
Department of Computing
Imperial College London

JCThorn
Extending Thorn with joins and chords

Ignacio Solla Paula

is206@doc.ic.ac.uk

September 30, 2010

Supervisor: Professor Susan Eisenbech

Second Marker: Professor Sophia Drossopoulou

Abstract

Concurrency and distribution are growing areas of concern for programmers due to
the widespread presence of multi-core processors, distributed applications and cloud com-
puting. However, writing concurrent applications can still be unnecessarily hard and
error-prone, partly because the most popular programming languages were designed for
a sequential world.

Many languages rely on shared memory and locking based mechanisms for process
communication, which lead to problems such as race conditions, deadlocks or lost of
encapsulation. On the other hand, Thorn follows the message passing paradigm, an
approach which is undeniably more natural for distributed applications and avoids many
of the intricacies of shared memory for concurrent problems. However, solutions to syn-
chronisation problems still require a careful design.

We have created JCThorn, an extension of the Thorn language, that incorporates
constructs based on the Join-Calculus in order to simplify the expression of synchroni-
sation points. We added two variations of the same construct, ie. joins, for the low-level
communication mode of Thorn, and chords, for the high-level mode. Our work demon-
strates that both constructs can be implemented efficiently with no major performance
costs.

2

Acknowledgements

I would like to thank my supervisor, Dr. Susan Eisenbach, for all the support, guidance
and help she has rendered throughout the entire duration of this project. I am also
grateful to Professor Sophia Drossopoulou for agreeing to be my second marker.

A huge amount of thanks goes to Bard Bloom, John Field and Jan Vitek for all the
help they have rendered throughout this project, especially with questions and problems
encountered with the Thorn interpreter.

I am also extremely thankful for all the help my family has provided. Muchas gracias
por estar siempre ahi cuando lo necesito y apoyarme en todas las decisiones que tomo,
especialmente a mis padres.

I would also like to thank Chong for proof reading this report and generally for being
such a good friend. I thank all other friends who have repeatedly rescued me over the
past months, and made me enjoy the world outside Thorn.

2

Contents

1 Introduction 7
1.1 Contributions . 8
1.2 Report structure . 8

2 Background 11
2.1 Concurrent programming overview . 11

2.1.1 Join Calculus for Shared Memory . 12
2.1.2 Join Calculus for Message Passing . 13

2.2 Join Calculus . 14
2.2.1 Process algebras . 14
2.2.2 Introduction to the Reflexive CHAM and the Join-Calculus 15
2.2.3 RCHAM formally . 16

2.3 Languages with support for Join-patterns . 17
2.3.1 JErlang . 17
2.3.2 Jocaml . 20
2.3.3 Polyphonic C# . 23
2.3.4 Join Java . 26
2.3.5 School . 27

2.4 Thorn . 28
2.4.1 Classes . 29
2.4.2 Pattern Matching . 30
2.4.3 Built-in Data Types . 31
2.4.4 Pure data . 31
2.4.5 Components . 32
2.4.6 High-level Communication . 32
2.4.7 Low-level Communication . 33
2.4.8 Type System . 34
2.4.9 Modules . 35
2.4.10 De Bruijn index . 36

2.5 Summary . 36

3 The language 37
3.1 Introduction . 37
3.2 Joins . 41
3.3 Chords . 43

3.3.1 Algebraic patterns on arguments . 44

3

3.3.2 Inheritance . 45
3.4 Common features to both joins and chords 46

3.4.1 Resolution and priorities . 46
3.4.2 Non-linear patterns and side conditions 48
3.4.3 Timeouts . 49

3.5 Incompatibilities with Thorn . 50
3.5.1 Before and After . 50
3.5.2 Catch . 52

3.6 Summary . 53

4 The implementation 55
4.1 Overview . 55
4.2 Grammar and AST . 57
4.3 Joins implementation . 60

4.3.1 Review of other languages . 60
4.3.2 Runtime . 62
4.3.3 Local matching phase . 63
4.3.4 Contextual matching phase . 65

4.4 Chords implementation . 66
4.4.1 Translation . 66
4.4.2 Catch translation problems . 72

4.5 Summary . 74

5 State explosion problem and optimisations 75
5.1 State explosion problem . 75
5.2 Successful optimisations . 77

5.2.1 Fail Fast (FF) . 78
5.2.2 Combinations with Current Message Only (CCMO) 78
5.2.3 Repeating Receive and Context Independence (RRCI) 78
5.2.4 Just-in-time Update of State . 81
5.2.5 Skip Contextual Phase (SC) . 82
5.2.6 Rank Reordering of join Patterns (RR) 83
5.2.7 Uniquely Satisfied Patterns (USP) . 84
5.2.8 Single pattern joins . 85

5.3 Failed optimisations . 85
5.3.1 Letter Contents Cache (CC) . 85
5.3.2 Runtime reordering . 86

5.4 Summary . 87

6 Evaluation 89
6.1 Expressiveness . 89

6.1.1 Solutions enhanced by joins . 90
6.1.2 Solutions worsened by joins . 97
6.1.3 When to use joins . 100
6.1.4 Numeric priorities . 102

6.2 Correctness . 103

4

6.3 Microbenchmarks to test optimisations . 105
6.4 Performance . 108

6.4.1 Effect of optimisations in typical concurrent problems 108
6.4.2 Thorn versus JCThorn . 111
6.4.3 Large mailboxes . 113

6.5 Scalability . 119
6.6 Integration . 120
6.7 Summary . 121

7 Conclusions 123
7.1 Future Work . 124

A Alternative solutions to typical concurrent problems 125
A.1 Dining Philosophers - Thorn’s solution . 125
A.2 Dining Philosophers - Chord solution . 127
A.3 Santa Claus - Thorn’s solution . 127
A.4 Single-Lane Bridge - Chord solution . 128

B Microbenchmarks 130

C Benchmark 133
C.1 More results . 133
C.2 Code . 136

D Armstrong Challege 138
D.1 With joins . 138
D.2 Without joins . 140

E Log of changes 141

Bibliography 146

5

6

Chapter 1

Introduction

The concurrency and distribution mechanisms of many popular programming languages
like C# and Java are based on the 1970s model of concurrency, which was primarily
concerned with programming for a single machine. Concurrency was achieved through
the use of shared memory and threads, and synchronisation based on mutual exclusion.
Programs in this model are hard to get right because developers need to be aware of
race conditions, identify critical sections and avoid deadlocks. Moreover, making a pro-
gram dependent on certain shared variables and resources can limit the extensibility and
encapsulation of a system, because extending it may require knowledge of these variables.

The message-passing paradigm avoids many of the problems related to shared memory
systems, such as race conditions. In addition, it is particularly well-suited to deal with
the increasingly important web-based and distributed applications. By nature, these are
message-based applications, and rely heavily on asynchronous communication. This fact
motivated IBM Research and Purdue University to jointly develop Thorn, a language in
which lightweight isolated processes communicate exclusively by message-passing.

Thorn is also well-suited for concurrent applications, and we believe that it can in-
crease the degree of concurrency of a system. By encouraging asynchronous message
passing of immutable data, we eliminate the overheads of ensuring that multiple copies
are kept consistent. Thorn also eliminates the need for mutual exclusion, since each
component, or thread, has exclusive access to its own data. These properties are partic-
ularly valuable nowadays, when quad-core processors have already become common for
home workstations, and the trend is for the number of cores to continue to increase.

However, synchronisation between threads is still important in many applications.
Considering that threads can only communicate by message-passing in Thorn, synchro-
nisation is achieved by exchanging, possibly multiple messages, between a number of
components. Nonetheless, the receive construct in Thorn can only retrieve a single
message at a time from the mailbox of each of the components. A consequence of this
limitation is that solutions to certain concurrent problems are unnecessarily hard to pro-
gram, with some behaviours being impossible to express in Thorn.

7

1.1 Contributions

To simplify the way synchronisation is achieved in Thorn, we propose an extension,
that we named JCThorn, which introduces constructs that allow easy synchronisation
on the receipt of multiple messages. These constructs are inspired by the Join-Calculus,
which is a process algebra developed at INRIA, the French institute for Computer Science,
and is suited for implementation. Thus, numerous other languages, such as JoCaml and
Jerlang, have emerged at INRIA and elsewhere that were inspired by the Join-Calculus.

We incorporate two new type of constructs, joins and chords, which are to some extent
equivalent. In JCThorn, the difference between the two lies in the fact that joins belong
to the low-level communication mode of Thorn, which sends isolated data items between
components, and chords belong to the high-level mode, which sends data through channels
declared in each of the components.

We also propose a number of novel and already known techniques to speed up the
resolution of joins, which suffers from the explosion in the number of states when the
components’ mailboxes increase in size, because of the number of messages. Basically,
join resolution has a polynomial worst case and, in this report, we study mechanisms to
reduce the amount of computation needed.

We have also performed an in-depth study of the effects of the optimisations and the
expressiveness of the language. We determined that JCThorn performs better than ex-
isting languages and that there is indeed situations in which joins are extremely valuable.

1.2 Report structure

Chapter 2 presents the background work. It first gives an overview of the two main
paradigms in concurrent programming, namely shared memory and message-passing.
Then, it introduces process algebras, and in particular the Join Calculus. It also examines
a number of languages that support Join Calculus inspired constructs and, finally, it gives
an overview of the Thorn language.

In chapter 3 we present the main features of JCThorn. It starts with an example
of a problem that has a straightforward solution in JCThorn, but is hard to solve in
Thorn. It presents the JCThorn’s main extensions in more detail, namely joins and
chords, and their common features. It ends with a description of two cases where both
languages, Thorn and JCThorn, are incompatible.

Chapter 4 covers the implementation of the JCThorn language. It shows the changes
that had to be made to the grammar and AST. It describes the implementation of joins,
which required the modification of the execution engine of Thorn’s interpreter. It con-
cludes with the implementation of chords ; these are translated into joins at compile time.

Chapter 5 is dedicated to the state explosion problem and the optimisations that aim
to minimise its effects. It starts by describing in more detail what the state explosion
problem is about. It continues by presenting a number of successful optimisations that
have been included in the final version of the JCThorn interpreter; it also describes

8

other optimisations that have not finally been included in this final version.

An in-depth study of the JCThorn language is presented in chapter 6. Performance
and expressiveness are thoroughly analysed. Moreover, we also comment on how we
ensured the correctness of the language, its scalability and how well the extensions can
be integrated in Thorn. Finally, chapter 7 draws some conclusions and presents future
work.

9

10

Chapter 2

Background

In this chapter, we first give an overview of concurrent programming and show how the
Join-Calculus can improve the way languages handle concurrency and synchronisation
in both message passing and shared memory paradigms (section 2.1). Then we investigate
the origins of the Join-Calculus, giving its formal definition and presenting the chemical
metaphor (section 2.2). A number of languages like Join Java or Jerlang implement
constructs based on the Join-Calculus, and these are presented in section 2.3. In
section 2.4, the main characteristics of Thorn are covered.

2.1 Concurrent programming overview

Concurrent programs are those designed as a collection of interacting processes or threads.
They are executed simultaneously, either sequentially on a single processor by interleaving
their instructions or in parallel on multiple cores. Concurrent systems may be classified
as shared memory or message passing based on the communication style [33]:

� In shared memory systems, processes interact through mutually accessible mem-
ory locations. This approach usually requires a locking mechanism (eg. mutexes,
semaphores or monitors) to synchronise or coordinate between threads.

� In message passing systems, processes interact exclusively by sending and receiv-
ing messages and they do not have access to shared memory. Messages may be sent
asynchronously, where the sender immediately continues after sending the message,
or synchronously, where the sender blocks until the reply is received. Message pass-
ing is also commonly used for distributed systems, as the shared memory paradigm
is not physically implementable in a distributed setting, although it can be emulated
over a message passing system[13].

Many limitations of both approaches can be overcome by making use of multi-way
joins or chords – a concurrency construct inspired on the Join-Calculus. For shared
memory systems, joins provide an additional method of coordination that avoids the use
of shared variables. For message passing systems, they facilitate solving synchronisation
problems.

11

2.1.1 Join Calculus for Shared Memory

Chords, a synchronisation construct inspired by the Join-Calculus, have become a
popular extension to traditional object-oriented languages which rely on mutual exclusion
based mechanisms for synchronisation. In these languages, the programmer is responsible
of ensuring that processes do not interfere with each other, have exclusive access to shared
resources and a deadlock situation does not occur. Chords, together with asynchronous
methods, provide an alternative to shared memory coordination. These two enhancements
have been added to languages such as Java (see section 2.3.4) and C# (see section 2.3.3).

Asynchronous methods are those that never return a result, and any call to them is
guaranteed to complete immediately. The process calling an asynchronous method neither
executes its body nor blocks. Thus, invoking an asynchronous method is comparable to
sending a message or posting an event.

Chords consist of a header, a conjunction of method declarations, and a body that
is only executed when all the methods in the header have been called. For example, a
countdown latch can be written in School (see section 2.3.5) as follows:

1 class CountdownLatch{
2 void await (int permits) & async countDown (){
3 i f (−− permits > 0) await (permits) ;
4 }
5 }

Listing 2.1: Countdown latch written in School

In the CountdownLatch class, two instance methods – the synchronous await() and
the asynchronous countDown(), are jointly defined in a single chord. A countdown latch is
used to stop a thread until a specific number of tasks have completed. That thread initially
calls await(), passing the number of tasks, and the worker threads call countDown() when
these tasks have completed.

Usually, in most languages, the body of the chord will be executed by the same thread
calling await(). Nonetheless, when a chord does not define any synchronous method,
either a new thread will be spawned to service this call or a worker from some pool will
be used.

Asynchronous methods and chords bring the shared-memory paradigm closer to the
message passing approach, where communicating by exchanging asynchronous messages is
central. Moreover, if we compare the School code in listing 2.1 with an equivalent Java
version in listing 2.2, we observe that the former is much more succinct and expressive.
The syntax to create asynchronous methods in chords is also clearer and more concise
than delegates in .NET languages or Future Tasks in Java, as they normally only require
to be preceded by a keyword, such as async.

Making asynchronous communication clearer and easier is also very valuable given
that asynchronous events are increasingly used at all levels of software systems and that
the focus is shifting from shared-memory concurrency to message-oriented concurrency.

12

1 class CountdownLatch{
2 int permits ;
3

4 void await (int permits) throws Inte r ruptedExcept ion {
5 synchron ize (this){
6 this . permits = permits ;
7 wait () ;
8 }
9 }

10

11 void countDown (){
12 synchron ize (this){
13 i f (−−permits == 0){
14 n o t i f y A l l () ;
15 }
16 }
17 }
18 }

Listing 2.2: Countdown latch without chords in Java

2.1.2 Join Calculus for Message Passing

In the message passing approach, inter-process communication relies on asynchronous
message passing. Usually, each process has a single mailbox containing a queue of received
messages which is analysed by applying pattern matching on the contents of the messages.

In this paradigm, chords usually receive the name of join patterns or simply joins.
Languages that support joins include JoCaml (see section 2.3.2) and Jerlang (section
2.3.1). Listing 2.3 shows how joins can be used for synchronisation in Jerlang. More
precisely, a new aggregate of the form {found, X} is created only when two messages
matching the patterns {get, X} and {set, X} are received.

1 receive {get , X} and { set , X} −> {found , X} end

Listing 2.3: A one-cell buffer in Jerlang

We can compare the previous program with the program in listing 2.4 that presents
a similar behaviour but does not use join patterns. The latter synchronises on the same
type of messages, but does not preserve the order in which those are received. More
importantly, the version in 2.4 is notably larger and harder to write, which increases
the chance of making errors. Thus, joins greatly simplify the task of synchronising on
the reception of asynchronous messages, and become a powerful and clean construct for
message passing languages.

13

1 A = fun (ReceiveFunc) −>
2 receive
3 {get , X} −>
4 receive
5 { set , Y} when (X == Y) −> {found , X}
6 after 0 −> s e l f () ! {get , X} , ReceiveFunc (ReceiveFunc) end
7 { set , X} −>
8 receive
9 {get , Y} when (X == Y) −> {found , X}

10 after 0 −> s e l f () ! { set , X} , ReceiveFunc (ReceiveFunc) end
11 end ,
12 A(A)

Listing 2.4: Synchronisation on two messages in Erlang

2.2 Join Calculus

Similar to the Lambda Calculus, which was developed to model and analyse the behaviour
of sequential systems, several process algebra or calculi have been defined to describe the
behaviour of concurrent systems. Amongst them, the Join-Calculus is a process algebra
based on the reflexive chemical abstract machine (RCHAM), a model of concurrency that
exploits the similarities between chemical reactions and concurrent execution of processes.

The Join-Calculus has the same expressive power as the π-Calculus, a well stud-
ied process algebra, and full abstract encodings of each other exists in each direction [15].
Like many of the other process algebras, the Join-Calculus has influenced the develop-
ment of programming languages and is considered the basis of the multi-way join pattern
construct.

2.2.1 Process algebras

Process calculi or algebras are a formal approach for reasoning about concurrent systems.
Process calculi model the interactions, communications and synchronisations between a
set of independent agents or processes and give rise to model-checking tools for proving
properties about concurrent systems.

In 1978, Tony Hoare published Communicating Sequential Processes [18] (CSP), a pa-
per which essentially presented a programming language of the same name for describing
patterns of interaction in concurrent systems that did not possess mathematically defined
semantics. CSP provided a command based on Dijkstra’s parbegin to specify concur-
rent execution, and communication between processes was based on synchronous message
passing. In this version of CSP, both sender and receiver processes had to name each
other as source and destination for the communication to take place.

But CSP gradually evolved into a process algebra, and the book Communicating Se-
quential Processes1 published in 1984 presents the theoretical foundations of the calculus.

1Available from http://www.usingcsp.com/

14

This evolution was influenced by the Calculus of Communicating Systems (CCS) which
was developed by Robin Milner. Milner originally published in 1980 a book of the same
name [30] where he described the syntax, semantics and observation congruence of CCS.
CCS allows one to express parallel composition of processes, non-deterministic choice,
scope restriction and value passing. With the help of Hennesy-Milner Logic [17] proper-
ties such as safety, fairness or liveness are analysable.

As a continuation of the work on CCS, Robin Milner, along with Joachim Parrow
and David Walker, developed the π-Calculus [31]. The π-Calculus can model the
changing connectivity of interacting systems and forms the basis of many languages sup-
porting distributed concurrent programming. The π-Calculus is more expressive than
CCS because it provides channel mobility (channel names can be sent and received) and
restriction (new private channels can be generated).

Similarly expressive when compared with the π-Calculus is the Join-Calculus.
The Join-Calculus is an alternative representation of the reflexive CHAM, which ex-
tends the chemical abstract machine (CHAM) of G. Berry and G. Boudol [9] with reflexion
and locality. The CHAM is based on the chemical metaphor used in the Γ language of
Banâtre and Le Métayer [4] and is suited to model concurrent computations, as presented
in the next section.

2.2.2 Introduction to the Reflexive CHAM and the Join-Calculus

Similarly to Turing machines for sequential problems, the chemical abstract machine
CHAM of Bery and Boudol originated to reason about concurrent problems [9], and pro-
vides an expressive and meaningful abstraction where concurrent processes are modelled
as chemical reactions. The reflexive CHAM model (RCHAM) is obtained from the generic
CHAM by imposing locality and adding reflexion [15].

In the RCHAM, the state of a system is viewed as a chemical solution R ⊢M in which
molecules and atoms can interact with each other according to certain reaction rules. The
multisetM represents the processes (molecules) running in parallel, and the reactions R
define the current reaction rules. An atom is of the form x⟨y⟩ and represents a pending
message that transmits the value y trough port x. A molecule is a composition of several
atoms or sub-molecules, joined with the operator “∣”.

Molecules can be reversibly created/divided using structural equivalence, represented
by ⇌. Chemical reactions J ▹P are non-reversible and consume molecules that match the
join pattern J to create new molecules P . In the following example, atoms ready⟨laser⟩
and job⟨1⟩ are merged to form the molecule ready⟨laser⟩ ∣ job⟨1⟩, and then the pattern in
the reaction ready⟨printer⟩ ∣ job⟨file⟩ ▹ printer⟨file⟩ is matched to reduce the molecule
ready⟨laser⟩ ∣ job⟨1⟩ to laser⟨1⟩:

ready⟨printer⟩ ∣ job⟨file⟩ ▹ printer⟨file⟩ ⊢ ready⟨laser⟩, job⟨1⟩, job⟨2⟩
⇌ ready⟨printer⟩ ∣ job⟨file⟩ ▹ printer⟨file⟩ ⊢ ready⟨laser⟩ ∣ job⟨1⟩, job⟨2⟩
Ð→ ready⟨printer⟩ ∣ job⟨file⟩ ▹ printer⟨file⟩ ⊢ laser⟨1⟩, job⟨2⟩

15

The molecule def D in P is structural equivalent to a reaction D and a molecule P .
This type of molecule allows to introduce new reactions dynamically and as a result makes
the RCHAM model reflexive. For example:

∅ ⊢ def D in ready⟨laser⟩ ∣ job⟨1⟩ ∣ job⟨2⟩
⇌ D ⊢ ready⟨laser⟩ ∣ job⟨1⟩ ∣ job⟨2⟩

The syntactic description of the RCHAM molecules is known as the Join-Calculus.
The RCHAM entirely defines the syntax (molecules), the structural congruence (⇌) and
the reduction relation (⇌∗Ð→⇌∗) of the Join-Calculus. The Join-Calculus is an
alternative representation of the RCHAM model and can be defined as a rewriting system
modulo structural equivalence.

2.2.3 RCHAM formally

As shown in figure 2.1, the syntax of the reflexive CHAM defines processes, join-patterns
and definitions. A process P is either the asynchronous emission of a polyadic message
x⟨ṽ⟩, a definition of port names or a parallel composition of processes. A definition D
consists of a number of reaction rules of the form J ▹P connected by the ∧ operator. The
reaction rules match join-patterns of messages J to trigger the processes P (see section
2.2.2).

P
def= (Processes)

x⟨ṽ⟩ (asynchronous message)
def D in P (local definition)
P ∣ P (parallel composition)

J
def= (Joins)

x⟨ṽ⟩ (message pattern)
J ∣ J (pattern conjunction)

D
def= (Definitions)

J ▹ P (reaction rule)
D ∧D (composition)

Figure 2.1: Grammar of the reflexive CHAM

Analogously to the π-Calculus, names are the only values defined and can only be
bounded in a join pattern J . The formal parameters v1, v2, . . . vn received in join patterns
are bounded in the corresponding processes P . As an example, after reducing the molecule
def x⟨v⟩ ▹ P in x⟨y⟩ the name y will substitute v in P . More formally, the operational
semantics of the RCHAM is given in figure 2.2.

