous. Synchronous communication (also known
as blocking communication) forces each participant to wait upon send-
ing a message until its recipient confirms that the message has been re-
ceived. Asynchronous communication (non-blocking) does not require
its participants to wait; instead the sender may continue execution.
Synchronous protocols can cause processes to wait for unnecessarily
long periods of time and become complicated if a process fails, which
asynchronous protocols do not suffer from.

4. Delegation versus Higher Order Sessions The question to con-
sider here is whether or not the language will support higher order
primitives such as delegation. Languages who allow for delegation are
those who let the communication channels to be exchanged as values
between processes. Alternatively, some languages allow for higher or-
der sessions, in which sessions can be passed as parameters or stored as
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fields or variables, rather than simply passing the channel to another
process. An example of the former is the work Honda et al in [32], and
the latter can be seen in [21].

5. Branching There are two approaches to branching - the first is to
explicitly label the branches in the specification, where a branch is of
the form label : P. In this approach, the selecting process will decide
which course of action to take based on the label. The second is to use
a kind of pattern matching on the type of values passed. For instance,
a branching process may be outputting an integer on one branch
and a boolean on the other. The selecting process then decides which
branch to take based on the type of value it is expecting to receive.
Again, an example of the former approach is demonstrated in the work
of Honda et al [32]. The latter approach is demonstrated by [17].

6. Channel Specification When defining a channel we must specify
what we are defining it in relation to. Some models of concurrent
computation define a channel with respect to the participants, where
there is a dedicated channel for each party and any other participant
who wishes to communicate with the said party must pass messages
through this channel. An alternative approach will be to define a chan-
nel for each pair of communicating parties; each participant now sends
and receives on multiple channels to and from multiple participants.

In the subsequent sections, we will examine several approaches to session
typing and other information exchange protocols and and as we do so we
will consider the choices they made about the above factors.

2.5 Dyadic Session Types

Session Types as proposed in [30, 55, 29] provide us with means of planning
and defining conversations between concurrent processes and enabling them
to cooperate and communicate in a well-structured way.

Session types have been introduced into different settings from variants
of π-calculus [29, 30, 55, 49, 6, 5, 26] to CORBA [50], ambients [24], object-
oriented programming languages [19, 15, 13, 17, 50], functional languages
[25, 51, 52] and W3C standard description language for Web Services,CDL
[2, 9, 10, 43, 31]. Applications of session types range from operating systems
[22] to web services [43].
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2.5.1 Proposed Solution

Session types solve the safety issues discussed in section 2.2 by defining
protocols to govern the communication channels and forcing the parties
sharing the communication channels to conform to the specified protocol.
They treat conversations as types and type-checking then enforces the safety
of the communication by asserting that both parties speak the same protocol.
In other words, Session Types are a means to establish conformance to
protocols in distributed applications and guarantee the following:

• Safety - Interactions between the attending parties in the session
never results in a communication error.

• Progress - Channels are deadlock free and are used linearly.

• Session fidelity and predictability - communication sequence con-
forms to the one specified in the session type.

2.5.2 Design Space

With regards to the factors discussed in section 2.4, dyadic session types
have made the following decisions.

1. Underlying Paradigm Dyadic session types adopt the π-calculus
paradigm.

2. Progress As stated above, dyadic session types ensure the progress
property.

3. Synchronicity The language of dyadic session types as proposed in
[30] opts for synchronous data sending/receiving.

4. Delegation versus Higher Order Sessions Dyadic session types
support channel delegation, that is, they allow for the name of the
channels to be communicated as values.

5. Branching Dyadic session types uses a label-based branching system,
as seen in the applied π-calculus .

6. Channel Specification Channels are specified for each pair of com-
municating parties. If a pair of participants in the system wish to
communicate, a dedicated channel will be defined for their interac-
tion.
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2.5.3 Buyer Protocol Example

In order to illustrate the functionality of the session types, a slight modi-
fication of the example in section 2.2 is introduced. Figure 2.2 shows the
sequence diagram for the protocol which models the purchase of a book be-
tween the buyer and seller. First the buyer sends the title of the book which
he is interested in, then the seller communicates back the price of the book.
If the buyer is happy with the recommended price, he sends his address to
the buyer and the seller informs him of the delivery date. If the buyer is not
interested in the price, the communication ends. The session type of this
protocol is described below from buyer’s perspective.

buy-book = !Title.?Price.!{ok . !Address.?DeliveryDate,
quit . ε}

The dual of the above type from the seller’s perspective is given as follows.

buy− book = ?Title.!Price.?{ok . ?Address.!DeliveryDate,
quit . ε}

ok and quit are used as labels to mark alternative courses of action
depending on certain conditions and . is used to denote branching. In other
words, if the buyer is interested in the book at the recommended price, he
will select the ok branch and send his address to the seller; otherwise, he
will select the quit branch and the conversation ends. Since the behaviour
of the buyer is not known statically while specifying the session type, all
possible actions are listed using branching and labelling.

2.5.4 Auction Example with Dyadic Session Types

The previous example consisted of two participants only. The next step
would be to consider more detailed examples with more participants. One
suitable scenario would be an ebay-style auction as described in [27].

In this example, there are three different kinds of participants - auction-
eer, bidders and the audience. There is a single auctioneer at any given
time and for simplicity we assume for now that there are m bidders and n
members of the audience when the auction starts and this number remains
fixed throughout the auction. The auctioneer announces the item to the
audience and the bidders and at this point the bidders can bid for the item.
None of the bidders can see who else is bidding, nor hear each other’s bid.
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Buyer Seller

Title

Price

OK

Address

Delivery date

Quit
}branch

Figure 2.2: Sequence diagram for purchasing a book

Once the auctioneer has received a bid from each of the bidders, he compares
them against each other and determines the highest bid. He then announces
the winning bid to the audience as well as the bidder. The auctioneer then
announces the next item on bid and the same chain of events take place.

The channels of this protocol can be specified using dyadic session types
as follows.

Auctioneer-Audience-1 = µT.!Item.!WinnerT
...
Auctioneer-Audience-n = µT.!Item.!WinnerT

Auctioneer-Bidder-1 = µT.!Item.?Bid.!WinnerT
...
Auctioneer-Bidder-m = µT.!Item.?Bid.!WinnerT

As the name suggests, the Auction-Bidder-k channel is between the
auctioneer and the kth bidder from the auctioneer’s perspective. The auc-
tioneer announces the item and then listens for his bid. Once he has received
a bid from all bidders, he announces the winning bid. The Auctioneer-Audience-k
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channel is between the auctioneer and the kth member of audience from the
auctioneer’s point of view and can be justified similarly. Members of audi-
ence do not take part in the bidding process and only listen for messages
regarding the items on auction and the winning bid.

2.5.5 Discussion

One of the drawbacks of this approach is the large number of channels to
be defined. We need n distinct channels between the auctioneer and each
member of the audience and m distinct channels must be defined between
the auctioneer and each bidder. In this example members of the audience
do not need to communicate with the bidders. However, in another scenario
where this was necessary, an additional m× n channels must be present to
ensure each member of audience can talk to each of the bidders. This leads
to an extremely large number of channels and thus reasoning about this
system is complicated.

Additionally, although the Auctioneer-Audience-k channels have iden-
tical behaviour, each channel must be explicitly specified. Thus, we end up
with duplicated code that cannot be avoided.

Furthermore, the number of participants is fixed throughout the commu-
nication and dynamic joining/leaving of the members is not allowed. Once
the session starts, existing members cannot leave the system until the end
of the conversation and newcomers are stopped from joining the ongoing
conversation.

Global session types have been proposed as a solution to some of the
limitations of dyadic session types and will be discussed in the next section.

2.6 Global Session Types

Global Session Types are proposed by Honda et al in [8, 9] and explored
more fully in [32]. Rather than dyadic session types abstracting only a
peer-to-peer communication, global session types abstract an interaction
of multiple participants into a single global scenario. The syntax remains
similar in form to dyadic session types but has an extra expressive power in
its ability to capture multi-party interactions, where a single session type is
shared among all who participate in the interaction. This shared type forms
a common protocol; an agreement between the participants which can be
verified via type checking, as with its dyadic form.
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2.6.1 Proposed Solution

Global session types solve the problems discussed in 2.5.5 by specifying the
communication protocol in terms of participants rather than the channels.
In this approach there are distinct channels dedicated to each of the partici-
pants and communication with each participant take place over his dedicated
channel. For instance, assume that channel c1 has been dedicated to par-
ticipant p1. When any of the participants want to send a message to p1,
they do so by communicating the message over channel c1. Global session
types reduce the number of channels required considerably and hence result
in cleaner and more manageable systems which in turn makes them easier
to understand and reason about. However, in some situations a participant
may need to possess more than a single channel. When a participant is
expecting messages of the same type from two distinct participants, it is not
guaranteed in which order these messages will arrive and hence they can
be easily confused since they have the same type. The two buyer protocol
as described in [32] is a good example of this situation and is described in
section 2.6.3.

2.6.2 Design Space

With regards to the factors discussed in section 2.4, global session types
have made the following decisions.

1. Underlying Paradigm Global session types use the π-calculus paradigm,
similar to their dyadic form.

2. Progress Global session types have been shown to ensure the progress
property. A proof is stated in [32].

3. Synchronicity Global session types language as proposed in [32] im-
plement asynchronous message passing. When a message is sent over
a channel, it is added to a message queue. Thus the sender is not
blocked and asynchronous message passing is achieved.

4. Delegation versus Higher Order Sessions The language of global
session types allows for session delegation.

5. Branching Like dyadic session types, global session types also support
label-based branching.

6. Channel Specification Channels are specified in terms of partici-
pants. In other words, each participant in the communication system
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is allocated a channel and other parties who wish to contact him can
do so by sending messages over this channel.

2.6.3 Two Buyer Example

This example is similar to the one described in 2.5.3 with two buyers inter-
ested in the book. Figure 2.3 shows the sequence diagram of this protocol.
The first buyer (Buyer1) sends the title of the desired book to the Seller,
Seller in turn informs both buyers of the price. At this point, Buyer1 tells
Buyer2 how much he is willing to contribute towards the full price. If he
agrees to pay the rest, he sends the delivery address to the buyer and the
buyer confirms the delivery date. Otherwise, the communication terminates.
Honda et al specify this protocol thus.

Buyer1 = ā[2,3](b1, b2, b
′
2, s).s!<‘‘War and Peace’’>;
b1?(price);
b

′
2!(price div 2);

Buyer2 = a[2](b1, b2, b
′
2, s).b2?(price);
b

′
2?(contribution);
if(price - contribution ≤ 99) then

s/ ok;
s!<address>;
b2?(x);

else s/ quit; 0

Seller = a[3](b1, b2, b
′
2, s).s?(title);
b1, b2!<price>;
s . { ok: s?(x); b2!<date>;

quit: 0 }

In a system with n participants, the ā[2..n](~s) notation begins a new
session by sending a list of newly generated session channels, ~s, to the other
n-1 participants. Each participants is of the form a[k](~s).Qk where k
takes some value in the range [2..n]. All participants receive the list ~s,
and the communication now takes place among the parties listed.
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In this example, Buyer2 receives two values one after the other one from
the Seller - that is the price of the desired book - and one from Buyer1
which is the amount he is willing to contribute. Buyer2 can easily confuse
the two values since they are of the same type and there is no guarantee
that they will arrive in a specific order. If we were to use a single channel
for sending messages to Buyer2, depending on the order the messages arrive
we might have erroneous results and lose the linear usage of a channel.
Hence, we use two separate channels for passing messages to Buyer2, one
to receive messages from the Seller (b2) and the other to receive messages
from Buyer1 (b

′
2).

Buyer1 Seller

Title

Price

OK

Address

Delivery date

Quit

Buyer2

Price

Price div 2

Channel b1 Channel s Channel b2 Channel b'2

Figure 2.3: Sequence diagram for purchasing a book with two buyers
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2.6.4 Auction Example with Global Session Types

The protocol described in the auction example in 2.5.4 can be specified using
global session types calculus given in [32].

The protocol for the auctioneer is specified as follows.

Auctioneer = ā [2,3,...,m+ n+ 1](s, b1, b2, ..., bm, a1, a2, ..., an).
a1, a2, ..., an!<item>;
b1, b2, ..., bm!<item>;
b1, b2, ..., bm?<bid>;
a1, a2, ..., an!<winner>;
b1, b2, ..., bm!<winner>;
Auctioneer;

Similarly, the audience protocol can be written thus.

Audience 1 = a[2](s, b1, b2, ..., bm, a1, a2, ..., an).
a1?(x);
a1?(y);
Audience 1;

Audience 2 = a[3](s, b1, b2, ..., bm, a1, a2, ..., an).
a2?(x);
a2?(y);
Audience 2;

...

Audience n = a[n+1](s, b1, b2, ..., bm, a1, a2, ..., an).
an?(x);
an?(y);
Audience n;
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Finally, we can specify the protocol governing the bidders’ behaviour as
outlined below.

Bidder 1 = a[n+1+1](s, b1, b2, ..., bm, a1, a2, ..., an).
b1?(x);
s !<myBid>;
b1?(y);
Bidder 1;

Bidder 2 = a[n+1+2](s, b1, b2, ..., bm, a1, a2, ..., an).
b2?(x);
s !<myBid>;
b2?(y);
Bidder 2;

...

Bidder m = a[n+1+m](s, b1, b2, ..., bm, a1, a2, ..., an).
bn1?(x);
s !<myBid>;
bn?(y);
Bidder m;

2.6.5 Discussion

Global session types provide a notion for describing scenarios involving mul-
tiple peers. In this approach interactions involving multiple parties are ab-
stracted as global types that plays the role of a shared agreement among
communication parties. However, this approach has its own drawbacks.

Global session types do not cater for dynamic joining or leaving of the
participants. Once the session begins, the number of parties remains the
same all through the session and no participant can leave the system. New-
comers cannot join the system even if they have identical behaviour to those
already defined.
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For instance, in the auction example, any attempt by new bidders to
join the system would fail although their behaviour is the same as the ex-
isting bidders. This is because each participant in the system described by
global session types is allocated a dedicated channel to receive messages from
other parties and dynamic joining requires dynamic channel generation for
newcomers which is not supported by this notion.

Consequently, the number of participants has to be fixed prior to the
initiation of the session and one cannot create a session with an unknown
number of participants. These are all invaluable properties which cater for
a large number of use-cases.

Although global session types when used in multiparty scenarios provide
a much more concise description of the protocol in comparison to dyadic
session types, they are not completely free of repetition. In the auction
example, the behaviour of each of the audience members and bidders had
to be explicitly specified despite their identical behaviour.

The question that comes to mind is whether or not this can be avoided
at a higher level? That is, if duplication occurs only when describing the
protocol in π-calculus and if the user is provided with high level constructs,
would that let her define such processes using a mapping function and avoid
duplication?

Global session types make the behaviour of the participants transparent
at a higher level than they should; the detailed behaviour of the process is
specified while defining the process rather than pushing the behaviour of
the participant into the relevant part of the higher level program (which is
within programmer’s responsibilities to determine) and defining the process
in terms of a sequence of events (input/output actions) that may take place.

The limitations of global session types have not been explored fully in
any other languages. However, other approaches have been proposed in
order to formalise multi-peer communication systems and will be discussed
in the following sections.

2.7 Conversation Types

In [53, 7], Caires et al propose a process calculus based on a notion of
conversation and conversation context. The work, primarily aimed at the
field of service-oriented computing, has some parallels with the work on
session types.
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Conversation Contexts

A conversation context is a distributed medium for communication between
processes. The context is distributed between multiple processes, and those
processes can communicate and interact with any other process in the same
context. Processes are aware of these contexts - Caires introduces a construct
whereby a process can obtain information on the context it is live in. For
a process P , the construct here(x).P represents this awareness - x becomes
bound to the name, n, of the context that P is currently in. P continues
execution, with x bound now to n.

Communication via Conversation

Caires outlines three ways in which a processes can interact with one an-
other.

• Context-based communication, where processes communicate inter-
nally within the context.

• Endpoint-to-endpoint communication, where two endpoints (client and
server, perhaps) communicate across a context.

• Inter-contextual communication, where a context interacts with a larger,
enclosing context.

This last point also highlights that contexts can be nested within each
other. A nested context appears as a normal process to the enclosing context,
which Caires says allows for more complex subsidiary services and composite
processes. This is of most relevance to the service-oriented aspects of the
research.

2.8 Orchestration

In computing, the term Orchestration refers to the co-ordination of web-
services in terms of the functionality they offer and the information they
are able to exchange. This way of thinking about web services has been
used most prominently in the service-oriented architecture, where services
which express fine-grained functionality can be combined together to create
a more complex composite web service. Many languages exist for specifying
web services this way, and many of them share traits or motivation with the
work on session types. We consider a few notable examples in this section.
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2.8.1 Business Process Execution Language

The Business Process Execution Language, or BPEL, is a language that
specifies how web services interact via the internet. The BPEL is one of a
family of languages concerned with the so-called task of programming in the
large; the coarse-grained tasks of interaction such as sending and receiving
messages and coping with failure of communication between participants.
It grew out of a surge in business modelling languages, particularly WSFL
and XLANG, developed by Microsoft and IBM respectively and from which
BPEL is derived.

BPEL defines relationships between processes, rather than specifying
anything concrete about execution or declaring any tasks to be performed.
Figure 2.4 shows an example of this, specifying a business partner relation-
ship between two processes. This example is derived from WS-BPEL - A
Primer [1]. According to the primer, the concept of partner links represents
’typed connectors’ that ’specify... port types the process offers’. Note the
similarity to session types here - the idea that communication is fixed by the
data types it permits, and that these relationships should form the backbone
of the system specification.

<partnerLinks>
<partnerLink name="ClientStartUpLink"

partnerLinkType="wsdl:ClientStartUpPLT" myRole="Client" />
</partnerLinks>

Figure 2.4: A simple example of a relationship between two processes in
WS-BPEL.

2.8.2 The Orc Programming Language

The Orc programming language, proposed by Cook and Misra in their po-
sition paper [12] and later explored more fully in [34], is described as being
aimed at ‘distributed and concurrent programming’. It is both a general
purpose programming language for writing and executing applications, and
a specification language for concurrent interactions, the aim being to add
high-level programming concepts to a strong foundation that is not unlike
the π-calculus in its structure.
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Simple Orc Example

Orc-Example

1 Prompt(“Enter a name.”)
2 | Prompt(“Enter another name.”)
3 >name>
4 “Hello, ” + name

Figure 2.5: A simple example of process composition in Orc

A program in Orc has several features that are similar in both form and
function to the π-calculus . Fig. 2.5 shows a sample program written in Orc.
Lines 1 and 2 demonstrate the composition operator |, similar to parallel
execution operators in process algebrae. The operator causes both Prompt
expressions to be executed, presenting two input boxes to the user.

The >> infix operator waits for its left-hand side to publish a value
before executing the right-hand expression. In this case, the operator has
been embellished by placing a variable name, name, in between the two >
symbols. This causes the published value to be caught and stored in the
variable, and its subsequent use is clear in the lines below.

Conclusions

In this chapter we have provided the background theory and motivation for
our work on Roles. We looked at concurrent computation and its inher-
ent problems, along with early attempts to solve them. We also looked at
modern-day work involving session types. In particular, we analysed dyadic
session types and global session types as ways of ensuring safe communi-
cation between parties. We evaluated their strengths and weaknesses and
looked at related work in neighbouring fields, including web development and
business theory. This work motivates the development of Roles by demon-
strating the varied ways solutions have been attempted, as well as revealing
their shortcomings. In the next chapter we will develop this understanding
by introducing our proposed language of Roles.

