
Imperial College London

Department of Computing

GPU based real-time optical �ow computation

by

Clément Moussu [C.M.]

Submitted in partial ful�lment of the requirements for

the MSc Degree in Advanced Computing of Imperial College London

September 2010



2



Abstract

This document is a report for the individual project submitted in partial ful�lment of the requirements
for the MSc degree in advanced computing of Imperial College London. Recent developments around
parallel optical �ow computation motivated us to develop � more than a simple library � a prototype
for a free and open-source real-time optical �ow computation platform. We developed, at �rst, a library
that provides real-time optical �ow computation routines using GPU parallelisation and a platform,
built on top of it, includes tools and interfaces to allow people with only a small computing background
to use it. The library gives good results in terms of e�ciency � between 10 and more than 60 frames per
second depending on the algorithm used � and average results in terms of accuracy � 14.53◦ of average
angular error at best for Yosemite sequence. The command-line tools, flow-compute and flow-tool,
are combined in make�les wrappers for an automatic �ow generation, accessible to any person who is
able to deal with command-lines. Finally the flow-studio prototype application gives an insight of
a graphical user interface for �ow computation. This detailed report provides all the theoretical and
implementation details of the library and tools.



2



Acknowledgements

I acknowledge, amongst others, Dr. Andrés Bruhn and the nvidia company for credited extracts of
their works used or summarised in this report.

I would like to thank Dr. Daniel Rueckert for giving me the opportunity and responsibility of
working on such an interesting, technical and demanding subject. The con�dence he seemed to have
in my abilities and the freedom of action he let me enabled me to give my best and to be creative on
solutions to be found.

This project could not have given any results without all the help given to me byDr. Luis Pizarro,
and I would like to extend my heartfelt gratitude to him. His wide knowledge and perfect teaching skills
helped my fast understanding of complex concepts that would have been much more time-consuming
to comprehend without him. He constantly encouraged my ideas and challenged me to implement new
features, never accepting less than my best e�orts. His sense of humour and humanity also helped me
to always keep a good mental during that long project.

I thank Dr. José Delpiano for his help on multigrid solvers and CLG method comprehension. I
also want to thank Dr. Richard Newcombe for his help on getting better performances with CUDA

and the time he spent on giving me solutions for some of my problems.

I thank Alexandra Frommlet who, in addition to the revision and correction of this report, sup-
ported me during the entire project and always trusted in me.

Finally I give special thanks to my fellows and friends Matthieu Oviedo and Olivier Jolit.
Matthieu for his idea of using make�les for �ow generation, Olivier for his idea of blending sequence
images with color �ow representations, both for our frequent � stormy � debates about computer science
and the interest they showed for my project.

I want to thank the open-source community for providing all the great tools that I used for this
project: GNU Make, gcc, ImageMagick, gnuplot, vim, LATEX, Tikz & PGF. . . And more generally to
make our life easier faster and more organised.

See also sequences credits in appendix C.

3



4



Contents

Abstract 2

Acknowledgements 3

Table of contents 8

List of �gures 10

Introduction 11

1 Optical �ow 13

1.1 Correspondence problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Stereo vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Particle image velocimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Medical image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Optical �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Optical �ow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Grey value constancy assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Brightness constancy assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Issues to deal with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Assumptions on motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 Noise and distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.5 The trade-o� between accuracy and e�ciency . . . . . . . . . . . . . . . . . . . . 18

1.4 Diversity of algorithms and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Feature-Based and energy-based models . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Nondense and dense models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Continuous and discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.4 Synthetic Figure of Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Theoretical aspects 21

2.1 Error measure and ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Angular error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Endpoint error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Average error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Block-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Block matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Sum of di�erences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5



CONTENTS CONTENTS

2.2.3 Normalised cross correlation method . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Occlusion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Continuous models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Gaussian presmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Normal �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 The aperture problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Lucas & Kanade method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Variational approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Horn & Schunck method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 CLG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 Jacobi solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.2 Jacobi solver with lagged nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.3 Multigrid solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.4 Nonlinear multigrid solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 CUDA Parallel programming 41

3.1 GPUs and CPUs: two di�erent species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 CUDA API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The choice of using CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Kernels demysti�ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Best practises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Memory allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Data transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Flow control instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Texture memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Characteristics of our GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 E�ective speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Time versus image size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Bandwidth versus image size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.3 Speedup versus image size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Implementation details 55

4.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Interlaced matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Layers matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Advanced operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Gaussian smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Restriction and prolongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.5 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6



CONTENTS CONTENTS

4.2.6 Prolongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Motion tensor computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Memory transfers and data conversion . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Presmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Derivative products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Postsmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 Motion tensor color layers merging . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.6 Overall algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Jacobi solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Jacobi solver with lagged nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Multigrid solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Tools developed 73

5.1 flow-compute command-line tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Parameter �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.2 Work�ow generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.3 Advanced timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.4 Detailed debugging trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.5 Video handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 flow-tool command-line tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Flow generation using GNU Make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Advanced �ow generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 flow-studio gui application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Results 83

6.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Lucas & Kanade method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.2 Horn & Schunck method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.3 CLG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.4 Nonlinear CLG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Performances of algorithms for a single application . . . . . . . . . . . . . . . . . 87

6.2.2 Performances of each algorithm for di�erent applications . . . . . . . . . . . . . . 88

6.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Conclusion 91

Appendices 93

A Notations and legends 93

A.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Motion tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Flow vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 First order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.5 Laplacian operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.6 Color �ow representation legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7



CONTENTS CONTENTS

B Full-multigrid solvers debugging 97

B.1 V-Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2 W-Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C Sequences credits 101

C.1 Yosemite sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.2 Urban3 sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.3 Army sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.4 Flowerpots sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.5 Ettlinger-Tor sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 106

8



List of Figures

1.1 Example of stereo vision [Credits: Middleburry university] . . . . . . . . . . . . . . . . . 14

1.2 Example of particle image velocimetry [Credits: PIVlab] . . . . . . . . . . . . . . . . . . 14

1.3 Example of medical image registration [Credits: Daniel Rueckert] . . . . . . . . . . . . . 15

1.4 Example of optical �ow [Credits: Middleburry university] . . . . . . . . . . . . . . . . . 15

1.5 Issues to deal with: occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Issues to deal with: illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Assumptions on optical �ows: a road with cars . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 Camera noise and distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Optical �ow algorithms classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Aperture problem: uncertainty on �ow computation . . . . . . . . . . . . . . . . . . . . 24

2.2 Aperture problem: motion interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Filling-in e�ect illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 CLG solver matrix layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 V-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 W-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Cascadic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Full multigrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Computational power: CPU vs. GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Processor Surface used for transistors: CPU / GPU [Credits: nvidia] . . . . . . . . . . . 42

3.3 CUDA : abstraction layers [Credits: nvidia] . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 CUDA : Grid, blocks and threads [Credits: nvidia] . . . . . . . . . . . . . . . . . . . . . 44

3.5 CUDA : Memory organisation [Credits: nvidia] . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Characteristics of GPU used for experiments . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 CUDA : Heterogeneous programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Element-wise matrix multiplication: time of computation vs. image size . . . . . . . . . 52

3.9 Element-wise matrix multiplication: bandwidth vs. image size . . . . . . . . . . . . . . . 53

3.10 Element-wise matrix multiplication: speedup vs. image size . . . . . . . . . . . . . . . . 53

4.1 Interlaced matrices layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Layers matrices layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Layout of block-shared array in convolution kernel . . . . . . . . . . . . . . . . . . . . . 58

4.4 Coalesced image copy to block-shared memory in convolution kernel . . . . . . . . . . . 58

4.5 Parallel convolution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Parallel restriction operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Parallel prolongation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Presmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Derivatives products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Postsmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9



LIST OF FIGURES LIST OF FIGURES

4.11 Motion tensor components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.12 Motion tensor computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.13 Convergence of the Jacobi solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.14 Yosemite sequence size and grid steps for each depth of a multigrid scheme . . . . . . . . 70
4.15 Yosemite sequence motion tensor at di�erent grid levels . . . . . . . . . . . . . . . . . . 71

5.1 flow-compute: parameter �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 flow-compute: work�ow generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 flow-compute simple timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 flow-compute multi-scale timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Video handling in flow-compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 flow-tool conversion chain �owchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 flow-tool: error computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.8 flow-tool: stats �le generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.9 flow-tool: ground truth comparison montages . . . . . . . . . . . . . . . . . . . . . . . 80
5.10 flow-tool: mixes between color and vector �eld representations . . . . . . . . . . . . . 81
5.11 flow-tool: blends between sequence image and color representation . . . . . . . . . . . 81
5.12 flow-studio: an interactive gui based �ow generation tool . . . . . . . . . . . . . . . . 82

6.1 Lucas & Kanade algorithm result for Yosemite sequence with clouds . . . . . . . . . . . 84
6.2 Horn & Schunck algorithm result for Yosemite sequence with clouds . . . . . . . . . . . 85
6.3 CLG algorithm result for Yosemite sequence with clouds . . . . . . . . . . . . . . . . . . 86
6.5 Nonlinear methods: discontinuities preserved . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Nonlinear CLG algorithm result for Yosemite sequence with clouds . . . . . . . . . . . . 87
6.6 Performances of algorithms for a single application . . . . . . . . . . . . . . . . . . . . . 88
6.7 Performances of Lucas & Kanade algorithm for di�erent applications . . . . . . . . . . . 88
6.8 Performances of CLG algorithm for di�erent applications . . . . . . . . . . . . . . . . . 88
6.9 Performances of nonlinear CLG algorithm for di�erent applications . . . . . . . . . . . . 89
6.10 Example of biomedical images optical �ow computation . . . . . . . . . . . . . . . . . . 90

A.1 Color �ow representation legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1 Yosemite sequence with clouds [Credits: Lynn Quam] . . . . . . . . . . . . . . . . . . . . 101
C.2 Yosemite sequence without clouds [Credits: Lynn Quam] . . . . . . . . . . . . . . . . . . 101
C.3 Urban3 sequence [Credits: Middleburry university] . . . . . . . . . . . . . . . . . . . . . 102
C.4 Army sequence [Credits: Middleburry university] . . . . . . . . . . . . . . . . . . . . . . 102
C.5 Flowerpots stereovision sequence [Credits: Middleburry university] . . . . . . . . . . . . 102
C.6 Ettlinger-Tor sequence [Credits: H.-H Nagel] . . . . . . . . . . . . . . . . . . . . . . . . . 103

10



Introduction

Many scienti�c �elds such as medicine, biology or computer vision require to track objects in video se-
quences. Optical �ow problem aims at �nding the displacement of some features over successive frames
of a video sequence. To this end the same features have to be identi�ed on di�erent images. Then a
displacement can be computed between the previous and the new location of a feature. Features may
move, appear or disappear over time which complicates a lot the task. Moreover issues such as noise,
illumination and shadows make this problem impossible to be solved exactly.

Several approaches and models have been developed around optical �ow computation. Block-based
models are the simplest approach to the problem but provide poor results. Continuous models were
then introduced in improve quality of results and to be able to compute dense optical �ows. Dense
means that one value can be computed for each pixel of a sequence. A branch in continuous models,
called variational methods, regroups all the methods that perform constrained minimisation of contin-
uous energy functions. This strategy involves the numerical resolution of coupled systems of partial
di�erential equations which is computationally demanding. This large amount of computation results
in high quality results.

Image frames are in most of applications acquired at a rate of more than thirty images per second.
This lets less than thirty milliseconds to one processing algorithm � practically some � to be executed.
Computation of optical �ow using best methods being time-consuming, such applications cannot a�ord
using these methods and can only use basic algorithms getting poor results.

Parallelisation allows some algorithms to run faster by performing many tasks at the same time.
Obviously it also increases the necessary amount of computational power to supply. Graphics pro-
cessing units or GPU processors are highly parallel and specialised computing units that provide more
computational power than a classic CPU processor. Originally conceived to achieve computer graphics
acceleration, they have become more and more e�cient for general-purpose applications. Some simple
and repetitive tasks can then be executed faster on a GPU than on a CPU. Due to the slowness of
variational optical �ow computation, researchers began to focus on parallel implementations for their
algorithms. Some of them used GPU processors.

The objective of this project is then to study how variational optical �ow methods can take advan-
tage of parallelisation using GPU processors. We decided to do this by developing parallel implementa-
tions for some of the state of the art variational methods, targeting real-time biomedical applications.
To be able to deal with real-time situations, we will focus more on e�ciency of algorithms than on
accuracy. Thus we will optimise them with e�ciency as �rst priority even at the expense of accuracy.
Eventually the accuracy has to stay as small as possible for the �ow computed to be usable.

Recent publications about parallel approaches for optical �ow computation showed some really good
results in terms of both accuracy and e�ciency[16] (some non-parallel approaches too[10][6]). But we
noticed that the source code of these implementations is never provided. That motivated us to develop

11



� more than a simple library � a prototype for a free and open-source real-time optical �ow compu-
tation platform. The library should provide real-time optical �ow computation routines using GPU
parallelisation. The platform, built on top of it, should include tools and interfaces to allow people
with a small computing background to use it.

In a �rst chapter we will introduce correspondence problems to then de�ne more formally one of
them: the optical �ow problem. We brie�y mention the issues related to this problem and the di�erent
kind of approaches.

In chapter 2 we detail the theoretical aspects of di�erent optical �ow computation methods. Start-
ing with block-based approaches, this chapter continues with continuous models and succinctly sets the
theory of variational methods we decided to implement. It also develops the theory of the solvers used
giving some pseudo-code algorithms. This chapter tries to summarise some parts of Andrés Bruhn's
PhD thesis[9], whose huge work contributed a lot to the �eld of variational optical �ow computation.

The chapter 3 is about nvidia GPU processors and CUDA application programming interface. After
summarising GPU processors history, we describe their architecture and introduce kernel functions. We
also give details about the GPU used for our experiments and important rules of GPU programming
that we tried to follow in our implementations.

Then the chapter 4 details the implementation choices of the GPU algorithms implemented in the
library. It quotes some selected pieces of code used in our application and illustrates with �gures the
images generated at di�erent steps of our algorithms.

The chapter 5 gives an overview of the tools forming our real-time optical �ow computation platform.
Starting with the main executable flow-compute which is a command line tool for �ow computation,
it also details flow-tool and the make�les wrappers for automatic �ow generation. Eventually it men-
tions a proof of concept of graphical user interface flow-studio that could be shipped in the platform.

We �nally present and discuss our results in chapter 6 before concluding on this project.



Chapter 1

Optical �ow

1.1 Correspondence problems

Many computer vision algorithms involve the establishment of a correspondence between identical
features in several images. We can classify those problems in four categories. Assuming two sets of
items with the same size, these categories are:

One-to-one: Each item of the �rst set has one and only one pair in the second set.

Many-to-one: Many items of the �rst set have the same pair in the second set. Items of the second
set may not have a pair in the �rst.

One-to-many: One item in the �rst set have many pairs in the second set. One item in the �rst set
may not �nd a pair in the second.

Nondense: Some items in both sets may not have any pair.

13



1.1. CORRESPONDENCE PROBLEMS CHAPTER 1. OPTICAL FLOW

1.1.1 Stereo vision

Stereo vision aims at achieving a 3D reconstruction of a scene given several images taken at di�erent
positions. The position of a given feature point has to be found in all images: this is not always the
case. It can be hidden by the object it belongs to or by another object. This is what we call occlusion.
Knowing the position of the cameras and the position of feature points on each image, it is possible to
compute the depth of this point. Stereo vision is an example of nondense correspondence problem as
features may be occluded in some images. Figure C.5 gives an example of a depth map computed with
several images.

Figure 1.1: Example of stereo vision [Credits: Middleburry university]

1.1.2 Particle image velocimetry

In particle image velocimetry one wants to determine the instant velocity vector of particles in an
image sequence. The correspondence that has to be established here, is the correspondence between
one particle in the �rst image and the same particle in the second one. That has to be done for each
particle in the sequence, this is a one-to-one correspondence problem. Figure 1.2 shows a �ow �eld
that could represent moving particles.

Figure 1.2: Example of particle image velocimetry [Credits: PIVlab]

1.1.3 Medical image registration

In medical image registration people want to align several images so that corresponding features can
easily be related. The images are acquired with di�erent sensors, most of times not a standard camera.

14



CHAPTER 1. OPTICAL FLOW 1.2. OPTICAL FLOW PROBLEM

The aim may be to �t an image with a computer model, to �t together scans of the same patient at
di�erent times or steps of the disease, or to align an image with locations in physical space. Because of
motion, growing, shrinking, rotation, occlusion, this can involve all kinds of correspondence problems.
Figure 1.3 is an example of medical image registration.

Figure 1.3: Example of medical image registration [Credits: Daniel Rueckert]

1.1.4 Optical �ow

Finally optical �ow 's goal is to track an object in a sequence of images. To be able to do that, the
displacement of some pixels (most of time each) has to be computed for each pair of images, basically
assuming that the grey values at the old and new locations are similar. There are plenty of applications
for optical �ow: robotics and computer vision, driving assistance, video compression, surveillance
and security, virtual reality, medicine and surgery. . . As occlusion can occur between two images this is
often a nondense correspondence problem. The �gure C.6 gives an example of optical �ow computation
between two images.

Figure 1.4: Example of optical �ow [Credits: Middleburry university]

1.2 Optical �ow problem

1.2.1 Grey value constancy assumption

Given a sequence of images we want to compute the displacement u = (u, v)T of some feature points
between two image frames taken at t and t+ 1. We call I(x, y, t) the intensity (grey value) at location

15



1.3. ISSUES TO DEAL WITH CHAPTER 1. OPTICAL FLOW

(x, y) in the image frame taken at time t. The grey value of the pixel at its new position is supposed
to be the same. Thus we have:

I(x, y, t) = I(x+ u, y + v, t+ 1) (1.1)

This equation is known as the grey value constancy assumption.

1.2.2 Linearisation

We assume the displacement to be small during one unit of time, which is often the case in a video.
Thus we can develop the right hand of the grey value constancy assumption using Taylor series. This
step is called linearisation:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) (1.2)

+
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t

+ O(x) +O(y) +O(t)

1.2.3 Brightness constancy assumption

Using linearised grey value constancy assumption we can deduce the following equation:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (1.3)

It is known as brightness constancy constraint equation (BCCE) and is the starting point 1

of all continuous models. It can be rewritten as:

∇IT · u = −It (1.4)

1.3 Issues to deal with

Given the description made in 1.1 there are plenty of issues to solve to be able to compute an accurate
and reliable optical �ow. This section explains some of these issues.

1.3.1 Occlusions

Occlusion is the �rst issue that comes in mind when dealing with optical �ow. Depending on the motion
of an object, some feature points can disappear or show up. If a feature point we were tracking suddenly
disappears, the most similar grey value can be far away in the image: a wrong correspondence is then
established. The algorithm has to detect and penalise such wrong matchings. The same problem occurs
when new objects suddenly appear in a scene.