The defined variables dv are those that appear as a channel in a message pattern. On
the other hand, the received variables rv are those that appear as a message. The substi-
tution σdv in the rule str-def introduces fresh variables to replace the defined variables in

16

str-join ⊢ P1 ∣ P2 ⇌ ⊢ P1, P2

str-and D1 ∧D2 ⊢ ⇌ D1,D2 ⊢
str-def ⊢ def D in P ⇌ Dσdv ⊢ Pσdv (range(σdv) fresh)

red J ▹ P ⊢ Jσrv Ð→ J ▹ P ⊢ Pσrv

Figure 2.2: Operational semantics of the reflexive CHAM

D. Similarly, the substitution σrv in the reduction rule red replaces the received variables
as shown for the molecule def x⟨v⟩ ▹ P in x⟨y⟩ in the previous paragraph.

The reflexive CHAM can express common notions in concurrency such as replication,
message forwarding and non-deterministic choice:

� Message Forwarding - def x⟨y⟩ ▹ y⟨u⟩ in P forwards messages on the local name
x in P to the outside through y

� Non-determinism - def s⟨⟩ ▹ P ∧ s⟨⟩ ▹ Q in s⟨⟩ can reduce to either P or Q as
both joins can be matched

� Replication - def loop⟨⟩ ▹P ∣ loop⟨⟩ in loop⟨⟩ replicates the process P producing a
new copy every time a reduction occurs

� Continuation - def x⟨v1, v2⟩ ▹ v2⟨y⟩ in P returns a result y through the given
channel v2

2.3 Languages with support for Join-patterns

The π-Calculus have influenced languages such as Pict [34], and Occam [20] was heavily
influenced by CSP. Similarly, the Join-Calculus has guided extensions to many pro-
gramming languages due to the simplicity of its multi-way join pattern. In this section
we cover some of the languages for which join patterns have been implemented, either as
a library or as a language extension.

2.3.1 JErlang

JErlang is a Join-Calculus inspired extension of Erlang developed by H. Plocinicak
and S. Eisenbach at Imperial College London [35]. Erlang, an industrially successful
functional language developed at Ericcson to takle telecom problems2, provides an Ac-
tor model paradigm for concurrency that relies on message passing for communication.
JErlang overcomes the limitations of this paradigm by providing a new construct, a
join, that facilitates the synchronisation between multiple processes without the need for
shared memory.

2http://ftp.sunet.se/pub/lang/erlang/index.html

17

In Erlang, processes are created with the spawn statement and inter-process com-
munication relies on asynchronous message passing. The operator ! sends a message with
value m to the process with id pid: pid ! m. Each process has a single mailbox contain-
ing a queue of received messages which is analysed using the selective receive construct
that allows to perform pattern matching on the contents of the message as shown below:

1 receive
2 {ok , Val1 , Val2} when {Val1 == ok} −> Expr1 ;
3 {ok , Result} −> Expr2 ;
4 {error , Error} −> Error Expr
5 after Timeout −> Timeout Expr end

Listing 2.5: Selective Receive

JErlang joins facilitate the synchronisation of messages on a single mailbox. Syn-
chronisation is achieved by extending the syntax of the receive construct to allow multiple
patterns concatenated with the and keyword:

1 receive {get , X} and { set , Y} when (X == Y) −> {found , X} end

Listing 2.6: Synchronisation on two messages with guards in JErlang

Listing 2.6 shows how we can synchronise on two messages in the mailbox that match
the pattern {get, X} and {set, Y}, where X and Y are equal. In this example, guards are
used to compare the variables X and Y, but a more elegant solution would make use of
non-linear patterns, which allow to use the same unbound variables on multiple patterns
and synchronise on their values, as shown in listing 2.3 in section 2.1.2.

The implementation of receive in JErlang assumes the semantics of First-Match
regarding the contents of the mailbox. In listing 2.7, given the messages at line 1, the
pattern at line 4 is satisfied before the one at 3. Moreover, as figure 2.8 shows, the
First-Match semantics is extended to the order in which joins are evaluated, so that more
specialised joins should appear before more general ones.

1 s e l f () ! { foo , one} , s e l f () ! {error , 404} , s e l f () ! {bar , two} ,
2 receive
3 { foo , A} and {bar , B} −> {error , {A,B}} ;
4 {error , Reason} −> {ok , { e r ro r expec t ed , Reason}}
5 end

Listing 2.7: Impact of First-Match semantics on join

1 receive
2 { foo , A} and {bar , s p e c i f i c } −> . . . %% sp e c i a l i s e d ac t i on
3 { foo , A} and {bar , B} −> . . . %% genera l ac t i on

Listing 2.8: Usage of deterministic behaviour for joins resolution in JErlang

18

To note is that the timeouts in listing 2.5 introduced with the after keyword are
also supported for joins, which keeps the design of JErlang consistent with the original
Erlang language. Equally synchronous calls are created as in Erlang, by append-
ing a process identifier value to the message so that the receiver knows with whom to
communicate.

Nonetheless, JErlang introduces the optional feature of propagation that allows to
keep a message in the mailbox maintaining its original position after being used in a
pattern, feature that is not present in the original Erlang. By wrapping a pattern
with the prop closure, any message matching that pattern will not be removed from
the mailbox and as a result could be reused by other joins. In listing 2.9 any message
matching the pattern {session, Id} at line 2 may be reused at 3.

1 receive
2 prop ({ s e s s i on , Id}) and {act ion , A, Id} −> doAction (A, Id) ;
3 { s e s s i on , Id} and { logout , Id} −> l o g o u t u s e r (Id)
4 end

Listing 2.9: Propagation in JErlang

JErlang has been implemented in two different forms, as a library for use with the
standard Erlang language and as a system with compiler and VM changes. In both
cases, synchronisation on multiple messages required that these should not be removed
immediately from the mailbox, but only when all the patterns in a join have been satis-
fied. In the case of the library, it maintains an internal queue where messages from the
VM’s mailbox are fetched in order. The solution for the system with compiler and VM
modifications is more subtle.

A separate search pointer on the mailbox was introduced, independent from the orig-
inal mailbox’s pointer, which allows to search the mailbox and remove messages in a
different order from the original Erlang semantics. To deal efficiently with large mail-
boxes, each JErlang process contains a hash table inspired on the uthash hash tables3

that maps identifiers to the addresses of the messages.

For each pattern in a join, the compiler creates an anonymous function to test if it
has been satisfied. To avoid unused variable warnings by the compiler when performing
isolated tests for each of the patterns in a join, a reaching definition analysis is performed.
Likewise, a live variable analysis avoids unbound variable errors.

To improve the performance of the join solver, a variant of the Rete algorithm,
common in Production Rule Systems, was used. The version used does not run the tests
on all the patterns, but only on those which belong to the currently tested join. In
addition, pruning of the search space was performed to avoid the computation associated
with messages that have equal values to those previously satisfied.

The reordering of the computations performed by the join solver also resulted in
performance gains. Bringing forward the checks corresponding to guards or processing
patterns in descending rank order allowed filtering invalid message combinations sooner.

3http://uthash.sourceforge.net

19

The rank of a pattern depends upon the number of variables that shares with other
patterns and guards.

2.3.2 Jocaml

JoCaml has been developed at INRIA, the French institute for Computer Science, as
an extension of Objective-Caml (OCaml) that implements the Join-Calculus. To
note is that both OCaml and the Join-Calculus were born at INRIA, and that the
Join-Calculus was also a language that they created prior to JoCaml. The current
version of JoCaml is a re-implementation by C.Fournet of the original now unmaintained
language created by Fabrice Le Fessant [11]. This new version provides a cleaner syntax
and better compatibility with the standard OCaml language 4.

JoCaml programs consist of processes and expressions [28]. The execution of a
JoCaml process produces no result and is asynchronous, while the execution of an ex-
pression, as it occurs in OCaml, is synchronous and returns a result. JoCaml also adds
the notion of channels (also known as names or port names) which are used by processes
to send messages. Channels are treated as first order entities, and can be sent as the value
of a message.

To create new channels the def binding is used as shown in listing 2.10. This definition
creates a new non-blocking channel echo with type int Join.chan, meaning that it can
carry values of type int. Whenever a message is sent on echo, a new instance of the
process print int; x 0 is spawned. This process is asynchronous and does not returned
any value since ; 0 discards the value created by print int x.

1 # def echo (x) = p r i n t i n t x ; 0
2 # ; ;
3 var echo : i n t Join . chan = <abstr>

Listing 2.10: Definition of a new channel in JoCaml

Processes are an addition introduce by JoCaml used mainly for communication and
synchronisation tasks. To execute processes concurrently one needs to precede them with
the spawn keyword, as for example:

1 # spawn echo (1)
2 # ; ;
3 −: un i t = ()
4 # spawn echo (2)
5 #;;
6 −: un i t = ()

Listing 2.11: Spawning two asynchronous-send processes

The code in listing 2.11 spawns two processes whose function is to send an asyn-
chronous message through channel echo (the syntax for message passing is equal to that

4http://jocaml.inria.fr/

20

of a method call). When this program runs, it could print either 12 or 21 given the
asynchronous nature of processes. An alternative notation with the same results makes
use of the parallel composition operator &:

1 # spawn echo (1) & echo (2)
2 #;;
3 −: un i t = ()

Listing 2.12: Parallel composition operator

Channels can also take more than one argument, as shown in listing 2.13. If one
of the arguments is a channel f, a synchronous channel can be created by returning a
value on the given channel f. For instance, the succ channel in listing 2.14 is a channel
that returns x+1 after it has printed x. Consequently, when the process in the other end
receives x+1 it knows that x has been printed.

1 # def s t range echo (x , y) = echo (x+y) & echo (y−x)
2 # ; ;
3 val s t range echo : (i n t * i n t) Join . chan = <abstr>

Listing 2.13: Channel taking multiple arguments

1 # def succ (x , k) = p r i n t i n t x ; k (x+1)
2 # ; ;
3 val succ : (i n t * i n t Join . chan) Join . chan = <abstr>

Listing 2.14: Explicit continuation

Notwithstanding, JoCaml provides a more convenient notation to create synchronous
channels. To define a process that returns a value, a functional type has to be given to
the process, and a reply to construct used, as demonstrated in 2.15.

1 # def succ (x) = p r i n t i n t x ; reply x+1 to succ
2 # ; ;
3 val succ : i n t −> i n t = <fun>

Listing 2.15: Synchronous channel

Definitions can also take a join pattern in the place of the defined channel. A join
pattern is a definition of multiple channels, joined with the parallel composition operator
&, that can be used to enforce the synchronisation of messages on these channels. In
example 2.16, to execute the process print endline(f^ " " ^ c) ; 0, messages must
be sent on both fruit and cake.

21

1 # def f r u i t (f) & cake (c) = p r i n t e n d l i n e (f ˆ ‘ ‘ ’ ’ ˆ c) ; 0
2 # ; ;
3 val f r u i t : s t r i n g Join . chan = <abstr>
4 val cake : s t r i n g Join . chan = <abstr>

Listing 2.16: Join pattern in JoCaml

In JoCaml, join patterns exhibit a non-deterministic behaviour whenever possible.
For the previous example, given spawned processes in listing 2.17, which two cakes will
appear on the console is not clear. “Apple crumble” and “raspberry pie” could be a valid
answer, but both combinations of fruits and cakes are correct.

1 # spawn f r u i t (‘ ‘ apple ’ ’) & f r u i t (‘ ‘ raspberry ’ ’)
2 & cake (‘ ‘ pie ’ ’) & cake (‘ ‘ crumble ’ ’)
3 # ; ;
4 − : un i t = ()

Listing 2.17: Non-deterministic join resolution

Equally, when the same channel is used in more than one join, as pie in 2.18, there can
be situations where both patterns are satisfied, but which one gets fired is undefined. For
example, if the messages apple(), raspberry() and pie() have been sent, both “apple
pie” and “raspberry pie” are valid answers. To note is that the operator or is used to
define multiple join patterns in one definition.

1 # def apple () & p i e () = p r i n t s t r i n g ‘ ‘ apple pie ’ ’ ; 0
2 # or raspber ry () & p i e () = p r i n t s t r i n g ‘ ‘ ra spber ry pie ’ ’ ; 0
3 # ; ;
4 val apple : un i t Join . chan = <abstr>
5 val raspber ry : un i t Join . chan = <abstr>
6 val p i e : un i t Join . chan = <abstr>

Listing 2.18: Multiple join patterns in one definition

The argument of a channel can also be an algebraic pattern that will also be matched
against during the join pattern resolution. In the following example, whether “empty” or
“filled” will print will depend on whether the list passed as an argument of isEmpty() is
empty or contains some elements.

1 # def isEmpty ([]) & doPrint () = e c h o s t r i n g (‘ ‘ empty ’ ’)
2 # or isEmpty (x : : xs) & doPrint () = e c h o s t r i n g (‘ ‘ f i l l e d ’ ’)
3 # ; ;
4 val isEmpty : s t r i n g Join . chan = <abstr>
5 val doPrint : un i t Join . chan = <abstr>

Listing 2.19: Patterns used as arguments of channels

One has to be careful when using pattern matching in join patterns because, in contrast
with plain OCaml, ambiguous patterns are indeed ambiguous. For example, if in the

22

previous example we use the pattern (matching any value) instead of x::xs, an empty
list would match both [] and , so whether “empty” or “filled” would print is undefined.

Join patterns can be made of any combination of synchronous and asynchronous meth-
ods. For instance, JoCaml allows to create joins with more than one synchronous chan-
nel, like the barrier in example 2.20 that defines a synchronisation point in the execution
of two parallel tasks.

1 # def j o i n 1 () & j o i n 2 () = reply to j o i n 1 & reply to j o i n 2
2 # ; ;
3 val j o i n 1 : un i t −> uni t = <fun>
4 val j o i n 2 : un i t −> uni t = <fun>

Listing 2.20: Parallel tasks synchronisation barrier

Support for distributed programming is also built-in into the language. The JoCaml
name-server allows to exchange channel names between programs executed on different
machines that do not initially share any port name. A server registers a resource using the
Join.Ns.register function, and the client can look up its value with Join.Ns.lookup

as shown in listing 2.21.

1 (* SERVER *)
2 # spawn begin
3 # def f (x) = reply x*x to f in
4 # Join . Ns . r e g i s t e r Join . Ns . here ” square ” (f : i n t −> i n t) ; 0
5 # end
6 # ; ;
7 − : un i t = ()
8

9 (* CLIENT *)
10 # spawn begin
11 # l e t sqr = (Join . Ns . lookup Join . Ns . here ” square ” : i n t −> i n t) in
12 # p r i n t i n t (sqr 2) ; 0
13 # end
14 # ; ;
15 − : un i t

Listing 2.21: Built-in support for distributed programming

2.3.3 Polyphonic C#

Polyphonic C# is an extension of C#, one of the .NET languages developed by Mi-
crosoft. C# is an object-oriented language that relies on mutual exclusion based mecha-
nisms for coordination between threads. To create asynchronous methods, C# provides
delegates, type-safe objects that can point to one or more methods which can be invoked
at a later time.

23

Nonetheless, there is not a direct connection between delegates and the synchronisa-
tion mechanisms in C#, and writing concurrent applications can be unnecessarily hard.
Polyphonic C# on the other hand extends C# with chords and asynchronous methods
in order to facilitate concurrent programming [8], as introduced in section 2.1.1.

In Polyphonic C# asynchronous methods are declared with the keyword async and
the methods in the signature of a chord are joined together with the & symbol. Moreover,
a single chord can contain at most one synchronous method. Listing 2.22 provides a
simple example where a chord is used in a one-cell buffer.

1 public class Buf f e r {
2 public s t r i n g Get () & public async Put (s t r i n g s) {
3 return s ;
4 }
5 }

Listing 2.22: One cell-buffer in Polyphonic C#

The thread calling Get() (a synchronous method) on an object of type Buffer will
execute the body of the chord, but only when a corresponding call to Put() (an asyn-
chronous method) has occurred. Otherwise, it will block until one occurs. On the other
hand, the thread calling Put() does not block, but unmatched calls to Put() are queued.
To note is that if a chord does not define a synchronous method then the body is run in
a new thread.

When more than a single call to each of the methods defined in a chord have occurred,
exactly which calls are pair together is unspecified, so for example the following program
(that uses the Buffer of listing 2.22) could print either “bluesky” or “skyblue”.

1 Buf f e r bu f f = new Buf f e r () ;
2 bu f f . Put (‘ ‘ b lue ’ ’) ;
3 bu f f . Put (‘ ‘ sky ’ ’) ;
4 Console . Write (bu f f . Get () + bu f f . Get ()) ;

Listing 2.23: Non-deterministic match up of calls in Polyphonic C#

Non-determinism can also be present when the same method is used in two different
chords. In listing 2.24 if a call to Get() happens when calls to both Put(string s) and
Put(int n) have been queued, exactly which chord will be reduced is unspecified.

Regarding polymorphism and inheritance, chords introduce a number of restrictions.
For example, if we were to overwrite the method Put(string s) in a subclass of Buffer,
we would be forced to also overwrite the methods Get() and Put(int n) in the subclass.
Otherwise, we could have introduced a deadlock situation, where a chord can never be
reduced. Consider, for example, the program in listing 2.25.

24

1 public class Buf f e r {
2 public s t r i n g Get () & public async Put (s t r i n g s) {
3 return s ;
4 }
5 public s t r i n g Get () & public async Put (int n) {
6 return n . ToString () ;
7 }
8 }

Listing 2.24: Non-deterministic buffer in Polyphonic C#

In the invalid program in listing 2.25, all the calls to g() on an object of class D would
cause body2 to run and calls to f() on the same object would deadlock forever. This
behaviour would be particularly problematic when an instance of class D is passed to a
fragment of code expecting an object of type C as the chances are that it would deadlock.
As a result, a chord has to be created with either virtual or non-virtual methods but not
both, and a subclass has to either overwrite all the methods in a chord or none. But
notice that both restrictions are enforced by the compiler.

1 class C {
2 virtual void f () & virtual async g () { /* body1 */ }
3 }
4 class D : C {
5 o v e r r i d e async g () { /* body2 */ }
6 }

Listing 2.25: Invalid class inheritance in Polyphonic C#

The compilation process involves translating a Polyphonic C# class into a plain
C# class. The resulting class has the same name and signature as the source class, plus
additional private state and methods that handle the required synchronisation which is
statically defined by the chords. Essentially, synchronisation is compile down into a state
automaton, as presented by Le Fessant and Maranget [24].

Moreover, the async declarations are mapped into void declarations. Polyphonic
C# treats async as a subtype of void, but the behaviour of both is quite different.
When translated, async methods are prefixed with the attribute [OneWay]. This is a
.NET attribute that indicates that calls to a method should be non-blocking. In the
Buffer example of listing 2.24, the method public async Put(string s) translates to
[OneWay] public void Put(string s).

The additional state to deal with synchronisation consists of the pending calls for
all the methods that appear in a chord. For synchronous methods thread information is
stored, and for asynchronous methods the messages. Nonetheless, this information is only
used when a chord has fired.

25

To determine when a chord has fired a bitmap is used. This bitmap contains a single bit
that records the presence of one or more pending calls for each method, and is compared
against constant bitmasks, one for each chord. For a given chord, the corresponding
bitmask will have a bit set for every method appearing in that chord. Consequently,
checking whether a chord has been satisfied is very efficient.

To ensure the thread safety of the translated code, a single auxiliary lock protects the
private synchronisation state of each object. Locking occurs briefly during each incoming
call and involves a separate lock for each polyphonic object. But this lock is independent
of the regular object lock, which may be used as usual to protect the rest of the state and
prevent race conditions while executing chord bodies.

2.3.4 Join Java

G.Stewart von Itzstein from the University of South Australia developed Join Java as
part of his doctoral thesis 5. This language extends Java with asynchronous methods
and chords [21], and has many similarities with Polyphonic C# (the reader is advised
to read section 2.3.3 before continue).

Similarly to Polyphonic C#, in Join Java a chord can have at most one synchronous
method, possibly zero. If all the methods in a chord are asynchronous, then its body is
executed in a new thread. A syntactic difference is that the return type of an asynchronous
method is signal, not async.

Furthermore, in Join Java the synchronous method can only appear as the first ele-
ment and not in any other position in the chord. The authors claimed that this restriction
helps with the readability of the code as it makes more obvious to the programmer what
the synchronisation behaviour of the chord is.

Join Java allows the user to specify if the matching of chords is sequential or non-
deterministic by adding a modifier to the class declaration. If we consider the Buffer

class of listing 2.24, we can write an equivalent Join Java program as follows:

1 public class unordered Buf f e r {
2 public St r ing Get () & public signal Put (St r ing s) {
3 return s ;
4 }
5 public St r ing Get () & public signal Put (int n) {
6 return n . ToString () ;
7 }
8 }

Listing 2.26: Non-deterministic buffer in Join Java

This buffer exhibits a non-determistic behaviour because it has been qualified with
the unordered modifier, so when the two chords are satisfied the choice of which will
run is non-deterministic. In this case, the modifier could be omitted as unordered comes

5A draft of the thesis can be found at http://Join Java.unisa.edu.au/test.htm

26

by default. If we had used ordered instead, when the two chords are satisfied, we will
always respect the order in which they are defined within the class. Precisely, whenever
Put(String s) and Put(int n) are called prior to Get(), the first chord is always the
one fired.

Another difference with Polyphonic C# relates to how Join Java handles inheri-
tance. In this language, inheriting from classes containing chords is not permitted, and
those classes are treated as if they were final. This approach to solve the inheritance
anomaly problem described by Matsuoka [29] is much more extreme and restrictive than
the solution proposed by Polyphonic C#, where inheriting from classes containing
chords is still possible but with some restrictions. The Join Java solution certainly
keeps the implementation simpler, but does that at the cost of forbidding, for classes con-
taining chords, one of the most defining characteristics of object-oriented programming,
ie. inheritance.

Regarding the resolution of join patterns, a tree structure is used to represent the static
structure of the patterns of a Join class. In this tree, the interior nodes represent the
patterns and the leaves represent the individual methods, as shown below for the example
of listing 2.26. The run time search space is reduced by only having to check the chords
containing a given method. In addition, it avoids the state explosion problem associated
with a state machine based solution, as presented in [24]. It is also more scalable than
using bitmaps, as these are limited by the predefined maximum size of the bit-field.

Figure 2.3: Tree structure used for the resolution of joins

2.3.5 School

School, the Small Chorded Object-Oriented Language, is a minimal language devel-
oped at Imperial College London by S. Drossopoulou, A. Petrounias, A. Buckley and S.
Eisenbach to study chords formally in an object-oriented language. As such, the authors
provided the formal operational semantics and type system for the language, and proved
the soundness of the type system. School only supports classes, inheritance and chords,
but its extension School+F also provides fields.

27

In School a chord signature comprises at most one synchronous method (with return
type) and any number of asynchronous methods (async), possibly 0. Multiple callers can
coordinate by sending messages that, finally, lead to execution of a chord body when
all the methods in the signature have been called. The caller of a synchronous method
will block until the chord body executes, but asynchronous method callers will continue
immediately. Hence, the receiving object must queue the asynchronous messages received
until consumed by the joining of the chord. Listing 2.1 in section 2.1.1 shows how a
countdown latch can be programmed in School.