25





Chapter 3

Specification

This project is inspired by the current work on multi-peer session types
[32, 53, 7] and is a continuation of the work by Giachino et al in [27].

While dyadic session types specify the communication protocol of a sys-
tem in terms of the channels between each pair of peers and global session
types describe the communication by outlining each individual’s (partici-
pant’s) protocol, Giachino et al propose a language in which the behaviour
protocol is defined for each role. We have named this language Roles after
one of its integral concepts. In the subsequent sections, we will familiarise
the reader with the notion of conversations, present Roles syntax, its oper-
ational semantics and finally its type system.

3.1 Introduction to Conversations and Roles

In the context of the Roles language, a role is a collective name given to a
group of participants who share identical behaviour. However, multiplicity
is not a defining characteristic of a role and some roles might have a single
participant. In other words, the cardinality of a role varies between one to
many. For instance, in the auction example discussed earlier in section 2.5.4,
there are three distinct roles, namely the auctioneer role, the bidder role and
the audience role. The auctioneer role consists of a single participant -“The
Auctioneer” - at all times, while each of the bidder and audience roles might
have one to many participants at any given time.

A communication system is defined in terms of a conversation which
consists of several roles and channels. Each channel is dedicated to commu-
nication between a pair of roles which is clearly specified in the definition
of a channel. Also attached to each channel is its session type which is the
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protocol governing the behaviour of one side of the communication only.
The behaviour of the other end-point is given by the dual of the said session
type which can be obtained by replacing each ! with a ? and vice versa. The
choice of the end-point whose behaviour is described by the channel session
type is arbitrary and does not affect the conversation.

The end-point session type is defined for the role collectively rather than
expressing the behaviour of each individual separately. That is to say, all
participants in a role share the same behaviour and they are all obliged
to abide by the protocol specified by the role. The specified protocol is
the “terms and conditions” of using the channel and a role can continue
communicating over a channel so long as all of its participants agree to
conform to the specified session type.

If the session type specified by the channel indicates that the next action
for one of its constituent roles is to send a value then all participants of that
role must perform a send action over that channel. Similarly, when the
receiving action is performed at the other end-point, the same number of
values must be received. This requirement has been captured in the Roles
language in [27] and will be discussed later.

3.2 Syntax

The syntax of the Roles language is as depicted in Figure 3.1. The syntax
has been divided to runtime syntax - indicated by the grey boxes - and
source language syntax. Runtime syntax refers to expressions that are only
produced as a result of the reduction process and do not occur in the source
code. This includess the heap, threads (processes) and addresses in the
heap. Source language syntax on the other hand refers to expressions found
at source level. Below we list various elements of the Roles syntax and give
a brief explanation of their usage.

3.2.1 Types

The metavariable t refers to the possible types of expressions and ranges
over class names (ClassId) and conversation names (ConvId).

Session types (S) are the types of communication channels where a se-
quence of session parts (! and ? symbols for output and input actions
respectively) describe the communication protocol.

Each session type s has a dual type s, obtained by replacing each ! action
by ? and vice versa.
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(type) t::= ClassId | ConId
(Program) prog ::= class × con
(class) class ::= ClassId → ClassId × (FldId → t)

× (MethId → meth)
(method) meth ::= t m (t x)

requires (CVId × ChId → S){e}
(conversation) con ::= ConId → RoleId × chan
(channel) chan ::= ChId → (RoleId × RoleId × S)
(session) S::= ?(C).S | !(C).S | ε
(expression) e::= x | v | e; e | this

| new ClassId() | new ConId()
| e.f | e.f := e | e.m (e)
| e.ChId.send(e)
| x = CVId.ChId.receive() in e
| e.r.join() | e.r.leave()
| e.start()

(value) value::= null | ObjAddr | ConvAddr | EOM

(thread) P::= (e, ProcAddr) | P|P

(heap) heap::= ObjAddr 7→ object | ConvAddr 7→ conv

|(ProcAddr × ConvAddr × ChId) → (int×int×int)
(object) object ::= ClassId → (FldId × value)

(conv. instance) conv ::= ConId × (RoleId → ProcAddr∗)

× (ChId × int → value∗)
(Channel ID) ChId ::= ch | d(ch)

Figure 3.1: Syntax, where syntax occuring at runtime only is shaded
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3.2.2 Class Declaration

Programs are defined as a set of classes and conversations. Each class rep-
resentation consists of a ClassId denoting the name of the class; a ClassId
indicating the name of the super class; a sequence of fields of the form
FldId× t where FldId stands for the name of the field and t refers to its
type; and a sequence of methods.

3.2.3 Method Declaration

Each method is represented in the standard object-oriented style consisting
of a return type, a method name, a list of arguments and an expression for
the method body. However, each method declaration includes an additional
piece of information of the form requires Σ, where Σ stands for the session
environment the said method requires for execution. The session environ-
ment Σ is a list of mappings of the form ConvId× ChId→ S, where each
pair of conversation and constituent channel is mapped to a session type. In
other words we are asserting Σ as a precondition for the method. Since a
method may involve communication actions over channels of conversations,
by asserting Σ we ensure that these communication actions are over the
conversation channels included in Σ and that they comply with the asserted
session type.

3.2.4 Conversation Declaration

The representation of a conversation consists of a ConvId for the name
of the conversation; a collection of roles of the form RoleId→ ClassId,
where RoleId stands for the name of the role and ClassId indicates its
type; and finally a list of channels of the form ChId→ RoleId× RoleId× S,
with (RoleId× RoleId) denoting the roles sending and receiving over ChId
respectively and S indicating the session type of the channel. Note that
the channel name ChId is the endpoint accessed by the participants of the
sender role. Those participating in the receiver role, can access this channel
by using dual(ChId), where

dual(ch) = d(ch) and dual(d(ch)) = ch.

3.2.5 Source Language Syntax

The syntax of the first three lines of expressions is as expected. In what
follows we will explain the remaining expressions.
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• new ConId(): Creates a new instance of the conversation of type
ConId.

• e.start(): Results in initiation of the conversation pointed at by the
receiver (e), provided that e evaluates to an instance of a conversation,
i.e. of type ConId.

• e.ch.send(e’): Provided that the receiver (e) evaluates to an in-
stance of a conversation, say cv, this expression results in sending the
value derived from evaluating e’ over the channel ch of cv.

• x = e.ch.receive() in e’: Provided that the receiver (e) evaluates
to an instance of a conversation, say cv, this expression results in
receiving a message over the channel ch of cv. Note that since when
receiving a process needs to receive messages sent by all participants
of the dual role, we have nested the receiving expression inside e’ to
avoid session interleaving. In other words, this statement acts as a
while loop and constantly probes the channel for the next messgae
to be received and substitutes x in expression e’ with the received
value. Once the process has received all messages as part of the current
receiving stage, if the process attempts to receive more messages, it
will be given a special message EOM to indicate the end of current
receiving stage.

• e.r.join() / e.r.leave(): Results in the adding / removing of the
currently active thread identifier to the list of participants in role r of
the conversation instance derived from evaluating e.

3.2.6 Heap

This contains information about objects (class instances), conversation in-
stances and process identifiers and we summarise it as follows.

• ObjAddr 7→ object : Denotes mappings from object identifiers to class
instances (objects). An Object in turn keeps track of its type (ClassId)
and the values associated with each of its fields.

• ConvAddr 7→ conv : Denotes mappings from conversation identifiers
to conversation instances. A conversation retains information about its
type (ConId); a list of its roles as well as the processes which participate
in each role (RoleId→ ProcAddr∗); and finally the list of all channels
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and the values communicated over each channel (ChId× int→ value∗).
Since communication is broadcast by default, at each stage of commu-
nication, every participant in the sender role sends a value over the
channel and each member of the receiver role receives all communi-
cated values. For instance, a mapping of the form (ch, i)→ {1, 2, 3},
is read as: “At the ith stage of communication, participants of the
sender role communicated the values {1,2,3} over the channel ch.”
In a sense this mapping acts as a noticeboard of the channel organising
all values communicated by the senders of the channel according to
the communication stage.
Note that for each (ChId× int→ value∗) mapping which represents
the values sent from sender role (r1) to receiver role (r2), there is a
dual mapping of the form (dual(ChId)× int→ value∗), representing
the values sent from (r2) to (r1).

Furthermore, there are no restrictions over the order in which values
are sent at each communication stage. For instance, if the participants
of the sender role are {p1, p2, ..., pn} and each pi is to communicate
some value vi over channel ch at stage i, then v in the mapping
(ch, i)→ v can be any permutation of {v1, v2, ..., vn}.

• (ProcAddr× ConvAddr× ChId)→ (int× int× int) The participants
of each role can have access to multiple channels in a conversation and
each process identifier can take part in several conversations. As a re-
sult, each process identifier can be communicating over multiple chan-
nels in different conversations. However, each channel is prescribed a
distinct session type (S) and hence, a process participating in several
conversations is expected to behave accordingly within each conversa-
tion. Furthermore, a participant of multiple roles might be at different
stages of communication over each channel. For instance, assume that
channel ch is defined as follows.

channel ch r1 r2 : !C1.!C2.?C3

Now assume that process p is a participant in both r1 and r2. As a
participant of role r1, he sends a value of type C1 at sending stage 1,
followed by a value of type C2 at sending stage 2 and finally expects
to receive a value of type C3 at receiving stage 1. As a participant of
role r2 on the other hand, he expects to receive a value of type C1
at receiving stage 1, followed by a value of type C2 at receiving stage
2 and finally sends a value of type C3 at sending stage 1. Hence,
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process p can be at different stages of sending and receiving within
each role. For this reason, every (π, cv, ch) tuple in heap is mapped
to a (i,j,k) tuple, where i and j refer to sending stage and receiving
stage respectively and k indicates the receiving index. As discussed
above, when receiving over a channel, a process must receive all values
sent by the senders. Since the receiving action over a channel might be
interleaved by other communication actions over different channels, a
process must remember the index of the last value it received to avoid
receiving duplicate messages.

3.2.7 Thread

Each thread is a pair of the form (e, ProcAddr), where e refers to the ex-
pression the thread is to execute and ProcAddr denotes the identity of the
process. The Roles language is designed as a multi-threaded concurrent
language, hence we allow for parallel composition of threads, denoted by
P | P.

Note that we require each thread to carry its identity, since partici-
pants of roles are simply processes and roles keep track of their members
by recording their identifiers. Therefore, when a join or leave expression
is executed, it is the identifier of the active thread that is added/removed
from the relevant role.
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3.2.8 Naming Conventions

We will use the following naming conventions for various identifiers through-
out the remainder of this report.

Source Entities

f ∈ FldId for field identifiers.
m ∈ MethId for method identifiers.
C ∈ ClassId for class identifiers.
CV ∈ ConId for conversation identifiers.
r ∈ RoleId for role identifiers.
ch, d(ch) ∈ ChId for channel identifiers.
o ∈ ObjId for object identifiers.
cv ∈ CVId for conversation instance identifiers.
s ∈ S for session types.

Runtime Entities

ι ∈ ObjAddr for the address of an object.
κ ∈ ConvAddr for the address of a conversation instance.
π ∈ ProcAddr for process identifiers.
v ∈ value for values.
χ ∈ heap for heaps.
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3.3 Auxiliary Functions

In the sections to follow, we refer to the following table lookup functions to
extract information from the source code or various entries in the heap.

dual(ch) = d(ch)

dual(d(ch)) = ch

FD(Prog, C, f) = Prog(C)↓2(f)

F(Prog, C, f) =
{

FD(Prog, C, f) if FD(Prog, C, f) 6= Udf
F(Prog, Prog(C) ↓1 , f) otherwise

FS(Prog, C) = {f | F(Prog, C, f) 6= Udf}

MD(Prog, C, m) = Prog(C)↓3(m)

M(Prog, C, m) =
{

MD(Prog, C, m) if MD(Prog, C, m) 6= Udf
M(Prog, Prog(C) ↓1 , m) otherwise

MS(Prog, C)= {m | M(Prog, C, m) 6= Udf}

mType (Prog, C, m) =
{

(t → t), Σ if M(Prog, C, m) = t m (t x) requires Σ {e}
⊥ otherwise

requires(Prog, C, m) =
{

Σ if mType(Prog, C, m) = (t → t), Σ
⊥ otherwise

mBody (Prog, C, m) =
{

e if M(Prog, C, m) = t m (t x) requires Σ {e}
⊥ otherwise

mArgs (Prog, C, m) =
{

x if M(Prog, C, m) = t m (t x) requires Σ {e}
⊥ otherwise
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CH(Prog, CV, ch) = Prog(CV)↓2(ch)

CHS(Prog, CV)= {ch | CH(Prog, CV, ch) 6= Udf}

chanIDs (Prog, CV)= {ch | CH(Prog, CV, ch) 6= Udf}
∪ {dual(ch) | CH(Prog, CV, ch) 6= Udf}

sender (Prog, CV, ch) =


r1 if CH(Prog, CV, ch) = (r1, r2, S)
r2 if CH(Prog, CV, dual(ch)) = (r1, r2, S)
⊥ otherwise

receiver (Prog, CV, ch) =


r2 if CH(Prog, CV, ch) = (r1, r2, S)
r1 if CH(Prog, CV, dual(ch)) = (r1, r2, S)
⊥ otherwise

session (Prog, CV, ch) =


S if CH(Prog, CV, ch) = (r1, r2, S)
dual(S) if CH(Prog, CV, dual(ch)) = (r1, r2, S)
⊥ otherwise

dual(!C.s) = ?C.dual(s)
dual(?C.s) = !C.dual(s)

role channels(Prog, CV, r) = {ch | sender(Prog, CV, ch) = r}
∪ {dual(ch) | receiver(Prog, CV, ch) = r}

RS(Prog, CV) = (Prog(CV)) ↓1

parts(Prog, χ, κ, r) = {π | π ∈ χ(κ) ↓2 (r)}

senders(Prog, χ, κ, ch) = {π | χ(κ) ↓1= CV
∧ sender(Prog, CV, ch) = r
∧ π ∈ χ(κ) ↓2(r) }

receivers(Prog, χ, κ, ch) = {π | χ(κ) ↓1= CV
∧ receiver(Prog, CV, ch) = r
∧ π ∈ χ(κ) ↓2(r) }
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out T (S, n) =


T(S’, n-1) if S = !C.S’ ∧ n > 0
C if S = !C.S’ ∧ n = 0
T(S’, n) if S = ?C.S’ ∧ n ≥ 0
⊥ otherwise

subS(S, w, r) =


subS(S’, w-1, r) if S = !C.S’ ∧ w > 0
subS(S’, w, r-1) if S = ?C.S’ ∧ r > 0
S if w = 0 ∧ r = 0
⊥ otherwise

started(χ, cv) =


true if χ(cv) ↓3 6= ε
false if χ(cv) ↓3 = ε
⊥ otherwise
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3.4 Operational Semantics

In this section we will introduce the operational semantics of Roles inspired
by standard small step reduction of [18]. Prior to discussing the operational
semantics rules, we first list the evaluation contexts below.

3.4.1 Evaluation Contexts

Ctxt ::= - | -;e
| -.f | -.f:=e | o.f := -
| -.m(e) | o.m(v, -, e)
| -.ch.send(e) | cv.ch.send(-)
| x = cv.ch.receive() in -
| -.start()
| -.r.join() | -.r.leave()

3.4.2 Rewriting Rules

The rewriting rules of Roles are judgements of the form:

(e, π)|P, χ −→ (e′, π)|P|P′, χ′

(e, π)|P refers to the list of present threads with (e, π) being the currently
active thread, that is the one that undergoes reduction. π stands for the
process identifier and e denotes the expression to execute. Given initial
heap χ, the (e, π) thread rewrites to (e′, π) with χ′ as the final heap where
the effects of evaluating e have been reflected in χ′. All other processes in P
remain unchanged and are carried forward. Furthermore, evaluating (e, π)
may result in spawning new processes (P′), hence growing the list of present
threads. This has been reflected in the semantics of the Spawn and Start
rules.

We will now present the operational semantics of Roles followed by an
explanation of each rule. We have included the operational semantics of
Roles in appendix B, for reference.
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Process

P1, χ P2, χ
′

Pa | P1| Pb , χ Pa | P2 | Pb , χ
′

Since our operational semantics is based on the reduction of a single thread
at a time, this rule gives the operational semantics of the overall system
consisting of multiple threads. This rule asserts that if a single process P1
can be rewritten to P2, then a system consisting of (Pa|P1|Pb) processes can
be rewritten to (Pa|P2|Pb).

Context

(e, π), χ (e′, π)|P, χ′

(Ctxt[e], π), χ (Ctxt[e′], π)|P, χ′

Since our operational semantics is based on small step reductions, this rule
gives the operational semantics of an expression in an evaluation contexts.
The evaluation contexts of Roles are listed in section 3.4.1.

Spawn

π′ /∈ χ
χ′ = χ[(π, null, null) 7→ (0, 0, 0)]

(spawn{e}, π), χ (null, π)|(e, π′), χ′

This rule is used for spawning a new thread. The new thread is given a
fresh address in the heap. The newly spawned thread then starts executing
in parallel with the present thread(s) but since there is nothing to execute
at this stage, a null expression is associated with this thread.
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Fld

χ(ι) = (C, f : v)

(ι.fi, π), χ (vi, π), χ

This rule is used to access a field of an object in the heap in the standard
way. First, the heap is scanned for the address of the object (ι) and once
the receiver object is found, the value associated with the desired field is
looked up in the field table and returned.

FldAss

χ′ = χ[ι 7→ χ(ι)[f 7→ v]]

(ι.f := v , π), χ (v, π), χ′

This rule is used to assign a value to a field of an object. First, we search
the heap for the address of the receiver object and once it is found the value
of the target field is updated in the field table of the object with the given
value.

NewC

FS(C) = C f
ι /∈ χ

(new C , π), χ (ι, π), χ[ι 7→ (C, f : null)]

This is used to create a new instance of a class. We first allocate a fresh
address (one that is not already in use in the heap) to the new instance and
then initialise all its fields with the default null value.
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Meth

χ(ι) = (C, f : v)
mBody(Prog,C,m) = e

(ι.m(v) , π), χ (e[ι/this][v/x] , π), χ

This rule is used for method calls. The semantics of this rule is standard
up to session types. Each method signature includes an additional piece of
information which acts as the precondition of the method. This precondi-
tion Σ is a session environment and asserts the behaviour it expects from
each channel of a conversation. If the session types of channels specified
in Σ agree with the channel session types of the current process, then the
precondition is fulfilled and method body e can be executed.

NewCV

RS(Prog,CV) = r
κ /∈ χ
χ′ = χ[κ 7→ (CV, r : ε, ε)]

(new CV, π) , χ (κ, π), χ′

This rule is used to create a new instance of a conversation. We first allo-
cate a fresh address (one that is not already in use in the heap) to the new
instance and then initialise all its roles with empty lists since initially none
of the roles have any participants. Note that the channels of the conver-
sation are not initialised, since we don’t want the channels to be used for
communication prior to the start of the conversation. Hence, we leave the
channel table of the conversation empty when it is created.

Join

χ(κ) ↓3= ε
χ′ = χ[ (κ, r)+ = π]

(κ.r.join(), π), χ (null, π), χ′
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This rule is used to add a new participant to a role of a conversation. How-
ever, processes can only join a conversation if it has not already started. We
therefore first check the channel table of the said conversation in the heap;
an empty channel table indicates that the conversation has not started yet
and it is permissible for new proceses to join any of its roles. We then add
current thread’s identifier to the participant list of the relevant role in the
heap.

