
Imperial College London
Department of Computing

Determining Game Quality
Through UCT Tree Shape Analysis

by

Gareth M. J. Williams

Submitted in partial fulfilment of the requirements
for the MSc Degree in Computing Science of Imperial College London

September 2010

Abstract

Upper Confidence Bounds for Trees (UCT) is an important new algorithm for tree
searching that has shown itself to be very powerful. For example, in 2009, the Fuego
software beat strong professional and amateur Go players by incorporating UCT and

pattern recognition a feat which was previously thought to remain decades away.
UCT has given rise to new fields of research such as Monte Carlo Tree Search.

The hypothesis of this project is that there is a machine learnable relationship
between the shape of UCT search trees for a variety of games their quality – how

engaging the games are to humans.

A statistically significant positive result was identified, representing a machine
learning system that may be of great use when helping to classify

automatically-generated board games in the future.

2

Acknowledgements

I would like to offer my thanks to the following:

My supervisor, Dr Simon Colton, for his continued time, energy and support during
this project.

Dr Cameron Browne, for helping me to understand the UCT algorithm and for
providing the inspiration for this research.

My second marker and personal tutor, Dr William Knottenbelt, for his constant
energy and generosity with his time, and whose superb Introduction to C++ course

laid the foundation for what has been a great masters.

My parents, Andy and Jan, for their continued love and support through hard and
good times. I could not have done any of it without you.

My brother David, for cooking me a seemingly endless supply of gourmet food during
the last year, and especially for his pièce de resistance – the power meal.

All my friends here on the course at Imperial College. You’ve made it a really special
year.

3

Contents

1 Introduction 6

1.1 Chapter summary . 7

2 Background 9

2.1 Tree search . 11

2.2 UCT . 14

2.2.1 Monte-Carlo Tree Search . 15

2.3 Game quality . 20

2.4 Tree metrics . 23

2.4.1 Branching factor . 23

2.4.2 Tree depth . 23

2.4.3 Asymmetry . 24

2.5 Machine Learning . 26

2.5.1 Finding a system which generalises well 26

2.5.2 Avoiding overfitting . 27

2.5.3 Measuring performance . 28

2.5.4 Balancing recall for playable and unplayable games 31

3 Implementation 33

3.1 UCT Algorithm . 33

3.2 Games to be analysed . 37

3.3 Defining unplayable games . 41

3.4 Data extraction . 44

3.4.1 Statistics used to quantify UCT tree shape 44

3.5 Data analysis . 46

3.5.1 Identifying a best network shape 47

3.5.2 Identifying most relevant UCT tree features 47

4 Results 49

4.1 Examples of UCT trees . 49

4.2 Game quality prediction with neural networks 52

4.3 Game playability prediction . 52

4

5 Evaluation 56

5.1 Statistical significance of results . 56

5.1.1 Game quality . 56

5.1.2 Game playability . 56

5.2 Reasoning used by the decision trees . 57

5.3 Preferred method for predicting game playability 64

5.4 Areas for improvement . 66

5.4.1 Sample sizes . 66

5.4.2 Failings of UCT . 68

6 Further work 72

6.1 Confirmation of results . 72

6.2 Understanding the most used UCT tree features 72

6.3 A stronger, more sensible UCT algorithm 73

6.3.1 Reduction in branching factor . 77

6.3.2 Trade-offs . 78

7 Conclusion 79

A List of games coded 82

B Features used to describe UCT trees 86

C Cross-validation results 88

5

Chapter 1

Introduction

Leibniz once said “human beings are never more ingenious than in the invention of
games”. We play games in a myriad of forms: games of skill and games of chance, games
of logical reasoning, memory games, observation games, creative games. Sometimes we
play them for the thrill of victory, at others we play them for sheer entertainment.
Games are have been ingrained in our culture for millenia. In many ways it is our
playing of games that makes us human.

Board games have existed for thousands of years. Examples of board games have
been found buried in Egyptian tombs, dating as far back as 3500 B.C[1]. They retain
their appeal today: despite the rise of computer games, many more people play board
games than video games on a daily basis, even in Western cultures such as the U.S.A.[2].
Within board games, there are several sub-categories, including race games (such as
Backgammon), war games (such as Risk), word games (such as Scrabble), roll-and-move
games (such as Monopoly) and many more.

This thesis is concerned in particular with abstract strategy board games. These
are games which are abstract in the sense that they have no particular theme (or that
any theme they have is not of importance to their gameplay). It is likely that themes
associated with any popular board game will dissolve over time, as players focus more
and more on the abstract game rules and dynamics rather than their historical or
cultural importance. Many of the oldest games we see today – such as Go, Chess and
Oware – are highly abstract, but retain loose thematic links to their origins.

Abstracting games has allowed human players to ignore their decorations and focus
on their gameplay. It has also allowed a great deal of academic study of games to take
place, starting with the work of Neumann in the 1920s and 1930s. Since then game
theory has blossomed into a huge field that has influenced other areas from biology to
political science.

Game theory first really took hold as a field at around the same time as the first
modern computers were being developed. This led to the birth of computataional game
theory, focusing on compuational and algorithmic issues associated with playing games.
In 1958, the NSS chess program became the first to implement alpha-beta pruning of
its search tree. Theoretical advances combined with rapidly growing processor speeds
led to huge leaps in this area in the late 20th century, culminating in the defeat of
Garry Kasparov by the IBM supercomputer Deep Blue in 1997. This chess match was
watched by millions of chess fans around the world and signalled the end of human
superiority over chess computers. The strongest chess computers are now considerably
above the level achieved by even top grandmasters.

Without the intuition that guides humans, computers inevitably have to search
through a tree of [state, action] pairs to make intelligent decisions. AI players search
systematically through a tree of possible future states of play to decide which move

6

to play next. And despite their superiority in chess, computers still struggle with
some games where this tree grows too quickly for them to make accurate analysis in
reasonable time. Go is an example of such a game. Since the Deep Blue match in
1997, Go has taken over as the frontier of computer game-players. Despite its simple
rules, its huge number of possible game continuations makes it very hard for computer
players to play.

Upper Confidence Bounds for Trees (UCT) is a simple yet powerful new tree search
algorithm which was developed only 4 years ago[3], which has shown itself to be very
powerful. In August 2009, the Fuego software beat both strong professional and ama-
teur Go players in games played at the 2009 IEEE International Conference on Fuzzy
Systems by incorporating UCT and pattern recognition[4] – a feat which was previ-
ously thought to remain decades away. The success of the algorithm is not limited to
the game of Go: the UCT-based CadiaPlayer software won the 2007 and 2008 AAAI
General Game Playing competitions[5], where game-playing algorithms must do battle
across a selection of games which are not revealed until the tournament begins. UCT
can play a wide selection of games successfully because its algorithm does not require
any prior knowledge or heuristics.

An intruiging aspect of the UCT algorithm is that its search trees exhibit asym-
metry, a feature not present in classical tree search algorithms such as breadth-first
search. This asymmetry emerges from the selective way in which UCT samples actions
– it focuses its investigations on moves which look strong; sometimes it re-checks moves
which look less promising in case their value estimate is erroneous. Each UCT tree has
a unique shape defined by the current game situation.

Over the last few decades computers have been widely used for playing board games,
but until recently they have never been used for creating board games. However, this
area of research has been addressed by Browne[6], who, in his PhD thesis, also showed
that board game quality may be assessed through self-play by a computer player.
The fact that UCT tree shapes are depend uniquely on the different games and game
positions it is presented with leads to the intruiging possibility that there is a link
between this UCT tree shape and game quality.

The main hypothesis of this research can be stated as follows:

A machine learner trained on statistics from UCT trees from of a variety of
board games can accurately predict the quality of a new game it is presented
with – that is, how interesting the game is to human players.

If such a link can be shown to exist, it may contribute to the creation of computer-
generated board games in the future: a machine learner could separate games likely to
be good from those likely to be bad. Under the assumption that most automatically-
generated board games will be unplayable, it would be useful to find a machine learner
simply capable of differentiating between playable and unplayable games. So a second
hypothesis to be investigated was:

Machine learners trained on UCT tree data can accurately predict whether
a new game is playable or not.

1.1 Chapter summary

The chapters of this report are set out as follows:

7

Chapter 2: Background

This chapter covers some foundational material which will be referred to through-
out this thesis. It describes the basic concepts of tree search, then moves on to
discussing advances in this field and the definition of the UCT algorithm. It then
covers concepts of game quality and the tree metrics which can be used to sum-
marise the shape of trees. Finally, it gives some background on machine learning
systems, which will be used to try to identify a link between tree shape and game
quality.

Chapter 3: Implementation

This chapter covers the implementation necessary to complete the research. It
discusses the implementation of the UCT algorithm itself, and of the games pro-
grammed for the algorithm to play. It also covers the creation of unplayable
games, which would be used for addressing the second hypothesis. The means
of extracting and aggregating data for the machine learning systems is covered.
Finally, the approach to carrying out the training and testing of the machine
learing techniques is described.

Chapter 4: Results

This chapter covers the results of the research, showing some of the UCT search
trees created and the tables and charts relating to the performance of the machine
learning systems. It reveals that there is one [data collection and aggregation,
machine learning system] combination which performs extremely well on the task
of predicting game playability.

Chapter 5: Evaluation

This chapter analyses the results from Chapter 4 from a statistical standpoint,
to establish their significance. The preferred UCT data collection method and
machine learning system combination is discussed in the context of predicting the
quality of automatically-generated board games. The chapter then discusses the
main features of the UCT trees used by the machine learning systems to make
their predictions, and why these features proved relevant to game quality. Finally,
areas for improvement are covered, including discussion of the reasons why even
a strong UCT algorithm falls down when playing some games.

Chapter 6: Further work

This chapter discusses how future work could be used to confirm the findings
of this research and address some of the areas for improvements mentioned in
chapter 5. It then discusses how a major re-engineering of the UCT algorithm
might lead to a stronger UCT player, less likely to succumb to the problems with
some games brought up in Chapter 5. This stronger player would also be likely
to created search trees with a stronger link to quality/playability.

Chapter 7: Conlusion

This chapter summarises the rest of the thesis and summarises the major findings.

8

Chapter 2

Background

While there are a huge variety of different board games in existence all over the world,
many of them share similar “landscapes”. For example, Chess and Connect4 are very
different games, but they both take place by means of a game board, which has an ar-
rangement of pieces on it, and players take turns to play. Both have winning conditions
which are related to the arrangement of pieces on the board. By finding abstractions
which iron out the differences between games and build on the similarities, academics
can study them in a general way.

This project will focus on turn-based two-player abstract strategy board games.
At any moment a game of this type is in a particular state – this state encapsulates
the combination of the arrangement of pieces on the board, the player to play next,
and other variables which change throughout the course of the game (such as a score
or the amount of time each player has remaining). In each state, a player takes an
action (makes a move) which changes the game state – this usually involves changing
the arrangement of pieces on the board, and passing the turn to the other player.

So a turn-based two-player game can be abstracted in this way: into states, and
actions which bring about changes in state.

Let us use the game of Noughts & Crosses as a concrete example. Let us label our
two players Max and Min, with Max to play first. The state of the game on Max’s first
move is simply an empty board (see figure 2.1). For his move, he can place a nought
anywhere he likes, so he has 9 available actions. Each action leaves the board in a
different state, so there are 9 possible states of the game after one ply (when Min is
about to take his first move, see figure 2.2)1. For each of these possible states, there
are 8 possible replies.

So from one initial state, there are 9 possible states of the board after 1 ply, and
several more possible states after 2 plies (see figure 2.3). We can think of this growth
from one current state to many possible future states as a tree. The current state
sits at the root, with possible future states connected to it via branches. Each branch
represents an action which brings about a change from one state to another.

Figure 2.1: An example of how a tree is used to represent possible game continuations.
The root of the tree here is the initial position of a Noughts & Crosses game.

1ignoring symmetries

9

Figure 2.2: Looking one move ahead, the tree has “grown”: there are 9 possible game
states.

Figure 2.3: Looking two moves ahead, the tree continues to grow: there several more
possible game states.

Artificial intelligence calls these structures search trees. In playing a game strate-
gically, humans intuitively search through these potential future states of play as they
decide which move to make. Computers, too, plan and calculate the best moves to
play by analysing these search trees. As stated in the introduction, this paper aims to
find a link between the shape of search trees created by the UCT algorithm and game
quality – how interesting and engaging a game is to human players.

From an abstract perspective, trees can be thought of as simply a collection of
vertices, connected by edges. This abstract approach allows mathematicians to study
trees and understand their properties in a general way. Below are some preliminary
definitions relating to trees. A reader familiar with the basics of tree theory can move
onto the section 2.1, which discusses tree search in general, before the introduction of
the UCT tree search algorithm in section 2.2.

Definition 1. Graph

A graph is a collection of vertices, V , and edges, E. Each edge is an ordered pair
of vertices (v1, v2), and defines a link between the vertices.

Figure 2.4: An example of a graph.

Definition 2. Path

Let P be an ordered subset of the edges E of a graph, and let pi be the edges in P ,
for i = 1...n. Let v1(pi) and v2(pi) be the vertices of edge pi.

P is a path from vertex V1 to V2 if all of the following hold:

v1(p1) = V1

v2(pi) = v1(pi+1) for i = 1...n− 1
v2(pn) = V2

10

Definition 3. Cycle

Let C be a path in a graph, and let ci for i = 1...n be the edges in C.

Then C is a cycle if v1(c1) = v2(cn).

Definition 4. Connected

A graph G is connected if for any pair of vertices V1 and V2 in G, a path exists
between V1 and V2.

Definition 5. Tree

A tree is a connected graph without cycles.

Figure 2.5: An example of a tree. Throughout this paper trees will be drawn with their
root node at the top.

2.1 Tree search

Tree search can be considered a special case of Markov Decision Process (MDP), which
in turn is an extension of a Markov Process. A Markov Process is one where an agent
moves randomly from one state to the next, and the probability of moving from a
current state s to a next state s′ depends only on s (not on any previous states that
might have been encountered in the process of reaching s).

An MDP is similar to a Markov Process, but for each current state s, the agent
has a selection of actions available – hence the “decision”. The choice of action affects
the probability distribution of the next state. Thus, for an MDP, the next state s is
decided by a probability distribution which depends only on the current state s and
the chosen action a. MDPs may also associate a reward with each transition from one
state to another. This reward may be deterministic or have a probability distribution
– but it too will only depend on s and a.

Definition 6. Markov Decision Process

A Markov decision process M on a set of states S and with actions {a1, ..., ak}
consists of:

• Transition probabilities: For each state-action pair (s, a), a next-state distribution
Psa(s′) that specifies the probability of transition to each state s′ upon execution
of action a from state s.

• Reward probabilities: For each state-action pair (s, a), a distribution Rsa(r) on
real-valued rewards r for executing action a from state s.

Markov Decision Processes define many commonly encountered decision and plan-
ning situations, including games. Imagine playing a game of chess. The likelihood of
facing a given board position in one turn’s time is dependent on the current board

11

position (the current state of the MDP, s), and the move made in this position (the
action chosen, a). There is no explicit reward when a move is played, but if winning
the game is the eventual goal, then there is an implicit reward associated with playing
a strong move, since it leaves the game in a state which is more likely to lead to a win.

Theoretically, the best action to take in a given MDP can be calculated from the
probability distributions for each (state, action) pair. Imagine that you were playing a
game of chess against a computer chess player, and knew the probabilities associated
with each of its possible replies in every board position. With enough processing power,
you could take the current board position and use your knowledge of the computer
player to calculate your best possible move. At time t, in state st, by analysing each
possible move a you could work out the probability of being presented with any board
position at time t + 1. Continuing this process, you could calculate the likelihood of
being in any given position for all time steps. You could then make a simple (albeit
monumentally huge) calculation to work out which action maximises your expected
payoff or minimum payoff.

However, in practice, this is rarely possible. For one thing, large state spaces and
limited computing power mean that even if the exact probabilities associated with an
MDP were known, the time required to make such a calculation would be too large.
Further, in many situations these probabilities are not known.

One approach to this problem is to use a generative model. Although the agent
facing an MDP may not know the MDP’s probability distributions, a generative model
allows the agent to obtain samples from these distributions. By sampling from the
generative model repeatedly, the agent can build up a picture of the likelihood of each
future game state.

Let us use the analogy of playing a game of chess against a computer chess player
again – imagine you are faced with the task of making a move against the computer
in a given position. Using a generative model is like having a second copy of the chess
program on a separate computer. You can turn to this second computer and play each
available move several times, each time recording the computer’s reply. While you
may not know the exact probability distributions of the chess program, this repeated
sampling approach allows you to build up a more and more accurate picture of what
the true probability distributions might be. Finally, when you have enough information
about the computer’s possible replies to each of your moves, you can work out what
your best move is, go back to the main game, and make a move accordingly.

Definition 7. Generative model

A generative model for a Markov Decision Process M is a randomized algorithm
that, on input of a state-action pair (s, a), outputs a state s′ and a reward r, where s′

and r are randomly drawn according to the transition probabilities Psa(s′) and Rsa(r)
respectively.

Definition 8. Policy

A (stochastic) policy is any mapping π : S → {a1, ..., ak}. Thus π(s) may be a
random variable, but depends only on the current state s.

The above definition of a policy is perfectly natural – given any state s in S, a
policy returns an action to play in state s.