School welcomes non-determinism whenever there is a choice, and does not make
any assumption about the order in which chords are consumed. If the method cancel()

is invoked before print() in listing 2.27, print() could return either “printed” or “can-
celled”, and no assumptions can be made about what value will actually return.

1 class Pr in t e r{
2 St r ing p r in t (){
3 return ‘ ‘ p r in ted ’ ’ ;
4 }
5 St r ing p r in t () & async cance l (){
6 return ‘ ‘ c a n c e l l e d ’ ’ ;
7 }
8 }

Listing 2.27: School non-deterministic chord resolution

2.4 Thorn

Thorn 6 is a concurrent object oriented language in which lightweight isolated processes
communicate by message passing. Thorn supports the gradual evolution of dynamically-
typed scripts into robust programs [32] and is currently being developed jointly by Purdue
University and IBM Research T.J. Watson Research Center.

Currently there exists both an interpreter and a compiler for Thorn. The interpreter,
not particularly fast, is written in Java and is used to prototype constructs before im-
plementing them in the compiler. The compiler has been designed to accommodate the
evolution of the language itself through a plugin mechanism and targets the Java Virtual
Machine.

Thorn has been designed for domains such as client-server programming, embedded
event-driven applications or distributed web services. It is particularly well-suited to
support the rapid prototyping of concurrent applications, that can evolve into scalable,
robust programs. As such, it provides an expressive module system and a flexible type
system that enable the programmer to follow good software engineering practises. The
main features of the language are covered in more detail below as presented in [10].

6http://www.thorn-lang.org/

28

2.4.1 Classes

Thorn classes are similar to those of Java and C++, and they statically determine the
structure of objects. In contrast with some scripting languages, adding or removing fields
from objects dynamically is not permitted. Classes can take parameters that will generate
member fields, as it occurs in Scala.

1 class Point (x , y){}

Listing 2.28: Class declaration in Thorn

The Point class could be equivalently defined with an explicit constructor, as in
listing 2.29. Constructors are preceded with the new keyword, and might not refer to
this. Disallowing the use of this in the constructor avoids leaking references to not fully
initialised objects, although references to the objects referred by this can be passed from
init(), method that if present is immediately called after the body of the constructor
has been executed.

1 class Point{
2 val x ; val y ;
3 new Point (x ’ , y ’) {x = x ’ ; y = y ’ ; }
4 }

Listing 2.29: Class declaration with explicit constructor

Methods are preceded by the def keyword, and default setter and getter methods are
provided for all instance variables, which are not visible outside its definition. As such,
all accesses to fields are executed by a method call, and the expression x.f for object x

and field f is just syntactic sugar for the method call x.f().

Multiple inheritance is permitted, although with some restrictions. In 2.30, the class
TastyPoint extends both Point and Flavour. If both Point and Flavour had a method
with the same name and arity, TastyPoint would have to overwrite that method. Other-
wise, either which method would be called from TastyPoint is unclear or some complex
precedence rules would have to be introduced. Analogously, multiple inheritance of mu-
table state is forbidden. In other words, if classes B and C both have a var field a, another
class cannot inherit from both of them.

1 class Flavour (f l) {}
2 class TastyPoint (x , y , f l) extends Point (x , y) , Flavour (f l) {}

Listing 2.30: Multiple inheritance

29

2.4.2 Pattern Matching

Thorn pattern matching capabilities are very powerful and provide a number of con-
structs that allow to create complex patterns. Those patterns can be used to match
against the expected structure of the data and to extract the required data from objects
and built-in data structures. Most built-in data types provide patterns analogous to their
constructors. As an example, a list can be created with [h, t...], expression that can
also be used as a pattern to match a non-empty list, biding h to the first element and t

to the tail. Other patterns include:

� +p, pronounced positively p, matches a non-null value that matches p

� $(e) matches the value of the expression e

� (e)? matches if the boolean expression e returns true

� e:t matches if expression e has type t

� !p succeeds iff p fails. This is known as the negative pattern.

Conjunctive patterns (p && q) and disjunctive patterns (p ∣∣ q) allow to build more
complex patterns. For instance, the pattern r && {: source:$(sender) :} matches a
record whose source field is equal to sender and binds it to r. On the other hand, [(3 ∣∣
!(:int))...] matches lists whose integral elements are all 3, such as [3, true].

Patterns are used in a variety of control structures. The match construct selects which
clause to execute depending on which pattern a given value satisfies. For example, match
can be used to write a function that sums the elements of a list:

1 fun sum(l s t){
2 match(l s t){
3 [] => { 0 ;}
4 | [h , t . . .] => {h + sum(t) ; }
5 }}

Listing 2.31: Pattern matching used by the match construct

The same function may be written by applying pattern matching on the arguments
(see listing 2.32). Patterns are also used in the expression exp ∼ pat, that returns true
if the value of the expression exp matches the pattern pat. The ∼ operator can be used
in the conditionals of if, while or until statements. The bindings created by ∼ are
available in the then branch of an if statement and in the body of the while loop. On
the other hand, until loops can produce bindings after the loop.

1 fun sum([]) = 0
2 | sum([h , t . . .]) = h + sum(t) ;

Listing 2.32: Function definition applying pattern matching on arguments

30

2.4.3 Built-in Data Types

Thorn provides many convenient built-in data types and syntax to initialise and pattern
match on them:

� Strings are immutable and encoded using Unicode. The operator $ interpolates
values into strings: x = ‘‘John’’; ‘‘Dear $x’’ evaluates to “Dear John”.

� Lists are immutable ordered collections. [] represents the empty list and [x,y...]

a list whose head element is x and tail is y. If lst is a variable holding a list, lst(i)
gets the element at position i.

� Records are collections of immutable named fields. {:name1:value1, name2:value2:}
is used both to construct a record and as a pattern.

� Tables are also built-in into Thorn. They are equivalent to database tables and
are mutable. Tables can be updated using built-in methods.

2.4.4 Pure data

A crucial distinction in Thorn is made between mutable and immutable data. Avoiding
mutable share data undoubtedly avoids many concurrency related problems, such as race
conditions. Moreover, it avoids having to ensure that multiple copies of the same piece of
data are kept consistent. Consequently, Thorn only allows the communication of pure
data between components. Pure data can only be constructed out of immutable values:

� Strings and numbers are always pure

� A variable is declared mutable with the var keyword, and the operator := is used
to assign new values to it. On the other hand, val and = are used for immutable
variables

� List and records are pure if their fields are pure

� Tables are never pure

� Classes may be constraint and annotated as pure to make their instances pure. A
pure class can have constant data but no mutable state. Nonetheless, it can be given
mutable data to operate on, and it can use local mutable variables in its method
bodies.

31

2.4.5 Components

Each Thorn process, called a component, has a single strand of control and its own
private data that does not share with other components. As such, all the communication
between processes occurs exclusively by message passing. The values transmitted in a
message have to be immutable and the receiver must have their class available if they are
objects of a user-defined class (built-in types are universally understood).

Components are defined with the component construct. Similar to an object, a com-
ponent may have local val and var data and functions (fun), but also high-level commu-
nication operations (sync and asyn blocks). Each component defines a body containing
the code that is run when spawned, as demonstrated below.

1 component LifeWorker{
2 var r eg i on ;
3 async workOn(r) { r eg i on := r}
4 sync boundary (d i r e c t i o n , c e l l s) { . . . }
5 body{ . . . }
6 }

Listing 2.33: Component definition

The spawn command starts a new component given its name or its body, and returns
a handle that can be used to communicate with it. For example, in listing 2.34 spawn

is used to start a new LifeWorker component and send it the asynchronous workOn()

message.

1 c = spawn(LifeWorker)
2 c <−− workOn(r) ;

Listing 2.34: Spawning a component

2.4.6 High-level Communication

High-level communication provides named communication, with syntax similar to that
of method calls. Synchronous communication is introduced with the sync keyword and
asynchronous by async (see listing 2.33). An asynchronous message is sent with the <-

- operator, as seen in 2.34. On the other hand, to send a synchronous message m with
parameter x to a component comp we use comp <-> m(x). Sending a synchronous message
returns the answer provided by comp.

In the body of a component, the serve statement can be used to wait for a single high-
level communication event. Hence, a component that does something (do something)
indefinitely until it is told to quit can be defined as in example 2.35. Increasing the
priority of quit() from the default 0 to 100 gives preference to quit() messages over
do something() when both have been received.

32

1 spawn{
2 var done := f a l s e ;
3 async qu i t () prio 100 {done := true ; }
4 sync do something () { . . . }
5 body {while (! done) serve ; }
6 }

Listing 2.35: Usage of serve and prio

2.4.7 Low-level Communication

Thorn also provides a low-level communication model to send unadorned values from
component to component. The statement c<<<v sends value v to component c. Each
component has a mailbox to store the received messages, and these are retrieved using
the receive statement, which scans the mailbox in descending order of priority. When
a message that satisfies one of the patterns is found, its corresponding block of code is
executed. In listing 2.36, if a record with an stop field has been received, the component
stops. Otherwise it might post some data if the correct message has been received or will
become bored after 10 seconds.

1 receive{
2 { : s top : : } prio 1 => {return ; } /* h i gher p r i o r i t y */
3 | { : do : ‘ ‘ post ’ ’ , data : x : } => {do post (x) ; } /* pr io 0 (d e f a u l t) */
4 | timeout (10000) => {bored := true ; }
5 }

Listing 2.36: Receive statement

1 component Rece iver (){
2 body{
3 while (t rue){
4 receive{
5 ” do something ” => {
6 p r i n t l n (” do something ”) ;
7 }
8 | ” k i l l ” prio 10 => {
9 p r i n t l n (” k i l l ”) ;

10 break ;
11 }
12 } } } }

Listing 2.37: Retrieval of messages with priority (prio)

It is important to emphasise how priorities (prio) influence the retrieval of messages
from the mailbox. In the example in listing 2.37, if the mailbox of the Receiver compo-
nent has received the messages ”do something”, ”do something”, ”do something”, ”kill”
in this order, the next thing it would happen is that “kill” will get printed and the com-

33

ponent will terminate. The reason is that the pattern “kill” has higher priority and the
message “kill” has been received, although it occupies the last position in the mailbox,
but this fact is irrelevant.

Low-level communication is asynchronous in Thorn and the sender of a message never
blocks. However, a user can use this modality to program a synchronous application, as
demonstrated in 2.38. In that program, the next thing the sender does after sending
a query is wait for a reply. On the other hand, when the receiver gets a message, it
immediately replies to the sender s, that can be retrieved by using the operator from.

1 r e c e i v e r = spawn {
2 body{
3 while (t rue){
4 receive{
5 ‘ ‘ query ’ ’ from s => { s <<< ‘ ‘ rep ly ’ ’ ; }
6 } } } }
7 sender = spawn{
8 body{
9 while (t rue){

10 r e c e i v e r <<< ‘ ‘ query ’ ’ ;
11 receive{
12 ‘ ‘ rep ly ’ ’ => { . . . }
13 } } } }

Listing 2.38: Synchronous application using low-level communication

2.4.8 Type System

Thorn presents an innovative approach to typing that integrates untyped and typed
code and adds like types, an intermediate step between the two. This approach allows to
evolve an initial dynamically-typed prototype into an efficient and robust statically-typed
program. The default type in Thorn is dyn, which abbreviates dynamic and does not need
to be written explicitly. Dynamic types can be substituted for concrete types, as used in
statically typed languages, or by like types, that are an intermediate point between the
two:

� If a variable is declared of type like T, static compiler checks ensure that the
methods invoked on it belong to the interface of T.

� Binding and assignments are not checked statically as it occurs with concrete types,
so like types require runtime checks to ensure that method calls are indeed valid.

Consider the class Point in example 2.39. In the method move we declare the formal
parameter p to be of type like Point. This enables the compiler to throw a compile
time error when we attempt to call hog on p, since hog does not belong to the interface
of Point. Nonetheless, running move passing an instance of Pair, as defined in 2.40, will

34

succeed because Pair provides all the methods called by move making the runtime checks
pass.

1 class Point (var x , var y){
2 def x () : i n t = x ;
3 def y () : i n t = y ;
4 def move(p : l ike Point){
5 x := p . x () ;
6 y := p . y () ;
7 # p . hog () ; would r a i s e compi le time error
8 }
9 }

Listing 2.39: Like types in Thorn

1 class Pair (x , y){
2 def x () = x ;
3 def y () = y ;
4 }

Listing 2.40: Pair class

Like types help with code readability as they provide more information than dynamic
types and nearly the same amount of flexibility. They also allow code completion and help
with error detection, since for example mistyped method names can be easily detected.

2.4.9 Modules

Thorn’s module system allows to encapsulate, package, distribute, deploy and link large
programs. Similar to classes in Java, modules can import other modules and have state,
as shown in listing 2.41. By default, a module exports all its defined members and hides
all the members imported from other modules. Nonetheless, members can be hidden/re-
exported by declaring them private/public.

An instance of a module can be either shared between multiple modules or local to a
particular one. To import the shared instance of a module M, a second module should use
import M. On the other hand, if we want to create a non-shared instance of M and call it
A, M has to be imported with import own A = M.

1 module M{ # de f i n i t i o n o f module M
2 import N; # shared ins tance o f M
3 import own S = 0 # own ins tance o f 0 as S
4 class A{} ; val n = A() ;
5 var x : private = N.A() ; # x not expor ted
6 }

Listing 2.41: Thorn module

35

2.4.10 De Bruijn index

The execution engine of Thorn’s interpreter accesses variables through their associated
Seal object, which is a class providing all the information that Thorn knows about a
variable. Each occurrence of an identifier in the program needs a Seal, which can be
shared with other occurrences of the same identifier. Essentially, the Seal of a variable
is its De Brujin index.

The De Bruijn index 7 is a formal notation invented by the Dutch mathematician
Nicolaas Govert de Bruijn for representing terms in the λ-calculus with the purpose of
eliminating the names of the variables from the notation. Each De Bruijn index is a
natural number that refers to a λ-abstracted variable. The index denotes the number of
binders that are in scope between that occurrence and its corresponding binder.

For example, the term λ λ 2 corresponds to the K-combinator, written λx. λy. x in
standard λ-calculus notation. Similarly, the term λ λ λ 3 1 (2 1) corresponds to the
S-combinator λx. λy. λz. x z (y z).

2.5 Summary

In this chapter, we have provided an overview of the two main paradigms for concurrent
programming, ie. message passing and shared memory. We also gave an intuition on
how Join Calculus inspired constructs can facilitate synchronisation. Sometimes, these
constructs are termed joins in the message passing paradigm and chords in the shared
memory paradigm, although in the literature they are also often used interchangeably.

We have also provided an introduction to process algebras, with special emphasis on
the Join Calculus. Then, we reviewed some of the languages that support Join Calculus
based constructs. Precisely, we covered JErlang, JoCaml, Polyphonic C#, Join
Java and School. Finally, we presented a summary of the main features of the Thorn
language. With the exception of the type system, that allows to evolve dynamic scripts
into typed programs, Thorn does not introduce radically new features. What Thorn
achieves exceptionally is to group the best features of other languages into the same.

Classes are based on those in Scala, instance variables are inspired by those in
Smalltalk, low-level communication comes from Erlang, multiple inheritance is a sim-
plify version of C++’s model, etc. All these features plus the actor model makes Thorn a
very powerful language to solve today’s problems in Computing, specially in distributed
environments. However, solving certain synchronisation problems in Thorn can still be
unnecessarily hard. In view of this, we created an extension, called JCThorn, that incor-
porates Join Calculus based constructs. JCThorn is presented in the next chapter to-
gether with its main features. In JCThorn we also distinguish between joins and chords,
although this language does not provide shared memory and belongs to the message pass-
ing paradigm. The main difference between the two lies on the level of communication,
with joins belonging to the low level and chords to the high level.

7From http://en.wikipedia.org/wiki/De Bruijn index

36

Chapter 3

The language

This chapter introduces JCThorn to potential users of the language. Firstly, it demon-
strates how some problems that cannot be easily solved in Thorn have a straightforward
solution in JCThorn, section 3.1. Then, it describes in more detail the most visible
extensions that JCThorn provides with respect to Thorn. These are joins, section 3.2,
and chords, section 3.3. Finally, it presents the common features between both constructs
(section 3.4) and describes a couple of situations where Thorn and JCThorn are not
compatible (section 3.5). Before continue, the reader is advised to read the summary of
the Thorn language in section 2.4.

3.1 Introduction

Solving a simple synchronisation problem like matching sellers and buyers of the same
goods can be unnecessarily hard and error prone in Thorn. Even worse, a solution that
only uses the high-level communication mode might not exists. As explained in sections
2.4.6 and 2.4.7 Thorn provides two levels of communication.

The low-level mode sends unadorned data between components and uses the receive

construct to retrieve messages from the mailbox. In the other hand, in the high-level
mode, each component declares a number of channels to which any component can address
messages. To retrieve the messages sent on the channels, the serve statement is used.
These high-level messages are also stored in the mailbox.

Sellers and buyers in the low-level communication mode

Returning to the problem of matching sellers and buyers, a first attempt at tackling this
problem can be expressed using the low-level communication mode as shown in listing
3.1. In this server, the outer receive expects a message matching either the pattern
{:sell:X:} or the pattern {:buy:X:}. The former matches any record that has a sell

field and binds its value to the variable X, and the case for the latter is very similar.

37

We need both cases because we want to respect, as far as possible, the order in which
the messages appear in the mailbox. For instance, the second rule will be triggered if a
buy message appears first. In that case we will execute a second receive that will try to
find a message satisfying the pattern {:sell:$(X):}. A pattern $(e) matches the value
of the expression e, so {:sell:$(X):} will match a record whose sell field holds the
value currently stored in variable X. The important factor to note here is that the X has
been bound by the outer receive.

1 receive{
2

3 { : s e l l :X: } => {
4 receive{
5 { : buy : $ (X) : } => { /* pa i r found */ }
6 } }
7

8 | { : buy :X: } => {
9 receive{

10 { : s e l l : $ (X) : } => { /* pa i r found */ }
11 } } }

Listing 3.1: First attempt at matching sellers and buyers

A problem with this naive solution is that it might lead to a deadlock situation. For
example, assume that the first matched message has been {:buy:‘‘Wisdom Teeth’’:}.
Clearly, it might easily be the case that no one has such a bizarre item on sell, and in this
solution we would wait for one seller to appear forever.

An alternative solution that avoids the deadlock situation is presented in 3.2. In
this case, after receiving the message {:buy:‘‘Wisdom Teeth’’:}, we only wait for a
maximum of 10 seconds for a seller before giving up, at which point we execute the body
of the timeout clause. The statement thisComp() <<< {:buy:X:} resends the message
{:buy:‘‘Wisdom Teeth’’:} to the current component because it had been removed from
the mailbox when the outer pattern was satisfied, and we might need to use it later.

A drawback of this second solution is that it does not preserve the order of the messages
in the mailbox. The message {:buy:‘‘Wisdom Teeth’’:} was in the forefront before
being removed, but when resent, it will be enqueued to the end. As a result, trying to
produce a solution that preserves the order is a non-trivial exercise.

In view of these difficulties, we have decided to add a new construct to the language
that facilitates synchronisation. JCThorn provides the join operator and that allows us
to easily solve this problem, as illustrated in listing 3.3. The rule in the receive construct
will only fire when the two required messages, sell and buy, are present in the mailbox.
In other words, instead of matching one message at a time as in Thorn, a join expresses
that we need to match a combination of messages in order for a rule to be applicable.
Remarkably, joins have reduced the number of required lines to solve the problem from
20 to 3.

38

1 while(<NOT FOUND>) {
2 receive{
3

4 { : s e l l :X: } => {
5 receive{
6

7 { : buy : $ (X) : } => { /* pa i r found */ }
8

9 timeout (10000) => {
10 thisComp () <<< { : s e l l :X: } ;
11 } } }
12

13 | { : buy :X: } => {
14 receive{
15

16 { : s e l l : $ (X) : } => { /* pa i r found */ }
17

18 timeout (10000) => {
19 thisComp () <<< { : buy :X: } ;
20 } } } } }

Listing 3.2: Second attempt at matching sellers and buyers

1 receive{
2 { : s e l l :X: } and { : buy : $ (X) : } => { /* pa i r found */ }
3 }

Listing 3.3: Solution to the sellers and buyers problem using joins

Sellers and buyers in the high-level communication mode

As hinted in the beginning, Thorn also provides a high-level communication mode. We
will first show a component that uses the high-level mode and then try to justify why
it is much more difficult to solve the buyers and sellers problem in this mode using the
original Thorn.

Listing 3.4 shows a one-cell buffer that stores the lower case version of a given string
and returns it when prompted. It declares a variable value, a function toLower and
two channels, get and put. The built-in function body is where the execution of the
component starts. Furthermore, the serve statement is used to wait for a high-level
communication event. Any component can store a string on the buffer by sending it
on the asynchronous channel put. This message is placed in the buffer’s mailbox and
retrieved when the buffer executes the serve statement. Similarly, any component can
retrieve the string by sending a message on the synchronous channel get.

The sellers and buyers problem is very difficult to solve in the high-level mode because,
as we have seen in listing 3.1, we need two nested receive statements with slightly
different cases to be able to synchronise on the value of the goods. However, in the high-

39

level mode, we can only declare channels in the top level of the component, and the serve
statement is, to some extent, equivalent to a receive construct in which its cases are the
declared channels. As a result, no matter where a serve statement appears, its cases are
always the same set.

1 component oneCe l lBu f f e r{
2 var value := ‘ ‘ ’ ’ ;
3

4 fun toLower (s) { /* re turn lower case ve r s i on o f s */ }
5

6 sync get () {
7 return value ;
8 }
9

10 async put (s) {
11 value := toLower (s) ;
12 return ;
13 }
14

15 body{
16 while (t rue){
17 serve ;
18 } } }

Listing 3.4: One-cell buffer storing lower case strings

On the other hand, JCThorn provides a construct that we called chords that allows
us to easily solve the buyers and sellers problems in the high-level mode. The solution
is shown in listing 3.5 and, as we can see, it is very similar to the solution using joins.
It declares a chord with two channels, buy and sell, whose body will only be executed
when they are pending messages with the same contents in both channels.

1 component s e r v e r{
2

3 async buy (X) and async s e l l ($ (X)) {
4 /* pa i r found */
5 }
6

7 body{
8 serve ;
9 }

10 }

Listing 3.5: Solution to the buyers and sellers problem using chords

40

Joins or chords?

In Thorn, the high-level communication events are treated as syntactic sugar and trans-
lated at compile time into low-level events. Obviously, JCThorn follows the same ap-
proach and translates chords into joins. Hence, chords and joins are not that different.