Leave

π ∈ χ(κ) ↓2 (r)
χ′ = χ[ (κ, r)− = π]

(κ.r.leave(), π), χ (null, π), χ′

This role is analogous to the join rule described above. We use this rule
to remove a participant from a role of a conversation. However, unlike the
semantics of the join rule, a process is allowed to leave a conversation at
any time even if the conversation has already started. We first check the
participant list of the relevant role and if the currently active thread is a
member of the role in question we remove it from its participant list.

Start

χ(κ) = (CV, r : π, ε)
χ′′ = χ[κ 7→ (CV, r : π, ChInit)]

∀ ch ∈ ChanIDs(Prog,CV) : ChInit(ch, 0) = ε
∀ i 6= 0 : ChInit(ch, i) = ⊥

∀ r ∈ RS(Prog,CV) : ∀ π ∈ parts(Prog, χ, κ, r) : ∀ ch ∈ role channels(Prog,CV, r) :
χ′(π, κ, ch) = (0, 0, 0)
χ′(z) = χ′′(z) if z /∈ (π, κ, ch)

(κ.start(), π), χ (null, π), χ′
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This rule is used to initiate a conversation that has not yet started. Upon
initiation of the conversation we need to initialise its channel table, since
prior to the start of the conversation no communication was allowed on any
of its channels. We now allocate a message table (a noticeboard) for each of
its channels and their duals where messages can be dropped or retrieved by
those communicating on the channels.

Furthermore, for each of the participants in the roles, we need to add
indexing information per channel. Since each process can be a member of
multiple roles and hence communicating over several channels, it needs to
remember which sending/receiving round it is at; which row in the channel
table to drop or retrieve his messages from. Finally, since when a process is
receiving a message it needs to receive it from all participants of the dual
role, in order to avoid receiving duplicate messages it needs to remember
the index of the last message he retrieved in the current receiving round.
Note that all three indices are initialised with zero.

Message Tables Explained

In order to clarify the semantics of the next rules, we first try to give the
reader a better understanding of message tables for channels in the heap.
Suppose roles r1 and r2 have n and m participants respectively. Now assume
channel ch is declared between r1 and r2 and is defined as thus:

channel ch r1 r2 : !Int.?Char.!Bool.?Int

There are two message tables (noticeboards) for channel ch. One for the
ch endpoint where the participants of the r1 role drop their messages, and
another message table for the d(ch) endpoint where the participants of the
r2 role drop their messages.

Note that each message table is associated with an endpoint and is where
the participants of the role using the endpoint send their messages. For
instance, whenever the participants of the r1 role send a message, it is
dropped in the message table of the ch endpoint, the endpoint used by the
members of the r1 role.

On the other hand, whenever participants of a role attempt to receive
a message over a channel, they use the dual of the endpoint they use for
sending. For instance, when participants of the r1 role try to receive a
message over channel ch, they retrieve it from the message table of the
d(ch) endpoint.
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Similarly, the partcipants of the role r2 use the message table of the
d(ch) endpoint to drop their messages and when receiving, they retrieve
their messages from the message table of the ch endpoint.

Communication is organised into several rounds or stages of sending
and receiving, since for each sending (receiving) action several values are
communicated depending on the cardinality of roles. In the example above,
the session type of the ch channel consists of two sending rounds and two
reciving rounds.

The message table for the channel ch can be visualised in the heap as in
Figure 3.2. As mentioned above, this message table is used by the members
of the r1 role to drop their messages. As part of the first sending stage, the
n participants of role r1 send values of type Int which is reflected in the
first row of the table.

Next, they move on to receiving m messages of type Char from partic-
ipants of role r2 at the first receiving stage. However, as discussed above,
when receiving, participants retrieve their messages from the message box
of the dual endpoint - in this case d(ch). Therefore, members of the r1
role inspect the first row of the message table associated with the d(ch)
endpoint for m messages to be received from the participants of the r2 role.

Subsequently, each participant then sends a message of type Bool as part
of the second sending stage as shown in the second column of the table in
Figure 3.2. Finally, they retrieve m messages of type Int from the message
table of the d(ch) endpoint.

sending stage pa
rt

ic
ip

an
ts

1 2 ... n
1 int1 int2 ... intn
2 bool1 bool2 ... booln
... ... ... ... ...

Figure 3.2: The message table of the ch endpoint in the heap.

It follows that the session type of the d(ch) channel is:

?Int.!Char.?Bool.!Int
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The message table of channel d(ch) is as shown in Figure 3.3 where the
participants of role r2 show the dual behaviour of those in r1.

sending stage pa
rt

ic
ip

an
ts

1 2 ... m
1 char1 char2 ... charm
2 int1 int2 ... intm
... ... ... ... ...

Figure 3.3: The message table of the d(ch) endpoint in the heap.

Note that sending stage refers to the row of the table at which a participant
is to drop his message and a receiving stage is the row of the message table a
participant is to retrieve its message from. Furthermore, given the receiving
stage, receiving index refers to the index of the message that is to be retrieved
at the current receiving stage. In other words, the receiving stage together
with the receiving index provide us with a way of locating the exact position
of the message that is to be received next.

Having now explored the message tables, we will now continue with the
remaining reduction rules.

Send

χ(π, κ, ch) = (i, j, k)
χ1 = χ[(π, κ, ch) 7→ (i + 1, j, k)]
χ2 = χ1(κ) ↓3 [(ch, i) 7→ χ1(κ) ↓3 (ch, i) + +[v]]

(κ.ch.send(v), π), χ (null, π), χ2

This rule is used for a process to send a message over a channel of a con-
versation. First, the process’s indexing information - the sending round in
particular - for the appropriate channel of the said conversation is retrieved.
It then updates the message table of the channel by appending its message to
the row indexed by the sending stage. Finally, since it has finished sending
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as part of the current sending stage, its sending stage index is incremented.

The following rules are used for a process to receive a message over a channel
of a conversation.

Receive1

χ(π, κ, ch) = (i, j, k)
k = ] senders(Prog, χ, κ, ch)
χ′ = χ[(π, κ, ch) 7→ (i, j + 1, 0)]

(x = κ.ch.receive() in e, π), χ (EOM, π), χ′

In the case that the process has received all messages sent by the members
of the dual role, that is to say the receiving index is equal to the number of
participants sending over the channel minus one (since receiving index starts
at zero), the process will receive a special message, namely EOM. Since it
has reached the end of current receiving stage, this index is incremented and
its receiving index is reset to zero.

Receive2

χ(π, κ, ch) = (i, j, k)
k < ] senders(Prog, χ, κ, ch)
χ(κ) ↓3 (dual(ch), j)[k] = v
χ′ = χ[(π, κ, ch) 7→ (i, j, k + 1)]

(x = κ.ch.receive() in e, π), χ ( (e[v/x]; x = κ.ch.receive() in e) , π), χ′

If the premise of the previous rule doesn’t hold and the process has not
yet received messages from all participants of the dual role, the message
addressed by the receiving stage and receiving index in the message table
is retrieved. The receiving index is then incremented to point to the next
message to be received.
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Definition (Participant Joining and Leaving)

The following shorthand have been used in the semantics of the Join and
Leave reduction rules and are defined as thus.

χ[ (κ, r)+ = π] is an abbreviation of:
χ[κ 7→ ( χ(κ) ↓1 , χ(κ) ↓2 [r 7→ χ(κ) ↓2 (r) ∪ {π}], χ(κ) ↓3 ) ]

χ[ (κ, r)− = π] is an abbreviation of:
χ[κ 7→ ( χ(κ) ↓1 , χ(κ) ↓2 [r 7→ χ(κ) ↓2 (r) \ {π}], χ(κ) ↓3 ) ]

Sending Example

Assume that the process π, is executing expression e of the form:

κ.ch.send(7)

and the indexing information for π is thus:

χ(π, κ, ch) = (15, 17, 0)

Finally, assume that the message table of the ch endpoint in the heap χ
looks as in Figure 3.4.

Once expression e is executed, heap χ will be modified to produce heap
χ′ as stated in the reduction rule for send. We then have:

χ′(π, κ, ch) = (16, 17, 0)

The message table of the ch endpoint in the heap χ′ then looks as in Figure
3.5.
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sending stage pa
rt

ic
ip

an
ts

1 2 ... ... ... m
1 ... ... ... ... ... ...
2 ... ... ... ... ... ...
... ... ... ... ... ... ...
15 int1 ... intk ε ... ε

... ... ... ... ... ... ...

Figure 3.4: The message table of the ch endpoint in the heap, before exe-
cuting expression e.

sending stage pa
rt

ic
ip

an
ts

1 2 ... ... ... m
1 ... ... ... ... ... ...
2 ... ... ... ... ... ...
... ... ... ... ... ... ...
15 int1 ... intk 7 ... ε

... ... ... ... ... ... ...

Figure 3.5: The message table of the ch endpoint in the heap, after executing
expression e.
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Receiving Example

Assume that the process π, is executing the expression e of the following
form where i is initially set to zero.

x = κ.ch.receive() in { a[i] = x; i + + }

and the indexing information for π is as thus:

χ(π, κ, ch) = (17, 10, 0)

Finally, assume that there are n values to be received and that the message
table of the d(ch) endpoint in the heap χ looks as in Figure 3.7.

Once expression e is executed, the message box of the d(ch) endpoint in
the heap χ will be repeatedly inspected for subsequent values to be received
and the indexing information of the π in the heap changes after receiving
each message. Finally where there no longer any messages to be received
as part of the current receivng round, an EOM message is returned and the
indices are modified accordingly. This procedure is visualised in Figure 3.8.

Finally, once the execution of this instruction is complete, the values in array
a are as in Figure 3.6. Note that when receiving, the message box remains
intact and the received values are not removed from it. Therefore, the mes-
sage box of the d(ch) endpoint after execution is the same as Figure 3.7.

index 0 1 ... m-1
value int1 int2 ... intm

Figure 3.6: Values of entries in array a after the execution of expression e.
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sending stage pa
rt

ic
ip

an
ts

1 2 ... ... ... n
1 ... ... ... ... ... ...
2 ... ... ... ... ... ...
... ... ... ... ... ... ...
10 int1 ... ... ... ... intn
... ... ... ... ... ... ...

Figure 3.7: The message table of the d(ch) endpoint in the heap, before and
after executing expression e.

Heap Indexing Value Heap Indexing
(before) (before) Received (after) (after)

χ (17, 10, 0) int1 χ1 (17, 10, 1)
χ1 (17, 10, 1) int2 χ2 (17, 10, 2)
χ2 (17, 10, 2) int3 χ3 (17, 10, 3)
... ... ... ... ...
χn−1 (17, 10, n-1) intn χn (17, 10, n)
χn (17, 10, n) EOM χ′ (17, 11, 0)

Figure 3.8: Iterations for receiving n messages from the message box of
d(ch) endpoint.
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3.5 Type System

3.5.1 Subclassing

The judgement Prog ` C v C′ asserts that class C is a subclass of class C’
and is defined as follows as defined in [20].

` Object v Object

Prog(C) ↓1= C′

C v C′

C v C

C v C′

C′ v C′′

C v C′′

3.5.2 Subtyping

The subtyping relationship (≤) as defined in [20] is the projection of sub-
classing relationship onto types as defined below.

Prog ` C v C′

Prog ` C ≤ C′

Prog ` t�t

Prog ` t ≤ t
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3.5.3 Acyclic Class Hierarchy

The judgement ` Prog�a asserts that the class hierarchy in program Prog is
acyclic and is defined as follows.

∀C,C′ : Prog ` C v C′ and Prog ` C′ v C −→ C = C′

Prog(C) ↓1= C′ −→ C 6= C′

` Prog�a

Type Judgements

The judgement ` C�c, asserts that C is a class, ` CV�cv, asserts that CV is
a conversation and ` t�t asserts that t is a type.

C ∈ Prog

` C�c
` C�t

CV ∈ Prog

` CV�cv
` CV�t

3.5.4 Static Typing judgement

Typing an expression statically is a judgement of the form:

Γ; Σ ` e : t; Σ′

That is to say, in the context of environment Γ, and the initial session
environment Σ, the expression e, has type t while it consumes the initial
session environment (Σ) and returns the final session environment Σ′. In
other words, Σ′ reflects the changes applied to the channel sessions initially
defined in Σ through communication instructions send and receive.
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3.5.5 Γ Environment

The environment Γ maps this to a class type and method arguments (x) to
types (a class or a conversation). Thus, type environments are defined by
the following syntax.

Γ ::= ∅ | Γ, this : ClassId | Γ, x : t

3.5.6 Session Environment

The session environment Σ maps each conversation instance and its channels
to session types and is defined by the following syntax.

Σ ::= (CVId× ChId)→ S
where S ::=?(C).S | !(C).S

The judgement s�s asserts that s is a session.

s = †C.s′
C ∈ Prog
Prog ` s′�s

Prog ` s�s

where † refers to communication actions namely, ! and ?.

3.5.7 Session Environment Algebra

In this part we define a number of operations on session environments, in-
cluding various orderings and subtraction.

Definition (Prefix Session Ordering)

Σ �pre Σ′ is read as session environment Σ is a prefix to session environment
Σ′ and is defined as follows. These operations are used when specifying the
typing rules of the Roles language in later sections.
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Σ �pre Σ′ iff ∀ (cv, ch) ∈ dom(Σ) : Σ(cv, ch) �pre Σ′(cv, ch)

where prefix ordering for sessions (s �pre s′) is as defined below.

s1 �pre s2 iff s2 = s1.s

Definition (Suffix Session Ordering)

This is the mirror of the previous definition. We read Σ �suf Σ′ as session
environment Σ is a suffix to session environment Σ′ and is defined as follows.

Σ �suf Σ′ iff ∀ (cv, ch) ∈ dom(Σ) : Σ(cv, ch) �suf Σ′(cv, ch)

where suffix ordering for sessions (s �suf s′) is as defined below.

s1 �suf s2 iff s2 = s.s1

Definition (Session Subtraction)

Session environment subtraction written as Σ1 − Σ2 is given below.

Σ1 − Σ2 =
{

Σ if Σ2 �pre Σ1

⊥ otherwise

where Σ is defined as follows.

Σ(cv, ch) =


Udf if Σ1(cv, ch) = Udf
s1 if Σ1(cv, ch) = s1 ∧ ( Σ2(cv, ch)=Udf ∨ Σ2(cv, ch)=ε )
s1 − s2 if Σ1(cv, ch) = s1 ∧ Σ2(cv, ch) = s2

Session type subtraction (s1 − s2) is defined by:

s1 − s2 =
{

s if s1 = s2.s
⊥ otherwise
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Temporal Ordering for Session Environments

The Σ v Σ′′ notation means that the session environment Σ′′ is at a later
stage than the session environment Σ and is defined as thus.

Σ1 v Σ2 iff
∀ (cv, ch) ∈ dom(Σ2) : Σ1(cv, ch) = Udf ∨ Σ2(cv, ch) �suf Σ1(cv, ch)
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3.5.8 Static Typing of Expressions

We now state the the rules for static typing of the expressions together with
an explanation of each rule. We have included the static typing rules of
Roles in appendix C, for reference.

Axiom

Γ; Σ ` this : Γ(this); Σ
Γ; Σ ` x : Γ(x); Σ

This rule asserts that the type of the this expression and the method argu-
ment (x) can be obtained from the standard environment Γ. In other words,
this and x can be typed so long as their type is defined in Γ.

Null

Prog ` C�c
Prog ` CV�cv

Γ; Σ ` null : C; Σ
Γ; Σ ` null : CV; Σ

The null expression have any class or conversation type so long as the class
or conversation is defined as part of the program.

Subsumption

Prog ` C ≤ C′

Γ; Σ ` e : C; Σ′

Γ; Σ ` e : C′; Σ′

This rule expresses the hierarchical relationship between a class and its su-
perclass. If an expression e is of class type C and C itself is a subclass of
class C’, we can deduce that e is also of type C’.
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NewC

Prog ` C�c

Γ; Σ ` new C : C; Σ

When creating a new instance of a class (C), if C is defined in the program,
the new instance is of the class type C.

Seq

Γ; Σ ` e1 : t1; Σ′′

Γ; Σ′′ ` e2 : t2; Σ′

Γ; Σ ` e1; e2 : t2; Σ′

When typing a sequence of expressions, provided that each expression in the
sequence can be typed, the type of the sequence is the same as the type of
the last expression in the chain. Furthermore, the initial session environ-
ment used to type each expression, is the final session environment returned
by the previous expression in the chain.

Fld

Γ; Σ ` e : C,Σ′

Γ; Σ ` e.f : F(Prog,C, f); Σ′

A field access expression can be typed if the receiver has a class type and
the desired field is defined within the class at source level. The type of this
expression is then type of the required field.
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FldAssign

Γ; Σ ` e : C; Σ′′

Γ; Σ′′ ` e′ : F(Prog,C, f); Σ′

Γ; Σ ` e.f = e′ : F(Prog,C, f); Σ′

When assigning to a field of a class, the receiver of the field must have a
class type, the filed must be defined within that class and the type of the
expression on the right hand side must be the same as the type of the field.

Method

Γ; Σ ` e : C; Σ0

Γ; Σi−1 ` ei : ti; Σi i ∈ {1...n}
mType(Prog,C,m) = t1...tn → t,Σ′

Σ′ �pre Σn

Γ; Σ ` e.m(e1...en) : t; Σn − Σ′

This rule is very similar to the standard typing rule for method calls. First
the receiver of the method call is checked to ensure it is a class type and that
the method is contained within its definition. Next we consider the types
of arguments to determine if they agree with the type associated with them
at the source level. Finally, we need to check if the session environment
defined as a precondition in the method signature does not clash with the
initial session environment. The definition of prefix session ordering is given
in section 3.5.7. The assertion Σ′ �pre Σn states that any behaviour required
by the method as the precondition (Σ′) must also be permitted by the initial
session environment (Σn). The final session environment is given by Σ′ − Σn

since the session type associated with each entry in Σ′ is consumed in the
method body and is equivalent to ε upon exit from the method. Therefore,
the final session environment is obtained by subtracting Σ′ from Σ′n where
session subtraction is defined in section 3.5.7.
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NewCV

Prog ` CV�cv

Γ; Σ ` new CV() : CV; Σ

This rule asserts that as long as the conversation being instantiated is de-
fined within the program, the new CV() expression has the type CV.

Spawn

Γ; ∅ ` e : t; ∅

Γ; Σ ` Spawn{e} : t; Σ

When spawning a new thread to execute an expression e, the spawn expres-
sion has the same type as the expression e.

Join

Γ(cv) = CV
r ∈ RS(Prog,CV) ∀ch ∈ role channels(Prog,CV, r) : Σ0(cv, ch) = Udf
∀chi ∈ role channels(Prog,CV, r) : Σi = Σi−1[(cv, chi) 7→ session(Prog,CV, chi)]
n = ]role channels(Prog,CV, r)

Γ; Σ0 ` cv.r.join() : CV; Σn

A process can only join a role in a conversation if it has not already joined
it. In other words, the initial session environment must have no entries for
any of the channels over which members of the role can communicate. This
is expressed through the premise in the second line. Furthermore, when a
new participant joins a role, we have to update the session environment by
adding entries for the channels the new member can use as part of the role in
question. Therefore, we obtain the final session environment Σn, by adding
these new entries.
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Leave

Γ(cv) = CV
r ∈ RS(Prog,CV) ∀ch ∈ role channels(Prog,CV, r) : Σ0(cv, ch) 6= Udf
∀chi ∈ role channels(Prog,CV, r) : Σi = Σi−1[(cv, ch) 7→ ε]
n = ]role channels(Prog,CV, r)

Γ; Σ0 ` cv.r.leave() : CV; Σn

A process can only leave a role in a conversation if it is already a member
of the role. That is to say, the initial session environment must include an
entry for each of the channels of the conversation over which members of the
role communicate. This has been reflected in the premise at the end of the
second line. Moreover, when a participant leaves a role, we have to update
the session environment by removing entries for the channels associated with
the role. Therefore we obtain the final session environment Σn by removing
these entries.