1some techniques which handle large motion do not perform the linearisation step

16



CHAPTER 1. OPTICAL FLOW 1.3. ISSUES TO DEAL WITH

Figure 1.5: Occlusion example: while moving, the cars occlude each other [Credits: unknown]

1.3.2 Illumination

Conditions of illumination can change and make tough the grey or color values matching. It can also
come from the camera that achieves an automatic brightness adjustment or the intensity perceived by
a scanner (depends on the distance between it and the patient). . . The shadows are also a big problem
because they can generate locally both illumination and occlusion problems. The grey value of a given
region can suddenly signi�cantly decrease because of shadows.

Figure 1.6: Illumination and shading example [Credits: Werner Trobin]

1.3.3 Assumptions on motion

A-priori assumptions are often made on the motion. For instance, if the camera moves we can assume
that each pixel in the image sequence will have the same motion. Some parts of one image can be prone
to one kind of motion more that another, for instance a road with cars. We can sometimes assume
that the motion at one pixel will be really close to its neighbour. This is why arbitrary motion is a
complicated problem to address.

17



1.4. DIVERSITY OF ALGORITHMS AND MODELS CHAPTER 1. OPTICAL FLOW

Figure 1.7: Assumptions on optical �ows: on a road with cars the motion will almost always be the
same at a given locations of the image

1.3.4 Noise and distortions

The sensor may introduce noise which causes unpredictable changes in grey values. This can introduce
wrong matchings or missed matchings. The sensor may also introduce some geometrical distortions
as showed in �gure 1.3.4. Depending on the assumptions made this can prevent the algorithm from
validating a matching, for instance if the matching point is too far because of the distortions.

Figure 1.8: Camera noise and distortion [Credits: Nicolas Burtey]

1.3.5 The trade-o� between accuracy and e�ciency

Two factors have to be constantly taken into consideration in optical �ow algorithms: e�ciency and
accuracy. There is a trade-o�, as often in computer science, between the time of computation and the
error made in the solution. But we will see in chapter 2 that, combining advanced equations and robust
solving algorithms, some techniques can provide an accurate solution within a reasonable amount of
time. But many applications do require to have information on motion in real time, and sometimes a
reasonable amount of time is still too much. Even if accuracy is really important, because computing
wrong values does not make any sense, e�ciency is for these reasons also an important characteristic
of an algorithm.

1.4 Diversity of algorithms and models

Many approaches have been tried so far to solve the optical �ow problem with di�erent constraints. One
algorithm has to be time-e�cient to be able to deal with real time situations. It also has to be accurate
to compute values of the motion that are close to the real values. But depending on the application

18



CHAPTER 1. OPTICAL FLOW 1.4. DIVERSITY OF ALGORITHMS AND MODELS

or the type of input data, the models can change. This section describes di�erent categories of optical
�ow models.

1.4.1 Feature-Based and energy-based models

These two approaches are quite di�erent. In a feature-based approach we take as input a �nite set of
points. They can be manually selected by an operator, a prior knowledge on starting positions or the
output of a point of interest detector such as Harris or SIFT. An energy-based method relies on the
minimisation of a cost function � called energy � that expresses constraints on motion. Energy-based
models are often dense and continuous.

1.4.2 Nondense and dense models

In a feature-based approach, only the motion of the features given as input has to be computed. As
a result the motion will be unknown for any other point. In this case the model is nondense. In an
energy-based model the energy function is often continuous and can therefore be evaluated at each
point in the image. This kind of model is dense. Moreover in variational methods with smoothing term
(explained in chapter 2), even if the input data is nondense the output can be dense, as some continuity
is introduced (see �lling-in e�ect in 2.5).

1.4.3 Continuous and discrete

The two notions of continuity and discreteness should not be confused with dense or nondense. Both
continuous and discrete models can be dense i.e. can have values computed for each pixel. Continuous
only implies that the model has to be eventually discretised to provide a value for each pixel of the
image. A discrete model deals with a �nite set of values and not a continuous function.

1.4.4 Synthetic Figure of Classi�cation

To summarise the classi�cation we provide the following schema:

Optical Flow
Energy-Based Models

(dense)

Feature-Based Models
(non-dense)

Continuous Models Discrete Models

Figure 1.9: Optical �ow algorithms classi�cation

19



1.4. DIVERSITY OF ALGORITHMS AND MODELS CHAPTER 1. OPTICAL FLOW

20



Chapter 2

Theoretical aspects

2.1 Error measure and ranking

As many approaches can be used to solve the optical �ow, it can be useful to benchmark them with
a common set of data to provide a ranking. To be able to compare their algorithms researchers had
to de�ne a universal error measure. Several error measures are used but the common reference is the
angular error.

For a given pair of images we write the ground truth as ug = (ug, vg)T and the estimated �ow as
u = (u, v)T.

2.1.1 Angular error

At the position (i, j) in the image, the angular error is given by the 3D angle between the vectors
(ui,j , vi,j , 1)T and (ugi,j , v

g
i,j , 1)T. The third component stands for time. It can be seen as a vector that

starts from the feature point in the �rst image and ends at the location (or evaluated location) of the
same feature point in the second image.

It provides a relative measure of performance that avoids divisions by zero at sites where �ow equals
zero.

AE(i, j) = arccos

 1 + ugi,jui,j + vgi,jvi,j√
1 + ug

2

i,j + vg
2

i,j

√
1 + u2

i,j + v2
i,j

 (2.1)

2.1.2 Endpoint error

The problem with angular error is that the error in regions of smooth nonzero motion are penalised
more than errors in region of zero motion. Despite the fact that angular error is a kind of reference,
this absolute error measure is probably more appropriate for most applications.

EE(i, j) =

√(
ugi,j − ui,j

)2
+
(
vgi,j − vi,j

)2
(2.2)

2.1.3 Average error

Given an error measure ERR(i, j) being AE(i, j) or EE(i, j), the average error is:

21



2.2. BLOCK-BASED APPROACHES CHAPTER 2. THEORETICAL ASPECTS

AERR(i, j) =
1

NM

N∑
i=1

M∑
j=1

ERR(i, j) (2.3)

Average error provides an error measure for the �ow computed on the whole image which is typically
used to rank algorithms.

2.2 Block-based approaches

Let us consider equation 1.1. Due to noise of the sensor and varying conditions of illumination, this
equation will never be satis�ed over the entire image. We get rid of the time for the moment. To �nd
the best possible solution we can transform it in the following discrete minimisation problem:

ui,j = argmin
u,v

[
(fi,j − gi+u,j+v)2

]
(2.4)

The square is only here to have the same cost for negative and positive deviations.

2.2.1 Block matching

Looking, for each pixel, in the whole image to �nd a matching is ine�cient. The assumption of a small
motion reduces the search space to only a small neighbourhood. Then we can write it:

ui,j = argmin
(u,v)∈Wd

[
(fi,j − gi+u,j+v)2

]
(2.5)

where Wd = [−d, d]2 is a window of size (2d+ 1)2.

2.2.2 Sum of di�erences

Block matching reduces the complexity to O((2d+ 1)2NM) but both e�ciency and accuracy are still
really poor. To improve it a bit, instead of matching one grey value, it is possible to use a block
matching strategy. The minimisation problem then becomes:

ui,j = argmin
(u,v)∈Wd

∑
(∆i,∆j)∈Bs

[
(f(i+∆i),(j+∆j) − g(i+∆i)+u,(j+∆j)+v)

2
]

(2.6)

Bs = [−s, s]2 is a block of size (2s + 1)2. Here the accuracy is better but the e�ciency slightly
worst. The complexity is still linear but with a large constant: O((2d+1)2(2s+1)2NM). This method
is called sum of squared di�erences model. To reduce the in�uence of outliers, it is possible to replace
the square function in this model by an absolute value. This quite similar approach is called sum of

absolute di�erences.

ui,j = argmin
(u,v)∈Wd

∑
(∆i,∆j)∈Bs

|f(i+∆i),(j+∆j) − g(i+∆i)+u,(j+∆j)+v| (2.7)

2.2.3 Normalised cross correlation method

In addition of being computationally demanding, the sum of di�erences techniques are sensitive to
illumination variation. The block matching strategy reduces the probability of wrong matches but it
only relies on sum of grey values. So if the illumination changes, the cost function will increase and the
model becomes wrong. One idea to improve it is to use the fact that illumination can change the grey
values of an image fi,j to afi,j + b. Therefore it would be a good thing to compare images centered

22



CHAPTER 2. THEORETICAL ASPECTS 2.3. CONTINUOUS MODELS

around the mean and normalised.

The cross correlation of two images evaluates their similarity. The bigger it is, the closer the images
are. The normalised cross correlation achieves it independently of a bias or multiplicative constant. The
normalised cross correlation technique o�ers to use a correlation measure in the minimisation problem
to get rid of the illumination issues. The minimisation problem then becomes a maximisation problem:

ui,j = argmax
(u,v)∈Wd

 ∑
(∆i,∆j)∈Bs

(
f(i+∆i),(j+∆j) − f i,j

)
·
(
g(i+∆i)+u,(j+∆j)+v − gi+u,j+v

)√∑
(∆i,∆j)∈Bs

(
f(i+∆i),(j+∆j) − f i,j

)2√∑
(∆i,∆j)∈Bs

(
g(i+∆i)+u,(j+∆j)+v − gi+u,j+v

)2


(2.8)

2.2.4 Occlusion detection

Occlusion is a crucial problem. When there are occlusions the matching point in the second image may
not be found. The best matching grey value (or grey neighbourhood) can be everywhere in the image,
sometimes really far and the best match cost can still be very high. The solution for that problem is the
forward-backward check. The idea is to compute the �ow from I(t) to I(t+1) which is called the forward
�ow uf . Then it is possible to compute the �ow from I(t+1) to I(t) which is called the backward �ow ub.

For each pixel the scalar δi, j = |uf + ub| can be computed. A threshold of this value, typically 0,
gives a condition to consider the pixel as occluded in the image I(t+ 1).

2.2.5 Conclusion

Block based approaches are a good base model as they are simple to comprehend and to implement.
They involve only basic operations such as translation or rotations. But the results are dramatically
poor in terms of both accuracy and e�ciency. For these reasons, they do not �t with our target
application. Therefore we will not implement them and will investigate continuous models.

2.3 Continuous models

As discrete models appear to be time consuming and not really accurate, researchers began to focus on
continuous model. They are the the object of this section.

2.3.1 Gaussian presmoothing

Continuous methods are mostly based on derivatives of images. As an image is always discrete, there
are also discontinuities in its derivatives. One preprocessing which is always applied before using a
continuous model is the Gaussian presmoothing. The convolution of the initial images with a Gaussian
kernel Kσ improves the di�erentiability. It also reduces noise and therefore reduces �nal error.

f1 = Kσ ? I1 (2.9)

f2 = Kσ ? I2 (2.10)

2.3.2 Normal �ow

The optical �ow problem has two unknowns u, v but only one equation to solve them: the BCCE
(equation 1.4). As a result, only the �ow component in direction of the gradient � orthogonal to the

23



2.3. CONTINUOUS MODELS CHAPTER 2. THEORETICAL ASPECTS

edges � can be computed: the normal �ow un.

un = − ft
|∇f |

∇f
|∇f |

(2.11)

2.3.3 The aperture problem

The aperture problem manifests as an uncertainty on �ow computation. Depending on the value of the
gradient we can have either an uncertainty on the precise direction of the �ow or if the gradient is zero
no information on the �ow. It actually depends on the rank of the motion tensor (de�ned after). Let
us describe the �gure 2.1. If the rank is 2 the �ow can be fully computed by two linearly independent
feature gradients (left on the �gure). If it is 1 one feature gradient is available to compute the �ow
and then an uncertainty is introduced (middle). If it is 0 no �ow can be computed because there is no
information available (right).

Figure 2.1: The aperture problem: uncertainty on �ow computation [Credits: Andrés Bruhn]

The aperture problem �nd its roots in our brain and in the way we feel and interpret the motion.
Look at the next �gure and imagine that you are only able to see what is inside the square and do
not see the arrows. Now imagine the lines moving in the direction given by the arrows. Because the
pattern of lines has a gradient in only one direction you will not be able to make the di�erence between
the left and right squares.

24



CHAPTER 2. THEORETICAL ASPECTS 2.4. LUCAS & KANADE METHOD

Figure 2.2: The aperture problem: motion interpretation

2.4 Lucas & Kanade method

Lucas & Kanade method [18] is a continuous spatial method that assumes the �ow to be locally constant
and use the neighbourhood information. This method was published in 1981.

2.4.1 Problem de�nition

Wd(x0, y0) being a hard window of size d around (x0, y0), the method involves minimisation the following
energy functional:

E(u(x0, y0), v(x0, y0)) =

∫
Wd(x0,y0)

(fx(x, y, t)u+ fy(x, y, t)v + ft(x, y, t))
2 dxdy (2.12)

The minimisation implies the �rst order derivatives to be zero:

∂E

∂u
= 2

∫
Wd(x0,y0)

fx(fxu+ fyv + ft)dxdy = 0 (2.13)

∂E

∂v
= 2

∫
Wd(x0,y0)

fy(fxu+ fyv + ft)dxdy = 0 (2.14)

It can be rewritten in a matrix-vector notation as:
∫
Wd

f2
xdxdy

∫
Wd

fxfydxdy∫
Wd

fxfydxdy
∫
Wd

f2
y dxdy

( u
v

)
=

 −
∫
Wd

fxftdxdy

−
∫
Wd

fxftdxdy

 (2.15)

Replacing the hard window by a Gaussian kernel gives us the system to solve for each pixel:(
Kρ ? f

2
x Kρ ? fxfy

Kρ ? fxfy Kρ ? f
2
y

)(
u
v

)
=

(
−Kρ ? fxft
−Kρ ? fxft

)
(2.16)

25



2.5. VARIATIONAL APPROACHES CHAPTER 2. THEORETICAL ASPECTS

This system of the form Ax = f is easy to solve as both A and f do not depend on (u, v)T. We only
need to compute A for each pixel, invert it (direct inversion is possible as A is 2× 2), and compute the
�ow (u, v)T = A−1f .

2.4.2 Conclusion

Lucas & Kanade method is the continuous version of the block matching. Although it is better in
terms of e�ciency, as the minimisation is direct, and the matrices to invert are really small. Use of
neighbourhood informations allows it to be more robust under noise and thus more accurate than black
based models. Nevertheless having discretised the BCCE it assumes only small displacements and it
smoothes the discontinuities in the �ow. Moreover there are some parts where the problem cannot be
solved, resulting in potentially nondense �ows. Finally it deals well with translational motion but not
with rotations.

Even if the accuracy is not really high this model is interesting for its simplicity and performances.
We therefore made the choice to implement it at �rst before dealing with more complicated models.

2.5 Variational approaches

Variational methods are currently the kind of continuous model used in all the state of the art tech-
niques to achieve an accurate and dense optical �ow computation. All these techniques involve the
minimisation of an energy functional of the form:

E(u, v) =

∫
Ω

D(u, v) + αS(u, v)dxdy (2.17)

D(u, v) is called data term and penalises deviations from constancy assumptions made. To over-
come the lack of information in some areas, a smoothing term S(u, v) can be introduced (α > 0). It
penalises deviations from the smoothness of the solution and therefore prolongates the local solution
in case of non solvability of the �ow. This is known as the �lling-in e�ect. We give an illustration of
this phenomena in �gure 2.3.

Figure 2.3: Illustration of �lling-in e�ect with Yosemite sequence by Lynn Quam

Let F (x, y, u, v, ux, uy, vx, vy) be a functional such as:

E(u, v) =

∫
Ω

F (x, y, u, v, ux, uy, vx, vy)dxdy (2.18)

26



CHAPTER 2. THEORETICAL ASPECTS 2.6. HORN & SCHUNCK METHOD

The minimisation requires the derivatives with respect to u and v to be zero:

Fu −
∂Fux
∂x
−
∂Fuy
∂y

= 0 (2.19)

Fv −
∂Fvx
∂x
−
∂Fvy
∂y

= 0 (2.20)

with Neumann boundary conditions where n denotes the, typically exterior, normal to the boundary
δΩ:

nT∇u = 0 (2.21)

nT∇v = 0 (2.22)

The coupled system of partial di�erential equations [2.19, 2.20] is called Euler-Lagrange equations.
These equations can most of times be easily discretised and yield in a linear (sometimes nonlinear)
system of equations to solve. Their solution gives the �ow over the entire image that minimises both
the deviation from constancy assumptions and smoothness of the solution.

2.6 Horn & Schunck method

Horn & Schunck method [17] makes the assumption that the �ow is smooth over the whole image. We
could think that a smoothness term was simply added to the Lucas & Kanade energy function but this
method is actually anterior to Lucas & Kanade method as it was published in 1980.

2.6.1 Problem de�nition

For this method the energy functional looks like:

E(w) =

∫
Ω

wTJw + α(|∇u|2 + |∇v|2)dxdy (2.23)

The Euler-Lagrange equations then become:

J11u+ J12v + J13 − α∆u = 0 (2.24)

J12u+ J22v + J23 − α∆v = 0 (2.25)

Having discretised versions of supposed continuous images we have:

ui,j = u(ihy, jhx) (2.26)

vi,j = v(ihy, jhx) (2.27)

The discretised versions of Euler-Lagrange equations yield as:

0 = [J11]i,jui,j + [J12]i,jvi,j + [J13]i,j − α
∑

d∈{x,y}

∑
(k,l)∈Nd(i,j)

uk,l − ui,j
h2
d

(2.28)

0 = [J12]i,jui,j + [J22]i,jvi,j + [J23]i,j − α
∑

d∈{x,y}

∑
(k,l)∈Nd(i,j)

vk,l − vi,j
h2
d

(2.29)

27



2.6. HORN & SCHUNCK METHOD CHAPTER 2. THEORETICAL ASPECTS

Let us de�ne x and f with a row-major layout:

x = (�atu,�atv)T (2.30)

f = (�atJ13,�atJ23)T (2.31)

Let us de�ne the following sub-matrices:

M11 = diag (�atJ11) (2.32)

M12 = diag (�atJ12) (2.33)

M21 = diag (�atJ12) (2.34)

M22 = diag (�atJ22) (2.35)

Finally, considering the discretised laplacian operators introduced in appendix A.1 and calling M
the matrix we have:

M =

[(
M11 M12

M21 M22

)
− α

h2

(
LN×M 0

0 LN×M

)]
(2.36)

The problem can be expressed as:

Mx = f (2.37)

The matrix M is sparse and its nonzero structure is given in �gure 2.4. Since M is highly sparse
we precompute and store the diagonals as vectors.

