
Imperial College London
Department of Computing

Optimal Dynamic Resource Allocation in
Multi-Class Queueing Networks

MEng Individual Project Report

Diagoras Nicolaides

Supervisor: Dr William Knottenbelt
Second Marker: Dr Jeremy Bradley

15th June 2010

1

Abstract

We consider the problem of dynamic resource allocation in a multi-class system under
transient arrival streams. We propose a system consisting of a number of servers, which
can be switched on and off dynamically, which is used to service paying customers. Differ-
ent classes of service level agreements are offered, each with different charges for servicing
customers and different penalties, in the form of discounts, for failing to meet agreed qual-
ity of service requirements.

A series of different policies to make server allocation decisions, based on different
parameters, are proposed, implemented and evaluated by simulation. Our goal is to max-
imize profits by dynamically changing the number of active servers, subject to financial
parameters.

The JINQS library has been extended to support the necessary features required for
the defined model, in order to evaluate the policies effectiveness under different scenarios.
The results of several simulations are presented and evaluated.

Acknowledgments

I would like to thank my supervisor, Dr. William Knottenbelt, for his support, guid-
ance and enthusiasm throughout this project. It has made a world of difference.

I would also like to thank my second marker, Dr. Jeremy Bradley and Dr. Tony
Field, for their assistance and inspiration on how best to move forward.

Finally, I’d like to thank my friends and family who offered me helpful advice through-
out the project. A special thank you to Laura for her endless help.

1

2

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Approach . 7

1.3 Report Structure . 8

1.4 Contributions . 8

2 Background To Queueing Systems 9

2.1 Queueing systems . 9

2.1.1 Input Process . 10

2.1.2 System Structure . 10

2.1.3 Output Process . 10

2.2 Kendall Notation . 11

2.3 Resource Utilization and System Stability 12

2.4 Little’s Theorem . 12

2.5 Service Level Agreement (SLA) and Quality of Service (QoS) 12

2.6 Previous Work . 13

2.6.1 Existing Commercial Systems . 13

2.6.2 Dynamic Allocation Policies . 13

2.6.3 Transient Arrival Rates . 15

3 The Model 16

3.1 Queue System Model . 16

3.1.1 Input Process . 16

3.1.2 System Characterization . 19

3.1.3 Output Process . 19

3.2 SLA and QoS . 20

3.3 Assumptions . 22

3.4 Performance measures of the a M/M/1/∞/Pr 22

3.5 Revenue Evaluation . 24

3.6 Optimal Criterion . 24

4 Extending JINQS 25

4.1 Introduction to JINQS . 25

4.2 New Features . 25

4.3 GUI Elements . 26

3

4.3.1 User Interface . 26

4.3.2 Charts . 26

4.4 Economic Factors . 28

4.4.1 SLAs . 28

4.4.2 Revenue Calculator . 28

4.5 Additional Distributions . 30

4.5.1 Markov Modulated Poisson Process (MMPP) and Sine Modulated
Poisson Process (SMPP) . 30

4.5.2 Replay of Last Arrival Stream . 30

4.6 Network/Distributed Simulations . 31

4.6.1 Server . 31

4.6.2 Customer . 32

4.7 Dynamic Allocation . 32

4.8 Policy Enforcement . 34

4.9 Overall Architecture . 35

5 Implemented Policies 36

5.1 General Pruning Technique . 36

5.2 System Information Based . 37

5.2.1 Utilization Based Policy . 38

5.2.2 State Evaluation Policy . 38

5.3 Prediction Based . 39

5.3.1 Predictive Planning Policy . 40

5.3.2 Predictive Planning Policy (with threshold) 42

5.3.3 Predictive Planning Policy (future known) 44

5.4 Other . 44

5.4.1 Static Policy . 44

5.4.2 Exhaustive Search . 44

6 Simulations and Evaluation of Results 46

6.1 Simulation 1 . 47

6.1.1 Static Policy . 47

6.1.2 Utilization Based Policy . 48

6.1.3 State Evaluation Policy . 49

6.1.4 Predictive Planning Policy . 50

6.1.5 Predictive Planning Policy (with Threshold) 53

6.1.6 Predictive Planning Policy (Future Known) 54

6.1.7 Evaluation of Simulation 1 . 55

6.2 Simulation 2 . 57

6.2.1 Static Policy . 57

6.2.2 Utilization Based Policy . 58

6.2.3 State Evaluation Policy . 58

6.2.4 Predictive Planning Policy . 59

6.2.5 Predictive Planning Policy (with Threshold) 61

4

6.2.6 Predictive Planning Policy (Future Known) 63

6.2.7 Evaluation of Simulation 2 . 64

6.3 Simulation 3 . 65

6.3.1 Static Policy . 65

6.3.2 Utilization Based Policy . 66

6.3.3 State Evaluation Policy . 66

6.3.4 Predictive Planning Policy . 67

6.3.5 Predictive Planning Policy (with Threshold) 68

6.3.6 Predictive Planning Policy (Future Known) 69

6.3.7 Evaluation of Simulation 3 . 70

6.4 Simulation 4 . 71

6.4.1 Static Policy . 71

6.4.2 Utilization Based Policy . 72

6.4.3 State Evaluation Policy . 72

6.4.4 Predictive Planning Policy . 73

6.4.5 Predictive Planning Policy (with Threshold) 74

6.4.6 Predictive Planning Policy (Future Known) 77

6.4.7 Evaluation of Simulation 4 . 78

6.5 Simulation 5 . 79

6.5.1 Static Policy . 79

6.5.2 Utilization Based Policy . 79

6.5.3 State Evaluation Policy . 80

6.5.4 Predictive Planning Policy . 81

6.5.5 Predictive Planning Policy (with Threshold) 82

6.5.6 Predictive Planning Policy (Future Known) 84

6.5.7 Evaluation of Simulation 5 . 85

7 Policy Evaluation 86

7.1 Static Policy . 86

7.2 Utilization Based Policy . 87

7.3 State Evaluation Policy . 88

7.4 Predictive Planning Policy . 89

7.5 Predictive Planning Policy (with Threshold) 90

8 Conclusion 91

5

6

Chapter 1

Introduction

1.1 Motivation

This project is motivated by the rapid growth of distributed systems and cloud comput-
ing and the endless endeavour to maximize profits, but can also be extended to real life
situations such as banks, hospitals and many others.

Organizations provide services to customers who expect the service to have a certain
standard, which typically translates to short waiting times. This requires organizations to
increase costs to keep this standard through more service providers. Considering a popular
web service for example, customers could be served faster if more servers were available
but this would in turn decrease profits due to the extra server running costs, so a balance
must be found between customer satisfaction and service provider costs. Intuitively, this
relationship is inversely proportional.

The matter in question involves a service provider who provides a certain service to a
large number of customers and how best to dynamically vary the number of resources to
maximize profits as well as meet customer demands. Consider the above example of the
popular web service where the number of servers which are servicing customers is dynamic
and each server incurs a running cost. When demand is high, more servers can be turned
on and when demand decreases they can be turned off accordingly. Using this technique,
customers can remain satisfied and profits high, given that costs from the active servers
will vary according to demand.

These economic factors imply that customers and service providers must agree on a
Service Level Agreement (SLA) which formalize their obligations. The obligations can vary
depending on context and will be customized to our problem later on. The system will
distribute the jobs amongst the available resources and attempt to offer the best Quality
of Service (QoS).

1.2 Approach

The aim of the project is to develop a series of algorithms, or policies, to dynamically
allocate number of resources to meet customer QoS demands and maximize profits under
transient customer arrival rates. To avoid confusion, ‘allocation of resources’ will refer to
the varying number of servers which are accepting customers, rather than allocation of
servers to customer classes as, for example, in [1]. Past work on the subject has mainly at-

7

tempted to switch a fixed number servers between customer classes, using queueing theory
or other decision frameworks such as Markov Decision Process and dynamic programming,
to tackle the problem. The approach of dynamically switching servers on and off under
the proposed model has not been dealt with before, therefore each policy will provide a
different approach to tackling the problem so we can investigate the pros and cons of each
technique and how close it is to optimal allocation.

The policies will be evaluated under a software based simulation framework, namely
JINQS, through a number of different simulations with varying parameters. JINQS is
extended in various different ways to meet our modelling demands as well as provide a
graphical user interface to assist with the running of the simulations and interpretation of
results.

1.3 Report Structure

Before discussing existing work and the planned work on this project, an introduction
to theoretical concepts used throughout the project is presented (Chapter 2). This will
provide a clear overview on queueing theory and the economic factors relating to it, as
well as help with analysis of existing work which follows. We continue to define the model
parameters and SLAs under which we evaluate the algorithms (Chapter 3). The imple-
mentation details concerning the framework and the policies implemented are described
in the Chapters 4 and 5 respectively, with appropriate diagrams for the ease of the reader.
Chapter 6 describes the simulations and the outputted results, followed by individual eval-
uations of each policy. Finally the report ends with an analysis of the policies (Chapter
7) and a summary and conclusions section, with future work which could be done on the
underlying system.

1.4 Contributions

We aim to answer the question for service providers ’how can I change the vary number
of servers I have switched on to earn more money, without sacrificing customer satisfac-
tion?’. The novelty behind the project is the fact we will use transient arrival streams to
model multi-class customer arrivals. We examine the effects of different strategies and if
predictive planning is worthwhile in the face of uncertainty.

8

Chapter 2

Background To Queueing Systems

2.1 Queueing systems

Figure 2.1: Queueing system schematic

A queueing system can be summarized as a system where customers arrive according to
an ‘arrival process’ to be serviced by the service facility, which can have one or more
servers. If a customer arrives to be serviced but finds all servers are busy, he/she joins a
waiting queue to be serviced later. This service facility serves customers as they arrive or,
if customers are waiting in the waiting queue, serves them first according to some service
discipline. The customer then leaves the service facility upon completion of his/her service.
This process is depicted in Figure 2.1. To avoid confusion, throughout the project we will
use generic terms to describe the above system. We will use customers in a general sense
to refer to processes which require some service (not necessarily a human) and servers or
instances for the service facility which provides this service. The system will be used to
refer to the queue along with the service facility (blue box above). For example, in a bank,
the customers are the people entering the bank to be served, the tellers are the servers
and the system is the building itself. A queueing system can be broken down into three
main components; the input process, the system structure and the output process.

9

2.1.1 Input Process

The input process refers to customer arrival into the system. With reference to the
schematic, it is the eclipse and arrow on the left which points into the system. The
arrival process can be broken down into three aspects:

1. The size of the arriving population
This is the group of customers who wish to use the service being provided. There are
two types of arriving customer population sizes, finite and infinite. Finite customer
population size involves small numbers of customers arriving into the system (which
consequently affects the arrival rate). Infinite customer population in fact means
a large number of customers, which for mathematical and analytical purposes is
treated as infinite.

2. Arriving patterns
Customers arriving into the system come at random, unpredictable rates. For our
modelling purposes, we will fit a statistical distribution to model the inter arrival
distribution. The arrival process can be characterized as steady state if the average
rate of arrival remains constant for a sufficient period of time, otherwise it is char-
acterized as transient [2]. Some probability distributions which are commonly used
and will be explained in more detail later are listed below:

M: Markovian/Memoryless (Poisson process)
D: Deterministic (constant inter-arrival times)
Ek: Erlang distribution of order K of inter-arrival times
SMPP: Sine Modulated Poisson Process
MMPP: Markov Modulated Poisson Process

3. Customer behavior
Customers who arrive into the system may find that all servers are currently busy
servicing other customers and will be required to join the waiting queue. In some
systems, called blocking systems, the queue will have a maximum limit by which all
customers trying to join the queue when it is full will be declined service. Non-
blocking systems imply that queues can grow infinitely long.

2.1.2 System Structure

The system structure refers to the physical number and properties of the server and the
queue capacity. Servers in the service facility can be in parallel where all servers provide
the same type of service and a customer only needs to pass through one server to complete
service, or serial whereby a customer must pass through several servers before completing
service [3]. As already mentioned, queue capacity can be limited or infinite.

2.1.3 Output Process

The output process refers to departing customers. This depends on the service behavior,
namely the following two factors:

1. Queueing discipline
This factor is also called serving discipline and refers to the way customers in the

10

waiting queue are chosen for service. The most common such discipline is the first-
come-first-served (FCFS) with lots of other variations. Priority queueing discipline
is also an frequently encountered queueing discipline of interest by which multiple
classes of customer can join the same system. There are two sub-classes of the
priority queueing discipline, namely preemptive and non-preemptive. Preemptive
discipline implies that if a customer of a certain class is being serviced and a customer
of higher priority arrives at the system, the customer with the lower priority will
stop being serviced to service the higher priority customer. This can further sub-
classed to preemptive resume and preemptive restart which refer to whether or not
the customer who had his/her service preempted will continue processing from where
it left off or the service will start from the beginning. Non-preemption is the opposite
of preemption strategy which means that once a customer is being serviced, his/her
service cannot be interrupted, even if a higher priority customer arrives.

2. Service-time distribution
Different customers have different service time requirements. In other words, some
customers take longer being serviced than others. This variation in service time
must be modelled using a probability distribution for analytical purposes. The most
commonly assumed service time distribution is the negative exponential distribution
with many others available:

M: Markovian/Memoryless (exponentially distributed)
D: Deterministic (constant service times)
Ek: Erlang distribution of order K service time
G: General service times distribution.

2.2 Kendall Notation

The Kendall Notation is the standard notation used for showing the five elements which
completely describe a queueing system and will be used throughout this project. The
Kendall Notation is as follows:

A / B / X / Y / Z

where:
A: Customer arrival rate
B: Service rate
X: Number of parallel servers
Y: Queue capacity
Z: queueing discipline

If a multi-class customer base is used, the factors which are dependent on customer class
are assigned a subscript i. This only applies to the customer arrival rate (A) and the
service rate (B). For example, Mi/M/1 would indicate that each class of customer has
different interarrival times whilst their service times are identical regardless of class.

11

2.3 Resource Utilization and System Stability

ρ =
λ

mµ
(2.1)

To assist with further discussion on queueing theory, we must introduce the notion of
resource utilization and system stability. Equation (2.1) is the utilization formula for m
servers and should be less the one in order for the system to be stable. In other words,
for a stable queueing system, the rate of customers arriving (λ) must be less than the
service rate (mµ) to cope with demand, otherwise customers are arriving faster than the
system can deal with. Therefore, if λ > mµ then there will be steady increase of customers
in the system, whilst λ < mµ is impossible. λ = mµ is known as the flow conservation
law and gives rise a measure called traffic intensity. Traffic intensity shares the same
equation as utilization but is measured in erlangs. The ceiling value (d λ / mµ e)is used in
many queueing systems to determine the minimum number of servers required to support
demand. For example, 4.5 erlangs means that a minimum of five servers is required to
keep the system stable.