Start

Γ(cv) = CV
∀ch ∈ CH(Prog,CV) : session(Prog,CV, ch) = s → Σ(cv, ch) = s

Γ; Σ ` cv.start() : CV; Σ

A conversation can only start if it has not already been initialised at an
earlier point in time. This can be obtained by asserting that the session
type prescribed to any of the channels in the initial session environment
must be equal to its session defined at source level. If the session type of
each channel is intact, one can deduce that as far as the communication
actions are concerned, no participant has yet communicated any messages.
In other words, even if the conversation has already started at some point
in the past, the members of the various roles in the conversation have only
carried out local computations and no communication has taken place yet.
Undoubtedly, this is not strong enough to guarantee that the the conver-
sation in question has not started, since intact session types only indicate
absence of communication. However, this is the strongest we can type check
a start expression statically. In section 3.6 we conjecture that our type
system is sound so long as the start instruction is not called on an ongoing
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conversation.

Send

Γ(cv) = CV Γ(v) = C
ch ∈ CHS(Prog,CV)
Σ(cv, ch) = !C.s

Γ; Σ ` cv.ch.send(v) : C; Σ[(cv, ch) 7→ s]

For a send expression to type check correctly, the session associated with the
particular channel in the initial session environment must allow the sending
of a value. This has been reflected in the premise on the third line. The final
session environment is obtained by modifying the session prescribed to the
channel in the initial session environment so that it does not accommodate
the particular send action anymore.

Receive

Γ(cv) = CV
ch ∈ CHS(Prog,CV)
Γ; Σ ` e : t; Σ′

Γ(x) = C Σ(cv, ch) = Σ′(cv, ch) = ?C.s

Γ; Σ ` (x = cv.ch.receive() in e) : t; Σ′[(cv, ch) 7→ s]

This is analogous to the typing rule for the send instruction. First the initial
environment is checked to ensure the session type assigned to the send chan-
nel admits a receive action. The final session environment is then derived
by updating the session type appointed to the channel and dropping the
particular receive action. Since the receive expression entails an implicit
loop, we can guarantee that all messages from the members of the opposite
role have been acquired and it is safe to advance the session type.
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3.5.9 Runtime Typing Judgement

In section 3.4, we introduced the operational semantics of the Roles lan-
guage. We presented the rewriting rules of Roles as small step reductions.
However, since the static type system put forward in the previous section
applies typing judgements to source-level expressions, we need to perform
additional typing checks on intermediate expressions derived at runtime from
applying rewriting rules to source-level expressions. In this section we will
present these supplementary typing rules forming the runtime type system.

Typing an expression at runtime is a judgement of the form:

χ; Σ `r (e, π) : t; Σ′

where the (e, π) pair refers to the currently active thread. We override
the notion of Σ to denote the runtime session environment for the current
thread (the one with π as the identifier) which is defined as follows where S
has the usual meaning.

Σ ::= (ConvAddr × ChId)→ S

Note that the definitions given in the previous section for static session
environments such as session ordering and session subtraction (cf. section
3.5.7) can be overridden to apply to runtime session environments by replac-
ing the source level conversation instance (cv) with runtime conversation
address κ.

3.5.10 Runtime Typing of Processes

In this section we present the runtime typing rules of the processes. We have
included the runtime typing rules of Roles in appendix D, for reference. We
skip the explanation of rules, since they are very similar in principle to the
static typing rules specified in section 3.5.8.

Null

Prog ` C�c
Prog ` CV�cv

χ; Σ `r (null, π) : C; Σ
χ; Σ `r (null, π) : CV; Σ
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EOM

Prog ` C�c

χ; Σ `r (EOM, π) : C; Σ

ObjAddr

χ(ι) ↓1= C

χ; Σ `r (ι, π) : C; Σ

ConvAddr

χ(κ) ↓1= CV

χ; Σ `r (κ, π) : CV; Σ

Subsumption

Prog ` C ≤ C′

χ; Σ `r (e, π) : C; Σ′

χ; Σ `r (e, π) : C′; Σ′

NewC

Prog ` C�c

χ; Σ `r (new C, π) : C; Σ
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Seq

χ; Σ `r (e1, π) : t1; Σ′′

χ; Σ′′ `r (e2, π) : t2; Σ′

χ; Σ `r (e1; e2, π) : t2; Σ′

Fld

χ; Σ `r (e, π) : C; Σ

χ; Σ `r (e.f, π) : F(Prog,C, f); Σ

FldAssign

χ; Σ `r (e, π) : C; Σ
χ; Σ `r (e′, π) : F(Prog,C, f); Σ′

χ; Σ `r (e.f := e′, π) : F(Prog,C, f); Σ′

Method

χ; Σ0 `r (e, π) : C; Σ0

mType(Prog,C,m) = t1...tn → t,Σ′

χ; Σi−1 `r (ei, π) : t′i; Σi Prog ` t′i ≤ ti for i ∈ {1...n}
Σ′ �pre Σn

χ; Σ0 `r (e.m(e1...en), π) : t; Σn − Σ′

NewCV

Prog ` CV�cv

χ; Σ `r (new CV(), π) : CV; Σ
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Spawn

χ; ∅ `r (e, π′) : t; ∅ for some π′ /∈ χ

χ; Σ `r (Spawn{e}, π) : t; Σ

Join

χ(κ) ↓1= CV
π /∈ χ(κ) ↓2 (r) χ(κ) ↓3= ε
∀ i{1≤i≤]role channels(Prog,CV,r) = n} : Σi = Σi−1[(κ, chi) 7→ session(Prog,CV, chi)]

χ; Σ0 `r (κ.r.join(), π) : CV; Σn

Leave

χ(κ) ↓1= CV π ∈ χ(κ) ↓2 (r)
∀ i{1≤i≤]role channels(Prog,CV,r) = n} : Σi = Σi−1[(κ, chi) 7→ ε]

χ; Σ0 `r (κ.r.leave(), π) : CV; Σn

Start

χ(κ) ↓1= CV

χ; Σ `r (κ.start(), π) : CV; Σ

Send

χ(κ) ↓1= CV ch ∈ CHS(Prog,CV)
Σ(κ, ch) =!C.s χ; ∅ `r v : C′; ∅
Prog ` C′ ≤ C Σ′ = Σ[(κ, ch) 7→ s]

χ; Σ `r (κ.ch.send(v), π) : C; Σ′
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Receive

χ(κ) ↓1= CV ch ∈ CHS(Prog,CV)
χ; Σ ` (e, π) : t; Σ′

Σ(κ, ch) = Σ′(cv, ch) =?C.s

χ; Σ `r ( (let x = κ.ch.receive() in e) , π) : t; Σ′[(cv, ch) 7→ ε]

3.6 Soundness of Roles Type System

In order to show the type safety of the Roles language, we first need to define
several notions such as well-formedness and agreement. In this section, we
define these foundation concepts and then discuss type safety in the context
of Roles.

3.6.1 Well-formedness

In this section we define the notion of well-formedness for programs and
heaps and consequently for classes and conversations. These definitions
have been inspired by the work of Drossopoulou in [20].

wfProg

∀C : Prog(C) 6= Udf → Prog ` C�
∀CV : Prog(CV) 6= Udf → Prog ` CV�

` Prog�

wfConv

∀ch : CH(Prog,CV, ch) = (r1, r2, s) −→ r1, r2 ∈ RS(Prog,CV)
∧ Prog ` s�s

Prog ` CV�
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wfClass

Prog ` �a
Prog(C) ↓1= C′ and (C′ = Object or Prog(C′) 6= Udf)
∀f : FD(Prog,C, f) = t → Prog ` t �t and F(Prog,C′, f) = Udf
∀m : M(Prog,C,m) = t m(t x) requires Σ {e} −→

Prog ` t�t
Prog ` ti �t for each ti ∈ t
Prog ` Σ�
Prog, (t x, C this),Σ ` e : t′, ∅ −→ t′ ≤ t
M(Prog,C′,m) = Udf or M(Prog,C′,m) = t m(t x) requires Σ {e′}

Prog ` C�

wfSE

∀cv, ch : Σ(cv, ch) = s → Prog ` s�s

Prog ` Σ�

wfHeap

∀ ι : χ(ι) ↓1= C −→ Prog, χ ` ι / C
∀ κ : χ(κ) ↓1= CV −→ Prog, χ ` κ / CV

Prog ` χ�

Where the notion of agreement Prog, χ ` v / t is as defined in the section to
follow.
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3.6.2 Agreement

The judgement Prog, χ ` v / t expresses that the value v from heap χ agrees
with the type t as defined in program Prog and is defined as follows.

Prog ` t�c
Prog ` t′�cv

Prog, χ ` null / t
Prog, χ ` null / t′

Prog, χ ` EOM / t

The type of the null expression in the heap agrees with any class or con-
versation that is defined as part of the program. Similarly, the type of the
EOM expression in the heap agrees with any class defined in the program.
Note that we do not give the mirror expression stating the agreement be-
tween the type of the EOM expression and any constituent conversation of
the program since EOM is a special value communicated over channels only
and the values exchanged over channels can only have a class type.

χ(ι) ↓1= C
Prog(C) 6= Udf
F(Prog,C, f) = C′ −→ χ(ι) ↓2 (f) = null or χ(χ(ι) ↓2 (f)) ↓1 = C′

F(Prog,C, f) = CV −→ χ(ι) ↓2 (f) = null or χ(χ(ι) ↓2 (f)) ↓1 = CV

Prog, χ ` ι / C

The type of an object address ι agrees with a class type when it satisfies the
following properties:

• The first entry in its tuple representation must be a class defined in
the program.

• For any of its fields f, if the type given to f at the source level is a class
type C’, the value recorded for f in the heap must be either null or an
object address where the type of this address agrees with C’.

• For any of its fields f, if the type given to f at the source level is a
conversation type CV, the value recorded for f in the heap must be
either null or a conversation address where the type of this address
agrees with CV.
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χ(κ) ↓1= CV
∀ π ∈ χ(κ) ↓2 (r) : ∀ch ∈ role channels(Prog,CV, r) :
∀ r ∈ RS(Prog,CV) : ∀ π ∈ parts(Prog, χ, κ, r) :

∀ ch ∈ role channels(Prog,CV, r) : χ(π, κ, ch) = (i, j, k) ∧ i, j, k ∈ int
∀ ch ∈ chanIDs(Prog,CV) : ∀ i ∈ int :

∀ v ∈ χ(κ) ↓3 (ch, i) : Prog, χ ` v / out T(session(Prog,CV, ch), i)

Prog, χ ` κ / CV

The type of a conversation address (κ) agrees with a conversation type if it
satisfies the following conditions.

• The first entry in its tuple representation must be recorded as a con-
versation defined in the program.

• The indexing information recorded in the heap for each of the partic-
ipants of its constituent roles must be a triple of integers.

• The type of the values communicated over its channels must agree with
the corresponding types specified in the session type of the channel.

In order to show that the type of expressions is preserved after each execuion
step, we also need to define the notion of agreement between the environ-
ments and the heap. The following asserts the agreement between session
environment Σ and the currently active process π and heap χ written as
Prog; Σ ` (χ, π)�.

∀(cv, ch) : Σ(cv, ch) =!C.s→
χ(π, cv, ch) = (i, j, k) ∧ χ(cv) ↓3 (ch, i) = v

∧ ∀ v ∈ v : Prog, χ ` v / C
Σ(cv, ch) =?C.s→

χ(π, cv, ch) = (i, j, k) ∧ χ(cv) ↓3 (dual(ch), rStage) = v
∧ ∀ v ∈ v : Prog, χ ` v / C

where

rStage =
{

j if k < ]senders(Prog, χ, cv, ch) - 1
j+1 if k = ]senders(Prog, χ, cv, ch) - 1

Prog,Σ ` (χ, π)�
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3.6.3 Properties of the Heap

Throughout designing of the Roles language and while deciding between
possible ways of representing the channels of a conversation in the heap, we
observed the following properties about the heap. Note that in some of the
following properties we have made use of some of the auxiliary functions
defined in section 3.3.

Property 1 (Channel Duals)

This statement asserts that for any conversation instance, if a channel is de-
fined for that instance in the heap, its dual is also defined. In other words,
upon initiation of the conversation, for each channel defined at the source
level, both endpoints (the channel and its dual) are defined in the heap.

∀ χ, κ, ch : ch ∈ dom(χ(κ) ↓3) −→ dual(ch) ∈ dom(χ(κ) ↓3)

Property 2 (Message Cardinality)

This conjecture suggests that for any channel in the heap, the number of
messages on its notice board at any round of communication is at most equal
to the number of participants sending on that channel.

∀ κ, ch, i : χ(κ) ↓3 (ch, i) = v∗

−→ ]v∗ ≤ ]senders(Prog, χ, κ, ch)

Property 3 (Channel Index Ordering)

The following statement asserts the relationship between the sending/re-
ceiving stages of the participants of each role and their dual. Assume in the
heap χ, for the conversation instance κ, participants of role r1 communicate
over channel ch with participants of role r2 and π1 and π2 are participants
of roles r1 and r2 respectively. If the (π1, κ, ch) and (π2, κ, d(ch)) entries are
mapped to (sStage1, rStage1, rInd1) and (sStage2, rStage2, rInd2) tuples
in the heap respectively, then we must have rStage1 ≤ sStage2, since as a
participant of role r1, π1 is expected to receive values sent over channel ch
from all participants of role r2 including π2. Therefore, π1’s receiving index
should be no more than the sending index of any of the participants in role
r2. If π1’s receiving index is more than π2’s sending index, π1 has indeed
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missed the communicated value from π2 and thus has not received values
from all participants of r2.

Furthermore, we must have rInd1 ≤ ]senders(Prog, χ, κ, d(ch) ), since
receiving index refers to the number of messages π1 has received so far as
part of the current receiving stage (rStage1) and it can be no more than
the number of participants in role r2 as each message is received exactly once.

∀ χ, κ, π1, π2, ch : χ(π1, κ, ch) = (i1, j1, k1) ∧ χ(π2, κ, dual(ch)) = (i2, j2, k2)
−→

j1 ≤ i2 ∧ k1 ≤ ]senders(Prog, χ, κ, dual(ch) )
j2 ≤ i1 ∧ k2 ≤ ]senders(Prog, χ, κ, ch)

Property 4 (Channels in the Heap)

Any channel that is defined as part of a conversation instance in the heap
must also have been defined in the source code of the conversation.

I3(χ) = ∀ κ, ch : χ(κ) ↓1= CV ∧ χ(κ) ↓3 6= Udf
−→ ch ∈ ChanIds(Prog,CV)]

Property 5 (Channels at Source Code)

This is the reverse of the previous conjecture. For any channel contained
within a conversation’s definition in the source code, every instance of that
conversation in the heap etiher contains a definition for that channel, or has
not started yet.

I4(χ) = ∀ κ, ch : χ(κ) ↓1= CV ∧ ch ∈ ChanIds(Prog,CV)
−→ χ(κ) ↓3= ε ∨ χ(κ) ↓3 (ch) 6= Udf

Throughout execution, a heap is modified as specified in the reduction
rules in section 3.4. We call a heap synchronised if it satisfies certain prop-
erties at all points during execution. Below we state these properties which
govern the relationship between the channel indexing information of different
threads.
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Property 6 (Synchronised Heap)

If the session type of a channel for a role consists of a chain of send actions
(possibly singular) followed by a receive action, all participants of that role
must finish sending as part of the last send action in the chain before per-
forming the following receive action.

∀ κ, π1, π2, r, ch : π1, π2 ∈ parts(Prog, χ, κ, r)
∧ χ(π1, κ, ch) = (i1, j1, k1) ∧ χ(π2, κ, ch) = (i2, j2, k2)
∧ i1 6= i2
−→ j1 = j2 ∧ k1 = k2 = 0

Properties 7 and 8 (Synchronised Heap)

If the session type of a channel for a role consists of a chain of receive ac-
tions (possibly singular) followed by a send action, all participants of that
role must finish receiving all messages as part of each receive action in the
chain before performing the following send action.

∀ κ, π1, π2, r, ch : π1, π2 ∈ parts(Prog, χ, κ, r)
∧ χ(π1, κ, ch) = (i1, j1, k1) ∧ χ(π2, κ, ch) = (i2, j2, k2)
∧ j1 6= j2
−→ i1 = i2

∀ κ, π1, π2, r, ch : π1, π2 ∈ parts(Prog, χ, κ, r)
∧ χ(π1, κ, ch) = (i1, j1, k1) ∧ χ(π2, κ, ch) = (i2, j2, k2)
∧ j1 = j2 ∧ k1 6= k2

−→ i1 = i2

3.6.4 Execution and Session Environments

The following expresses the relation between the initial session environment
Σ and the final session environment Σ′ when typing an expression e.

Γ,Σ ` e : t; Σ′ → Σ′ v Σ

where the Σ′ v Σ notion is defined in section 3.5.7.

3.6.5 Definition

χ; Σ ` (e, π) : t||Σ′ iff χ; Σ `r (e, π) : t; Σ′ ∧ prog; Σ ` (χ, π)�
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3.6.6 Subject Reduction Conjecture

The subject reduction theorem constitute a very important part of a type
system since once it is proved, one can deduce the type safety of the system.
In summary, the subject reduction theorem asserts that the type of expres-
sions is invariant to the execution. In other words, if an expression can be
typed, its type remains unchanged at any point during the execution.

We consider the reductions of well-typed expressions in our language
and conjecture that the type of expressions is preserved after each execution
step. An expression is well-typed if it can be typed by the rules stated in
section 3.5.8.

• χ; Σi ` Pi : ti||Σ′i for i ∈ {0...n}

∧ (P0|P
i=1...n), χ −→ (P′0 | P

i=1...n | P′
j=1...m), χ′

implies

∃ Σ′′0 : χ′; Σ′′0 ` P0 : t||Σ′0 ∧ Σ0 v Σ′′0

∧ χ′; Σi ` Pi : ti||Σ′i for i ∈ {1...n}
∧ ∃ Σ′′j ; t′j : χ′; ∅ ` P′j : t′j||Σ′′j for j ∈ {1...m}

• χ; Σi ` Pi : ti||Σ′i for i ∈ {1...n}

∧ (P
i=1...n), χ −→∗ (P′

i=1...n | P′′
j=1...m), χ′

implies

∃ Σ′′i : χ′; Σ′′i ` Pi : ti||Σ′i ∧ Σi v Σ′′i for i ∈ {1...n}
∧ ∃ Σ′′′j ; t′j : χ′; ∅ ` P′′j : t′j||Σ′′′j for j ∈ {1...m}

The first part of the subject reduction conjecture can be explained as
follows. Suppose there are n+1 processes currently present in the heap χ.
Moreover, assume that the session environment associated with each of the
processes agrees with the heap χ and that each of the processes can be typed
given the heap χ and their respective session environments.
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Finally, assume that given χ, one of these processes, namely process P0,
can be rewritten to P′0 in a single reduction step, in doing so, the heap χ is
modified, the new heap χ′ is obtained and a group of m new processes (P′)
are forked and join the system.

We can then deduce that the each of the processes present in the system
(including those generated in the last reduction step) can also be typed
given their respective session environments and the new heap χ′, the type
we obtain for each one of them is the same as the type we had before
reduction, and that each of these session environments agrees with the new
heap χ′.