In the Join Calculus literature, these two terms are often used interchangeably.
In Thorn we distinguish them because it is the only Join Calculus based language
that provides both. In the next two sections we will present each of them in more detail.
However, in the rest of this report, we may use the terms interchangeably given that most
of their features are common. Only in the cases in which their behaviours are different
shall we explicitly distinguish between the both of them.

3.2 Joins

As previously mentioned, the low-level communication mode of JCThorn allows syn-
chronisation on the receipt of multiple messages thanks to the use of joins in the selective
receive construct. Joins in JCThorn resemble joins in JErlang, as we can observe
from listing 3.6, which shows a one-cell buffer that synchronises on the reception of mes-
sages ‘‘get’’ and {:put:x:}.

1 receive{
2 ‘ ‘ get ’ ’ from c and { : put : x : } => { c <<< x ; }
3 }

Listing 3.6: Joins for the low-level communication mode in JCThorn

Any component can store a value x in the buffer by sending the message {:put:x:}
to it. To retrieve the value, a component can send the message ‘‘get’’. When both
messages are present in the mailbox of the buffer, this can then retrieve the sender of the
‘‘get’’ message and return the stored value. To retrieve the sender, the from operator
is used, and to return the value, the low-level send operator <<< appears in the body of
the join.

Low-level communication in JCThorn is asynchronous. Therefore, the component
sending the ‘‘get’’ message needs to execute a receive statement if he wants to retrieve
the value replied by the buffer. Moreover, the buffer can reply to as many components as
needed in the body of the join.

As we can see, each join has two parts, the join declaration and the join body. The
join body is just the block that follows the arrow =>. The join declaration is a set of join
patterns concatenated with the and operator. Each join pattern has the format described
in figure 3.1. C, S and E are all algebraic patterns. C matches the contents of the message,
S the sender and E the envelope. The envelope clause captures the message together with
its metadata, and is normally used in the high-level communication mode to delegate work
to helper servers (see next section, 3.3, for more details). Both the from and envelope
parts are optional. In the remainder of the report we will refer to both algebraic patterns

41

and join patterns just as patterns when the meaning is clear from the context.

C [from S] [envelope E]

Figure 3.1: Format of a join pattern

Listing 3.7 shows a receive construct with 2 joins separated by the or (ie. ‘∣’) operator.
Both joins match two singleton lists. This example helps to illustrate the difference
between free and bound variables in algebraic patterns in JCThorn. JCThorn follows
Thorn’s approach of making this difference explicit in the syntax.

In the first join, y appears both free and bound. It is free in the first occurrence, so
[y] will match any singleton list. On the other hand, $(y) matches an element whose
value is equal to the value hold in variable y, so the second join pattern will match a
singleton list holding the same element as the first matched list. We can also see that join
patterns can match variables defined outside joins, as it occurs with the variable x in the
second join. Clearly, the pattern [$(x)] will only match the list [2] in this example.

Thorn’s approach avoids the common mistake of unintentionally use a bound variable
as a wildcard pattern in imperative languages. Hence, it would be a syntactic error to
use the pattern [x] instead of [$(x)] in the second join, given that x has already been
defined in the first line. In that case we would get a Duplicate definition exception.

1 x = 2 ;
2 receive{
3 [y] and [$ (y)] => { /* case 1 */ }
4 | [z] and [$ (x)] => { /* case 2 */ }
5 }

Listing 3.7: Receive with two joins

Example 3.7 also demonstrates a situation where a message can satisfy multiple pat-
terns in the same join. Any singleton list will match both join patterns in the first join,
but JCThorn will ensure that this only fires when there are two singleton lists with the
same element in the mailbox. In other words, any message cannot satisfy more than a
single join pattern in a successful match.

Most languages that support joins, with the exception of Jerlang, forbid this situa-
tion from arising by requiring the channels in a join to be unique. Although their approach
greatly simplifies the implementation of the language (see section 4.3), we believe that
allowing them is crucial to creating a usable language. There are many problems that are
easily solved by using the same pattern multiple times in a join, as for example the Santa
Claus problem (section 6.1).

42

3.3 Chords

Chords in JCThorn resemble Join Calculus inspired constructs in languages such as
JoCaml, Polyphonic C# and Join Java. Listing 3.8 shows a one-cell buffer imple-
mented using chords in JCThorn. It presents the same behaviour as that of the buffer
in 3.6, but it gives all the component code for completeness. As explained in section 2.4,
spawn starts a new component, and the built-in function body is where execution starts.

1 spawn{
2 sync get () and async put (x) {return x ; }
3 body {while (t rue) serve ; }
4 }

Listing 3.8: Chords for the high-level communication model

This component defines one chord that synchronises on the receipt of messages on
channels get and put. Since get is a synchronous channel, a component sending a message
on it will block until the buffer fires the chord and returns the value stored in variable x.
On the other hand, a component sending a message on the asynchronous channel put will
not block. Moreover, the serve statement causes the buffer to wait until it has received
the two required messages to satisfy the chord.

Similar to joins, a chord has two parts, the chord declaration and the chord body. The
body is the block following the declaration, which is a set of chord patterns concatenated
with the and operator. Each chord pattern introduces a channel, whose name has to be
preceded by a modifier that specifies whether the channel is synchronous or asynchronous
(sync and async). The channel name can also be followed by the from and envelope

clauses. As already mentioned, the from clause is used to retrieve the sender of a message.
On the other hand, the envelope clause returns the message together with its metadata,
allowing a server thread to pass responsibility for answering a request to a worker thread.
How to delegate a request is illustrated in listing 3.9, and how to receive the corresponding
delegated request in 3.10 1.

A server can use the built-in function splitSync() as an instruction not to send a
response to a synchronous command. On the other hand, a worker needs the original
message and its metadata to be able to respond to the request. It uses the built-in
function syncReply() to this end. Importantly, the whole process is transparent to the
client, who only needs to communicate with the server.

1 sync command() envelope e{
2 worker <−− subcommand(e) ;
3 throw s p l i t S y n c () ;
4 }

Listing 3.9: Delegation of a request to a worker thread

1Both examples were taken from [10]

43

1 async subcommand(e){
2 workerResponse = . . . /* compute i t */
3 syncReply (e , workerResponse) ;
4 }

Listing 3.10: Receipt of delegated request by worker

Returning to chords, each can have at most one synchronous channel declaration, and
it is a syntactic error to define more. This is also the approach taken in the Polyphonic
C# and Join Java languages. Regarding the position of the synchronous channel declara-
tion, JCThorn does not present any restriction and follows the example of Polyphonic
C#. In Join Java the synchronous channel can only appear in first position, restriction
that we find unnecessary.

The reason why we only allow one synchronous channel declaration per chord is to
maintain compatibility with Thorn and avoid extending the return command. How-
ever, as listing 3.11 shows, it is not difficult to write a program that behaves as if both
channels in the chord were synchronous. This program behaves like a barrier that defines
a synchronisation point in the execution of two parallel tasks. The only subtlety is that
the component using the asynchronous channel wait2 will have to perform a selective
receive in order to retrieve the server’s response, ie. the string ‘‘go’’.

1 spawn{
2 sync wait1 () and async wait2 () from S {S <<< ”go” ; return ; }
3 body {while (t rue) serve ; }
4 }

Listing 3.11: Multiple synchronous channels in one chord

As a result of this hack, JCThorn is as powerful as JoCaml, that allows multiple
synchronous channels per chord. However, an advantageous difference with JoCaml,
Polyphonic C# and Join Java is that JCThorn allows the same channel to appear
more than once in the same chord, which increases the expressiveness of the language.

3.3.1 Algebraic patterns on arguments

Channels in JCThorn can perform algebraic pattern matching on arguments during
chord resolution. Programs using this feature resemble functional programs written in
languages like Haskell. For instance, the code in listing 3.12 outputs ‘‘empty’’ if the
given list on channel isEmpty is indeed empty, and ‘‘not empty’’ otherwise.

1 spawn{
2 async isEmpty ([]) and async doPrint () {p r i n t l n (”empty”) ; }
3 async isEmpty (xs) and async doPrint () {p r i n t l n (”not empty ’ ’) ; }
4 body { s e rve ; }
5 }

Listing 3.12: Algebraic pattern matching on arguments to channels

44

Similarly, JoCaml also allows pattern matching on arguments to channels. However,
an equivalent program written in JoCaml would be ambiguous given that the resolution
of chords in this language is non-deterministic. When the list is empty, and considering
that the pattern xs also matches the empty list, either message could print in JoCaml.
JCThorn solves this problem by evaluating the chords in order of appearance.

Clearly, pattern matching on arguments is quite a powerful feature that programmers
can use to write more elegant programs. Using the pattern matching operator : that
performs type checking, we can write the program given in 3.13. This is a one-cell buffer
that accepts either an integer or a string.

1 sync get () and async put (n : i n t) {return n ; }
2 sync get () and async put (s : s t r i n g) {return s ; }

Listing 3.13: Type checking

3.3.2 Inheritance

Inheritance and chords integrate well in JCThorn because these are two orthogonal
features. Contrarily, the inclusion of chords in Polyphonic C# and Join Java forced
the designers to restrict the cases where inheritance is supported. The problem lies in the
fact that inheritance is available between classes in these languages, but classes can also
declare chords.

In Join Java, inheriting from classes that declare chords is completely forbidden. In
Polyphonic C# this is allowed, but with some restrictions. For instance, the declaration
of the D class in listing 3.14 is illegal. Otherwise, all the calls to f() on a D object would
deadlock forever. This behaviour would be particularly problematic if an instance of class
D were passed to a fragment of code expecting an object of type C, as the chances are that
it would deadlock. More details are given in the background in section 2.3.3.

1 class C {
2 virtual void f () & virtual async g () { /* body1 */ }
3 }
4 class D : C {
5 o v e r r i d e async g () { /* body2 */ }
6 }

Listing 3.14: Invalid class inheritance in Polyphonic C#

On the contrary, in JCThorn a component and a class are two different entities. Classes
can only define methods, introduced by the def keyword, and not chords. Listing 3.15
shows a typical class declaration in JCThorn. Moreover, inheritance is only available
between classes, which are clearly not affected by the introduction of chords. In other
words, the introduction of chords in JCThorn has no effect on inheritance because
components are the only entities that can declare them (as shown in listing 3.16), but
inheritance is not available for them.

45

1 class Point{
2 var x ; var y ;
3

4 new Point (x ’ , y ’) { x := x ’ ; y := y ’ ; }
5

6 def move(x ’ , y ’) { x := x ’ ; y := y ’ ; }
7 }

Listing 3.15: Class declaration in JCThorn

1 component Buf f e r{
2 sync get () and async put (x) {return x ; }
3 body {while (t rue) serve ; }
4 }

Listing 3.16: Component declaration in JCThorn

3.4 Common features to both joins and chords

In this section we present the common features to both joins and chords. The reader is
advised that we might use both terms interchangeably from now on.

3.4.1 Resolution and priorities

In order to fully understand how the receive and serve commands operate, it is im-
portant to also understand how the mailbox is handled. Each component has a mailbox
where it receives both high-level and low-level messages. Internally, high-level messages
are translated into low-level messages, which helps to explain why the mailbox is shared.

Messages from the mailbox are retrieved one at the time, until the current message
along with any combination of previously retrieved messages satisfies a join, when exe-
cuting a receive, or chord, when executing a serve. Moreover, the order in which joins
and chords are declared is important, given that both the receive and serve constructs
are specified to check the cases in order.

To illustrate how resolution operates, consider the case of a one-cell buffer that accepts
strings and integers, listed in 3.17. Assume that its mailbox contains, in this order, the
messages put("hello"), put(5) and get(). Subsequently, when the third message in the
mailbox is retrieved (ie. get()), it is first checked against the first join. This is triggered
because the pattern put(n:int) has already been satisfied by the second message in the
mailbox. After reduction, the mailbox will only contain the message put("hello").

46

1 spawn{
2 sync get () and async put (n : i n t) {return n ; }
3 sync get () and async put (s : s t r i n g) {return s ; }
4 body {while (t rue) serve ; }
5 }

Listing 3.17: In order resolution of chords in JCThorn

The in order semantics is important because it allows programmers to write simpler
programs. With in order semantics, the three patterns in listing 3.18 will satisfy disjoint
sets of messages, and we will have the certainty that xs will never match the empty or sin-
gleton lists. Assuming the non-deterministic semantics of other languages, an equivalent
program would be more tedious to write, as shown in listing 3.19.

1 receive{
2 [] => { /* case 1 */ }
3 | [x] => { /* case 2 */ }
4 | xs => { /* case 3 */ }
5 }

Listing 3.18: In order resolution of joins in JCThorn

1 receive{
2 [] => { /* case 1 */ }
3 | [x] && ! [] => { /* case 2 */ }
4 | xs && ! [x] && ! [] => { /* case 3 */ }
5 }

Listing 3.19: Unordered resolution of joins in other languages

Joins and chords can also be assigned numeric priorities with the prio operator, as
demonstrated by listings 3.20 and 3.21. More generally, the default priority for the joins
that have not been explicitly assigned one is 0. All the messages currently in the mailbox
will have to be checked against a higher priority join before attempting to match a lower
priority one.

1 receive{
2 ‘ ‘ get ’ ’ from c and { : put : x : } prio 10 => { /* body */ }
3 }

Listing 3.20: Explicit numeric priority to join

1 sync get () and async put (x) prio 10 { /* body */ }

Listing 3.21: Explicit numeric priority to chord

For instance, the program in listing 3.22 is very similar to that in 3.17, but with a
slightly different behaviour. Assume that the mailbox of the buffer contains, in this order,

47

the messages put("hello"), get() and put(5). In 3.17 the second join will fire after
retrieving the second message in the mailbox. On the contrary, in 3.22 the first join will
be triggered as it has higher numeric priority than the second join and can be satisfied by
the second and third messages. In other words, all the messages currently in the mailbox
are checked against the first join before attempting to reduce the second join when the
explicit priority is used.

1 spawn{
2 sync get () and async put (n : i n t) prio 10 {return n ; }
3 sync get () and async put (s : s t r i n g) {return s ; }
4 body {while (t rue) serve ; }
5 }

Listing 3.22: Numeric priorities

Numeric priorities are important because, in many situations, we are only interested
in the presence of a message in the mailbox rather than its position. For example, the
presence of an abort critical message might require immediate action, while another
message appearing before it in the mailbox might not be as important.

3.4.2 Non-linear patterns and side conditions

Although non-linear patterns have already been used in this report, we will introduce
them here in more detail. A pattern is non-linear when it contains the same variable
more than once. In 3.23, the variable x appears twice. Hence, the resolution of the join
also synchronises on the value that x will hold. As we already know, this program matches
sellers and buyers of the same goods.

1 receive{
2 { : s e l l : x : } and { : buy : $ (x) : } => { . . . }
3 }

Listing 3.23: Non-linear patterns in JCThorn

It can be observed that JCThorn’s non-linear patterns obey the Thornian syntactic
distinction between bound and free variables. Consequently, the syntax is slightly differ-
ent to that of non-linear patterns in languages like Prolog or Jerlang. Remarkably,
JCThorn and Jerlang are the only two Join-Calculus-based languages implementing
them. We will see later that the reason is that supporting them makes their implementa-
tion more complex.

Apart from synchronising on the value that a variable holds, the powerful pattern
matching capabilities inherited from Thorn also allow the expression of more elaborate
constraints. Algebraic pattern matching in Thorn eliminates the need for side conditions
and guards and, as a result, these are not included in the language.

The JErlang program in 3.24 demonstrates a typical example where guards are
needed. In that program, the goods will only be sold to the customer when he has paid

48

at least its full price. 3.25 shows an equivalent program written in JCThorn.

1 receive{
2 {pr i ce , X} and {pay , Y} when (X <= Y) => { /* s e l l good */ }
3 }

Listing 3.24: JErlang guards

1 receive{
2 { : p r i c e :X: } and { : pay : (Y && (Y <= X) ?) : } => { /* s e l l good*/ }
3 }

Listing 3.25: JCThorn pattern matching constraints

The value in the pay aggregate has to satisfy both patterns in the conjunctive pattern.
Recall that p && q indicates a value that matches both p and q. So in 3.25 the left hand
side of the conjunctive pattern does not present any restriction and merely binds the value
to the variable Y. On the other hand, the right side restricts the value that Y can hold to
be less than the value held in X.

Conjunctive patterns allow finer control of when pattern matching is stopped than side
conditions do. In other words, failed matches can be resolved sooner. For a meaningful
example consider the pattern [x:int && (x != 0)?, $(32 div x)] borrowed from [10].
This pattern is true on [4,8] and false (rather than dividing by zero) on [0,0].

3.4.3 Timeouts

JCThorn inherits the timeout construct from Thorn. A timeout is used to limit
the time a component waits for the arrival of a message in receive (3.26) and serve

commands (3.27). The amount of time to wait is specified in milliseconds.

1 receive{
2 ”message” => { . . . }
3 timeout (1000) => { . . . }
4 }

Listing 3.26: Timeout used by receive

1 serve timeout (1000){ /* t imeout ac t i on */ } ;

Listing 3.27: Timeout used by serve

49

3.5 Incompatibilities with Thorn

During the design process of JCThorn, we assumed that the extensions were to be
included in the original Thorn language. As such, JCThorn follows the same design
principles of Thorn, and the majority of Thorn programs are also valid JCThorn
programs. Unfortunately, there are a couple of cases of minor importance, described
below, where compatibility is lost.

We decided to break compatibility because we believe that JCThorn proposes the
most elegant path to incorporate chords into Thorn. When making this decision, we
took into account that Thorn is still in the first stages of development without an estab-
lished user community. This fact gives Thorn designers the freedom to make backwards-
incompatible changes to the language without any major negative effects.

Had Thorn served an established user-based community, we would have certainly de-
signed JCThorn differently. In that case, compatibility would have been more important
than the elegance of the design.

3.5.1 Before and After

There is a syntactic difference between Thorn and JCThorn in before and after

clauses, which arises from the semantic differences between the two languages. The before
and after clauses next to the serve statement define share actions to be performed,
respectively, before and after the execution of any chord.

The Thorn program in 3.28 illustrates how before and after are used. No matter
which means of transport is chosen, the actions to be performed by the client before and
after travelling are, respectively, leave the house and arrive at college.

1 spawn s e r v e r{
2 sync takeUnderground () { . . . }
3 sync takeBus () { . . . }
4

5 body{
6 serve before (msg , c l i e n t) {
7 leaveHouse (c l i e n t) ;
8 } after (msg , c l i e n t) {
9 a r r i v e C o l l e g e (c l i e n t) ;

10 } } }

Listing 3.28: Before and after clauses in Thorn

The built-in functions before and after can take from 0 to 2 arguments. If used, the
first argument is always the message envelope and the second the message sender. This
is unambiguous in Thorn because a chord declaration only defines one channel. On the
other hand, a chord in JCThorn can define multiple channels. Consequently, it is not
clear which sender should get bind to the argument variable.

50

JCThorn solves this problem by representing the arguments as lists. The indexes of
the elements in the lists corresponds to the position of the chord pattern matching the
message we are referring to. To see how this works, consider the equivalent JCThorn
program of listing 3.29. In this case, given that all the chords are unary (they have a
single channel declaration), the lists msgs and clients will hold a single element each.

This approach also solves the problem of components with variable length chords, as
demonstrated in 3.30. In this program, clients will only go to college by car if there are
at least three of them. When that is the case, the lists msgs and clients will hold three
elements each, one per client.

1 spawn s e r v e r{
2 sync takeUnderground () { . . . }
3 sync takeBus () { . . . }
4

5 body{
6 serve before (msgs , c l i e n t s) {
7 leaveHouse (c l i e n t s (0)) ;
8 } after (msgs , c l i e n t s) {
9 a r r i v e C o l l e g e (c l i e n t s (0)) ;

10 } } }

Listing 3.29: Before and after clauses in JCThorn

1 spawn s e r v e r{
2 sync takeUnderground () { . . . }
3 sync takeBus () { . . . }
4 async byCar () and async byCar () and async byCar () { . . . }
5

6 body{
7 serve before (msgs , c l i e n t s) {
8 for (i <− c l i e n t s){
9 leaveHouse (c l i e n t s (i)) ;

10 }
11 } after (msgs , c l i e n t s) {
12 for (i <− c l i e n t s){
13 a r r i v e C o l l e g e (c l i e n t s (i)) ;
14 } } } }

Listing 3.30: Before and after clauses in JCThorn

51

3.5.2 Catch

The second situation where Thorn and JCThorn differ relates to the catch clause that
can also appear next to the serve statement. In this case, the reason for the incompatibil-
ity is twofold. On the one hand, implementation constraints in JCThorn forbid its use
(see section 4.4.2). On the other hand, we believe its removal creates a more consistent
language.

The intended use of catch in Thorn is to define an action to be performed when a
message has been sent on an existing channel with the wrong number or type of arguments.
The component in 3.31 defines a target component that creates a plink channel taking
an integer argument. Clearly, if T receives the messages plink("hello") or plink(2,3),
it will output "target missed" because they contain the wrong arguments. In that case,
both messages will be removed from T’s mailbox.

1 T = spawn t a r g e t {
2 async p l ink (x : i n t) { p r i n t l n (” t a r g e t h i t ”) ; }
3

4 body{
5 serve catch { x => { p r i n t l n (” t a r g e t missed ”) ; }} ;
6 } }

Listing 3.31: Catch clause in Thorn

Interestingly enough, if T receives the message boom(5), nothing will print because it
does not define such a channel. T will not execute the serve or catch statements and
it will not remove the message from the mailbox. However, we believe that it would be
preferable that the behaviour in both presented cases were the same, either to catch or
ignore both errors.

More importantly, consider the chess server program in listing 3.32. Each player is
assigned a boolean value which it uses to identify herself to the server. When the server
receives the move of the player whose turn is to move, it executes it and then changes
the turn value. The catch clause is there to catch those situations where a move with an
invalid format has been submitted.

Unfortunately, the catch clause matches more cases than desired. The black player
(identified by true) waiting for its turn should be allowed to send her move to the server
before the white player does. This situation could arise when the black player has already
decided what her next move will be independently of what her opponent, who is to move
next, decides to do. In that scenario, the correct behaviour of the server should be to wait
for white’s move, execute it and then execute black’s. However, this is not what actually
happens in Thorn.

Thorn treats black’s move as invalid and executes the catch statement. The server
thinks that the first argument of black’s move is not correct because it does not match
the value currently hold in the turn variable, given that it is white’s turn. The cause
of this behaviour lies in the way Thorn designers have implemented the catch clause,
which relies on the use of algebraic pattern matching (more details in section 4.4.2).

52

Both to avoid the catch problem when using patterns that match the values hold in
component state variables and to make the behaviour of the language more consistent,
JCThorn has eliminated the catch clause next to serve statements from the language.