Figure 2.4: Structure of the matrix to invert to solve discretised Euler-Lagrange equations for optical
�ow problem (5× 5 image)

28



CHAPTER 2. THEORETICAL ASPECTS 2.7. CLG METHOD

2.6.2 Conclusion

This method has the drawback to use an iterative solver that is lower to converge than the direct
computation of Lucas & Kanade method. But we will see in 2.8 that some other models of solver can
converge a lot faster than traditional ones. Moreover this method can handle rotational motion, yields
dense �ow �elds and can achieve sub-pixel precision. It is de�nitely harder to implement than previous
methods but it is worth an e�ort.

The quality of results given by this method in terms of accuracy and the ability of iterative solvers
to be parallelised led us to implement this method.

2.7 CLG method

The CLG method, published in 2002 by Bruhn et al.[12][9], can be seen as a combination of Lucas &
Kanade and Horn & Schunck methods. As in Horn & Schunck method it introduces a smoothing term
to overcome lack of information and as Lucas & Kanade it postsmoothes the motion tensor in order to
bene�t of the local neighbourhood information.

2.7.1 Problem de�nition

The energy functional for the CLG method is given by:

E(w) =

∫
Ω

ΨD(wTJρw) + αΨS(|∇u|2 + |∇v|2)dxdy (2.38)

Note that Jρ is the postsmoothed motion tensor introduced in Lucas & Kanade method.

Firstly if the penaliser Ψ(s2) is quadratic, which means Ψ(s2) = s2, we are in the linear case. In
the linear case for ρ = 0 we have Horn & Schunck , and for α = 0 we get Lucas & Kanade . The
Euler-Lagrange equations for the linear case are therefore the same as the Horn & Schunck 's ones 2.25.

Now if we use a non-quadratic penaliser such as Ψ(s2) =
√
s2 + ε2[9][11] for the data and/or

smoothness term we introduce nonlinearities. This particular penaliser introduces a small constant ε
that avoids the data and smoothing term from being zero in zones where there would be no information.

In that case the Euler-Lagrange equation become:

Ψ′D(J11u+ J12v + J13)− αdiv(Ψ′S∇u) = 0 (2.39)

Ψ′D(J12u+ J22v + J23)− αdiv(Ψ′S∇v) = 0 (2.40)

The same discretisation strategy as in Horn & Schunck method gives us:

0 = [Ψ′D]i,j([J11]i,jui,j + [J12]i,jvi,j + [J13]i,j) (2.41)

− α
∑

d∈{x,y}

∑
(k,l)∈Nd(i,j)

[Ψ′S ]k,l + [Ψ′S ]i,j
2

uk,l − ui,j
h2
d

0 = [Ψ′D]i,j([J12]i,jui,j + [J22]i,jvi,j + [J23]i,j) (2.42)

− α
∑

d∈{x,y}

∑
(k,l)∈Nd(i,j)

[Ψ′S ]k,l + [Ψ′S ]i,j
2

vk,l − vi,j
h2
d

29



2.8. SOLVERS CHAPTER 2. THEORETICAL ASPECTS

For the particular penaliser Ψ(s2) =
√
s2 + ε2 the derivative is such as:

Ψ′(s2) =
1

2
√
s2 + ε2

(2.43)

Thus the discretised versions of the data and smoothing penalisers are computed as:

[Ψ′D]i,j =
1

2
√

(ui,j , vi,j , 1)[J ]i,j(ui,j , vi,j , 1)T + ε2D

(2.44)

[Ψ′S ]i,j =
1

2
√
|∇2ui,j |2 + |∇2vi,j |2 + ε2S

(2.45)

2.7.2 Conclusion

The elegance of this method is de�nitely that it combines advantages of both Lucas & Kanade and Horn
& Schunck methods. It is robust against noise and computes dense �ow �eld. All kinds of constancy
assumptions can easily be introduced in the energy function and this method is thus easily tunable.
Finally it is not computationally more expensive than the other methods and the results are slightly
better.

This method will be the target method of our project, �tting perfectly the requirements of our
target application.

2.8 Solvers

According to Bruhn et al.[11][6] the faster iterative solver to converge for optical �ow is the point-wise
Gauss-Seidel using successive over-relaxation. This solver is �ne on a CPU, but for a GPU solver the
amount of communication between blocks (see 3.2.2) has to be minimised. Therefore the Jacobi solver
appears to be the best to be implemented on a GPU.

2.8.1 Jacobi solver

We want to solve iteratively the following linear system of equations:

Mx = f (2.46)

The matrix M can be decomposed in a diagonal matrix D and the rest R:

(D +R)x = f (2.47)

D x = D−1 (f −Rx) (2.48)

The Jacobi solver can then be formulated as:

x(k+1) = D−1
(
f −Rx(k)

)
(2.49)

or:

x
(k+1)
i =

1

aii

fi −
∑
j 6=i

aijx
(k)
j

 , i = 1, . . . , n (2.50)

30



CHAPTER 2. THEORETICAL ASPECTS 2.8. SOLVERS

We then come up with the following algorithm:

Algorithm 2.8.1: Jacobi(M, f ,x0, n)

x← x0

for it← 1 to n

do



for i← 1 to N

do



sum← 0

for j ← 1 to M

do


if j = I
then continue

sum← sum+Mi,j ∗ xj

x← (1/Mi,i) (fi − sum)

2.8.2 Jacobi solver with lagged nonlinearities

Jacobi solver with lagged nonlinearities[9][16][14][13], or nonlinear Jacobi solver as we will call it, is
based on the technique of frozen coe�cients[15]. It solves nonlinear problems by doing a new lineari-
sation at each iteration point.

We want to solve iteratively the following nonlinear system of equations:

N(x) = f (2.51)

Here N(x) is a nonlinear operator that can be decomposed into:

N(x) = A (x) x + b (x) (2.52)

A(x) and b(x) are nonlinear operators. As for the Jacobi algorithm we can �nd out an iterative
form for the computation of x:

xk+1 =
(
A
(
x(k)

))−1
(f − b(xk)) (2.53)

But as the operators are nonlinear they depend themselves on x. The method of lagged di�usivity
consists in the evaluation of the nonlinear operators at step k with the value of x at k − 1. Thus it
involves the resolution of a linear system for each iteration step:

A
(
x(k)

)
x(k+1) =

(
f − b

(
x(k)

))
(2.54)

31



2.8. SOLVERS CHAPTER 2. THEORETICAL ASPECTS

Algorithm 2.8.2: JacobiNL(M, f ,x0, n)

x← x0

for it← 1 to n

do



MNL ← UPDATE_M(M,x)
fNL ← UPDATE_F(f ,x)

for i← 1 to N

do



sum← 0

for j ← 1 to M

do


if j = i
then continue

sum← sum+MNL
i,j ∗ xNLj

x← (1/MNL
i,i )

(
fNLi − sum

)

2.8.3 Multigrid solver

We want to solve iteratively the following nonlinear system of equations:

Mx = f (2.55)

Traditional solvers as Jacobi or Gauss-Seidel are fast to correct high-frequent errors (during the �rst
iterations) but slow to correct low-frequent errors (needs a lot of iterations). Multigrid solvers[4] were
then invented to compensate slowness of traditional solvers in order to get accurate solutions within a
small amount of time. The key concept of multigrid solvers is that, for a given system of equations,
low-frequent errors are high-frequent errors of a coarser version of the same system. We implement
them as adviced by Andrés Bruhn[9].

Let us de�ne restriction operation R that reduces a �ne solution to a coarse one by averaging. We
also introduce P , the dual operation, that interpolates linearly from a coarse solution to a �ner one.
In our application of multigrid solvers our solutions are images and we will always have a factor 2× 2
between a �ne and a coarse grid. Thus, h being the step of the �ner grid, our operators will take the
particular values:

R = Rh→2h (2.56)

P = P 2h→h (2.57)

As our matrices and right hand depend on J , we need to compute a coarser version J2h of the
motion tensor Jh applying Rh→2h operator component-wisely to it:

J2h = Rh→2hJh =

 Rh→2hJh11 Rh→2hJh12 Rh→2hJh13

Rh→2hJh21 Rh→2hJh22 Rh→2hJh23

Rh→2hJh31 Rh→2hJh32 Rh→2hJh33

 (2.58)

A coarser version f2h of the right hand fh can then be computed and, the laplacian operator for
the coarser grid being easy to recompute, the coarse matrix M2h can be easily computed too.

32



CHAPTER 2. THEORETICAL ASPECTS 2.8. SOLVERS

Firstly, in order to use at best traditional solvers, we apply n1 presmoothing iterations of one to
the initial system in order to remove high-frequent errors. The solution x̄h computed is obviously not
an exact solution; xh being the exact solution and eh being the remaining error we have:

x̄h = xh + eh (2.59)

As one wants to compute the most accurate solution, we are interested in �nding eh. Let rh be the
residual so that:

rh = fh −Mhx̄h (2.60)

Then the error can be found solving the system:

Mheh = rh (2.61)

The �rst iterations of the traditional solver having already corrected high-frequent error in x̄, we
are more interested in correcting low-frequent errors. This can be done in a few iterations by solving
this system on the coarser grid:

M2hx2h = Rh→2hrh (2.62)

As the error is expected to be small, x2h = 0 is used for the initial guess. We then prolongate the
result x̄2h to get the error:

eh = P 2h→hx̄2h (2.63)

Then x̄ can be corrected to �nd the exact solution:

xh = x̄h + eh (2.64)

Finally n2 postsmoothing iterations of a traditional solver can be applied to remove the high frequent
errors introduced by prolongation operator. We come up with the following algorithm:

Algorithm 2.8.3: Solve2Grids(Mh, fh,xh0 ,M
2h, f2h)

global n0, n1, n2

x̄h ← Jacobi(Mh, fh,xh0 , n1)

rh ← fh −Mhx̄h

f2h ← Rh→2hrh

e2h ← Jacobi(M2h, f2h,0, n0)

x̄h ← x̄h + P 2h→he2h

xh ← Jacobi(Mh, fh, x̄h, n2)

return (xh)

33



2.8. SOLVERS CHAPTER 2. THEORETICAL ASPECTS

The accuracy of the solution obtained after postsmoothing closely depends on how the third step is
solved. If we compute x2h accurately, the solution xh obtained after correction and postsmoothing can
be really accurate too. The ideal case is when x2h is computed exactly, inverting the coarse system.
Then all the error of the solution comes only from the prolongation operation and is well corrected by
the postsmoohting iterations. Unfortunately if the system to solve is huge (as ours will be) the coarse
system will still be too big to be invert directly. A Jacobi solver can be used to solve the coarse system
but, as it is too big, the resolution will converge slowly due to the same problems we had for the �ne grid.

Bidirectional approach

One elegant solution to that problem, known as the bidirectional approach, is to use a multigrid solver
at the coarse level which implies the use of a new coarse grid. This can be done recursively until the
grid is small enough to be accurately solved. This is called a V-cycle and is illustrated in �gure 2.5.

Algorithm 2.8.4: VCycle(d, fh,x0
h)

comment: should be called with d := 0

global DMAX , N := DMAX + 1
global M [N ], n0, n1, n2

if d = DMAX

then

{
x̄h ← Jacobi(M [d], fh,xh0 , n0)
return (x̄h)

x̄h ← Jacobi(M [d], fh,xh0 , n1)

rh ← fh −M [d]x̄h

f2h ← Rh→2hrh

e2h ← VCycle(d+ 1, f2h,0)
x̄h ← x̄h + P 2h→he2h

xh ← Jacobi(M [d], fh, x̄h, n2)

return (xh)

34



CHAPTER 2. THEORETICAL ASPECTS 2.8. SOLVERS

Algorithm 2.8.5: WCycle(d, fh,x0
h)

comment: should be called with d := 0

global DMAX , N := DMAX + 1
global M [N ], n0, n1, n2

if d = DMAX

then

{
x̄h ← Jacobi(M [d], fh,xh0 , n0)
return (x̄h)

x̄h ← Jacobi(M [d], fh,xh0 , n1)

rh ← fh −M [d]x̄h

f2h ← Rh→2hrh

e2h ←WCycle(d+ 1, f2h,0)
x̄h ← x̄h + P 2h→he2h

rh ← fh −M [d]x̄h

f2h ← Rh→2hrh

e2h ←WCycle(d+ 1, f2h, x̄h)
x̄h ← x̄h + P 2h→he2h

xh ← Jacobi(M [d], fh, x̄h, n2)

return (xh)

The quality of this approach resides in the fact that to get best accuracy only the smaller grid
needs to be computed very precisely. As this grid is ridiculously small, it is easy either to invert it
or to iteratively solve it with a really small error in a reasonable amount of time. By correcting the
error of the error of . . . of the solution we end up with a really accurate one only doing a few pre and
postsmoothing iterations each time.

Figure 2.5: V-Cycle [Credits: Andrés Bruhn]

To get more accuracy one may want to do two error corrections at each level. This is called a
W-cycle and is illustrated in �gure 2.6.

35



2.8. SOLVERS CHAPTER 2. THEORETICAL ASPECTS

Figure 2.6: W-Cycle [Credits: Andrés Bruhn]

Cascadic approach

A di�erent approach is the cascadic approach, depicted in �gure 2.7. The quality of initial guess impacts
strongly on the speed of convergence of an iterative solver. If the initial guess is good enough, even a
traditional iterative solver will converge quickly. Coarse systems being faster to solve accurately than
�ner ones, we can compute a solution at the coarse level, prolongate it, and use it as initial guess for
the next �ner grid. This can be done several times accelerating the whole process and thus increasing
the accuracy of the solution for a given time of computation.

Algorithm 2.8.6: Cascadic(d,xh0)

comment: should be called with d := DMAX

global DMAX , N := DMAX + 1
global M [N ], f [N ], n

x̄h ← Jacobi(M [d], f [d],xh0 , n)

if d = 0
then return (x̄h)

x̄2h
0 = P 2h→hx̄h

return (Cascadic(d− 1,x2h
0 ))

36



CHAPTER 2. THEORETICAL ASPECTS 2.8. SOLVERS

Figure 2.7: Illustration of cascadic approach for multigrid solvers [Credits: Andrés Bruhn]

Full multigrid approach

Finally the most advanced approach is the full multigrid approach that combines both bidirectional

and cascadic approaches as illustrated in �gure 2.8. It can be seen as a cascadic scheme in which at
each level a V-cycle (or W-cycle) is performed to correct the error made. While for a basic iterative
approach a lot of iterations are required, for full multigrid only one iteration of the entire scheme is
used. Note that it would not make any sense to do several iterations as one solution computed would
have to be restricted from the �nest level of an iterations to the coarsest level of the next one, thus
loosing all computed information. The values of n1 and n2 can be really small (typically 1 or 2) as the
high-frequent errors are quickly removed during �rst iterations.

Algorithm 2.8.7: FMG(d,xh0)

comment: should be called with d := DMAX

global DMAX , N := DMAX + 1
global M [N ], f [N ], n0, n1, n2, cycles

for i← 1 to cycles
do x̄h ← VCycle(d, f [d],xh0)

if d = 0
then return (x̄h)

x̄2h
0 = P 2h→hx̄h

return (FMG(d− 1,x2h
0 ))

37



2.8. SOLVERS CHAPTER 2. THEORETICAL ASPECTS

Figure 2.8: Illustration of full multigrid solver approach [Credits: Andrés Bruhn]

2.8.4 Nonlinear multigrid solver

We want to solve iteratively the following nonlinear system of equations:

N(x) = f (2.65)

The nonlinear multigrid solver is a multigrid scheme based on the use of a traditional nonlinear
solver such as Jacobi with lagged nonlinearities. The nonlinear approach di�ers from the linear one
only by the fact that operators need to be constantly updated with the new solution computed.

After n1 presmoothing iterations we come up with the solution x̄. We compute the residual:

rh = fh −N(x̄h) (2.66)

We also restrict x̄ to the coarse level and use it to evaluate the nonlinear operator N2h(Rh→2hx̄).

We then solve the system with the initial guess x2h = Rh→2hx̄h:

N2h(x2h) = Rh→2hrh +N2h(Rh→2hx̄h) (2.67)

Then the error at grid level h is computed using the result x̄2h:

eh = P 2h→h(x̄2h −Rh→2hx̄h) (2.68)

Finally n2 iterations of postsmoothing are performed to get the �nal solution. If we use a nonlinear
Jacobi solver seen previously we come up with the following algorithms for the V-Cycles and the
recursive FMGNL function:

38



CHAPTER 2. THEORETICAL ASPECTS 2.8. SOLVERS

Algorithm 2.8.8: VCycleNL(d, fh,x0
h)

comment: should be called with d := 0

global DMAX , S := DMAX + 1
global N [S], n0, n1, n2

if d = DMAX

then

{
x̄h ← JacobiNL(N [d], fh,xh0 , n0)
return (x̄h)

x̄h ← JacobiNL(N [d], fh,xh0 , n1)

rh ← fh −N [d]x̄h

f2h ← Rh→2hrh +N [d+ 1] ·Rh→2hx̄h

e2h ← VCycleNL(d+ 1, f2h, Rh→2hx̄h)
e2h ← e2h −Rh→2hx̄h

x̄h ← x̄h + P 2h→he2h

xh ← JacobiNL(N [d], fh, x̄h, n2)

return (xh)

Algorithm 2.8.9: FMGNL(d,xh0)

comment: should be called with d := DMAX

global DMAX , S := DMAX + 1
global N [S], f [S], n0, n1, n2, cycles

for i← 1 to cycles
do x̄h ← VCycleNL(d, f [d],xh0)

if d = 0
then return (x̄h)

x̄2h
0 = P 2h→hx̄h

return (FMGNL(d− 1,x2h
0 ))

39



2.8. SOLVERS CHAPTER 2. THEORETICAL ASPECTS

40



Chapter 3

CUDA Parallel programming

3.1 GPUs and CPUs: two di�erent species

Current CPUs have 2, 4, 8, maybe more than 16 cores. But it is nothing compared to the hundred of
cores available on a GPU. Graphics Processing Units (GPU) were initially designed to compute graph-
ics calculus. Computer graphics use a lot of linear algebra which is known to be easily parallelisable.
As a consequence, GPUs evolved to many-core architectures dedicated to very speci�c and repetitive
tasks. In the meantime traditional CPUs took also advantage of parallelism but evolved to multi-core
architectures (less cores than in many-core). The �gure 3.1 shows the evolution of the computational
power (in FLOPS: �oating point operations per second) of CPUs and GPUs over the past years. We
can see, in the �gure, that the computational power of the GPUs has become much more higher than
the best of the CPUs. It can easily be discussed as the unit of measure used to plot this �gure (source
nvidia) clearly advantages the GPUs. But with standard benchmark, i.e. complicated and not repeti-
tive tasks, we could see things totally di�erently.