The second part on the other hand, describes a more general case where
many reduction steps are considered. In other words, it asserts that if the
processes in the heap can be typed, if their session environments agree with
the heap and if we can perform many reduction steps on these processes,
then the resulting processes can also be typed, their type is unchanged and
their session environments agree with the final heap.

Explanation of the Σ0 v Σ′′0 Statement

In what follows we give an explanation for the Σ0 v Σ′′0 assertion in the
first part of the subject reduction conjecture through an example. Analo-
gous assertions in the second part of the conjecture can be justified similarly.

Assume we have Γ; Σ ` e : t; Σ′. While executing e, we will evaluate it in
small steps. In other words we have:

(e, π), χ→ (e′, π), χ′ → (e′′, π), χ′′ → ...→ (v, π), χn

which is often written as (e, π), χ→∗ (v, π), χn. However, each step of ex-
ecution may modify the session environment. Therefore, we have to ensure
that at each intermediate step of execution the new session environment
(in this case Σ′′) reflects the changes brought upon the initial session envi-
ronment (Σ) through execution. The instructions which modify the session
environment are join, leave, send, receive and method call. When sending
and receiving, the session of the desired channel in Σ is consumed and hence
we have Σ′′ �suf Σ. Leaving a role removes the said role’s channel sessions
from Σ and hence Σ′′ �suf Σ. On the other hand, joining a role results in
new entries being added to Σ, namely the sessions of the channels the said
role communicates over.

In other words:
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∃ (cv, ch) : Σ(cv, ch) =Udf ∧ Σ(cv, ch) 6=Udf .

Finally, method calls result in a session environment derived from subtract-
ing the said methods required session environment from the initial session
environment and thus we have Σ′′ �suf Σ.
Therefore, we assert Σ v Σ′′ meaning that the secondary session environ-
ment Σ′′ must be at a later stage than the initial session environment Σ.

3.6.7 Subderivation Conjecture

The subderivation conjecture asserts that if an expression e can be typed
in an evaluation context, then the expression e can also be typed outside
the evaluation context. However, the types given to the expression in the
two different cases are not necessarily the same. This conjecture can be
formalised as follows.

χ; Σ1 `r (Ctxt[e], π) : t; Σ2

implies

∃ Σ′1,Σ
′
2 : Σ′1 �pre Σ1 ∧ Σ′2 �pre Σ2 ∧ χ; Σ′1 `r (e, π) : t′; Σ′2

We now give an example to clarify the assertions of this conjecture. As-
sume that the two classes C1 and C2 are defined as in Figure 3.9. The
expression e = new C2() is of type C2 according to the typing rules in sec-
tion 3.5.10. However in the Ctxt1 = -.f1 context, e is of type C1, since f1
is a field of class C1 and C2 inherits C1.

class C1 {
String f1;

}

class C2 extends C1{
int f2;

}

Figure 3.9: Example program in Roles consisting of two classes
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3.7 Communication Safety

In this section we discuss another property of the Roles language. We first
introduce definitions used in the description of the property and then we
conjecture that the Roles language demonstrates the progress property. The
progress property asserts that a well-typed expression (one that can be typed
by the rules in section 3.5.10) never gets “stuck”. In other words, a well-
typed expression never gets into an undefined state where no further tran-
sitions are possible.

3.7.1 Nullpointer Failure

An expression e is a nullpointer failure, if it has one of the following forms.

• Ctxt[null.f];

• Ctxt[null.m(e)];

• Ctxt[null.ch.send(e)];

• Ctxt[null.ch.receive()];

• Ctxt[null.r.join()];

• Ctxt[null.r.leave()];

• Ctxt[null.start()];

3.7.2 Definition (Liveness)

A Process P = (e, π) is called alive in heap χ written as alive(P, χ), if and
only if:

• e is a value

• or e is a nullpointer failure

• or e, χ→ e′, χ′

• or e = Ctxt[κ.r.join()] for some context Ctxt[-] and hasStarted(χ, κ) = true.

• or e = Ctxt[κ.start()] for some context Ctxt[-] and hasStarted(χ, κ) = true.

• or e = Ctxt[κ.ch.send(e′)] or e = Ctxt[κ.ch.receive()] for some con-
text Ctxt[-] and hasStarted(χ, κ) = false.
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The fourth situation arises when expression e has been blocked while
trying to join an ongoing conversation. The next item refers to the situation
where e has been blocked while trying to start a conversation that has
already started and the last item pertains to the case where e has been
blocked while trying to send/receive a value over a channel in a conversation
that has not yet started.

3.7.3 Progress Conjecture

The progress property asserts that well-typed processes never get stuck. In
other words:

• χ; Σi ` Pi : ti||Σ′i for i ∈ {0...n}

∧ (P0|P
i=1...n), χ −→ (P′0 | P

i=1...n | P′
j=1...m), χ′

implies

alive(P′0, χ
′) ∧ ∀P′j ∈ P′

j=1...m : alive(P′j, χ
′)

• χ; Σi ` Pi : ti||Σ′i for i ∈ {1...n}

∧ (P
i=1...n), χ −→∗ (P′

i=1...n | P′′
j=1...m), χ′

implies

∀P′i ∈ P′
i=1...n : alive(P′i, χ

′) ∧

∀P′′j ∈ P′
j=1...m : alive(P′′j , χ

′)

The first part of this conjecture asserts that if there are n+1 well-typed
processes currently present in the heap and one of them (P0) performs a
reduction and in doing so creates new processes, then the reduced process
and the new processes are all alive.

The second part describes a similar scenario but for many reduction
steps.

77



3.8 Design Decisions and Alternatives

When designing our language based on the Roles idea discussed above, there
are certain decisions we had to make about the properties and functionality
of our language. These decisions will strongly affect the expressiveness and
conciseness of our notation and it is crucial to give them due consideration.
Some of these decisions are explored below.

3.8.1 Roles Arity

The number of members in a particular role by definition ranges from one
to many and we do not differentiate between roles with exactly a single
member at all times and those with varying number of participants. Roles
can accommodate one or many participants and this number can change
while the communication lasts.

An alternative approach would have been to separate singleton roles from
those with many participants. However, treating participants as individuals
is a feature that is already available in existing systems and Roles is based
on the idea of inter-group communication and defining the behaviour of a
group of partcipants. Furthermore, Roles indeed accommodates roles with
a single participant since there is no restriction on the arity of roles and any
role is allowed to have a single participant. We believe this is integral to
Roles and the multiplicity of the roles is a prominent feature of the language.

3.8.2 Empty Roles

Another issue to consider regarding the cardinality of a role is what to do
when all participants of a particular role leave resulting in an empty role. We
believe it is the programmer’s responsibility to decide what to do in the event
of such occurrences since we present a framework for interactions within
which programs are written; we make no guarantees about the programs
themselves.

An other approach would have been to forcibly end the conversation
when any of the roles becomes empty. However, we have allowed more
flexibility in Roles and roles with no participants can be detected due to lack
of communication. When members of a role are expecting messages from an
empty role, they will immediately receive an EOM message indicating there
is no message available to them due to the absence of participants. The
user can then decide whether he wishes to continue with an empty role, add
more participants to the empty role or simply terminate the conversation.
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3.8.3 Inter-Role Channels

We define a dedicated channel between each pair of communicating roles
rather than allocating a channel to each role. Even though our approach
leads to more channels, defining session types for channels is easier since we
can express the behaviour of each role with respect to a single other role
rather than having to globally define the overall behaviour of each role.

We believe it is much simpler to envisage the communication between
constituent roles locally and with respect to each other. Moreover, since
each channel is between two roles only, the recipients of messages are always
aware of the identity of senders. On the other hand, if each role was assigned
a dedicated channel, each message sent would have to identify the sender of
the message by including additional information in the message about the
role they belong to.

3.8.4 Messaging Subgroups and Individuals

The communication in the Roles language is broadcast by definition; that
is to say, every message addressed at a particular role will be received by all
members of that role. However, how does our language support for sending
a message to a particular individual or a subgroup of members in a role?
We delegate the responsibility of catering for subgroup messaging to the
programmer through definition of necessary roles. In other words, if the
programmer expects role r1 to communicate with a subgroup x of role r2
at some point in the future, he is expected to create a dedicated role for
this group namely the x role and his expected behaviour upon initiation of
the conversation. When role r1 wishes to talk to the said subgroup, he can
address the members in the x role and hence the subgroup communication
commences.

3.8.5 Underlying Paradigm

We adopt the object-oriented paradigm for the specification of the Roles
language.

3.8.6 Synchronicity

In design of Roles we have adopted an asynchronous (non-blocking) ap-
proach since it is more flexible. When participants of a role send a message,
they drop it in the recipients mail box and do not wait for the members of
the opposite role to receive it.
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3.8.7 Progress

In section 3.7 we made a conjecture that the Roles language has the progress
property. However, as we discuss in section 5.2, further work needs to be
done towards proving this property.

3.8.8 Role Participants

We have designed Roles so that the participants of each role are processes.
Storing the identity of threads as members of roles is crucial since otherwise
we cannot ensure safe communication. Suppose we reach a send instruc-
tion such as cv.ch.send(v). If the identity of threads is not recorded as
partcipants of roles, we cannot verify if this instruction is legal and if the
currently active thread can access the channel ch of conversation cv. De-
pending on the control flow of the program, communication instructions can
be reached at various locations and the only way to authorise these actions is
by keeping track of the threads in each role and hence checking their channel
access permissions. The expressions following the join statement stand for
the behaviour of the new member and are executed upon joining.

An other possibility is to populate roles with objects alongside threads.
This way the behaviour of members can be defined through methods of the
object and hence reusing the code when the same behaviour is expected from
several participants. Nevertheless, this can be simulated by simply calling
the said method following the join instruction. Thus, stroing objects as well
as threads suggests no real benefit but clutters the heap with unnecessary
information. We believe recording thread identities as the participants of
roles is the most concise and elegant way.

3.8.9 Spawning New Threads

We have included the spawn instruction in our syntax so that the user can
fork new threads as required. Therefore, we expect the user to spawn a
thread whenever a new participant is needed. Upon initiation of the con-
versation, threads representing participants of various roles start execution
in parallel.

Alternatively, we could fork a new thread each time a join statement is
reached. However, this way a thread can be a member of a single role only
since each join statement would lead to spawning a new thread and hence
one role per thread. Our approach allows for each thread to participate
in multiple roles, since each time a join instruction is reached, it is the
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currently active thread that joins the said role and joining multiple roles
can be achieved by having multiple join statements.

3.8.10 Role Representation

In Roles the declaration of a role in a conversation at source level consists
of the name of the role only. Initially we had designed Roles so that each
role was given a class type to acquire uniformity across members of a role if
necessary. However, at later revisions it was evident that associating each
role with a class type did not present any benefit since the participants of
roles are processes and can exhibit various behaviours. Therefore, we refined
our notation accordingly.

3.8.11 Dynamic Leaving and Joining

One of the motivations of designing Roles was to accommodate dynamic
joining and leaving of the participants. Our current system allows partic-
ipants to dynamically leave a conversation at any point during execution.
However, at this stage new members can only join a conversation if it has
not already started. Once a conversation is initiated, joining any of its roles
is no longer permitted. Nonetheless, as discussed in section 5.2, dynamic
joining is an important feature of the Roles language and one can extend
Roles to promote dynamic joining of new members.

3.8.12 Message Boxes

In Roles we have allocated two message boxes to each channel: one per
participating role. When a message is sent to a role, it is dropped in the
role’s message box and participating members will retrieve their messages
from this public “noticeboard”. Participants maintain indexing information
to determine where in the message box to look for the next message, since
once a member has retrieved a particular message he does not delete it
in case it has not been received by all participants. Therefore, indexing
information is necessary to avoid duplicate messages.

Undoubtedly, another obvious solution is to allocate a message box per
participant so that when a message is sent to a role it is delivered to the
message box of each member. However, this approach has many shortcom-
ings. For instance, whenever a member of a role performs a send action, he
needs to deliver its message to each and every participant of the opposite
role. In systems with large number of participants, this process can take a
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large amount of time resulting in a slow system. Moreover, having seper-
ate message boxes for each participant entails having multiple copies of the
same data in the heap. We believe this is a very inefficient use of space since
it clutters the heap with redundant information. This can be avoided if a
suitable indexing technique is in place and the messages sent to a role is
shared by all members through use of a common message box.

The design space guided many of the decisions made in the specification of
the Roles language. In the next chapter we explore the outcomes of the
design decisions taken throughout the specification of the Roles language
and compare it against its contemporaries.

Conclusions

In this chapter we have introduced the concept of Roles and specified the
foundations of the language. We first discuss the notions of a conversation
and a role, and contrast them to the approaches discussed in chapter 2.
Then we defined the basic syntax that makes up our language, as well as
the operational semantics and type system of the new concepts we have
introduced. We discussed these in depth, before conjecturing properties of
the type system that we believe Roles benefits from. Finally, we debated
the design decisions that we made during the development of Roles, and
discussed what alternatives arose and why they were not chosen. In the
next chapter we will look back on our work and evaluate it in detail.
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Chapter 4

Evaluation

Previous chapters have included an in-depth summary of the theory sur-
rounding and motivating our work on Roles as well as the specification of
the language itself. We specified the syntax, the operational semantics and
the type system of the Roles language in chapter 3. In the subsequent sec-
tions, we step through each of these in turn and assess them by comparing
them against contemporary approaches discussed in chapter 2. We discuss
the criteria for evaluation and the means by which we ensure these have
been fulfilled.

4.1 Roles Syntax

In order to evaluate the syntax of Roles, we will assess it according to the
following properties:

• A language’s expressiveness is assessed on the complexity of the sce-
narios and changes it can describe. An expressive language can model
complicated concepts without modification or extension.

• A language’s conciseness is assessed on the size of the expressions
required to represent concepts. A concise language can express its
basic concepts with very little written syntax.

• A language’s readability is assessed on the clarity with which it ex-
presses meaning. Readable languages do not have excessive numbers
of operators and can be both read and written quickly and clearly.

In order to compare the expressiveness, conciseness and readability of
Roles with the existing approaches discussed in chapter 2, we rewrite com-
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mon examples from the literature and those listed in chapter 2 also. Our
intention is to produce a variety of scenarios that capture the various fea-
tures of the Roles language, particularly those that it has in common with
the other languages we have discussed in chapter 2. By doing this, we can
compare the languages directly to evaluate whether Roles is more concise or
expressive. We also wish to ensure that we at least do not lose any expres-
siveness - any example that is expressible in another session type language
should also expressible in Roles.

We also present examples that exhibit the new features that are unique
to Roles. One example of this is a scenario that demonstrates dynamic leav-
ing of participants midway through a conversation; or an example to show
broadcast communication, where a particular participant sends the same
message to many recipients at once.

In the examples to follow, the parts of the code written in blue de-
note syntax that is exclusive to the language of Roles rather than generic
object-oriented languages. On the other hand, code written in red indicates
statements pertaining to session types or communication actions.

4.1.1 Auction Example

In section 2.5.4 we presented the auction communication system as well as
its description in the syntax of dyadic session types. Later in section 2.6.4
we described this protocol in the notation of global session types. In what
follows we will rewrite this in the syntax of the Roles language. We have
assumed the existence of array constructs as well as auxiliary methods such
as getItems(), max() and getMyBid() to simplify the example.

The auction protocol is defined in the Auction conversation written
in Roles syntax as given in Figure 4.1. It consists of three roles, namely
Auctioneer, Audience and Bidder as well as channels (ab, aa) between
the auctioneer and the bidders and the auctioneer and the audience respec-
tively.

Note that in each channel definition, the specified session type denotes
the communication between the two parties from the first role’s perspective.
For instance, in the ab channel declaration the prescribed session denotes
the behaviour of the Auctioneer role and the behaviour of the Bidder role is
given by the dual of this session which is obtained by replacing every ! with
? and vice versa. Furthermore, a name given to a channel is the endpoint
used by the first role and the other endpoint is referred to by calling the dual
endpoint. For instance, in the ab channel declaration, the participant(s) of
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the Auctioneer role use the ab endpoint to access this channel, whereas the
participants of the Bidder role use d(ab) endpoint.

In this example we have assumed that there are two items on auction.
Hence, the session type associated with the ab channel is given as:

!Item.?Bid.!Bid.!Item.?Bid.!Bid.

In other words, the session consists of two cycles of !Item.?Bid.!Bid
where the auctioneer announces the item on auction (!Item), receives bids
from all bidders (?Bid), announces the winning bid (!Bid) and repeats the
same cycle for the next item on auction.

The session associated with the aa channel is similar. Since the audience
do not participate in the bidding process, the behaviour of this channel is
given as two cycles of !Item.!Bid, where the auctioneer first announces the
item on auction and then announces the winning bid.

The code given in Figure 4.2 describes the Auction system where an
instance of the Auction conversation (auc) is created, the items on auction
are acquired and finally the participants of each role are obtained through
createAuctioneer, createBidder and createAudience methods and the
conversation is initiated.

Note that there is no restriction on the number of participants in each
role and one can allow as many participants in each role as needed. While we
have allowed multiple participants in the Bidder and Audience roles, there
is only one participant in the Auctioneer role since this is a requirement of
the example, analogous to the real-life Auction.

The code for creating an Auctioneer is given in Figure 4.3, where a new
process is forked to join this role. This process now assumes the role of the
Auctioneer and iterates over the list of items on auction. In each iteration,
he announces the current item to both Bidders and the Audience using the
ab and aa channels respectively, receives the amount each bidder is willing
to pay and finally announces the maximum bid received - the winning bid -
to both Bidders and the Audience.

Figure 4.4 shows the code used for creating a Bidder where a new pro-
cess is forked to join this role. The for loop in the code corresponds to the
multiple items on auction. At each iteration the process calls the bid()
method where he communicates with the Auctioneer. He receives infor-
mation about the item on auction, sends back the value he’s willing to pay
(myBid) for this item and is finally notified of the winning bid.

Note that the signature of the bid() method includes an assertion of the
form requires [(auc, d(ab)): ?Item.!Bid.?Bid ] which expresses the
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precondition of this method. It requires the current thread to have access
to the d(ab) channel and for its behaviour to comply with the prescribed
session type, i.e. ?Item.!Bid.?Bid.

The code for creating a new member of Audience is shown in Figure 4.5
and can be justified similarly.

Conversation Auction{
role auctioneer;
role audience;
role bidder;

channel auctioneer audience aa: !Item.!Bid.!Item.!Bid;
channel auctioneer bidder ab: !Item.?Bid.!Bid.!Item.?Bid.!Bid;

}

Figure 4.1: Code for the Auction conversation

4.1.2 Roles Versus Contemporary Approaches

We described the auction scenario in the notation of dyadic session types
in section 2.5.4. We also specified the same scenario in the syntax of global
session types in section 2.6.4. In this section we compare the auction example
written in the Roles language to its analogous description.