1 spawn che s sSe rve r {
2 var turn := f a l s e ;
3

4 fun executeMove (player , move) { . . . }
5

6 sync move($ (turn) , move) {
7 executeMove (turn , move) ;
8 turn := ! turn ;
9 return ;

10 }
11

12 body{
13 serve catch { x => { p r i n t l n (” i n v a l i d move format ”) ; }} ;
14 } }

Listing 3.32: Chess server

3.6 Summary

In this chapter we have introduced the extensions which JCThorn provides upon Thorn.
The most visible features are joins, used in the low-level communication mode, and chords,
used in the high-level mode. Both constructs serve the same purpose, which is to perform
some actions when a combination of messages satisfying certain patterns has been received.
In contrast, Thorn only allows matching a single message from the mailbox at a time.

Joins and chords overcome certain limitations of the Thorn language, and allow
programmers to express concepts like finding the first pair of received messages that
agree on their value without removing any other message from the mailbox. This idea,
although very simple, cannot be expressed in Thorn.

As a result, solutions to certain synchronisation problems can be expressed much
more easily using either joins or chords. Both constructs are, to some extent, equivalent,
considering that chords are translated at compile time into joins. Consequently, the
runtime resolution of both constructs is the same, which can be summarised as follows:

� All the messages in the mailbox will be checked against joins with a higher priority
(explicitly assigned with the prio operator) before attempting to reduce those with
a lower priority.

� Joins at the same level of priority are tested in-order, according to the order they
are declared in the program.

� First-match semantics with regards to the messages in the mailbox.

53

Other features that both constructs provide are non-linear patterns, powerful pat-
tern matching capabilities and timeouts. Additionally, chords support algebraic pattern
matching on the formals to the channels, and integrate well with inheritance. Other lan-
guages had to introduce restrictions on inheritance, but JCThorn did not suffer from
this problem since classes and components are two different entities.

Finally, we have also described the incompatibilities between Thorn and JCThorn.
In JCThorn, the arguments to the before and after clauses are lists instead of single
elements. Moreover, JCThorn has removed the catch clause next to the serve state-
ment from the language to avoid the unexpected behaviour of programs using this feature
along with interpolation patterns.

In the next chapter we will present how joins and chords have been implemented.
Joins required modifications to the execution engine of the interpreter, and chords were
translated at compile time into joins.

54

Chapter 4

The implementation

Chapter 3 has provided a description of JCThorn at the user level. Now we will fo-
cus on the implementation details that might be of interest to programming language
designers. We will describe the changes made to the grammar and abstract syntax tree
(AST) and then we will cover the implementation of joins and chords. The inclusion of
joins required the extension of the interpreter’s execution engine and the matching capa-
bilities of the language. On the other hand, the high-level communication constructs in
Thorn are translated at compile time into low-level communication constructs. Thus,
the implementation of chords consisted of substantial modifications to this translation.

The reader should be aware that in this chapter we will only cover the elementary
algorithmic framework. All of the optimisations are described in the next chapter, together
with the state explosion problem whose effects they try to minimise.

4.1 Overview

There are two general approaches to programming language implementation, namely in-
terpretation and compilation. At the moment, Thorn only provides an interpreter,
written in Java. Although there exists an old compiler, this is outdated and no longer
supported. Hence, we decided to implement JCThorn on the interpreter until a new
version of the compiler, currently in development, is released.

The changes made to the interpreter are illustrated in figure 4.1. It shows the process
of interpreting a JCThorn program (although quite abstractly) and the packages in the
interpreter that received the most changes. A number prefixed by the + symbol means the
number of lines of code that have been added to the corresponding package. Similarly,
! stands for the number of lines that have been modified (see appendix E for a more
comprehensive log of changes). Finally, the color codes together with table 4.1 show
where the changes described in each of the parts of this report were located.

The creation of JCThorn’s parser, the fisher.parser package, is a one-off op-
eration. This is done using a tool called JavaCC that takes as input the file grammer-

fisher.jj, which specifies the grammar of the JCThorn language. Parsing a JCThorn

55

Figure 4.1: Interpretation process and localisation of changes

56

COLOR LOCATION TOPICS
red section 4.2 Grammar, AST, de Bruijn indexes

purple section 4.3.2 Interpreter runtime entities, scanning of mailbox
blue sections 4.3.3 and 4.3.4 Evaluation of joins
green section 4.4 Translation of chords into joins
yellow chapter 5 Optimisations

Table 4.1: Topics of each of the sections of the report

program (.th extension) creates an initial abstract syntax tree (AST), whose nodes are
instances of the classes defined in the fisher.syn package. Moreover, some of the visitor
classes defined in fisher.syn.visitor are used to perform some modifications to this
initial AST.

The classes in fisher.desugar eliminate syntactic sugar from the program. For
example, chords are translated into joins during this step. The desugared AST becomes
the input to some static analyses, defined in fisher.statics, that produce the runnable
AST. Finally, the interpreter’s execution engine takes this AST to produce the output of
the JCThorn program.

4.2 Grammar and AST

To better understand the changes made to the grammar, we will first give the fragments
of Thorn’s grammar concerning the receive construct and component declarations.
For simplicity and readability, we will show a somewhat abstracted version given in Ex-
tended Backus-Naur Form (EBNF). The actual grammar, although more complex, is also
expressed in EBNF. This is the input given to JavaCC (Java Compiler Compiler) to
generate the parser for JCThorn.

JavaCC takes a formal grammar provided in EBNF notation and outputs a parser
written in Java. JavaCC generates top-down parsers, which limits its use to LL(K)
grammars that do not allow left-recursion [12].

The grammar for Thorn’s receive construct is given in 4.2. Non-terminals are written
in slanted text and terminals in typewriter font. Square brackets are used to denote
optional syntax, while the ‘*’ symbol expresses that an item can appear 0 or more times.
We can see that each case in the receive construct defines a maximum of three patterns to
match a single message. On the other hand, figure 4.3 shows the grammar for a component
declaration in Thorn. We observe that async decl, sync decl and fun decl rewrite to a
keyword plus the rule for funbody. This rule declares only a single channel, whose name
might be followed by the from, envelope and prio closures.

57

receive → receive cases [timeout]
cases → case (case) *
case → pattern [from pattern] [envelope pattern] [prio int] block

block → statement (statement)*
timeout → timeout int block

Figure 4.2: Thorn syntax of receive construct

component decl → component name formals process member (process member)*
process member → sync decl ∣ async decl ∣ fun decl

∣ body ∣ import stmt ∣ class decl ∣ var decl
sync decl → sync funbody

async decl → async funbody
fun decl → fun funbody
funbody → name formals [from pattern] [envelope pattern] [prio int] block

Figure 4.3: Thorn syntax of component declaration

The receive construct in JCThorn is modified to include a set of join declarations
instead of cases, as shown in 4.4. Each join decl consists of a join signature and a body
(ie. block). Optionally, it can also be assigned a priority. We observe that the signature is
a set of join patterns concatenated with the and keyword, each of which matches a single
message in the mailbox.

receive → receive join declarations [timeout]
join declarations → join decl (join decl) *

join decl → join signature [prio int] block
join signature → join pattern (and join pattern)*

join pattern → pattern [from pattern] [envelope pattern]

Figure 4.4: JCThorn syntax of receive construct

component decl → component name formals (process member)*
process member → chord decl ∣ fun decl ∣ var decl

∣ body ∣ import stmt ∣ class decl
chord decl → sync channel decl (and async channel decl)* prio block

∣ async channel decl (and chord decl aux ∣ prio block)
chord decl aux → async channe channel (and chord decl aux ∣ prio block)

∣ sync channel decl (and async channel decl)* prio block
channel decl → name formals [from pattern] [envelope pattern]

prio body → [prio int] block

Figure 4.5: JCThorn syntax of component declaration

58

In the case of component declarations, JCThorn replaces the Thornian sync decl and
async decl items for a chord decl non-terminal in the set of possible process members, as
demonstrated in figure 4.5. Each chord decl consists of a set of channel decls concatenated
with the and keyword. This set is either followed by a priority and the body (block non-
terminal), or just the body.

The set of channel decls has to be nonempty and can contain at the most one syn-
chronous channel, which can appear in any position. These two constraints are enforced
by the grammar. Moreover, the chord decl rule has been split in two to ensure that the
grammar is in LL(1). In other words, the parser only needs a look-ahead of 1 in order to
parse any component declaration correctly.

Regarding the AST, this was extended to include nodes for the following elements:

� Join declarations

� Join signatures

� Join patterns

� Chord declarations

� Chord bodies, which include the priority if defined

� Channel declarations

As a result, all the visitor classes had to be modified accordingly. Thorn’s interpreter
uses the visitor pattern during code compilation to perform some of the required tasks.
Furthermore, we also had to alter the way seals are created for high-level communication
constructs. Seals, the de Bruijn indexes, were introduced in section 2.4.10.

When compiling the program in listing 4.1, two Seal objects are produced. The first
is associated with the first three occurrences of the identifier x, and the second with
the last four. In Thorn, we cannot have a channel argument referring to a variable
defined by another channel. However, with JCThorn, this achievable. The seal of all
the occurrences of variable x in program 4.2 is the same.

1 spawn{
2 sync square (x){return x*x ; }
3 sync cube (x){return x*x*x ; }
4 body {serve ; }
5 }

Listing 4.1: Example that demonstrates how Seal objects are created in Thorn

1 spawn{
2 sync buy (x) and async s e l l ($ (x)){return x ; }
3 body {serve ; }
4 }

Listing 4.2: Example that demonstrates how Seal objects are created in JCThorn

59

4.3 Joins implementation

In this section we explain how joins are implemented in JCThorn, but first review the
approaches taken in other languages for join resolution. We then give an overview of the
interpreter’s runtime environment and the algorithm responsible of scanning the mailbox
of each component. We conclude by examining in more detail the two phases in the
evaluation of joins, namely the local and contextual matching phases.

4.3.1 Review of other languages

To date, there exist two main approaches to implement Join Calculus based constructs.
The first one is based on deterministic automata and has been followed by languages like
JoCaml[24] and Polyphonic C#, but it is not appropriate for JCThorn. The second
one has been proposed by JErlang and is based on the Rete algorithm, traditionally
used in Production Rule Systems.

The finite-state automata solution is used by languages that implement chords. The
matching state of chords is stored in a vector that has one element for each defined
channel. The value of each element can be 0, when there are no messages pending on the
corresponding channel, or N otherwise.

As an example, consider the JoCaml program in listing 4.3. It defines three channels
A, B and C. As a result, the vector holding the matching state would have a length of
3. After some arbitrary order has been decided, and assuming that there are pending
messages on B and C and not in A, the state could be 0NN.

1 l e t A(n) | B() = P(n)
2 l e t A(n) | C() = Q(n)
3 ; ;

Listing 4.3: JoCaml chords

A matching status is defined as a status that holds enough N, so that at least one
chord can be fired. The state evolves towards matching statuses as messages arrive, and
in the opposite direction when matching occurs. These transitions rely on the linearity
of the patterns in a chord, and on the understanding that using the same channel more
than once in the same chord is forbidden.

As such, if a message arrives that satisfies a chord pattern whose state was 0, this
becomes N and we may ascertain to be one step closer to a matching status. In contrast,
this would not be the case in JCThorn because it supports non-linear patterns and
because a message can satisfy multiple join patterns of the same join.

For example, assume that the matching state for the join defined in 4.4 is 00 and
that the message {: pairItem:‘‘apple’’ :} has just been received. Considering that
it satisfies both patterns, the state would become NN. This means that the join can
fire, but clearly this is not right because a message can only match a single pattern in a
successful match. It is for this reason that the deterministic automata approach is not

60

appropriate for JCThorn.

1 receive{
2 { : pa i r I tem :X : } and { : pa i r I tem :Y : } => { /* pa i r cons t ruc t ed */ }
3 }

Listing 4.4: JCThorn program that illustrates why deterministic automata cannot be
used

The second approach was proposed by Hubert Plociniczak, author of JErlang [35],
and is based on the Rete1 algorithm. It uses two types of test functions – alpha reduction
and beta reduction functions.

Alpha-reduction in JErlang consists of a set of test functions, one for each join
pattern, which are tested when a new message arrives. To avoid unnecessary computation,
JErlang runs only the alpha tests belonging to the currently tested join.

On the other hand, beta-reduction consists of a set of test functions, one for each subset
of join patterns of each of the joins. Listing 4.5 shows a gen joins program that declares
a join with four patterns. The corresponding beta-reduction functions are presented in
4.6.

1 h a n d l e j o i n ({operat ion , Id , Op} and {num, Id , A}
2 and {num, Id , B} and {num, Id , C} , Status) when (A > B) −> . . .

Listing 4.5: Gen joins declaration of a four-pattern join

1 BetaFunctions =
2 [fun ([{operat ion , Id , } , {num, Id , }] ,) −>
3 true end ,
4 fun ([{operat ion , Id , } , {num, Id , } , {num, Id , }] ,) −>
5 true end ,
6 fun ([{operat ion , Id , } , {num, Id , A} , {num, Id , B} ,
7 {num, Id , }] , Status) when (A > B) −>
8 true end]

Listing 4.6: Beta-reduction functions for the join in figure 4.5

Notably, JErlang joins also support non-linear patterns and allow patterns of the
same join to match non-disjoint sets of messages. These two features are also crucial in the
JCThorn language. Consequently, the algorithm we use is similar to Rete, although
we do not create beta-reduction tests explicitly.

Alpha reductions closely correspond to the local matching phase described in section
4.3.3. On the other hand, beta reductions map to the context matching phase 4.3.4. We
present the algorithm in this form because it will make the description of the optimisations
more comprehensible.

1http://en.wikipedia.org/wiki/Rete algorithm

61

4.3.2 Runtime

At runtime, the interpreter creates a ComponentThread object for each spawned compo-
nent. Each ComponentThread holds a mailbox from which it retrieves the messages (aka
Letters) that other components have send it. When the interpreter’s execution engine
encounters a receive node (RecvNode) when traversing the AST, it calls the recv function
defined in the ComponentThread class on the component object in execution.

This recv function takes, as arguments, the RecvNode node and the frame, holding
amongst others the identifiers’ seals. It consists of three main steps:

1. Initialize the matching state for that particular receive

2. Scan the mailbox until match or timeout

3. If match, remove the matched letters from the mailbox, execute the body of the join
and return. If timeout, execute the timeout action and return. Otherwise, execute
step 2 forever.

The first step creates a ComponentJoinState object for each join in the current receive.
This object holds, for each pattern in the corresponding join, a list of messages that have
been satisfied so far. ComponentJoinState objects belong to ComponentThread objects,
although they are based on syntactic objects, ie. each join object in the current RecvNode.
The UML class diagram in 4.6 illustrates this association.

Figure 4.6: Association between ComponentThread and ComponentJoinState objects

The second step is a bit more interesting. It scans the mailbox until it finds a combi-
nation of messages that satisfy a join in the current receive. The resolution has to obey
the semantics presented in 3.4.1, which in a nutshell, consists of:

� All the messages in the mailbox at a point in time have to be checked against higher
priority joins before attempting to reduce those with lower priority

� Joins at the same level of priority have to be checked in order, according to their
position in the program

� First-match semantics regarding messages in the mailbox for joins at the same level
of priority. The first successful combination of messages in the mailbox has to be
returned, that involving messages in the forefront

Algorithm 1 gives the pseudo-code for the fragment responsible for scanning the mail-
box. This is based on the original Thorn algorithm, but we omit timeouts for simplicity.

62

The list joinsByPrio is created at compile time, and contains one element for each group
of joins with the same priority. Each group is itself a list that mimics the order that joins
are defined in the program.

Three levels of iteration are needed to ensure that it complies with the resolution
semantics. The rest of the code is rather self-explanatory, with the exception of the
JoinMatcher.match function. JoinMatcher is the class responsible of actually evaluating
the joins. As we can see, its match function takes the join to evaluate, the matching state
of the component concerning that join and the current letter and frame. This function is
divided into two phases, local and contextual, presented below.

Algorithm 1 Fragment responsible of scanning the mailbox

1: frame← current frame
2: joinsByPrio← joins from current RecvNode
3: for joinsAtCurrPrio in joinsByPrio do
4: for letter in mailbox do
5: for join in joinsAtCurrPrio do
6: state← ComponentJoinState object of current join
7: matchedLetters← JoinMatcher.match(join, state, letter, frame)
8: if matchedLetters not null then
9: mailbox.remove(matchedLetters)

10: join.executeBody()
11: end if
12: end for
13: end for
14: end for

4.3.3 Local matching phase

The local matching phase is the first stage in the execution of the JoinMatcher.match

function, and closely corresponds to the alpha-reduction functions of the Rete algorithm.
It focuses on the current message (ie. the letter passed as an argument) and the current
join (also an argument). In our algorithm, this is the only phase with an associated
matching state.

For each pattern in the current join, it tests whether the letter could potentially
match that pattern in a successful reduction of the join. If that’s the case, it updates the
state, ie. the ComponentJoinState object passed as an argument. More precisely, it
adds the letter to the matchedLetters list corresponding to that pattern (recall figure
4.6).

This phase is termed local because it restricts the examination to a single pattern
at a time, without taking into account non-linear dependencies between patterns in the
same join or the situation where a letter could satisfy a multiple of those patterns. As
a result, the scenario where all the patterns in a join have been locally satisfied does not
imply that there exists a successful match.

63

The matching of algebraic patterns in this phase required the creation of a new pattern
matcher. This matcher only determines whether the letter can match a given algebraic
pattern, but does not bind the contents of the letter to the variables defined in the
pattern. In contrast, the original pattern matcher in Thorn performs both tasks.

Listing 4.7 will help to illustrate the reason why the original matcher cannot be used.
If binding were performed, the value of a message M , say 3, satisfying the first pattern,
would bind to the variable x. Then, when performing the test for the second pattern, M
would not be added to the associated state for this pattern because !($(x)) would only
match values distinct from 3. Clearly, this situation is not desired because we cannot
know at this stage what value x would eventually hold on a successful match. In other
words, we also want to add the message M to the list of potential matches for the second
pattern in the join.

1 receive{
2 x and ! ($ (x)) and [$ (x)] => { . . . }
3 }

Listing 4.7: Non-biding pattern matcher

The careful reader might have noticed that even when the non-biding matcher is used,
we will still not add the message M to the list of potential matches for the second pattern.
Considering that x will not be bound to any value when testing the second join pattern,
we would assume that message M matches the algebraic pattern $(x). Therefore, M will
not match !($(x)), essentially failing again to add M to the list of potential matches.

The missing ingredient to solve this problem is the three-valued logic that the non-
binding matcher uses. When this matcher encounters an interpolation pattern, of the
form $(...), or an evaluation test expression pattern, of the form (...)?, it returns that
it is undefined whether the match is or not successful. Recall that $(e) matches the value
of the expression e and (e)? matches if the boolean expression e evaluates to true.

As a consequence, more complex patterns are translated into standard ternary-logic
operators. The conjunctive patterns of the form p && q map to the ∧ operator, whose
truth table is given in 4.2. The disjunctive patterns (p || q) map to the ∨ operator and
the negation pattern (!p) to the ¬ operator, shown in tables 4.3 and 4.4 respectively.

p
TRUE FALSE UDF

q
TRUE TRUE FALSE UDF
FALSE FALSE FALSE FALSE
UDF UDF FALSE UDF

Table 4.2: Truth table for the expression p ∧ p

64

p
TRUE FALSE UDF

q
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UDF
UDF TRUE UDF UDF

Table 4.3: Truth table for the expression p ∨ p

p ¬p
TRUE FALSE
FALSE TRUE
UDF UDF

Table 4.4: Truth table for the expression ¬ p

4.3.4 Contextual matching phase

The second phase in the execution of the JoinMatcher.match function is the contextual
matching phase, that is similar to the beta-reductions performed by the Rete algorithm,
with the difference that we do not store matching information for this phase (we only
create it on the fly when needed). This phase is responsible of finding a combination of
messages that can satisfy a join. It takes into account non-linear dependencies between
patterns in the same join and ensures that a given message matches at most one pattern
in a successful match.

Algorithm 2 gives the pseudo-code for a simplified version of the recursive function
that performs the contextual matching. When called from JoinMatcher.match, it is given
the value 0 as the index argument and an empty set as the partialSolution argument.

The index stands for the position of the pattern in the join we are currently testing.
Thus, when its value reaches the size of the join (its number of join patterns) we can
return true because a successful combination of messages has been found. In that case,
the successful combination would be stored in the partialSolution set. Obviously, the
algorithm returns as soon as it finds a successful combination of messages.

For each pattern in the join, the matchedLetters variable will hold the potential
matches that were found during the local matching phase. The BindingPatternMatcher.
match function is responsible for performing the algebraic pattern matching. This is the
original Thorn matcher that also binds values to variables.

The call to the BindingPatternMatcher.match function is not completely correct.
The reason is that this function takes an algebraic pattern, not a join pattern, as an
argument. Considering that each join pattern can define as many as three algebraic
patterns, the same number of calls might be needed. The first algebraic pattern in a join
pattern matches the contents of the message, and the other two optional patterns match
the sender and the envelope respectively.

65

Algorithm 2 boolean contextualMatch(join, state, index, frame, partialSolution)

1: size← number of patterns in the join
2: if index = size then
3: return true
4: else
5: joinPattern← pattern at position index of join
6: matchedLeters← list of letters for joinPattern in state
7: for currLetter in matchedLetters do
8: if currLetter not in partialSolution then
9: if BindingPatternMatcher.match(joinPattern, currLetter, frame) then

10: partialSolution.add(currLetter)
11: if contextualMatch(join, state, (index+1), frame, partialSolution) then
12: return true
13: else
14: partialSolution.remove(currLetter)
15: end if
16: end if
17: end if
18: end for
19: end if
20: return false

4.4 Chords implementation

Chords in JCThorn are no more than syntactic sugar. When parsing a JCThorn
program, an initial AST is created that closely resembles the structure of the program
and contains nodes for chord declarations, chord bodies and channel declarations. Then,
a new pass of the compiler translates these chords into joins. In this section, we describe
how the translation is performed and explain why the catch is difficult to translate.

4.4.1 Translation

Thorn translates programs with channel declarations and serve statements into pro-
grams with receive constructs and functions. We first walk through this translation
with an example, and then describe the changes that had to be made in order to support
chords in JCThorn.

Thorn translation walkthrough

The program in 4.8 shows a server holding a database of customers. Clients store new
customer entries by sending a record through, alarmingly enough, the store channel.
They can also retrieve customer records by id using the retrieve channel.

66

1 component DatabaseServer (){
2 var customers := table (id){name ; address ; } ;
3

4 async s t o r e ({ : id : I , name :N, address :A : }) {
5 customers . i n s ({ : id : I , name :N, address :A : }) ;
6 }
7

8 sync r e t r i e v e (Id){
9 return customers (Id) ;

10 }
11

12 body{
13 serve ;
14 } }

Listing 4.8: Thorn program used to walk through the translation of chords

Channel declarations are translated into functions, as demonstrated by listing 4.9.
The identifiers of the functions are based on the channel names plus some added char-
acters. Asynchronous channels map to functions taking three arguments: the sender of
the message, the message’s envelope and the list of formals declared by the channel. The
body of the functions are identical to the body of the corresponding channels.