Figure 3.1: Computational power (FLOPS): CPU vs. GPU [Credits: nvidia]

What is the price for that huge amount of power? As �gure 3.2 depicts, a GPU devotes the major

41



3.2. CUDA API CHAPTER 3. CUDA PARALLEL PROGRAMMING

part of its surface to transistors (ALU being Arithmetic Logic Unit) i.e. to computation. A CPU de-
votes the major part of its surface to fast cache memory, DRAM and control. But the processor surface
devoted to memory is smaller for GPUs than for CPUs, in particular the cache memory is really small
on a GPU.

Obviously CPUs and GPUs are not designed to do the same tasks. . . A GPU is conceived to address
problems that have a high arithmetic intensity, which is the ratio of arithmetic operations to memory
operation. Moreover, with that number of cores the pipeline strategy cannot be as e�cient as in a
multi-core processor. This means that operations addressed by a GPU have to be very simple and
highly repetitive. CPUs have to be fast in a lot of di�erent situations using always more complex
pipeline models that a GPU would not be able to embed.

To summarise, we could say that a good GPU programmer should be able to take the best of both

the GPU and the CPU and balance with elegance the load of computation for a given task on the best

of them taking in account memory transfers.

Figure 3.2: Processor Surface used for transistors: CPU / GPU [Credits: nvidia]

All computers over the world have a graphic card, and most of them provide graphic acceleration.
GPU vendors, such as nvidia or ATI, then thought "we could use this huge amount of computation
capacity for something else than graphics processing". They felt this trend and decided to open their
many-core architectures releasing application programming interfaces for people to interact directly
with their GPUs. Use of GPU for general purpose computing or GP-GPU is currently investigated in
many �elds of science and industry.

3.2 CUDA API

CUDA or Compute Uni�ed Device Architecture is a C/C++-based API for general purpose parallel
computing on GPU released by nvidia. It provides �exible control mechanisms to take the most ad-
vantage of the parallel architecture. As �gure 3.3 shows us, complex applications can be built on
top of CUDA which abstracts low level hardware mechanisms to provide a common interface for all
CUDA-capable GPUs. But this �gure also mentions alternatives to CUDA such as OpenCL originally
created by Apple now developed by Khronos Group, DirectCompute developed by Microsoft, or � not
mentioned in the �gure � ATI Stream developed by ATI.

42



CHAPTER 3. CUDA PARALLEL PROGRAMMING 3.2. CUDA API

Figure 3.3: CUDA : abstraction layers [Credits: nvidia]

3.2.1 The choice of using CUDA

The ATI Stream seems to be a great technology, unfortunately we do not have the speci�c hardware
for using it in this project. DirectCompute implies the use of DirectX and Microsoft Windows which
are owned technology that we cannot use in our case. OpenCL seems a good alternative to CUDA as it
is meant to work on either ATI or nvidia GPUs. But, at the time we are writing this report, it is told
to be a bit too high level and hardly optimisable which contradicts with our application. Therefore
CUDA seems to be the best solution to choose for our problem. The CUDA driver comes with a SDK
full of examples and a really good documentation. The technology seems to be really fertile as the
community around CUDA is really active on internet.

3.2.2 Architecture

A parallel algorithm does, at least for some parts, some similar tasks at the same time � rather obvious
so far. Those similar tasks are performed by logical units of computation called threads. These threads
are laid out in two dimensions, as most of the algorithms can take a matrix form, grouped in bigger
units called blocks. Blocks are also laid out in two dimensions in the biggest unit called grid. Figure
3.4 depicts this hierarchy.

The hierarchy makes sense if we introduce memory. The GPU device is connected to a DRAM
global memory, in the form of a heap, that can be accessed by any grid. Each block can statically
allocate shared memory that all the threads it contains can access. Finally each thread can use its
own local memory and access the two aforementioned memory types � not with the same bandwidth
though. Figure 3.5 illustrates this memory organisation.

3.2.3 Kernels demysti�ed

A kernel � read parallel function � is a set of instructions that is meant to be executed by all the threads
of a grid. It also de�nes at compile time the amount of shared memory allocated for each block and the
local variables instantiated for each thread. The model this architecture is SIMT (Single Instruction
Multiple-Thread) which is close to SIMD (Single Instruction Multiple-Data) with a few di�erences. We
cannot explain it better than it is done in the CUDA programming guide:

43



3.2. CUDA API CHAPTER 3. CUDA PARALLEL PROGRAMMING

Figure 3.4: CUDA : Grid, blocks and threads [Credits: nvidia]

The multiprocessor creates, manages, schedules, and executes threads in groups of 32

parallel threads called warps. Individual threads composing a warp start together at the

same program address, but they have their own instruction address counter and register

state and are therefore free to branch and execute independently. The term warp originates

from weaving, the �rst parallel thread technology. A half-warp is either the �rst or second

half of a warp. A quarter-warp is either the �rst, second, third, or fourth quarter of a warp.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organi-

sations in that a single instruction controls multiple processing elements. A key di�erence

is that SIMD vector organisations expose the SIMD width to the software, whereas SIMT

instructions specify the execution and branching behaviour of a single thread.

[Credits: nvidia]

Kernels calls can then be mixed with standard serial code, see �gure 3.6. By nature a kernel call
� syntax kernel<<<gridSize, blockSize>>>(args) � is asynchronous but the CUDA core directive
cudaThreadSynchronize() allows a programmer to synchronise its host code with the device when
needed.

A kernel � for instance a vector copy kernel � is declared using the following constructions:

1 __global__

2 void add_kernel(float* v1, float* v2, int size)

44



CHAPTER 3. CUDA PARALLEL PROGRAMMING 3.2. CUDA API

Figure 3.5: CUDA : Memory organisation [Credits: nvidia]

3 {

4 int idx = threadIdx.x + blockIdx.x * blockDim.x;

5 if(idx < size)

6 {

7 v1[idx] = v2[idx];

8 }

9 }

The following example describes how this kernel can be used and the syntax to call it:

1 int main(void)

2 {

3 int idx;

4 int size = make_uint2(256, 256);

5 const int nbytes = size * sizeof(float);

6

7 dim3 blockSize(64);

8 dim3 gridSize(size.x / blockSize.x);

9

10 float* v1_host = new float[nbytes];

45



3.3. BEST PRACTISES CHAPTER 3. CUDA PARALLEL PROGRAMMING

11 float* v2_host = new float[nbytes];

12 float* v1_dev = NULL, * v2_dev = NULL;

13 cudaMalloc(&v1_dev, nbytes);

14 cudaMalloc(&v2_dev, nbytes);

15

16 for(int i = 0; i < size; i++)

17 v2_host[i] = rand();

18

19 cudaMemcpy(v2_dev, v2_host, nbytes,

20 cudaMemcpyHostToDevice);

21

22 add_kernel<<<gridSize, blockSize>>>(v1_dev, v2_dev, size);

23

24 cudaMemcpy(v1_host, v1_dev, nbytes,

25 cudaMemcpyDeviceToHost);

26

27 for(int i = 0; i < size; i++)

28 printf("%f %f\n", v1_host[i], v2_host[i]);

29

30 cudaFree(v1_dev);

31 cudaFree(v2_dev);

32 delete[] v1;

33 delete[] v2;

34 }

Obviously this example is � beyond its quality of example � useless as the overhead of time in-
troduced by the memory transfers will often be higher than the time saved by parallelism. Although
for the optical �ow problem, two images of a sequence have to be transfered once to the device where
they can bene�t from several transformations before being transfered back to the host. For instance
the computation of the motion tensor J involves many operations: copy, subtractions, convolutions,
element-wise multiplication, additions. . . In this case the transfers represent a small portion of the total
runtime. The time saved by parallelisation is thus higher than transfer times and we can experience
good speedups.

3.3 Best practises

In order to experience the best performances a few things � at least � have to be taken into consideration
when programming a CUDA based application. The CUDA programming guide[20] and CUDA best

practices guide[19] are written to detail those things. We strongly advice the reader to read those before
being faced to the development of a CUDA based application. We want here to explain a few concepts
and quote some short extracts of these manuals relevant with our application.

3.3.1 Memory allocations

The memory allocations can be of di�erent kinds. Linear memory can be allocated with cudaMalloc on
the global memory heap. This memory is said linear in opposition to pitched or 2D memory. When one
wants to store a matrix in memory the width of the matrix do not always �t the hardware requirements
of the memory. Such a ill-sized matrix can cause a lot of cash misses and therefore low performances.

To avoid that the CUDA API provides another function cudaMallocPitch() that allocates mem-
ory with some padding at the end of lines for it to �t with the hardware layout of the memory. For
images pitched memory seems to be ideal. Note that even 3D memory segments can be allocated with
cudaMalloc3D.

46



CHAPTER 3. CUDA PARALLEL PROGRAMMING 3.3. BEST PRACTISES

3.3.2 Data transfers

Data transfers have to be constantly considered in a CUDA program. Simple index shifts or state-
ment permutations can dramatically slow down an algorithm. The closer to the chip you are the faster
the memory is. Thus the thread local memory is fast and can be used without too many considerations.

Shared memory is a bit slower than the thread local memory, plus the amount available is limited.
It often impacts on blocks size as, if each thread of a block needs n slots in a shared array of values,
the maximum amount of shared memory introduces an upper bound on the blocks size.

The slower memory is the global memory that contains all the data to process. Thus one needs to
think twice before accessing it, because each thread of a grid will need to access a particular element
of this memory. Memory accesses have to be coalesced to experience the best performances avoiding
bus obstruction and cache misses.

The highest memory bandwidth will be achieved by the global memory only when memory accesses
are coalesced so the hardware can fetch the data in the smallest number of operations.

The following paragraph from the CUDA Best Practises Guide explains the simplest method to do
coalesced memory accesses:

The �rst and simplest case of coalescing can be

achieved by any CUDA-enabled device: the k-th

thread accesses the k-th word in a segment; the ex-

ception is that not all threads need to participate.

[Credits: nvidia]

3.3.3 Flow control instructions

As written before, SIMT instructions specify the execution and branching behaviour of a single thread.
It suggests that �ow control statements can be dangerous. For instance, a simple if statement can
create di�erent execution paths for some consecutive threads in half a warp and then cause the di�erent
paths to be executed sequentially instead of in parallel.

The following paragraph from the CUDA Best Practises Guide gives more details about �ow control
instructions use:

Any �ow control instruction (if, switch, do, for, while) can signi�cantly a�ect the in-

struction throughput by causing threads of the same warp to diverge; that is, to follow

di�erent execution paths. If this happens, the di�erent execution paths must be serialised,

increasing the total number of instructions executed for this warp. When all the di�er-

ent execution paths have completed, the threads converge back to the same execution path.

[Credits: nvidia]

47



3.4. CHARACTERISTICS OF OUR GPU CHAPTER 3. CUDA PARALLEL PROGRAMMING

3.3.4 Texture memory

Texture memory is not properly a kind of memory, it is a method of access using speci�c hardware to
fetch data from the global memory. As its name suggests, it was originally created to fetch textures
applied to polygons in graphics. A memory segment allocated on the global heap has to be bound
to the texture memory using cudaBindTexture() (costless operation) and can then be accessed using
tex1D(), tex2D() or tex3D() speci�c core functions.

Texture memory uses a cache of values that reduces singularly the number of global memory ac-
cesses. Moreover, for a simple memory access texture memory fetches can reduce the number of cache
misses from hundreds to only one. Even the out-of-bounds cases are addressed by the texture memory.
The default mode is cudaAddressModeClamp which means that if a value is requested out of bounds,
the closer existing value is returned. It allows suppression of �ow control instructions that may slow
down an algorithm.

The following paragraph from the CUDA Programming Guide gives more details about texture
memory:

The texture memory space resides in device memory and is cached in texture cache, so a

texture fetch costs one memory read from device memory only on a cache miss, otherwise

it just costs one read from texture cache. The texture cache is optimised for 2D spatial

locality, so threads of the same warp that read texture addresses that are close together

in 2D will achieve best performance. Also, it is designed for streaming fetches with a

constant latency; a cache hit reduces DRAM bandwidth demand but not fetch latency.

[Credits: nvidia]

3.4 Characteristics of our GPU

The graphic card used for all our experiments is a GeForce 9400 GT. This is, even at this moment, a
very old device as it was �rst launched the 27 August of 2008. It embeds one GPU with only 16 stream
processors, 512 MB of DDR2 global memory at around 13GB/s. Current models such as GeForce GTX
480 embed super fast GDDR5 memory at around 177 GB/s. A call to cudaGetDeviceProperties()

gives us the detailed characteristics in �gure 3.7.

48



CHAPTER 3. CUDA PARALLEL PROGRAMMING 3.5. EFFECTIVE SPEEDUPS

--- DEVICE 0 ---

name GeForce 9400 GT |

totalGlobalMem 536150016 bytes |

sharedMemPerBlock 16384 bytes |

regsPerBlock 8192 |

warpSize 32 |

memPitch 2147483647 bytes |

maxThreadsPerBlock 512 |

maxThreadsDim 512 x 512 x 64 |

maxGridSize 65535 x 65535 x 1 |

totalConstMem 65536 bytes |

major.major 1.1

clockRate 1400000

textureAlignment 256 bytes

deviceOverlap 1

multiProcessorCount 2

kernelExecTimeoutEnabled 1

integrated 0

canMapHostMemory 0

computeMode 0

concurrentKernels 0

Figure 3.7: Characteristics of GPU used for experiments

The following characteristics are particularly interesting:

totalGlobalMem: 536150016

global memory available on device, here approximatively 512 MB

sharedMemPerBlock: 16384

shared memory available per block, here 16 KB

warpSize: 32

smallest unit of computation, in threads

maxGridSize: 65535 x 65535 x 1

maximal size for a grid in blocks

maxThreadsDim: 512 x 512 x 64

maximal size for a block in threads

minor, major: 1, 1

compute capability of the device and thus operations allowed or not, here 1.1

3.5 E�ective speedups

To illustrate the speedup provided by a GPU we take a simple element-wise multiplication kernel:

1 template<typename T>

2 __global__

3 void MatEltMul(T* A,

4 T* B,

5 T* C,

6 uint2 size,

7 uint3 pitch,

8 uint2 margins)

9 {

10 int i = blockIdx.y * blockDim.y + threadIdx.y;

11 int j = blockIdx.x * blockDim.x + threadIdx.x;

12

13 if (i < size.y && j < size.x){

14 i += margins.y;

15 j += margins.x;

16

49



3.5. EFFECTIVE SPEEDUPS CHAPTER 3. CUDA PARALLEL PROGRAMMING

17 L_ELEM(A, i, j, pitch.x) =

18 L_ELEM(B, i, j, pitch.y) *

19 L_ELEM(C, i, j, pitch.z);

20 }

21 }

3.5.1 Time versus image size

Let us de�ne I1, I2 and I3 some random square images of length size. If we measure the time taken
to do I1

i,j = I2
i,j ∗ I3

i,j for i, j = 1 . . . size, with average on 16 iterations, we obtain the plot in �gure
3.8. It is easy to see that the CPU time increases a lot faster than the GPU time which means less
parallelisation. Although the GPU time is not linear, we can see that it increases slowly with size of
data due to overheads in kernel calls.

3.5.2 Bandwidth versus image size

Algorithms in CUDA , according to the best practices guide, should be benchmarked using the actual
bandwidth (here in MegaPixels per second). We can see on �gure 3.9 that for too small sets of data
the best GPU bandwidth is not achieved while it stays constant for CPU. For an image of 2000× 2000
pixels, the best bandwidth is achieved and is around 3 times higher than the CPU's one.

3.5.3 Speedup versus image size

Finally the speedup is plotted in �gure 3.10. We can see that a good speedup is not achieved for
really small sets of data because of the overhead introduced. It is not always better to do small com-
putations on the CPU though, the memory transfers times can avoid one to use a faster CPU algorithm.

50



CHAPTER 3. CUDA PARALLEL PROGRAMMING 3.5. EFFECTIVE SPEEDUPS

Figure 3.6: CUDA : Heterogeneous programming

51



3.5. EFFECTIVE SPEEDUPS CHAPTER 3. CUDA PARALLEL PROGRAMMING

Figure 3.8: Time of computation versus image size for element-wise matrix multiplication: CPU
(green), GPU (red)

52



CHAPTER 3. CUDA PARALLEL PROGRAMMING 3.5. EFFECTIVE SPEEDUPS

Figure 3.9: Bandwidth versus image size for element-wise matrix multiplication: CPU (green), GPU
(red)

Figure 3.10: Speedup versus image size for element-wise matrix multiplication

53



3.5. EFFECTIVE SPEEDUPS CHAPTER 3. CUDA PARALLEL PROGRAMMING

54



Chapter 4

Implementation details

4.1 Data structures

As we have seen in the previous chapter there are many ways to allocate memory. In addition there
are also multiple ways to represent an image in memory. There is no layout better than another, they
are all used at a speci�c part of the algorithm in order to experience the best performances.

4.1.1 Interlaced matrices

R

R

R

R

R

R

R

R

R

G

G

G

G

G

G

G

G

G

B

B

B

B

B

B

B

B

B

. . . . . .

. . . . . .

. . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .
N

3 ·M

pitch

Figure 4.1: Interlaced matrices layout

Interlaced matrices (type MatrixInterlaced) were the �rst layout to come at mind as it is the
layout used in many images format. The OpenCV library, used for format encoding and decoding, for
instance uses this layout when decoding a png or jpg �le from the disk.

For each pixel the red, green and blue values are stored consecutively. These pixel tuples are stored
in a row-major scheme using 2D pitched memory. This layout is illustrated in �gure 4.1. The formulae
to �nd a given pixel in that layout is given by:

∀(i, j, k) ∈ {1, . . . , N} × {1, . . . ,M} × {1, 2, 3} (4.1)

M(i, j, k) = ptr[i ∗ pitch+ j ∗ 3 + k]

55



4.1. DATA STRUCTURES CHAPTER 4. IMPLEMENTATION DETAILS

It has the bene�t that no processing has to be done on image after reading it from disk. It can be
directly transferred from host to device with a simple cudaMemcpy and without using any, potentially
slow, kernel to reorganise the values.

It can also be used to store �ows as they are 2 channels �oating point images. For the �ows this
layout is preferred because x- and y-components are always computed together in kernels. Thus it
enables us to do coalesced memory accesses and therefore speeds-up the execution. It is not only used
for the �nal �ow but also in the whole solving process for Horn & Schunck and CLG methods.

1 template<typename T>

2 struct MatrixInterlaced {

3 T* ptr;

4 size_t pitch_bytes;

5 size_t width_bytes;

6 uint4 size;

7 };

This layout is implemented as a template structure for it to handle any type of values. Besides a
pointer ptr to the allocated memory, the structure includes a uint4 value size where size.x is the
width, size.y the height, size.z the number of channels and size.w the pitch in number of elements.
The pitch and width in bytes are also included as they are used in CUDA core functions such as
cudaMemcpy.

4.1.2 Layers matrices

R R R R R R R R R

G G G G G G G G G

B B B B B B B B B. . . . . .

. . . . . .

. . . . . .