Thus a policy can be executed from any game state, and, allowing for replies deter-
mined by the probability distributions of the MDP, future game states, until the game
reaches an end. The expected reward of executing a policy π from a game state s until
the game ends is called the value function of the policy from state s. It is calculated
by simply taking the expectation (over all randomisation in the policy) of the future
rewards of playing this policy.

12

Definition 9. Discount rate

The discount rate γ for an MDP is a factor by which rewards at time step t+ 1 are
worth less than rewards at time step t.

Definition 10. Value function

The value function Vπ for any policy π is defined as:

Vπ(s) = E

[∞∑
i=1

γi−1ri | s, π

]

where ri is the reward received on the ith step of executing the policy π from state
s, γ is the discount rate of future rewards, and the expectation is over the transition
probabilities of the MDP and any randomization in π.

In the context of a game, γ is usually taken to be 1 (a win in two turn’s time is
as good as a win in one turn’s time). The rewards ri are only non-zero when playing
a move which wins (r = 1) or loses (r = −1) the game. The value function is the
expected reward of playing policy π until the game’s conclusion – an estimate of how
likely policy π is to eventually lead to a win or loss. Vπ = −1 indicates that a policy π
will inevitably lead to a loss; Vπ = 1 indicates that policy π will with certainty lead to
a win.

Definition 11. Optimal value function

We define the optimal value function and the optimal Q-function as

V ∗(s) = sup
π
Vπ(s)

So V ∗(s) is the maximum expected reward attainable starting from a game state
s. A natural measure of the quality of a policy is how close it gets to attaining this
maximum reward – the “regret” of the policy.

Definition 12. Regret

The regret of a policy π is defined as:

|V ∗(s)− Vπ(s)|

So regret of a policy π is the expected loss as a result of playing π instead of the
best policy.

Kearns et al.[7] have shown that for any ε > 0, a sparse sampling algorithm exists
which can find a policy whose regret is less than ε. Sparse sampling means that the
algorithm works in an online manner - it does not need to have any overall knowledge
of the whole state space S. It works from the current state, sampling actions and using
a generative model to calculate the rewards for these actions.

Kearns’ algorithm works as follows: based on the desired accuracy ε, it calculates a
required number of calls to the generative model per state, C, and a lookahead depth,
H. Given a starting state s, each available action a is attempted C times. By using
the generative model, this gives C successor states for each action a. This process
is repeated for each successor state, trying each available action C times, up to a
maximum depth of H.

The value of an action state s is estimated to be the maximum value of the actions
available from s, and the value estimate of an action a is its reward plus the average
value of each state returned by the generative model when a is played. Essentially,

13

this is just a minimax search of the search space – the only special feature is that a
generative model is used to gauge the likely replies from the MDP.

Kearns et al.’s research showed that sparse sampling could lead to accurate value
estimation in a search space too large to be solved by classical methods, as is the case
with most playable games. UCT draws upon the same sparse sampling technique,
but uses a selection algorithm to decide which moves to sample at each point in its
execution.

2.2 UCT

Upper Confidence Bounds for Trees (UCT) is an important new algorithm for tree
searching that has shown itself to be very powerful. It was first described in a paper
called “Bandit-based Monte-Carlo Planning” published by Levente Kocsis and Csaba
Szepesvári, in 2006[3]. Their algorithm is based on Kearns et al.’s work, in that it
uses sparse lookahead sampling to calculate a near-optimal policy. However, instead of
using a breadth-first approach (sampling each action exactly C times, up to depth H),
UCT samples actions selectively, slowly expanding its search tree as it does so.

The challenge of finding the best move in a state s boils down to accurately esti-
mating the value function for each available action a. A good algorithm for playing a
game is one that can estimate the true value of each available action (move) accurately
in a reasonable amount of time. This estimation is done by making several calls to the
generative model in order to build up an accurate picture of the likely payoff of each
action a. Testing a given action more times will result in a more accurate estimate, but
how many times should each action be sampled? Kocsis and Szepesvári express this
issue very succinctly:

“In order to achieve [accurate estimation], an efficient algorithm must bal-
ance between testing alternatives that look currently the best so as to obtain
precise estimates, and the exploration of currently suboptimal looking al-
ternatives, so as to ensure that no good alternatives are missed because of
early estimation errors.”

Finding the right balance in this situation is known as the exploration-exploitation
dilemma. It is instructive to consider research on the most basic form of this dilemma,
which occurs in multi-armed bandit problems.

Multi-armed bandit problems suppose that a gambler is presented with K one-
armed bandits, each with its own payoff distribution. So some machines might be
more profitable than others, but initially the gambler has no way of knowing which
machines these are. The gambler is given the opportunity to play the bandits a given
number of times, choosing a different machine on each play if desired, and must find the
best policy to maximise their winnings. Auer, Cesa-Bianchi, and Fischer[8] proposed
playing a strategy which initially plays each machine once, then plays the machine j
which maximises the quantity

Xj +

√
2 ln(n)
nj

(2.1)

where Xj is the average observed payout so far from machine j and nj is the number
of times machine j has been played. Note that formula (2.1) can also be expressed as

Xj + cn,nj (2.2)

14

where cn,nj =

√
2 ln(n)
nj

The second term cn,nj is known as a bias term. Note that for a machine j which is
not played often, as n increases but nj remains small, the bias term grows. Thus after
a certain number of plays, even a machine with a very low expected payoff value will
have a large bias term, and so will be played once more. It is this bias term, therefore,
that defines how the algorithm balances exploitation (of machines which currently look
good) and exploration (of currently poor-looking machines). It is also sometimes called
the exploration term for this very reason. Auer et al. referred to this strategy as “Upper
Confidence Bounds”, or simply UCB.

This strategy is actually adopting a very human approach: play each machine once,
then keep playing the machine that has, on average, given you the best payout so far
– but from time to time try a machine you have not played for a long time, in case
this machine is actually the best one. Auer et al. showed that their strategy has
regret which is O(lnn) as n→∞. This is clearly a powerful strategy, and Kocsis and
Szepesvári found a way to adapt it to tree search.

As mentioned above, UCT samples actions in its search tree selectively. When
presented with a node, it first attempts each available action once, then chooses to
sample action a that maximises the quantity

Qt(s, a, d) + cNs,d(t),Ns,a,d(t) (2.3)

where

Qt(s, a, d) is the estimated value of action a in state s at depth d at time t;

Ns,d(t) is the number of times state s has been visited at depth d up to time t;

Ns,a,d(t) is the number of times action a has been chosen in state s at depth d up
to time t;

and

ct,s = Cp

√
2 ln(t)
s

with Cp a constant

Note the similarity between equations (2.2) and (2.3). The algorithms are intimately
connected. The current estimate of a node’s value, Qt(s, a, d), is equivalent to the
average payout so far from a bandit, Xj . The bias terms are also very similar, up to
a multiplicative constant. UCT is effectively using the UCB algorithm at each node in
its search tree to choose which action to sample next.

2.2.1 Monte-Carlo Tree Search

One question remains: how does UCT place an estimated value upon each node in its
search tree? When playing a game, there is no explicit reward in moving from one
state to another; only finally winning or losing the game provides a definitive reward
in this sense. So any value estimates will not come about as a result of specific rewards
associated with making moves, but from rewards propagated back up the search tree
from nodes representing terminal positions (won, lost or drawn positions).

But to keep track of all sampled moves continuously until a game terminates would
be hugely impractical. The end of the sample game might not occur for 50 moves or
more. As shown by Kearns et al., accurate estimation of the best move to play in the

15

current game state can be determined by sampling only near-future actions, so this is
where UCT should be focusing its efforts.

UCT’s approach to this problem is to make a Monte-Carlo simulation every time
it reaches the edge of its current search tree. When it reaches a leaf node, it plays a
completely random playout of the rest of the game from the position represented by
the leaf node. The result of this game is recorded, and propagated back up the tree
along the path back to the root node. Each node keeps track of the number of times it
has been visited, and its score (the total payoff of each playout game associated with
it). The fraction score

visits is used as the Q-value referred to in the formula 2.3.

This technique of performing random playouts as part of value function estimation
is now known as Monte-Carlo Tree Search. It first appeared with the advent of the
UCT algorithm, and has now spawned its own area of research. Used on their own,
these Monte Carlo simulations would simply be an indication of how likely a given
position is to lead to a win with random play. However, with the slow expansion of its
search tree, recording of score and visit counts, and use of the UCB formula to select
which moves to sample next, UCT builds up a more and more accurate estimation of
the value of near-future moves – allowing it to act intelligently in the current board
situation.

So UCT samples actions according to its current estimation of the payoff for those
actions. If an action a available in a state s in the search tree currently looks to be
strong (has a high current Q value), it will be sampled often when the algorithm reaches
state s in the future. However, it will also from time to time sample moves which do
not currently look strong, in an effort to ensure that its current value estimation for
these moves is correct.

This is a very human approach. A human playing chess will rarely spend any
time considering a move which results in him losing his queen after 2 plies with no
compensation. The immediate detrimental effect of being a queen down means that
the move simply does not warrant further investigation to 4, 6 or more plies. The
UCT algorithm would also be unlikely to investigate this move deeply, since the early
estimation of the move’s value is likely be very low.

Another interesting feature of the tree searches made by UCT is that they are
asymmetrical. This asymmetry is related to its intelligent sampling method. Actions
with high payoff values will be sampled often, and hence will likely be at the top of
large, deep sub-trees. Actions with low payoff values will be sampled rarely, so will
link to far smaller sub-trees. Longer-established search algorithms such as iterative
deepening simply sample all actions and return a search tree that is featureless – these
trees simply sample each move available in each position, up to a certain depth. UCT,
on the other hand, returns search trees that are asymmetrical and uniquely related to
the exact game situation being searched.

This paper aims to answer the question: can the shape of UCT trees somehow be
linked to the quality of the game being played? If this question is to be addressed, two
important issues present themselves – how to judge the quality of a game, and how to
encapsulate the shape of a UCT tree. These issues are discussed further in the next
two sections.

Overleaf is an example tree from the game of Kalah, for a UCT algorithm of 5,000
iterations. Note the asymmetry, with UCT probing some continuations more deeply
than others. If the hypothesis stated above is correct, a machine learner should be able
to find a relationship between tree shape and game quality, to the point where it can
predict the quality of new games accurately, based only on a set of example UCT trees
for those games.

16

Pseudo-code for the UCT algorithm is shown in figure 2.6, and the algorithm is
explained diagramatically in figure 2.7.

17

1 int get_best_move_via_UCT(Game g, int maxIterations) {
2
3 Node* rootNode = new Node(g);
4 Node* currentNode = rootNode;
5
6 for(int i=0; i<maxIterations; i++) {
7
8 // Descend through tree using UCB algorithm , updating
9 // visit counts for each node encountered.

10
11 while (currentNode ->timesVisited > 0) {
12 currentNode ->timesVisited ++;
13
14 if (currentNode ->is_terminal_position ()){
15 break; // Cannot descend any further
16 } else {
17 currentNode = currentNode ->descend_via_UCB ();
18 }
19 }
20
21 // Play out game with completely random moves from leaf
22 // node and record game score. Immediately returns game
23 // score if node is already a terminal position.
24
25 int playoutScore = currentNode ->playout_random_game ();
26
27 // Move back up through search tree , updating
28 // nodes with the score from the playout game
29
30 while (currentNode != NULL) {
31 currentNode ->score += playoutScore;
32 currentNode = currentNode ->parent;
33 }
34
35 }
36
37 // Return child node with best score:visits ratio
38
39 return rootNode ->get_best_child_node ();
40
41 }

Figure 2.6: Pseudo-code for the UCT algorithm. It takes as arguments a game position and
a desired maximum number of iterations, and returns an integer representing the index of its
chosen move. descend via UCB() simply returns one of the child nodes of the calling node,
according to the UCB algorithm. get best child node() simply returns the index of the child
node with the hightest average score (score

visits ratio).

18

Figure 2.7: Diagrams explaining the execution of the UCT algorithm

19

Figure 2.7 (cont’d): Diagrams explaining the execution of the UCT algorithm

2.3 Game quality

Many of the games we play today have existed since time immemorial, and have been
refined and perfected over thousands of years. They represent a fundamental part of

20

F
ig

ur
e

2.
8:

A
n

ex
am

pl
e

ga
m

e
tr

ee
fr

om
th

e
ga

m
e

K
al

ah
(a

n
O

w
ar

e
va

ri
an

t)
.

N
ot

e
th

e
as

ym
m

et
ry

of
th

e
tr

ee
,

co
rr

es
po

nd
in

g
to

so
m

e
m

ov
es

be
in

g
in

ve
st

ig
at

ed
m

or
e

de
ep

ly
th

an
ot

he
rs

.
T

hi
s

as
ym

m
et

ry
is

a
di

st
in

gu
is

hi
ng

fe
at

ur
e

of
th

e
U

C
T

al
go

ri
th

m
,

an
d

m
ea

ns
th

at
ea

ch
U

C
T

tr
ee

ha
s

it
s

ow
n

un
iq

ue
sh

ap
e.

T
he

hy
po

th
es

is
of

th
is

pa
pe

r
is

th
at

th
e

sh
ap

e
of

th
e

U
C

T
tr

ee
is

re
la

te
d

to
ga

m
e

qu
al

it
y,

th
at

th
e

re
la

ti
on

sh
ip

ca
n

be
le

ar
nt

by
a

m
ac

hi
ne

le
ar

ne
r

an
d

th
is

m
ac

hi
ne

le
ar

ne
r

ca
n

su
bs

eq
ue

nt
ly

pr
ed

ic
t

th
e

qu
al

it
y

of
a

ne
w

ga
m

e
ba

se
d

on
U

C
T

tr
ee

s
fo

r
th

at
ga

m
e.

21

our culture, and some may say that it is our playing of abstract games that most makes
us human.

Yet, in many ways, we take the games we play for granted. What is it that makes one
game timeless and magical and another tedious and uninspiring? These are questions
that often go unasked, but they have been addressed by keen games players and games
designers. Thompson, in his article “Defining the Abstract”[9], defines the merit of a
game in terms of four key qualities: depth, clarity, drama and decisiveness.

Depth indicates that a game has enough complexity to be played at different levels of
expertise. Part of the enjoyment of playing a game is the learning experience, learning
to play the game better and better. If a game does not possess depth, there is no
room for this improvement to happen, and experienced players will be little better
than rookies. If a game does not possess depth, players will quickly begin to feel they
have got everything they can from the game-playing experience.

Clarity expresses that the gameplay and rules of a game should be simply and
concisely quantifiable. This simplicity allows humans to immediately make a judgement
about what is a good move in a given position. If a game does not have clarity, it will
be longwinded and frustrating to learn for human beings.

Drama expresses that a game should offer chances for counterplay for a player in
a weaker position – they should still have a chance to come back and win the game.
In a game with no drama, any slight advantage for one player will inevitably lead to
victory; this makes the game boring and pointless for humans. Part of the attraction of
playing a game comes from the unexpected twists and turns that occur as the game’s
story unfolds.

Decisiveness measures the ability of one player to achieve an advantage from which
the other cannot recover. If a game has no decisiveness, then even perfect play might
not lead to a strong enough position to win the game. This will clearly lead to a
frustrating and futile game situation. A game must be winnable, or else it is not really
a game at all.

These four key qualities can be grouped together into two pairs: depth and clarity,
drama and decisiveness. Depth and clarity are both desirable qualities, but in many
ways are contraposed. For example, a game with complex rules may possess great
depth, but the very rules which give it this depth may mean it lacks the clarity to
be enjoyable. A game such as Noughts & Crosses may possess great clarity, but no
depth. Equally, drama and decisiveness are in many ways opposed to each other. A
game with great drama might be difficult to bring to a conclusion if the player in the
weaker position can constantly recover. A good game brings together both these pairs
of qualities in exactly the right balance.

Wolfgang Kramer, a highly decorated game designer from Germany, also speaks of
the concept of “tension” in an article entitled “What Makes a Game Good?”[10]. The
tension in a game can be thought of as the importance of playing the right move at any
point. If a game maintains high tension throughout, every move is important, and so
the game will be engaging from start to finish. In a way, this relates to the decisiveness
that Thompson describes: each moment in the game should have the potential to be
decisive, otherwise the moves will hold little interest for the players.

Another basic feature of a good game is that it should avoid excessive repetition
– a new instance should lead to different situations and challenges to a previous one.
Inevitably similar patterns and endings will crop up from time to time, but a game in
which all instances are alike (or nearly alike) will never hold much interest for human
players.

22

2.4 Tree metrics

This research aims to find out if a machine learning system, can successfully analyse
the shape of trees created by the UCT algorithm as it plays a variety of games, and
find a link between the shape of these trees and the qualities of the games. In order for
a ML system to do this, it must be presented with numerical data which summarises
the shape of the trees produced for each game. To quantify this shape it is necessary
to understand some of the fundamentals of tree theory and the measures it uses to
describe trees.

2.4.1 Branching factor

In terms of the visual representation of a tree, recall that a state s is represented by
a node. Labelling this node n, each action a available in s is represented by an edge
(a “branch”) emanating from n. If this edge connects n to another node n′, then n′

represents a state s′ which is the result of playing action a in state s.