Note that the code given in Figure 4.1 is what we compare against the
contemporary approaches since it is used to define the communication pro-
tocol of the auction system in which various roles are specified and session
types are assigned to different channels. On the other hand, the code given
in figures 4.2, 4.3, 4.4 and 4.5 is an example of user code stating a possible
way in which the the auction system can be described. Since the Roles lan-
guage is based on the object-oriented paradigm, the user code is written in
this style. We added this code to give the reader a better understanding of
the Roles language and further clarify some of its novel features. We do not
specify the user code when considering contemporary approaches in sections
2.5.4 and 2.6.4 since they are abstract languages based on the π-calculus no-
tation and are not associated with any programming languages.
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Class AuctionC{
Auction auc; // The auction conversation

public static void main(){
auc = new Auction();

Item [] items;
items = getItems(2);
int length = items.length;

createAuctioneer(auc, items);

createBidder(auc, length);
...
createBidder(auc, length);

createAudience(auc, length);
...
createAudience(auc, length);

auc.start();
}

}

Figure 4.2: Code for the AuctionC class (main Auction class)
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String createAuctioneer(Auction auc, Item [] items) requires null{
spawn{
auc.auctioneer.join();
Bid winner;
for(item in items){
auc.aa.send(item);
auc.ab.send(item);
int i = 0;
Bid [] bids;
x = auc.ab.receive() in [if (x != EOM){

bids[i] = x;
i++; } ]

winner = max(bids);
auc.aa.send(winner);
auc.ab.send(winner);

}
}
return ‘‘Auctioneer created’’;

}

Figure 4.3: Code for method createAuctioneer
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String createBidder(Auction auc, Int length) requires null{
spawn{
auc.bidder.join();
for (int i= 0 i<length; i++){

bid();
}

}
return ‘‘Bidder created’’;

}

void bid(Auction auc) requires [(auc, d(ab)) : ?Item.!Bid.?Bid ]{
Item item;
x = auc.d(ab).receive() in [if (x != EOM){

item = x } ]
Bid myBid = new Bid(getMyBid());
auc.d(ab).send(myBid);
Bid winner;
x = auc.d(ab).receive() in [if (x != EOM){

winner = x } ]
}

Figure 4.4: Code for the “createBidder” method

89



String createAudience(Auction auc, Int length) requires null{
spawn{
auc.audience.join();
for (int i= 0 i<length; i++){

listen(auc);
}

}
return ‘‘Audience created’’;

}

void listen(Auction auc) requires [(auc, d(aa)) : ?Item.?Bid ]{
Item item;
x = auc.d(aa).receive() in [if (x != EOM){

item = x } ]
Bid winner;
x = auc.d(aa).receive() in [if (x != EOM){

winner = x } ]
}

Figure 4.5: Code for the “createAudience” method
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When we compare the auction scenario described in Figure 4.1 with
its analogous descriptions in dyadic session types and global session types
(cf. sections 2.5.4 and 2.6.4), it is clear that the Roles notation is much
more concise. The strength of Roles lies in its ability to describe multi-
party systems succinctly. In Figure 4.1, the aa and ab channels characterise
the communication pattern between the auctioneer and all members of the
audience and the auctioneer and all bidders respectively. Since Roles allows
us to classify different parties in a communication system as members of
various roles, the behaviour of participants of the same role can be defined
collectively to avoid repetition. For instance, in the auction example, all
bidders present the same manner when communicating with the auctioneer.
Roles allows us to gather all bidders in a role called Bidder and define
the behaviour of the Bidder role with respect to other roles rather than
explicitly declaring the communication pattern exhibited by each individual
bidder. As a result, the auction system is specified using three roles and
only two channel declarations where the number of channels is invariant
to the number of participants in each role. In other words, even though
Roles supports dynamic leaving of participants, there is no need to remove
channels when the number of members in a role decrease.

On the other hand, the auction scenario when written in the syntax of
dyadic session types requires dedicated channels to be defined between each
member of the audience and the auctioneer as well as distinct channels be-
tween each bidder and the auctioneer. Although the expected behaviour
between each member of the audience and the auctioneer is identical, we
still have to explicitly repeat this communication pattern for each and ev-
ery one of them. Therefore, we end up with a large system consisting of
repetitive sessions and identical behaviours that is avoided in Roles. The
auction example when written in the dyadic session types notation leads to
(n+m) channel declarations where there are n members of the audience and
m bidders.

Similarly, when we specify the auction system in the syntax put forward
by the global session types, each participant is allocated a distinct channel
over which it receives messages from all other members of the system. This
approach suffers from the same shortcomings as the dyadic session types.
Although each bidder exhibits the same communication pattern when inter-
acting with the auctioneer, this behaviour must be repeated for each channel
declaration leading to (n+m+1) channels and repetitive code. Similarly, the
number of channels is dependent on the number of participants and different
instances of the auction scenario must be explicitly specified since different
number of participants means different number of channel declarations and
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hence different systems.
The following table gives an overview of the complexity of the descrip-

tion for each approach assuming the presence of n members of the audience
and m bidders.

Complexity A
pp

ro
ac

h

Dyadic Session Types Global Session Types Roles
No. of channels n+m n+m+1 2

Other - − 3 roles

Figure 4.6: The complexity of different approaches when specifying the auc-
tion example.

An other advantage of the Roles language over the contemporary ap-
proaches lies in that when a scenario is described using conversations, it
abstarcts away from the details of the scenario such as the number of at-
tending parties and provides the user with a general template that can be
used repeatedly. For instance, if the user needed to define two different
instances of an auction where the number of bidders and members of the
audience varies from one to the other, he can simply instantiate the same
conversation twice without having to redefine any of its constituent roles or
channels.

However, depending on the cardinality of the bidders or the audience,
different instances of the auction example has to be modified accordingly.
That is to say, if the user wants to define two different auctions with dif-
ferent number of bidders or the audience, he needs to specify each scenario
separately since the number of channel declarations directly depends on the
number of participants. This is of course a very tedious job for the user since
he needs to redefine every single channel needed in each system separately
and code re-using is not possible.

4.1.3 Online Book Purchase Example

In this example we specify the protocol characterising the process of buying
a book from an online retailer such as Amazon. The aim of this example is
to demonstrate the feature of dynamic leaving of the participants of a role.
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This system consists of a single retailer and a single buyer and is defined
in the OnlineBookPurchase conversation written in Roles syntax as given
in Figure 4.7. We could of course assume the existence of many buyers.
However, since those features of Roles pertaining to multiparty communi-
cation and broadcast messaging are already demonstrated in the previous
example, we have limited the number of buyers to one for simplicity. This
conversation consists of two roles, namely the retailer and the buyer roles
as well as a channel (rb) between the retailer and the buyers.

Figure 4.8 shows the code for the main class where an instance of the
OnlinebookPurchase conversation is created and new participants join the
new conversation.

The session type associated with the rb channel asserts that first the
buyer sends the title of the book and then waits for a response form the
retailer about the price of the desired book. At this point, if the buyer is
interested in the book at the given price he sends back his positive response
to the retailer as well has his address. The retailer then informs the buyer
of the estimated delivery time.

Figure 4.10 shows the code for creating a new buyer. First a new thread
is spawned to join the buyer role. The new buyer then communicates the
title of the book to the seller and waits for a response regarding the price
of the book. Once he has received the price from the retailer, he needs to
decide whether or not he is interested in the book at the given price. If he is,
he sends back a positive response announcing that he is willing to buy the
book and the communication continues as stated in the session type of the
channel. On the other hand, if the buyer is no longer interested in the book,
he simply leaves the conversation and the communication between the two
of them ends.

The code for creating a new retailer is given in Figure 4.9. Once the new
thread to assume the role of the retailer is forked, communication between
the buyer and the retailer begins. He receives the title of the desired book
and sends back its price. If the buyer is interested in the book at the price
given, the retailer receives a positive response from him and they move
on to exchange the address and the delivery date. However, if the buyer
has lost interest in the book, he leaves the conversation and no further
communication will take place in between them. Therefore, once the receive
instruction is executed, the buyer will receive no value but EOM indicating
that there was no messages from the buyer to retrieve and as a result, the
value of the confirm field remains as null. Hence, before proceeding to
the next step of communication, the buyer checks the value of the confirm
field. In the event that it is set to null, the retailer leaves his role and the
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conversation ends. Otherwise, they continue to communicate as discussed
earlier.

Even though in the current version of the Roles language, session types
do not support branching and selection, this behaviour can be replicated
by making the participants dynamically leave a role. For instance, in this
example the buyer is given the choice to either continue with purchasing
the book or quit the system, a behaviour usually described with selection
constructs in session types. However, we replicated this protocol by having
the buyer leave the conversation if he is no longer interested in the purchase
or continue shopping otherwise. On the other hand, the retailer’s course
of action depends on the buyer’s choice, a behaviour commonly described
through branching in session types. We similarly reproduced this behaviour
through making the retailer leaving his role dynamically in the event the
buyer loses interest in the book.

Conversation OnlineBookPurchase{
role retailer;
role buyer;

channel retailer buyer rb:?Title.!Price.?Positive.?Address.!Date;
}

Figure 4.7: Code for the OnlineBookPurchase conversation
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Class OnlineBookPurchaseC{
OnlineBookPurchase obp; // The auction conversation

public static void main(){
obp = new OnlineBookPurchase();

createRetailer(obp);

createBuyer(obp);
...
createBuyer(obp);

obp.start();
}

}

Figure 4.8: Code for the OnlineBookPurchaseC class (main OnlineBookPur-
chase class)
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String createRetailer(OnlineBookPurchase obp) requires null{
spawn{
obp.retailer.join();
String title;
x = obp.rb.receive() in [if (x != EOM){

title = x; } ]

obp.rb.send(getPrice(title) );
Positive confirm;
x = obp.rb.receive() in [if (x != EOM){

confirm = x; } ]

if(confirm != null){
Address address;
x = obp.rb.receive() in [if (x != EOM){

address = x; } ]

obp.send(getDeliveryDate(title, address) );
}
else{

obp.retailer.leave();
} in the style of declarative programming

}
return ‘‘Retailer created’’;

}

Figure 4.9: Code for method createRetailer
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String createBuyer(OnlineBookPurchase obp) requires null{
spawn{
obp.buyer.join();
obp.d(rb).send(getTitle() );
Price price;

x = obp.d(rb).receive() in [if (x != EOM){
price = x } ]

if(price <= budget){
buy();

}
else{

obp.buyer.leave();
}

}
return ‘‘Buyer created’’;

}

void buy() requires [(obp, d(rb)) :!Positive.!Address.?Date ]{
Positive pos = new Positive();
obp.d(rb).send(pos);
obp.d(rb).send(getMyAddress() );

Date deliveryDate;
x = obp.d(rb).receive() in [if (x != EOM){

deliveryDate = x } ]
}

Figure 4.10: Code for the “createBuyer” method
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4.2 Operational Semantics

Global session types as discussed in chapter 2 represent the nearest point of
comparison for our work on Roles, and we will therefore attempt to evaluate
our approach to operational semantics against theirs.

One fundamental difference between our semantics and that of global session
types lies in the rewriting rules of the communication actions. For instance,
the semantics of the receive action in the global session types is as follows.

s?(x); P | s : v.h −→ P[v/x] | s : h

In global session types, message queues for different channels are treated
as processes and run in parallel with communication actions. In the above
rule, s : v.h is a message queue for the s channel. A receive instruction over
a channel can only be reduced if it is running in parallel with the message
queue of the channel, in which case the desired message is retrieved from
the queue and the modified queue is returned.

However, in our approach the concept of message queues is replaced by
noticeboards shared amongst participants of a role. Noticeboards are cre-
ated upon initiation of a conversation and hence in the semantics of the
receive action we can guarantee their presence in the heap when a receive
instruction is executed.

One further difference between the semantics of Roles and the global session
types is of that each approach includes rules which the other lacks. We have
introduced new instructions to the syntax of Roles such as join, leave and
start to enable dynamic leaving of participants as discussed in depth earlier.
Although we have expanded the rewriting rules of Roles in comparison to
that of global session types, we believe this is for good reasons since it
provides the user with a more flexible language where advanced features
such as dynamic leaving is supported.

On the other hand, the global session types include rewriting rules for
session delegation and branching. Unfortunately, including these features in
Roles was beyond the timescale of the project. We include these in further
work in section 5.2.
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4.3 Type System

In this section we evaluate the type system of the Roles language. As in
previous section, we compare our type system against that of the global
session types discussed in chapter 2.

4.3.1 Type Safety

A type system is sound if it can be shown that no well-typed program can
cause a typing error. We discuss the implications of this in section 2.2 when
we discuss common communication bugs and the manner in which typing
could potentially solve them. These are examples of situations that any
well-typed program written in the Roles language should never encounter,
if the type system is sound.

In section 3.6 we introduced various definitions leading to our conjecture
that the type system of the Roles language is sound through the subject
reduction conjecture (cf. 3.6.6). Proof of the subject reduction property
was, unfortunately, outside of the timescale of the project. However, this
forms a part of our further work which is discussed in section 5.2.

Here again, we compare the type system of the Roles language with that
of the global session types [32]. One of the major differences between the
type system of the two approaches lies in the runtime typing rule for the
message queues. Since message queues are considered as processes in the
global session types, they need to be typed at runtime.

Suppose we have the following threads running in parallel where process
p is sending the value true over channel s followed by number 3 as the next
value. Process q is expecting to receive two values on channel s and s : ∅
represents an empty message queue for channel s.

s! < true >; s! < 7 >; 0 | s : ∅ | s?(x); s?(y); 0

After one step of reduction we have the following processes.

s! < 7 >; 0 | s : true | s?(x); s?(y); 0

The message queue for channel s is typed as follows where [ ] indicates
a hole since processes p and q have not finished interaction over channel s.

s : {! < bool >; [ ]@p, [ ]@q}

Finally, after a few steps of reductions when there are no possible reduc-
tions are left, the message queue for channel s can be typed as follows.
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s : {! < bool >; ! < int >; end@p, ? < bool >; ? < int >; end@q}

The runtime typing rule for a message queue is then given below, denot-
ing that if a process p has dropped a message of type U in message queue of
channel k and process q has received a message of type U from the message
queue of channel k, then message exchanging has taken place between p and
q and the type of the message queue can be modified accordingly.

k! < U >; H@p, k? < U >; T@q
k→ H@p, T@q [TR− Com]

The notion of typing message queues in the global session types is analo-
gous to our notion of runtime session environment, Σ, when typing the com-
munication actions, send and receive. When typing a process at runtime,
the initial session environment (Σ) is modified depending on the expression
being executed producing the final session environment (Σ′).

However, unlike the typing rule for message queues in global session
types, in our approach when we type a send or receive action, we only in-
spect the session type assigned to the current process for the desired channel.
For instance, when we type an expression of the form x = κ.ch.receive()
in e, we only inspect the session type of the (κ, ch) pair in Σ. We do not
check the session type of (κ, d(ch)). When a conversation starts, the session
environment is updated with the session types of all of the channels of the
conversation and their duals. Hence, if as a participant of a role we expect
to receive a message of type t and this is reflected in Σ, we know that the
participants of the opposite role are also bound by Σ to show the dual be-
haviour and send a value of type t. Hence we skip checking the session type
of the dual channel and seek to retrieve the message from the notice board.
The message we expect to receive is either available in the notice board or
the participants of the dual role have not finished sending it in which case
we will have to wait. Either way, we know that the type of the message we
receive will agree with the type we are expecting to receive.

Therefore, we believe our type system offers stronger guarantees in terms
of type safety.

4.3.2 Progress

In section 3.7 we conjecture that the Roles language has the progress prop-
erty. However, when compared to the contemporary approaches such as
the global session types, the Roles language makes weaker promises when
it comes to the progress property. Our promise is that a process P is alive
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so long as it is well-typed; that is, it can be typed by the typing rules in
section 3.5.10. However, the weakness of our guarantee lies in the definition
of liveness given in section 3.7. There are several ways for a process to get
stuck and hence not be alive anymore.

For instance, if a process is exucuting an expression e which involves
starting a conversation that has already started, it gets stuck. Unfortunately,
we cannot pre-empt this situation since it cannot be detected at compile
time. We cannot statically check if a conversation has been initiated since it
depends on the flow of the program and can be only determined at runtime.

A similar case arises when an expression involves joining a conversation
that has already started. As discussed above, the status of a conversation
cannot be detected at compile time and therefore we cannot statically detect
such expressions.

A final case in which an expression e can get stuck is by trying to send
or receive a value over a channel of a conversation that has not yet started.
Although the reasons why e gets stuck in this case are similar to those
mentioned in the previous cases, the kind of block e faces in this case can
be distinguished from the former ones. If e gets blocked due to the reasons
discussed in the last two cases, it will be permanently blocked and it will
never recover. However, if e gets stuck while trying to communicate over a
channel of a conversation that has not yet been initiated, there is a chance
for e to recover. At any point, if the conversation in question is started,
e can resume communicating over its channels. In a sense, e can be seen
as busy waiting while the conversation is not initiated. Of course if the
conversation is never started, e will be blocked forever.
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4.4 Challenges

In this section we discuss some of the major difficulties and obstacles encoun-
tered in the design of the Roles language, both in terms of design decisions
and complexities with our approach. We discuss how we resolved them, and
justify our solutions.

4.4.1 Learning Curve

As with any project of such a deeply theoretical nature, there is an initial
learning curve that must be passed in order to cover significant ground. The
breadth of work that has already been done in the field of session types is
considerable. Making sense of the many diverse approaches to the topic
was not simple, and required us to work to understand a variety of different
notations, definitions and ways of working. In addition, the Roles language
represents a novel approach to the concept of session types. As such, our
work challenged us to create new solutions to problems not encountered in
other approaches, including those that we describe in the remainder of this
section.

4.4.2 Refactoring and Refinement

When designing the Roles language and specifying its operational semantics
we went through several refactoring phases. There were multiple occasions
where we had to retract and reconsider the design decisions we had made
either due to inconsistencies in the end result or in order to better the
system at hand. We have presented a list of design specific desicisons that
we revisited and revised.

Participants of Roles

We initially committed to populate the roles with objects and ask the user
to provide us with an expression to be executed upon joining. Our original
syntax for joining a conversation was cv.r.join(o, e) where o referred to
the object to join role r of conversation cv and e was the expression to be
run once the join instruction was completed.

At later stages we encountered serious problems regarding the safety of
communication actions. For instance, when the send command cv.ch.send(v)
was to be executed, we could not determine the identity of the participant
intiating this action. In other words, whenever a thread reached a send ac-
tion, we could not identify the participant and his attending role who was in
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charge of the send action. As a result, we could not guarantee the legality
of any of the communication actions since we had no mechanism in place
to separate rogue instructions from those permitted and hence we could not
authorise them.

Of course there were quick fixes available. For instance, we could add an
additional argument to each communication action denoting the identity of
the object that was behind the action. However, this was a highly inelegant
approach and would have decreased the readability of Roles. Therefore, we
decided to populate the roles with process identifiers and determine their
access rights to channels depending on the roles they attend. This way,
whenever a send instruction is reached, we can check the identity of the
currently running thread against those permitted to communicate over the
channel and hence authorise valid instructions only.

Moreover, we ommitted the expression that determined what to be ex-
ecuted next from the syntax of the join instruction, since it led to redun-
dant information in the heap in the syntax of join that could be easily
pre-empted. We took a more natural approach and had the subsequent ex-
pressions after the join statement to be executed upon completion of next.

The Judgement of Reduction Rules

Altering the way we populate the roles as discussed above, resulted in mod-
ifying the signature of the rewriting rules. We had to include the identity
of the currently active thread (π) in the signature to extract various infor-
mation from the heap. For instance, each participant keeps track of several
indices in the heap to access different channels and communicate messages
accordingly. This indexing information is organised in the heap by means of
mapping each process identifier to the relevant set of indices. Throughout
execution, whenever a send (receive) instruction is reached, the indices for
the current thread are looked up in the heap to determine the destination
(source) of the message. To accomplish this, we equipped each reduction
rule with the identifier of the current process (π).

Role Declaration

In the previous versions of our specification, the syntax of Roles required
each role to be assigned a class type upon declartion. This was mainly to
share common behaviours and methods between participants of a role since
we had originally committed to populating roles with objects. However, as
discussed in the ‘Participants of Roles’ section, we later decided to populate
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roles by threads. Therefore, associating each role with a class type did no
longer benefited us and after further inspection, we altered the syntax so
that the declaration of roles consists of role identifiers only.