2.4 Little’s Theorem

N = λW (2.2)

Otherwise known as Little’s Law or Little’s Lemma, John Little proved that the long-
term average number of customers (N), in a stable non-preemptive system, is equal to the
long-term average arrival rate (λ) multiplied by the long-term average time a customer
spent in the system (W) (Equation 2.2). What is important about the theorem is that it
shows that this behavior is independent of the distribution of the arrival rate, the queueing
discipline and the number or servers in the system. Therefore it can be applied universally
to all queueing systems with proper allocation of N, λ and W.

2.5 Service Level Agreement (SLA) and Quality of Service
(QoS)

The problem we wish to address is how to make the system as profitable as possible through
the optimal allocation of available resources and keeping customer satisfaction high. A
SLA will act as a binding contract between customer and service provider to formalize the
economic parameters of the service. Typical values in the SLA include the charge on the
customer for using the service and a penalty on the service provider if a maximum waiting
time is exceeded. The QoS is the measure by which a customer is considered happy with
the service. When the QoS deteriorates, the service provider will usually end up paying
a penalty. It is important to note that SLA and QoS can be defined in various different
ways and we will proceed to define them later in our model.

12

2.6 Previous Work

2.6.1 Existing Commercial Systems

Several commercial cloud computing platforms exist but perhaps the most famous cloud
computing platform is Amazon’s EC2 [4]. Users can determine the number and type of
instances they need to meet their requirements. The feature of interest is the Auto Scal-
ing feature, which allows the number of instances to dynamically increase automatically
according to the users criteria. Users use an API to specify the criteria for which in-
stances are switched on and off resulting in a probable use of a sub-optimal strategy with
room for improvement. The most common criteria used for switching instances on and
off is the CPU utilization whereby the user sets an upper and lower bound percentage for
which instances can be switched on and off in order to keep CPU utilization within the
bounds. Dynamic allocation policies can be applied to guarantee maximum revenue for
the provider as well as a minimization of costs for the user since no more than the required
number of instances will be switched on. [5] provides a good insight into several more cloud
computing infrastructures as well as an overview of their structure and business model.

2.6.2 Dynamic Allocation Policies

Focus on Revenue Maximization

Past work, such as [6, 7] and the initial work done by last year’s Imperial graduate, also
define SLA and QoS contracts to attempt to find algorithms and heuristic policies to max-
imize revenue. They attempt to tackle the problem of dynamic allocation of resources by
implementing a search algorithm to find the local maximum of revenue using the admission
limit and number of servers through dynamic programming. An optimal allocation and
associated admission limit pair is derived from the algorithm to maximize revenue. It is
important to note that no mathematical proof of this proposition is provided, but is only
confirmed through multiple numerical experiments. In the experiments, [8] uses only a
single class of customers whilst [6, 7] provide simulations for up to 2 types of customer. A
Poisson distribution is used to model all arrivals. [6, 7] prove that the search for optimal
values is of linear complexity but for large enough values a heuristic sub-optimal policy is
required for improved efficiency. By varying the system load, the heuristic strategy is com-
pared to the optimal strategy to confirm its reliability. [8] develops multiple algorithms
which are evaluated through simulation. It is shown that the algorithm which incorporates
a long term predictive spanning tree may provide better results, rather than the short-term
counterpart. Problems relating to fast switching of servers due to transient nature of the
arrival streams are also seen in the simulations but are not taken into consideration by
this algorithm. Extensions to [8] involve developing an algorithm for optimal allocation
for a more complex model by adding support for multi-class customers and linear rewards
and penalties. Dynamic resource allocation using the model used in this project does not
seem to have been studied before.

[9] introduces two dynamic forms of system control. The first is service rate control,
whereby an average cost optimal stationary policy is generated through the changing of
service rates of the M/M/1 queue under the Poisson arrival model. Each of the available
service rates has a cost associated to it and the problem is analyzed under different sce-
narios on when to best change service rate. Essentially this policy can be translated into
a dynamic allocation system by converting the service rates to ‘number of servers’ with

13

constant service rates. The second dynamic system control involves a M/M/K queue with
a dynamic service pool where the average cost optimization of continuous time processes
is analysed and an optimal dynamic allocation policy described. For a Poisson arrival rate
of a single class queueing system, the optimal pool size for any number of customers in
the system and current active servers is found. The optimal policy for a service pool with
maximum K servers and associated running and holding costs is shown for 7 scenarios
in the format of [minimum number of servers to be switched on](number of customers to
indicate when it is optimal to switch servers on/off). For example, [2](4,6,8,4,2,1) would
indicate that a minimum of 2 servers must be switched on. When the queue length in-
creases to 4, another server must be switched on. The same applies for when the queue
length reaches 6 and finally when it reaches 8 customers, all servers should be switched on.
Similarly when it reaches 4 customers, a server should be turned off. When it decreases
to 2, then the fourth server should be switched on until finally the queue length reaches
1 by which the third server should be turned off leaving the minimum number of servers
switch on. It is clear from this example that the optimal policy will result in the system
state being transient. In our model of transient arrival streams it is possible that the
process starts in a transient state and so (i.e in middle of the second term of the above
stated format) it is suggested for the optimal policy to be effective, the controller must
immediately switch all servers on until the queue is empty and then switch the required
number of servers off to remain at the minimum number of servers required with queue
length equal to 0. This algorithm can be altered to match our model and its performance
evaluated against other algorithms developed.

Focus on Variable QoS and SLA

Contrary to our model, it is possible for users to negotiate SLAs and QoS metrics with
the providers. The users can consider the notion of a utility function to determine the
best possible combination of services as a function of various SLAs. [5] looks into the use
of these utility functions to determine the optimal mix of SLAs in cloud computing. The
problem is tackled using MS Excel to selected optimal values of SLAs to maximize the
utility function subject to SLA and cost constraints as a non-linear constraint optimiza-
tion. From a provider point of view, autonomic techniques such as control theory, machine
learning and combinatorial search methods combined with queueing network models are
proposed to minimize costs (in fact, the latter set of methods have been successfully ap-
plied by the authors and their colleagues in a variety of settings). This work gives insight
to a different model and approach to our problem.

[10, 11] attempt to formalize the resource allocation problem for SLA constrained envi-
ronment and try to find the optimal resource allocation that minimizes total cost. [11] uses
a multi-resource model which makes the problem NP-hard and tackles it through a frame-
work for designing heuristics. The model used to solve the problem makes this technique
unfit for our purposes. On the other hand, [10] uses different application environments
running on a grid and using combinatorial search technique of all possible configuration
vectors, decides the optimal allocation of resources to these environments in a way that
maximizes the utility function. This technique is similar to what is used in [6, 7] but under
a different model.

14

Dynamic vs Static Policies

[12] also attempts to tackle the problem of dynamic server allocation using statistical met-
rics analysis to compare static server allocations to dynamic server allocation. Using a
constant ratio α = numberofcustomersinsystem

numberofserversonduty to determine the number of active servers, the
advantages of dynamic server allocation are realised by showing that dynamic server sys-
tems can advertise that a customer will be served in less than 3 minutes with 99.6%-99%
confidence (depending on α) whilst with fixed server systems, this can only be guaranteed
with 10 active servers and with only 95.5% confidence. However, economic factors are not
taken into consideration and this strategy will be far from optimal.

2.6.3 Transient Arrival Rates

Previous work typically assume a Poisson arrival rate but this simple arrival model is
unrealistic given that usually traffic arrival processes are often correlated. Therefore,
correlated arrival rates are modelled using MMPP. Analyzing long term statistical values
of a MMPP system can provide good starting points for algorithm development. However,
[13, 14] both warn of the complexity of trying to analytically reason about such systems
since it is a computationally intensive task. For this reason, [13] deems analytical reasoning
of such systems unfit for QoS oriented design and instead attempts to approximate a
MMPP/M/1 queue as a weighted superposition of different M/M/1 queues. Using GRID
server analysis to model its usage as an MMPP, results show that the error associated with
average response time and queue length computed through the unbiased approximation,
never grows larger than 3%. The analysis of MMPP could lead to more informed decisions
to be made and improve long run profits. [14] provides numerical techniques for solving
the Kolmogorov differential equations, which provide transient solutions. The iterative
numerical methods techniques provided may take too long to provide solutions and will
end up providing an approximation which could lead to a malinformed decision being
made.

15

Chapter 3

The Model

In this section we define the various parameters of our model. They are the parameters
which will be later on implemented for simulation and evaluation of the various algorithms.
In our model we will assume multi-class customers which, for simplicity, we will limit to a
maximum of three classes (i = 0,1,2). We use the usual convention to number the priority
classes so that the smaller the number, the higher the priority [14].

Our focus will be a discrete time controlled stochastic system where the controller only
has partial system information (we assume that only expected service times are available
to us). More precisely, we use a Markov Decision Process. At each time step, the system
is in a state with a list of possible decisions it can choose from which will take it to the
next state. Note that the current state and chosen action, is conditionally independent
of all previous states and actions. Stochastic dynamic programming will be used for the
implementation of the algorithms.

3.1 Queue System Model

3.1.1 Input Process

The input process will consist of a multi-class infinite arriving customer population join-
ing a single infinite capacity queue. For this project we are only interested in transient
systems with variable arrival rates therefore we will only focus on a subset of the arrival
processes already mentioned which display this transient nature.

By understanding typical arrival patterns, we can analytically derive performance mea-
sures which can directly affect the allocation of resources. It is expected that an algorithm
will be developed using these measures. It is important to note that the algorithm itself
is unaware of the arrival pattern which will be used for each customer class.

Most models adopt a simple arrival model (i.e [6, 7]), namely the Poisson process (M
in Kendall Notation). Its Markovian characteristic, that arrivals occur independently of
one another, is not always adequate for modelling complex systems such as multi-media
traffic or use of a web service. Furthermore, the constant arrival rate make the Poisson
process adequate for modelling ‘non-bursty’ arrival, but unrealistic for modelling complex
systems where the arrival rate changes throughout the operation of the system. We will
use the two most common input models with transient behaviour, which are used in most
queueing simulations due to their close correlation to real world situations. For example,
[13] uses a MMPP model for GRID computing usage, while [15] uses a MMPP to model
the empirical evidence gathered from 1025 computers users using with World Wide Web

16

over a 24 hour period. The second transient model which will be used due to its wide
use for approximating individual IP-flows and web services usage, is the non-homogeneous
Poisson process.

1. Poisson Process
The Poisson Process plays a pivotal role in classical queueing theory. When the
inter-arrival times are assumed to be exponentially distributed the arrival process
is Poisson. It is commonly used due to the fact it closely resembles many physical
phenomenon and is considered to be a good model for an arriving process that
involves a large number of similar and independent users [2]. To characterise an
arrival process as Poisson, only the arrival rate λ is required.

P [X = k] =
λk

k!
e−λ (3.1)

2. Markov Modulated Poisson Process (MMPP)

Figure 3.1: 2 state MMPP extracted from [13]

A Markov Modulated Poisson Process (MMPP) is a Poisson process whose rate
varies according to a Markov process. The arrivals are therefore generated by a
source whose stochastic behaviour is governed by an m-state irreducible continuous
time Markov process, which is independent of the arrival process [2]. The MMPP
can be fully characterized by three parameters. The initial state of the MMPP, the
infinitesimal generator (Q̄), which is also known as the transition-rate matrix and
the Poisson arrival rates (Λ̄).
Q̄ defines the probabilities of changing state, given the current state. It is a square
matrix of size m for a m-state system. With reference to Figure (3.1), the infinitesi-
mal generator would be a 2-by-2 matrix with the rows representing current states and
the columns representing the other possible states. Therefore, matrix position (i,j)
represents the probability of transitioning to state j whilst in state i. For our pur-
poses, we assume a homogeneous Q̄, meaning that transitions do not vary with time.

17

Q̄ =

−q1 q12 · · · q1m
q21 −q2 · · · q2m
...

...
. . .

...
qm1 qm2 · · · −qm

where

qi =

m∑
j=1j 6=i

qij (3.2)

The Poisson arrival rates linked to each state are defined as a diagonal matrix Λ̄ or
a vector λ̄ such that when the Markov chain is in state j, arrivals occur according to
a Poisson process of rate λj .

Λ̄ =

λ1 0 ... 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

λ̄ = (λ1, λ2, ..., λm)T (3.3)

A common MMPP used to model bursty arrival of packets [16] is the Interrupted
Poisson Process (IPP). It is defined as a two state MMPP where one state has an
arrival rate of 0.

3. Non-homogeneous Poisson Process

Figure 3.2: Plots of the percentage of walk-in (left) and ambulance (right) arrivals by hour
over weekdays and weekends for 2002-2007, extracted from [17]

The final transient arrival pattern we will use will follow a non-homogeneous Poisson
Process where the arrival rate λ(t), is a function of time. More specifically we focus
on the Sine Modulated Poisson Process (SMPP). Consider a popular web service
and the arrival of customers to that web service throughout an average working day.
Intuitively, the number of customers will be at its peak during working hours and

18

then fall to a lower bound at night. The same applies to other real life situations
such as hospitals (even though our model of costs and discounts may be not be fit for
such a real life application, we are only interested in the arrival scheme so as to use
more realistic arrival models). [17] uses empirical evidence of walk-in patients and
ambulances at a London hospital between 2002-2007. Referring to Figure 3.2, the
average walk-in patient arrivals are shown on the left and can be approximated to a
SMPP due to similarity to the sine wave. The average ambulance arrivals shown on
the right however cannot be modelled as such and so, during our simulations, high
priority customers will probably not be modelled using SMPP.
If we consider a shorter period of time t, such as hour, the average rate of change
of the number of customers arriving into the system n during the period t could
be approximated to a constant parameter (i.e dn

dt ≈ 0). Using this strategy, we will
select a window of arbitrary size where we will monitor the arrival of customers
and determine the average λ in order to approximate the system to a M/M/m sys-
tem. Due to the short time of the sampling interval taken to make our calculations,
the error involved with this technique could be significant, leading to an unaccept-
able suboptimal allocation of resources, therefore a revision of this theory may be
required. Perhaps event-driven bookkeeping could be implemented where the pro-
gram monitors arrival rates on weekdays and improves it predictive values in the
long run.

3.1.2 System Characterization

Given the aim of this project is to identify the optimal allocation of resources, which in
our system will vary with time, there is no fixed number of resources. We will further
assume, although unrealistic, an infinite pool of resources whose elements can be switched
on/off upon request, is available, although an optional maximum limit will be provided
in the simulations. These servers will be parallel and identical, which in this context
means that a server can serve a customer of any class. Furthermore, one server can service
one customer at a time. We will use a non-blocking system with non-preemptive priority
queueing.