Definition 13. Branching factor of a node

The branching factor of a node n representing a state s is simply the number of
actions available in state s. Diagramatically speaking, the branching factor of a node
is the number of edges (“branches”) emanating from node n to its child nodes.

Definition 14. Branching factor of a tree

Since the number of actions available may vary from state to state, the (mean)
branching factor for a tree is the mean of the branching factors of each of the nodes in
the tree.

UCT always tries each action once before starting to use its selection algorithm, so
the branching factor of a state in the UCT tree will simply be the number of moves
available in that state2. This branching factor gives us an immediate link to Thompson’s
concept of clarity. If a game has a very high branching factor, it may directly result
in it being difficult for humans to understand. Equally, if a game has a very low
branching factor, forward thinking strategies will become rather “narrow”. This has
two consequences: choosing the best move from few options may be too easy a decision,
so the game may lose tension. A small branching factor may lead to the game following
predictable patterns, making it repetitive and hence dull.

However, an alternative measure presents itself: perhaps a more interesting quantity
would not be simply how many legal moves are available, but how many of those moves
are plausible. Some moves will usually be instantly recognisable as weak, and hence
not really worth considering at all – this leaves a remainder of plausible moves out of
which the best must be selected.

The score:visits ratio used by UCT in deciding which move to play may be a good
measure of plausibilty. For example, the branching factor of a node, K, may be large,
but if K − 3 of the child nodes have negative scores associated with them, while the
remaining 3 child nodes have positive scores, only these 3 moves are plausible in this
position. Hence, in this example, while the node s has a branching factor of K, it has
an effective branching factor of 3.

2.4.2 Tree depth

Branching factor can heuristically be thought of as the width of the tree, but another
important metric is the depth of the tree, which is also sometimes referred to as tree

2providing the node has been visited at least as many times as it has moves available

23

height. In this paper trees will be represented with their root node at the top, so depth
shall be used.

Definition 15. Depth of a node

The depth of a node n is the distance between n and the root node of the tree, n0

(the number of edges on the unique path between n and n0).

Definition 16. Depth of a tree

The depth of a tree T is the maximum depth over all the nodes in T .

The depth of a search tree may once again be related to Thompson’s ideas of clarity
and depth. If search trees for a game are very deep, the UCT algorithm is looking far
ahead into the possible game continuations. This may indicate a game with good
clarity – if UCT can see far ahead into the possible game continuations, perhaps even
inexperienced human players will also be able to understand the likely future course
of the game and make judgements about which is the best move to play. However, if
the trees are too deep, this may imply that the game is too easy to analyse, and so the
game may lack depth – inexperienced players may be just as good as experts.

2.4.3 Asymmetry

It is important to remember that a UCT search tree is by no means a box – it cannot be
described by its width and depth alone. UCT trees have a unique asymmetry brought
about by the algorithm’s selective sampling approach, as shown in figure 2.8. How can
this asymmetry be quantified?

Recall that UCT always adds one new node to its search tree per iteration, slowly
expanding its tree boundary3. Whether this new node is added deep down an already-
explored path or very near the root node depends the algorithm’s current payoff esti-
mates.

So the shape of the UCT search tree can be thought of as the combined effect of
each of these node additions. This, in turn, means that the tree shape is a reflection
of the current game position, and near-future potential game positions: it depends
strongly on the number of moves available and their relative strengths.

For a game in which all moves are equally good in every board position, each of
these moves will be inspected an equal number of times, and the UCT tree will closely
resemble a breadth-first tree (see figure 2.9). For a game with only one good move in
each position, UCT will focus on the single best continuation, so the UCT tree will be
very thin and deep (see figure 2.10).

One approach to quantifying this asymmetry is to inspect the tree metrics for the
level-1 sub-trees. Note that the level-1 sub-trees in figure 2.9 are all identical in shape.
Those for 2.10 are very different in shape: one has been explored a lot, and is very
deep; the others have been explored very little (because UCT estimates the moves to
be weak), and will be very shallow.

Measures such as the branching factor and depth of each of the level-1 sub-trees go
some way to quantifying the asymmetry and inner structure of the UCT tree. So will
recording the mean and variance of the average score and number of visits to each child
node at level 1. Garnering as many statistics as possible about the UCT trees gives
the machine learners the greatest possible chance of successfully finding a link between
tree shape and game quality.

The measures used to classify trees are discussed in more detail in the next chapter,
and a full list is contained in appendix B.

3unless its sampling ends at a terminal node within the tree boundary, when the tree cannot be
expanded further

24

Figure 2.9: An example of a UCT search tree where each move looks equally good in
each board position. All moves will be tested equally often, and the tree resembles
a breadth-first search tree. Note that each level-1 sub-tree (indicated by grey dotted
lines) is identical.

Figure 2.10: An example of a UCT search tree where only one move is worth playing
in each board position. Poorer alternative moves (dotted nodes) are not visited often,
and the tree becomes long and skinny. Note the difference in shape between the level-1
sub-trees (indicated by grey dotted lines). The sub-tree for the preferred move is very
deep, while those for the alternatives have no depth, because these poorer moves are
ignored by the UCT algorithm.

25

2.5 Machine Learning

Machine Learning (ML) focuses on how to create computer programs which can learn
from experience. This ability is undoubtedly one of the things which makes us most
human, and as such, machine learning represents a huge, important field of AI research.
Great strides have been made in the field; machine learning systems have been applied
in areas as wide-ranging as pneumonia mortality prediction[11], vehicle driving[12] and
speech recognition[13].

In general, machine learning systems function by taking in a set of training data,
comprised of attributes and targets. They then proceed to learn a relationship between
these attributes and the targets. Once trained, they can make a prediction about the
classification of a new case based on its attributes alone. Note that the prediction task
may be a simple classification into one of many possible groups, or it could be a task
of a more “continuous” nature, such as steering a car correctly based on video camera
images of the road ahead. In the case of this research, the machine learning systems
will be inspecting attributes in the form of numerical data about UCT tree shapes, and
making a prediction about game quality or playability.

There were two key advantages of using a machine learning system for the task of
predicting the quality/playability of board games:

• They can analyse large amounts of numerical data quickly and find patterns that
humans might not be able to detect.

• Once trained, they can often analyse new cases based on their attributes and
make a prediction far quicker than a human could (especially when working with
large amounts of numerical data such as is the case for this research).

The second point will be vitally important if, as mentioned in the introduction,
the ML system is used for analysing the playability of automatically-generated board
games. It may be inspecting a very large test set (potentially several thousand games)
which it will be able to analyse far quicker than a human could.

2.5.1 Finding a system which generalises well

To simply find a relationship between a set of attributes and targets can be done in a
large number of different ways, and indeed, if working with numerical data, methods
such as Taylor series can do this with as much accuracy as desired. The key feature
of a machine learning system is not only that it should be able to learn a relationship,
but that it should then be able to extend this knowledge to new data it encounters by
inspecting the attributes of the new cases and making accurate predictions about their
classifications.

When there is plenty of data available, the best way to train a machine learning
system and understand its ability to generalise well to new cases is to have separate
training, validation and test data. Learning is done on the training data; while this is
done, the machine learner is constantly tested using the validation data. This gives a
good indication of how the system’s predictive performance would extend to new data,
because the testing set upon which its performance is measured is not used for training
at all.

Unfortunately, with the time constraints on this research, it would not be possible
to create a large enough sample of games to keep back a validation set – all data would
be necessary for training. Instead, leave-one-out cross validation was used to compare
the performance of the various machine learning systems. This involves repeatedly

26

removing one of the games from the dataset, and training a network on the remainder.
Then the trained network’s predicted classification for the left-out example is recorded.
By repeating this as many times as there are samples in the dataset, a cross-validation
matrix of the predicted against true classification values is formed. Learner performance
is measured by the accuracy of this cross-validation matrix.

2.5.2 Avoiding overfitting

When training a machine learning system it is important to try to avoid overfitting.
Overfitting occurs when the error on the training set becomes very small but the net-
work performs poorly when classifying new data. It occurs because the network has
been trained so much on the current dataset that it has become tuned to the exact
details of this particular data, rather than learning rules and trends that generalize
well to all cases.

When undergoing training, a machine learning system will usually improve its per-
formance, as measured by its ability to predicting the classifications of the training
data, as training time increases. However, after a time its predictive performance in
terms of its ability to classify new data accurately will start to decrease – this is the
point at which overfitting has occurred (see figure 2.11).

Figure 2.11: Chart demonstrating overfitting. Although error continues to decrease on
the training set as training time increases, at a certain point error begins to increase
on the validation set. At this point overfitting has occurred (the machine learner is
starting to learn particulars of the training data rather than general classification rules)
and training should be stopped.

A major advantage of using a training, validation and test set approach, as de-
scribed above, is that it allows overfitting to be detected and avoided. The error on the
validation set can be tracked as training goes on. At first, error will usually decrease as
a function of training time on both the training and validation sets. When error on the
validation set starts to increase, overfitting has occurred. Training is stopped at this
point and the performance of the machine learner can be measured by its predictive
ability on the validation data (or sometimes, if possible, further test data can be used
to measure its performance).

Using leave-one-out cross-validation meant that this method of avoiding overfitting
would not be possible. The specific approach used to avoiding overfitting is detailed in
the Implementation section.

27

2.5.3 Measuring performance

The first question being investigated by this research was whether a machine learner
trained on UCT data can accurately predict the quality of new games it encounters.
In order to measure the performance of this machine learner, a measure of how close
its predictions A machine learning system attempting this will output predictions on
a continuous numerical scale. In order to measure the performance of a predictor of
this kind, the correlation coefficient between the predicted and true target values will
be used. A perfect classifier would have a correlation coefficient of 1, and the closer to
1 the correlation coefficient of the network, the better its predictive capability.

Figure 2.12: Example of the predictive performance that would be expected from a
near-perfect machine learner in a continuous target space (such as is the case when
predicting game quality). All points lie on or very near a straight line through the
origin. This gives a correlation coefficient very close to 1.

28

Figure 2.13: Example of the predictive performance of a poor machine learning system
making predictions on a continuous scale. Predicted quality values do not reflect true
game quality ratings, so the points do not lie on a straight line through the origin. The
correlation will therefore be close to zero. Thus the correlation coefficient between true
quality ratings and predicted quality ratings gives a good indication of the quality of
the machine learner.

The second hypothesis being tested was: can a machine learner trained on UCT
data differentiate between a real, playable game and a “broken” (unplayable) one?
The second hypothesis represents what is called a decision problem, because the target
function for the machine learner was now a binary classification (playable or unplayable)
rather than making a prediction on a continuous numerical scale. The predictive ability
of a machine learning system in a decision problem such as this is usually judged in
terms of three measures: predictive accuracy, precision and recall.

Predictive accuracy simply measures the following: when presented with a new
game, what is the likelihood that the machine learning system will classify it correctly?
At first sight this would seem to be the only measurement of interest when quantifying
the accuracy of a machine learner. However, several very different predictors can show
exactly the same predictive accuracy, which is why precision and recall rates are also
necessary to fully quantify the performance of a machine learner.

An example of different predictors exhibiting the same predictive accuracy is shown
in table 2.1. This example supposes that playable and unplayable games occur in equal
measure. Predictor ML1 simply predicts that every game is unplayable; predictor ML2
simply predicts that every game is playable. Finally, predictor ML3 predicts that a
game is playable or unplayable with equal probabilty.

Note that each predictor has the same predictive accuracy – they each classify ex-
actly 50 of the 100 examples correctly, and so if the ratio of unplayable to playable
games in the population as a whole is also 50:50, they can each be expected to classify
a new game correctly with probability of exactly 50%. However, the chance of ML1
classifying a playable game correctly is 0, as is the chance that ML2 classifies an un-
playable game correctly. In contrast, the chance that ML3 classifies a playable game
correctly is exactly 50%, because in 50% of cases it will (at random) choose to predict
that the game is playable.

29

Predicted
ML1: Unplayable Playable
predicts all games

True
Unplayable 50 0 50

to be unplayable Playable 50 0 50
100 0 100

Predicted
ML2: Unplayable Playable
predicts all games

True
Unplayable 0 50 50

to be playable Playable 0 50 50
0 100 100

Predicted
ML3: Unplayable Playable
randomly predicts

True
Unplayable 25 25 50

games to be playable Playable 25 25 50
or unplayable with 50 50 100
equal probability

Table 2.1: An example of predictors that use very different prediction rules, but exhibit
identical predictive accuracy.

To recap, we have three prediction techniques here which have very different be-
haviour, but the same predictive accuracy. The difference between them can be quan-
tified by their precision and recall rates, which are calculated separately for each of the
possible classifications (in this case, for playable and unplayable games).

Precision measures the following: imagine that our machine learning system (using
UCT tree data) classifies a previously-unencountered game as playable; there is always
the chance that our machine learner has made a mistake – so what is the chance that
this game is actually playable? The answer is given by the precision of the machine
learner for playable games.

Conversely, recall measures the following: suppose a previously-unencountered ex-
ample is presented to the machine learning system, and that this example is already
known to be a playable game. Using only UCT tree data, what is the chance that
the system correctly classifies the game as playable? This is given by the recall of the
machine learner for playable games.

Similar statistics can be calculated for unplayable games. Precision and recall rates
for the example predictors ML1, ML2 and ML3 are shown in table 2.2.

30

ML1 Unplayable Playable
Precision 50% -

Recall 100% 0%

ML2 Unplayable Playable
Precision - 50%

Recall 0% 100%

Unplayable Playable
ML3 Precision 50% 50%

Recall 50% 50%

Table 2.2: Precision and recall rates for the three predictors shown in table 2.1. Preci-
sion and recall rates fully classify prediction performance.

A predictor with 100% predictive accuracy would show 100% precision and recall
across all classifications, but this is often not possible in practice. Often a choice must
be made between a classifier with high recall or high precision for the particular feature
of interest. Which one is preferable depends on the application.

For example, in medical testing, it is vitally important that tests pick up all positive
cases of a disease so that treatment may begin. So an initial testing technique must
have a very high recall rate for positive cases of the disease. It does not matter if it
has a low precision rate (i.e. it picks up several false positives) because often an initial
test which shows a positive result is followed by a more expensive but more accurate
test to confirm/refute the result. False positives can be picked up at this second test
stage. However, to miss a positive case initially could be catastrophic, because the
patient would be dismissed and the disease may be untreatable by the time they are
seen again.

2.5.4 Balancing recall for playable and unplayable games

The likely application of this research is to assess automatically-generated board games
for playability. In many ways the machine learning system will take on the same role
as an initial medical test: it will be presented with several (possible many thousand)
automatically-generated games, and must give an initial prediction of the quality/-
playability of each. Its role will be to pick out potentially playable games this test set,
and these games will then be checked by humans to confirm whether they are playable,
and how interesting they are.

In one sense, high recall rate for playable games is preferable in this situation,
since this will mean that few genuinely playable games will be rejected at this early
stage. It would be very unfortunate for brilliant game to go undiscovered because it is
misclassified by the machine learning system and hence ignored.

However, in another sense, high recall for unplayable games is important, so that
the machine learning system accurately removes as many unplayable games as possible
from the test set. Machine learner ML2 above, if it were given this task, would certainly
not miss any playable games, but it would not remove any unplayable games from the
set, so in that sense it would be useless. A classifier with good recall for unplayable
games will allow for many unplayable games to be identified accurately and removed
from consideration, leaving less work to do during the human checking process.

31

Further discussion of this balance between recall for playable and unplayable games,
and which is more important for a machine learning system identifying playable automatically-
generated board games, is contained in chapter 5, Evaluation.

32

Chapter 3

Implementation

With the background to the UCT algorithm, the game quality concepts and the tree
metrics that would be used in place, the implementation of the research could begin.
The coding required to perform the main body of the work falls into two parts – the
programming of the UCT algorithm itself and of the games upon which the UCT
algorithm would be used. All implementation took place in C++.

A complete game-playing system was created which was able to work with UCT or
human players. It was designed to be as extensible as possible – other AI techniques
could easily be added as extensions of the ComputerPlayer class. It collected data on all
trees produced, outputting these to the terminal or into text files in a suitable format
for aggregation. If desired, it could translate each tree structure into “.dot” format,
meaning that the tree could be viewed using the visualisation software GraphViz. A
UML diagram for the system is shown in figure 3.1.

3.1 UCT Algorithm

As described in the previous section, UCT works by iteratively growing a search tree;
for each node in the tree its number of visits and score is recorded. Each node in the
tree is associated with a board position, and each edge can be associated with the move
that takes the game from one board position to another.

To implement the algorithm, a Node class was defined with the necessary member
variables to construct the tree and record UCT data. Pointers to child, sibling and
parent nodes are used for navigating through the tree, and variables record the number
of visits and the total score for the node. Pseudo-code for the algorithm is shown in
figure 2.6.

One design choice should be explained here. In the context of playing games, search
trees are usually described as shown in figure 3.2. A node can have several children,
and from a programming perspective the links between a parent and its children can be
represented using pointers. This is a perfectly natural and sensible way to understand
a search tree. However, to implement a tree in this way is inefficient. An array of
pointers to child nodes must be maintained for each node in the tree. Given that at
any moment several of the tree’s nodes will be leaf nodes with no children, this setup
wastes large amounts of memory.