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

N

N

N

M

pitch

Figure 4.2: Layers matrices layout

We �rst implemented layers matrices (type MatrixLayers) because of performance problems we
had in our convolution kernels. Despite the fact that a color convolution can be done separately on
the di�erent channels, at the beginning we tried to compute it for all the channels in the same kernel.
But shared memory is limited and doing that involved changing the block sizes and other constants to

56



CHAPTER 4. IMPLEMENTATION DETAILS 4.2. ADVANCED OPERATIONS

�nally end up with a really slow algorithm. We then realised that it was easier and faster to execute
a 1-layer kernel on each of the channels. To be able to achieve coalesced memory accesses this layout
was implemented.

For each channel the values are stored in a row-major scheme using 2D pitched memory, and the
channels are stored consecutively in memory. This layout is illustrated in �gure 4.2. The formulae to
�nd a given pixel in that layout is given by:

∀(i, j, k) ∈ {1, . . . , N} × {1, . . . ,M} × {1, 2, 3} (4.2)

M(i, j, k) = ptr[k - 1][i ∗ pitch+ j]

(4.3)

This layout have the bene�t that a k-layers image can easily be �attened into a 1-layer image doing
coalesced memory accesses. Also note that for a 1-channel image this layout gives the same memory
layout as the interlaced one. Nevertheless we prefer to use the interlaced one in that case.

1 template<typename T, int k>

2 struct MatrixLayers{

3 T* ptr[k];

4 uint3 size;

5 int pitch[k];

6 size_t pitch_bytes[k];

7 size_t width_bytes;

8 };

This layout is implemented as a template structure for it to handle any type of values. A pointer to
each layer allocated memory is stored in the array ptr[]. The structures includes a uint4 value size
where size.x is the width, size.y the height, size.z the number of channels and size.w the pitch in
number of elements. The pitch and width in bytes are also included.

4.2 Advanced operations

The data structures being de�ned we detail in this section how we use them in various operators
implemented.

4.2.1 Convolution

As we use convolution only for Gaussian smoothing and derivation, in order to save time, we can always
operate separate convolution. We then need one kernel to convolve rows and another for columns. The
CUDA SDK is shipped with some very interesting sample codes, one of them achieving parallel sepa-
rate convolution. We took that code and modi�ed it a bit, for instance we introduced texture memory
accesses. We also modi�ed it for halo_steps and kernel_radius to be dynamically valued. But let us
explain step by step what does this kernel do. We explain here the row convolution kernel, the column
one being only a transposition of it.

Each block has ROWS_BLOCSIZE_X × ROWS_BLOCKSIZE_Y threads, and one thread
works on ROWS_RESULT_STEPS values on its line. Each block is allocated a �oating point
array of shared memory with as many lines as the block will process and enough columns to �t
ROWS_RESULT_STEPS values plus two times the necessary halo (actually an upper bound
MAX_HALO_SIZE on the halo size). The layout of this array is depicted in �gure 4.3.

57



4.2. ADVANCED OPERATIONS CHAPTER 4. IMPLEMENTATION DETAILS

• • • •• • • •. . . . . .. . . . . .

• • • •• • • •. . . . . .. . . . . .

• • • •• • • •. . . . . .. . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...h

ei
g
h
t

datahalo halo notused

height = ROWS_BLOCKDIM_Y

data = ROWS_RESULT_STEP ∗ROWS_BLOCKDIM_X

halo = halo_steps ∗ROWS_BLOCKDIM_X

notused = 2 ∗ (MAX_HALO_STEPS − halo_steps) ∗ROWS_BLOCKDIM_X

Figure 4.3: Layout of block-shared array in convolution kernel

Then values need to be loaded from the image to the shared array. It is done in three parts:

• main data is loaded

• left halo is loaded

• right halo is loaded

For each of these parts, values are loaded by ROWS_RESULT_STEPS successive steps of
ROWS_BLOCKDIM_X simultaneous memory transfers. At each step the thread k of the current
block loads the value k ∗ ROWS_BLOCKDIM_X. This is done that way for the memory accesses
to be coalesced. This loading process is illustrated in �gure 4.4.

• • • • • • • • •

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1

•

1

•

1

•

2

•

2

•

2

•

k

•

k

•

k

•

. . . . . . . . .

• thread 1

• thread 2

. . .

• thread k

ROWS_BLOCKDIM_X

STEP 1

ROWS_BLOCKDIM_X

STEP 2

ROWS_BLOCKDIM_X

STEP N

Figure 4.4: Coalesced image copy to block-shared memory in convolution kernel

Once the values loaded in shared memory, the convolution process can take place. For a given kernel
K of radius r we have K = (K−r, . . . ,K0, . . . ,Kr)

T and each element Ii of the image is computed as:

58



CHAPTER 4. IMPLEMENTATION DETAILS 4.2. ADVANCED OPERATIONS

Ii =
r∑

j=−r
Kj · Ii+j (4.4)

Here again the whole computation is done in ROWS_RESULT_STEPS successive steps, using
the same scheduling as for loading. The �gure 4.5 illustrates this process for a given line. Note that
the same steps are used for computation as for the data loadings, the �gure does not illustrate it.

• • • •• • • • • • •. . . . . .. . . . . .

•′ •′ •′ •′ •′ •′ •′. . . . . .

×0.00 . . . ×0.24 ×0.39 ×0.24 . . . ×0.00 ×0.0 . . . ×0.24 ×0.39 ×0.24 . . . ×0.0

. . .+ +
kernel

image

shared memory

halo halo notused

Figure 4.5: Parallel convolution process

Finally we give the modi�ed version of the sample code that we use in the application :

1 __global__

2 void convolutionRowsKernel(

3 float *d_Dst, float *d_Src, uint2 size, uint2 pitch, int halo_steps, int k_rad

4 ){

5

6 __shared__ float s_Data[ROWS_BLOCKDIM_Y]

7 [(ROWS_RESULT_STEPS + 2 * MAX_HALO_STEPS) * ROWS_BLOCKDIM_X];

8

9 //Offset to the left halo edge

10 const int baseX =

11 (blockIdx.x * ROWS_RESULT_STEPS - halo_steps) * ROWS_BLOCKDIM_X + threadIdx.x;

12 const int baseY =

13 blockIdx.y * ROWS_BLOCKDIM_Y + threadIdx.y;

14

15 //float *d_Src_old = d_Src;

16 d_Src += (baseY * pitch.x + baseX);

17 d_Dst += (baseY * pitch.y + baseX);

18

19 //Load main data

20 for(int i = halo_steps; i < halo_steps + ROWS_RESULT_STEPS; i++)

21 s_Data[threadIdx.y] [threadIdx.x + i * ROWS_BLOCKDIM_X] =

22 tex2D(texRef, baseX + i * ROWS_BLOCKDIM_X, baseY);

23

24 //Load left halo

25 for(int i = 0; i < halo_steps; i++)

26 s_Data[threadIdx.y] [threadIdx.x + i * ROWS_BLOCKDIM_X] =

27 tex2D(texRef, baseX + i * ROWS_BLOCKDIM_X, baseY);

28

59



4.2. ADVANCED OPERATIONS CHAPTER 4. IMPLEMENTATION DETAILS

29 for(int i = halo_steps + ROWS_RESULT_STEPS; i < 2 * halo_steps + ROWS_RESULT_STEPS; i++)

30 s_Data[threadIdx.y] [threadIdx.x + i * ROWS_BLOCKDIM_X] =

31 tex2D(texRef, baseX + i * ROWS_BLOCKDIM_X, baseY);

32

33 //Compute and store results

34

35 __syncthreads();

36

37 for(int i = halo_steps; i < halo_steps + ROWS_RESULT_STEPS; i++){

38 float sum = 0;

39

40 for(int j = -k_rad; j <= k_rad; j++){

41 sum += KERNEL[k_rad + j] *

42 s_Data[threadIdx.y] [threadIdx.x + i * ROWS_BLOCKDIM_X + j];

43 }

44

45 if(baseX + i * ROWS_BLOCKDIM_X < size.x)

46 d_Dst[i * ROWS_BLOCKDIM_X] = sum;

47 }

48 }

4.2.2 Gaussian smoothing

One 2D Gaussian kernel can be split in two 1D Gaussian kernels that can be used with the convolution
code previously introduced. Obviously the bigger the σ is the slower the convolution will be because
the halo size depends on σ. The maximum size of the halo being statically de�ned, an upper bound of
σmax exists.

We de�ne the support of the Gaussian as [−3σ;σ], this is conventionally done because it captures
99% of the energy of the Gaussian function. Discrete 1D Gaussian kernel is thus computed using the
following formulae:

Kσ(i) = exp

(
0.5

σ2
i2
)
/

 imax∑
j=imin

Kσ(j)

 , i = −b3σc, . . . , b3σc (4.5)

4.2.3 Derivation

The computation of the motion tensor involves �rst order derivative calculus.

Time derivative are only computed with a 2 points stencil implemented with a simple subtraction
kernel:

It = I2 − I1 (4.6)

Derivatives with respect to x and y are computed by convolution with fourth order precision kernel
as detailed in appendix A.4:

Kx =
1

12
(1,−8, 0, 8,−1), Ky =

1

12


1

− 8
0
8

− 1

 (4.7)

Finally, for a pair of images from a sequence, the derivatives computed on both images are simply
averaged:

60



CHAPTER 4. IMPLEMENTATION DETAILS 4.2. ADVANCED OPERATIONS

Ix =
1

2
(Kx ? I1 +Kx ? I2) (4.8)

Iy =
1

2
(Ky ? I1 +Ky ? I2) (4.9)

4.2.4 Restriction and prolongation

Restriction and prolongation operators are key features of multigrid solvers (see [4][16]). The way these
operators are implemented impacts a lot quality of the solution we end up with. They have to stay
fast though. A perfect operator would consider each border case speci�cally, introducing a lot of if
statements. Although we have seen in chapter 3 that those slow down execution a lot. As a result we
tried to keep a good balance between accuracy and runtime.

4.2.5 Restriction

Restriction operator does a simple averaging on �ne image values to compute the coarse image. These
averages have to overlap in order to avoid introducing of high-frequent errors. We execute one thread
per value vi,j to compute in the coarse image. Each thread use texture memory accesses to fetch the
values Vk,l from the �ne image. The sum is weighted using the w coe�cient matrix:

w =

 1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16

 (4.10)

V =

 V2i−1,2j−1 V2i−1,2j V2i−1,2j+1

V2i,2j−1 V2i,2j V2i,2j+1

V2i+1,2j−1 V2i+1,2j V2i+1,2j+1

 (4.11)

vi,j =
3∑

k=1

3∑
l=1

wk,l · Vk,l (4.12)

Obviously the problems are located at the borders. To experience highest speedup we let the texture
memory functions do the job. The default mode for texture out-of-range fetches being cudaAddressModeClamp,
everything behaves as if the border lines were replicated outside of the range. This was hard choice, but
implementing a succession of if statements was de�nitely too slow. Some more improvements could
be made at that point.

Thus, at the borders the coe�cient matrix is changed:

wN = wT
W

 0 0 0
3/16 3/8 3/16
1/16 1/8 1/16

 , wS = wT
E

 1/16 1/8 1/16
3/16 3/8 3/16

0 0 0

 , wNW =

 0 0 0
0 9/16 3/16
0 3/16 1/16

 , . . .

(4.13)

The behaviour of the restriction operator is illustrated in �gure 4.6.

61



4.2. ADVANCED OPERATIONS CHAPTER 4. IMPLEMENTATION DETAILS

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3
16

9
16

1
16

3
16

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

Figure 4.6: Parallel restriction operator: Red squares surround coarse values written by a single

thread. Green squares surround �ne values used for the computation of the coarse value at the end of

the arrow. On the arrows are represented the coe�cient matrix used for that particular point. Note that

green squares are only special cases, if we wanted to draw all of them the �ne image would have been

all green.

Finally we give the source code for the restriction operator kernel:

1 __global__

2 void restriction(float* reduced, uint4 size_red, uint4 size){

3 const int i_red = threadIdx.y + blockIdx.y * blockDim.y;

4 const int j_red = threadIdx.x + blockIdx.x * blockDim.x;

5

6 if(i_red < size_red.y && j_red < size_red.x){

7 const int i = i_red * 2;

8 const int j = j_red * 2;

9 float sum;

10

11 for(int k = 0; k < size_red.z; k++){

12 sum = 0.25f * tex2DI(texRef, j , i , k, size.z);

13 sum += 0.125f * tex2DI(texRef, j , i + 1, k, size.z);

14 sum += 0.125f * tex2DI(texRef, j + 1, i , k, size.z);

15 sum += 0.125f * tex2DI(texRef, j - 1, i , k, size.z);

16 sum += 0.125f * tex2DI(texRef, j , i - 1, k, size.z);

17 sum += 0.0625f * tex2DI(texRef, j + 1, i + 1, k, size.z);

18 sum += 0.0625f * tex2DI(texRef, j - 1, i - 1, k, size.z);

19 sum += 0.0625f * tex2DI(texRef, j + 1, i - 1, k, size.z);

20 sum += 0.0625f * tex2DI(texRef, j - 1, i + 1, k, size.z);

21

22 I_ELEM(reduced, i_red, j_red, k, size_red) = sum;

23 }

62



CHAPTER 4. IMPLEMENTATION DETAILS 4.2. ADVANCED OPERATIONS

24 }

25 }

4.2.6 Prolongation

Prolongation operator is de�ned as the dual operation of the restriction one. Therefore it does a simple
linear interpolation on coarse image values to compute the �ne image. These interpolations have to
overlap too in order to avoid introducing of high-frequent errors. What is practically done is that that
each coarse value vi,j is copied to the �ne value V2i,2j , then we apply the following interpolation rules:

V2i+1,2j =
1

2
(vi,j + vi+1,j) (4.14)

V2i,2j+1 =
1

2
(vi,j + vi,j+1) (4.15)

V2i+1,2j+1 =
1

4
(vi,j + vi,j+1 + vi+1,j + vi+1,j+1) (4.16)

The same remarks regarding the borders can be made about the prolongation operator as for the
restriction one. But for the prolongation the problems only happen in right and bottom borders.

The behaviour of the prolongation operator is illustrated in �gure 4.7.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1
2

1

1
2

1
4

Figure 4.7: Parallel prolongation operator: Red squares surround �ne values written by a single

thread. Green squares surround coarse values used for the computation of the coarse value at the end

of the arrow. On the arrows are represented the weight used to sum the green neighbourhood. Note that

green squares are only special cases, if we wanted to draw all of them the �ne image would have been

all green.

Finally we give the source code for the prolongation operator kernel:

1 __global__

2 void prolongation(

3 float* prolongated,

4 uint4 size_pro,

5 uint4 size

6 ){

63



4.3. MOTION TENSOR COMPUTATION CHAPTER 4. IMPLEMENTATION DETAILS

7 const int i = threadIdx.y + blockIdx.y * blockDim.y;

8 const int j = threadIdx.x + blockIdx.x * blockDim.x;

9

10 const int i_pro = i * 2;

11 const int j_pro = j * 2;

12

13 if(i_pro < size_pro.y && j_pro < size_pro.x){

14

15 for(int k = 0; k < size_pro.z; k++){

16 I_ELEM(prolongated, i_pro, j_pro, k, size_pro) = tex2DI2(texRef, j, i, k);

17

18 if(j_pro < size_pro.x - 1)

19 I_ELEM(prolongated, i_pro, j_pro + 1, k, size_pro) =

20 0.5f * tex2DI2(texRef, j, i, k) +

21 0.5f * tex2DI2(texRef, j + 1, i, k);

22

23 if(i_pro < size_pro.y - 1)

24 I_ELEM(prolongated, i_pro + 1, j_pro, k, size_pro) =

25 0.5f * tex2DI2(texRef, j, i, k) +

26 0.5f * tex2DI2(texRef, j, i + 1, k);

27

28 if(i_pro < size_pro.y - 1 && j_pro < size_pro.x - 1)

29 I_ELEM(prolongated, i_pro + 1, j_pro + 1, k, size_pro) =

30 0.25f * tex2DI2(texRef, j, i, k) +

31 0.25f * tex2DI2(texRef, j, i + 1, k) +

32 0.25f * tex2DI2(texRef, j + 1, i, k) +

33 0.25f * tex2DI2(texRef, j + 1, i + 1, k);

34 }

35 }

36 }

4.3 Motion tensor computation

This section summarises and illustrates the steps necessary to the computation of the motion tensor,
starting point of all implemented algorithms.

4.3.1 Memory transfers and data conversion

Firstly images need to be transfered from the hard disk drive to the computer RAM, this is done using
OpenCV as this library can deal with a lot of formats. OpenCV loads images in RAM as unsigned
char arrays, we need to transfer those to the GPU device memory. The cudaMemcpy function does that
with the �ag cudaMemcpyHostToDevice.

From this point we will only deal with �oating point values, hence a conversion from unsigned

char to float is made using a simple copy kernel. As the choice of OpenCV can be discussed, please
note that a library which would return directly float arrays from image �les would make the transfer
four times slower.

4.3.2 Presmoothing

After that images need to be presmoothed as explained in 2.3. They are then convolved with the
Gaussian kernel Kσ. The �gure 4.8 shows two images of this sequence f1, f2, and their presmoothed
versions.

64



CHAPTER 4. IMPLEMENTATION DETAILS 4.3. MOTION TENSOR COMPUTATION

Figure 4.8: Presmoothed images: f1, Kσ ? f1, f2, Kσ ? f2

4.3.3 Derivative products

Derivatives fx, fy and ft are computed as explained in 4.2.3. We give no �gure fore that because, as
the values are really small, the images look quite dark.

Products between derivatives are computed with point-wise matrix multiplication kernel:

Figure 4.9: Derivatives products: f2
x , f

2
y , fxfy, fxft, fyft

4.3.4 Postsmoothing

Then postsmoothing is done by separable convolution with a Gaussian kernel Kρ:

Figure 4.10: Postsmoothed derivatives products: Kρ ? f
2
x , Kρ ? f

2
y , Kρ ? (fxfy), Kρ ? (fxft), Kρ ? (fyft)

(ρ = 6.0)

4.3.5 Motion tensor color layers merging

For a color image, as you can see, the postsmoothed products are still 3-layers images. This represents
the motion information found for each color channel of the image. In our case we want to use all the
information available. Hence we sum the three channels of each image to get the �nal motion tensor.
The kernel to do so is straightforward: each thread reads one value from each layer of the 3-channels
image, sum them and stores the result a 1-channel one. Note that here again coalesced memory accesses
are performed which results in a fast execution. The �gure 4.11 shows the resulting sums.

65



4.4. SOLVERS CHAPTER 4. IMPLEMENTATION DETAILS

Figure 4.11: Motion tensor components: J11, J22, J12, J13, J23 (ρ = 6.0)

4.3.6 Overall algorithm

We summarise the overall algorithm in the �gure 4.12.