3.1.3 Output Process

Figure 3.3: Priority queueing system schematic

We will assume customers of the same class have the same service time requirements and
will follow exponentially distributed service times (Mi). We impose the head-of-the-line
(HOL) queueing discipline on our model, given that it is perhaps the most common priority
queueing discipline [18]. Figure (3.3) shows the structure of this queueing discipline where
cj indicates customers of class j (j = 0..i -1)and λj the arrival rate for the class. It shows
that the queue is divided into groups according to customer class, with class 0 in the
front of the queue since they have highest priority and class i at the end of the queue.

19

Any arriving customers join the end of their class so they obey a first-come-first-served
discipline within their own class. The system will therefore always choose the ‘head’ of
the queue for service. It is important to note that there are various ways of defining
which customers are given higher priority, such as service-time-dependent disciplines, but
for our purposes, we give higher priority to the highest paying customer class. The value
of a customer’s priority will remain constant in time, although it would be interesting to
investigate an algorithm that changes the priority of customers.

3.2 SLA and QoS

All customers will need to agree to a SLA to use the service. Each customer class will
have different values assigned to the SLA to reflect their difference in priority. For the
purposes of this project we assume three different static types of SLA to reflect the three
customer classes.

QoS can be measured in various different ways such as in terms response time W (the
time between job arrival and job completion) or in terms of waiting time w (the time
between job arrival and the beginning of service). For our model we will use waiting time
as the measure of QoS.

In some cases, such as [5, 19], it is possible for users to be able to negotiate SLAs with
service providers for different QoS metrics. To find the best values for SLA to maximize
revenue whilst providing the service at a reasonable price is beyond the scope of this
project therefore we will instead use values from Amazon’s EC2 service for realism. If
the reader wishes to know more on this, [19] studies some issues to be considered when
designing grid applications such as QoS metrics and the relationship between QoS and
SLA. We define the SLA using the following four parameters:

(cmin, crate, q, qmax) (3.4)

1. Charge (cmin and crate)
This is the charge imposed on the customer for using the service. In our model we
will use a linear relationship between charge and how long the customer took to
be serviced (W -w), with a minimum charge cmin and a charge rate of crate. The
gradient of the slope (crate) increases with priority, indicating customers of higher
priority will be charged more as shown in Figure 3.4.

20

Figure 3.4: Linear relationship between total charge and time being serviced

2. Obligation (q and qmax) and Penalty
If the provider fails to start serving customers after their waiting time in the queue
has exceed a predefined time q, then a penalty must be paid. This penalty will be
in the form of a percentage discount of the total charge imposed on the customer
which will have a linear relationship with waiting time. If the customer is not served
by qmax then the customer is given free service. Reasonable values for q and qmax
would be depend on class hierarchy and so we will use an increasing waiting time
before a penalty is paid as class levels decrease. This is depicted below in Figure 3.5
where the values for obligation are much stricter for higher priorities and relate to
average service time.

Figure 3.5: Linear relationship between penalty and obligation

3. Class Parameters
The values we will use for SLA agreements comes from the values Amazon uses
for Windows Standard On-Demand Instances. We will assume that higher priority
customers have higher service requirements and therefore are willing to pay the extra
amounts as necessary. We define our SLA parameters as follows:

Class 0 : (0.96, 0.96, 1/µ0 , 2/µ0)

21

Class 1 : (0.48, 0.48, 2/µ1 , 4/µ1)
Class 2 : (0.12, 0.12, 3/µ2 , 6/µ2)

3.3 Assumptions

We will simplify the model by making the following basic assumptions. Customers, upon
arrival, cannot leave the system until they have been serviced. We further assume no
failures of any kind such as network or server failures and delays due to network data
transfer are negligible. These assumptions will allow us to concentrate on the factors we
are interested in and easily analyze results.

The service provider has two sources of cost, namely running costs and switching costs.
Each server which is active will incur a running cost of u per unit time whilst switching
a server on/off will also incur a cost of s. Unfortunately no realistic values are available
so we use reasonable values of u = 0.05 and s = 0.1. The values were selected so that it
is financial beneficial to switch on a server to serve a customer rather than pay a penalty.

3.4 Performance measures of the a M/M/1/∞/Pr

Although our model is concerned with transient arrival streams, steady-state numerical
analysis will prove useful as a foundation and can be used for bookkeeping purposes.
As shown in Figure 3.1, the arrival rates will not be constantly fluctuating and so can be
considered being in a state (Tk+t12 up to Tk+1) or in a state transition (Tk up to Tk+t12).
When the average arrival rate remains constant we can use M/M/1 and M/M/m measures
to reason numerically about these systems whilst during state transitions we will use the
algorithm proposed by [13] for overestimating the measures. Note that the following
equations are for a M/M/1 system only. For a multi-server system the service distribution
rate will be adjusted to mµ. We assume that n customer priority classes exist, each
with its own arrival rate λi (i = 1..n) and average service time distribution x̄i. Although
customers join the same queue regardless of class, for easier reasoning we will imagine that
the single queue is split up into n infinite capacity queues, one for each customer class.
Within each of these queues, customers are served using FCFS discipline.

If we take the system as a whole, we define the total arrival rate as λ = λ1+ ...+λn and
average service distribution x̄ = 1/µ. Utilization of each class of customers is defined as
ρi = λx̄i with total utilization of the system defined as ρ =

∑n
i=1 ρi. As already mentioned,

the total system utilization must be less than unity in order for the system to be stable.
For a customer of class i who arrives at the system, the average queue waiting time is

given by:

wi = R+ x̄iN
i
q +

i−1∑
j=1

x̄jN
j
q +

i−1∑
j=1

x̄jλjWi (3.5)

The average customer waiting time depends on the following four factors, in the order
shown in Equation (3.5):

1. R
R is known as the mean residual service time for all customers in the system and

22

is the average time required for a customer already being serviced to finish being
served. R is given by

R =
1

2

n∑
i=1

λi

(
1

µ

)2

=
ρ

µ
(3.6)

2. The average service time of the customers of the same class (i) which are already in
the system upon arrival.

3. The average service time of the customers in the system with higher priority.

4. The average service time of the customers with higher priority who join the system
after the customer has joined the system.

It’s obvious that customers of class 1 will not have their waiting time affected by other
customers of other classes and so we can safely deduce a simplified average customer
waiting time for customer of class 1:

w1 =
R

1− ρ1
(3.7)

Once the waiting time is known, several other important performance measures can
be found:

1. The average number of customers of each class, in their own queue:

(Nq)i = λiwi (3.8)

2. The total time a customer of class i spends in the system:

Ti = wi + x̄i (3.9)

3. The total number of customers in the system:

N =

n∑
k=1

(Nq)k + ρ (3.10)

23

3.5 Revenue Evaluation

For a system with n servers and k customer classes the average revenue per unit time
earned from a system can be defined as shown below. Average revenue is derived using
waiting time as the QoS measure. Ki is the queue limit for class i.

V =
i=k−1∑
i=0

Vi (3.11)

where

Vi = λi

Ki−1∑
i=0

pi,j [ci − riP (wi,j > qi)]− su (3.12)

pi,j is the stationary probability of j customers of class i in the system which can be
found by iteratively solving (using pi,0 = 1) and normalising the balance equations

pi,j =

{
ρipi,j−1/j if j ≤ n
ρipi,j−1/n if j ≥ n

We can derive the conditional waiting time, wi,j

P (wi,j > qi) =

{
0 if j < n

e−nµqi
∑j−n

k=0
(nµqi)

k

k! if j ≥ n

The above formula is derived from the Erlang distribution with parameters (j−n+1, nµ).
It, in combination with Equation 3.11, can be used to quickly compute average revenue
and find the local maximum of the function of Ki. This value of Ki is the optimal limit
for a class, whereby accepting more customers after that limit will result in a decrease in
profit. This is the basis of the optimal allocation algorithm which determines when best
to switch servers on/off.

3.6 Optimal Criterion

Like most work on this subject, our ultimate goal is to find the optimal allocation policy
for the maximization of profits (Equation 3.11) which is our optimization criterion. Such
a policy, under our model, does not yet exist due to its complex nature and is practically
impossible to calculate analytically. One approach to find optimal allocation would involve
trying out all possible combinations of servers at each step of a run, whilst holding a his-
tory of all steps already taken, to find which path maximized our revenue. This exhaustive
search would require huge amounts of processing and memory therefore heuristics may be
used for improvement.

The main focus will be on the Markov decision process which will aim at maximizing
the revenue function. Intuitively one can see that for any system state with multi-class cus-
tomers, there is an optimal number of servers to service these customers so that maximum
profit is achieved.

24

Chapter 4

Extending JINQS

Lots of packages exist for the simulation and modelling of queues, such as MATLAB
[20], simul8 [21], risk, but unfortunately fall short in flexibility to meet our requirements.
Main issues involve lack of adaptability to implement our modelling needs as well as
issues with implementing a dynamic resource controller. JINQS [22, 23], a JAVA based
extensible library for simulating multi-class queueing networks is available to be extended
and adapted to our model. Although very powerful, several changes were required to
fully meet our demands. These changes are explained below through the use of UML
diagrams as well as a description of the changes. For the reader’s ease, any item in the
UML diagrams with a blue gradient existed in the original JINQS and was not changed
for our purposes. Due to the complexity of some objects and their relationships, only the
important and relevant factors are included in the UML diagrams, with details omitted.

To ensure progress is secure, a SVN repository will be set up on

svn+ssh://svnuser.doc.ic.ac.uk/homes/dn106/svn.repository

which is where the end result will be available for submission or if the reader wishes to
view the source code evolution.

4.1 Introduction to JINQS

JINQS is an event-based simulation package. The classes Event and Sim can be used to
construct the event-driven simulation, with network package being built on top of these.
Simulations work by setting up the network and scheduling arrival instances of the Event

class in a hidden time line and the processing these events to generate exit instances of
the Event class. The Sim and Network classes are the 2 central classes of package and
contain only static methods so that they may be invoked from anywhere without having
to pass around instances of these objects explicitly.

4.2 New Features

The new features to JINQS include a user interface with graphical representation of re-
sults. Minor changes include additional packages to support economic concepts of revenue,
penalties and profits for a simulation and file logging capabilities to record various events
of statistical importance. The major changes to the JINQS library involve changing the
whole structure to allow for the running of multiple concurrent simulations and to allow

25

dynamic changing of resources during a run. In combination, all the above changes allow
for policies to be implemented to monitor and alter the system accordingly, such that
profits are maximized.

4.3 GUI Elements

4.3.1 User Interface

Figure 4.1: UML of user interface

The large number of simulations which would be run with a large set of variables suggested
that a user interface would be beneficial. The user interface has 4 tabs: Local Simulation,
Network Simulation (Server), Network Simulation (Customer) and Results. The first three
are for the user to input the parameters of the current run such as class inter-arrival, batch
and service settings, SLA settings and the simulation settings. The options offer as much
flexibility as possible for each simulation, however, problems encountered when trying to fit
so many options in a compact window (size was chosen for users with 1024x600 resolution
to able to view whole form). To get around this problem, the form changes dynamically
according to the user settings. For example, if the user chooses the Erlang distribution as
a class service setting, he/she will be requested to input k and θ, whilst if he/she chose the
exponential distribution, then the relevant part of the form would change so only λ would
be needed. The Results panel displays the results of each simulation, whether it is the
financial results such as running and switching costs, amount paid in penalties, revenue
and profits or any other properties of interest. The user can also pick from a selection
of different charts to view the relevant information. Screenshots of the user interface are
included in the Appendix.

4.3.2 Charts

Figure 4.2: UML of charts

26

The charts are supported by the JFreeChart package [24]. Each time a simulation is run,
information is logged to file which can then be interpreted for statistical purposes or plain
interest. The charts take full advantage of the strengths and flexibility of the package
and allow the user to view and save charts. Furthermore, the user can combine the data
from different runs into a single chart. For example, the user can run a simulation under
different policies and view the profit results from each policy on a single chart for easy
comparison. The following charts are available:

1. Server Allocation - A line graph showing the number of active servers throughout a
run. This can give insight to better strategies or even, as we will see later, defects
of a given policy.

2. Customers In System - A line graph that shows the number of customers from each
class in the system at any point in time. Colour coding is supported for each class
so the user can read the graph easily. This graph can provide valuable information
on class distinction within the system.

3. Penalty Distribution - A bar chart, divided into intervals of 10%, ranging from
0-100%, which indicates how many customers of each class received the relevant
percentage penalty. This is the second most important benchmark for a policy as it
directly reflects the ability of the system to deal with the customers.

4. Queue Length - A line graph the shows the queue length over time. This provides
2 important insights into the system: how well it deals with customers and, in
combination with the ‘Customers in System’ graph, an insight to customer class
distinction.

5. Financial State - The most important graph is the financial state graph. It is a line
graph which displays profits over time. The user can run the same simulation with
different policies and the results will be automatically added to the graph. This
graph is the benchmark for the project, as our aim is to maximize profits.

6. Predictive Variance - Given that most of the algorithms rely on predictive techniques,
it is useful to see by how much the profits from the same algorithm vary, given the
same run. This line graph displays these fluctuations over time graphically to identify
the volatility of each predictive policy.

27

4.4 Economic Factors

Figure 4.3: UML of classes which handle economic factors

The library needed to be changed to support economic factors such as running and switch-
ing costs, revenue and penalties. This required the addition of the SLA package which
includes the 3 classes shown in the above UML diagram.

4.4.1 SLAs

The SLAContract class contains the charges and obligations of each class added by the
user through the user interface. It holds the values discussed in the tuple 3.4.

4.4.2 Revenue Calculator

This is a central class to the whole financial system. It is responsible for handling all
financial information relating to a run. It contains only static fields and methods to
handle events of allocation change (to handle switching and running costs) and customers
exiting the system (to calculate revenue and penalties). The customerServiced method
is shown below in pseudo-code, with reference Figure 4.4.

28

Figure 4.4: Customer traversal within the system

Pseudo-code for customerServed(Customer c) method

fetch customer SLA;
customerRevenue = cmin + (service time * crate);
if waitingTime > q

if waitingTime > qMax
discount = 1;

else
discount = (waitingTime - q) / (qMax - q);

customerPenalty = customerRevenue * discount;
totalRevenue += customerRevenue;
totalPenalties += customerPenalty;

Furthermore, there are static methods to retrieve financial information during a run
(i.e total running costs, profits etc.) so that policies can retrieve this information and
make more informed decisions.