It is more efficient for each Node object to contain just three pointers: one pointing
to its parent node, one for a child node, and a nextSibling pointer which points to a
node’s younger sibling if one exists. Children of any node are effectively grouped into
linked lists by using this setup (see figure 3.3). If a node has more than one child, its
first child is accessed through its child pointer, its second child is accessed by using the

33

Figure 3.1: UML diagram for the game-playing system created for the project. All
individual games inherited from a parent Game class, which implemented its functions
virtually to allow them to be overriden as necessary.

34

Figure 3.2: The classic implementation of tree search. The tree is formed of nodes;
each node has an array of pointers to child nodes, and one pointer to its parent node.
This leads to a great deal of wasted memory and reduced performance. Note that in
this example, this setup has 19 pointers in use (solid lines) and 123 unused pointers
(dotted lines)

nextSibling pointer of the first child, its third child is accessed by using the nextSibling
pointer of the second child, and so on.

This saves large amounts of memory for games such as Go where there are more
than 350 legal moves in some positions. The implementation used guarantees that each
node only has three pointers (one to its parent, one for a child node, and one for a
sibling node) and hence wasted memory is kept to a minimum.

It was important that the algorithm should run as quickly as possible. The exper-
imental phase of the research would involve playing out 100 instances of each game
with UCT playing against itself, and the UCT algorithm would be using up to 100,000
iterations to make each move. If a move takes 1 minute to execute, then a typical
instance of 100 plies would last 100 minutes, meaning that 100 playouts would last
approximately a week. Even with large amounts of computing power available, this
was not acceptable, so targets were set for its execution speed.

The target for the implementation of the UCT algorithm was 10,000 playouts per
second on any game, meaning that even a 100,000-iteration UCT player would play a
move in 10 seconds. As shown in the pseudo-code in figure 2.6, the algorithm can be
split into three major parts: descent through the tree, performing a playout game, and
updating scores for nodes. It would be important to understand which of these parts
of the algorithm was taking the longest in order to know where to focus efforts to keep
its execution time low.

35

Figure 3.3: More efficient implementation of tree search. Each node has just three
pointers: one to its parent, one for a child node, and one for a sibling node. This allows
the same tree structure to be created with vastly reduced memory usage. This figure
represents the same tree as figure 3.2, yet here 19 pointers are in use (solid lines), with
only 21 unused pointers (dotted lines)

Figure 3.4: Chart showing times taken by different parts of the UCT algorithm, for
the opening moves of a short, medium and long game (Noughts & Crosses, Connect4,
and Checkers respectively). The random playouts are clearly the part of the algorithm
that takes the longest, and so were focused on when trying to improve the algorithm’s
speed.

As shown in figure 3.4, early tests showed that the random playouts took far longer
than any other part of the UCT algorithm for medium to long games. These would be
the games where the most focus would need to be placed on algorithm speed in order
to keep game times low. The random playout games were therefore the main area
where improvements would bring about quicker UCT play. This part of the algorithm
calls the random playout() method of the game class, which in turn makes several calls
to the count legal moves(), update board() and game score() methods; so all of these
methods were examined for possible efficiency gains when quicker playouts were needed.
Explanation of the programming of the individual game subclasses and the techniques
used to keep playouts as brief as possible is contained in the next section.

36

3.2 Games to be analysed

The majority of the work associated with the implementation was associated with
coding up a variety of games for the UCT algorithm to play. To make the analysis
worthwhile it would be necessary to code up coding up several games so would it
be possible to collect enough data to give the ML systems a chance of identifying a
relationship between UCT tree shape and game quality. Luckily, the UCT algorithm
is very flexible: it can play any game, provided it is presented with a few key functions
for playing that game, as described in the previous section.

Encapsulating the rules and dynamics of a game in code can be difficult, but the
mechanics of the UCT algorithm itself provided a guide as to how this should be done.
Recall the information needed by the UCT algorithm for each step in its execution:

• To choose a move in a given board position it must know what legal moves are
available.

• To link board positions together it must know how to update the game board
between moves (for example, removing a captured piece in the game checkers).

• To generate its scores it must know when a playout game has reached a conclusion,
and whether the game has ended in a win, loss or draw.

So it was necessary for each game to have member variables and functions available to
achieve these three tasks: finding legal moves; updating the board position based on a
given move; recognising when the game has finished and what the result is. Presented
below is an abstract base class Game which contained these functions (some virtual) –
all individual games were derived from this base class.

A summary of the methods implemented in the base class Game is shown overleaf.

int gameType; // integer to identify the game

int rows; // the size of the board
int cols;

int** board; // 2D array of integers
// which holds the board state

int toPlay; // the player whose turn it is

int ply; // how many plies have passed
// in the game

int numLegalMoves; // the number of legal moves
// available in the position

Figure 3.5: Member variables in the Game class. These variables are common to all
games regardless of type, and are used to keep track of the game state and facilitate
playouts for the UCT algorithm. Further game-specific member variables were imple-
mented for some games.

The update board() method updates the game state when a player makes a move.
This involves updating the board positions; it may also require updating some member

37

// Functions vital to the UCT algorithm

// Implemented pure virtual ,
// must be defined in subclasses
void update_board ();
int is_legal_move ();
int game_score ();

// Implemented in parent Game class
// but can be overriden in subclasses
bool count_legal_moves ();

// Only implemented in parent Game class
void make_random_move ();
int random_playout ();

Figure 3.6: Methods vital to the UCT algorithm defined in the parent Game class. Some
were implemented as pure virtual functions, which ensured that they were properly
defined in each specific subclass

variables in order to implement the mechanics of the game properly.

The is legal move() method takes in a proposed move described by positional values
(x and y coordinates) and returns whether the move is legal in the current game state.

The count legal moves() simply counts the number of legal moves available in the
current board position. This number is required by the UCT algorithm to build its
search tree and to perform its random playouts. The moves available in a given state
are calculated deterministically and are always returned in a given order.

The game score() method looks at the current game state and calculates if the game
has terminated. If so, the method returns the game score (1 if player 1 has won, 0 if a
draw, -1 if player 2 has won).

The random playout() method is used for executing random playout games; it calls
the make random move() function several times during each playout. Each iteration of
the UCT algorithm makes one random playout.

// Other functions defined in Game class

// Can be overridden as necessary in subclasses
void display_board ();

int get_index_of_positional_move ();
void create_positional_values_from_index ();

int human_player_choose_move ();

Figure 3.7: Other methods implemented in the parent Game class.

38

The display board() method simply displays the current board position on the
screen.

The middle two methods are for converting a move described by positional values
(in terms of x and y locations) into a unique move index (between 1 and the number
of legal moves available), and vice versa. This indexing is used by the UCT algorithm
to interface with the other functions defined above. For example, the UCT algorithm
returns a move index in the form of an integer, but the update board() function takes
positional arguments.

The x and y locations may simply describe a single chosen square (e.g. Noughts
& Crosses, Othello); it may be necessary for the functions to take arguments for both
“to” and “from” locations for games when pieces are moved across the board (e.g.
Checkers, Breakthrough); sometimes a further argument may be used to specify any
options associated with the move (e.g. removing an opponent’s piece in Nine Men’s
Morris).

The human player choose move() method is to allow human players to take part in
games against UCT via the terminal. This was vital for debugging the system during
development.

Some of the functions in figure 3.6 had to be implemented separately in every sub-
class (in the code for each game). For example, the is legal move() function depends
uniquely on the game being played, as does the game score() function which calculates
if the game has reached a conclusion. These functions would be implemented in a pure
virtual manner to ensure that they were correctly implemented for each individual game
in its source code.

However, it was important to try to minimise the amount of coding required as far
as possible, by defining functions in parent Game class which could be called by several
specific games. This allowed new games to be added quickly. The count legal moves()
function is an example of this: the code for this function as defined in the game class is
shown in figure 3.8. This function definition shown could be used by any game where
a move is defined by a single (x,y) location, such as Noughts & Crosses, Connect4 and
Othello.

39

1 // Counts the legal moves for player
2 // to play in the current position
3 int Game:: count_legal_moves () {
4
5 int number = 0;
6
7 for(int i=0; i<maxCols; i++) {
8 for(int j=0; j<maxRows; j++) {
9 if(is_legal_move(i, j)) {

10 number ++;
11 }
12 }
13 }
14
15 return number;
16 }

Figure 3.8: Definition of the count legal moves() function in the parent Game class.
This code is very extensible, and could be called by any of the games where a move
is defined by a single (x,y) coordinate, provided the is legal move() function is defined
properly. However, in order to achieve acceptable playout speeds, for some games this
function was overriden in the subclass with of a more specific, quicker method.

When speed improvements were required for a particular game, functions such as
count legal moves() could be overriden in its source code. For example, in the game
of Checkers, counters only reside on the dark squares on the board, so a simple im-
provement to this “vanilla” count legal moves() function is to only inspect dark squares
when counting legal moves.

Some games required much more than overridden functions to achieve acceptable
playout speeds. Nine Men’s Morris is a game played on square board, with connections
between the different positions on the board as shown in figure arrangement of linked
nodes as shown in figure 3.9. Each player begins the game with 9 stones, which are
placed on the game board alternately until none remain. Then players proceed to move
their stones from one location to a neighbouring location (along one of the lines drawn
on the board). The object of the game is to create lines of three stones in a row; when
this done, the player may remove one of their opponent’s stones. When a player has
fewer than three stones remaining, they lose the game.

The game dynamics of Nine Men’s Morris meant that when using a basic 2-D array
of board positions (which worked prefectly adequately for other games) a 100,000-
iteration UCT player would take 9.4 seconds to make a move. Game playouts with
100,000 iterations per move would simply not be possible under this setup.

Efficiency gains had to achieved, but the approach to doing so required more thought
than for games such as Checkers. In checkers, pieces are only allowed to occupy dark
squares on a standard chess board, which is simple to quantify: pieces may only lie in
positions (x,y) where x + y = 1 mod 2. The positions where a piece may legally be
located on a Nine Men’s Morris board have a strange symmetry. There is no easily
quantifiable pattern determining legal piece locations. Further, each legal piece location
has its own unique group of neighbouring locations to which it may moved.

The game board for Nine Men’s Morris is a graph – the same sort of graph that was
described in definintion 1 of chapter 2. The board can be thought of as a collection of
nodes and edges, and in fact this is by far the best way to represent the game in code.

40

Figure 3.9: The game board used for the game Nine Men’s Morris[14]. The unusual
layout and game dynamics meant that the game had to be programmed very differently
from others. An adjacency matrix was defined to allow quick calculation of available
legal moves

The board was defined in terms of an array of 26 nodes. An adjacency matrix could
be used to quickly determine all neighbours of a given node, facilitating the process of
counting legal moves.

While this approach meant there were some overheads when instantiating a game
of Nine Men’s Morris, the speed advantages during game playouts were considerable.
The difficulty of dealing with the board layout disappears when treating it as a graph.
This change in implementational approach reduced the time taken for a UCT player to
make a move by a factor of approximately 30, allowing even a 100,000-iteration player
to make its first move of the game in around 25 seconds.

In total, 17 playable games were coded, details of which are contained in appendix
A. The unplayable games created are described in the next section.

3.3 Defining unplayable games

To give the machine learner several examples of unplayable games, adjustments were
made to the already-programmed group of games to “break” them (make them un-
playable). For example, the well-known game of Connect4 had its winning condition
changed to six counters in a row (instead of four). Since the original board size of 7x6
was retained, a win became so difficult to achieve that the game became unplayable.

Other games were adapted in similar ways to make them unplayable. This adap-
tation process allowed several broken games to be created quickly with minimal extra
coding. A game was considered unplayable if one of the following conditions held:

• Drawish: the game is too hard to win for either player

• Biased: the game is too easy to win for one of the players

• Too long or too short: the game lasts too long or finishes too quickly

After “breaking” some of the games, 11 broken and 17 playable games were pre-
sented to the machine learning techniques. Shown in table 3.1 is a list of the unplayable
games created, how they were broken and the reasons they were considered unplayable.

41

Game broken Reason Rule change and description

Noughts &
Crosses

Short,
biased

Winning condition changed to two-in-a-row.

Player 1 can always win after two moves.

Achi Short,
biased

Board size changed to 4×4, with winning condition still 3-
in-a-row.

Player 1 can always win after 3 moves.

Oware Drawish Players only harvest if they place seeds in an opponent’s
field, bringing the total to 5 seeds (usually 2).

This made it very difficult to capture seeds and win the
game. 20/20 games played ended in draws.

Kalah Biased Players cannot use their own store for harvesting.

This was expected to bring about a drawish game, but in-
stead made the game biased in favour of player 1. Player 1
won 20/20 games played.

Table 3.1: A list of the games which were broken for the purposes of analysing game playability.
Data on game results is based on the 20,000-iteration UCT algorithm playing itself unless stated
otherwise.

42

Game broken Reason Rule change and description

Alak Long, Moves which immediately repeat the position of the previous
drawish turn are allowed.

This made it impossible to force a win, since the player
behind could simply repeat the previous turn’s position
rather than moving into a weaker one (20/20 games ended
in draws).

Dipole Biased The relationship between the size of stack and the number
of squares moved by the stack was inverted.

This led to a futile game of damage limitation where it was
difficult to avoid moving counters off the board, leading to
a loss. Player 2 won 20/20 games played.

Checkers Long, All pieces start as kings.
drawish

There is little benefit to moving pieces forward, since all
pieces are already kings. Since kings are more manoeuvrable
than pawns, it is very difficult to capture an enemy king
without giving one away too. 20/20 games ended in draws.

Nine Men’s Short/ The player who makes the first mill wins.
Morris Long,

drawish This was intended to make the game short, which was suc-
cessful: games played between lower-strength UCT players
ended quickly (20/20 games lasted less than 10 turns for
1,000-iteration UCT).

However, games between higher-strength UCT players
would reach stalemates due to strong defense (20/20 games
ended in draws for 100,000-iteration UCT)

Othello Short,
biased

Stones may only be laid next to the opponent’s most recently
placed stone.

This reduced the number of available moves considerably.
Since Othello ends when neither player can make a legal
move, it shortened the game (20/20 games ended in less
than 10 turns). The game also became biased (20/20 games
ended in a win for player 1).

Connect4 Drawish Players must achieve 6 counters in a row to win.

The same board size was used as for standard Connect4,
and so the game became very difficult to win (19/20 games
ended in draws).

Qubic Drawish Players must achieve 2 distinct lines of 4-in-a-row to win.

The same board size was used as for standard Qubic; this
made the game very difficult to win (17/20 games ended in
draws, compared with 0/20 draws for standard Qubic).

Table 3.1 (cont’d): A list of the games which were broken for the purposes of analysing game
playability. Data on game results is based on the 20,000-iteration UCT algorithm playing itself
unless stated otherwise.

43

3.4 Data extraction

3.4.1 Statistics used to quantify UCT tree shape

Each move played by the UCT algorithm produces one search tree. So once the al-
gorithm was working for the selection of games described in the previous chapter, it
was simple to produce large numbers of search trees very quickly – playing the UCT
algorithm against itself several times produced one tree for each move of each game. As
discussed in the previous chapter, the shapes of the trees created by the UCT algorithm
had to be distilled into numerical data in some way for this shape to be analysed by
the machine learning systems. So each tree had to be summarised by a set of statistics.

In one sense it was sensible to use summary statistics which might be related in some
way to the game quality concepts described in section 2.3. However, it was important
not to be too selective: it was also desirable to present the machine learning systems
with as many statistics as possible. This would give the machine learners as much
information as possible about the shape of the UCT trees, increasing the chance that
they would find a relationship between tree shape and game quality.

Sixteen distinct statistics were used to summarise the trees. To collect all this
data, functions were added to the Node class which recorded the desired statistics
for each tree produced by the UCT algorithm. Once this was done, 100 UCT versus
UCT instances of each game were played out. Each instance provided several trees,
so in total, statistics from several hundred trees were collected for each game. The
features most closely related to the game quality measures mentioned in chapter 2.3
are discussed below; a full list is available in appendix B.

Number of legal moves available (branching factor)
This may relate to the ideas of clarity and depth. A game with only two moves
available in each position is likely to lack depth and be repetitive, and hence may
be boring to human players. On the other hand, a game with over 100 legal moves
may be too complicated for human players to enjoy.

Tree depth
The depth of the search tree measures how deeply into the game position UCT
is seeing. This is once again related to clarity. If UCT can only see a couple of
moves ahead in the search tree, will the game lack the clarity desired by human
players?

Recall that UCT’s asymmetric search means that the tree depth is not only a
consequence of the branching factor, but is also affected by the relative strength-
s/weaknesses of each move analysed. If a tree is shallow despite having a low
branching factor, this indicates that all moves look equally promising, which is
undesirable since it removes tension from the game.

The score:visits ratio of the best available move
This is measured on a scale of 1 (immediatedly winning move) to -1 (immediately
losing move). When one player is in a better position and another is in a worse
position, the scores of their best available moves will be positive and negative
respectively. So games which end quickly in a win will exhibit large variance in
best score from positive (winning player) to negative (losing player).

More balanced games will not have such a high variance: in the extreme case, a
game with no possible win will show no variance at all – all moves including the
best move will have a score of zero. A good game will be somewhere in between:
best scores remaining near zero for some of the game, but then diverging as one
player gains the upper hand. As such, keeping track of this score may give clues
as to the drama and decisiveness of the game.

44

The spread in score:visits ratio between the best and worst available moves
A game where the worst move’s score is often very close to the best move’s score
will certainly lack decisiveness and be boring for human players – in this situation
choosing the worst move may not result in sufficient penalty to make the game
interesting.