CPU Images

Copy to Device

uchar → float

Presmoothing

∂/∂t, ∂/∂x, ∂/∂y Products Postsmoothing Merge Channels

Compute Flow

Copy back to host

CPU Flow

Motion tensor computation

Motion Tensor

Flow

Figure 4.12: GPU optical �ow overall algorithm: motion tensor computation

4.4 Solvers

This section describes the solvers implemented to compute optical �ows using Horn & Schunck and
CLG methods.

4.4.1 Jacobi solver

The Jacobi solver implementation is really close to the de�nition given in 2.8.1 (see also [1]). At �rst
the matrix introduced in 2.6 is computed. Obviously a sparse matrix representation is used as the
matrix would need more than terabytes of memory to be densely stored. Only the di�erent diagonals
are then stored.

66



CHAPTER 4. IMPLEMENTATION DETAILS 4.4. SOLVERS

In the theoretical aspects, we use a matrix form for our systems Mx = f . But we concretely imple-
ment vectors as 2-channels MatrixInterpolated and matrix diagonals as well. It makes sense because
we already said that a �ow is an image with all the constraints that come with � mainly topology �
and it would make no sense to represent it as a linear vector. Thus in order to do coalesced memory
accesses and save some computation time we represent matrix diagonals in that way as well.

In fact only the principal diagonal has to be computed. The other diagonals are only constant
values or zero depending on the topology. To avoid use of �ow control statements in the solver iteration
kernel, we precompute masks (0 or 1) depending on the topology. Then, during the iterations, we only
need to multiply the mask by the constant value.

The matrix computation kernel (see [3]) computes the following values:

the diagonal terms: used in the residual computation

the inverted diagonal terms: used in the solvers

the laplacian terms of the diagonal: used in the non linear solvers

the motion tensor terms of the diagonal: used in the nonlinear solvers as well

external diagonals masks: to save time in iterations

The diagonal being the sum of the laplacian and motion tensor terms, this computation does a bit
of redundancy. This call is certainly not the most expensive of the application, nevertheless some of
the aforementioned computations can be disabled if using only nonlinear or linear solvers. The right
hand f is computed from the motion tensor with simple texture fetches in a kernel.

Finally the solver can be run on those data in two modes. The error mode sets a target error and
iterates until this target error is reached. The iterations mode directly sets a number of iterations that
will be executed. The solver being iterative, it involves the use of an old and new solution. Copying
constantly the new solution into the old one before computing would be very ine�cient. We therefore
use a pair of vectors that we permute without needing to do any copy.

The source code of the Jacobi solver kernel is given there:

1 __global__

2 void jacobi_it(

3 float* x, uint4 size, float2 aH2inv, float sor_factor, float one_m_sor_factor

4 ){

5 const int i = threadIdx.y + blockIdx.y * blockDim.y;

6 const int j = threadIdx.x + blockIdx.x * blockDim.x;

7

8 if(i < size.y && j < size.x){

9 float2 sum, aii_inv, fi;

10 float im1 = -tex2DI2(mask_b_ref, j, i, 1);

11 float ip1 = -tex2DI2(mask_a_ref, j, i, 1);

12 float jm1 = -tex2DI2(mask_b_ref, j, i, 0);

13 float jp1 = -tex2DI2(mask_a_ref, j, i, 0);

14

15 aii_inv.x = tex2DI2(diag_inv_ref, j, i, 0);

16 aii_inv.y = tex2DI2(diag_inv_ref, j, i, 1);

17 fi.x = tex2DI2(f_ref, j, i, 0);

18 fi.y = tex2DI2(f_ref, j, i, 1);

19

67



4.4. SOLVERS CHAPTER 4. IMPLEMENTATION DETAILS

20 sum.x = tex2DI1(jxy_ref, j, i) *

21 tex2DI2(x_old_ref, j, i, 1);

22 sum.y = tex2DI1(jxy_ref, j, i) *

23 tex2DI2(x_old_ref, j, i, 0);

24

25 sum.x += ip1 * tex2DI2(x_old_ref, j, i + 1, 0);

26 sum.y += ip1 * tex2DI2(x_old_ref, j, i + 1, 1);

27 sum.x += jp1 * tex2DI2(x_old_ref, j + 1, i, 0);

28 sum.y += jp1 * tex2DI2(x_old_ref, j + 1, i, 1);

29 sum.x += jm1 * tex2DI2(x_old_ref, j - 1, i, 0);

30 sum.y += jm1 * tex2DI2(x_old_ref, j - 1, i, 1);

31 sum.x += im1 * tex2DI2(x_old_ref, j, i - 1, 0);

32 sum.y += im1 * tex2DI2(x_old_ref, j, i - 1, 1);

33

34 I_ELEM(x, i, j, 0, size) =

35 sor_factor * (aii_inv.x * (fi.x - sum.x)) +

36 one_m_sor_factor * tex2DI2(x_old_ref, j, i, 0);

37

38 I_ELEM(x, i, j, 1, size) =

39 sor_factor * (aii_inv.y * (fi.y - sum.y)) +

40 one_m_sor_factor * tex2DI2(x_old_ref, j, i, 1);

41 }

42 }

For the Yosemite sequence this solver converges in a few thousands of iterations. On the GPU this
executes a lot faster than a CPU point-wise Gauss-Seidel but it is still poor performances compared to
multigrid solvers. The �gure 4.13 depicts the convergence of the solver for di�erent number of iterations.

Figure 4.13: Convergence of the Jacobi solver for di�erent number of iterations: 10, 50, 100, 300, 500,
700, 1000, 1500, 2000, 3000

4.4.2 Jacobi solver with lagged nonlinearities

The non linear Jacobi solver is really close to the linear one, they use a lot of function stubs in common.
The di�erence is that operators have constantly to be updated with the new solution values. To this
end we need to compute Ψ′S and Ψ′D from the freshly computed solution x. The source code of the Ψ′S
computation kernel is given:

1 __global__

2 void psi_s_kernel(

3 float* psi_s,

4 uint4 size

68



CHAPTER 4. IMPLEMENTATION DETAILS 4.4. SOLVERS

5 ){

6 const int i = threadIdx.y + blockIdx.y * blockDim.y;

7 const int j = threadIdx.x + blockIdx.x * blockDim.x;

8

9 float2 d[2];

10 float val;

11

12 if(i < size.y && j < size.x){

13 for(int k = 0; k < 2; k++){

14 d[k].x = 1.0f * tex2DI2(x_ref, j - 2, i, k);

15 d[k].x += -8.0f * tex2DI2(x_ref, j - 1, i, k);

16 d[k].x += 8.0f * tex2DI2(x_ref, j + 1, i, k);

17 d[k].x += -1.0f * tex2DI2(x_ref, j + 2, i, k);

18

19 d[k].y = 1.0f * tex2DI2(x_ref, j, i - 2, k);

20 d[k].y += -8.0f * tex2DI2(x_ref, j, i - 1, k);

21 d[k].y += 8.0f * tex2DI2(x_ref, j, i + 1, k);

22 d[k].y += -1.0f * tex2DI2(x_ref, j, i + 2, k);

23 }

24

25 val = d[0].x * d[0].x + d[0].y * d[0].y;

26 val += d[1].x * d[1].x + d[1].y * d[1].y;

27 val += EPSILON_S2;

28

29 if(val != 0.0f)

30 I_ELEM1(psi_s, i, j, size) =

31 0.5f * (1.0f / sqrtf(val));

32 }

33 }

And the one to compute Ψ′D as well:

1 __global__

2 void psi_d_kernel(

3 float* psi_d,

4 uint4 size

5 ){

6 const int i = threadIdx.y + blockIdx.y * blockDim.y;

7 const int j = threadIdx.x + blockIdx.x * blockDim.x;

8

9 float u, v, val;

10

11 if(i < size.y && j < size.x){

12 u = tex2DI2(x_ref, j, i, 0);

13 v = tex2DI2(x_ref, j, i, 1);

14 val = tex2DI1(jxx_ref, j, i) * u * u;

15 val += tex2DI1(jyy_ref, j, i) * v * v;

16 val += tex2DI1(jtt_ref, j, i);

17 val += 2.0f * tex2DI1(jxy_ref, j, i) * u * v;

18 val += 2.0f * tex2DI1(jxt_ref, j, i) * u;

19 val += 2.0f * tex2DI1(jyt_ref, j, i) * v;

20 val += EPSILON_D2;

21

22 if(val != 0.0f)

23 I_ELEM1(psi_d, i, j, size) =

24 0.5f * (1.0f / sqrtf(val));

25 }

26 }

During the iteration process, after each new solution has been computed, Ψ′S and Ψ′D are computed
from it. The right hand f is updated using those two derivatives. The threads in the following iterations

69



4.4. SOLVERS CHAPTER 4. IMPLEMENTATION DETAILS

use Ψ′S and Ψ′D to compute the matrix coe�cients they need.

This solver converges a lot slower than the linear one. Moreover the time spent in each iteration is
higher than for the linear one as additional computation is needed.

4.4.3 Multigrid solvers

Nonlinear and linear multigrid solvers are only a set high level functions using the Jacobi or nonlinear
Jacobi kernels. At �rst the number of grid levels to allocate has to be de�ned. If no maximum depth
is given, the application will go as deep as it can. For instance Yosemite sequence can be restricted
down to a size of 2×1, �gure 4.14 shows the size for each depth of grid and the corresponding grid steps.

depth size grid step

0 316× 252 1× 1
1 158× 126 2× 2
2 79× 63 4× 4
3 40× 32 4× 4
4 20× 16 8× 8
5 10× 8 16× 16
6 5× 4 32× 32
7 3× 2 32× 64
8 2× 1 32× 128

Figure 4.14: Yosemite sequence size and grid steps for each depth of a multigrid scheme

Then a restricted version of the motion tensor has to be computed for each grid level. Figure 4.15
shows images of restricted motion tensor component J11 for each depth.

70



CHAPTER 4. IMPLEMENTATION DETAILS 4.4. SOLVERS

Figure 4.15: Yosemite sequence's J11 at each of the 9 multigrid levels from 316× 252 to 2× 1

The prolongation, restriction have already been explained and the V and W-Cycles are implemented
straightforwardly to the pseudo codes given in 2.8. We �nally come up with fully working linear and
nonlinear solvers that, with the right parameters, compute a dense �ow in less than 100ms.

71



4.4. SOLVERS CHAPTER 4. IMPLEMENTATION DETAILS

72



Chapter 5

Tools developed

All the functionalities described in chapter 4 are bundled in one main command-line application called
flow-compute described in 5.1. But other tools have also been developed during this project in order
to perform repetitive tasks and speed up the development phase. These tools are designed to cooperate
and provide distinct and coherent sets of functionalities for our platform. The flow-tool command
line tool was created to deal with di�erent data representations of the �ow. The flow-studio gui
application was designed for someone to visually interact with the �ow parameters and see in real
time the �ow computed. Finally some wrapper make�les were created to make the command-line user
interaction smoother and to easily compute �ow of multiple sequences with prede�ned parameters. We
detail in that chapter the functionalities and behaviour of these tools.

5.1 flow-compute command-line tool

The flow-compute executable is, together with the �ow computation library, the main product of this
project. This application was made to compute quickly the optical �ow of some image sequences using
the GPU and to provide simple and complete tuning on methods and parameters. It implements the
algorithms listed in chapter 2. It also implements some extra features as parameters �le handling,
advanced timing, detailed debugging trace and video handling that are detailed here.

5.1.1 Parameter �les

Parameters to use for a speci�c algorithm can di�er from one sequence to another. Therefore we
thought it could be convenient to store those parameters in a �le coming along with the sequence.
Using a simple CSV format the flow-compute application can be passed a .params �le as argument to
compute the �ow with the �le parameters. Obviously command-line parameters override parameters
read in those �les, which adds �exibility to this scheme. Finally the application creates a .params �le
in output. This output �le should be kept with the binary �ow �le in order to be able to �nd out
which parameters were used to compute it. This output �le can be used again as input for another
computation. The �gure 5.1 summarises this behaviour.

73



5.1. FLOW-COMPUTE COMMAND-LINE TOOL CHAPTER 5. TOOLS DEVELOPED

0100101010
1001010010
0100111010
1010101101
1000110101.F

Flow generation
.PAR
 AMS

.PAR
 AMS

command line parameters

Figure 5.1: flow-compute: parameter �les

5.1.2 Work�ow generation

An image processing algorithm is sometimes hard to debug only by inspecting or printing the values.
If the resulting image is wrong, and you do not know why, it can be useful to export one image for each
step of computation. Our flow-compute application implements this feature generating on demand
what we call work�ows. Figure 5.2 shows a work�ow for the Yosemite sequence.

Figure 5.2: flow-compute: work�ow generation

74



CHAPTER 5. TOOLS DEVELOPED 5.1. FLOW-COMPUTE COMMAND-LINE TOOL

5.1.3 Advanced timing

Dealing with real-time situations means constantly doing a lot of optimisations. To this end, being
able to do precise and �exible time measures in the program is essential. We want to know precisely
the time spent in one function but also the frame-rate and the bandwidth in mega-pixels per second.
Knowing these parameters for all parts of the algorithm allows to identify the bottlenecks and optimise
what has to be. A good timer has to be non-intrusive which means that he should not slow down the
part of code it is measuring. It has also to be non code-intrusive which means that it should not be
passed as argument of every function.

The flow-compute application integrates a timer which is able to provide all these features. We
only have to call the TIMER_INSTACIATE macro in one �le of the project and after all we have to do
is include the header in other �les and call the timing macros. TIMER_START("name") macro starts a
measure called name and TIMER_STOP() stops it.

Using highly recursive function calls, one other feature that is useful in our case is multi-scale
timing. Concretely we want to do some measures in a measure, down to a de�ned depth. It is then
interesting to know in a precise function what takes the most of its execution time and what is fast.
This useful feature is also implemented in flow-compute using the macros TIMER_NEXT_LEVEL() and
TIMER_PREV_LEVEL().

Time measures are based on CPU runtime with kernel calls. These kind of measures can be slightly
di�erent for two similar calls. Also the GPU, while processing data, can be faster as it warms up. To
compensate these imprecisions and variations, our timer runs n times the same code and eventually
averages the computed values. We give in �gures 5.3 and 5.4 some sample execution traces.

Examples

Here is one example of simple timing:

TOTAL (100%) : [96.0593 ms, 10.41 fps, 0.83 MPx/s]

|

| change format (0%) : [0.423264 ms, 2362.59 fps, 188.14 MPx/s]

| compute df/dt (0%) : [0.135981 ms, 7353.97 fps, 585.61 MPx/s]

| gaussian presmoothing (2%) : [2.11773 ms, 472.20 fps, 37.60 MPx/s]

| derivatives (2%) : [2.13298 ms, 468.83 fps, 37.33 MPx/s]

| matrix multiplications (0%) : [0.758164 ms, 1318.98 fps, 105.03 MPx/s]

| convolutions (14%) : [13.4958 ms, 74.10 fps, 5.90 MPx/s]

| compute flow (80%) : [76.9954 ms, 12.99 fps, 1.03 MPx/s]

Figure 5.3: flow-compute simple timing

And there you can see an example of multi-scale timing:

75



5.1. FLOW-COMPUTE COMMAND-LINE TOOL CHAPTER 5. TOOLS DEVELOPED

TOTAL (100%) : [96.1734 ms, 10.40 fps, 0.83 MPx/s]

|

[ ... ]

| compute flow (80%) : [77.1022 ms, 12.97 fps, 1.03 MPx/s]

| |

| | J restrict (2%) : [1.82903 ms, 546.74 fps, 43.54 MPx/s]

| | Matrices (6%) : [5.22847 ms, 191.26 fps, 15.23 MPx/s]

| | Vectors (1%) : [1.07363 ms, 931.42 fps, 74.17 MPx/s]

| | Solve (89%) : [68.64 ms, 14.57 fps, 1.16 MPx/s]

| | |

| | | Fill 0 (0%) : [0.01464 ms, 68306.01 fps, 5439.34 MPx/s]

| | | FMG (99%) : [68.6234 ms, 14.57 fps, 1.16 MPx/s]

| | | |

| | | | VCycle_nl (1%) : [1.1899 ms, 840.41 fps, 66.92 MPx/s]

| | | | |

| | | | | Jacobi_nl (99%) : [1.18802 ms, 841.74 fps, 67.03 MPx/s]

| | | | |

| | | | Prolongate (0%) : [0.029234 ms, 34206.75 fps, 2723.95 MPx/s]

| | | | FGM_nl (98%) : [67.4014 ms, 14.84 fps, 1.18 MPx/s]

| | | | |

| | | | | VCycle_nl (3%) : [2.02254 ms, 494.43 fps, 39.37 MPx/s]

| | | | | Prolongate (0%) : [0.02905 ms, 34423.41 fps, 2741.20 MPx/s]

| | | | | FGM_nl (96%) : [65.3473 ms, 15.30 fps, 1.22 MPx/s]

Figure 5.4: flow-compute multi-scale timing

5.1.4 Detailed debugging trace

Multigrid algorithms are somtimes hard to debug or even to use. Choosing good parameters is not
always easy and a problem in the computation often results in a 0 �ow. Being able for the di�erent
kinds of cycle to have a visual information on what happened in de�nitely a plus. We provide such
a feature in the work�ow mode of flow-compute. The detail of mathematical operations computed
is given and the depth is represented with indentation. A debugging trace of a three depth levels
full-multigrid solver using V-Cycles is given in appendix B.1 and another one using W-Cycles is given
in appendix B.2.

5.1.5 Video handling

Optical �ow computation in real-time would not mean anything without video handling. The time of
computation � below a certain limit � is important only if the data arrives in the form of a continuous
stream with a given frame rate. For the computation to be fast, the flow-compute application had to
integrate the concept of data streams by for example avoiding data allocation and deallocation inside
the computing loop. Memory is allocated once at the beginning and, for a given image size, can then be
used to compute many frames. OpenCV is used to open the �le descriptor /dev/videoN of the Linux
kernel to be able to retrieve images from a camera connected the computer. To prove it, the �gure 5.5
shows the computed �ow while the author of this document is moving.

76



CHAPTER 5. TOOLS DEVELOPED 5.2. FLOW-TOOL COMMAND-LINE TOOL

Figure 5.5: Video handling in flow-compute

5.2 flow-tool command-line tool

As far as we know, two kinds of representation have been used for optical �ows: the color one and the
vector �eld one. At a lower level, �ow values � di�erent from �ow representations � can be stored in
di�erent formats in a binary �le. Middlebury university uses the .flo extension while Otago university
uses .pcm extension and Yosemite sequence uses .F extension. One will need to be able to compute
an error measure between a �ow computed with our algorithms and for example a .flo ground-truth.
Finally image sequences can be in several image formats. As a consequence we needed a tool to abstract
those various representations and formats. We then implemented flow-tool.