The RevenueCalculatorState class saves the state of the RevenueCalculator using
the method getRCState() so a given policy could alter the system in a given way and then
set the state back to its original state using setRCState(). For example, some of the poli-
cies implemented try out ‘test runs’ with a different number of servers to see which alloca-
tion yields the highest profits. To enable this, the state of the RevenueCalculator must be
saved and restored accordingly by using the 2 methods in the RevenueCalculatorState.

29

4.5 Additional Distributions

4.5.1 Markov Modulated Poisson Process (MMPP) and Sine Modulated
Poisson Process (SMPP)

Figure 4.5: UML of additional distributions

Our simulations will mainly be concerned with transient arrival schemes. As already
explained, MMPP and SMPP have qualities which make them ideal for our simulations.
The user can input the parameters of the distribution through the user interface (if input
is a matrix, then space separated values in the order of row by row is required) and using
already existing classes from within the JINQS library, the MMPP and SMPP distributions
were implemented.

4.5.2 Replay of Last Arrival Stream

Figure 4.6: UML of classes responsible for replaying an arrival stream

A desirable feature in order to benchmark the various policies is to replay the same arrival
streams and see how each policy performed. Each time a simulation is run, except if it is a
replay, each customer arrival time, class and service time is recorded to a file. This enables
the ReplayPrioritySource class to read in the file and schedule the same arrival events
of customers with the same service and arrival times for the next run. Two additional
classes were required to schedule the arrivals this way: CustomServiceCustomer and
ReplayArrival. JINQS samples the distribution for service times when the customer

30

is selected to enter the system, therefore, a new type of customer was required where
the service time could be set through the event. The ReplayArrival event is used to
build customers of type CustomServiceCustomer, with the relevant parameters so as to
replicate the previous arrival stream. Note that this is not the same as using a seed for
the sampling of the distributions as probabilistic, non-deterministic paths are used for the
MMPP process.

4.6 Network/Distributed Simulations

To fully examine the effectiveness of the optimal allocation algorithm,we can relax some
of our assumptions and simulate the queueing system over a local area network (most
probably labs) and see how this affects performance. Various different techniques were
tried out to set up such a system such as remote procedure calls to indicate the arrival
of customers, TCP connections to the customer sources and UDP datagrams. The RPC
brought up several issues relating to security which could pose problems when running
the simulations of different networks, therefore was rejected. TCP connections were also
rejected due to the fact that it set a limit of the number of customer sources as well as
increased implementation complexity (threads were required to monitor different ports
resulting in an increase of resources too). UDP datagrams were chosen because they are
easy to implement, can be used on any network without complications or overhead without
sacrificing usability. However, they are not reliable for large number of hops and some
packets might get lost. Each UDP datagram is used to indicate a customer arrival from a
source. Thorough exception handling has been set up throughout the network simulations,
with meaningful error messages, to allow the user to run the simulations as smoothly as
possible.

4.6.1 Server

Figure 4.7: UML of network server simulations

The settings for running the server side of the network simulations can be changed from
the ‘Network Simulation (Server)’ tab of the user interface. The user must set up the

31

simulation settings and then select a port to open a connection to the customers. There
are 2 stages to run a remote simulation. The first is the customer registration using
enableRegistration(), whereby a new NetworkSim object is created which in turn
spawns a thread to monitor the port for customer arrivals (listen()) record their ar-
rivals in the system. The second stage is the running of the simulation through the
runSimulation() method and the results generated locally.

4.6.2 Customer

Figure 4.8: UML of network customer simulations

The network customer settings can be set through the ‘Network Simulation (Customer)’
tab. The options available are more flexible than the local simulation to allow for further
relaxation of our assumptions. For example, the user can selected the time at which
arrivals begin (rather than always begin at time 0). When the user inputs the settings
and starts the sending of customers, a new thread is spawned to send the UDP packages.
The user can see the progress of the sending through a logging textbox used for feedback.

4.7 Dynamic Allocation

Figure 4.9: UML of classes required to support dynamic structure

To allow a variable number of servers during a run, several classes needed to be added
with the corresponding functionality. The 2 main classes which support this functionality
are the DynamicQueueingNode and the DynamicResource. They are the same as their

32

static counterparts other than a couple of methods which needed changing in order to
allow resources to be added/removed dynamically. An initial approach was to model
these resource changes as events in the system, however this approach lacked in flexibility
as the changes in the system would be delayed with respect to customer events and was
therefore rejected.

The main challenge was adding/removing resources and having the system respond to
this change immediately, without waiting for the next event to occur. This was achieved by
making the changes just before the DynamicQueueingNode checked for available resources
upon customer arrival in the accept() method, as shown below.

Pseudo-code for accept method

alert allocation policy of customer arrival ;
if resource available

service customer ;
else

enqueue customer ;

After the policy has been alerted, it will make the decision on the new allocation
and change the resources accordingly through the setResources(int) method in the
DynamicQueueingNode. The pseudo-code below shows the setResources(int) method
and how the system handles changes in allocation. After the number of resources (total and
free) are updated accordingly, any free resources are assigned to customers. The system
then follows to record these changes and continues on. The DynamicQueueingNode has
been implemented in such a way to allow unlimited resources to be used. The policies
are responsible for setting the upper limit of resources and keep the resources within the
allowed range.

Pseudo-code for setResources(int n) method

let nresources = total resources;
let resources = free resources;
if n > nresources

resources += (n - nresources);
else if n < nresources

resources -= (nresources - n);
nresources = n;
while (queue is not empty && resources are available)

assign resource to head of queue;
record new allocation to file;
record switching costs;

The allowed range has as an upper bound the maximum number of available resources
and as a lower bound 1 resource. This brings forth a limitation of the system whereby the
policies cannot decrease the number of servers upon customer arrival, only upon exit. This
is a reasonable assumption since an increasing number customers implies more servers are
required. Furthermore, from an implementation point of view, the only server which can
be switched off is the one that has just been freed by the exiting customer since the other
servers will be servicing other customers.

33

4.8 Policy Enforcement

Figure 4.10: UML of classes responsible for policy enforcement

Each policy inherits from the abstract class DynamicAllocationPolicy. The abstract
class has activePolicy as a private field which points to the instance of the active pol-
icy to alert it of any events of interest. The DynamicResourcePool alerts the policy of
arrival events and the SLASink alerts the policy of exit events through the static methods
arrivalEventNotification() and exitEventNotification() respectively. The policy
can then decide of the number of servers at each event and change the allocation through
the setResources(int) method in the DynamicResourcePool. This strategy is depicted
in the UML diagram above. The system has been structured in such a way that adding
a policy is as simple as creating a class which extends the DynamicAllocationPolicy

abstract class and adding an instance of the policy to the static policies list in the ab-
stract class. The user interface will be updated automatically and the user can use the
new policy. It is also worth noting that the DynamicResourcePool records arrival events
and the SLASink records exit events to file through the relevant static methods in the
FileLogger class. In addition, the SLASink alerts the RevenueCalculator of a customer
exit event using the customerServed(Customer) static method, so the economic factors
can be calculated.

34

4.9 Overall Architecture

(a) Before (b) After

Figure 4.11: Dependecies between packages

The original JINQS architecture (Figure 4.11a) was designed in such a way, that only
one simulation could run at a time. This was due to the 2 critical classes Network and
Sim having only static methods and fields. To allow more power and flexibility for policy
implementation, JINQS was changed to allow the running of multiple concurrent simula-
tions. After discussing the changes with Dr. Field, we concluded that having instantiable
classes saving the states of the 2 static classes and then restoring them when necessary,
would allow for multiple concurrent simulations to be run with careful use of their states.
This strategy has the advantage that minimal changes to the structure of the library were
required but had as a disadvantage a performance decrease due to the time consuming
deep copying of objects. This technique was successfully implemented and worked in some
cases, however, as the system grew more complex, it started to fail on occasion. This im-
plementation is left in place as a proof of concept in case the reader wishes to review the
code.

This implied a new approach was necessary. The best approach was to drastically
change the JINQS library in order to allow instantiable classes of the 2 static classes.
In the end, 2 classes were added, namely AbstractSim and NetworkInstance, such that
they are exactly the same as their static counterpart, but can be instantiated. The next
step was to change all classes to support these changes, while still allowing the running of
simulations using the static classes. These changes were necessary since each object needs
to know which simulation and which network it belongs to. The changes were successfully
implemented resulting in the structure seen above on the right. From the dependency
graph it is obvious that the consequence of these changes was that cyclic dependencies
emerged (shown in red above). Admittedly, better planning of the changes could have
resulted in fewer dependencies.

35

Chapter 5

Implemented Policies

A total of 6 policies were implemented, each providing useful information with regard to
policy strategy and optimal allocation. Below is a description of each policy along with the
respective pseudo-code. It is important to note that the pseudo-code is a generalization
of the actual implemented policy, in order to abstract away implementation details and
focus on the functionality of the policy. The reader is welcome to review the code of the
policies, which has been properly commented for the explanation of the implementation
details. Furthermore, due to the massive time requirements of the ‘Exhaustive Search’,
no simulations will use it as a policy.

To better describe the strategy undertaken by each policy we consider the timeline
below. The blue squares depict 10 customer arrivals and the orange squares depict cus-
tomers exiting the system, over a given time. For each policy, we assume the system has
just accepted its 6th customer and show what is used to make a decision on each event.

Figure 5.1: Event timeline

5.1 General Pruning Technique

Most of the policies which will be described are based on search techniques, each given
different information to help make better decisions. Considering the ‘branching’ of each
policy, the worst case scenario is checking every possible allocation on each event. The
number of total simulations in this scenario are:

(max. servers)(number of customers)∗2 (5.1)

This therefore implies that techniques are required to improve run-time of the simulations,
whether using computational techniques or heuristics.

Our decision process is based on the notion that there is an allocation which will
yield more profit than any other choice and our goal is to find it, given other sources of
information to make a more informed decision.

36

Figure 5.2: Profits Using Different Static Allocations

Experience has shown that given a system with the same customers arriving, the above
diagram holds but is highly dependant on the simulation economic parameters. For our
purposes, the values used for economic parameters are such that there is one local, and
hence global, maximum. This means that we can use a simple pruning technique when
searching for this maximum. When searching for the optimal allocation, if we see that
5 consecutive allocations are of decreasing profits (blue line in Figure 5.2), then we can
assume we have found the global maximum and can stop the search. This technique will
be used in almost all search based policies since experience with running simulations on
our model has shown that simulations could take days if the decisions made use small
number of servers and hence cause a build up of customers in the queue.

Other techniques were examined for runtime boost performance but proved unsuccess-
ful. For example, some policies cannot be multi-threaded because of simultaneous access
of a list. This required locking which eventually slowed performance down rather than
improve it. An attempt was made to cache results as a (state,allocation) pair, however
the problem of how to define the state accurately to make the correct decision came into
play. For example, one could say that the state is defined by the number of customers of
each class in the system, however this is not an accurate description due to the various
different combinations of arrival and service times.

5.2 System Information Based

These are policies which use system information to make decisions on allocation. We will
investigate if local information is enough to make accurate decisions to maximize profits.

37

5.2.1 Utilization Based Policy

Figure 5.3: Event timeline

This policy is based on the system’s utilization (ρ). Amazon’s EC2 Auto-Scaling system
allows users to dynamically change the number of active resources by setting upper and
lower bounds on their utilization. If the system utilization goes above the upper bound
percentage, then another instance is switched on, whilst if it goes below the lower bound,
an instance is switched off. This policy will allow us to evaluate the given strategy from
Amazon’s point of view.

Referring to the above timeline, let’s assume the system has just accepted its 6th

customer. The policy will check the system utilization and increment, decrement or do
nothing according to the bounds set.

Let the algorithm parameters u and l be the upper and lower bounds respectively:

Algorithm For Utilization Based Policy

On customer arrival and exit:
if ρ > u

return +1;
else if ρ < l

return -1;

5.2.2 State Evaluation Policy

Figure 5.4: Event timeline

A valid assumption is that inter-arrival times between customers are independent and
therefore, we can only focus on the customers currently in the system. This policy takes
advantage of this and uses the current system state to determine the best allocation, ignor-
ing all past and future events. This will be useful in evaluating the benefits and drawbacks
of any predictive policies.

The policy keeps track of the customers currently in the system using a linked list. On
every customer entry and exit event, it will update the list accordingly and run simulations
with different allocations to see which allocation yielded the maximum profits. This will
be considered the optimal allocation and the policy will continue to change the system

38

resources according to the given value. As a reminder, switching off a server can only be
done on an exit event and only the server which the leaving customer has just freed can
be switched off. This is shown in figure 5.4, with events which are not of interest faded
out. The events left are the 4 customers currently in the system whose arrivals will be
used in the test runs.

Let the algorithm parameter maxAlloc be the upper bound of the number of servers:

Algorithm For State Evaluation Policy

LinkedList <Customers> currentState;

On customer arrival :
addCustomerToList();
setOptimalAllocation();

On customer exit:
removeCustomerFromList();
setOptimalAllocation();

setOptimalAllocation method:
disableFileLogging();
saveRevenueCalculatorState();
float maxProfits;
int optimalAllocation;
if (exitEvent)

servers = currentAlloc - 1;
else

servers = currentAlloc;
end if
while servers <= maxAlloc

runSim(currentState, servers);
if (5th consecutive decrease in profits)

servers = maxAlloc;
end if
if (maxProfits < RevenueCalculator.getProfits())

maxProfits = RevenueCalculator.getProfits();
optimalAllocation = servers;

end if
servers++;
restoreRevenueCalculatorState();

end while
setResources(optimalAllocation);
enableFileLogging();

5.3 Prediction Based

Predicting future arrivals and service times would allow for the system to prepare/adapt
accordingly so that profits can be increased in light of this information. These policies

39

attempt to plan ahead using statistical measures to predict future arrival and service times.

5.3.1 Predictive Planning Policy

Figure 5.5: Event timeline

This policy uses a pre-defined window (of size 5 in the above depiction) to estimate sta-
tistical properties of inter-arrival and service times and attempt to predict future demand
using exponential maximum likelihood estimate for the rate parameters; λ̂ = 1/x where x
is the sample mean. On each arrival and exit event, the policy will take the current system
state and will use the estimates to schedule further arrivals (of a pre-defined size). Then,
for each allocation within the accepted range, 3 simulations will be run to take the average
profit, where the allocation that yielded the maximum profit is considered optimal. The
reason for taking the average and using this extra overhead is to allow for the variance
in the statistical measures. A ‘tweak’ was included in the prediction algorithm to allow
an increase/decrease of the effects of the variance between each run so that they do not
different by much. In the above diagram, 3 different arrival patterns have been estimated
for the 3 runs, according to the window statistics (only shown for one allocation - this is
done for all possible allocations 1 to n).