Another similar measure used was the spread between the best move and the n
3 th

move, where n is the number of legal moves available. This measure analyses
the difference between the move which is “top of the list” of available moves and
the move which is “a third of the way down the list”. This top third of the
moves is where UCT and strong human players will focus their thought during
their decision process. If there is a lot of difference in score, the game may lack
drama, because choosing a move which is not the best will lead to a quickly lost
position. If there is a very small difference in score, the game may lack tension,
since choosing the 3rd best move instead of the best will have little difference on
the outcome.

Mean of level-1 score:visit ratios
If this mean is too close to the best move’s score:visits ratio, we are dealing with a
long-tailed distribution where there are, on average, several good moves available
in a given position. A game with this feature will not be interesting because there
may be little to choose between the good moves: it may be too easy to play good
moves, and hence the game will lack tension.

Fraction of leaf nodes and fraction of UCT nodes
For the purposes of this analysis a leaf node is defined to be one which has
been visited less often than the number of legal moves available in its game
state (branching factor). This means that it still has children unexplored by the
algorithm, so in this way it is at the edge of the search tree. Conversely, a UCT
node is any node which is not a leaf node – so named because once a node has
been visited more times than its branching factor. Heuristically, these UCT nodes
tell us how much “trunk” the tree has, in comparison with the amount of leaves.

These two fractions give more clues as to the shape of the search tree. If several
of the nodes in the tree are leaf nodes, this can be thought of as a “spindly”
tree where each branch contains many leaves. This may indicate a game with
low clarity, since UCT has a lower understanding of leaf nodes than it does of its
internal UCT nodes. Conversely, if the tree has a low proportion of leaf nodes
and a high proportion of UCT nodes, this is akin to a strong oak tree where the
majority of the mass is contained near the base. Games with this sort of tree are
the ones UCT is likely to understand best, and may be an indication of games
which are highly playable.

Various statistics for each sub-tree of the child nodes at level 1
As discussed in chapter 2.4, these statistics may give key information about the
internal structure of the search trees. Insight into the asymmetry present among
these sub-trees may give information about the levels of drama and tension within
the game. Does choosing a slightly different move result in a radically different
game? If so, we would expect a lot of variation among the sub-trees at level 1.
This may indicate a very playable game with high drama and little repetition.

The node class, whose methods were responsible for the creation of each UCT tree,
was the natural place to put the methods which would extract data about these trees.
Trees are very important data structures in computing that are used for all sorts of
purposes, and many good methods exist for iterating over their nodes. UCT trees are
no different in this sense, and their structure could often be leveraged to extract data

45

efficiently with minimal extra coding by using techniques such as recursive functions.
The function for calculating the average branching factor of a tree is shown in figure
3.10.

// RETURNS THE AVERAGE WIDTH OF THE TREE ,
// I.E. THE TOTAL NUMBER OF LEGAL MOVES
// AVAILABLE OVER ALL NODES DIVIDED BY
// THE NUMBER OF NODES.
// TO USE , CALL FROM ROOT WITH ARGS (0,0)
double Node:: get_average_width(int& branches , int& nodes) {

nodes += 1;
branches += numLegalMoves;

if(nextSibling != NULL) {
nextSibling ->get_average_width(branches , nodes);

}
if(child != NULL) {

child ->get_average_width(branches , nodes);
}

return double(branches)/nodes;
}

Figure 3.10: Recursive function used to calculate the average width of a tree. The
function iterates over every node in the tree, keeping track of the total number of
branches and number of nodes. Finally it returns the quotient of the two.

Once calculated, all the statistics describing each tree were output to Comma Sep-
arated Value (CSV) files. This created many megabytes of data which had to be aggre-
gated into a set of attributes for each game before the machine learning could begin.
The next step was to aggregate this data. For each game, the maxima, minima, means
and variances of each tree statistic were calculated. It was this data that would finally
be used as attributes in the machine learning task. If desired, further splits could be
incorporated at this aggregation stage. For example, splitting the data between moves
for player 1 and player 2 might give an indication of a biased game.

3.5 Data analysis

Matlab was used for data aggregation and training each of the machine learning sys-
tems. It provides a comprehensive statistical analysis package that was perfectly suited
to the requirements of this research, and has a comprehensive API which allows the
user to define their own functions as necessary. Functions were written for importing
and aggregating the data from CSV files, training and testing each of the machine
learning systems.

Three machine learning systems were tested: Artificial Neural Networks (ANNs)
were used to learn and predict game quality; for the task of predicting game playability,
ANNs, Decision Trees and Support Vector Machines (SVMs) were used.

46

3.5.1 Identifying a best network shape

One machine learning system was tested for its ability to predict game quality: neural
networks. One aspect of working with neural networks is that there are a large number
of parameters that can be adjusted, including network shape, training time and transfer
functions. To exhaustively test all combinations would not be possible. Neural networks
can also be difficult to interpret – it is not always possible to distill their classification
process down into a functional or axiomatic form that humans typically use for such
classification tasks. This is especially inconvenient in the current line of research since
it is hoped not only to find a link between UCT trees and game playability, but for
that link to be understandable in order that further investigations may be made into
it.

To try to increase the chances of finding a network which could be understood from
a human point of view, focus was placed upon finding the best shape of network for
this learning task. If a particular shape of network could be shown to have strong
predictive capability, and to be distinctly better than other network shapes, time could
be spent interpreting the weights of this “best” network. With enough investigation,
some rule-based interpretation of the network’s inner workings might be achievable.

So wrapper functions were written in Matlab to test a variety of different network
shapes. These wrapper functions also offered a way of avoiding overfitting. Neural
Networks are trained over a number of epochs, after each epoch a negative feedback
system (using feedback from their predictive performance on the training data) called
backpropagation is used to adjust their internal weights and reduce prediction error. If
this process continues for too long though, they can easily become overtrained to the
point where their ability to classify new cases is reduced. When using a training and
validation sets, overfitting can be avoided by ending the training of the neural network
when prediction performance begins to increase on the validation set.

Due to the low number of games coded up, the training and validation set approach
was not viable, so leave-one-out cross-validation was used instead. Overfitting was
avoided by training each each network shape using variety of different training times.
If overfitting was occurring for some networks (which were being trained for too long),
then the cross-validation process should show better results for the same network shape
trained for a lower number of epochs.

Finally, each [network shape, training time] combination had its cross-validation
repeated 10 times, and performance was measured on average over these 10 repetitions.
This was to negate the effects of random initial conditions used for each network, with
the aim of finding a network setup which consistently outperformed its peers. Network
performance was measured by inspecting the correlation of the predicted and true game
quality values, as described in section 2.5.3. A perfect classifier would have a correlation
coefficient of 1, and the closer to 1 the correlation coefficient of the network, the better
its predictive capability.

3.5.2 Identifying most relevant UCT tree features

Three techniques were tested for their ability to predict game playability: neural net-
works, SVMs and decision trees. Using three techniques increased the chance of success-
fully finding a relationship. Furthermore, it increased the chance that if a relationship
were found, it could be deciphered and understood. A decision tree is far easier to un-
derstand than a neural network; its decision-making process can easily be boiled down
to a first order logic formula. Such a formula might provide an interesting springboard
for further work and might even contribute to techniques for better automatic game
generation in the future.

47

Matlab also contains functions for printing out decision trees created during the
cross-validation process. These trees were then inspected in order to ascertain which
UCT tree features were the most commonly used for making classification. If some UCT
tree features are strongly related to game quality, training machine learning systems on
only these features in the future might produce strong predictive capabilities. Ideally,
these key UCT tree features might even be used in a generative capacity to help in the
creation of interesting board games. Further, each node’s decision process was studied
to see if it made sense, specifically in relation to the game quality concepts discussed
in section 2.3. The results were very interesting, and are discussed in more detail in
the next two chapters.

48

Chapter 4

Results

Chapters 2 and 3 have given background to UCT, game quality concepts and Machine
Learning systems, and described the implementation of the algorithm. This chapter
contains the results of the research, beginning with some visual examples of the UCT
trees being produced. After that follow charts showing the cross-validation data pro-
duced by the machine learning systems. Full tables of all the results are shown in
appendix C.

4.1 Examples of UCT trees

The object of the research is for a machine learning system to be able to distinguish
between good and bad (or playable and unplayable) games by UCT tree data alone.
Some learning problems that humans find easy are very difficult for ML techniques to
understand; others are far easier for a machine learner than a human. Could a human
succeed at this game quality task – identifying good games by inspecting UCT trees?

Below are some examples of UCT trees produced by the game playing system. These
examples all have the same format: they show UCT trees based on 5,000 iterations, with
the size of a node representing how many times it was visited by the algorithm. This
number is identical to the number of times the action leading this node was attempted,
which is written next to that branch in the tree. The nodes representing weak-looking
moves are represented by dotted lines, and the children of these nodes are omitted due
to lack of space.

Figure 4.1: Example of a UCT search tree produced for the game of Oware, a game
rated as very good quality.

49

Figure 4.2: Example of a UCT search tree produced for the game of Qirkat, a game
rated as medium quality.

The UCT tree for the game of Qirkat (figure 4.2) is very deep, due to the fact that
in Qirkat certain moves are forced. The tree for the game of Oware (figure 4.1), rated
a much higher quality game, is shallower and more “balanced”. However, it is unlikely
that one would, in general, be able to make judgements about the quality of a game
from these UCT trees.

One might suppose that it would be easier to differentiate between a playable game
and a broken game based on its UCT trees. Below are shown two UCT trees for the
game of Othello: in its original form (figure 4.3) and broken form (figure 4.4). There
is a stark difference between the two trees. Reducing the number of available moves
in the broken game has created a much narrower tree structure that has almost no
resemblence to the original game. However, it is important to remember that many
of the games coded had very different gameplay and mechanics, and that they were
broken in a variety of different ways, so the difference between a broken game and a
playable one would not always be easy to detect. Further, each move from each game
would have its own unique search tree; these might have very different shapes, even
within one game.

50

Figure 4.3: Example of a UCT search tree produced for the game of Othello.

Figure 4.4: Example of a UCT search tree produced for the game of Othello when it
was broken by only allowing players to play their stone next to their opponent’s most
recently laid stone.

51

4.2 Game quality prediction with neural networks

There was little evidence to support the initial hypothesis – despite testing a variety
of network shapes using several different training times, no neural network was consis-
tently able to predict the quality of games using UCT tree data. The results for the
best-performing network are shown in table 4.1

Predicted game quality
1 2 3 4 5

True game quality

(Very poor) 1 0 0 0 0 0 0
2 0.1 0.3 3.3 0.3 0 4
3 0 0.7 5.7 0.6 0 7
4 0 0 1.8 0.2 0 2

(Very good) 5 0.1 0 3.8 0.1 0 4
0 0.2 14.8 2 0 17

Table 4.1: The cross-validation matrix for the neural network setup which performed
best at the game quality prediction task. Even this network has a low correlation
coefficient and seems unable to identify very good games based on UCT data

4.3 Game playability prediction

The second hypothesis, regarding game playability prediction, produced more encour-
aging results. Decision trees, SVMs and neural networks were all tested for their pre-
dictive ability on this decision problem. Two separate datasets were tested – one where
the attributes were created by simply aggregating data from all trees for each game,
and another where trees for moves with player 1 to play were separated from trees for
moves with player 2 to play before aggregation.

The predictive accuracy of each [UCT player, data aggregation, ML system] combi-
nation is shown in figures 4.5 and 4.6. As discussed in section 2.5.3, predictive accuracy
alone is not enough to determine which machine learner will be the most preferable for
the purpose of analysing automatically-generated board games. The recall of the ML
system for both playable and unplayable games will influence how well it is able to
identify a group of playable games from many potentials.

The precision and recall of each technique is shown in figures 4.7 to 4.10. They are
compared to the expected results of a naive classifier1: this is a classifier that makes
no inspection of attributes whatsoever, but simply predicts that a game is playable
with probability 17

28 , since there are 17 playable games in the training set out of 28, and
unplayable with probabilty 11

28 . A machine learning system must outperform this naive
classifier to be considered to have performed well. The naive classifier is explained in
more detail in section 5.1.1.

1not to be confused with a naive Bayes classifier, which is a more advanced predictive technique
based on Bayesian probability theory

52

Figure 4.5: Predictive accuracy rates split by learning system and number of UCT
iterations used to create the dataset. Predictive accuracy for the naive classifier, which
simply predicts that every game is playable, is indicated by the dotted line.

Figure 4.6: Predictive accuracy rates split by learning system and number of UCT
iterations used to create the dataset (when the dataset was split by player number –
trees for moves with player 1 to play were split from those for moves with player 2
to play). Predictive accuracy for the naive classifier, which simply predicts that every
game is playable, is indicated by the dotted line.

53

Figure 4.7: Precision and recall rates for playable games, split by learning system and
number of UCT iterations used to create the dataset. The precision/recall rate for
playable games for the naive classifier is indicated by the dotted line.

Figure 4.8: Precision and recall rates for unplayable games, split by learning system
and number of UCT iterations used to create the dataset. The precision/recall rate for
unplayable games for the naive classifier is indicated by the dotted line.

54

Figure 4.9: Precision and recall rates for playable games, split by learning system and
number of UCT iterations used to create the dataset (when the dataset was split by
player to number – trees for moves with player 1 to play were split from those for
moves with player 2 to play). The precision/recall rate for playable games for the naive
classifier is indicated by the dotted line.

Figure 4.10: Precision and recall rates for unplayable games, split by learning system
and number of UCT iterations used to create the dataset (when the dataset was split
by player to number – trees for moves with player 1 to play were split from those for
moves with player 2 to play). The precision/recall rate for unplayable games for the
naive classifier is indicated by the dotted line.

55

Chapter 5

Evaluation

This chapter analyses and expands upon the results set out in chapter 5. It begins with
some statistical anaylsis of the ML systems’ predictive accuracy figures to assess their
significance. It then moves onto analysing the UCT tree features used by the decision
trees in making their game playability predictions, inspecting individual decision tree
nodes in the light of the game quality concepts introduced in section 2.3. Section
5.3 covers the importance of recall for playable and unplayable games, and how they
interact to determine how effective a machine learning system is when helping to analyse
automatically-generated board games. Finally, possible reasons for some of the negative
results are discussed.

5.1 Statistical significance of results

5.1.1 Game quality

Table 4.1 represents the best neural network shape and training time combination, mea-
sured using an average correlation coefficient over 10 repetitions of the cross-validation
process. It seems quite intuitively clear that the machine learner has failed to learn
the target function accurately, and indeed if the average correlation coefficient of 0.28
is in no way statistically significant. It has a p-value of 0.86, meaning that there is an
86% chance that a relationship as strong as this could have come about as a result of
random chance.

This is a clear-cut negative result: the neural networks were unable to learn how to
predict the quality of a game based on UCT tree data. Possible reasons for this failure
are discussed later in the chapter.

5.1.2 Game playability

The machine learners’ predictive ability with regard to game playability was encourag-
ing, with one decision tree learner achieving predictive accuracy of 82%. It is important
to establish the statistical significance of the results, though. Could these figures be the
result of chance alone? To establish the success or otherwise of the machine learning
systems, they shall be compared to a “naive classifier”. For the purposes of this anal-
ysis, the naive classifier will be defined as follows: it simply calculates the proportion
of playable and unplayable games in the known population, then classifies new games
according to these proportions.

More specifically, since this research was conducted with 17 playable games and
11 unplayable ones, a naive classifier would predict that a new game is playable with
probability 17

28 , and unplayable with probabilty 11
28 . The expected cross-validation results

56

of this naive classifier are shown in table 5.1. It has expected recall rates of 17
28 (11

28) for
playable (unplayable) games, and identical expected precision rates.

Naive classifier Predicted
Unplayable Playable

True
Unplayable 4.3 6.7 11

Playable 6.7 10.3 17
17 17 28

Unplayable Playable
Precision 39% 61%

Recall 39% 61%

Table 5.1: Expected cross-validation results and precision/recall rates of the naive
classifier.

In cases where the observed predictive accuracy of a machine learning system was
higher than these naive figures, a t-test can be used to test for statistical significance.

Let P be the predictive accuracy rate of the machine learning system being ex-
amined, and Pn be the expected predictive accuracy rate of the naive classifier (i.e.
Pn = 14.6

28 = 52%, as shown in table 5.1).

Then the null (H0) and alternative (H1)hypotheses are:

H0 : The ML technique is no more accurate than the naive classifier, P = Pn

H1 : The ML technique is more accurate than the naive classifier, P > Pn

The test statistic is

t =
(p− P)√
P (1−P)

n

where p is the observed predictive accuracy, n is the number of trials (i.e. 28) and
under the null hypothesis, P = Pn = 52%. The results of this significance test are
shown in table 5.2.

There is a clear stand-out result here – the decision tree machine learner trained on
100,000 iteration UCT data (split by player number before aggregation) has a near-zero
p-value. This is very strong evidence that it is has a higher predictive accuracy than
the naive classifier. The next section explores the features used by this and the other
decision trees to make their classifications.