Having tried our algorithm �rstly using the Yosemite sequence, we use the .F �ow format as a central
format in our application. It is also because this format is really close to the memory layout of the
�ows we compute, which are themselves really close to the structure imposed by the GPU architecture.
Our tool is able to convert from .pcm and .flo to .F. It can compute the average errors � angular or
end point � between two .F �les and it can provide the representation of a .F �le into an image. The

77



5.3. FLOW GENERATION USING GNU MAKE CHAPTER 5. TOOLS DEVELOPED

image representations can be of three kinds: colour representation, colour representation with legend
around and vector plot representation. The �gure 5.6 summarises the functionalities of flow-tool.

Conversion

.F

.PCM
0100101010
1001010010
0100111010
1010101101
1000110101.F

.FLO
0100101010
1001010010
0100111010
1010101101
1000110101

0100101010
1001010010
0100111010
1010101101
1000110101.F

Error computation

0100101010
1001010010
0100111010
1010101101
1000110101.F AAE

AEE

Color Mapping Field Mapping

.F .F .F

Ground truths

Figure 5.6: flow-tool conversion chain �owchart

5.3 Flow generation using GNU Make

GNU Make is often thought to be destined only to code compilation with dependences. But it is a
lot more general than that. It can be used for all tasks that involves interaction between targets and
dependencies. We wanted a way to easily test our algorithms on a set of sequences, generate �ow images
and appropriate montages between them. We then implemented a set of make�les, using ImageMagick

command-line tools, to generate these targets letting GNU Make handle the dependencies for us. We
explain here some use cases of these generation tools.

5.3.1 Sequences

At �rst we want to have a coherent (in terms of format) set of sequences with ground truth and
parameter �les. This has to be done preserving the initial �les somewhere just in case the central
format used does not �t the requirements. In our project tree, the sequences/ directory was created
for that. In the src/ subdirectory you can put all the sequences you have in every format with ground-
truths in also every formats. You can also put default parameter �les. Then a simple call to make, in

78



CHAPTER 5. TOOLS DEVELOPED 5.3. FLOW GENERATION USING GNU MAKE

the sequences/ directory, converts all the sequences in the central format you chose, converts all the
ground truths in the .F format, generates color and vector �eld representation for of them and creates
symbolic links to your parameter �les (or blank �les in case there is not one) in the dst/ directory.
Obviously if a given sequence is inserted or another modi�ed, only the necessary (re)computations are
done.

5.3.2 Advanced �ow generation

Once sequences generated, we want to face them with our algorithms. Then, in the flow-compute

source code directory (where one is prone to make some changes on the algorithms), a simple calls to
make flows and make stats compute everything possible for each of these sequences:

• binary �ow �les in .F format

• color and vector �eld representations

• errors (if ground truh) in the form of .aae and .aee �les (�gure 5.7)

• montages, mixes and blends between images (�gures 5.9, 5.10, 5.11)

• statistics �les .stats with the detailed timing of the execution (�gure 5.8)

0100101010
1001010010
0100111010
1010101101
1000110101.F Error computationFlow generation

0100101010
1001010010
0100111010
1010101101
1000110101.F AAE

AEE

Ground truths

Figure 5.7: flow-tool: error computation

79



5.3. FLOW GENERATION USING GNU MAKE CHAPTER 5. TOOLS DEVELOPED

Flow generation .STATS

statistics mode

.PAR
 AMS

command line parameters

Figure 5.8: flow-tool: stats �le generation

Figure 5.9: Ground truth comparison montages: (left) color representation, (right) vector �eld
representation

80



CHAPTER 5. TOOLS DEVELOPED 5.4. FLOW-STUDIO GUI APPLICATION

Figure 5.10: Mixes between color and �ow �eld representation: (left) ground truth available, (right)
no ground truth available using sequence images instead

Figure 5.11: Blends between sequence image and color �ow representation: (left) �xed objects /
moving camera, (right) �xed camera / moving objects

5.4 flow-studio gui application

Setting all the parameters in command-line can be somehow boring and ine�cient. Some tasks are
repetitively done when researching on optical �ow: testing an algorithm with a given sequence trying
di�erent parameters, testing many sequences with the same parameters for an algorithm, �nding the
best parameters for a given sequence. . . Being able to do that in a graphical user interface would be
a great thing. Starting from this idea we implemented from scratch such a user interface using Qt as
graphical toolkit. Figure 5.12 is a screen-shot of this application that showed during the demo of our
project.

81



5.4. FLOW-STUDIO GUI APPLICATION CHAPTER 5. TOOLS DEVELOPED

Figure 5.12: flow-studio: an interactive gui based �ow generation tool

The features implemented are:

• selection of sequence between those generated in the sequences/ directory

• change of basic parameters such as σ, ρ and α

• selection of the algorithm between those implemented

• enable/disable nonlinearity

• change number of iterations for solvers

• advanced control of the multigrid solver

This is only a proof of concept as it misses some functionalities and is not, for the moment, really
stable. As a result the code of this application will not be submitted with the report, nevertheless some
further versions can be implemented improving stability and adding more features.

82



Chapter 6

Results

In this chapter we present our results. We tried to select some representative outputs of our algorithms
to give rise to the di�erent aspects of methods implemented. We will discuss both the accuracy and
e�ciency of implemented methods and try to identify some problems. We use the grey-scale Yosemite
sequence with clouds as principal benchmark. The clouds of this sequence form a fully textured region
but are hard to analyse as many wrong matchings are possible. The angle of the motion in this region
is constant and it is therefore easy to visually �nd out what is wrong. All the �ows computed in 6.1
are using one cycle of full-multigrid solver with two steps of pre and postsmoothing.

6.1 Accuracy

Accuracy is important in optical �ow computation as we want to get values as close as possible to the
real ones. Despite the fact that accuracy is, in this project, less important than performances we need
to comment and criticise the quality of the solutions computed with all implemented algorithms. This
has to be done for application users to know which accuracy they can get with the di�erent methods.

6.1.1 Lucas & Kanade method

Lucas & Kanade method provides average results for a really simple implementation. In �gure 6.1 we
present one of the best results in terms of accuracy that our implementation of this algorithm achieved.
The parameters are here set to σ = 0.65 and ρ = 6.3.

The �ow computed has a poor visual quality and does not really look similar to the ground truth.
We can see that too much smoothing is introduced and that there are some important discontinuities
in the solution. We can also �nd some discontinuities in the clouds which should have constant angle.
Looking at the legend we can approximatively evaluate the amplitude of the error in this region to
±60◦. The average angular error is 16.44◦ high and the average endpoint error equals 0.81 pixels. This
is really high compared to results provided by other researchers. The e�ciency �ts perfectly real-time
applications as we can compute, for that size and that values of the parameters, 38.63 images per second.

6.1.2 Horn & Schunck method

Horn & Schunck method introduces global information and is supposed to yield more smooth the so-
lutions. In �gure 6.2 we present one of the best results in terms of accuracy that our implementation
of this algorithm achieved. The parameters are there set to σ = 0.65 and α = 730.

83



6.1. ACCURACY CHAPTER 6. RESULTS

Figure 6.1: Lucas & Kanade algorithm result for Yosemite sequence with clouds (σ = 0.65, ρ = 6.3)

The �ow computed seems worst than the one computed with the Lucas & Kanade method. It is
not worst in terms of accuracy though. The noise introduced by this method on the �ow is due to
the non presmoothed motion tensor that is used. Although, ignoring this noise, the solution seems
more smooth and closer to the ground-truth. The transitions more preserved than with the Lucas &
Kanade method. The clouds are more reliably computed too, as we can approximatively evaluate the
amplitude of the error in that region to ±30◦. The average angular error is 15.00◦ high and the average
endpoint error equals 0.72 pixels. This a good result compared to Lucas & Kanade method but it is
still poor compared to other researchers results. The e�ciency is twice worst than for the Lucas &

Kanade method as the computation is done at 22.73 images per second. However it is high enough for
most of real-time applications.

6.1.3 CLG method

CLG method combines elegantly advantages of both Lucas & Kanade and Horn & Schunck methods.
In �gure 6.3 we present one of the best results in terms of accuracy that our implementation of this
algorithm achieved. The parameters are set to σ = 0.8, ρ = 3.5 and α = 470.

Our implementation of the CLG method is, for the linear version, a bit disappointing as it yields
worst results as the Horn & Schunck 's one. Obviously we are not criticising the CLG method here
but our implementation as this method has provided really good results for other researchers. The
solution has less discontinuities than with the Lucas & Kanade method. This is due to the global
information introduced by the smoothness term as in the Horn & Schunck method. The computation

84



CHAPTER 6. RESULTS 6.1. ACCURACY

Figure 6.2: Horn & Schunck algorithm result for Yosemite sequence with clouds (σ = 0.65, α = 730)

of the clouds region is better than in the Horn & Schunck method too. The average angular error
is 15.49◦ high which is better than with the Lucas & Kanade method but unfortunately worst than
the Horn & Schunck 's one. The average endpoint error is 0.74 pixels high. Finally speaking about
e�ciency the time of computation is the worst seen so far: the computation is done at 17.55 images
per second. Here again it �ts most of real-time applications.

6.1.4 Nonlinear CLG method

Last but not least, the nonlinear CLG improves the results recomputing locally the operators over
solving iterations. In �gure 6.4 we present one of the best results in terms of accuracy achieved by our
application during this project. The parameters are there set to σ = 0.7, ρ = 1 and α = 200.

The �ow computed looks visually really good compared to the previous implementations. We can
clearly see the main advantage of nonlinear methods is that they introduce less smoothing. The so-
lution has not much noise and is locally smooth but the discontinuities are well preserved. Figure
6.5 emphasises this phenomenon using another sequence. We can look closer at the edge between the
mountain and the clouds. We clearly see that the black region is thin when for other methods it was
large because of smoothing. All these visual estimations are con�rmed by the average angular error
which is 14.53◦ high and the average endpoint error that is 0.73 pixels high. This is better than all
the methods previously introduced and therefore legitimates our implementation of the CLG method.
However this result is still poor compared to original papers and the error computed could be a lot
smaller with some further improvements. Finally the e�ciency is the poorest experienced so far as

85



6.2. PERFORMANCES CHAPTER 6. RESULTS

Figure 6.3: CLG algorithm result for Yosemite sequence with clouds (σ = 0.8, ρ = 3.5, α = 470)

�ows are computed at 11.30 images per second. This is normal because the amount of computation to
be done at each iteration is higher.

Figure 6.5: Nonlinear methods: discontinuities preserved

6.2 Performances

Good performances are one of the key objectives of our project. We are, for instance, more focused
on e�ciency than on accuracy to be able to handle real-time situations. Obviously performances inti-

86



CHAPTER 6. RESULTS 6.2. PERFORMANCES

Figure 6.4: Nonlinear CLG algorithm result for Yosemite sequence with clouds (σ = 0.8, ρ = 3.5,
α = 470)

mately depend on the kind of application we target. It is not necessary to compute an over-accurate
�ow or to compute a �ow 10 times faster than what is needed. Moreover the size of images, the number
of color channels, the accuracy needed, the tolerance to noise, the need of smoothness and many other
factors impact on the choice of one algorithm and its parameters.

6.2.1 Performances of algorithms for a single application

At �rst we wanted to compare performances of our di�erent algorithms for the same hypothetical
application. Using the Yosemite sequence with clouds we benchmarked all of them to rank their perfor-
mances for similar parameters σ = 0.5, ρ = 1.0 and α = 1000. Lucas & Kanade method relying more
on pre and postsmoothing that other methods, its parameters are di�erent to reach the same target
accuracy: σ = 1.0 and ρ = 2.0. The �gure 6.6 tabulates the time of computation, frame rate and
bandwidth of all implemented algorithms. This �gure also focuses on the high amount of time saved
by full-multigrid solvers.

87



6.2. PERFORMANCES CHAPTER 6. RESULTS

LK HS CLG

L NL

J(3000) FMG(2,2) J(3000) FMG(2,2) JNL(3000) FMG(2,2)

t (ms) 15.4 3421 43.8 3414 50.1 8480 88.6

fr (fps) 65.02 0.29 22.82 0.29 19.95 0.12 11.29

B (MPx · s−1) 5.18 0.02 1.82 0.02 1.59 0.01 0.90

Figure 6.6: Performances of algorithms for a single application

6.2.2 Performances of each algorithm for di�erent applications

Then we thought it would be interesting to benchmark a given algorithm for di�erent hypothetical
applications. Here size and number of color channels to process are varied for the same algorithm. For
Lucas & Kanade method parameters are set to σ = 0.8, ρ = 6.0). For Horn & Schunck , CLG and
nonlinear CLG methods, they are set to σ = 0.8, ρ = 3.0 and α = 1000. The results of this benchmark
are tabulated in �gures 6.7, 6.8 and 6.9.

Colour Greyscale

Size t(ms) fr(fps) B(MPx · s−1) t(ms) fr(fps) B(MPx · s−1)

16× 16 3.35601 297.97 0.23 1.25434 797.23 0.20
32× 32 3.9714 251.80 0.77 1.50192 665.81 0.68
64× 64 6.69617 149.34 1.84 2.3989 416.86 1.71

128× 128 15.4237 64.84 3.19 5.369 186.25 3.05
256× 256 55.729 17.94 3.53 19.0667 52.45 3.44
512× 512 217.773 4.59 3.61 73.9292 13.53 3.55

Figure 6.7: Performances of Lucas & Kanade algorithm for di�erent applications

Colour Greyscale

Size t(ms) fr(fps) B(MPx · s−1) t(ms) fr(fps) B(MPx · s−1)

16× 16 7.17457 139.38 0.11 5.42596 184.30 0.05
32× 32 9.77188 102.33 0.31 7.57711 131.98 0.14
64× 64 14.6655 68.19 0.84 11.3415 88.17 0.36

128× 128 26.6134 37.58 1.85 19.4209 51.49 0.84
256× 256 70.9636 14.09 2.77 45.2031 22.12 1.45
512× 512 240.577 4.16 3.27 140.108 7.14 1.87

Figure 6.8: Performances of CLG algorithm for di�erent applications

88



CHAPTER 6. RESULTS 6.3. APPLICATION

Colour Greyscale

Size t(ms) fr(fps) B(MPx · s−1) t(ms) fr(fps) B(MPx · s−1)

16× 16 13.4829 74.17 0.06 11.6441 85.88 0.02
32× 32 18.7918 53.21 0.16 16.7841 59.58 0.06
64× 64 27.3959 36.50 0.45 23.9993 41.67 0.17

128× 128 45.1346 22.16 1.09 37.8763 26.40 0.43
256× 256 101.498 9.85 1.94 75.6003 13.23 0.87
512× 512 307.492 3.25 2.56 206.889 4.83 1.27

Figure 6.9: Performances of nonlinear CLG algorithm for di�erent applications

6.3 Application

Our target application is biomedical images �ow computation. The choice of the algorithms to imple-
ment was made considering this target application and the assumptions injected in equations too. To
legitimate these choices, we tried our best algorithm (nonlinear CLG method) on a medical sequence.
We can see in this sequence a heart moving inside the chest of a person as the blood arrives and leaves.
This sequence is really hard to handle because the wet surface introduces specularities. Moreover only
the veins provide information (i.e. gradient) on this surface. The motion is hard to compute on these
non-textured locations. The motion is also special, sometimes we can see the heart rotating, shrinking
or growing. Nevertheless all these problems can be managed by the nonlinear CLG algorithm. The
�gure 6.10 shows that the �ow computed on the heart surface � ignoring the borders � has not a lot of
discontinuities.

89



6.3. APPLICATION CHAPTER 6. RESULTS

Figure 6.10: Example of biomedical images optical �ow computation: heart sequence

90



Conclusion

At �rst we can discuss the objectives of this project. Have we met them ? Our library for real-time op-
tical �ow computation gives good results in terms of e�ciency � between 10 and more than 60 frames
per second depending on the algorithm used � and average results in terms of accuracy � 14.53◦ of
average angular error at best for Yosemite sequence.

On top of this library are built flow-compute and flow-tool � fully working tools � that are
combined in make�les wrappers for an automatic �ow generation accessible by someone with a small
computing background. Finally the flow-studio prototype application gives an insight of a graphical
user interface for �ow computation.

This set of tools form an advanced prototype of platform for real-time optical �ow computation as
we wanted to develop. Obviously all the software needed to use these tools is free and open-source: gcc,
GNU Make, ImageMagick and Qt which is not open-source but free to use for non-commercial software.
This prototype, with some further work, could then be released as free software destined to the scienti�c
community. We can then consider that the objectives we targeted are met. However we formulate in
this conclusion some potential improvements to be made.

The main problem, compared to other publications, is de�nitely accuracy. Many things could be
done to improve average errors of computed solutions. The fact that Horn & Schunck method yields
better results than the linear CLG method gives us a clue on what could be improved. Both methods
are only di�erent for the postsmoothing step. We think that the reason why the Horn & Schunck

method has better results than the other one is that our convolution kernels introduce error. But how
could convolution introduce error ? All is about side e�ects and borders processing. . .

To be able to achieve best performances we use the CUDA default clamped behaviour for out-of-
range values. This means that convolutions at the borders typically act as if the border values were
in�nitely repeated. More advanced convolution algorithms, notably the one implemented in OpenCV

library, use re�ection schemes at the borders such as border 101. Moreover, as the same problem oc-
curs in prolongation and restriction operators of full-multigrid solvers, such an improvement would also
increase their quality. Finally, the entire �ow computation for all algorithms involving a lot of smooth-
ing operations, we can assume that the error generated at the borders spreads widely over the whole
computed �ow. We could then expect signi�cantly better results in terms of accuracy implementing
time-e�cient re�ection schemes.

The constraints chosen for the energy functionals and the assumptions made one the �ow are only
basic ones. Other publications use more advanced constraints. Flow driven anisotropic regularisers[9],
theory of warping[5] and many other theoretical developments around optical �ow could be introduced
in our algorithms to reach higher accuracies. Optical �ow being an active research �eld, new meth-
ods of computation and theoretical models are constantly developed. Methods such as Brox et al.
method[5], complementary optical �ow, anisotropic Huber-L1, TV-L1 and many others can provide

91



highly accurate results with sometimes less than 2◦ average angular error for the Yosemite sequence.
Thus implementing new methods could also impact positively on our results.

Talking about e�ciency, results could be improved by doing some further optimisations on the
CUDA kernels developed. Nonlinear full-multigrid solver and, part of it, Jacobi solver with non-lagged
linearities were implemented at the very end of the project. They provide average performances but
could easily be optimised with simple code transformations.

The GPU used for our experiments is really basic and rather outdated. This is a good thing as
all scientists do not dispose of a brand new GPU with high bandwidth memory and a lot of stream
processors. It would be sad, in the case of a tool to help the scienti�c community, to experience good
performances only on an expensive GPU. But the good results we obtained in terms of e�ciency could
be increased tenfold on a GPU such as the one on the nvidia GeForce GTX 480 graphic card. We are
looking forward to try our library on such a powerful GPU are curious to see by how many it improves
the results.