The difficulty of the implementation of this approach is the proper handling of events
and the allocations linked to these events. A historical record needs to be held with the
policy handling past and new decisions. In order to save decisions already made, an in-
ternal class AllocationRecord is associated with each customer using a hashmap which
maps the unique customer id to the respective AllocationRecord. The class stores the
allocations of his/her arrival and exit events. This way, when test runs are performed, the
policy can allocate the resources according to past optimal decisions and new allocations
accordingly.

Let the policy parameters maxAlloc , windowSize , planAhead be the maximum num-
ber of servers to consider, the window to keep for statistical measures and the number of
future arrivals to consider when performing test simulations respectively:

40

Algorithm For Predictive Planning Policy

LinkedList <Customers> currentState;
LinkedList <Customers> window;
HashMap <Integer, AllocationRecord> customerAllocations;

On customer arrival:
addCustomerToCurrentState();
if (window.size() == windowSize)

removeFirstFromWindow(); addCustomerToWindow();
end if setOptimalAllocation();
updateCustomerAllocationRecrd();

On customer exit:
removeCustomerFromCurrentState();
removeCustomerFromWindow();
setOptimalAllocation();
updateCustomerAllocationRecrd();

setOptimalAllocation method:
disableFileLogging();
saveRevenueCalculatorState();
float maxProfits;
float averageProfits;
int optimalAllocation;
if (exitEvent)

servers = currentAlloc - 1;
else

servers = currentAlloc;
end if
while servers <= maxAlloc

for retry = 1 to 3
runSim(currentState, servers, window, planAhead);
averageProfits += RevenueCalculator.getProfits();
retry++;

end for
averageProfits = averageProfits / 3;
if (5th consecutive decrease in profits)

servers = maxAlloc;
end if
if (maxProfits < averageProfits)

maxProfits = averageProfits;
optimalAllocation = servers;

end if
servers++;
restoreRevenueCalculatorState();

end while
setResources(optimalAllocation);
enableFileLogging();

41

5.3.2 Predictive Planning Policy (with threshold)

The predictive planning policy has one major flaw; although it takes into consideration
all costs, switching costs could grow rapidly in a transient system. This policy aims at
reducing the switching costs by tweaking the above policy as follows: A server will not be
switched off unless a certain threshold amount has been earned between the previous event
and the current event being considered. A logical value would be 2 times the switching
costs so that each server earns the money required to switch it on and off. During the sim-
ulations we will investigate if this threshold is beneficial and under which circumstances.
The changes to the above policy are shown in pseudo-code below.

Let threshold be the threshold amount needed to be earned between events:

42

Algorithm For Predictive Planning Policy

LinkedList <Customers> currentState;
LinkedList <Customers> window;
HashMap <Integer, AllocationRecord> customerAllocations;

On customer arrival:
addCustomerToCurrentState();
if (window.size() == windowSize)

removeFirstFromWindow(); addCustomerToWindow();
end if setOptimalAllocation();
updateCustomerAllocationRecrd();

On customer exit:
removeCustomerFromCurrentState();
removeCustomerFromWindow();
setOptimalAllocation();
updateCustomerAllocationRecrd();

setOptimalAllocation method:
disableFileLogging();
saveRevenueCalculatorState();
float maxProfits;
float averageProfits;
int optimalAllocation;
if (exitEvent && (RevenueCalculator.getProfits() - previousProfits) > threshold)

servers = currentAlloc - 1;
else

servers = currentAlloc;
end if
while servers <= maxAlloc

for retry = 1 to 3
runSim(currentState, servers, window, planAhead);
averageProfits += RevenueCalculator.getProfits();
retry++;

end for
averageProfits = averageProfits / 3;
if (5th consecutive decrease in profits)

servers = maxAlloc;
end if
if (maxProfits < averageProfits)

maxProfits = averageProfits;
optimalAllocation = servers;

end if
servers++;
restoreRevenueCalculatorState();

end while
setResources(optimalAllocation);
enableFileLogging();

43

5.3.3 Predictive Planning Policy (future known)

Figure 5.6: Event timeline

In order to evaluate the effectiveness and accuracy of the above prediction algorithms,
a ‘prediction benchmark’ policy was implemented. This policy can only be used when
replaying arrival streams. It is essentially the same the the predictive planning policies,
except that instead of estimating future arrivals during the test runs, the actual arrivals
are used. We can assume that the results produced by this policy are the best we can do
in our context. Since this a replay stream it is possible to schedule a pre-defined number
of arrivals in the future and have the system adapt to them. The only parameter is the
number of arrivals to schedule ahead of the current system state during the test runs.
Note that in Figure 5.6, the future events scheduled are identical to the actual arrival
events (exit events will be different according to current allocation and hence faded out)
and they are the same for each allocation, unlike the predictive planning policies up to
now. Furthermore, the window used for future scheduling is of size 3, leaving 1 arrival
event unscheduled. This is the only search policy which does not incorporate the pruning
technique presented in the beginning of the chapter in order to ensure best results. Note
that due to the overhead of opening and closing the file to read in the arrival stream,
the policy will take a long time to finish a simulation. It is possible to read the arrival
stream in memory to overcome this problem but this will increase the program’s memory
requirements significantly.

5.4 Other

5.4.1 Static Policy

This is the simplest policy possible and has been included for comparison reasons only.
Through the simulations we will be able to identify the benefits and drawbacks of having
a dynamic system.

5.4.2 Exhaustive Search

Our ultimate goal is to find the optimal resource allocation to maximize profits. In order
to discover what this allocation is, an exhaustive search policy was implemented. This

44

policy will try out all possible combinations of allocations for each event, until the entire
state space has been searched, and an optimal strategy discovered.

This policy explodes in size and this exponential growth makes it impossible to discover
the global maximum within a logical time frame, even with the fastest computers. In order
to improve the timing, some techniques are used to prune away some simulations as well
as using a thread pool to run simulations concurrently. Despite this, the policy still takes
too long and exists only as proof of concept. As an example, with a maximum of 2
servers and 10 customers, the simulation took on average 4 minutes. If we were to extend
this simulation to 500 customers we would need 4x10295 minutes! The 2 main pruning
techniques used are:

• If 5 consecutive decisions have been made such that profits are constantly decreasing,
prune away the simulation.

• If for a given event the only cost increasing is the switching cost, the prune away
the remaining branches which change the allocations for the given event.

45

Chapter 6

Simulations and Evaluation of
Results

Having extended the JINQS library and implemented the different policies, we now follow
to evaluate their effectiveness through 5 different simulations based on the model already
described. Each simulation scenario will allow us to examine the policies under different
situations of increasing fluctuations in inter-arrival times to see how well they perform. In
addition, we will investigate how changing policy parameters affects profits, and determine
any values which seem to generate better results. The arrival stream will be generated
upon the first run of each simulation (static policy) and then replayed under different
policies to see how each policy handles the arrival stream.

Due to the extremely long time the ‘Exhaustive Search’ policy would take to discover
the optimal allocation for a given run, we cannot benchmark the policies against maximum
profits. We instead analyse the results of each simulation and compare each policy with
each other to determine their strengths and weaknesses.

In addition, for the 2 policies which involve predicting future arrivals, we show 3 runs
of the same simulation to further evaluate the volatility of results. Each simulation will
have a network consisting of the 3 sources, the HOL queue and a maximum of 50 servers
(starting with only 1 instance switched on) and will run until 30 000 customers have been
served. The common parameters for all simulations are:

• Class 0 µ: 2

• Class 1 µ: 2

• Class 2 µ: 2

• SLA Class 0: (0.96, 0.96, 0.5 , 1.0)

• SLA Class 1: (0.48, 0.48, 1.0 , 2.0)

• SLA Class 2: (0.12, 0.12, 1.5 , 3.0)

46

6.1 Simulation 1

In the first simulation we will use the same exponential arrival streams and exponential
service times for all 3 classes. We can use this scenario to evaluate how well policies react
to relatively stable arrival streams under relaxed circumstances. For predictive policies,
we will investigate the effects on profits of changing window sizes. We use the following
parameters to define the simulation:

• Class 0 λ: 5

• Class 1 λ: 5

• Class 2 λ: 5

6.1.1 Static Policy

Allocation Running Costs Switching Costs Penalties Revenue Profits

8 798.97 0.0 705.97 23269.27 21764.33
9 898.64 0.0 70.18 23269.27 22300.46
10 998.36 0.0 13.55 23269.27 22257.36

The optimal static allocation for simulation 1 would be 9 servers. The interesting point
to note is that maximum profits were achieved even though a relatively small number of
penalties were paid (approximately 400 customers got a discount). As expected, this was
mainly at the expense of the class with the lowest priority. Figure 6.1 below shows clearly
the problems raised when the wrong number of servers are being used. For example, using
8 servers will result in more than 10 times the penalties of the 9 server run, which will
in turn lead to high customer dissatisfaction with the service. However, using 10 or more
servers results in customers of Class 0 never getting discounts, with only a few Class 1
customers receiving minor discounts, implying high customer satisfaction since there we
no or slight delays in their service. If we were to assign a price to this ‘customer satis-
faction’ it would be the difference in profits between 9 and 10 servers (43.1). We will use
this optimal static policy as a policy comparison to see if the dynamic policies are worth
while.

47

(a) Penalty distribution (8 servers) (b) Penalty distribution (9 servers)

(c) Penalty distribution (10 servers)

Figure 6.1: Static Policy Penalty Distributions

6.1.2 Utilization Based Policy

Running Costs Switching Costs Penalties Revenue Profits

4966.75 70.90 0.0 23269.27 18231.62

This policy is heavily dependent on the bounds set on utilization. In the following simu-
lations we will use values of 20% and 90% for lower and upper bounds respectively. From
Figure 6.2 we can see that this policy resulted in almost all instances being switched on
until the end of the run. As a result, no customers received a discount, hence maximum
customer satisfacation was achieved and waiting time was at a minimum.

48

Figure 6.2: Utilization Policy Allocation

However, compared to the optimal static allocation, there is ≈ 20% decrease in profits.
This was caused by the increased running costs from all instances being switched on, with
minor influence from switching costs. This was to be expected since this policy ignores all
financial elements and aims at on-time job completion.

6.1.3 State Evaluation Policy

Running Costs Switching Costs Penalties Revenue Profits

750.34 12.00 2261.79 23269.27 20245.14

A significant improvement in profits in relation to the utilization policy can be seen.
This is mainly attributed to the large difference of running costs. The allocation shown
in Figure 6.3a shows a strong link to the optimal static policy, however, this dynamic
policy is not an improvement on profits. In addition, a third of Class 2 customers re-
ceived maximum discount, with a portion of the total discounts ranging over all classes
and percentages, indicating high customer dissatisfaction.

49

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.3: State Evaluation Policy Results

This policy was expected to perform better than the optimal static policy under a
stable arrival stream but turns out to be far from optimal but cannot be dismissed as a
strategy, given it has produced relatievly good results.

6.1.4 Predictive Planning Policy

Table 6.1: Results using window of size 20

Run Running Costs Switching Costs Penalties Revenue Profits

1 765.80 2361.73 277.33 23269.27 19864.41
2 765.66 2389.96 300.79 23269.27 19812.86
3 766.65 2405.57 262.47 23269.27 19834.58

Table 6.2: Results using window of size 100

Run Running Costs Switching Costs Penalties Revenue Profits

1 767.04 2381.15 260.18 23269.27 19860.90
2 766.86 2376.55 231.32 23269.27 19894.54
3 768.14 2369.74 211.71 23269.27 19919.68

The predictive policies rely on windows for statistics to predict future arrival and service
times. To investigate the impact of these windows on profits in a relatively stable system,
we investigate 2 scenarios of small and large windows. Simulations whose results are not

50

shown in this report, have shown that a window of less than 20 will provide unreliable
statistics and the policies will make wrong decisions. Therefore we continue to see if
windows of greater than 20 have any effect on the decisions made.

From the tables above we see minor fluctuations in costs and profits, an indication
that the predictive mechanisms are stable when using a simple arrival stream. Figures
6.4 and 6.5 show the allocations for each of the 2 windows sizes used for the simulations.
We cannot see any differences between the 6 figures due to their nature, but rather notice
high fluctuations of allocations between events. These fluctuations were unexpected when
using a simple arrival stream and consequently result in very high switching costs.

(a) Allocation For Run 1 (b) Allocation For Run 2 (c) Allocation For Run 3

Figure 6.4: Allocation For Predictive Policy (Windows Size = 20)

(a) Allocation For Run 1 (b) Allocation For Run 2 (c) Allocation For Run 3

Figure 6.5: Allocation For Predictive Policy (Windows Size = 100)

As expected, the relatively high penalties were attributed to almost 2000 Class 2
customers receiving discounts, half of which received free service! The penalty distributions
are shown below, and are almost identical in all 6 runs. We can safely assume that this
type of service would be considered unacceptable by customers looking for a quick and
reliable service.

(a) Penalty Distribution For
Run 1

(b) Penalty Distribution For
Run 2

(c) Penalty Distribution For Run
3

Figure 6.6: Penalty Distribution For Predictive Policy (Window Size 20)

51

(a) Penalty Distribution For
Run 1

(b) Penalty Distribution For
Run 2

(c) Penalty Distribution For Run
3

Figure 6.7: Penalty Distribution For Predictive Policy (Window Size 100)

As the financial measures implied, profits followed each other throughout the simula-
tion. The variance is shown in Figures 6.8 below. There are minor differences in profits
which cannot be seen in the graphs since they are too condensed, but we deem these
differences negligible.

(a) Profit Variance For Window Size = 20 (b) Profit Variance For Window Size = 100

Figure 6.8: Profit Variance For Predictive Policies

Evidently, for stable arrival streams, window size was not an issue and resulted in
approximately the same profits. Furthermore, the maximum likelihood estimator seems
to generate approximately the same arrivals, since each set of simulations seem to follow
each other very closely, implying that for stable systems it is quite reliable. Therefore, for
the next set of simulations (the threshold policy), we will continue to only use a window
size 100. The effects of the window size on a transient arrival stream will be investigated
in simulations 2 and 3.

Issues which raise concern about this policy are the high switching costs (which will
be taken care of by the next policy) and the perhaps unnecessarily high use of resources
at points. Although this policy is a great improvement over the 2 policies which only use
system information, there is room for improvement.