5.2 Reasoning used by the decision trees

One of the advantages of using decision trees for this machine learning task is that they
are simple to understand for humans, in contrast to methods such as neural networks.
The features used by the decision trees in making their classifications can be easily
identified. As described in chapter NN, sixteen features were used to describe the UCT
trees in the course of this research. Are some of these features more closely related
to game quality than others? If so, this might open new areas of research, and allow
future work in this area to focus more closely on these most relevant features.

57

Data not split Data split by player
before aggregation number before aggregation
Observed Observed
predictive predictive
accuracy p-value accuracy p-value

Decision 1,000 61% 0.19 46% -
trees 10,000 57% 0.31 57% 0.31

100,000 61% 0.19 82% 0.00

SVMs 1,000 54% 0.45 39% -
10,000 32% - 46% -
100,000 57% 0.31 39% -

Neural 1,000 54% 0.42 61% 0.17
networks 10,000 54% 0.43 60% 0.21

100,000 50% - 53% 0.49

Naive classifier (expected) 52% 52%

Table 5.2: Results of performing a t-test on the machine learners’ predictive accuracy
rates. With a p-value of nearly zero, there is very strong evidence that the decision
tree learner trained on 100,000-iteration UCT data split by player number is a better
predictor than the naive classifier.

So the next step in evaluating the results was to look at the tree features being used
by these decision trees. How often various UCT tree features were used by the decision
trees could be analysed, and efforts could be made to explain why some features were
more relevant than others, and why particular decision nodes. This analysis would be
done in reference to the game quality measures discussed in section 2.3 – do the decision
tree classifications make sense in relation to these game quality concepts? This was
especially true for the decision tree trained on 100,000-iteration UCT data split by
player number, which showed significantly better predictive accuracy that would be
expected of a naive classifier. It would be very interesting to see if some sense could be
made of this classifier’s strong predictive accuracy results.

Shown below in figures 5.1 to 5.6 are the decision trees created for 1,000, 10,000
and 100,000 UCT iterations, with and without splitting by player number before ag-
gregation. It should be noted that these are the overall decision trees learned when
using all 28 example games as training data, rather than those learned during the
cross-validation process.

58

Figure 5.1: The decision tree learnt from the 1,000-iteration UCT data. The number
of games classified to each node is shown in the table at the bottom of the figure.

59

Figure 5.2: The decision tree learnt from the 10,000-iteration UCT data. The number
of games classified to each node is shown in the table at the bottom of the figure.

Figure 5.3: The decision tree learnt from the 100,000-iteration UCT data. The number
of games classified to each node is shown in the table at the bottom of the figure.

Looking at the decision tree for 1,000-iteration UCT data in figure 5.1, node B
differentiates between 7 unplayable games and 3 playable ones (although it does predict
one unplayable game to be playable in doing so). It splits games according to the
variance in the score of the best move. Those with larger variance are classified as

60

unplayable while those with smaller variance are classified as playable. How can the
decision being made at node B be explained?

Imagine an unplayable game which is biased and quickly leads to a win for one
player. Since the best score for the player with the advantage will be positive and
increase to 1, while the best score for the opponent will be negative and decrease to -1,
this results in a high variance when considering the UCT trees of both players. So this
decision node seems to picks up on games which are too short and biased.

Node B also seems to pick up on several drawish games, though. Drawish games
lack the quality of decisiveness, and so a player with a stronger position has difficulty
winning the game. For this reason, drawish games may remain in a state where one
player has the upper hand for a long time, without being able to end the game. During
this prolonged period the best score for the player who is in a stronger/weaker position
will be positive/negative. This results in a game which exhibits a high variance in best
move score.

Node C also picks out two broken drawish games from a large group of playable
games, because they have low variance in the spread in scores. This is typical of a
drawish game, because most plausible moves – moves that are not obviously poor –
will have scores close to zero throughout. Since this applies to both players, the variance
in this statistic is very low for a drawish game.

The decision tree for 10,000-iteration UCT data in figure 5.2 immediately splits out
7 unplayable games using a different measure: the variance in the score of the worst
available move (node A). This may again be linked to the fact that in a drawish game,
both players will be in similar situations throughout. There will never come a time
when one player is ahead (in which case his worst move might have a positive score)
and one player will be behind (his worst score would be likely to be near -1). This lack
of variation from one player to the other in terms of their game situation leads to a
lack of variance in worst move score.

The decision tree for 100,000-iteration UCT data in figure 5.3 uses similar measures
to those discussed above. Its two nodes focus on the variance in the spread in scores
and the variance in score of the best available move. What of the decision trees that
trained on data split between moves for player 1 and moves for player 2? These are
shown below.

61

Figure 5.4: The decision tree learnt from the 1,000-iteration UCT data, split by player
number before aggregation. The number of games classified to each node is shown in
the table at the bottom of the figure.

Figure 5.5: The decision tree learnt from the 10,000-iteration UCT data, split by player
number before aggregation. The number of games classified to each node is shown in
the table at the bottom of the figure.

62

Figure 5.6: The decision tree learnt from the 100,000-iteration UCT data, split by
player number before aggregation. The number of games classified to each node is
shown in the table at the bottom of the figure.

The decision tree trained on 1,000-iteration UCT data in figure 5.4 begins with
a node which inspects the mean of the variance in scores of available moves (node
A). This picks out several drawish games, some because they are biased and short and
some because they are long and drawish. This makes a lot of sense: in the short, biased
games player 2’s moves are likely to be either all good, or all bad; in the long, drawish
games, players 2’s moves are likely to all have scores close to 0. In both cases, there
will be less variance than in a playable game where board positions are more balanced,
but the potential to win or lose the game is ever-present. So the mean of the variance
in scores for available moves will be low for these unplayable games. The very same
measure is used at the top of the 10,000-iteration UCT data decision tree in figure 5.5.

The most successful decision tree, trained on 100,000-iteration UCT data split by
player number uses similar measures to those already discussed. First it isolates 8
unplayable games using a lack in variance in the spread of scores of available moves for
player 2. This lack in variance isolates games which are drawish (all scores often close
to zero, hence low variance in spread in scores) and also games which are short and
biased (scores bunched together close to 1 or -1). Node B separates the three remaining
unplayable games using the variance in score of the worst available move for player 1.
This node is picking out drawish games, because in a drawish game even the worst move
available may not have a score far below zero. Especially with strong play from the
100,000-iteration UCT algorithm, which means that it avoids weak positions, the worst
available move will tend to have a score which is only slightly negative. Compare this
to a good game of high tension, where one slip up could mean a decisive disadvantage,
meaning that the worst available move is likely to have a much more negative score
associated with it.

In order to get more of an idea of which UCT tree features appeared most often
in the decision trees used during cross-validation, each decision tree was inspected and
the feature used at each node was logged. A chart summarising this data is shown in
5.7.

A handful of the statistics were used many times more than others, and as we
have seen, very similar nodes appear in several of the decision trees. Investigating the

63

Figure 5.7: Chart showing how often each statistic describing the UCT trees was used
in one of the decision trees during the cross-validation process. The data in the chart
has been totalled over the cross-validation processes for 1,000-, 10,000- and 100,000-
iteration UCT data.

importance and reliability of these decision nodes in classifying games represents an
interesting area of future research; this is discussed in the next chapter.

The following section investigates the relationship between recall rates for playable
and unplayable games of classifiers, and which is more important when using machine
learning to identify playable automatically-generated board games.

5.3 Preferred method for predicting game playability

The headline finding of this research is that it has identified a machine learning system
which performed significantly better than the naive classifier in identifying playable
board games from UCT tree data: the decision tree learner trained on 100,000 iteration
UCT data, split by player number. It has a high recall rate for playable games, and
100% recall for unplayable games, making it by far the preferred method of prediction
for the purposes of classifying new games.

Part of the purpose of this research was to find a machine learner which would help
identify interesting automatically-generated games. It is worth spending a moment
calculating the mathematical advantage brought about by using this best-performing

64

classifier upon new test cases. Doing so will also highlight how recall rates for playable
and unplayable games interact to determine the predictive qualities of a classifier, and
how the demographic of the test set from which the new cases are drawn can strongly
influence whether one classifier outperforms another.

One important assumption will underly this analysis: automatically-generated games
are likely, in general, to be unplayable1. A machine learner would be employed to vet
a large set of games – to inspect them far quicker than a human would be able to, and
to provide an initial estimation of their playability. Games classified as playable could
then be inspected by human players for confimation.

As discussed in section 2.5.3, in completing this task – removing most of the bad
games and picking out playable, potentially good games – it is desirable that no good
games are “thrown out” as a result of mistakes made by the machine learner. A higher
recall rate for playable games means that fewer potentially good games will be missed
by the vetting process, so a high recall rate for playable games seems to be a good
measure of a machine learner’s suitability.

However, note that a naive classifier which classifies every game it encounters as
playable will achieve a high recall rate – 100% in fact. This classifier would be com-
pletely useless, though, in helping to extract playable games from unplayable, since it
would not remove any unplayable games from the test set. It would not reduce the
amount of work to be done at the next stage in the process, where human players would
check these potentially playable games. So it is also important that our ML system has
good recall for unplayable games, so that it accurately removes these unplayable games
from the test set.

In analysing which machine learning system is most appropriate, it is important
to consider not only the proportion of good games identified correctly by the machine
learner, but also its effectiveness in terms of the reduction in checking time it offers. This
is dependent on both the recall (for playable and unplayable games) of the ML system
and the proportion of genuinely playable games in the testing set. This proportion is
an unknown, so for the purposes of analysis assumptions must be made about its true
value.

If the proportion of genuinely playable games in the set of automatically-generated
games is assumed to be 1%, then the recall and precision rates shown in the appendices
can be used to calculate the expected number of playable games identified by each
machine learning system. The results are shown in figure 5.8 and 5.9.

The best performing classifier is the 100,000-iteration decision tree with data split
by player number. Even though its predictive accuracy is 82%, as compared with 52%
for the naive classifier, its 100% recall for unplayable games means that it perfectly
eliminates all unplayable games. This makes it a perfectly effective classifier (100%
effectiveness). This is compared with effectiveness of below 2% for all the other ML
techniques. Its above average recall for playable games means that it correctly identifies
7.1 playable games, which is a higher number than many of the other methods.

It is interesting to contrast the effectiveness of some of the other classifiers. Of the
data not split by player number, the 10,000-iteration decision tree is the most effective.
Despite having a lower predictive accuracy than the decision tree learners trained on
1,000- and 100,000-iteration UCT data, it is a more effective initial test in terms of
reduction in checking time. Even though it only identifies 4.7 of the playable games on
average, its high recall for unplayable games means that it eliminates many unplayable
games correctly, giving it a high effectiveness.

1This is backed up by research by Browne, who synthesised 1,389 games, of which 19 were deemed
playable[6]

65

Figure 5.8: Chart showing the effectivenes of each machine learning method (expected
proportion of predicted playable games that will actually be playable), assuming that
a sample of 1000 automatically-generated games have been analysed, of which 1% are
genuinely playable. The fraction used to calculate the effectiveness is shown as a datala-
bel – notice that some methods accurately identify several playable games (numerator),
but classify many unplayable games as playable too, lowering their effectiveness.

By far the best classifier to use for this process is the 100,000-iteration decision
tree with data split by player number, with a huge lead in effectiveness over the other
methods by virtue of its perfect recall for unplayable games and good recall for playable
games. Any classifier with less than 1% effectiveness is not worth considering, since it
would be more effective to simply pick out games by using the naive classifier. Simply
choosing 17

28 of the games at random and checking these would identify playable games
more quickly.

5.4 Areas for improvement

The decision tree machine learner trained on 100,000-iteration UCT data split by player
number showed very strong predictive accuracy results. Statistical analysis showed very
strong evidence that this technique is a better predictor of game playability than the
naive classifier. This is a welcome result. However, it should be noted that none
of the other techniques tested were better than the naive classifier, from a statistical
standpoint. Of the p-values in table 5.2, only one is below the 10% mark. So there
were several negative results for this decision problem. Further, the performance of the
neural networks in predicting game quality was very poor.

What factors have contributed to these negative results, and can they be addressed
to achieve better results in the future? This question is the focus of the next two
sections. Potential approaches to addressing these issues are discussed in chapter 6.

5.4.1 Sample sizes

From a purely statistical standpoint, it would be valuable to confirm the findings of this
research with larger sample sizes. When tackling the game quality prediction problem,
a sample of 17 games were presented to the neural networks. These games formed a
good cross section of abstract strategy board games, and included a variety of gameplay

66

Figure 5.9: Chart showing the effectiveness of each machine learning method (expected
proportion of predicted playable games that will actually be playable) when data is
split by player number before aggregation. The 100% recall for unplayable games of
the 100,000-iteration decision tree makes it a superbly effective classifier, because it
accurately eliminates all unplayable games.

67

models and mechanics. However, for the purposes of statistical analysis and machine
learning, 17 games is a very small sample. Programming a larger number of games
would have given the neural networks a greater chance of finding a relationship.

For the game playability prediction problem, the group of 17 playable games was
extended by adding 11 unplayable games. This gave a slightly larger sample size, but
even 28 games still represents a small dataset for a machine learner. All machine
learners benefit from the availabilty of more training data; it is highly likely that a
larger sample of games would have improved the performance of all the techniques on
test. Ideally, around 50 playable and 50 unplayable games would represent a good
number. Unfortunately, given the time constraints, this was simply not possible in the
course of this research.

5.4.2 Failings of UCT

Another major factor in the lack of positive machine learning results may stem from
the UCT algorithm itself. UCT does adopt a rather “human” approach when applying
its selection algorithm to sample possible moves. It is very strong in games such as
Connect4, where its search tree extends many moves ahead into the possible game
continuations. It plays these games in what seems to be a very intelligent manner, and
in a style not easily discernable from a strong human player.

However, UCT is not a human player, it is an algorithm, and there are situations
where this algorithm falls down. For games with large branching factors, the UCT tree
boundary may lie no more than 2 moves ahead, even when 10,000 playouts are used.
Compare the UCT search tree for Connect4 (figure 5.10) with that of Breakthrough
(figure 5.11). When UCT’s search tree is as shallow as that shown in figure 5.11, it
is not seeing deeply into the current game position, and it cannot make particularly
intelligent moves. If the algorithm is not playing the game intelligently, how can we
hope for its tree shape to give any indication of a game’s quality or playability?

Figure 5.10: An example of a search tree for the game of Connect4 – which has a
branching factor of around 7 – for a 10,000-iteration UCT player. Only nodes which
have been visited often enough for the node selection algorithm (expression ??) to be
used are shown. Moves currently considered weak are shown with dotted lines, and
sub-trees of these weak moves are not shown.

Indeed, in some games even a UCT player with several thousand iterations is a very
weak opponent for a human player. Game positions with very obvious conclusions such
as the Dots & Boxes situation shown in figure 5.12 can present UCT with difficulties.

68

Figure 5.11: An example of a search tree for the game of Breakthrough – which has a
branching factor of around 20 – for a 10,000-iteration UCT player. The high branching
factor means that UCT cannot see deeply into the game situation.

The game is played as follows: players take turns to draw lines between neighbouring
dots on an orthogonal grid. When a square box (of side one unit) is completed by
drawing a line, that box is assigned to the player who created it; and the winner is the
player with the most boxes at the end of the game. Crucially, when a player completes
a box, they are allowed to play again; this creates the possibility of chain moves which
capture several boxes in one turn.

Figure 5.12: An example of an intuitively simple position where UCT fails to identify
the correct course of action. Any human player with basic knowledge of the game
understands that player 2 must fill in lines along the corridor that exists on the game
board to win (indicated by grey arrows). UCT rarely finds this continuation (see figure
5.15).

In the position shown, player 2 has a clear win by filling in lines along the one
remaining winding “corridor”, as indicated by the white arrows. Each line drawn will
create a new box and allow player 2 to continue in one long chain move until the game
is won.

However, even a simple win for player 2 in this position is not at all obvious to
UCT. The reason UCT has difficulty in deciphering this sort of position is that it is
considering so many possible combinations of moves. Since there are 22 moves available
at level 1 of the search tree, 21 moves available at level 2 of the search tree, and so on,
the number of possible continuations grows factorially. UCT cannot hope to evaluate
all the possible continuations, and is likely to make the wrong move in this intuitively
simple position.

69

How likely is it to make an incorrect move? This was investigated by creating
a simplified version of the Dots & Boxes game, played on a straight corridor-shaped
board which mimics the game situation shown in figure 5.12. The board used is shown
in figure 5.13. The probability that a variety of different-strentgh UCT players play the
correct move for each board size is shown in figure 5.14. The probability that each of
these UCT players performs a complete correct playout for each board size is charted
in figure 5.15.

Figure 5.13: The board used for testing UCT’s ability in the Dots & Boxes game. Note
that the simple corridor arrangement shown here is identical to the game situation
shown in figure 5.12. The winning strategy is intuitively obvious to a human player,
but difficult for UCT to find due to the huge number of potential continuations.

Even a very strong UCT algorithm often fails for boards of length greater than 20.
If these corridor situations occur not at the root node of the search tree (as was the case
in this test) but further down, UCT wil have far fewer than its maximum number of
iterations remaining with which to perform analysis. Having fewer iterations available
increases the chance of a mistake.

Although a 100,000-iteration UCT algorithm has about a 50% chance of playing
the correct move on a board of length 24, note that to correctly win all the boxes in
succession, the single correct move must be played 24 times consecutively. Playing the
correct first move on a board of length 24 leaves a board of length 23; then playing the
correct first move leaves a board of length 22, and so on. So the probability of UCT
playing out this position correctly is the product of the probability that it plays the
correct first move on each board size.