On the other hand, the functions that translate synchronous channels take a nonce as
an extra argument, which is used by clients to match requests with replies. The body of
the function returns a record with two fields, the response and the nonce. The response
field holds the value returned in the channel body.

Regarding the serve statement, this is translated into a function call to a CserveC

function taking four arguments, as illustrated in 4.10. The first two arguments hold
functions whose bodies are, if defined, the blocks appearing next to the before and after
clauses respectively. Otherwise, they would be just null. The third argument is the
timeout given in microsecond and the fourth is a function holding the code to be executed
when the timeout has been reached.

The body of the CserveC function holds a receive construct with one case for each
channel declared in the component. Hence, in the translation of the database server, there
are two cases – one for the store and other for the retrieve channel.

1 fun CstoreC (sender , enve , [{ : id : I , name :N, address :A : }]) {
2 customers . i n s ({ : id : I , name :N, address :A : }) ;
3 }
4

5 fun Cretr ieveC (sender , msg , nonce , [Id]) {
6 CresponseC = customers (Id) ;
7 return { : r e sponse : CresponseC , nonce : nonce : } ;
8 }

Listing 4.9: Translation of channel declarations

67

1

2 fun CserveC (bee fore , aa f t e r , timN , timCmd) {
3 receive {
4 { : async : ‘ ‘ s t o r e ” , arguments : args : }
5 from sender enve lope enve => {
6 i f (b e e f o r e != n u l l){
7 b e e f o r e (enve , sender) ;
8 }
9 CstoreC (sender , enve , args) ;

10 i f (a a f t e r != n u l l){
11 a a f t e r (enve , sender) ;
12 }
13 }
14 | { : sync : ‘ ‘ r e t r i e v e ” , arguments : args , nonce : nonce : }
15 from sender envelope enve => {
16 i f (b e e f o r e != n u l l){
17 b e e f o r e (enve , sender) ;
18 }
19 CresponseC = Cretr ieveC (sender , enve , nonce , args) ;
20 i f (a a f t e r != n u l l){
21 a a f t e r (enve , sender) ;
22 }
23 sender <<< CresponseC ;
24 }
25 timeout (timN) { timCmd () ; }
26 }
27 }
28

29 body{
30 CserveC (fn (,) = nul l , /* no be f o r e */
31 fn (,) = nul l , /* no a f t e r */
32 nul l , /* no t imeout */
33 fn () = n u l l) ; /* no t imeout body */
34 }

Listing 4.10: Translation of serve statement

The store case matches a record with two fields. The field async matches the identifier
of the channel and the second field defines the variable args to which the arguments passed
to the channel will bind to. This case also matches the message’s sender and envelope.
The case body executes the before actions if defined and then calls the function CstoreC,
which translates the channel declaration, with the correct arguments. Finally, it executes
the after clause if defined.

The case for the synchronous retrieve channel is quite similar. The only differences
are that the record defines a third field holding the nonce, and that the server returns a
response (CresponseC) to the client.

68

1 /*
2 * TRANSLATION OF:
3 * body{
4 * s e r v e r <−− s t o r e ({ : i d :343 , name ‘ ‘ David ” , address : ‘ ‘ Poplar ” :}) ;
5 * }
6 */
7

8 fun h lS to r e (r e c e i v e r , a rgs) {
9 r e c e i v e r <<< { : async : ‘ ‘ s t o r e ” , args : a rgs : } ;

10 }
11

12 body{
13 h lS to r e (se rver ,
14 [{ : id : 343 , name : ‘ ‘ David” , address : ‘ ‘ Poplar ” : }]) ;
15 }

Listing 4.11: Translation of asynchronous send statement

1 /*
2 * TRANSLATION OF:
3 * body{
4 * r e p l y = se r v e r <−−> r e t r i e v e (343) ;
5 * }
6 */
7

8 fun h lRe t r i ev e (r e c e i v e r , args , timN , timCmd) {
9 CnonceC = newNonce () ;

10 r e c e i v e r <<< { : async : ‘ ‘ r e t r i e v e ” , args : args , nonce : CnonceC : } ;
11 r e c e i v e{
12 { : r e sponse : CresponseC , nonce : $ (CnonceC) : }
13 from $ (r e c e i v e) => {
14 CresponseC ;
15 }
16 t imeout (timN) { timCmd () ; }
17 }
18 }
19

20 body{
21 r ep ly = h lRe t r i ev e (se rver , [343] , nu l l , n u l l) ;
22 }

Listing 4.12: Translation of synchronous send statement

Obviously, high-level send operations also get translated on the client side. Listings
4.11 and 4.12 illustrate the translation for both synchronous and asynchronous send op-
erations. A function is created which is then called from the point in the program where
the operation appeared. This function executes a low-level send operation and, in the
synchronous case, a receive immediately after.

69

JCThorn translation

In order to support chords, JCThorn introduces a number of modifications to Thorn’s
translation. We will describe the main differences by considering the two chords declared
in 4.13.

1 sync getNewName () and async update ({ : name :N : }) => { . . . }
2 async sendLette r (L) and async update ({ : address :A : }) => { . . . }

Listing 4.13: Example used to illustrate the translation of chords

Each chord declaration also becomes a function whose identifier is the concatenation
of its defined channel names (listing 4.14). Like in Thorn, these functions take four
arguments if the chord declares a synchronous channel and 3 otherwise. However, the
arguments are lists whose elements are, respectively, the senders, envelopes and arguments
of the messages matched by the chord.

1 fun CgetNewName updateC ([syncSender , asyncSender0] ,
2 [syncEnve , asyncEnve0] , [[{ : name :N : }]] , none) { . . . }
3

4 fun CsendLetter updateC ([asyncSender0 , asyncSender1] ,
5 [asyncEnve0 , asyncEnve1] , [[L] , [{ : address :A : }]]) { . . . }

Listing 4.14: Translation of chord declarations

Similarly, the serve statement is translated into a call to a CserveC function. Its
receive construct consists of a set of joins instead of cases, with one join for each chord.
This is illustrated in listing 4.15. We can observe that the arguments field of each record
declares a conjunctive pattern instead of a simple wildcard pattern (ie. the variable args).
Actually, this is also the case for the from and envelope algebraic patterns, but we omit
it here for simplicity.

To understand why we need conjunctive patterns, consider the scenario where the
mailbox holds, in this order, the messages:

1. {:sync:‘‘getNewName", nonce:543254:}

2. {:async:‘‘sendLetter", arguments:[‘‘Dear ...’’]:}

3. {:async:‘‘update", arguments:[{:address:‘‘Picadilly’’:}]:}.

When the third message is retrieved, our solution ensures that it is the second join that
correctly fires and not the first. The reason is that the value [{:address:‘‘Picadilly’’:}]
only matches the pattern [{:address:A:}], declared on the second join, but not the pat-
tern [{:name:N:}], declared on the first. Obviously, the left conjuncts are needed to be
able to pass the arguments in the body of the joins to the corresponding function, either
CgetNewName update C or CsendLetter update C.

In contrast, if we had followed Thorn design to just use the wildcard pattern args,
the first join would have been satisfied. In that case, the second join pattern of the first

70

join would be {:async: ‘‘update’’, arguments:args:} instead of {:async: ‘‘up-

date’’, arguments:(asyncArgs0 && [{:name:N:}])}. As such, it would incorrectly
match the message {:async:‘‘update", arguments:[{:address:‘‘Picadilly’’:}]:}
and, as a consequence, we would be calling the function Cget put C with the wrong ar-
guments.

1 receive{
2

3 { : sync : ‘ ‘ getNewName” , nonce : } from syncSender enve lope syncEnve
4 and { : async : ‘ ‘ update” , arguments : (asyncArgs0 && [{ : name :N: }]) : }
5 from asyncSender0 envelope asyncEnve0 => {
6

7 i f (b e e f o r e != n u l l) {
8 b e e f o r e ([syncEnve , asyncEnve0] , [syncSender , asyncSender0]) ;
9 }

10 CresponseC = CgetNewName update C ([syncSender , asyncSender0] ,
11 [syncEnve , asyncEnve0] , [asyncArgs0] , nonce) ;
12

13 i f (a a f t e r != n u l l) {
14 a a f t e r ([syncEnve , asyncEnve0] , [syncSender , asyncSender0]) ;
15 }
16 syncSender <<< CresponseC ;
17 }
18

19 |
20

21 { : async : ‘ ‘ s endLette r ” , arguments : (asyncArgs0 && [L]) : }
22 from asyncSender0 enve lope asyncEnve0
23 and { : async : ‘ ‘ update” , arguments : (asyncArgs1 && [{ : address :A: }]) : }
24 from asyncSender1 envelope asyncEnve1 => {
25

26 i f (b e e f o r e != n u l l) {
27 b e e f o r e ([asyncEnve0 , asyncEnve1] , [asyncSender0 , asyncSender1]) ;
28 }
29 CresponseC = CsendLetter update C ([asyncSender0 , asyncSender1] ,
30 [asyncEnve0 , asyncEnve1] , [asyncArgs0 , asyncArgs1] , nonce) ;
31

32 i f (a a f t e r != n u l l) {
33 a a f t e r ([asyncEnve0 , asyncEnve1] , [asyncSender0 , asyncSender1]) ;
34 }
35 }
36

37 timeout (timN) { timCmd () ; }
38 }

Listing 4.15: Translation of serve statement

71

In addition, there is a further difference between the translations. This relates to the
before and after functions. As we can see, in JCThorn the arguments are lists and
not single elements. The reasons have already been exposed in section 3.5.1.

4.4.2 Catch translation problems

We have decided not to include the catch clause next to serve statements for the reasons
presented in section 3.5.2. Furthermore, the decision to drop it has also been influenced
by the complex implementation that would be required.

The catch clause in Thorn is used to define exception handlers to deal with the
situation where a message has been sent on an existing channel with the wrong argument.
Its implementation relies on calling a function with the wrong arguments, which throws
an exception that will trigger the execution of the handlers.

Looking at listing 4.16, that contains the relevant fragments from the translation of
the database server (listing 4.8), we can more precisely describe how the implementation
operates. Any message on the channel store will match its corresponding case of the
receive defined inside CserveC. The reason is that the wildcard pattern args matches
any value, including the string ‘‘apples’’. However, the call to CstoreC will fail in
that situation because ‘‘apples’’ is not a record with the format that CstoreC expects,
throwing the required exception.

1 fun CserveC (bee fore , aa f t e r , timN , timCmd) {
2 receive {
3 { : async : ‘ ‘ s t o r e ” , arguments : args : }
4 from sender enve lope enve => {
5 . . .
6 CstoreC (sender , enve , args) ;
7 . . .
8 }
9 . . .

10 }
11 }
12

13 fun CstoreC (sender , enve , [{ : id : I , name :N, address :A : }]) { . . . }

Listing 4.16: Fragments from the translation of the database server (4.8)

In JCThorn, considering that the arguments field defines more restrict patterns
(the conjunctive patterns we have described), we need a slightly different approach which
is presented in 4.17. ‘‘Apples’’ sent through store will not match its corresponding
entry in the receive because it expects and argument of the form [{:id:I, name:N,

address:A :}. As a result, we have added an extra case to the receive in order to catch
the error. The catch case ensures that the message has been sent on the existing channel
store (positive conjunct) and that it contains the wrong arguments (negative conjunct).
However, this approach does not always work.

72

1 fun CserveC (bee fore , aa f t e r , timN , timCmd) {
2 receive {
3 { : async : ‘ ‘ s t o r e ” , arguments : (args &&
4 [{ : id : I , name :N, address :A: }]) : }
5 from sender enve lope enve => {
6 . . .
7 CstoreC ([sender] , [enve] , [args]) ;
8 . . .
9 }

10 . . .
11 /* Catch case */
12

13 | ! ({ : async : ‘ ‘ s t o r e ” , arguments : [{ : id : I , name :N, address :A: }] : })
14 && { : async : ‘ ‘ s t o r e ” , arguments : a rgs : } => {
15 /* throw requ i r ed except ion */
16 } } }

Listing 4.17: JCThorn catch case

1 /*
2 * catch case f o r chord :
3 * sync wai t (x) and async cont inue ($ (x)) { . . . }
4 */
5

6 fun CserveC (bee fore , aa f t e r , timN , timCmd) {
7 receive {
8 . . .
9 /* Catch case */

10

11 | ! ({ : sync : ‘ ‘ wait ” , arguments : [x] : }
12 | | { : async : ‘ ‘ cont inue ” , arguments : [$ (x)] : })
13 && ({ : sync : ‘ ‘ wait ” , arguments : args0 : }
14 | | { : async : ‘ ‘ cont inue ” , arguments : args1 : }) => {
15 /* throw requ i r ed excep t i on */
16 } } }

Listing 4.18: Catch case throwing a compile time exception

The solution presented fails in those situations where there are non-linear dependencies
between the channels defined in the same chord. Listing 4.18 shows the catch case for
one of such chords. Considering that the chord declares two channels, each conjunct of
the pattern is a disjunction of two patterns.

The problem with this example is that it will not compile. The compiler will throw an
undefined variable exception because it detects that the variable x in the pattern $(x) has
not been defined. In other words, x will not be bound to any value when attempting to
evaluate that pattern. We could probably fix this problem by performing a static analysis
of the program. However, we have decided to eliminate the catch clause next to serve

statements because it also leads to unexpected results, as presented in 3.5.2.

73

4.5 Summary

We have covered the implementation of JCThorn in this chapter. First, we described
the changes that had to be made to the grammar in order to support joins and chords.
The incorporation of these constructs also required the introduction of new nodes in the
AST.

Then, we examined the implementation of joins in more detail. We gave an overview
of the interpreter’s runtime environment and the state that needs to be associated with
each component in order to store matching information. We also discussed in detail both
the algorithm responsible of scanning the mailbox and the algorithm responsible for the
evaluation of joins.

In the evaluation of joins, we determined that JCThorn cannot follow the finite-state
automata of languages like JoCaml. JCThorn proposes an algorithm similar to Rete
(used in JErlang) that executes in two phases. The local phase restricts the examination
to a single pattern at a time without taking into account non-linear dependencies. In
contrast, the contextual phase is responsible for finding a combination of messages that
can satisfy all the patterns in the join and their dependencies.

On the other hand, the implementation of chords consisted of extensive changes to
the translation that is performed at compile time. This translation converts the nodes
in the AST that represent chords into nodes for function declarations, function calls and
receive statements. We have also presented why translating catch clauses next to serve

statements is an intricate exercise.

So far we have only covered the basic algorithm framework. In the next chapter we
develop the algorithm further and present the optimisations that aim to minimise the
negative effects of the state explosion problem. In other words, we study how to reduce
the number of message combinations that may need to be tested during the contextual
matching phase.

74

Chapter 5

State explosion problem and
optimisations

The performance of the basic algorithm presented in chapter 4 is unacceptable when the
size of the mailbox is large, in terms of the number of messages received. The root of
this problem lies with the explosion in the number of possible matching states, which
is documented in section 5.1. In a nutshell, this refers to the huge number of message
combinations that might be tested before a successful sequence is found.

To deal with this problem, JCThorn borrows ideas from other languages and also
proposes a number of novel techniques. The successful optimisations included in the
language are presented in section 5.2. However, not all the optimisations provided positive
results. Those that were not finally included in JCThorn are described in 5.3.

Overall, the optimisations have been very effective at combating the state explosion
problem (quantitative results given in section 6.4). The performance of JCThorn when
handling large mailboxes greatly exceeds that of languages with an equivalent level of
complexity such as Jerlang.

The good results achieved are clearly the outcome of the time spent on fine-tuning
the algorithm. We attached a lot of importance to performance because we believe that
nobody will use a language, no matter how expressive, if it does not perform well. As
such, we wanted to prove that joins can be implemented efficiently.

5.1 State explosion problem

The state explosion problem has already being studied in the context of join resolution by
Luc Maranget and Fabrice Le Fessant [24], authors of the JoCaml language. However,
this problem gets worse for JCThorn because it allows greater freedom in the definition
of joins.

As presented in section 4.3.1, JoCaml bases its solution in finite-state automata.
The matching state of chords is stored in a vector that has one element for each defined
channel, which can take the values 0 or N . A matching status is a status that holds

75

enough N , so that at least one chord can fire.

The finite-state automata solution relies on the fact that the increase in the number of
N elements in the vector is inversely proportional to the distance to a matching state. In
other words, if the values of two elements in the vector have become N (when they were
previously 0) we are two steps closer to a matching status. This allows us to bound the
number of possible states to 2c, where c is the number of defined channels, as presented
in [24].

In contrast, JCThorn does not guarantee that relation due to non-linear dependencies
and the possibility of a message satisfying multiple patterns of the same join. For example,
we can have two messages that could independently match each of the two patterns in
a join, but do not satisfy the non-linear dependencies between the two patterns. As a
result, the upper bound on the number of states is different in JCThorn.

This upper bound cannot be computed statically, and depends on the runtime state of
the program. Let c be the number of patterns in a join, and matches(i) the set of letters
that have been matched by the pattern at position i. More precisely, matches(i) is the
set of potential matches stored on the ComponentJoinState object and computed during
the local matching phase. Given these definitions, we can compute the upper bound as
follows:

upper bound(c) =∏c
i=1 ∣matches(i) ∣

or in big O notation:

O(nc)

where n is the maximum length of any of the matches(i) sets.

This is the worst case scenario and represents the maximum number of different com-
binations that might be tested during the contextual phase. As an example, consider
the join declared in listing 5.1. A board game will only start when the three elements
needed to start a particular game are available. Assume that at a particular point in the
execution, the matching state is:

matches(1) = { players(“go′′), players(“chess′′), players(“checkers′′) }
∣matches(1) ∣ = 3

matches(2) = { board(“stratego′′), board(“monopoli′′), board(“backgammon′′) }
∣matches(2) ∣ = 3

matches(3) = { players(“risk′′), pieces(“life′′), pieces(“mastermind′′),
pieces(“reversi′′) }

∣matches(3) ∣ = 4

It is clear that in that scenario, none of the games can be started because not all
of the three required elements are available. The upper bound is the total number of
combinations of players, board and pieces, ie. 3 × 3 × 4 = 36.

76

1 sync p l a ye r s (x) and async board ($ (x)) and async p i e c e s ($ (x)) {
2 /* s t a r t game */
3 }

Listing 5.1: Elements of a board game

When messages can satisfy more than one pattern in the join, the upper bound is
slightly lower. For the chord in 5.2, if there are three son() messages in the mailbox, the
upper bound is 3! instead of 33. The reason is that each son() message belongs to the
three matches(i) sets, but a single message cannot satisfy more than one pattern in a
successful match.

1 async son () and async son () and async son () {
2 /* t r i p l e t s born */
3 }

Listing 5.2: Birth of triplets

Consequently, the state explosion problem will significantly impact those programs
with large mailboxes, in terms of the number of messages received, in which thematches(i)
sets are likely to be bigger. In order to reduce the problem, two types of optimisations
have been implemented which either:

1. prune the search space or

2. use heuristics to skip both the local and contextual matching phases or just the
latter

Optimisations like fail fast or combinations with current message only belong to the
first group and optimisations like repeating receive and skip contextual to the second.
We believe that the second class of optimisations are novel to JCThorn because other
languages have only focused on pruning the search space.

5.2 Successful optimisations

In this section, we describe the successful optimisations that have been included in the
language. Some of the optimisations are mutual complementary and some are built on
top of each other. As such, the order of presentation does not follow the order of impor-
tance. However, we would like to highlight that the repeating receive and skip contextual
optimisations have been particularly effective in the case of large mailboxes.

77

5.2.1 Fail Fast (FF)

Fail Fast avoids testing combinations that start with an invalid sequence of messages.
Sometimes we can detect that a combination will not be successful only by testing the
first few patterns in the join. At that point, we can prune all the branches that start with
that sequence.

In the board game example (listing 5.1), we can detect that there are not valid combi-
nations (in the given situation) only by testing the first two patterns in the join because
they have to agree on which game to be played. Likewise, instead of testing each combi-
nation involving the first two patterns four times, once for each message matched by the
third pattern, we can just test it once. Even for this simple example, this optimisation
reduces the number of operations from 36 to 3 × 3 = 9.

5.2.2 Combinations with Current Message Only (CCMO)

This optimisation avoids testing the same combinations of messages over and over again
when scanning the mailbox. During join resolution, the mailbox is scanned in order until
a valid combination of messages is found. As an example, assume that the fourth message
in the mailbox has been tested but no successful combination found. When checking the
fifth message it would be pointless to check again the combinations only involving the
four first messages. In this case, CCMO ensures that only combinations involving the
fifth message are checked.

CCMO has been implemented by modifying the contextualMatch algorithm given
in section 4.3.4. For each pattern in the join, apart from the set of potential matches,
we also need to record if they satisfy the current message or not. The algorithm ensures
that those combinations of messages involving the current message are checked first. It
also has to guarantee that it only fails after all possible combinations involving the fifth
message have been checked, which is trickier than it appears.

5.2.3 Repeating Receive and Context Independence (RRCI)

RRCI ’s goal is to reuse the acquired matching information in previous executions of the
same receive or previous executions of serve statements. More precisely, RRCI allows
to start the scan of the mailbox from the last checked message in the previous execution
of the same receive.

For instance, imagine that when executing receive A we have tested the first 9
messages and no match was found. Subsequently, we test the tenth message and discover
that a three pattern join has been satisfied. At that point, we remove the three matched
letters from the mailbox, execute the body of the join and continue with the rest of the
program. At a later stage, we encounter receive A again. In most situations we could
start the scan of the mailbox from the eight message if no other receive has been executed
in between. Clearly, we already know that the first seven messages do not match any join
in A because they have been tested in the previous execution of A.

78

RRCI relies on the fact that there is only one thread per component, and that messages
can only be removed from the mailbox by this thread when executing a receive construct.
This optimisation addresses those programs containing the common pattern illustrated
in listing 5.3. Servers frequently answer the same type of requests over and over again,
possibly preceding or following each reply by some actions (<statements before> and
<statements after> respectively). RRCI is effective when those actions do not contain
receive constructs themselves.

1 while(<cond i t ion >){
2

3 <s ta t ement s be fo r e>
4

5 receive{
6 . . .
7 }
8

9 <s t a t ement s a f t e r>
10 }

Listing 5.3: Receive inside while

Furthermore, RRCI is also effective when executing serve statements without receive
statements interleaved. In the example in 5.4, RRCI will apply to all the serve statements
except the one at line 8. We know that each serve statement is translated into a function
call to a CserveC function containing a single receive statement. Hence, in all the cases
the receive statement that gets executed is the same. However, at line 8 we cannot reuse
the matching information because we have just executed a different receive at line 7.