Spawning New Threads

In the earlier versions of the Roles language, we did not have the spawn
instruction included in the syntax. New threads could not be spawned by
the user and whenever a join instruction was reached, the system would fork
a new thread in the background and add it to the desired role.

This approach came with its faults and restrictions. If we spawned a
new thread every time a new participant was to join a role, the user would
not be aware of the identity of the new process and thus could not ask for a
particular participant to leave a role at later stages. This could be fixed by
returning the identity of the new thread to the user at the price of losing its
readability. In large systems with many participants, the user would have
to keep track of the identity of each and every participant, something that
the user rightfully expects to be taken care of by the system.

In addition to its inelegance, this approach suffers from other limitations.
For instance, scenarios in which a participant attends multiple roles cannot
be reproduced in this approach since each join instruction results in creating
a distinct new thread and one thread cannot be a participant of many roles.

Given the restrictions discussed above, we abandoned this approach and
sought alternatives. In the final revision of the Roles language, the user is
in charge of spawning new processes as required.

Initiation of a Conversationn

Originally, we did not have the start instruction included in the syntax
of the Roles language. A conversation would initiate upon declaration and
since we did not allow for new members to join the roles of an ongoing
conversation, conversation constructors had additional arguments denoting
the participants of each role. It was soon evident that this approach was
unwieldy as it reduced both the readability and conciseness of the language
by loading so much information in the conversation constructors.

Thus, we included the start instruction in the syntax so that the user
can explicitly initiate a conversation when needed. New participants can
join the roles of a conversation prior to its initiation.
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Type System and the Receive Instruction

At later stages of designing the Roles language, while specifying its type
system, we discovered a fatal problem with our specification that we had
formerly overlooked.

Previously, the syntax of the receive instruction was the mirror of the
send action where we would write cv.ch.receive() to receive the next
value on channel ch of conversation cv. This instruction would return a
single message at a time; consecutive receive instructions were required to
retrive all messages in the current receiving round and an EOM message
would finally be returned to mark the end of the current round.

However, when we began work on the type system, we failed to correctly
type the receive instruction. Since the number of participants in a role is
not statically known, the type system cannot determine when to advance the
session environment. For instance, suppose for initial session environment Σ
we have:

Σ(cv, ch) =?Char.!Int

and that we are type checking the code shown in Figure 4.11 at compile time.

...
cv.ch.receive();
cv.ch.send(7);
...

Figure 4.11: This code could not be correctly type-checked in earlier versions
of Roles

Suppose that channel ch is defined between the r1 and r2 roles and
that the current thread is a participant of the r1 role. We now assume two
different scenarios.

First, assume there is only one participant in the r2 role. When the
receive statment in the code is reached, we receive a single message from
the participants of the r2 role. Since there is only one member in the r2
role, there are no further messages to be retrieved and hence this receiving
round is complete. Therefore, when typing the receive statement, it is safe
to modify the session environment Σ so that:

Σ(cv, ch) =!Int.
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On the other hand, assume that there are several participants in the
r2 role. When the receive statement in the code is reached, we receive a
single message from the participants of the r2 role. However, since there is
more than one member in the r2 role, there are still more messages to be
retrieved and hence this receiving round is not complete. Therefore, when
typing the receive statement, the ?Char part of the session has not yet
been fully consumed and we cannot change Σ to reflect:

Σ(cv, ch) =!Int

As demonstrated in the scenarios discussed above, if we allow the receive
instruction to mirror the send action and retrieve one message at a time, we
cannot safely type check our language. Thus, in the final version of the Roles
language, the receive statement is only allowed to be used in a particular
format. We use the following syntax to receive messages.

x = cv.ch.receive() in e

As specified by the semantics of the receive rule in section 3.4, this in-
struction acts as a loop and consecutively retrieves the messages communi-
cated in the current receiving round and substitutes it for x in the expression
e. When all messages in the round are retrieved, an EOM message is received
to indicate the end of the current round. When a receive instruction is
typed by the typing rules described in section 3.5.8, it is safe to advance the
initial session environment (Σ), since we know at the end of this instruction
all messages in the current receiving round are retrieved.

This issue would not have arisen in other contemporary approaches dis-
cussed in chapter 2, since they do not make use of broadcast communication
and so the concept of retrieving multiple messages is irrelevant.

Method Signature

Originally, we had defined the signature of method declarations in Roles
similar to that of standard object-oriented languages; that is, without the
session environment included. However, at later stages while working on the
type system of Roles, we discovered a problem that proved the type system
of Roles unsafe.

Suppose we have the code shown in Figure 4.12. When executing the
method main in class C1, two instances of the conversation CV, namely cv1
and cv2 are created. The current thread then joins the role r1 of cv1, cv1
is started and the m1 method is called. In the body of the m1 method, we
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first execute the cv1.ch.send(7) instruction which is permissible since the
current thread is a member of the r1 role in conversation cv1 and the session
type of ch allows the participants of role r1 to send an integer.

On the other hand, execution of cv2.ch.send(2) is not allowed since
the current thread is not a member of role r1 in conversation cv2. Moreover,
the cv2 conversation has not started yet, hence no communication is allowed
over its channels. However, this was overlooked in our older designs and such
illegal actions were permitted.

Therefore, we modified the syntax of method declarations in Roles so
that it includes a session environment asserting the precondition of the
method. In other words, this session type asserts the kind of behaviour
it expects from the threads executing its body. If the precondition is not
fulfilled, the execution of the method is not permitted and hence illegal
actions can be pre-empted.

Conclusions

In this chapter we evaluated and summarised our work on Roles. We have
discussed our work on the syntax, semantics and type system and stepped
through the strengths and weaknesses of our approach. In particular, we
compared our approach with those described in chapter 2 and demonstrated
the benefits of the Roles language. Finally, we discussed the difficulties
met in designing this language, and the challenges we overcame in order
to produce the version presented in this report. In the next chapter we
summarise our work and look to the future development of the language.
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conversation CV{
role r1;
role r2;

channel ch r1 r2 : !Int.?Char
}

public class C{
void m1(){

cv1.ch.send(7);
cv2.ch.send(2);

}
public static void main(){
CV cv1 = new CV();
CV cv2 = new CV();

cv1.r1.join();
cv1.start();
m1();

}
}

Figure 4.12: An example code showing the necessity of session environments
in method declarations.
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Chapter 5

Conclusion

In this section we conclude our work; summarising Roles and its major
achievements, outlining further work and extensions to develop the language
and finally reflecting on the project and its future evolution.

5.1 Achievements

In this project we introduced a new language, Roles, designed to describe
the communication scenarios between groups of participants. In chapter 3,
we specified the syntax of Roles, described its operational semantics and
presented its type system. We then made conjectures about the properties
of the type system, in particular those pertaining to type safety and progress
of programs written in the language of Roles.

The language of Roles was developed while bearing the shortcomings
of existing approaches in mind. Global session types do not allow for mul-
tiparty communication in which the number of participants dynamically
change. On the other hand, while dyadic session types cater for dynamic
channel creation, they suffer from inevitable duplication while defining com-
munication scenarios with multiple peers (cf. discussion in section 2.5.5).
Therefore, in Roles for the participants to dynamically leave a role during
an ongoing conversation.

Another strength of the Roles language is its simplicity for broadcast
communication. Since the channels are between roles rather than individual
participants, communication is by definition broadcast. When sending a
message over a channel, all participants of the role at the receiving end-point
will receive the communicated message and therefore, message broadcast is
the default form of communication.
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Both dyadic and global session types allow for giving distinct behaviours
to each of the participants since the session type is defined per channel and
therefore per participant. Whereas in the Roles notation, the behaviour of
all members of a role is given in a single session type as prescribed by the
channel the said role communicates over. This behaviour can be replicated
in Roles by introducing new roles into the conversation. In other words,
whenever a different behaviour is expected from one of the participants, a
new role should be created and required channels between this role and the
existing ones must be defined with the anticipated session type attached to
it.

We believe that the Roles notation is at least as expressive as dyadic
and global session types while showing more flexibility for representing large
systems with complex multiparty interaction scenarios.

5.2 Further Work

In this report we have presented a groundwork for the language of Roles,
defining the syntax, operational semantics and the type system. In this
section we discuss the next steps that must be taken in order to extend,
strengthen and better define the language and its properties. While the
language in its present state can be reasoned about and evaluated at length,
the further work we list below is integral to bringing the Roles language to
a level where it can be compared with its contemporaries.

5.2.1 Session Types as Primitive Types

In the current version of the Roles language, session types are treated as
special types used in channel declarations in order to describe the commu-
nication protocol of the said channel. In other words, session types are not
considered as primary types used in field or method declarations; we cannot
instantiate fields of this type or use them in method signatures as argument
or return types.

The domain of the recognised types by the Roles language consists of the
classes and conversations only (t = C | CV) as presented in Figure 3.1. We
would like to expand this to include session types as primary types where
they can be used to declare the type of fields or methods. This way, not
only we increase the readability of the language, we can also use the session
types as arguments to conversation constructors where the user can create
to instances of the same conversation with different behaviours if he sees fit.
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5.2.2 Conversations as Communicated Types

The notion of delegation as discussed in section 2.4 is irrelevant in the con-
text of the Roles language since communication channels are only accessible
by those members who participate in the relevant roles. If we communicate
channels as messages, the recipient cannot use the received channel unless
he already has access rights to the channel in question through role member-
ship. Nevertheless, one can replicate similar behaviour as the higher order
sessions by communicating conversations as messages. Once a conversation
instance is received, the recipient can join any of its roles and start com-
municating so long as the conversation has not yet started or dynamically
joining a role is permitted (Cf. 5.2.4).

Our current version of the Roles language does not support higher order
sessions. Session types consist of ordinary communication actions such as
input (?) and output (!) where the type of the communicated message
ranges over the classes only. However, one can extend Roles by allowing
conversation types to be communicated over channels which will in turn
provide user with higher order sessions as discussed above.

5.2.3 Signature of Sessions

In our current version of the Roles language, the session types used to de-
scribe the behaviour of communication channels allow for primary commu-
nication actions, namely input (?) and output (!), only. However, it is
highly desireable for communication systems such as Roles to provide the
user with higher level session constructs such as recursion, branching / se-
lection and session variables. Session variables are particularly useful when
session types can be used as primary types as discussed in section 5.2.1.
Once, the Roles language is equipped with such powerful constructs, many
other use cases and common examples from the literature can be specified
in our notation. We have written a few examples in Roles syntax in Ap-
pendix A where we have assumed the existence of session constructs such as
recursion and session variables in Roles.

5.2.4 Dynamic Joining

One of the strengths of the current version of the Roles language lies in
its suport for dynamic leaving. That is, participants of roles can end their
membership in a role at any point during the conversation whether or not
the conversation has already started. When a member leaves its role (r1),
if the participants of the opposite role (r2) were to receive messages from
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members of r1, they no longer expect to receive as many messages since
the cardinality of r1 has changed and they will move on once they receive
messages from all other participants.

However, we can take this one step further by allowing participants to
dynamically join a conversation. In other words, one can extend Roles by
allowing new members to join any role at any point during the conversation
whether or not it has already been initiated. Inclusion of this feature requires
thorough investigation since several design alternatives are available and
design decisions are to be taken carefully.

For instance, when a new member joins a conversation, how do we define
the sessions associated with the channels it can use to communnicate? The
first answer that springs to mind is to start each channel with its initial
session type defined at source level. Nevertheless, this can clash with the
behaviour of other participants since they might have already consumed the
session past the initial declaration by performing the expected communica-
tion actions in which case the new member will fail to advance and hence
get blocked forever.

Another possibility is to inspect the current members of the role and for
each channel find the slowest participant, that is the one who has consumed
the least of the initial session compared to other participants. We can then
initialise the new member by associating each of its channels with the ses-
sion type of the slowest participant over that channel. Nonetheless, this
approach also suffers from inconsistencies. For instance, the new member
will not be aware of the past interactions. Suppose that the advancement
of the conversation depends on the decisions the participants make (e.g. a
consensus); in the event that participants base their decisions on knowledge
obtained through previous interactions, the new member will have no infor-
mation available and hence can get blocked forever, in doing so, can prevent
the entire system from progression.

There are ways of resolving this problem, however. One can provide
the new member with a history of previous communications or can assert
preconditions on methods which allow for new members to dynamically join
a role. This was beyond the scope of this project but we hope to devise a
robust solution in the future.

5.2.5 Establishing Properties of the Type System

In sections 3.6 and 3.7, we discussed various properties of the type system
of Roles. In particular, we conjectured that the type system of the Roles
language benefits from both soundness and progress properties. In future
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work we hope to establish these properties by providing proofs for each one
of these properties as well as proofs for the lemmas subsequently employed
to validate our results.

5.2.6 Towards a Distributed System

Our work currently defines participants as threads, all operating concur-
rently on the same machine. The motivation for a session type language,
however, is to secure systems of arbitrary size and complexity. In particular,
further work on the language must broaden the Roles language so that it
can be applied to distributed systems, where participants of different roles
can be potentially running on physically separate machines, communicating
through a complex network. For large and unreliable networks such as the
Internet, this will require us to focus more on the robustness and security
of our language, and demand that we prove more properties of the language.

A variant of the auction example is given in appendix A to give the reader
a flavour of the end result once the further work discussed in this section is
undertaken in particular those discussed in sections 5.2.3 and 5.2.4.

5.3 Reflection

At the start of this report we discussed the importance of reliable and safe
communication in modern computing. However, the motivation for Roles is
not just the problem of safe communication, but also the shortcomings of
existing attempts to solve that problem. The process of design and refine-
ment outlined in this report came from a desire to create a solution that
was flexible and expressive, not merely functional.

Of course, much work remains to be done to bring Roles to a level where
it can be widely used, as we have discussed in the previous section. We
outline such further work in section 5.2 because we believe Roles is capable of
developing into something genuinely useful to programmers. Our motivation
for designing within the object-oriented paradigm was precisely this - so that
we would bear in mind at all times the restrictions of implementation, and
design something that could be built upon an existing framework language,
such as Java. We believe that with Roles we have laid foundations that can
used be without learning large volumes of new theory, whilst being flexible
enough not to restrict the user in what they can express, and hope that an
implementation will be possible in the near future.

113





Bibliography

[1] http://www.oasis-open.org/committees/download.php/23964/
wsbpel-v2.0-primer.htm.

[2] Web services choreography working group. web services choreography
descriptio language.

[3] Martin Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: the spi calculus. In CCS ’97: Proceedings of the 4th ACM
conference on Computer and communications security, pages 36–47,
New York, NY, USA, 1997. ACM.

[4] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. J. ACM, 42(1):124–142, 1995.

[5] Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. Correspon-
dence assertions for process synchronization in concurrent communica-
tions. J. Funct. Program., 15(2):219–247, 2005.

[6] Eduardo Bonelli, Adriana B. Compagnoni, and Elsa L. Gunter. Type-
checking safe process synchronization. Electr. Notes Theor. Comput.
Sci., 138(1):3–22, 2005.

[7] L. Caires and H. T. Vieira. Conversation types. In Giuseppe Castagna,
editor, Programming Languages and Systems, 18th European Sympo-
sium on Programming, ESOP 2009, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 03 2009.

[8] Marco Carbone, Kohei Honda, and Nobuko Yoshida. A calculus of
global interaction based on session types. Electron. Notes Theor. Com-
put. Sci., 171(3):127–151, 2007.

[9] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
communication-centred programming for web services. pages 2–17.
Springer, 2007.

115



[10] Marco Carbone, Kohei Honda Nobuko Yoshida, Robin Milner, Gary
Brown, and Steve Ross-talbot. A theoretical basis of communication-
centred concurrent programming. Technical report, 2006.

[11] Curtis Clifto. Concurrency in the curriculum: Demands and challenges.
First Workshop on Curriculum in Concurrency and Parallelism, 2009.

[12] William Cook and Jayadev Misra. Structured interacting computations.
pages 139–145, 2008.

[13] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.
Asynchronous Session Types and Progress for Object-Oriented Lan-
guages. In Marcello Bonsangue and Einar Broch Johnsen, editors,
FMOODS’07, volume 4468 of LNCS, pages 1–31. Springer, 2007.

[14] D. E. Culler and G. K. Maa. Assessing the benefits of fine-grain par-
allelism in dataflow programs. In Supercomputing ’88: Proceedings of
the 1988 ACM/IEEE conference on Supercomputing, pages 60–69, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[15] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino,
and Nobuko Yoshida. Bounded Session Types for Object-Oriented Lan-
guages. In Frank de Boer, Marcello Bonsangue, Susanne Graf, and
Willem-Paul de Roever, editors, FMCO’06, volume 4709 of LNCS,
pages 207–245. Springer-Verlag, 2007.

[16] Mariangiola Dezani-ciancaglini, Ugo De Liguoro, and Nobuko Yoshida.
On progress for structured communications. In In TGC07, LNCS.
Springer, 2007.

[17] Mariangiola Dezani-ciancaglini, Dimitris Mostrous, Nobuko Yoshida,
and Sophia Drossopoulou. Session types for object-oriented languages.
In In Proceedings of ECOOP06, LNCS, pages 328–352. Springer, 2006.

[18] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alex Ahern, and
Sophia Drossopoulou. ldoos: a Distributed Object-Oriented language
with Session types. In Rocco De Nicola and Davide Sangiorgi, edi-
tors, TGC 2005, volume 3705 of LNCS, pages 299–318. Springer-Verlag,
2005.

[19] Mariangiola Dezani-ciancaglini, Nobuko Yoshida, Alexander Ahern,
Er Ahern, and Sophia Drossopoulou. A distributed object-oriented
language with session types. In In Symposium on Trustworthy Global
Computing, LNCS, pages 299–318. Springer, 2005.

116



[20] Professor Sophia Drossopoulou. L2 - a formal, minimal, imperative,
class based, object-oriented language with inheritance, without over-
loading.

[21] Sophia Drossopoulou, Dezani Dezani-Ciancaglini, and Mario Coppo.
Amalgamating the Session Types and the Object Oriented Program-
ming Paradigms. In Multiparadigm Programming with Object-Oriented
Languages 2007 (an ECOOP workshop), July 2007.

[22] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James R. Larus, and Steven Levi. Language support
for fast and reliable message-based communication in singularity os.
SIGOPS Oper. Syst. Rev., 40(4):177–190, 2006.

[23] Dennis Gannon and Dan Reed. Parallelism and the cloud.

[24] Pablo Garralda, Adriana Compagnoni, and Mariangiola Dezani-
Ciancaglini. Bass: boxed ambients with safe sessions. In PPDP ’06:
Proceedings of the 8th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 61–72, New
York, NY, USA, 2006. ACM.

[25] Simon Gay, Vasco Vasconcelos, Antonio Ravara, Simon Gay, Vasco
Vasconcelos, and Antnio Ravara. Session types for inter-process com-
munication, 2003.

[26] Simon J. Gay and Malcolm Hole. Types and subtypes for client-server
interactions. In ESOP ’99: Proceedings of the 8th European Symposium
on Programming Languages and Systems, pages 74–90, London, UK,
1999. Springer-Verlag.

[27] Elena Giachino, Matthew Sackman, Sophia Drossopoulou, and Susan
Eisenbach. Softly safely spoken: Role playing for session types. In
PLACES ’09, 2009. To appear.

[28] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[29] Kohei Honda. Types for dyadic interaction, 1993.

[30] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based pro-
gramming. In In ESOP98, volume 1381 of LNCS, pages 122–138.
Springer-Verlag.