So UCT often fails to calculate how to play out these corridor situations correctly.
At a “higher” level of play, it will therefore fail to avoid offering corridor situations to
its opponent, and fail to force the game into continuations where it benefits from them.
However, the previous sentence perfectly sums up the innate challenge and interest
of the Dots & Boxes game. These corridor situations always crop up in some way
throughout the game – it is the challenge of predicting them, calculating their effects
on the score and if necessary, altering the gameplay to avoid them that makes the game
fun for human players.

If UCT is failing to pick up on the key gameplay dynamic that defines Dots & Boxes,
how can its search trees be a fair reflection of the game that human players enjoy? If
these search trees are not a fair reflection of the game, there seems to be no chance
that a machine learner using only tree data can accurately predict game quality or
playability. This issue may well have influenced some of the negative machine learning
results.

70

Figure 5.14: Chart showing the probability that the UCT algorithm plays the correct
move when faced with the simplified version of the Dots & Boxes game shown in figure
5.13. For boards of length 20 or more, the high branching factor means that even a
100,000-iteration UCT algorithm does not find the right move every time.

Figure 5.15: Chart showing the probability that the UCT captures all remaining boxes
in the testing position shown in figure 5.13. For long boards, the cumulative effect of
having to make several consecutive correct moves means that even a 100,000-iteration
UCT algorithm is very unlikely to play out this position perfectly.

71

Chapter 6

Further work

This research has found one machine learning system which was able to identify playable
games better than the naive classifier. However, other techniques proved poor. There
was no machine learnable link between tree shape and game quality, and even predicting
game playability based on tree shape proved difficult. Nevertheless, if the major issues
discussed in the evaluation section can be addressed, a link between UCT tree shape
and game quality may yet be proved.

6.1 Confirmation of results

The sample size remains an issue with this research. In general, machine learning
systems require large datasets to effectively learn a target function. If a larger sample
of games of various qualities were to be coded up, the extra data be enough to allow
neural networks to find a reliable link between UCT tree shape and game quality. Just
as a positive result with a small sample size cannot be considered definitive, the negative
results described in this paper do not put an end to this line of research.

A larger sample size may also improve the machine learning systems’ ability to
predict game playability. Although this research has identified only one [data collec-
tion/aggregation, machine learning system] combination that is better than the naive
classifier, other techniques and data collection methods may prove viable if larger train-
ing sets of games are used. It would be valuable to confirm the results of this paper
and to test the performance of other machine learning systems (such as Inductive Logic
Programming, Bayesian classifiers and Case-Based Reasoning) with more data.

6.2 Understanding the most used UCT tree features

Figure 5.7 shows the UCT tree features that were most commonly used by the decision
tree learners in this research. This chart would seem to imply that some tree features
are much more closely related to game quality/playability than others. Again, it would
be useful to confirm these findings using a larger sample size.

If UCT trees really can be used to predict game quality or playability, another
interesting area of research would be to analyse which tree features are most closely
related to game quality, and why these tree features are so revealing. Section 5.2
puts forward some ideas in this respect, but a more focused analysis may bring about
advances in understanding. If definitive relationships between certain tree features and
game quality can be established, this would be very useful. Automatic generation of
board games would become a great deal easier if these features could be tracked during
the generation process.

72

It would also be of interest to reevaluate various machine learning systems when
they presented with attributes based on only relevant UCT tree features. The chart in
figure 5.7 shows which UCT tree features were most commonly used by the decision
tree machine learners. This chart suggests that features such as the number of plausible
moves are not relevant to game playability. If this is really the case, techniques such
as neural networks may perform far better if trained on only a select set of relevant
attributes (based on those features at the top of the chart), since there will not be as
much “noise” from irrelevant features to contend with.

6.3 A stronger, more sensible UCT algorithm

As mentioned in chapter 5, UCT sometimes fails to play games in the way it should
– the algorithm still falls down in certain situations. At times these are situations in
which the right course of action would be very clear to even an inexperienced human
player. Addressing this issue (creating a more intelligent version of the algorithm that
can play these types of positions well) is likely to enhance any relationship between
tree shape and game playability. If the algorithm could play these positions in a more
sensible, human manner, its search trees would surely be more closely related to the
game’s true nature, and hence its playability.

There are three contributing factors to UCT playing these positions poorly.

• Problems coping with large branching factors

As discussed in the previous chapter, part of the issue when UCT plays positions
poorly is to do with large branching factors. Positions with large branching factors
can result in a huge number of possible continuations, and although UCT can run
very quickly, it cannot possibly analyse all possibilities accurately. In situations
like this UCT creates very wide, shallow search trees, meaning that it does not
see very far ahead into the position.

• Ignorance of equivalences and symmetries

UCT ignores considers the same board position brought about by different move
orders to be entirely separate. This means that it will analyse two or more
identical board positions separately if they lie at separate nodes in its search tree
(see figure 6.1). This means that the UCT tree will contain several nodes with
low visit counts for the same board position, each of which may have a poor value
estimate as a result.

UCT also has no concept of symmetries in game positions. For example, there
are only really three possible game situations after 1 ply in Noughts & Crosses:
player 1 may move in the centre, or in the middle of an edge, or in a corner.
However, UCT considers there to be 9 possible game situations, because it has
no concept of the fact that any move in a corner is equivalent to any other for the
by symmetry. This compounds the branching factor problem mentioned above.

• Lack of intuition

UCT has no intuition, and no concept of the simple strategies and rules of thumb
that humans can call upon when they learn to play a game. A position such as
that shown in figure 5.12 can easily be won by a human player by simply “filling
in boxes along the remaining corridor”. UCT will never have an understanding of
concepts like this. Although finding the win comes easily to a human player, there
is only one winning combination out of several billion possible game continuations.
The ease with which this winning combination occurs to humans comes from our
ability to pattern match and inductively solve large problems from small ones.

73

Figure 6.1: An example of UCT’s ignorance of symmetry. The Noughts & Crosses
board position indicated by the grey dotted lines occupies several nodes in the UCT
search tree. Playouts from one of these nodes will never be reflected in the scores for
the other “twin” nodes.

So UCT struggles in board positions with large branching factors, fails to identify
symmetries in positions, and is unaware of basic strategies and heuristics that human
players employ when playing games. The latter is a fundamental part of the way
the algorithm works: UCT is a completely general game-playing algorithm that does
not use any heuristics or prior knowledge. However, the former two issues might be
addressed without stepping outside the bounds of UCT’s Monte Carlo Tree Search
roots. A possible area of further work presents itself which may address these issues
and result in a stronger, more sensible UCT player.

UCT currently considers identical board positions reached through different move
orders as entirely different. These board positions would be located at different nodes
in its search tree, and have separate visit counts and scores (depending on the precise
simulations performed by UCT during its iterations). See figure 6.1 for an example of
this. Despite their identical board positions, these “twin” nodes are entirely separate;
playouts made through one of these nodes have no influence whatsoever upon the others.

However, there is a strong case for updating all of these twin nodes with the score
from any playout game through one of them. After all, if this playout gives information
about the game state for one twin node – enhancing UCT’s understanding of its strength
or weakness – then the information is surely relevant to all twin nodes, by virtue of
their identical board positions?

If this change to UCT were implemented, there are two possible approaches to
propagating playout game scores back up the search tree. One is to update not only
the twin nodes, but to update all paths leading back to the root node, as shown in
figure 6.2. The other is to update all nodes on the original path of descent and their
twins, without tracing multiple paths, as shown in figure 6.3.

74

The former approach seems valid, since all nodes on the paths being updated could
have led to the playout game. However, this updating process could prove complicated
when multiple paths converge, as shown at the top of figure 6.2. The latter “single
return path” approach seems more elegant, and still ensures that the information from
the random playout is propagated appropriately to twin nodes more fully than in classic
UCT.

Figure 6.2: A suggested alternative approach to positions with identical board positions.
Twin nodes are identified each time a new node is added to the tree, and pointers are
used to maintain linked lists of twin nodes. When a playout is performed, the playout
game score is used to update not only nodes on the original path from the root node,
but all nodes on paths back from twin nodes to the root node.

This approach may also help to reduce branching factor. Figures 6.2 and 6.3 show
nodes on different paths within the search tree propagating information to their “twin”
nodes. This would be possible by maintaining pointers from a node to each of its twins1.

Yet note that all twins will have exactly the same score and visit counts under this
new setup, and, by definition, identical game states. Thus these nodes are simply copies
of exactly the same information; they differ only in their parent node. This means that
there is no need to keep them separate: they can be represented by just one node. The
only proviso is that this node will now potentially have more than one parent. The
topology of the search space can now be thought of not just as a tree, but as a web
(see figure 6.4).

This setup simultaneously reduces branching factor and improves value estmation.
Imagine that each of the nodes with identical board positions in figure 6.1 has been
visited 15 times. Instead of having four separate nodes, each with 15 visits, the proposed
“search web” shown in figure 6.4 would have just one node, with 60 visits, and hence
a much higher understanding of that state’s true value. This better understanding
would result in more accurate move choices at each of the parent nodes during future
iterations, improving the accuracy of their value estimations.

1or twin nodes could be kept in linked lists, requiring only one “next twin” pointer per node

75

Figure 6.3: Another alternative approach to positions with identical board positions.
When a playout is performed, the playout game score is used to update the scores of
twin nodes and any nodes along the original path from the root node. The score is not
propagated up paths from twin nodes to the root node.

Figure 6.4: Diagram showing the true nature of the suggested new UCT algorithm –
all twin nodes are merged into one and each node can have multiple parents, creating a
search web instead of a search tree. Each node can have a “most recent parent” pointer
which can be used to trace the correct path back up the web when propagating playout
game scores back to the root node.

76

6.3.1 Reduction in branching factor

By how much does this new algorithm reduce the branching factor of a tree? Let us
consider the simple corridor-based game situation of figure 5.13 as an example, with a
board of length 24.

Let us label the number of nodes at level n in the tree Nn. In the classic UCT
algorithm there are 24 possible board positions at ply 1, 24 × 23 possible positions at
ply 2, and so on. So N1 = 24, N2 = 24× 23, and

Nn =
24!

(24− n)!
= n!

(
24
n

)
In the new algorithm, the number of positions at level n is dependent on the number

of possible combinations of lines drawn Ln. If we label each combination of lines li for
i = 1...Ln

Nnew
n =

Ln∑
i=1

b(li)

where b(li) is the number of possible combinations of boxes with line combination
li.

An upper bound can be placed on the b(li). Since each li is a combination of n
lines, it can create at most n boxes on the board. So a(li), the number of boxes created
by a line combination li, satisfies

a(li) ≤ n

Since every box created is won by either player 1 or player 2, b(li) = 2a(li). Thus the
number of possible combinations of boxes b(li) satisfies

b(li) ≤ 2n

And since Ln =
(
24
n

)
, we can say that

Nnew
n =

Ln∑
i=1

b(li)

≤
Ln∑
i=1

2n

= 2n
(

24
n

)
Currently UCT wastes valuable iterations through unnecessarily analysing the same

position multiple times (on different branches of its search tree). The new implementa-
tion of the algorithm is reducing the branching factor by a factor of n!

2n . Mathematically
speaking, this is a huge reduction – it grows exponentially with n.

There are many more complicated board games than Dots & Boxes, but the fact
that classical UCT creates a different node for each different move order leading to a
position means that in general, the new algorithm will reduce branching factor. This
reduction should improve UCT’s performance by allowing it to create deeper, more
focused trees.

77

6.3.2 Trade-offs

There are, of course, trade-offs to the advantages of this “search web” approach.

One disadvantage arises in identifying the “twin” relationship. When adding a node
to the search web, its board position must be compared to that of all the current nodes
in the web (to see if the new node needs to be merged with a current one). This
will clearly introduce a processing overhead to the algorithm. So although this altered
algorithm would be stronger for a given number of iterations, the iterations would be
slower to execute.

However, quick methods for board-matching may be possible by using techniques
such as hashtables and game-specific methods (for example, in games where one counter
is placed on each turn, new nodes only need to be compared with nodes at the same
level in the search tree). The winning conditions of some games require some form of
board-matching – for example, one of the rules of chess is that if any position is repeated
more than 3 times, the game is a draw. Developing quick board-matching algorithms
for these games will therefore be an integral part of programming the UCT algorithm
in the first place. The extra processing required to search for board positions matching
a new node might not represent a huge loss. Also note that only one matching node
need be found for the merge to take place – in some cases this node might be found
early in the board-matching process.

The board-matching stage of this process may also allow UCT to improve its un-
derstanding of symmetry. The function used to compare board positions could also be
set up to match board positions which are identical by rotational/reflective symmetry.
This would have the effect of bringing together continuations which the classic UCT
algorithm considers completely separate. Again, this reduces branching factor, allowing
the new UCT algorithm to see deeper into the position, and should produce stronger
play for a given number of iterations.

Another disadvantage with the altered algorithm is that each node can now have
multiple parents. This means that care must taken to trace the correct path back when
ascending back to the root node after making a playout. However, if using the single
return path approach shown in figure 6.3, a node does not need to have memory of all
of its parents – it only needs to remember which parent the current playout descended
through. If each node holds a “most recent parent” pointer, it only has to follow this
pointer when propagating scores back up the path of decent.

The processing overheads of this approach will result in fewer iterations being com-
pleted per unit time, but there are undoubtedly advantages in reducing branching
factor and improving value estimation by adopting this search web approach. A rigor-
ous analysis of whether or not it might create a stronger UCT algorithm, and whether
inspecting the shapes of its search webs might lead to better game playability prediction
than inspecting classic UCT’s search trees is suggested as future work.

78

Chapter 7

Conclusion

Although game-playing is a recreational activity, it is often a testbed for innovative
AI research techniques. Work on game-playing dovetails with many others areas of AI
including optimisation and planning. UCT is a very new game-playing algorithm –
first documented just four years ago – which incorporates two distinguishing features:
it uses Monte-Carlo simulations to estimate the value of nodes in its search tree, and
it samples actions selectively according to its current estimation of the values of those
actions.

These two features make UCT a rather unique approach to game playing, but
UCT’s popularity and impact in academic circles have been the result of its simple
implementation, extensibility to a variety of games, and its strength as a game playing
algorithm. The game of Go, which has now taken over from chess as the frontier of
AI game-playing, has always been very difficult to play for computers due to its huge
number of potential continuations. However, in just four years, UCT has brought about
advances in computer Go that were previously thought to remain many decades away,
beating strong amateur Go players even on championship-sized boards.

The Monte-Carlo simulations used by UCT have led to a whole new area of research,
Monte-Carlo Tree Search. The fact that random playouts are used to estimate node
values means that UCT can play any deterministic turn-based game, provided it can
access the rules and dynamics of that game through various functions, without calling
on any prior knowledge or heuristics. Its selective sampling method is in many ways
an even more interesting feature: it adopts a very human approach, sampling moves
which currently look good more often than those which look bad. This gives each UCT
tree its own shape which is uniquely related to the game and the exact position it is
currently playing.

UCT’s unique approach to tree search means that it was the perfect candidate for
being applied to a new area of research: automatically assessing board game quality.
This research has focused on finding out whether or not this was possible. Browne has
already shown that board game quality can be assessed by using statistics garnered
from computer self-play[6]. Given the relationship between UCT tree shape and game
position, there was a chance that the tree shape might also be related to the quality of
the game being played.

So the hypothesis of this research was that a machine learning system, trained on
UCT trees for a selection of games, could accurately predict the quality of a new game
it was presented with. If they hypothesis was shown to hold, then this system might
well be used to predict the quality of computer-generated board games in the future.
The system would be able to inspect a large set of automatically-generated games and
give an initial prediction of which games were good, and which were bad.

Given that most automatically-generated games are likely to be utterly unplayable,

79

it would also be of interest if a machine learner could be found which could distinguish
playable games from unplayable ones. A human could then check those games deemed
playable to see if they were indeed playable, and if so, how good they were. Even
predictive accuracy in this binary classification task would be of huge benefit in helping
to reduce the work required to extract good games from the intial set.

The research contained in this paper has involved first creating a game-playing
system around the UCT algorithm, then coding up several games for UCT vs. UCT
play. Some of these games were “broken”, in order to provide the machine learning
systems with examples of unplayable games. Three different-strength UCT algorithms
were played against each other, performing 100 instances of each game. Statistics from
all the UCT trees created during these games were extracted, recorded in CSV files,
and finally aggregated into a form amenable to machine learning.

Machine learnering systems were then trained on these attributes. One machine
learning system, Neural Networks, was tested for its predictive accuracy with respect
to game quality. Three ML techniques were tested for their predictive accuracy on
game playabilty: Neural Networks, Decision Trees and Support Vector Machines. The
techniques were assessed using a cross-validation procedure that allows fair comparison
of their expected predictive accuracy on new data, not just how well they were able to
classify the training data.

The results for game quality prediction did not support this paper’s first hypothesis.
Even the best-performing network shape and training time setups for ANN learning
showed a very poor predictive performance. However, in the task of predicting game
playability, there was more success.

The headline result of this research is that one machine learning system, the decision
tree trained on 100,000-iteration UCT data split by player number, showed far better
predictive accuracy than the results which would be expected from a naive classifier.
This result was strongly statistically significant, offering very strong evidence in favour
of the second hypothesis.