To conclude on this project we can say that we do hope some further work will be done on our
prototype to maybe see someday flow-platform available for the scienti�c community. . .



Appendix A

Notations and legends

A.1 Operators

Let us consider the following matrix:

A =

 A0,0 . . . A0,M
...

. . .
...

AN,0 . . . AN,M

 (A.1)

The �at operator converts a matrix in a vector using a row-major layout:

�atA = (A0,0, A0,1, . . . , AN,M−1, AN,M )T (A.2)

The pointwise product between two vectors is de�ned as:

c = a • b⇔ ∀i ∈ [1..N ] ci = aibi (A.3)

The pointwise product between two matrices is de�ned as:

C = A •B ⇔ ∀(i, j) ∈ [1..N ]× [1..M ] Ci,j = Ai,jBi,j (A.4)

A.2 Motion tensor

We represent the motion tensor J that holds the information of the �rst order derivatives in a tensor
structure:

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 (A.5)

Introducing u1 = x, u2 = y and u3 = z, each component is a vector such as:

∀(i, j) ∈ {1, 2, 3}2 Jij = �at

[
∂f

∂ui
• ∂f

∂uj

]
(A.6)

93



A.3. FLOW VECTORS APPENDIX A. NOTATIONS AND LEGENDS

A.3 Flow vectors

Most of times we will denote the �ow as a vector of solutions according to the x- and y- directions:

u = (u, v)T (A.7)

The component u and v a actually matrices as, for instance, we call the x- value at the (i, j) location
ui,j .

In some other calculus, speci�cally the solvers calculus, it is more convenient to represent �ows as
one big linear vector de�ned as:

F =

(
�atFx
�atFy

)
(A.8)

A.4 First order derivatives

First order derivatives of an image pair are computed with fourth order precision as:

[fx]i,j =
1

2

1∑
n=0

(
fi,j−2,t+n − 8fi,j−1,t+n + 8fi,j+1,t+n − fi,j+2,t+n

12hx

)
(A.9)

[fy]i,j =
1

2

1∑
n=0

(
fi−2,j,t+n − 8fi−1,j,t+n + 8fi+1,j,t+n − fi+2,j,t+n

12hy

)
(A.10)

[ft]i,j =
fi,j,t+1 − fi,j,t

ht
(A.11)

A.5 Laplacian operator

The laplacian operator ∆ can be discretised as a weighted sum of the neighbours of a point. For
instance, h being the step size of a grid:

∆fi,j ≈
fi,j−1 + fi,j+1 − 2fi,j

h2
x

+
fi−1,j + fi+1,j − 2fi,j

h2
y

(A.12)

The laplacian operator for a row-major image vector is given by:

L2×2 =


2 −1 −1 0
−1 2 0 −1

−1 0 2 −1
0 −1 −1 2

 , L3×3 =



2 −1 0 −1 0 0 0 0 0
−1 3 −1 0 −1 0 0 0 0
0 −1 2 0 0 −1 0 0 0

−1 0 0 3 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 3 0 0 −1

0 0 0 −1 0 0 2 −1 0
0 0 0 0 −1 0 −1 3 −1
0 0 0 0 0 −1 0 −1 2


, . . .

(A.13)

94



APPENDIX A. NOTATIONS AND LEGENDSA.6. COLOR FLOW REPRESENTATION LEGEND

A.6 Color �ow representation legend

In this document we represent �ows with either a �eld of vectors or a color code. The legend of the
color code is given in �gure A.1.

Figure A.1: Color �ow representation legend: magnitude as intensity of color and angle as color

95



A.6. COLOR FLOW REPRESENTATION LEGENDAPPENDIX A. NOTATIONS AND LEGENDS

96



Appendix B

Full-multigrid solvers debugging

This appendix present some debugging traces of our full-multigrid solvers algorithms.

B.1 V-Cycles

./flow-compute -g -i -f -d2 -v0 -q -w ../sequences/dst/yos.0.png ../sequences/dst/yos.1.png

{depth: 2, cycle: 1/1}

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 1.000000e+00

-> [9] 1.092513e-01

//

//

// [depth: 2] -> [depth: 1] | x1 = P[2->1] x2

//

\\ //

\V/

{depth: 1, cycle: 1/1}

V_NL[presmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 2.724886e-02

-> [1] 2.264541e-02

\

\ r1 = f1 - A1 x1

\ f2 = R[1->2] r1 + A1( R[1->2] x2 )

_\/

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 9.913190e-02

-> [9] 6.526698e-02

/

/ e1 = P[2->1] ( x2 - R[1->2] x1 ), |e1| = 0.000000e+00

\/_

V_NL[postsmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.638443e-02

97



B.2. W-CYCLES APPENDIX B. FULL-MULTIGRID SOLVERS DEBUGGING

-> [1] 1.148990e-02

//

//

// [depth: 1] -> [depth: 0] | x0 = P[1->0] x1

//

\\ //

\V/

{depth: 0, cycle: 1/1}

V_NL[presmooth, depth: 0, n: 2] | A0 x0 = f0

-> [0] 8.469992e-03

-> [1] 4.275628e-03

\

\ r0 = f0 - A0 x0

\ f1 = R[0->1] r0 + A0( R[0->1] x1 )

_\/

V_NL[presmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.951636e-02

-> [1] 1.189268e-02

\

\ r1 = f1 - A1 x1

\ f2 = R[1->2] r1 + A1( R[1->2] x2 )

_\/

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 6.634983e-02

-> [9] 5.703199e-02

/

/ e1 = P[2->1] ( x2 - R[1->2] x1 ), |e1| = 1.278900e-01

\/_

V_NL[postsmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.436005e-02

-> [1] 8.303368e-03

/

/ e0 = P[1->0] ( x1 - R[0->1] x0 ), |e0| = 0.000000e+00

\/_

V_NL[postsmooth, depth: 0, n: 2] | A0 x0 = f0

-> [0] 8.549634e-03

-> [1] 4.519083e-03

B.2 W-Cycles

./flow-compute -g -i -f -d2 -v1 -q -w ../sequences/dst/yos.0.png ../sequences/dst/yos.1.png

{depth: 2, cycle: 1/1}

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 1.000000e+00

-> [9] 1.092513e-01

98



APPENDIX B. FULL-MULTIGRID SOLVERS DEBUGGING B.2. W-CYCLES

//

//

// [depth: 2] -> [depth: 1] | x1 = P[2->1] x2

//

\\ //

\V/

{depth: 1, cycle: 1/1}

W_NL[presmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 2.724886e-02

-> [1] 2.264541e-02

\

\ r1 = f1 - A1 x1

\ f2 = R[1->2] r1 + A1( R[1->2] x2 )

_\/

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 9.913190e-02

-> [9] 6.526698e-02

/

/ e1 = P[2->1] ( x2 - R[1->2] x1 ), |e1| = 0.000000e+00

\/_

W_NL[postsmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.638443e-02

-> [1] 1.148990e-02

//

//

// [depth: 1] -> [depth: 0] | x0 = P[1->0] x1

//

\\ //

\V/

{depth: 0, cycle: 1/1}

W_NL[presmooth, depth: 0, n: 2] | A0 x0 = f0

-> [0] 8.469992e-03

-> [1] 4.275628e-03

\

\ r0 = f0 - A0 x0

\ f1 = R[0->1] r0 + A0( R[0->1] x1 )

_\/

W_NL[presmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.951636e-02

-> [1] 1.189268e-02

\

\ r1 = f1 - A1 x1

\ f2 = R[1->2] r1 + A1( R[1->2] x2 )

_\/

99



B.2. W-CYCLES APPENDIX B. FULL-MULTIGRID SOLVERS DEBUGGING

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 6.634983e-02

-> [9] 5.703199e-02

/

/ e1 = P[2->1] ( x2 - R[1->2] x1 ), |e1| = 1.278900e-01

\/_

W_NL[postsmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.436005e-02

-> [1] 8.303368e-03

W_NL[presmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 7.741360e-03

-> [1] 7.532462e-03

\

\ r1 = f1 - A1 x1

\ f2 = R[1->2] r1 + A1( R[1->2] x2 )

_\/

S_NL[depth: 2, n: 10] | A2 x2 = f2 --- bottom

-> [0] 6.093034e-02

-> [9] 6.049969e-02

/

/ e1 = P[2->1] ( x2 - R[1->2] x1 ), |e1| = 1.918802e-01

\/_

W_NL[postsmooth, depth: 1, n: 2] | A1 x1 = f1

-> [0] 1.534350e-02

-> [1] 7.971475e-03

/

/ e0 = P[1->0] ( x1 - R[0->1] x0 ), |e0| = 0.000000e+00

\/_

W_NL[postsmooth, depth: 0, n: 2] | A0 x0 = f0

-> [0] 1.053220e-02

-> [1] 5.414092e-03

100



Appendix C

Sequences credits

We acknowledge in this appendix the authors of the sequences used to write this report.

C.1 Yosemite sequences

We use the Yosemite sequence without clouds in chapter 2. Also in most of our �ow �gures we use the
Yosemite sequence with clouds. These sequences were originally created by Lynn Quam who we credit
for that.

Figure C.1: Yosemite sequence with clouds [Credits: Lynn Quam]

Figure C.2: Yosemite sequence without clouds [Credits: Lynn Quam]

101



C.2. URBAN3 SEQUENCE APPENDIX C. SEQUENCES CREDITS

C.2 Urban3 sequence

We use in chapter 1 the Urban3 sequence. This sequence is provided by Middleburry university as part
of the database and evaluation methodology for optical �ow http://vision.middlebury.edu/flow/.

Figure C.3: Urban3 sequence [Credits: Middleburry university]

C.3 Army sequence

We use in chapter 4 the Army sequence. This sequence is provided by Middleburry university as part
of the database and evaluation methodology for optical �ow http://vision.middlebury.edu/flow/.

Figure C.4: Army sequence [Credits: Middleburry university]

C.4 Flowerpots sequence

The Flowerpots sequence is the stereovision sequence used in chapter 1. This sequence is provided
by Middleburry university as part of the database and evaluation methodology for stereovision http:

//vision.middlebury.edu/stereo/.

Figure C.5: Flowerpots stereovision sequence [Credits: Middleburry university]

102

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/


APPENDIX C. SEQUENCES CREDITS C.5. ETTLINGER-TOR SEQUENCE

C.5 Ettlinger-Tor sequence

Ettlinger-Tor sequence, used in chapters 1 and 6, is a tra�c intersection sequence recorded at the
Ettlinger-Tor in Karlsruhe by a stationary camera. This sequence can be downloaded on H.-H. Nagel's
image sequence server at http://i21www.ira.uka.de/image_sequences/.

Figure C.6: Ettlinger-Tor sequence [Credits: H.-H Nagel]

103

http://i21www.ira.uka.de/image_sequences/


C.5. ETTLINGER-TOR SEQUENCE APPENDIX C. SEQUENCES CREDITS

104



Bibliography

[1] R. Amorim, G. Haase, M. Liebmann, and R. Weber dos Santos. Comparing cuda and opengl
implementations for a jacobi iteration. In High Performance Computing Simulation, 2009. HPCS

'09. International Conference on, pages 22 �32, 21-24 2009.

[2] Simon Baker, Stefan Roth, Daniel Scharstein, Michael J. Black, J.P. Lewis, and Richard Szeliski.
A database and evaluation methodology for optical �ow. Computer Vision, IEEE International

Conference on, 0:1�8, 2007.

[3] Nathan Bell and Michael Garland. E�cient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008.

[4] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial (2nd ed.).
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[5] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical �ow
estimation based on a theory for warping. pages 25�36. Springer, 2004.

[6] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Variational optic �ow compu-
tation in real-time. IEEE Trans. Image Proc., 14(5):608�615, 2005.

[7] Andres Bruhn and Joachim Weickert. Towards ultimate motion estimation: Combining highest
accuracy with real-time performance. In ICCV '05: Proceedings of the Tenth IEEE International

Conference on Computer Vision (ICCV'05) Volume 1, pages 749�755, Washington, DC, USA,
2005. IEEE Computer Society.

[8] Andrés Bruhn, Joachim Weickert, Timo Kohlberger, and Christoph Schnörr. A multigrid plat-
form for real-time motion computation with discontinuity-preserving variational methods. Int. J.
Comput. Vision, 70(3):257�277, 2006.

[9] Andrés Bruhn. Variational Optic Flow Computation - Accurate Modelling and E�cient Numerics.
PhD thesis, Universität des Saarlandes, 2006.

[10] Andrés Bruhn and Joachim Weickert. A multigrid platform for real-time motion computation with
discontinuity-preserving variational methods. International Journal of Computer Vision, 70:257�
277, 2006.

[11] Andrés Bruhn, Joachim Weickert, Timo Kohlberger, and Christoph Schnörr. Discontinuity-
preserving computation of variational optic �ow in real-time. In Scale-Space and PDE Methods in

Computer Vision, volume 3459 of Lecture Notes in Computer Science, pages 279�290. Springer,
2005.

[12] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. Combining the advantages of local and
global optic �ow methods. In In Pattern Recognition, L.Van Gool, (Ed), pages 454�462. Springer,
2002.

105



BIBLIOGRAPHY BIBLIOGRAPHY

[13] Martin Burger. Review and description of "computational methods for inverse problems", by curtis
r. vogel. siam, philadelphia, pa, 2002. Math. Comput., 72(243):1574�1575, 2003.

[14] Tony F. Chan and Pep Mulet. On the convergence of the lagged di�usivity �xed point method in
total variation image restoration. SIAM J. Numer. Anal., 36(2):354�367, 1999.

[15] Frohn-Schauf, Claudia, Henn, Stefan, Witsch, and Kristian. Nonlinear multigrid methods for total
variation image denoising. Computing and Visualization in Science, 7(3-4):199�206, October 2004.

[16] Pascal Gwosdek, Andrés Bruhn, and Joachim Weickert. High performance parallel optical �ow
algorithms on the sony playstation 3. Vision, Modeling and Visualisation, 2008.

[17] Berthold K.P. Horn and Brian G. Schunck. Determining optical �ow. Technical report, Cambridge,
MA, USA, 1980.

[18] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application
to stereo vision. In IJCAI'81: Proceedings of the 7th international joint conference on Arti�cial

intelligence, pages 674�679, San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[19] NVIDIA. Cuda best practises guide. Technical report, NVIDIA Corporation, 2010.

[20] NVIDIA. Cuda programming guide. Technical report, NVIDIA Corporation, 2010.

106


	Abstract
	Acknowledgements
	Table of contents
	List of figures
	Introduction
	1 Optical flow
	1.1 Correspondence problems
	1.1.1 Stereo vision
	1.1.2 Particle image velocimetry
	1.1.3 Medical image registration
	1.1.4 Optical flow

	1.2 Optical flow problem
	1.2.1 Grey value constancy assumption
	1.2.2 Linearisation
	1.2.3 Brightness constancy assumption

	1.3 Issues to deal with
	1.3.1 Occlusions
	1.3.2 Illumination
	1.3.3 Assumptions on motion
	1.3.4 Noise and distortions
	1.3.5 The trade-off between accuracy and efficiency

	1.4 Diversity of algorithms and models
	1.4.1 Feature-Based and energy-based models
	1.4.2 Nondense and dense models
	1.4.3 Continuous and discrete
	1.4.4 Synthetic Figure of Classification


	2 Theoretical aspects
	2.1 Error measure and ranking
	2.1.1 Angular error
	2.1.2 Endpoint error
	2.1.3 Average error

	2.2 Block-based approaches
	2.2.1 Block matching
	2.2.2 Sum of differences
	2.2.3 Normalised cross correlation method
	2.2.4 Occlusion detection
	2.2.5 Conclusion

	2.3 Continuous models
	2.3.1 Gaussian presmoothing
	2.3.2 Normal flow
	2.3.3 The aperture problem

	2.4 Lucas & Kanade method
	2.4.1 Problem definition
	2.4.2 Conclusion

	2.5 Variational approaches
	2.6 Horn & Schunck method
	2.6.1 Problem definition
	2.6.2 Conclusion

	2.7 CLG method
	2.7.1 Problem definition
	2.7.2 Conclusion

	2.8 Solvers
	2.8.1 Jacobi solver
	2.8.2 Jacobi solver with lagged nonlinearities
	2.8.3 Multigrid solver
	2.8.4 Nonlinear multigrid solver


	3 CUDA Parallel programming
	3.1 GPUs and CPUs: two different species
	3.2 CUDA API
	3.2.1 The choice of using CUDA 
	3.2.2 Architecture
	3.2.3 Kernels demystified

	3.3 Best practises
	3.3.1 Memory allocations
	3.3.2 Data transfers
	3.3.3 Flow control instructions
	3.3.4 Texture memory

	3.4 Characteristics of our GPU
	3.5 Effective speedups
	3.5.1 Time versus image size
	3.5.2 Bandwidth versus image size
	3.5.3 Speedup versus image size


	4 Implementation details
	4.1 Data structures
	4.1.1 Interlaced matrices
	4.1.2 Layers matrices

	4.2 Advanced operations
	4.2.1 Convolution
	4.2.2 Gaussian smoothing
	4.2.3 Derivation
	4.2.4 Restriction and prolongation
	4.2.5 Restriction
	4.2.6 Prolongation

	4.3 Motion tensor computation
	4.3.1 Memory transfers and data conversion
	4.3.2 Presmoothing
	4.3.3 Derivative products
	4.3.4 Postsmoothing
	4.3.5 Motion tensor color layers merging
	4.3.6 Overall algorithm

	4.4 Solvers
	4.4.1 Jacobi solver
	4.4.2 Jacobi solver with lagged nonlinearities
	4.4.3 Multigrid solvers


	5 Tools developed
	5.1 flow-compute command-line tool
	5.1.1 Parameter files
	5.1.2 Workflow generation
	5.1.3 Advanced timing
	5.1.4 Detailed debugging trace
	5.1.5 Video handling

	5.2 flow-tool command-line tool
	5.3 Flow generation using GNU Make
	5.3.1 Sequences
	5.3.2 Advanced flow generation

	5.4 flow-studio gui application

	6 Results
	6.1 Accuracy
	6.1.1 Lucas & Kanade method
	6.1.2 Horn & Schunck method
	6.1.3 CLG method
	6.1.4 Nonlinear CLG method

	6.2 Performances
	6.2.1 Performances of algorithms for a single application
	6.2.2 Performances of each algorithm for different applications

	6.3 Application

	Conclusion
	Appendices
	A Notations and legends
	A.1 Operators
	A.2 Motion tensor
	A.3 Flow vectors
	A.4 First order derivatives
	A.5 Laplacian operator
	A.6 Color flow representation legend

	B Full-multigrid solvers debugging
	B.1 V-Cycles
	B.2 W-Cycles

	C Sequences credits
	C.1 Yosemite sequences
	C.2 Urban3 sequence
	C.3 Army sequence
	C.4 Flowerpots sequence
	C.5 Ettlinger-Tor sequence

	Bibliography