1 while(<cond i t ion >){
2 serve ;
3 }
4 serve ;
5 x = 5 ;
6 serve ;
7 receive{ . . . }
8 serve ;
9 serve ;

Listing 5.4: Repetition of serve statements

Moreover, RRCI in this form will only be used when all the joins defined in the given
receive are context independent. We say that a join is context independent if it
defines all the variables that it uses. For example, the first join in the authentication server
in 5.5 is not context independent because it matches the value hold in variable password,
which is defined outside the join. On the other hand, the second and third joins are
context independent. By generalisation, we say that a receive is context independent
if all its joins are. Consequently, the receive in 5.5 is not context independent.

79

1 password = ‘ ‘1 g? m8 @2cv ’ ’ ;
2 receive{
3 { : en te r : $ (password) : } and { : r e e n t e r : $ (password) : } => {
4 /* a l l ow access */
5 }
6 | { : en te r :X: } and { : r e e n t e r : $ (X) : } => {
7 /* deny acces s */
8 }
9 | { : en te r :X: } and { : r e e n t e r :Y: } => {

10 /* t r y again */
11 }
12 }

Listing 5.5: Program that performs authentication of users

Context independence ensures that when testing the same messages in the mailbox for
a second time against the same join we obtain the same results. Therefore, performing the
tests once is enough and we can skip them thereafter. When the join is context dependent
this is not the case.

As an example, consider the server in 5.6. A client will not be allowed to execute
step 1 before the server has been initialised. If a client attempts to do that by sending
the message {:execute:1:}, the server should wait until it has been initialised and only
then execute the first step. To be able to execute it, it is clear that it needs to com-
pare the message {:execute:1:} against the pattern {:execute:$(step):} for a second
consecutive time. Hence, we cannot skip the tests in this situation.

1 var s tep := 0 ;
2 while (s tep < 10){
3 receive{
4 { : execute : $ (s tep) : } => {
5 /* do something */
6 s tep := step + 1 ;
7 }
8 | ‘ ‘ i n i t i a l i s e ’ ’ => {
9 /* i n i t i a l i s e */

10 s tep := 1 ;
11 } } }

Listing 5.6: Context dependent receive

At this point, we can characterise the two modes of operation of RRCI more precisely:

� If a receive is context independent, we can start the scan of the mailbox from the
letter that follows the last checked message in the previous execution

� If a receive is not context independent, we should start the scan from the first
message in the mailbox. However, we are still allowed to skip the tests for those
joins that are context independent

80

In order to be able to determine if a join is context independent, we need to perform
a static analysis of the program at compile time. Basically, we have to construct two sets
of variables, uses and defines, and make sure that all the variables in the former are also
in the latter.

Moreover, the implementation of RRCI also requires that each component remembers
which receive statement was executed last. Then, when the component starts executing
a new receive, it might be allowed to reuse some of the collected information in the previous
run only if the current receive is the same as the last executed receive. How much
of this information will be allowed to be reused depends on the context independence
property.

5.2.4 Just-in-time Update of State

As a consequence of the RRCI optimisation, we have to update the matching state for
each of the joins in the current receive every time a successful combinations of messages
is found. Apart from removing the matched letters from the mailbox, we also need to
remove them from the list of potential matches for each of the patterns of each of the
joins. In implementation terms, these are the lists stored in each ComponentJoinState

object described in figure 4.6 of section 4.3.2.

However, it might be wasteful to update the state of every join after a successful
match, considering that we might not even execute the same receive again. A better
approach would be to only update the state when needed. Fortunately, there exists a
method to achieve that.

In our implementation, we store a flag with each of the letters to specify whether
or not it is still valid. A letter becomes invalid when it has been removed from the
mailbox as a result of a join firing. Given this information, we can postpone updating a
ComponentJoinState object until it is really needed.

That time is when we are about to start the contextual matching phase for the cor-
responding join. Specifically, this is just before starting the execution of the recursive
function contextualMatch given in algorithm 2 of section 4.3.4. In a naive implemen-
tation, it would mean that we will update the state every time we execute the function
JoinMatcher.match when scanning the letters in the mailbox (recall algorithm 1 of sec-
tion 4.3.2). Nonetheless, the SC optimisation described in the next section allows us to
considerably reduce the number of times the update is required.

Updating the state for a join means that for each of its patterns, iterate over the list
of potential matches and remove those letters that are invalid. As we have already said,
these lists are stored in its corresponding ComponentJoinState object.

81

5.2.5 Skip Contextual Phase (SC)

SC is a very simple optimisation that produces very positive results. It relies on some
heuristics to skip both the update of state and contextual matching phase or just the
latter. Two variations of SC are performed at two different stages.

During the local matching phase, we collect information regarding what patterns have
been previously satisfied by messages in the mailbox and about what patterns have been
satisfied by the current message. When the local matching phase has finished, we will
only move to the next step (ie. the just-in-time update of the state) when both of these
conditions are met:

1. All the patterns in the join have been previously satisfied by at least one message

2. At least one pattern in the join contains the current message as a potential match

When condition 1 does not hold, it is safe to skip the contextual phase because we
know that a successful combination cannot be found. When condition 2 is false, we know
that all the possible combinations have been tested when scanning the previous messages
in the mailbox. In other words, the current message does not add new combinations
because it does not satisfy any of the patterns in the join.

A slightly different version of SC is performed after the just-in-time update of state
and before the contextual matching phase. At this point, we will only proceed to the
contextual phase if both of these conditions hold:

1. Again, if all the patterns in the join have been satisfied by at least one message

2. The number of distinct messages in the sets of possible matches for the patterns in
the join is at least as big as the size of the join

At this point we need to check condition 1 again because, after updating the state,some
letters might have been removed. As such, condition 1 will not longer hold if all the
potential matches of a pattern were invalid letters when testing this for the first time.

The justification for the second check relates to messages satisfying multiple patterns
of the same join. If we recall the program in 5.2 about the birth of triplets, we can
illustrate why. The join defined in that programs expects three messages with the same
shape, ie. son(). However, if only one such message is present in the mailbox, this will
still be added to the list of potential matches for each of the patterns in the join. Clearly,
we cannot find a matching combination at that point because we need three messages,
not one. Nonetheless, if this check were not performed we would still try to find one in
this case.

82

5.2.6 Rank Reordering of join Patterns (RR)

RR is an optimisation proposed by Christian Holzbaur et al in the context of Constraint
Handling Rules [19] and later included in JErlang. In JCThorn, RR complements the
fail fast optimisation by moving to the front the patterns in the join that define more
constraints. This allows us to detect invalid combinations sooner.

RR uses the rank of a pattern, which gives an indication of how much of its variables
are shared when deciding the order of the patterns in the join. At compile time, the rank
of a pattern is computed by performing a simple static analysis of the join. This analysis
first counts the number of occurrences of each variable in the join and then calculates the
rank of each pattern by summing the occurrences of each of its variables, as illustrated in
5.7.

1 receive{
2 [x , $ (x) , y] and [$ (x) , $ (y) , z] => { . . . }
3 }
4

5 /*
6 * occurrences (x) = 3
7 * occurrences (y) = 2
8 * occurrences (z) = 1
9 * rank ([x , $ (x) , y]) = 2 * occurrences (x) + occurrences (y) = 8

10 * rank ([$ (x) , $ (y) , z]) = 6
11 */

Listing 5.7: Calculation of the rank of join patterns

At that point, the patterns will be arranged according to their rank. The algorithm
picks the pattern H with highest rank, includes its depend-upon patterns in decreasing
order of rank, then H itself and finally its dependant patterns. It then repeats this process
until all the patterns have been included. The depend-upon patterns are the patterns that
define variables which H uses. Conversely, the dependent patterns are the patterns that
use variables that H defines or uses. Listing 5.9 demonstrates this transformation for the
join given in 5.8 as written by the programmer.

1 z and $ (z) and x and $ (x) and [$ (x) , y , $ (y) , $ (y)] and $ (y) => { . . . }

Listing 5.8: Join as written by the programmer

1 x and [$ (x) , y , $ (y) , $ (y)] and $ (y) and $ (x) and z and $ (z) => { . . . }

Listing 5.9: Join after its patterns have been reordered by rank

In 5.8, the first four patterns only say that there has to be two pairs of equal messages
in the mailbox. By contrast, the first four patterns in 5.9 expresses that there is a pair of
equal messages in the mailbox, such that the value of that message also appears as the
first item of a four-element list (whose last three elements are the same) and, moreover,

83

that their value also appears as a single message in the mailbox.

Clearly, the first four patterns in 5.9 define more constraints that those in 5.8. As
a result, the reordering will usually allow us to detect invalid sequences sooner as it is
normally harder to satisfy 5 constraints than it is 2. In 5.9, if there does not exist a list
which meets those conditions, we will not bother about finding pairs of equal messages in
the mailbox. On the other hand, in 5.8 we would need to test all the pairs of messages in
the mailbox until we realise that there is not such a list.

The reader at this point might be thinking, “Why not then move the list pattern to
the front?” as shown in 5.10 in order to be able to detect that there is not such a list
sooner. This is done by swapping the interpolation pattern involving x in the list (ie.
$(x)) with a wildcard pattern (ie. x), and performing the inverse substitution with the
pattern in the join that previously defined x. While this is the optimal solution in this
example, this approach is problematic in the general case.

1 [x , y , $ (y) , $ (y)] and $ (y) and $ (x) and $ (x) and z and $ (z) => { . . . }

Listing 5.10: Optimal reordering of patterns

Interpolation patterns can match the value of more complex expressions as shown in
5.11. Reordering the patterns in this case (listing 5.12) would involve calculating the
inverse expression of (5×x)12, which is 12

√
x÷5. Not only is this transformation complex,

but also undesirable. Any performance benefits gained due to the reordering will most
likely be lost when calculating the root, which is a far more expensive operation than
exponentiation. For consistency and time constraints, we have decided not to implement
this more complex reordering in any case.

1 x and y and [$ ((5* x)ˆ12) , $ ((5* y)ˆ12)] => { . . . }

Listing 5.11: Interpolation patterns involving more complex expressions

1 [x , y] and $ (sq r t ba s e12 (x)/5) and $ (sq r t ba s e12 (y)/5) => { . . . }

Listing 5.12: Undesired reordering of patterns

5.2.7 Uniquely Satisfied Patterns (USP)

USP is an optimisation whose goal is to reduce the search space. Its domain of action
are those joins that define patterns matching sets of messages related by subset inclusion.
When the more specific patterns only satisfy one message in the mailbox, it is pointless
to attempt to find combinations in which those messages are mapped to the more general
patterns.

As a motivating example, consider the join in 5.13. Clearly, the wildcard patterns
x and y are more general than the list pattern [z]. Precisely, x and y can match any
message but [z] can only match singleton lists. If we assume that there are 5 integers

84

in the mailbox and only a singleton list we know that the latter will need to match the
third pattern.

However, in the worst case we might need to test as many as 20 combinations of
messages until we map the list to the third pattern (each of the first two patterns satisfy
5 messages each, so 5 × 4 × 1 = 20 given that each message can only be used once). On
the other hand, if we had reserved the list for the third pattern before the start of the
search, we would ensure that the first tested combination is successful in that situation.
This is precisely what USP does.

1 x and y and [z] => { . . . }

Listing 5.13: Example that motivates the use of the USP optimisation

While the scope of USP might be narrow, it does make a difference when it is appli-
cable. We have included it in JCThorn because its complexity is very low. The number
of operations that USP performs is linear with the number of patterns in the join, which
is normally very small. Moreover, USP is only performed just before the search of combi-
nations (ie. the execution of the function contextualMatch). As such, and thanks to the
SC optimisation, we know that the number of times that it is actually executed is low.

5.2.8 Single pattern joins

When a join only defines a single pattern we can perform the tests against the messages
in the mailbox once instead of twice (one in the local phase and one in the contextual
phase). The contextual phase is only needed to find a successful combination of messages
when joins match more than one. In the event that a join only matches a single message,
we can skip the contextual phase altogether.

5.3 Failed optimisations

In this section we describe a couple of optimisations that did not produce the expected
results. Naturally, these are not included in the final version of the JCThorn language
and they are only presented here because they provide valid insight about the resolution
of join patterns.

5.3.1 Letter Contents Cache (CC)

After profiling the execution of a program that solves the single-lane bridge problem,
we discovered that an important percentage of the execution time was spent on the local
matching phase (exactly 10%). Given that this number is considerably high, we attempted
to reuse the matching information of messages with equal contents in order to skip this
phase.

It is common that many of the messages found in a component’s mailbox have equal

85

contents. Considering that two messages with equal contents produce the same results
when executing the local matching phase, we can perform the tests once and reuse this
information when checking the second message. In order to accomplish this, we need
an efficient mechanism for identifying the contents of the messages and a map between
content identifiers and matching information.

To identify the contents, we use a cache storing the last N messages retrieved from
the mailbox so that we limit the memory requirements. This cache is a hash map that
associates contents with identifiers and it is shared by all the joins in the current receive.
When retrieving a message from the mailbox for the first time, we calculate its hash
to determine if a message with equal contents have been recently retrieved. If so, we
assign it the identifier stored in the cache and otherwise, we create a new fresh identifier
and update the cache. On the other hand, when retrieving an old message we use the
corresponding identifier that has previously been calculated.

Each identifier is an integer (for which a hash can be computed efficiently) that it is
used to retrieve the matching information from a second cache that also stores information
about the last N elements. It is also a bounded hash map, but in this case each join in
the current receive has its own. If matching information for the given identifier is found in
this cache, we use it to update the matching state of the join and skip the local matching
phase.

This optimisation was successful at reducing the percentage of the execution time spent
on the local matching phase. This dropped from 10% to 2.4% for the single-lane bridge
program. However, it did not produce noticeable performance improvements overall, so
we decided to discard it from the final version of JCThorn to reduce its complexity. The
reasons why no gains were achieved were most likely related to the associated overheads
and the fact that we still need to update the matching state for the patterns.

5.3.2 Runtime reordering

Patterns in a join can also be reordered at runtime according to how many messages in
the mailbox they satisfy. This was one of the first optimisations attempted, but was later
abandoned because it conflicted with the rank reordering presented in 5.2.6 which we
believe produces better results.

The runtime reordering is based on the number of matches found during the local
phase and stored in the state for each of the patterns in a join. Before proceeding to the
contextual matching phase, the patterns are reordered in increasing order of matches. As
a motivating example, consider the join in 5.14 and assume that the mailbox holds the
messages [1], [2], 4 and 5. At that point the patterns x and y match all four messages
while the patterns [x] and [v] only match two. Hence, they would be reordered as shown
in 5.15. This reordering avoids testing combinations with the list messages mapped to
the wildcard patterns. The logic behind is the same as for the uniquely satisfied patterns
optimisation (section 5.2.7).

86

1 x and y and [z] and [v] => { . . . }

Listing 5.14: Join as defined by the programmer

1 [z] and [v] and x and y => { . . . }

Listing 5.15: Join after being reordered at runtime

However, we believe that the number of constraints that a pattern defines (rank re-
ordering) is more relevant than the number of messages it satisfies (runtime reordering).
In other words, moving the patterns that define more constraints to the front will in-
crease the likelihood of allowing us to detect invalid combinations sooner. Moreover, the
rank reordering also has the advantage that it is performed only once at compile time,
while the runtime reordering would have to be executed every time we start a search for
combinations of messages.

5.4 Summary

In this chapter we have introduced the state explosion problem, which essentially consists
of the large number of message combinations that may be tested before a successful match
is found. We have characterised the worst case to be in O(nc), where n is the maximum
number of potential matches for any pattern in the join, and c is the size of the join, ie.
the number of join patterns.

Then, we presented what optimisations are included in JCThorn in order to reduce
the effects of the state explosion problem. Some optimisations, like Fail Fast, prune the
search space to reduce the number of combinations that are tested during the contextual
matching phase. Others, like Skip Contextual, avoid trying to find a combination when we
know before hand that one does not exist, essentially skipping the contextual matching
phase altogether.

Not all the optimisations were successful, and we give an example of two that did not
finally made it into the final version of JCThorn. These are the Letter Contents Cache
and the Runtime Reordering.

In the next chapter we will evaluate how this optimisations influence the performance
of the JCThorn language, both in typical concurrent problems and in a benchmark that
measures the performance in situations where the mailboxes grow large. We also provide
a comprehensive analysis of the expressiveness of the language and comment on other
factors such as scalability, correctness and integration with the original Thorn language.

87

88

Chapter 6

Evaluation

How does JCThorn fare in comparison to Thorn in terms of its usefulness and relative
performance? The purpose of this report was to investigate and ultimately answer this
critical question. In this chapter we present a thorough study of both expressiveness
(section 6.1) and performance (6.4), that will provide greater insight into the answer. We
conclude with our belief that there is indeed demand for joins and that the performance
of JCThorn is rather good, particularly when handling large mailboxes.

Worthy to note is that the following system was used in all of the experiments pre-
sented in this chapter:

Lenovo Y430
Intel Core2 Duo, P7450, 2.13GHz
4GB RAM
Windows 7 Professional, 64-bit version

6.1 Expressiveness

The expressiveness which joins provide is a key reason why they appeal to programmers.
In this section, we first present a number of problems that we believe are easier to solve
in JCThorn than in Thorn. We also describe cases where programmers may abusively
use joins and create more complex and difficult to read solutions. We then attempt to
precisely identify and characterise situations in which it is more convenient to use joins.
Finally, we illustrate how explicit numeric priorities affect the resolution of joins and the
expressiveness of the language.

89

6.1.1 Solutions enhanced by joins

Joins can make the solution of some problems simpler and as such, we present a selection
of problems in this section which are easier to solve in JCThorn than in Thorn.

Board Game problem

We define the Board Game problem as the problem of finding the first combination of
messages appearing in the mailbox that represent the three required elements needed to
start a specific board game. These three elements are the players, the pieces and the
board. We have invented this problem because it clearly shows the limitations of the
Thorn language while it has a trivial solution in JCThorn, as shown in listing 6.1.

1 component boardGameServer{
2 body{
3 receive{
4 { : p l ay e r s :X: } and { : board : $ (X) : } and { : p i e c e s : $ (X) : } => {
5 /* s t a r t game o f X */
6 } } } }

Listing 6.1: Solution to the Board Game problem in JCThorn

This solution ensures that no other combination appears before in the mailbox. In
other words, the last message of the solution found will appear before the last message
of any other potential solution. For example, if we assume that the mailbox contains the
messages listed below, in the given order, this solution will start a game of draughts.

1. {:board:‘‘chess’’:}

2. {:players:‘‘draughts’’:}

3. {:pieces:‘‘chess’’:}

4. {:board:‘‘draughts’’:}

5. {:pieces:‘‘draughts’’:}

6. {:players:‘‘chess’’:}

Conversely, writing a solution for the Board Game problem in Thorn is harder and
prone to errors. A programmer could be tempted to write the boardGameServer in listing
6.2. This program has three nested receive statements in order to match each of the
elements and considers all possible permutations to try to match the first combination
appearing in the mailbox. However, it does not return the first successful combination in
every situation.

For the mailbox presented above, it will start a game of chess instead of draughts.
The reason is that the first message in the mailbox is {:board:‘‘chess’’:} and, thus, it
is bound by the outer receive. At that point, it will only try to find the remaining two

90

elements needed to start a chess game and will ignore elements from other games. Worse
still, if it fails to find the remaining two elements, a deadlock results.

A valid solution to the Board Game problem in Thorn that finds the first successful
combination is presented in listing 6.3. We observe that it is significantly more complex
than the solution in JCThorn. It has to maintain three lists – one for each type of element
needed. While scanning the mailbox, it adds the current message to the corresponding
list until a valid combination is found. This is detected when the three lists contain the
corresponding element for the current game. Finally, we have to return all the messages
that have been retrieved but not matched to the mailbox.

Unfortunately, this solution does not preserve the order of the messages in the mailbox
since the retrieved messages will be appended to the end when returning them to the
mailbox, and this fact might be pertinent in other problems. Clearly, JCThorn’s solution
is not only superior because it has reduced the programmer’s effort from 50 lines to 6,
but also because it preserves the order in the mailbox of the messages that have not been
matched.

Dining Philosophers problem

The Dining Philosophers problem is probably the most well-known problem in Computer
Science, and certainly in the field of concurrent programming. It was posed and solved
by Dijkstra in 1965 and, since then, everyone inventing a new synchronisation primitive
has demonstrated how elegant it is by solving the dining philosophers problem. Hence, it
is a good problem to attempt to tackle for us.

The problem states that five philosophers are seated around a circular table, and that
each has a plate of Spaghetti. Between each pair of plates is one fork, so there are as
many forks as plates. However, a philosopher needs two forks to eat the spaghetti. Thus,
when he gets hungry, he tries to acquire both his left and right forks. If successful, he
eats, then puts the forks down and thinks for a while until he gets hungry again.

A simple solution to the Dining Philosophers problem is achieved by introducing a
waiter at the table1. The waiter, as shown in listing 6.4, receives requests from the
philosophers before they take up the forks. Only when both of the forks that a philosophers
needs are free does the waiter reply and allows him to eat. The JCThorn solution relies
on messages of the form {:fork:Id:} that tell the waiter that the fork with the given id
is free. Then, we can easily match a philosopher request with his left and right forks by
using the join in the body of the waiter. As a result of using a join, the waiter will only
remove a request from the mailbox when he can satisfy it.

In contrast, the solution to the Dining Philosophers in Thorn is more complex, as
shown in appendix A.1. This solutions also uses a waiter, but in this case, he has to
maintain two data tables – one holding information about the forks and one about the
philosophers. These are needed because the waiter might remove requests from the mail-
box when the required forks are not available. As such, we need to record which philoso-
phers are waiting and which forks are or are not free. This fact considerably complicates

1http://en.wikipedia.org/wiki/Dining philosophers problem

91

the solution that more than doubles the number of lines of code required.