This classifier was able to predict game playability with predictive accuracy of 82%,
meaning that 82% of its predictions should be correct if it is extended to further data.
This is a very positive result, and furthermore, given its 100% recall for unplayable
games, this classifier would be superbly effective if it were used for the task of vetting a
selection of automatically-generated board games. Extrapolating these results implies
that every game that it deems playable should be playable, so despite missing some
playable games it would leave no work to be done by the human checker at the next
stage of the process.

It is very unlikely that this machine learning system would display 100% recall for
unplayable games over a larger test set. As discussed in chapter 6, the small sample
sizes means that a certain amount of caution must be taken in interpreting the results,
and this research would benefit from confirmation on a larger scale. However, the
predictive accuracy achieved by this classifier does suggest that further work in this
area could bear fruit, since the availability of more data would not only provide a more
definitive evaluation of the hypothesis, but would undoubtedly increase the chance of
the machine learning systems finding a link between UCT tree shape and playability.

Computers are now some of the best board game players in the world, outstrip-
ping human performance in many popular games such as Chess and Checkers. The
automatic-generation of board games and assessment of their quality is an intruiging
area that has, until now, been very little explored. This research has demonstrated a
machine learning system which has the potential to provide a very effective first line
of anlaysis in determining whether automatically-generated board games in the future.
Given the contributions made by computers in so many other areas of society, and their

80

position at the forefront of board game playing, it would be fitting if they could one
day take an active role in board game creation, allowing automatically-generated board
games to hold a place alongside the other classic games which permeate our culture.

81

Appendix A

List of games coded

Achi

(quality rating: 2)

Achi is similar to Noughts & Crosses, and is played on the same board with
the object of getting three-in-a-row. However, once three pieces each have been
placed, play continues in a style similar to Nine Men’s Morris, moving a piece
into an empty neighbouring square on the board.

See http://en.wikipedia.org/wiki/Achi_(game) for more details

Alak

(quality rating: 3)

Alak is a one-dimensional version of the game Go. Players try to take territory
by placing stones in such a way that they trap their opponent’s stones. The game
is won when either player cannot make a move, when the winner is the player
with the most stones.

See http://en.wikipedia.org/wiki/Alak_(board_game) for more details

Dots & Boxes

(quality rating: 3)

Dots & Boxes is played by drawing lines on an orthogonal grid. When a player
creates a box by drawing a line, they capture this box and they get to play again.
The winner at the end of the game is the player with the most boxes captured.

See http://en.wikipedia.org/wiki/Dots_and_boxes for more details

Breakthrough

(quality rating: 5)

Breakthrough is played on a chessboard with two armies of 16 pawns. These
pawns move exactly like chess pawns, with the exception that they are allowed
to move one square directly forward if the square being moved to is empty. The
object is to get a pawn to the opponent’s side of the board. Breakthrough cannot
end in a draw.

See http://en.wikipedia.org/wiki/Breakthrough_(board_game) for more de-
tails

Checkers

(quality rating: 3)

The classic game of moving pieces over the dark squares of a chess board. The
object is to capture all of your opponent’s pieces. Capturing is compulsory if

82

possible, and a capturing piece can make multiple captures in one turn (and
must do so if further captures exist). Pieces become kings, which are free to
move in any direction, if they reach the opponent’s side of the board. If the
game has gone 50 moves without a capture and 50 moves without a piece moving
towards crowning, it is a draw

See http://en.wikipedia.org/wiki/Checkers for more details

Connect4

(quality rating: 3)

The well-known game where players take turns placing pieces into a vertical board
aiming to create 4 pieces in a row.

See http://en.wikipedia.org/wiki/Connect4 for more details

Dipole

(quality rating: 4)

Dipole is played with checkers pieces on a checkers board, but with very different
game mechanics. Players move their forces from a single starting square, aiming
to capture all their opponent’s pieces. Pieces can only move forwards; if a piece is
on the forward edge of the board, it may only move off the board and is considered
captured. When a player captures all his opponent’s pieces, leave them with no
legal moves, or forces them to move their last piece off the board, they win.

See http://www.marksteeregames.com/Dipole_rules.pdf for more details

The Indonesian Finger Game

(quality rating: 2)

The Indonesian Finger Game is not a board game, but can be modelled as such.
It is played with each player holding out two hands, holding out a number of
fingers on each hand. On their turn, players can add the fingers from one of their
hands to one of their opponent’s (by touching their hand to their opponent’s). If
a player’s hand reaches 5 fingers or more, it is reset to none. When a player has
no fingers on one hand they can use a turn to split the fingers from their other
hand across both hands. If a player has no fingers on either hand, they lose the
game.

See http://www.boardgamenews.com/oldsite/index.php/boardgamenews/comments/
valerie_putmanthe_indonesian_finger_game/ for more details

Forms

(quality rating: 3)

Forms is played on a rectangular board (4× 6 was chosen for the purposes of this
research). The whole board is occupied at the beginning of the game, half for
each player. Players take turns in moving a piece to capture an opponent’s piece.
After this capture any pieces not connected to the remaining group are removed
from the board. The last player with pieces on the board wins the game.

See http://www.gamerz.net/pbmserv/forms.html for more details.

Kalah

(quality rating: 5)

Kalah is a Mancala variant, played on a board where each player owns 6 standard
squares on their side of the board, and a store. Pieces are distributed from one of
the standard squares around the board in a circular manner, with any pieces put
into a player’s store staying there for the rest of the game. A player can capture

83

extra pieces for their store with well-judged moves. At the end of the game the
player with most pieces in their store wins the game.

See http://en.wikipedia.org/wiki/Kalah for more details

Nine Men’s Morris

(quality rating: 4)

Nine Men’s Morris is played on a square board, with a specific connection struc-
ture defining which squares neighbour which others (see 3.9). Players take turns
placing pieces: when a player creates a “mill” of three pieces in a row, they may
remove an opponent’s piece. Once all pieces are placed, play continues by moving
pieces to a neighbouring square. The first player with less than 3 pieces remaining
loses.

See http://en.wikipedia.org/wiki/Nine_Men’s_Morris for more details

Noughts & Crosses

(quality rating: 2)

The classic game of three-in-a-row

See http://en.wikipedia.org/wiki/Noughts_and_crosses for more details

Noughts & Crosses (alternative rules)

(quality rating: 2)

A variant of Noughts & Crosses where each player may place a nought or a cross
at any stage, and the object is for a player to create three-in-a-row of either
noughts or crosses.

Othello

(quality rating: 5)

Othello is played by placing pieces on a square 8 × 8 board. There are four
pieces (2 black, 2 white) in the centre of the board at the beginning of the game.
Players take turns laying pieces; a player may only lay a piece in such a way that
it captures his opponent’s pieces (in a style similar to Alak, but in any direction
on the board). Captured pieces are flipped to the capturing player’s colour.

See http://en.wikipedia.org/wiki/Reversi for more details.

Oware

(quality rating: 5)

Oware is another Mancala variant. Players do not have a store, but may capture
any pieces when their final distributed piece lands in on an opponent’s square
with exactly 2 or 3 pieces in it (including the piece being added). The player
with the most pieces captured at the end of the game wins.

See http://en.wikipedia.org/wiki/Oware for more details

Qirkat

(quality rating: 3)

Qirkat is played like checkers, except that it is played on a 5 × 5 board with
vertical, horizontal and diagonal moves possible. Captures occur like checkers
and are compulsory, and multiple captures for the capturing piece are possible
and compulsory just like checkers. The player who loses all their pieces loses.

See http://en.wikipedia.org/wiki/Alquerque for more details

84

Qubic

(quality rating: 3)

Qubic is a 3-D version of Noughts & Crosses, played on a 4 × 4 × 4 board. The
object is to get 4 pieces in a row in any horizontal, vertical or diagonal direction.

See http://en.wikipedia.org/wiki/Qubic for more details.

The “broken” (unplayable) games created from initial set are described in section
3.3.

85

Appendix B

Features used to describe UCT
trees

Number of legal moves available (branching factor)

Tree depth

The score:visits ratio of the best available move
To be more precise, the score:visits ratio of the node pointed to by the best
available move

The score:visits ratio of the worst available move

The spread in score:visits ratio between the best and worst available moves

The spread in score:visits ratio between the best and n
3 available moves This

measure is the spread in score between the 1st move and the n
3 th move, when

moves have been ordered by average score (score:visits ratio). When judging
a position, a human player is likely to dismiss truly poor moves very quickly.
This measure was supposed to give a sense of the spread in score among a more
plausible group of moves.

Mean of level-1 score:visit ratios
The mean of the score:visits ratios over all nodes at level 1 in the UCT search
tree.

Variance of level-1 score:visit ratios
The variance of the score:visits ratios over all nodes at level 1 in the UCT search
tree.

Fraction of leaf nodes
The fraction of leaf nodes in the UCT tree: nodes which have been visited fewer
times than they have legal moves available.

Fraction of UCT nodes
The fraction of nodes in the UCT tree which have been visited more times than
they have legal moves available. Hence during UCT iterations these nodes will
be applying the UCB formula to determine which action to sample.

86

Effective branching factor
A measure of the number of plausible moves in the position. Defined to be the
number of moves with score within one standard deviation of the best move’s
score (standard deviation of all moves).

Average node depth
The average depth of all nodes in the tree: the sum of depths of all nodes in the
tree, divided by the number of nodes.

Average branching factor
In a sense, the “average width” of the tree. The sum of the branching factors of
each node in the tree, divided by the number of nodes.

Variance in maximum depth of level-1 subtrees
The maximum depth of each level-1 subtree (subtrees with level-1 nodes as their
root node) was recorded, and the variance of these maximum depths was calcu-
lated.

Variance in average width of level-1 subtrees
The average width of each level-1 subtree (subtrees with level-1 nodes as their
root node) was recorded, and the variance of these average widths was calculated.

Sum of score differences as UCT tree grows
The average score of each move was recorded after 200, 500, 1,000, 5,000, 10,000,
50,000 and 100,000 iterations of the UCT algorithm. The sum of the absolute
value of the differences between each iteration value was calculated, to give a
measure of how much the value estimations had changed as the algorithm went
on.

87

Appendix C

Cross-validation results

Full tables of the cross-validation results and precision and recall rates for each of the
learning systems are shown over the next few pages.

Decision tree learner Predicted
1,000 iterations Unplayable Playable

True
Unplayable 6 5 11

Playable 6 11 17
12 16 28

Unplayable Playable
Precision 50% 69%

Recall 55% 65%

Decision tree learner Predicted
10,000 iterations Unplayable Playable

True
Unplayable 8 3 11

Playable 9 8 17
17 11 28

Unplayable Playable
Precision 47% 73%

Recall 73% 47%

Decision tree learner Predicted
100,000 iterations Unplayable Playable

True
Unplayable 6 5 11

Playable 6 11 17
12 16 28

Unplayable Playable
Precision 43% 64%

Recall 55% 53%

Table C.1: Cross-validation results and precision/recall rates for decision tree learners

88

SVM learner Predicted
1,000 iterations Unplayable Playable

True
Unplayable 6 5 11

Playable 8 9 17
14 14 28

Unplayable Playable
Precision 17% 44%

Recall 18% 41%

SVM tree learner Predicted
10,000 iterations Unplayable Playable

True
Unplayable 2 9 11

Playable 10 7 17
12 16 28

Unplayable Playable
Precision 17% 44%

Recall 18% 41%

SVM tree learner Predicted
100,000 iterations Unplayable Playable

True
Unplayable 4 7 11

Playable 5 12 17
9 19 28

Unplayable Playable
Precision 44% 63%

Recall 36% 71%

Table C.2: Cross-validation results and precision/recall rates for SVM learners

89

NN learner Predicted
(best setup) Unplayable Playable
1,000 iterations

True
Unplayable 4.7 6.3 11

Playable 6.5 10.5 17
11.2 16.8 28

Unplayable Playable
Precision 42% 63%

Recall 43% 62%

NN learner Predicted
(best setup) Unplayable Playable
10,000 iterations

True
Unplayable 2.1 8.9 11

Playable 4.0 13.0 17
6.1 21.9 28

Unplayable Playable
Precision 34% 59%

Recall 19% 76%

NN learner Predicted
(best setup) Unplayable Playable
100,000 iterations

True
Unplayable 5.7 5.3 11

Playable 8.7 8.3 17
14.4 13.6 28

Unplayable Playable
Precision 40% 61%

Recall 52% 49%

Table C.3: Cross-validation results and precision/recall rates for Neural Network learn-
ers. Tables shown are from the best network setup (after testing several combinations
of network shapes and training times) measured in terms of an average correlation
coefficient over 10 repetitions of the cross-validation process.

Each techniques was then re-tested, but with the dataset split by player: trees for
moves with player 1 to play were split from those for moves with player 2 to play before
aggregation. The results for this data are shown below.

90

Decision tree learner Predicted
1,000 iterations Unplayable Playable

True
Unplayable 5 6 11

(Data split Playable 9 8 17
by player 14 14 28
number)

Unplayable Playable
Precision 36% 57%

Recall 45% 47%

Decision tree learner Predicted
10,000 iterations Unplayable Playable

True
Unplayable 7 4 11

(Data split Playable 8 9 17
by player 15 13 28
number)

Unplayable Playable
Precision 47% 69%

Recall 64% 53%

Decision tree learner Predicted
100,000 iterations Unplayable Playable

True
Unplayable 11 0 11

(Data split Playable 5 12 17
by player 16 12 28
number)

Unplayable Playable
Precision 69% 100%

Recall 100% 71%

Table C.4: Cross-validation results and precision/recall rates for Decision tree learners,
when using data split between trees for player 1 and trees for player 2

91

SVM learner Predicted
1,000 iterations Unplayable Playable

True
Unplayable 3 8 11

(Data split Playable 9 8 17
by player 12 16 28
number)

Unplayable Playable
Precision 25% 50%

Recall 27% 47%

SVM tree learner Predicted
10,000 iterations Unplayable Playable

True
Unplayable 6 5 11

(Data split Playable 10 7 17
by player 16 12 28
number)

Unplayable Playable
Precision 38% 58%

Recall 55% 41%

SVM tree learner Predicted
100,000 iterations Unplayable Playable

True
Unplayable 2 9 11

(Data split Playable 8 9 17
by player 10 18 28
number)

Unplayable Playable
Precision 20% 50%

Recall 18% 53%

Table C.5: Cross-validation results and precision/recall rates for SVM learners, when
using data split between trees for player 1 and trees for player 2

92

NN learner Predicted
(best setup) Unplayable Playable
1,000 iterations

True
Unplayable 3 8 11

Playable 2.8 14.2 17
(Data split 5.8 22.2 28
by player
number) Unplayable Playable

Precision 52% 64%
Recall 27% 84%

NN learner Predicted
(best setup) Unplayable Playable
1,000 iterations

True
Unplayable 4.5 6.5 11

Playable 4.7 12.3 17
(Data split 9.2 18.8 28
by player
number) Unplayable Playable

Precision 49% 65%
Recall 41% 72%

NN learner Predicted
(best setup) Unplayable Playable
1,000 iterations

True
Unplayable 3.9 7.1 11

Playable 6.2 10.8 17
(Data split 10.1 17.9 28
by player
number) Unplayable Playable

Precision 39% 60%
Recall 35% 64%

Table C.6: Cross-validation results and precision/recall rates for Neural Network learn-
ers, when presented with data split between trees for player 1 and trees for player 2.
Tables shown are from the best network setup (after testing several combinations of net-
work shapes and training times) measured in terms of an average correlation coefficient
over 10 repetitions of the cross-validation process.

93

Bibliography

[1] D. Parlett. The Oxford history of board games. Oxford University Press, 1999.

[2]

[3] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. 15th
European Conference on Machine Learning, pages 282–293, 2006.

[4] M. Enzenberger and M. Müller. Fuego–an open-source framework for board games
and go engine based on monte-carlo tree search. 2009.

[5] Y. Björnsson and H. Finnsson. CadiaPlayer: A simulation-based general game
player. IEEE Transactions on Computational Intelligence and AI in Games,
1(1):4–15, 2009.

[6] C. Browne. Automatic Generation and Evaluation of Recombination Games. PhD
thesis, Queensland University of Technology, 2008.

[7] A. Y. Ng M. Kearns, Y. Mansour. A Sparse Sampling Algorithm for Near-Optimal
Planning in Large Markov Decision Processes. Machine Learning, 2002.

[8] P. Fischer P. Auer, N. Cesa-Bianchi. Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning, 2002.

[9] J. M. Thompson. Defining the abstract. The Games Journal, 2000.

[10] W. Kramer. What makes a game good? The Games Journal, 2000.

[11] G.F. Cooper, C.F. Aliferis, R. Ambrosino, J. Aronis, B.G. Buchanan, R. Caruana,
M.J. Fine, C. Glymour, G. Gordon, B.H. Hanusa, et al. An evaluation of machine-
learning methods for predicting pneumonia mortality. Artificial Intelligence in
Medicine, 9(2):107–138, 1997.

[12] D.A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network, 1989.

[13] K.F. Lee. Automatic speech recognition: the development of the SPHINX system.
Kluwer Academic Pub, 1989.

[14] Wikipedia. Nine men’s morris board with coordinates, 2006. [Online; accessed 15
September 2010].

94