52

6.1.5 Predictive Planning Policy (with Threshold)

Table 6.3: Results using threshold of 0.2

Run Running Costs Switching Costs Penalties Revenue Profits

1 776.10 2140.66 146.76 23269.27 20205.75
2 776.45 2153.47 128.25 23269.27 20211.11
3 777.06 2144.36 139.63 23269.27 20208.22

Table 6.4: Results using threshold of 10

Run Running Costs Switching Costs Penalties Revenue Profits

1 1316.89 321.61 0.0 23371.05 21630.77
2 1308.17 324.51 0.0 23371.05 21636.59
3 1307.19 323.21 0.0 23371.05 21638.88

The main aim of this policy is to reduce switching costs and ‘smooth out’ the changes
between allocations. This is very dependent on the threshold used so we continue and use
2 test cases; one is using 2 times the switching cost and the other using 100 times the
switching cost. In the first case, all we are interested in is if the server being switched
off has earned enough money to have a net profit of 0. The second case is to establish
whether there is a need for a higher threshold to decrease switching costs even further.

(a) Allocation For Run 1 (b) Allocation For Run 2 (c) Allocation For Run 3

Figure 6.9: Allocation For Predictive Policy (Threshold 0.2)

(a) Allocation For Run 1 (b) Allocation For Run 2 (c) Allocation For Run 3

Figure 6.10: Allocation For Predictive Policy (Threshold 10)

The allocation graphs above, along with the 2 tables provide us with enough infor-
mation to see that, using a threshold is indeed beneficial. In the first case, we have a

53

profit increase of ≈ 1.5% with switching costs remaining quite high. In the second case we
have a drastic reduction in switching costs and an increase in running costs which result
in a significant increase in profits by ≈ 10% compared to the policy without threshold.
Another important advantage of increasing the threshold is that, due to a larger number
of instances staying on for longer, no penalties are paid, guaranteeing a reliable service
with minimal waiting time.

Figure 6.11: Profits Variance Using Different Thresholds

As with the policy without the threshold, the set of simulations with the same thresh-
olds follow each other very closely, indicating that the policy will produce reliable results
when dealing with stable streams. Figure 6.11 shows profits over time when using 2 times
the switching cost (blue line) and 10 times the switching cost (green line). It is obvious
that using 10 times the switching cost always yields better results. It would be worth
further investigating what threshold would be considered optimal, however due to time
constraints, we will use 10 times for our comparisons from this point on. Thresholds for
transient arrivals will be investigated in simulations 2 and 3.

6.1.6 Predictive Planning Policy (Future Known)

Running Costs Switching Costs Penalties Revenue Profits

1225.90 1.30 0.18 23269.27 22041.89

Knowing the future arrivals of customers and their needs allows us to plan ahead. This
policy has yielded maximum profits out of all the other policies due to its clear advantage
of knowing the future. In comparison with the best policy so far, namely the predictive
policy with 10 times the switching cost as a threshold, a ≈ 2% increase in profits can be
seen. If we assume that this policy is the best we can do, a sub-optimal policy which yields
2% less profits can be deemed acceptable.

54

Figure 6.12: Allocation of Predictive Planning Policy (Future Known)

With the future known, costs are kept to a minimum, with a negligible number of
penalties being paid. Our predictive policies can close the gap by improving the predictive
mechanisms so that they make better decisions, although for stable arrival streams, they
have proved to be quite good and reliable. An interest point to notice is the simplicity of
the allocation graph, something we do not expect to see in the transient arrival streams
to come.

6.1.7 Evaluation of Simulation 1

Figure 6.13: Simulation 1: Profits for all policies

Although a stable arrival stream is not the main testing ground for the policies, it is
interesting to see their performance under this model. The best policy was the predictive

55

policy which uses a threshold. In fact, profits remain relatively close to the predictive
policy which knows about future arrivals, throughout the run, indicating a reliable policy
which yields excellent results under this model. A surprise was the performance of the
policies which used on local system information, which were expected to perform better,
but stayed within a logical range none-the-less.

An interesting point to notice is that none of the policies earned more profits than the
optimal static allocation, which could be attributed to the chosen values for running and
switching costs, however, a closer look can show that in a realistic setting, one would prefer
the dynamic policies. The observation that the penalties paid are significantly higher in the
optimal static allocation than in the predictive policies is very important. This suggests
that using the predictive policy using a threshold would keep customer satisfaction high,
only at a small cost, since profits did not have a big difference between them. This
trade-off between profits and customer satisfaction, is expected to be seen in the next
few simulations as well and must be taken into account. Furthermore, getting the right
static allocation depends on the arrival stream which, as seen through the static policy
simulations, if chosen wrongly, could result in huge differences in profits and customer
satisfaction.

56

6.2 Simulation 2

The second simulation will focus on transient arrival streams of relatively low arrival rates
and minor fluctuations in rate parameters. As discussed in ‘The Model’ section of the
report, we will use MMPP to model arrivals of Class 0 customers and SMPP to model
Class 1 and Class 2 customer arrivals. We further investigate the effects on profits of
different window sizes and threshold levels when we have transient arrival stream. The
parameters which will be used are:

• Class 0

Λ̄ =

1 0 0
0 5 0
0 0 10

 Q̄ =

0.998 0.001 0.001
0.001 0.998 0.001
0.001 0.001 0.998

• Class 1 λmin = 1 λmax = 5

• Class 2 λmin = 1 λmax = 10

6.2.1 Static Policy

Allocation Running Costs Switching Costs Penalties Revenue Profits

8 1096.63 0.0 412.54 18301.08 16791.91
9 1233.70 0.0 134.99 18301.08 16932.38
10 1370.78 0.0 30.99 18301.08 16899.31

In this simulation, the optimal static policy would be to have 9 instances switched on.
This however comes at a cost of approximately 500 customers receiving full discounts, an
indication that a significant percentage of customers will not be satisfied with the service.
As shown in Figure 6.14a, all classes were affected by this poor service, with the lowest
priority class taking the most of the hit. Furthermore, the queue length fluctuates in
size significantly, probably due to the transient arrivals of the simulation. This is a clear
indication a dynamic system is favourable.

(a) Penalty Distribution (b) Queue Length

Figure 6.14: Static Policy Results

57

6.2.2 Utilization Based Policy

Running Costs Switching Costs Penalties Revenue Profits

6668.14 42.10 0.04 18301.08 11590.80

The utilization policy profits are almost 5000 units less than the optimal static policy.
This is attributed to the massive running costs of switching on almost all instances for the
whole run (shown in Figure 6.15 below). The advantage of this is that only 1 customer
was offered a small discount and waiting time was kept to a minimum. However, the high
customer satisfaction comes at an unnecessarily high cost and there is room for improve-
ment. For a transient system, this policy has proved to be far from optimal, even if the
policy parameters are changed.

Figure 6.15: Allocation of Utilization Policy

6.2.3 State Evaluation Policy

Running Costs Switching Costs Penalties Revenue Profits

756.02 10.60 3488.66 18301.08 14045.79

As with the stable arrival stream, a strong link to the optimal static policy can be seen,
however, under a transient system, this policy deteriorates. Almost half the customers of
the simulation got off with an almost free service and profits are considerably low.

58

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.16: State Evaluation Policy Results

As expected, this policy did not perform well under a transient arrival stream, resulting
in huge penalties being paid and customer dissatisfaction being high. We expect that in
the next simulations, results from this policy will deteriorate.

6.2.4 Predictive Planning Policy

Table 6.5: Results using window of size 20

Run Running Costs Switching Costs Penalties Revenue Profits

1 778.33 2153.37 26.70 18301.08 15342.67
2 778.75 2148.57 26.92 18301.08 15346.83
3 779.05 2146.36 24.90 18301.08 15350.76

Table 6.6: Results using window of size 100

Run Running Costs Switching Costs Penalties Revenue Profits

1 777.98 2162.98 29.33 18301.08 15330.79
2 778.14 2153.17 30.90 18301.08 15338.86
3 777.71 2140.96 27.24 18301.08 15355.17

From the above tables above we can see that, as with stable arrival rates, the set of runs
have approximately the same results. In other words, the policy reliability is kept even

59

when using transient arrival rates. Approximately 300 customers in total received dis-
counts, with the significant majority receiving less than 50%. As expected, this affected
mainly Class 2 customers. As indicated by the allocation graphs below, rapid switching is
still a problem, resulting in unacceptably high switching costs. This is further proof that
the threshold is a necessary addition.

(a) Allocation For Run 1 (b) Allocation For Run 2 (c) Allocation For Run 3

Figure 6.17: Allocation For Predictive Policy (Windows Size = 20)

(a) Allocation For Run 1 (b) Allocation For Run 2 (c) Allocation For Run 3

Figure 6.18: Allocation For Predictive Policy (Windows Size = 100)

Another important observation comes from Figure 6.19 below. When looking closely
at the Class 0 customers in the system, we can distinguish 3 peaks. These peaks can also
be seen in all 6 allocation figures above, indicating that the allocation decision is highly
dependent on the Class 0 customers. This could be the grounds for future improvement
of these policies.

60

Figure 6.19: Customers in the System

As a conclusion to the issue of window sizes, the above figures and tables, in combi-
nation with the variance of profits shown in Figure 6.20, show that a window size greater
than 20 has negligible effects on profits, even for transient arrival schemes. We conclude
that a window of size 100 provides sufficiently good results, regardless of the nature of the
arrival rates and will therefore be used from here onwards.

(a) Profits of 3 Runs (Window Size 20) (b) Profits of 3 Runs (Window Size 100)

Figure 6.20: Profits Using Different Sized Windows

6.2.5 Predictive Planning Policy (with Threshold)

Table 6.7: Results using threshold of 0.2

Run Running Costs Switching Costs Penalties Revenue Profits

1 792.40 1870.12 13.37 18301.08 15625.19
2 792.46 1882.12 13.17 18301.08 15613.32

61

Table 6.8: Results using threshold of 10

Run Running Costs Switching Costs Penalties Revenue Profits

1 1427.67 251.81 0.0 18301.08 16621.60
2 1427.33 253.53 0.0 18301.08 16620.22

As expected, using thresholds provides better results with respect to our goal. It has
decreased the massive switching costs and eliminated penalties, and even though running
costs were doubled, an almost 8% increase in profits can be seen. The effect of decreasing
switching costs can be seen in the figure below, where the lines are not so close any more
due to the reduction of switching. In addition, profits are very close to the static optimal
policy with much better customer satisfaction, making this the preferable policy.

(a) Allocation using threshold of 0.2 (b) Allocation using threshold of 10

Figure 6.21: Allocation Using Different Thresholds

We can conclude that using thresholds is in fact to our advantage, regardless of the
type of arrival stream. Figure 6.22 confirms that using 10 times the switching cost for a
threshold (blue line), yields more profits throughout the run compared to 2 times switching
cost (green line). In fact, as time goes by, the difference between them is increases,
indicating that the threshold must be chosen carefully. We will confirm our theory in
simulation 3 and then follow on to see the effects of using larger thresholds with transient
arrival streams.

62

Figure 6.22: Profits Using Different Thresholds

6.2.6 Predictive Planning Policy (Future Known)

Running Costs Switching Costs Penalties Revenue Profits

756.18 168.10 22.06 18301.08 17348.73

Even when a using transient arrival stream we can see the potential of the predictive
policies. This policy surpasses the profits of all policies by at least 2%, a clear indication
that prediction is key for good results. These results indicate that, if the prediction
mechanism of the predictive policies is improved, results could improve drastically.

(a) Allocation (b) Penalty Distribution

Figure 6.23: Predictive Planning Policy (Future Known) Results

An interesting observation is that these results are achieved with a significant portion
of customers receiving discounts. Since the discounts are in the 0-10% range, we could
assume that in a realistic setting this might be acceptable, however, the policy could be
tweaked to reduce this cost and increase customer satisfaction.

63

6.2.7 Evaluation of Simulation 2

Figure 6.24: Simulation 2: Profits for all policies

Surprisingly, the optimal static policy yielded the most profits, with the predictive policy
which uses a threshold closely behind. One observation from Figure 6.24 that stands out
is that all policies take approximately the same amount of time to service the 30 000
customers except the state evaluation policy which takes slightly longer. This could be
attributed to its use of a small number of servers throughout the run, resulting in much
less throughput.

The fact that the predictive policy (future known) performed so well under this arrival
stream is an indication that the other predictive policies could perform better if the pre-
dictive mechanism was improved. None the less, profits stayed within a reasonable limit
and customer satisfaction was high. The policies which use only local information did not
perform as well, with the utilization policy over-using resources and the state evaluation
policy under-using resources (and having a massive penalty payout). Given was the sim-
plest transient arrival stream that will used, we expect that the above effects will multiply
in the next few simulations.

64

6.3 Simulation 3

The third simulation will use the same parameters as the second simulation, except from
the infinitesimal generator which we will change to allow for more rapid changes between
the states by assigning equal probabilities between all states:

• Class 0

Λ̄ =

1 0 0
0 5 0
0 0 10

 Q̄ =

0.34 0.33 0.33
0.33 0.34 0.33
0.33 0.33 0.34

• Class 1 λmin = 1 λmax = 5

• Class 2 λmin = 1 λmax = 10

6.3.1 Static Policy

Allocation Running Costs Switching Costs Penalties Revenue Profits

6 834.13 0.0 753.17 17990.24 16402.94
7 972.84 0.0 73.00 17990.24 16944.40
8 1111.82 0.0 8.21 17990.24 16870.21

The optimal static policy for the 3rd simulation is 7 servers. As the penalty distribu-
tion, depicted by Figure 6.25b shows, a large number of customers received discounts,
indicating an unreliable service.

(a) Penalty Distribution (6 servers) (b) Penalty Distribution (7 servers)

(c) Penalty Distribution (8 servers)

Figure 6.25: Penalty Distributions For Different Static Allocations

65

6.3.2 Utilization Based Policy

Running Costs Switching Costs Penalties Revenue Profits

4630.12 54.50 94.28 17990.24 13211.35

The utilization policy profits are again much lower than the optimal static policy. The allo-
cation for this run is erradic and contrary to the 2nd simulation, we incurred large penalties
of 90%-100% from all classes. This proves that this policy deteriorates by increasing the
state fluctuations of the arrival streams.

(a) Allocation Distribution (b) Penalty Distribution

Figure 6.26: Utilization Based Policy Results

6.3.3 State Evaluation Policy

Running Costs Switching Costs Penalties Revenue Profits

1070.28 239.00 30.93 17990.24 16650.07

To our surprise, results did not deteriorate as expected. In fact, the results are very
close to the optimal static policy and are a significant improvement over the utilization
policy results. The main issue in this case are the switching costs which, as can be seen
from Figure 6.16a, are caused by rapid fluctuations in allocation, most probably attributed
to the rapid changes in arrival rates of Class 0 customers.