117



[31] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Web services,
mobile processes and types. EATCS Bulletin, 91:160–188, 2007.

[32] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. SIGPLAN Not., 43(1):273–284, 2008.

[33] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based dis-
tributed programming in java. In ECOOP ’08: Proceedings of the 22nd
European conference on Object-Oriented Programming, pages 516–541,
Berlin, Heidelberg, 2008. Springer-Verlag.

[34] David Kitchin, Adrian Quark, William Cook, and Jayadev Misra. The
Orc programming language. In David Lee, Antónia Lopes, and Arnd
Poetzsch-Heffter, editors, Formal techniques for Distributed Systems;
Proceedings of FMOODS/FORTE, volume 5522 of LNCS, pages 1–25.
Springer, 2009.

[35] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and
Beng-Hong Lim. Integrating message-passing and shared-memory:
early experience. SIGPLAN Not., 28(7):54–63, 1993.

[36] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel.
Message passing versus distributed shared memory on networks of work-
stations. SC Conference, 0:37, 1995.

[37] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[38] Robin Milner. Functions as processes. In ICALP ’90: Proceedings of
the 17th International Colloquium on Automata, Languages and Pro-
gramming, pages 167–180, London, UK, 1990. Springer-Verlag.

[39] Robin Milner. Communicating and mobile systems: the pi-calculus.
Cambridge University Press, New York, NY, USA, 1999.

[40] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Inf. Comput., 100(1):1–40, 1992.

[41] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, ii. Inf. Comput., 100(1):41–77, 1992.

[42] Marius Nagy and Selim G. Akl. On the importance of parallelism for
quantum computation and the concept of a universal computer. In
Proceedings of the Fourth International Conference on Unconventional
Computation, pages 176–190, 2005.

118



[43] Charlene O’Hanlon. A conversation with steve ross-talbot. Queue,
4(2):14–23, 2006.

[44] Jeff Parkhurst, John Darringer, and Bill Grundmann. From single core
to multi-core: preparing for a new exponential. In ICCAD ’06: Proceed-
ings of the 2006 IEEE/ACM international conference on Computer-
aided design, pages 67–72, New York, NY, USA, 2006. ACM.

[45] A. Regev, W. Silverman, and E. Shapiro. Representation and simula-
tion of biochemical processes using the pi-calculus process algebra. Pac
Symp Biocomput, pages 459–470, 2001.

[46] Matthew Sackman and Susan Eisenbach. Session Types in Haskell: Up-
dating Message Passing for the 21st Century. Technical report, Imperial
College London, June 2008.

[47] Herb Sutter. The free lunch is over: A fundamental turn toward con-
currency in software. Dr. Dobb’s Journal, 30(3), 2005.

[48] Herb Sutter and James Larus. Software and the concurrency revolution.
Queue, 3(7):54–62, 2005.

[49] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE ’94: Proceedings of the 6th
International PARLE Conference on Parallel Architectures and Lan-
guages Europe, pages 398–413, London, UK, 1994. Springer-Verlag.

[50] Antonio Vallecillo, Vasco T. Vasconcelos, and Antnio Ravara. Typing
the behavior of objects and components using session types, 2002.

[51] Vasco Vasconcelos, Simon Gay, and Antonio Ravara. Session types for
functional multithreading. In In CONCUR04, volume 3170 of LNCS,
pages 497–511. Springer-Verlag, 2004.

[52] Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Type check-
ing a multithreaded functional language with session types. Theor.
Comput. Sci., 368(1-2):64–87, 2006.

[53] H. T. Vieira, L. Caires, and J. C. Seco. The conversation calculus:
A model of service oriented computation. In Sophia Drossopoulou,
editor, Programming Languages and Systems, 17th European Sympo-
sium on Programming, ESOP 2008, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 03 2008.

119



[54] M. Y. Wu and D. D. Gajski. Hypertool: A programming aid for
message-passing systems. IEEE Trans. Parallel Distrib. Syst., 1(3):330–
343, 1990.

[55] Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and
type discipline for structured communication-based programming revis-
ited: Two systems for higher-order session communication. Electron.
Notes Theor. Comput. Sci., 171(4):73–93, 2007.

120



Appendix A

Example Scenarios for Roles
Language Evaluation

Auction Example with Roles

In this example we describe the protocol defining the auction communica-
tion system in Roles syntax. We assume that the syntax of Roles has been
extended to accommodate advanced features listed in section 5.2.

The AdvancedAuction protocol has been described in Figure A.1. There
are several items on sale and the auction consists of multiple rounds - one
round per item - denoted by the recursion variable X. Each round of the
auction is timed and at each round the auctioneer first announces the item
on auction. He then repeatedly listens for bids from bidders interested in the
item (recursion variable T) and announces the highest bid so far (recursion
variable Y).

The code for initialising the auction system is given in Figure A.2 where an
instance of the AdvancedAuction conversation is created and the methods
createAuctioneer and createAudience are called to generate new partic-
ipants for the auctioneer and audience roles, respectively.

Figure A.3 gives the code for creating a new member of the auctioneer
role. First, a new thread is spawned to join the auctioneer role. The new
thread (auctioneer) then iterates through the list of items on auction. At
each round, he announces the item and its starting bid which includes the
reserved price and indicates that the auction is ongoing. Henceforth, he
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repeatedly checks to see if the timeout for the current item has reached; if
there is still time remaining, he receives more bids from the bidders, cal-
culates the highest bidder and if the highest bid is different from the last
time, he announces it to the audience. On the other hand, if the timeout is
reached, he he announces the winner of the item and indicates the end of
auction for the current item.

The code for creating a member of the audience is given in Figure A.4. Af-
ter a new thread is forked and the new participant has joined the audience
role, the new member then enters consecutive rounds of auction for various
items on sale. At each round he first receives the item description and its
starting bid from the auctioneer. He then repeatedly checks if the auction
has ended; if there is still time for further bids and he is interested in the
item, he becomes a bidder by joining the bidder role. He sends his bid to
the auctioneer and leaves the bidder role.

conversation AdvancedAuction{
role auctioneer;
role audience;
role bidder;
channel auctioneer audience aa :µX.!Item.!Result.µY.!Result.Y.X;
channel auctioneer bidder ab :µT.?Bid.T;

}

Figure A.1: Code for the AdvancedAuction conversation
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Class AdvancedAuctionC{
AdvancedAuction auc;

public static void main(){
auc = new Auction();

Item [] items;
items = getItems();
int length = items.length;

createAuctioneer(auc, items);

createAudience(auc, length);
...
createAudience(auc, length);

auc.start();
}

}

Figure A.2: Code for the AdvancedAuctionC class (main AdvancedAuction
class)
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String createAuctioneer(AdvancedAuction auc, Item [] items) requires null{
spawn{
auc.auctioneer.join();
Result winner;
Bid currentBid;
Bid [] bids;

for(item in items){

auc.aa.send(item);
winner = new Result(reservedBid, false);
auc.aa.send(winner);

while(!isFinished() ){
x = auc.ab.receive() in [if (x != EOM){

bids[i] = x; } ]
Bid newBid = max(bids);
if (newBid > currentBid){
winner = new Result(newBid, false);
auc.aa.send(winner);

}
}
winner = new Result(currentBid, true);
auc.aa.send(winner);

}
}
return ‘‘Auctioneer created’’;

}

Figure A.3: Code for method createAuctioneer
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String createAudience(AdvancedAuction auc, Int length) requires null{
spawn{
auc.audience.join();
Bid bid;
for(int i = 0; i< length; i++){
Item item;
x = auc.d(aa).receive() in [if (x != EOM){

item = x; } ]
while(true){
x = auc.d(aa).receive() in [if (x != EOM){

bid = x;
} ]

if (bid.done){
break;

}
else if (bid.pid != self && interested){
auc.bidder.join();
auc.d(ab).send(getMyBid() );
auc.bidder.leave();

}
}

}
}
return ‘‘Audience member created’’;

}

Figure A.4: Code for method createAudience
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English Auction Example

An English auction, also called an open ascending price auction because of
the properties it has, is the most common form of auction. The auctioneer
may announce prices, bidders in turn may bid openly against each other. A
successful bid is one higher than the existing winning bid. When no-one is
willing to make a higher bid, the auction ends and the winning bidder pays
the value of his bid. One exception to this is if the winning bid is lower
than the reserve price set by the seller. If the winning bid is lower than this
price, it will not be sold.

The protocol defining the auction communication system is given below
in Roles syntax.

conversation EnglishAuction {
role Auctioneer
role Attendants
role Bidders
channel Auctioneer Attendants k1 :!Item.!Price
channel Bidders Attendants k2 : µT.!Price.T

}

The Attendant role includes the bidders, the auctioneer and everyone
else present at the auction. At the start of the auction, the Auctioneer
announces the item on sale and its reserved price to the attendants (bidders
and audience) over the k1 channel. At this point, the bidders constantly
bid for the item announcing the amount of their bid to the auctioneer, other
bidders and the audience. They do so by sending the bid value over the k2
channel addressed at the attendants.

Program Committee Meeting Example

When an author submits a paper to a conference it must first pass a Pro-
gramme Committee who will decide whether or not to accept it. Such a
committee is composed of members, of which one is the leader of the com-
mittee also. When the committee receives a paper, the members vote on
whether or not to accept the paper.
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If the vote results in a majority decision, the leader contacts the author
and informs them of the decision. If no majority exists and the vote is
drawn, the leader asks the members to re-consider the paper and vote again
in order to produce a majority. She will do this subsequent times until a
decision is reached.

conversation ProgramCommitteeMeeting {
role Author
role ComMember
role ComLeader
channel ComLeader ComMember k1 : µT.!Paper.µX.?V ote.!Result.X.T
channel ComLeader Author k2 : µT.?Paper.!Result.T

}

The behaviour of channel k between the committee leader and the com-
mittee members can be described as follows. The leader constantly intro-
duces new papers to the committee members and asks them to vote. This
is described with the recursion variable T . Once the committee members
are informed of the paper, voting starts and in the event of not reaching
a majority decision, the voting process is repeated. This is given as the
recursion variable X.

Furthermore, the committee leader communicates with the paper au-
thors over the k2 channel. The committee leader constantly listens for new
paper proposals from the authors and notifies them of the decision made
regarding the acceptance of the paper.
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Appendix B

Operational Semantics of
Roles

Process Context

P1, χ P2, χ
′

Pa | P1| Pb , χ Pa | P2 | Pb , χ
′

(e, π), χ (e′, π)|P, χ′

(Ctxt[e], π), χ (Ctxt[e′], π)|P, χ′

Spawn NewC

π′ /∈ χ
χ′ = χ[(π, null, null) 7→ (0, 0, 0)]

(spawn{e}, π), χ (null, π)|(e, π′), χ′

FS(C) = C f
ι /∈ χ

(new C , π), χ (ι, π), χ[ι 7→ (C, f : null)]

Fld Join

χ(ι) = (C, f : v)

(ι.fi, π), χ (vi, π), χ

χ(κ) ↓3= ε
χ′ = χ[ (κ, r)+ = π]

(κ.r.join(), π), χ (null, π), χ′
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FldAss Meth

χ′ = χ[ι 7→ χ(ι)[f 7→ v]]

(ι.f := v , π), χ (v, π), χ′

χ(ι) = (C, f : v)
mBody(Prog,C,m) = e

(ι.m(v) , π), χ (e[ι/this][v/x] , π), χ

NewCV Leave

RS(Prog,CV) = r
κ /∈ χ
χ′ = χ[κ 7→ (CV, r : ε, ε)]

(new CV, π) , χ (κ, π), χ′

π ∈ χ(κ) ↓2 (r)
χ′ = χ[ (κ, r)− = π]

(κ.r.leave(), π), χ (null, π), χ′
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Start

χ(κ) = (CV, r : π, ε)
χ′′ = χ[κ 7→ (CV, r : π, ChInit)]

∀ ch ∈ ChanIDs(Prog,CV) : ChInit(ch, 0) = ε
∀ i 6= 0 : ChInit(ch, i) = ⊥

∀ r ∈ RS(Prog,CV) : ∀ π ∈ parts(Prog, χ, κ, r) : ∀ ch ∈ role channels(Prog,CV, r) :
χ′(π, κ, ch) = (0, 0, 0)
χ′(z) = χ′′(z) if z /∈ (π, κ, ch)

(κ.start(), π), χ (null, π), χ′

Send

χ(π, κ, ch) = (i, j, k)
χ1 = χ[(π, κ, ch) 7→ (i + 1, j, k)]
χ2 = χ1(κ) ↓3 [(ch, i) 7→ χ1(κ) ↓3 (ch, i) + +[v]]

(κ.ch.send(v), π), χ (null, π), χ2

Receive1

χ(π, κ, ch) = (i, j, k)
k = ] senders(Prog, χ, κ, ch)− 1
χ′ = χ[(π, κ, ch) 7→ (i, j + 1, 0)]

(x = κ.ch.receive() in e, π), χ (EOM, π), χ′

Receive2

χ(π, κ, ch) = (i, j, k)
k < ] senders(Prog, χ, κ, ch)− 1
χ(κ) ↓3 (dual(ch), j)[k] = v
χ′ = χ[(π, κ, ch) 7→ (i, j, k + 1)]

(x = κ.ch.receive() in e, π), χ ( (e[v/x]; x = κ.ch.receive() in e) , π), χ′
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Appendix C

Static Typing Rules of Roles

Axiom Null

Γ; Σ ` this : Γ(this); Σ
Γ; Σ ` x : Γ(x); Σ

Prog ` C�c
Prog ` CV�cv

Γ; Σ ` null : C; Σ
Γ; Σ ` null : CV; Σ

Subsumption NewC

Prog ` C ≤ C′

Γ; Σ ` e : C; Σ′

Γ; Σ ` e : C′; Σ′

Prog ` C�c

Γ; Σ ` new C : C; Σ

Seq Fld

Γ; Σ ` e1 : t1; Σ′′

Γ; Σ′′ ` e2 : t2; Σ′

Γ; Σ ` e1; e2 : t2; Σ′

Γ; Σ ` e : C,Σ′

Γ; Σ ` e.f : F(Prog,C, f); Σ′
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FldAssign Method

Γ; Σ ` e : C; Σ′′

Γ; Σ′′ ` e′ : F(Prog,C, f); Σ′

Γ; Σ ` e.f = e′ : F(Prog,C, f); Σ′

Γ; Σ ` e : C; Σ0

Γ; Σi−1 ` ei : ti; Σi i ∈ {1...n}
mType(Prog,C,m) = t1...tn → t,Σ′

Σ′ �pre Σn

Γ; Σ ` e.m(e1...en) : t; Σn − Σ′

NewCV Spawn

Prog ` CV�cv

Γ; Σ ` new CV() : CV; Σ

Γ; ∅ ` e : t; ∅

Γ; Σ ` Spawn{e} : t; Σ

Start

Γ(cv) = CV
∀ch ∈ CH(Prog,CV) : session(Prog,CV, ch) = s → Σ(cv, ch) = s

Γ; Σ ` cv.start() : CV; Σ

Leave

Γ(cv) = CV
r ∈ RS(Prog,CV) ∀ch ∈ role channels(Prog,CV, r) : Σ0(cv, ch) 6= Udf
∀chi ∈ role channels(Prog,CV, r) : Σi = Σi−1[(cv, ch) 7→ ε]
n = ]role channels(Prog,CV, r)

Γ; Σ0 ` cv.r.leave() : CV; Σn
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Join

Γ(cv) = CV
r ∈ RS(Prog,CV) ∀ch ∈ role channels(Prog,CV, r) : Σ0(cv, ch) = Udf
∀chi ∈ role channels(Prog,CV, r) : Σi = Σi−1[(cv, chi) 7→ session(Prog,CV, chi)]
n = ]role channels(Prog,CV, r)

Γ; Σ0 ` cv.r.join() : CV; Σn

Send

Γ(cv) = CV Γ(v) = C
ch ∈ CHS(Prog,CV)
Σ(cv, ch) = !C.s

Γ; Σ ` cv.ch.send(v) : C; Σ[(cv, ch) 7→ s]

Receive

Γ(cv) = CV
ch ∈ CHS(Prog,CV)
Γ; Σ ` e : t; Σ′

Γ(x) = C Σ(cv, ch) = Σ′(cv, ch) = ?C.s

Γ; Σ ` (x = cv.ch.receive() in e) : t; Σ′[(cv, ch) 7→ s]
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Appendix D

Runtime Typing Rules of
Roles

Null EOM

Prog ` C�c
Prog ` CV�cv

χ; Σ `r (null, π) : C; Σ
χ; Σ `r (null, π) : CV; Σ

Prog ` C�c

χ; Σ `r (EOM, π) : C; Σ

ObjAddr ConvAddr

χ(ι) ↓1= C

χ; Σ `r (ι, π) : C; Σ

χ(κ) ↓1= CV

χ; Σ `r (κ, π) : CV; Σ

Subsumption FldAssign

Prog ` C ≤ C′

χ; Σ `r (e, π) : C; Σ′

χ; Σ `r (e, π) : C′; Σ′

χ; Σ `r (e, π) : C; Σ
χ; Σ `r (e′, π) : F(Prog,C, f); Σ′

χ; Σ `r (e.f := e′, π) : F(Prog,C, f); Σ′

136



Seq Fld

χ; Σ `r (e1, π) : t1; Σ′′

χ; Σ′′ `r (e2, π) : t2; Σ′

χ; Σ `r (e1; e2, π) : t2; Σ′

χ; Σ `r (e, π) : C; Σ

χ; Σ `r (e.f, π) : F(Prog,C, f); Σ

NewC NewCV

Prog ` C�c

χ; Σ `r (new C, π) : C; Σ

Prog ` CV�cv

χ; Σ `r (new CV(), π) : CV; Σ

Method

χ; Σ0 `r (e, π) : C; Σ0

mType(Prog,C,m) = t1...tn → t,Σ′

χ; Σi−1 `r (ei, π) : t′i; Σi Prog ` t′i ≤ ti for i ∈ {1...n}
Σ′ �pre Σn

χ; Σ0 `r (e.m(e1...en), π) : t; Σn − Σ′

Spawn

χ; ∅ `r (e, π′) : t; ∅ for some π′ /∈ χ

χ; Σ `r (Spawn{e}, π) : t; Σ

Join

χ(κ) ↓1= CV
π /∈ χ(κ) ↓2 (r) χ(κ) ↓3= ε
∀ i{1≤i≤]role channels(Prog,CV,r) = n} : Σi = Σi−1[(κ, chi) 7→ session(Prog,CV, chi)]

χ; Σ0 `r (κ.r.join(), π) : CV; Σn
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Leave

χ(κ) ↓1= CV π ∈ χ(κ) ↓2 (r)
∀ i{1≤i≤]role channels(Prog,CV,r) = n} : Σi = Σi−1[(κ, chi) 7→ ε]

χ; Σ0 `r (κ.r.leave(), π) : CV; Σn

Start

χ(κ) ↓1= CV

χ; Σ `r (κ.start(), π) : CV; Σ

Send

χ(κ) ↓1= CV ch ∈ CHS(Prog,CV)
Σ(κ, ch) =!C.s χ; ∅ `r v : C′; ∅
Prog ` C′ ≤ C Σ′ = Σ[(κ, ch) 7→ s]

χ; Σ `r (κ.ch.send(v), π) : C; Σ′

Receive

χ(κ) ↓1= CV ch ∈ CHS(Prog,CV)
χ; Σ ` (e, π) : t; Σ′

Σ(κ, ch) = Σ′(cv, ch) =?C.s

χ; Σ `r ( (let x = κ.ch.receive() in e) , π) : t; Σ′[(cv, ch) 7→ ε]
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