66

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.27: State Evaluation Policy Results

The penalty distribution above does show quite a few customers getting a discount,
but is an improvement over the second simulation. Results show that the rapid changes
in the arrival rates ease out the penalty distribution and decrease the penalties paid. It
turns out this policy performs better for a system with faster changing states. This theory
will be examined further in simulations 4 and 5.

6.3.4 Predictive Planning Policy

Run Running Costs Switching Costs Penalties Revenue Profits

1 776.33 2197.00 35.00 17990.24 14981.90
2 776.50 2200.41 33.87 17990.24 14979.48
3 776.89 2196.40 34.91 17990.24 14982.03

Increasing the rate of transition of the MMPP seems to have no effect on how the predic-
tive policy works. The decisions fluctuate just as much as when the rates were low (Figure
6.28a) which is, as before, the main source of cost. As a result, the queue length changes
rapidly as well (Figure 6.28b) resulting to fluctuating waiting times for the customers
which, in turn, affect penalties. The penalty distribution depicted in Figure 6.28c shows
the unacceptably high number of customers who received a discount. It is worth noting
that the distribution is thankfully scewed towards the low percentages.

67

(a) Allocation (b) Queue Length

(c) Penalty Distribution

Figure 6.28: Predictive Planning Results

6.3.5 Predictive Planning Policy (with Threshold)

Run Running Costs Switching Costs Penalties Revenue Profits

1 1540.44 247.00 0.0 17990.24 16202.80
2 1510.88 245.90 0.0 17990.24 16233.46
3 6094.82 53.10 0.0 17990.24 11842.33

When looking at the table above, the 3rd run stands out due to its different values com-
pared to the runs due to a flaw. The rapidly changing states of the MMPP processes
rarely results in the prediction mechanisms thinking an increasing amount of customers
are arriving and so switching on more than necessary instances. These instances cannot
be switched off as easily and so remain high. This phenomenon can be seen in Figure
6.29c. The wrong decisions consequently increase running costs 6 fold and decrease profits
by ≈ 25%! As already mentioned, the prediction mechanism has be fine tuned to pre-
vent large variations between runs, however when using rapidly changing transient arrival
streams there is an off chance this might occurr. This is considered only as a flaw in the
prediction mechanism, not the policy strategy.

68

(a) Allocation for Run 1 (b) Allocation for Run 2 (c) Allocation for Run 3

Figure 6.29: Allocation of the Runs

This flaw affects profits throughout the run, always resulting in less profits being made
(Figure 6.30). As time progresses, the effects of the wrong decision seem to increase,
indicating the perhaps some mechanism should be put in place to detect this flaw and
attempt to fix it accordingly.

Figure 6.30: Profits of the Different Runs

6.3.6 Predictive Planning Policy (Future Known)

Running Costs Switching Costs Penalties Revenue Profits

762.14 175.10 20.00 17990.24 17033.00

As with the previous simulation, this policy produced the highest profits from all other
policies indicating the advantages of a predictive policy. The change in probabilities has
had as a consequence a minor increase in switching costs and penalties. As shown in Fig-
ure 6.31b, the penalty distribution is very similar to the 2nd simulation, but has affected
more Class 0 and Class 1 customers. Again, in a realistic setting, the penalties paid could
be deemed acceptable or the policy could be tweaked to improve customer satisfaction at
a cost.

69

(a) Allocation (b) Penalty Distribution

Figure 6.31: Predictive Planning Policy (Future Known) Results

6.3.7 Evaluation of Simulation 3

Figure 6.32: Simulation 3: Profits for all policies

From the results of this simulation, it seems that rapid changes in arrival rates reduce the
negative effects we expected to see from the transient nature of the arrival stream. In fact,
the state evaluation policy performed better than the predictive planning policy, however,
the utilization based policy’s performance did deteriorate as expected.

The predictive planning policy which uses a threshold does not seem to have been
affected as much by increasing the probability of transitions and performed very well,
yielding high profits and no penalty payout. Unfortunately, one out of the three runs
revealed a flaw or bug with the predictive mechanism where the policy over-estimates
future arrivals and increases the allocation in light of this information, only to get stuck
in a high allocation and increase running costs significantly.

Given the predictive policy which uses future arrivals outperformed all other policies, it
is clear that the predictive mechanism of the predictive policies falls short of expectations
and can be improved to yield better results.

70

6.4 Simulation 4

The next step is to increase the arrival rates to strain the system even more. The maximum
combined arrival rates will exceed the maximum number of servers to see how the policies
cope with increased traffic. To start off we will use the same infinitesimal generator as
simulation 2 to keep fluctuations between the states to a minimum. We move away from
changing window size, as previous simulations have shown that using a window size of
100 provides sufficiently good results, and instead focus more on the effects of increasing
threshold levels passed 10 times switching costs. We define the simulation parameters as
follows:

• Class 0, 1, 2

Λ̄ =

5 0 0
0 15 0
0 0 50

 Q̄ =

0.998 0.001 0.001
0.001 0.998 0.001
0.001 0.001 0.998

6.4.1 Static Policy

Allocation Running Costs Switching Costs Penalties Revenue Profits

45 2160.18 0.0 194.84 24553.61 22198.59
46 2208.17 0.0 142.34 24553.61 22203.10
47 2256.18 0.0 98.93 24553.61 22198.49
50 2400.19 0.0 32.21 24553.61 22121.22

The optimal static allocation is 46 servers. As with all previous simulations, this comes
at a high penalty rate, but as shown by Figure 6.33b, affects more Class 1 than any other
class of customers. This is an indication that static policies could result in ‘worst case sce-
narios’ and end up paying penalties to higher paying customers and so lose more money.
In this scenario, the penalties could be attributed to the spike in Class 1 customers at
time 600, probably due to the arrival rate changing to 50. At the same same, there is
a spike in arrivals of Class 0 customers which pre-empted Class 1 customers and so had
to wait longer and so received a large number of discounts. This is an indication that
the system is very dependent on higher priority customers and there is a clear need for
dynamic systems to be able to react to these changes. Something the reader should keep
in mind when reading on, is that even with full resource use, we end up paying penalties,
as indicated by the above table.

(a) Customers In System (46 Servers Allocated) (b) Penalty Distribution (46 Servers Allocated)

Figure 6.33: Static Allocation Results

71

6.4.2 Utilization Based Policy

Running Costs Switching Costs Penalties Revenue Profits

1406.23 154.70 8796.46 24553.61 14196.18

The large changes between the arrival rates make utilization fluctuate uncontrollably.
Consequently, allocation fluctuates accordingly as shown in Figure 6.34a and incurs large
switching costs. Furthermore, penalties paid are extremely high, ranging from all 3 classes,
mainly in the region of 90%-100%. Figure 6.34b shows several large spikes of customers
in the system which probably were the reason for all the delays. This policy seems to
deteriorate with increasing fluctuations in arrival rates and cannot be used in transient
systems.

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.34: Utilization Policy Results

6.4.3 State Evaluation Policy

Running Costs Switching Costs Penalties Revenue Profits

751.23 230.20 9985.76 24553.61 13586.45

As already seen from simulation 3, the state evaluation policy cannot deal with transient
arrival streams with low probability state transitions. This simulation confirms this theory
and establishes that the larger the difference between arrival rates, the worse this policy
will perform. From the allocation graph below, we can see the rapid changes in allocations,
contributing to switching costs, with the main source of cost being the penalties.

72

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.35: State Evaluation Policy Results

Figure 6.35c clearly depicts customer dissatisfaction for all classes and proves that this
policy can be dismissed for transient arrival schemes due to the low profit return. The
final simulation will be able to confirm if this policy can perform better under rapid state
transitions.

6.4.4 Predictive Planning Policy

Running Costs Switching Costs Penalties Revenue Profits

752.64 2229.42 1363.59 24553.61 20207.96

The usual flaws of this policy are at the same level regardless of arrival rates, indicat-
ing a flaw with the strategy of the policy rather its inner workings. Regions of high and
low allocations can be seen in Figure 6.36a, probably relating to the customer arrival rates
fluctuating between high and low states. This policy cannot handle the changes between
high and low rates very well, given that almost 7000 Class 2 customers received a discount
of 90%-100%. The discrimination of Class 2 customers can be seen from the Figures 6.36b
and 6.36c below which, in turn, resulting in a high penalty payout.

73

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.36: Predictive Planning Policy Results

6.4.5 Predictive Planning Policy (with Threshold)

Threshold Running Costs Switching Costs Penalties Revenue Profits

20 2375.15 166.60 36.70 24553.61 21975.17
80 2393.56 53.50 34.16 24553.61 22072.39
180 2396.82 27.90 31.50 24553.61 22097.39

Interestingly, increasing the threshold increases profits. This can be attributed to a reduc-
tion in switching costs and penalties. This effect however is dependent on the values of
the simulation parameters such as running and switching costs, which in our case result
in profits. From the figures below, we can see a full use of resources and by increasing the
threshold we get a thinning of the lines between events due to less switching.

74

(a) Allocation (Threshold of 20) (b) Allocation (Threshold of 80)

(c) Allocation (Threshold of 180)

Figure 6.37: Allocation using Different Thresholds

Furthermore, we have an acceptable range of penalties paid in all cases. Compared to
the optimal static policy, this policy is only 100 units short in profits but with approxi-
mately 300 customers less in penalties, indicating more customer satisfaction under this
policy.

75

(a) Penalty Distribution (Threshold of 20) (b) Penalty Distribution (Threshold of 80)

(c) Penalty Distribution (Threshold of 180)

Figure 6.38: Penalty Distribution using Different Thresholds

Figure 6.39 below shows the variation in profits throughout the run using different
thresholds (starting with 20 and going up to 180). The profits follow each other very
closely, with the 180 threshold line being slightly above the rest. It is obvious that increas-
ing the threshold is beneficial, even though only by a small margin, but more investigation
is necessary to determine which levels are necessary to guarantee maximum profits.

Figure 6.39: Profits Using Different Thresholds

76

6.4.6 Predictive Planning Policy (Future Known)

Running Costs Switching Costs Penalties Revenue Profits

755.30 230.90 353.21 24553.61 23214.20

In this simulation we begin to see the effects of transient arrival streams with large differ-
ences in rates. Although the policy achieved maximum profits yet again, this was at the
expense of around 2000 customers of Class 2 and 300 customers of Class 1. We begin to
see the effects of the trade off between customer satisfaction and maximization of profits
for the first time. The threshold policy had significantly higher customer satisfaction levels
at a sacrifice of 5% of profits, a factor which could be considered in a realistic setting.

(a) Allocation (b) Penalty Distribution

Figure 6.40: Utilization Based Policy Results

This high penalty rate could imply a new strategy might be required. None the less,
the advantages of a dynamic policy with a predictive mechanism are realised through the
maximization of profits, leaving the next simulation to be the judge of the extent of this
advantage.

77

6.4.7 Evaluation of Simulation 4

Figure 6.41: Simulation 4: Profits for all policies

The large difference between arrival rates in the MMPP seems to affect the system dra-
matically. We can see these effects clearly from the above figure. First thing we notice is
that the time to service 30 000 customers differences significantly due to the different allo-
cations used. Furthermore, profits have huge differences between them, with the predictive
policy (future known) taking a significant lead, followed by the optimal static allocation.
The threshold policy does follow the optimal static policy profits closely, but has 1

3 of the
penalties, indicating higher customer satisfaction. Even in the face of large differences in
arrival rates, the predictive policies do not have large variance between runs, indicating
they are generally stable algorithms.

The policies which use only local information have been deemed useless under transient
arrival streams due to low profits and high penalties, attributed to the information they
have at their disposal to make their decisions.

78

6.5 Simulation 5

The final simulation will take simulation 4 to the next level and increase the probabilities
between states to allow for rapid fluctuations. This is the ultimate simulation to see how
the policies deal with unpredictable arrival streams of a relatively large customer base.

• Class 0, 1, 2

Λ̄ =

5 0 0
0 15 0
0 0 50

 Q̄ =

0.34 0.33 0.33
0.33 0.34 0.33
0.33 0.33 0.34

6.5.1 Static Policy

Allocation Running Costs Switching Costs Penalties Revenue Profits

17 815.59 0.0 271.03 23337.18 22250.56
18 863.55 0.0 51.49 23337.18 22422.14
19 911.53 0.0 12.61 23337.18 22413.05

The optimal allocation in the final simulation is 18 servers. The usual observation that
the penalties incurred by the optimal static policy are unacceptably high still apply and
are depicted below. Another important observation is that the increasing of the rate of
transitions from state to state seems to have decreased the need for higher allocations.

Figure 6.42: Penalty Distribution

6.5.2 Utilization Based Policy

Running Costs Switching Costs Penalties Revenue Profits

965.46 183.00 12364.22 23337.18 9824.527

The effect of increasing the rate of transitions on this policy is clearly seen in Figure
6.43a where we have not only rapid switching, but large fluctuations in the number of
servers from one time period to the next. This, along with the high penalties depicted
below, are the cause of such low profits. These fluctuations can be linked to the peaks

79

of customers shown in Figure 6.43b. This policy continues to deteriorate as we increase
the volatility of the system parameters, indicating it is not a good policy for transient
systems.

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.43: Utilization Policy Results

6.5.3 State Evaluation Policy

Running Costs Switching Costs Penalties Revenue Profits

751.23 230.20 9985.76 23337.18 13586.45

This simulation is the final step to confirming our observation that that this policy per-
forms better on transient arrival streams with rapid state transitions. From this simulation
we can establish that this theory is dependant on the arrival rates. In simulation 2, when
rates were low, the theory was correct, however, in this simulation which uses high arrival
rates, we can see that the theory cannot be applied. An observation that we have noticed
in simulations 1, 2 and 3 which still holds is that the allocation selected is closely linked
to the optimal static policy, as shown in Figure 6.44a.

80

(a) Allocation (b) Customers In System

(c) Penalty Distribution

Figure 6.44: State Evaluation Policy Results

None the less, this policy yields high customer dissatisfaction and can be dismissed as
a liable policy for transient arrival streams. With a few tweaks this policy could have the
potential to achieve better results and reduce the penalty payout.

6.5.4 Predictive Planning Policy

Running Costs Switching Costs Penalties Revenue Profits

744.19 2251.63 1778.71 23337.18 18562.67

As expected, this policy’s results deteriorated in the ultimate test of transient arrival
stream. The huge switching costs and large penalty payout make it an undesirable pol-
icy which needs improving. Figure 6.45c shows a large build up of customers within the
system, making it hard to cope with the rapid arrival of customers. This is probably
due to the inexplicable allocation drop after time 950. This could be attributed to the
same flaw found in the threshold policy in simulation 3, but the system under-estimates
arrivals rather than over-estimates. This however should not have affected the system this
dramatically so as to leave only 1 or 2 servers on! This could indicate a flaw or bug with
the predictive mechanism used.

81

(a) Allocation (b) Penalty

(c) Customers In System

Figure 6.45: Predictive Planning Policy Results

6.5.5 Predictive Planning Policy (with Threshold)

Threshold Running Costs Switching Costs Penalties Revenue Profits

20 2352.14 161.30 0.0 23337.18 20823.74
80 2371.92 51.40 0.0 23337.18 20913.87
180 2374.54 26.10 0.0 23337.18 20936.55

Increasing the threshold on this arrival stream seems to have the same effects as the
4th simulation with respect to allocation. Referring to the figures below, we can see the
same thinning of lines indicating more wide-spread changes in allocation, as well as full
customer satisfaction. However, given the relatively low optimal static allocation, perhaps
using full use of resources is unnecessary and could be reduced. This could be due to
the phenomenon we saw in the previous simulation, whereby a series of wrong decisions
pushes allocation up and then is hard to bring back down.

82

(a) Allocation (Threshold of 20) (b) Allocation (Threshold of 80)

(c) Allocation (Threshold of 180)

Figure 6.46: Allocation using Different Thresholds

By increasing the threshold we can see minor increments in profits, but relative im-
provement on switching costs. These of course are reflected as increased running costs
however, they are not enough to decrease profits. As we can see below, using larger
thresholds (yellow line is 180) can result in better profits throughout the run. It is pos-
sible however that the higher thresholds are the reason for increasing the instances so
quickly and then finding it difficult to reduce them to ‘normal’ levels. Further investiga-
tion would be required into the matter to determine if this is the case but unfortunately,
due to time constraints, is omitted in this report.

83

Figure 6.47: Profits using Different Thresholds

6.5.6 Predictive Planning Policy (Future Known)

Running Costs Switching Costs Penalties Revenue Profits

749.19 262.91 131.12 23337.19 22193.57

As expected, the rapid fluctuations in arrival rates have indeed deteriorated results to
a point where the optimal static allocation yielded higher profits with much higher cus-
tomer satisfaction. As shown by the allocation distribution below, the rapid switching
resulted in high switching costs which were probably the main cause of the high penalty
payout. We begin to see characteristics of the predictive planning policy and the advan-
tages of having the threshold in place. Even without the threshold, this policy performed
better than both predictive policy, yielding a 10-15% increase in profits. There is a good
chance that if the predictive planning policy which uses the threshold used a better predic-
tive mechanism, it would perform much better than this policy which knows about future
arrivals!

(a) Allocation (b) Penalty Distribution

Figure 6.48: Predictive Planning Policy (Future Known) Results

84

6.5.7 Evaluation of Simulation 5

Figure 6.49: Simulation 5: Profits for all policies

This is perhaps the most interesting simulation out of the 5. Again we see the effects of
having large differences between arrival rates, where each policy finishes serving the 30
000 customers at different times and large differences in profits between the policies. To
our surprise, this is the first simulation which used transient arrival streams, where the
optimal static policy performed better than the predictive policy (future known), in both
profits and customer satisfaction. This is an indication that a good predictive mechanism
is not all that is necessary to yield maximum results and that other factors should be used
(such as thresholds).

This simulation is the final test to prove that policies which use only local information
are inadequate under transient arrival streams, with their performance deteriorating with
more rapid transitions and large differences in arrival rates.

The predictive policies on the other hand, have both performed relatively well in terms
of profits, but the predictive planning policy has fallen short with respect to customer sat-
isfaction. This simulation has proved that using the appropriate threshold is key to higher
profits and higher customer satisfaction. In combination with an improved predictive
mechanism, there is a good chance it could out-perform all other policies.

85

Chapter 7

Policy Evaluation

7.1 Static Policy

The optimal static policy has, surprisingly, yielded the most profits in all 5 simulations
(excluding the predictive policy which knows future arrival streams). However, for tran-
sient arrival streams, this comes at the cost of high customer dissatisfaction. If switching
costs were lower, it is most likely this policy would not yield the highest profits. Further-
more, as shown from 3 different static allocations in each simulation, getting the optimal
static allocation is very difficult and unpredictable, with significant differences between
each allocation. For example, assigning 1 server less than the optimal static allocation,
usually leads to 10 times the penalty costs! These negative effects increase as the arrival
stream fluctuates more in magnitude and rate.

Figure 7.1: SWOT Analysis of Static Policy

86

7.2 Utilization Based Policy

From a service provider’s point of view, this dynamic policy has proved to be the worst in
all 5 simulations, especially in the simulations which used transient arrival streams. The
fluctuating utilization led to rapid switching costs, with unnecessarily high allocations at
times. This was to be expected from this policy since utilization ignores important factors
such as customer class and financial costs. On a positive note, this high allocation led to
full customer satisfaction. Note that Amazon’s Auto-Scale feature which uses this tech-
nique depends on the customer deciding thresholds and uses a different financial model
we do.

Figure 7.2: SWOT Analysis of Utilization Based Policy

87

7.3 State Evaluation Policy

This policy performed the best out of the 2 policies which used only local information.
This was to be expected since the information the state evaluation policy uses to make
decisions is directly affected by customer classes and financial parameters. Although
having performed relatively well and surpassing the predictive planning policy profits
under a stable arrival stream, under a transient arrival stream it did not do as well. Profits
decrease significantly under the transient arrival stream due to the lack of considering the
future arrivals and adapting the system accordingly. The decisions made are therefore
inadequate to cope with a system with transient arrivals resulting in low profits and
customer satisfaction.

Figure 7.3: SWOT Analysis of State Evaluation Policy

88

7.4 Predictive Planning Policy

Regardless of stable or transient arrival stream, this policy has proved that, given a large
enough window, it will provide consistent results. In simulations 2 and 4 which change ar-
rival rates approximately every 1000 customer arrivals, the policy provided high customer
satisfaction, with acceptable profits, with the obvious disadvantage of rapid switching
costs. However, simulations 3 and 5 have indicated that this policy’s results will deteri-
orate significantly if state changes are made more often. These rapid changes result in
huge penalties being paid which, in combination with the high switching costs, yield low
profits. In addition, simulation 5 showed that it is possible for the predictive mechanism
to make wrong decisions and lead to wrong allocations. In comparison to its counterpart
which knows about future arrivals, it provides significantly lower profits. These properties
dismiss this policy as a reliable policy which would be used in a realistic setting.

Figure 7.4: SWOT Analysis of Predictive Planning Policy

89

7.5 Predictive Planning Policy (with Threshold)

This policy essentially improves on the previous policy by eliminating all its flaws. Out of
the dynamic allocation policies, it has yielded the most profits and the highest customer
satisfaction, in all five simulations. Results are comparable to its counterpart which knows
future arrivals, with only a 2% difference in profits on average. Furthermore, the profits
earned are quite close to the optimal static allocation’s profits (typically in the range of
3% − 5%), but with much higher customer satisfaction. These are indications that this
policy, if improved upon or if switching costs were less, could surpass the profits and
customer satisfaction of all the other policies, including its counterpart which knows the
future arrivals. In fact, this potential was clearly shown in simulation 5 which used rapidly
fluctuating transient arrivals with big differences in rate parameters which closed the gap
between these 2 policies.

Similarly to the policy without the threshold, given a window size greater than 20,
the policy yields stable results, however, further investigation is required to determine an
optimal level to set the threshold. Simulations 4 and 5, which investigate the effects of
different thresholds more deeply, indicate that the higher the threshold, the higher the
profits and the customer satisfaction (due to higher allocations).

Figure 6.29c indicates a flaw with the predictive mechanism. As already explained
in the evaluation of simulation 3, this is most probably due to the predictive mechanism
‘thinking’ that a large batch of customers are going to arrive, and the system reacting to
this prediction by increasing the number of active servers.

Figure 7.5: SWOT Analysis of Predictive Planning Policy (with Threshold)

90

Chapter 8

Conclusion

The project (a) extends the JINQS library to support our needs for a dynamic queueing
system and (b) examines, through the use of simulations, different dynamic allocation
policies under transient arrival streams. Through a series of different simulations we have
demonstrated that the decisions made by policies are highly dependent on the information
available to the policy as well as the financial parameters of the contractual obligations
between clients and the provider.

The JINQS framework has been extended in many different aspects to meet our mod-
elling needs and allows for maximum flexibility and usability without sacrificing extensi-
bility. The user interface and graphical representation of results allow for the user run
simulations easily and to observe results in a reliable and efficient manner. The ‘Network
Simulation’ feature allows simulations to run in a distributed setting and relaxes a few
assumptions. This feature could be extended for more realistic testing. Error messaging
and validation of user input has also been taken into consideration to help the user when
running simulations.

The policies proposed and examined have provided evidence that future planning, al-
though difficult under transient arrivals due to its unpredictable nature, is key to ensuring
maximization of profits and customer satisfaction. Policies involving only local system
information have been deemed unreliable and far from optimal under our model, but have
room for improvement. The two prediction based policies performed well under both
stable and transient arrival streams, however, the threshold policy proved its superiority
throughout our tests. The policy was compared against its counterpart which has knowl-
edge of the future arrivals to confirm it makes decisions sufficiently well, such that profits
are within an acceptable sub-optimal range. In addition, simulations have shown that an
improvement in the predictive mechanism behind the policy could improve results even
more and (according to simulation 5) could out-perform it counterpart which know the
future arrival stream!

Future Work

The project can be changed in many aspects to be improved for realism and sets the
ground for future improvement of the various different policies. It would be interesting to
investigate the following:

• Relax the model assumptions to allow for more realism. For example, the ‘Network

91

Simulations’ feature could be implemented in such a way that network delays are
taken into consideration. However, such an extension would require an extensive
restructuring of the JINQS foundations.

• Examine optimal levels of the financial variables of the system such as SLAs for each
class and system costs. [19] is a good reference on what to consider when attempting
such a task.

• Use contractual obligations as the basis of the agreement but further allow users to
‘buy’ their way into the class queue by paying more money. [2] describes the optimal
payment strategy for such a system.

• Policies can be improved in various aspects. For example, one can determine optimal
threshold and window size values for the threshold policy. In addition, one could
also improve the prediction mechanisms to make better decisions. Furthermore,
optimizing the policies to run faster through use of better admissible heuristics or
by caching results could also be beneficial.

• It would be interesting to see the performance of the dynamic allocation algorithms
under a series of different inter-connected queues and servers.

All the above are worth-while tasks to take on. However, it may be in the best interest of
the person who will take on any task to investigate realistic financial values of such systems
(our SLA values were taken from Amazon’s EC2 but switching and running costs were
estimated) as they directly affect decisions, profits and hence optimality. Furthermore,
it would be interesting to use a simulated system which uses real jobs such as image
processing or intense calculations such as distributed large matrix multiplication.

92

Bibliography

[1] J. Slegers, I. Mitrani, and N. Thomas, “Evaluating the optimal server allocation
policy for clusters with on/off sources,” Perform. Eval., vol. 66, no. 8, pp. 453–467,
2009.

[2] N. Chee-Hock and S. Boon-Hee, Queueing Modelling Fundamentals With Applications
in Communication Networks. John Wiley & Sons, Ltd, 2008.

[3] W. L. Winston, Operations Research: Applications and Algorithms. Curt Hinrichs,
2004.

[4] “Amazon EC2.” http://aws.amazon.com/ec2/.

[5] P. N. Daniel A. Menasce, “Understanding Cloud Computing: Experimentation and
Capacity Planning,” in Proc. 2009 Computer Measurement Group Conf., (FairFax
VA, USA), 2009.

[6] J. Palmer, I. Mitrani, M. Mazzucco, P. McKee, and M. Fisher, “Optimizing Revenue:
Service Provisioning Systems with QoS Contracts,” in ICE-B, pp. 187–191, 2007.

[7] M. Mazzucco, I. Mitrani, J. Palmer, M. Fisher, and P. McKee, “Web Service Host-
ing and Revenue Maximization,” in ECOWS ’07: Proceedings of the Fifth European
Conference on Web Services, 2007.

[8] A. Kiren, “Dynamic Resource Allocation in Queueing Networks Simulation and Ex-
perimentation Framework,” Master’s thesis, Imperial College London, 2009.

[9] L. I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems.
John Wiley & Sons, 1999.

[10] M. N. Bennani and D. A. Menasce, “Resource Allocation for Autonomic Data Centers
using Analytic Performance Models,” in ICAC ’05: Proceedings of the Second Inter-
national Conference on Automatic Computing, (Washington, DC, USA), pp. 229–240,
IEEE Computer Society, 2005.

[11] D. A. Menasce and E. Casalicchio, “A Framework for Resource Allocation in Grid
Computing,” in MASCOTS ’04: Proceedings of the The IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, (Washington, DC, USA), pp. 259–267,
IEEE Computer Society, 2004.

[12] M. A. Kaboudan, “A dynamic-server queuing simulation,” Comput. Oper. Res.,
vol. 25, no. 6, pp. 431–439, 1998.

93

[13] B. Ciciani, A. Santoro, and P. Romano, “Approximate Analytical Models for Net-
worked Servers Subject to MMPP Arrival Processes,” Network Computing and Ap-
plications, IEEE International Symposium on Network Computing and Applications,
vol. 0, pp. 25–32, 2007.

[14] D. Gross and C. M. Harris, Fundamentals of Queueing Theory. John Wiley & Sons,
1998.

[15] P. S. Steven L. Scott, “The Markov Modulated Poisson Process and Markov Poisson
Cascade with Applications to Web Traffic Modeling,” 2003.

[16] W. Fischer and K. Meier-Hellstern, “The Markov-modulated Poisson process
(MMPP) cookbook,” Perform. Eval., vol. 18, no. 2, pp. 149–171, 1993.

[17] S. W. M. Au-Yeung, Response Times in Healthcare Systems. PhD thesis, Imperial
College London, January 2008.

[18] L. Kleinrock, Queueing Systems Volume II: Computer Applications. John Wiley &
Sons, 1976.

[19] D. A. Menasce and E. Casalicchio, “Quality of Service Aspects and Metrics in Grid
Computing,” 2004.

[20] “MATLAB.” http://www.mathworks.com/.

[21] “simul8.” http://www.simul8.com/.

[22] T. Field, “JINQS: An extensible library for simulating multiclass queueing networks,”
2006.

[23] T. Field and J. Bradley, “Simulation and modelling (lecture notes),”

[24] “JFreeChart.” http://www.jfree.org/jfreechart/.

94

Appendix

Figure 8.1: Local Simulation Options

Figure 8.2: Network Simulation Server Options

95

Figure 8.3: Network Simulation Customer Options

Figure 8.4: Results Tab

96