1 component boardGameServer{
2 body{
3 receive{
4

5 { : p l ay e r s :X: } => {
6 receive{
7 { : board : $ (X) : } => {
8 receive{
9 { : p i e c e s : $ (X) : } => { /* s t a r t game o f X */ }

10 }
11 }
12 | { : p i e c e s : $ (X) : } => {
13 receive{
14 { : board : $ (X) : } => { /* s t a r t game o f X */ }
15 } } } }
16

17 | { : board :X: } => {
18 receive{
19 { : p l ay e r s : $ (X) : } => {
20 receive{
21 { : p i e c e s : $ (X) : } => { /* s t a r t game o f X */ }
22 }
23 }
24 | { : p i e c e s : $ (X) : } => {
25 receive{
26 { : p l ay e r s : $ (X) : } => { /* s t a r t game o f X */ }
27 } } } }
28

29 | { : p i e c e s :X: } => {
30 receive{
31 { : p l ay e r s : $ (X) : } => {
32 receive{
33 { : board : $ (X) : } => { /* s t a r t game o f X */ }
34 }
35 }
36 | { : board : $ (X) : } => {
37 receive{
38 { : p l ay e r s : $ (X) : } => { /* s t a r t game o f X */ }
39 } } } }
40 } } }

Listing 6.2: Invalid solution to the Board Game problem in Thorn

92

1 component boardGameServer{
2

3 fun conta in s (e , l) { . . . }
4 fun remove (e , l) { . . . }
5

6 body {
7 var p l a ye r s := [] ;
8 var boards := [] ;
9 var p i e c e s := [] ;

10 var found := f a l s e ;
11 var cur rent := n u l l ;
12

13 while (! found){
14 receive{
15 { : p l ay e r s :X: } => {
16 p l a ye r s := [{ : p l ay e r s :X: } , p l a ye r s . . .] ;
17 cur rent := X;
18 }
19 | { : board :X: } => {
20 boards := [{ : board :X: } , boards . . .] ;
21 cur rent := X;
22 }
23 | { : p i e c e s :X: } => {
24 p i e c e s := [{ : p i e c e s :X: } , p i e c e s . . .] ;
25 cur rent := X;
26 } }
27

28 i f (conta in s ({ : p l ay e r s : cur rent : } , p l ay e r s) &&
29 conta in s ({ : board : cur r ent : } , boards) &&
30 conta in s ({ : p i e c e s : cur r ent : } , p i e c e s)){
31 found := true ;
32 } }
33

34 remove ({ : p l ay e r s : cur rent : } , p l ay e r s) ;
35 remove ({ : board : cur r ent : } , boards) ;
36 remove ({ : p i e c e s : cur r ent : } , p i e c e s) ;
37 for (p <− p l a ye r s){
38 thisComp () <<< p ;
39 }
40 for (b <− boards){
41 thisComp () <<< b ;
42 }
43 for (p <− p i e c e s){
44 thisComp () <<< p ;
45 }
46

47 /* s t a r t game o f X */
48 } }

Listing 6.3: Valid solution to the Board Game problem in Thorn

93

1 spawn DiningPhi l {
2

3 body{
4 component Waiter (gue s t s){
5 body{
6 while (t rue){
7 receive{
8 { : p h i l : Id , name :N : } from P and { : f o rk : $ (Id) : }
9 and { : f o rk : $ ((Id+1) mod gues t s) : } => {

10 P <<< { : l e f t : Id , r i g h t : ((Id+1) mod gues t s) : } ;
11 } } } } }
12

13 component Phi l (n , id , wa i te r){
14 body{
15 while (t rue){
16 /* t h ink */
17 waite r <<< { : p h i l : id , name : n : } ;
18

19 receive{
20 { : l e f t : L , r i g h t :R : } => {
21

22 /* ea t */
23 waite r <<< { : f o rk : L : } ;
24 waite r <<< { : f o rk : R : } ;
25 } } } } }
26

27

28 w = spawn Waiter (5) ;
29 for (F <− 0 . . 4){
30 w <<< { : f o rk :F : } ;
31 }
32

33 p h i l s = [
34 spawn Phi l (”Kant” , 0 , w) ,
35 spawn Phi l (”Hume” , 1 , w) ,
36 spawn Phi l (”Marx” , 2 , w) ,
37 spawn Phi l (” Plato ” ,3 , w) ,
38 spawn Phi l (” Nie tz sche ” ,4 , w)] ;
39 }
40 }

Listing 6.4: Solution to the Dining Philosophers problem in JCThorn

94

Santa Claus problem

The Santa Claus problem [37] is a concurrency problem that has been solved in a number
of languages supporting joins, such as JErlang [35] and Polyphonic C# [7]. However,
we do not believe that this is a problem that significantly showcases the expressive power
of joins since an alternative solution without them is not that much more complex.

In this problem, Santa Claus sleeps in the North Pole until it is awakened by a group
of all nine reindeer or a group of three (out of ten) elves. Elves visit Santa anytime they
have difficulties making the toys, and reindeer, just before Christmas. Thus, a group
of reindeer has preference over a group of elves. However, when three elves are having
their problems solved, any other group should not disturb Santa. Similarly, Santa cannot
attend to anyone while he is delivering toys with the reindeer.

A simple solution in JCThorn is given in listing 6.5. Santa is defined with two joins,
one for each type of worker, that match either nine reindeer or three elves. We can see that
the reindeer have preference over the elves because they have been assigned an explicit
numeric priority of 10. The rest of the solution is rather self-explanatory.

In contrast, a solution in Thorn has to introduce secretaries to marshal the groups of
workers, as demonstrated in appendix A.3. There is one secretary for each type of worker,
Robin and Edna, that behave as two buffers that fire when they reach the required size.
We need these two secretaries because Santa’s time is priceless and he should not waste
time marshalling the groups. We observe that in this case, Thorn’s solution in only
about one third larger than JCThorn’s solution.

95

1 spawn SantaClaus {
2 body{
3
4 component worker (type , santa){
5 body{
6 while (t rue){
7 santa <<< type ;
8 receive{
9 ”ok” => {

10 /* work */
11 santa <<< ”done” ;
12 } } } } }
13
14 component santa (){
15 body{
16 var group ;
17 while (t rue){
18 /* s l e e p */
19 receive{
20
21 ” r e i n d e e r ” from R1 and ” r e i n d e e r ” from R2
22 and ” r e i n d e e r ” from R3 and ” r e i n d e e r ” from R4
23 and ” r e i n d e e r ” from R5 and ” r e i n d e e r ” from R6
24 and ” r e i n d e e r ” from R7 and ” r e i n d e e r ” from R8
25 and ” r e i n d e e r ” from R9 prio 10 => {
26 group := [R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9] ;
27 }
28
29 | ” e l f ” from E1 and ” e l f ” from E2 and ” e l f ” from E3 =>{
30 group := [E1 , E2 , E3] ;
31 }
32 }
33 /* wake up */
34
35 for (e <− group){
36 e <<< ”ok” ;
37 }
38
39 /* he lp workers */
40
41 for (e <− group){
42 receive{ ”done” => {}} ;
43 } } } }
44
45
46 s = spawn santa () ;
47 r s = %[spawn worker (” r e i n d e r ” , s) | for j <− 1 . . 9] ;
48 es = %[spawn worker (” e l f ” , s) | for j <− 1 . . 10] ;
49 } }

Listing 6.5: Solution to the Santa Claus problem in JCThorn

96

6.1.2 Solutions worsened by joins

There are situations in which programmers might try to use joins to solve problems when
they are not really needed, essentially counteracting its usefulness. In this section we
present one of those situations.

Single-lane Bridge problem

The Single-lane Bridge problem [27] is also a typical problem included in the curriculum
of undergraduate computing students to demonstrate the intricacies of concurrent pro-
gramming. It helps to illustrate properties such as safety and liveness, but we will only
address the former for the sake of simplicity.

This problem states that a bridge over a river is only wide enough to permit a single
lane of traffic. Consequently, cars can only move concurrently if they are moving in the
same direction. A safety violation occurs if two cars moving in different directions enter
the bridge at the same time.

To avoid safety violations, cars have to request the bridge for permission before they
enter it. Only when it is safe to do so, would the bridge allow them to enter. The bridge
can be programmed in Thorn as shown in listing 6.6. We observe that the bridge is
initially empty, and once a car has entered, it moves to one of two states – either flow
north or flow south. These represent the cars moving in the respective directions. Only
when the bridge becomes empty again will the bridge allow cars in the opposite direction
to pass.

The logic in Thorn’s solution is very clear from the structure of the program. In
contrast, JCThorn’s solution, given in listing 6.7, is a bit more messy, harder to read
and slightly longer. In this case, the bridge keeps a record of how many cars are cur-
rently crossing by sending to itself messages of the shape {:south:N:}, {:north:N:} or
‘‘empty’’. The joins defined in its body enforce the safety conditions, and the bridge
only replies to requests when there are other cars crossing in the same direction or when
the bridge is empty.

97

1 module BRIDGE{
2 component Bridge (){
3 var souths := 0 ;
4 var norths := 0 ;
5

6 fun f lowSouth (){
7 while (souths > 0){
8 receive{
9 ” ent e r sou th ” from s => {

10 souths := souths + 1 ;
11 /* a l l ow south to en ter */
12 s <<< ” al lowed ” ;
13 }
14 | ” e x i t s o u t h ” => {
15 /* record e x i t o f south */
16 souths := souths − 1 ;
17 } } } }
18

19 fun f lowNorth (){
20 while (norths > 0){
21 receive{
22 ” ent e r no r th ” from s => {
23 norths := norths + 1 ;
24 /* a l l ow north to en ter */
25 s <<< ” al lowed ” ;
26 }
27 | ” e x i t n o r t h ” => {
28 /* record e x i t o f north */
29 norths := norths − 1 ;
30 } } } }
31

32 body{
33 while (t rue){
34 receive{
35 ” ent e r sou th ” from s =>{
36 souths := souths + 1 ;
37 /* a l l ow south to en ter */
38 s <<< ” al lowed ” ;
39 f lowSouth () ;
40 }
41 | ” ent e r no r th ” from n => {
42 norths := norths + 1 ;
43 /* a l l ow north to en ter */
44 n <<< ” al lowed ” ;
45 f lowNorth () ;
46 } } } } } }

Listing 6.6: Solution to the Single-lane Bridge problem in Thorn

98

1 module BRIDGE{
2 component Bridge (){
3 body{
4 s e l f = thisComp () ;
5 s e l f <<< ”empty” ;
6

7 while (t rue){
8 receive{
9 { : south : N : } and ” ent e r sou th ” from s => {

10 /* a l l ow south to en ter */
11 M = N + 1 ;
12 s e l f <<< { : south : M : } ;
13 s <<< ” al lowed ” ;
14 }
15 | { : north : N : } and ” ent e r no r th ” from n => {
16 /* a l l ow north to en ter */
17 M = N + 1 ;
18 s e l f <<< { : north : M : } ;
19 n <<< ” al lowed ” ;
20 }
21 | { : south : N : } and ” e x i t s o u t h ” => {
22 /* record e x i t o f south */
23 M = N − 1 ;
24 i f (M == 0){
25 s e l f <<< ”empty” ;
26 } e l s e {
27 s e l f <<< { : south : M : } ;
28 }
29 }
30 | { : north : N : } and ” e x i t n o r t h ” => {
31 /* record e x i t o f north */
32 M = N − 1 ;
33 i f (M == 0){
34 s e l f <<< ”empty” ;
35 } e l s e {
36 s e l f <<< { : north : M : } ;
37 }
38 }
39 | ”empty” and ” ent e r no r th ” from n =>{
40 /* a l l ow north to en ter */
41 s e l f <<< { : north : 1 : } ;
42 n <<< ” al lowed ” ;
43 }
44 | ”empty” and ” ent e r sou th ” from s =>{
45 /* a l l ow south to en ter */
46 s e l f <<< { : south : 1 : } ;
47 s <<< ” al lowed ” ;
48 } } } } } }

Listing 6.7: Solution to the Single-lane Bridge problem in JCThorn

99

6.1.3 When to use joins

Up to this point, we have analysed a number of solutions to different synchronisation
problems for both Thorn and JCThorn. Now, we will try to uncover which are the
characteristics of the class of problems that are more easily solvable in JCThorn.

Firstly, we believe that joins should only be used to synchronise on the receipt of
messages and not to store the state of a component. In the Single-lane bridge problem,
JCThorn’s solution uses messages to record how many cars are crossing the bridge. This
approach is difficult to justify if we accept that the number of cars crossing can be more
conveniently stored in a state variable. Moreover, the number of cars crossing is only
known to the bridge, so it does not need to get this information from other components.

Regarding the Dining Philosophers problem in JCThorn, one could argue that the
messages of the form {:fork:Id:} are only used to record the state and should only
be known to the waiter. However, these messages are also used by the philosophers
to inform the waiter that he has finished using them, so it does make sense that they
are messages and not state variables. Moreover, avoiding the separation of state and
communication reduces the effort associated with maintaining the state separately and
ensuring its consistency. The overheads are shown in Thorn’s solution.

In the Santa Claus problem, joins also avoid the separation of state and communica-
tion. We know that we need either nine reindeer messages or three elves messages, and
joins express this idea concisely. In Thorn, we only match one message at a time, so we
have to introduce additional state data structures to record how many messages of each
type we have received.

Regarding the Board Game problem, and the matching sellers and buyers problem
introduced in section 3.1, these clearly illustrate the limitations in expressiveness of the
Thorn language. The analysis provided insights into which points are harder, or even
impossible to express in Thorn, but straightforward in JCThorn. Some of them are
hard to express in Thorn by themselves, and others might only be difficult when used
in combination in situations, such as when:

� There exist non-linear dependencies between the messages that can form a successful
combination. For instance, in the Board Game problem, the three elements have to
belong to the same game.

� The first valid combination of messages in the mailbox has to be retrieved

� The relative position of the different type of messages in the mailbox that form a
successful combination is undefined

� The order in the mailbox for the messages that have not been matched has to be
preserved

100

Joins or chords?

We have just examined which is the class of problems that are more easily solvable in
JCThorn. A question that is left to be answered is when to use joins and when chords.
The choice is primarily stylistic, since both constructs have the same expressive power.

A program that uses joins can be translated into a program using chords as listings
6.8 and 6.9 show. We observe that we need to declare as many chords as joins appear
in the receive, and define a new channel that in this case we named port. The algebraic
patterns of a join become the patterns of the arguments to the channel. Moreover, case
1 shows that by explicitly matching the sender of a message, a chord can behave as if all
the channels were synchronous.

1 component s e r v e r{
2 body{
3 receive{
4 [x] from S1 and $ (x) from S2 => {
5 /* case 1 */
6 S1 <<< x ;
7 S2 <<< x ;
8 }
9 | ‘ ‘ foo ’ ’ and x => { /* case 2 */ }

10 } } }

Listing 6.8: Program that uses joins

1 component s e r v e r{
2 sync port ([x]) and async port ($ (x)) from S2 {
3 /* case 1 */
4 S2 <<< x ;
5 return x ;
6 }
7

8 async port (‘ ‘ foo ’ ’) and async port (x) { /* case 2 */ }
9

10 body{
11 serve ;
12 } }

Listing 6.9: How to write the program in 6.8 using chords

Programs using chords can also be easily translated into programs that use joins, as
listings 6.10 and 6.11 illustrate. Each chord can be translated into a join that matches
records with two fields. The first field is the channel name of a given chord pattern and
the second the arguments. As a result, the choice between chords and joins is mostly
stylistic. However, chords are a bit slower because they are translated at compile time
into joins, so performance might also influence the decision between the two.

101

1 component s e r v e r{
2 sync get (x) and async put ($ (x)) from S2 { /* case 1 */ }
3

4 async get (y) and async remove ($ (y)) { /* case 2 */ }
5

6 body{
7 serve ;
8 } }

Listing 6.10: Program that uses chords

1 component s e r v e r{
2 body{
3 receive{
4

5 { : channel : ‘ ‘ get ’ ’ , a rgs : x : }
6 and { : channel : ‘ ‘ put ’ ’ , a rgs : $ (x) : } => { /* case 1 */ }
7

8 | { : channel : ‘ ‘ get ’ ’ , a rgs : y : }
9 and { : channel : ‘ ‘ remove ’ ’ , a rgs : $ (y) : } => { /* case 2 */ }

10 } } }

Listing 6.11: How to write the program in 6.10 using chords

6.1.4 Numeric priorities

As we have seen in section 3.4.1, JCThorn provides two different methods of increasing
the priority of a particular join. The first can be termed as positional priority and relies
on the in-order evaluation of joins. The second, the numeric priority, explicitly assigns
priorities to joins.

In positional priority, joins at the same level of numeric priority are evaluated in the
order they are declared. When scanning each of the messages in the mailbox, we will
test the current message against joins declared earlier first. On the other hand, all the
messages in the mailbox will be tested against joins with a higher numeric priority before
attempting to reduce joins with lower numeric priority.

An interesting question is what effect the different type of priorities have in the res-
olution of joins. We answer this question by analysing two solutions to the Santa Claus
problem, one where reindeer are explicitly assigned a higher numeric priority, and the
other where reindeer only have positional priority. The results are presented in figure
6.1.4.

This chart shows the average number of synchronisation points achieved in a 10-second
run of the Santa Claus program. To calculate the average, 100 hundred runs were ex-
ecuted. The synchronisation points are divided between those involving reindeer and
elves. While positional priority allows us to reach a higher number of total synchroni-
sations than numeric priority, 2707 points against 1914, the number of synchronisations

102

points performed involving reindeer is considerably lower, 676 against 1288.

These results are not surprising if we consider how the resolution of joins operates
(described in section 3.4.1). We can conclude that numeric priorities are much more
effective at detecting events that have higher relevance, which in the case of the Santa
Claus problem, is the existence of a group of nine reindeer.

Moreover, we believe that the different types of priorities in JCThorn increase the
level of expressiveness of the language since the programmer can more precisely determine
which behaviour he desires the program to have. In contrast, most of the languages with
Join Calculus based constructs do not provide priorities at all (ie. non-deterministic reso-
lution) and all of those that do only support positional priorities (for example JErlang).

Figure 6.1: Synchronisations achieved by the different types of priority in the Santa Claus
problem

6.2 Correctness

In order to evaluate the correctness of our extensions to the Thorn language, apart
from certifying the correct behaviour of the multiple programs we have created, we also
extended its test suite. The same number of tests in the original suite pass, with the
exception of those involving the incompatible features between Thorn and JCThorn.

We have created multiple tests that have considerably eased the development of JC-
Thorn. Both valid and invalid changes were quickly detected when tests stop or start
passing respectively. As an example, the test in listing 6.12 ensures that numeric priorities
work as expected. The strange statements that start with the symbols ∼!@ ensure that
joins fire in the right order. These are used to integrate the tests with JUnit and are
inherited from Thorn.

103

1 spawn Sendie {
2 body{
3 ˜ ! @testStartLatch () ;
4
5 s end i e = thisComp () ;
6
7 rec = spawn Rec{
8 body{
9 receive{ ” s t a r t ” => {} }

10
11 var i := 2 ;
12 while (i > 0){
13 receive{
14 ” apple ” and ”crumble” from z => {
15 ˜ !@phase (2 , ” crumble”) ;
16 z <<< ”done” ;
17 i := i − 1 ;
18 }
19 | ” apple ” from z and ” p i e ” prio 10 => {
20 ˜ !@phase (1 , ” p i e ”) ;
21 z <<< ”done” ;
22 i := i − 1 ;
23 }
24 timeout (1000) {}
25 } } } }
26
27 rec <<< ”crumble” ;
28 rec <<< ” apple ” ;
29 rec <<< ” apple ” ;
30 rec <<< ” p i e ” ;
31 rec <<< ” s t a r t ” ;
32
33 recv{ ={˜ ! @hit ()@! ˜1 ;}} ;
34 recv{ ={˜ ! @hit ()@! ˜1 ;}} ;
35
36 ˜ ! @checkphase (
37 { : phase : 1 , bag : [” p i e ”] : } ,
38 { : phase : 2 , bag : [”crumble”] : }
39)@! ˜ ;
40 } }

Listing 6.12: Example of a test from JCThorn’s test suite

104

6.3 Microbenchmarks to test optimisations

Microbenchmarks can give an idea of how the extent of the effectiveness the optimisations
could provide. We have created some artificial tests in which they apply, and measured
the period of time it took to reach a constant number of iteration points with both the
optimisations enabled and disabled.

For example, the microbenchmark presented in listing 6.13 evaluates how effective the
Rank Reordering (RR) optimisation can be. It is a client-server application in which the
client repeatably sends the same set of messages to the server. The server, on the other
end, tries to fire a join as often as possible. This join contains five patterns, the first
four matching singleton lists and the fifth a two-element list. At compile time, if RR is
enabled, the patterns in the join will be reordered.

The results of executing this microbenchmark with RR both enabled and disabled are
shown in chart (e) of figure 6.2. The chart shows the average time calculated by running
the test 100 times. We observe that with RR enabled, it takes less than two tenth of a
second to complete the test, while it takes over 90 seconds when disabled. The remainder
of the charts correspond to running similar experiments to test other optimisations with
the corresponding microbenchmarks given in appendix B. The reader should note that
the scales are different from chart to chart.

(a) Letter Contents Cache (b) Combinations with Current Message Only

105

(c) Uniquely Satisfied Patterns (d) Repeating Receive and Context Independence

(e) Rank Reordering (f) Skip Contextual

Figure 6.2: Evaluation of some of the optimisations

106

1 spawn microRR {
2 body{
3 import FromJava . * ;
4 ITER = 11 ;
5 outer = thisComp () ;
6 s t a r t = currentTime () ;
7

8 component c l i e n t (s){
9 body{

10 /* Note , mai lbox w i l l over f low ,
11 [10 ,11] and [5] not matched every round */
12 for (i <− 1 . . ITER){
13 s <<< [10 ,11] ;
14 s <<< [5] ;
15 s <<< [4] ;
16 s <<< [3] ;
17 s <<< [2] ;
18 s <<< [1] ;
19 s <<< [1 ,4] ;
20 } } }
21

22 component s e r v e r (){
23 body{
24 for (i <− 1 . . ITER){
25 receive{
26 [x] and [y] and [z] and [v] and [$ (x) , $ (v)] => {
27 /* do noth ing */ }
28 } } }
29 outer <<< ”done” ;
30 } }
31

32 s = spawn s e r v e r () ;
33 c = spawn c l i e n t (s) ;
34

35 recv{”done” => {}} ;
36 end = currentTime () ;
37 execTime = (end − s t a r t) / 1000 ;
38 p r i n t l n (”$execTime”) ;
39 } }

Listing 6.13: Microbenchmark to test the Rank Reordering optimisation

107

6.4 Performance

Performance is the other critical factor that will have a direct and prominent impact
on the acceptance of the extensions proposed by JCThorn. No matter how expressive
the language, programmers will not use it if it makes applications slow. As a result, we
devoted a lot of time into optimising and fine tuning the algorithm, which we believe has
produced substantial improvements with regards to execution time.

We first analyse how each of the optimisations affect the solution of typical concurrent
problems. Then, we present how solutions that use and do not use joins compare. We
also examine the execution times of the same application when executed in Thorn’s and
JCThorn’s interpreters. We conclude by revealing the results obtained from running a
benchmark to measure how JCThorn performs when mailboxes grow large.

6.4.1 Effect of optimisations in typical concurrent problems

In section 6.3 we have analysed how the optimisations affect tailored microbenchmarks
in order to understand the extent of their effectiveness. In this section we will show how
they affect typical concurrency problems in situations where the mailboxes do not get
very large.

Santa Claus

Figure 6.3 shows how disabling each of the optimisations in turn affects the execution
time of JCThorn’s solution to the Santa Claus problem, given in section 6.1.1 (with the
numeric priority removed). We measured the time it took to perform 100 synchronisations,
and calculated the average of 100 runs.

Surprisingly, the Contents Cache (CC) optimisation had no effect, although messages
can only take two values – either “reindeer” or “elf”. The reason is probably because
of the CC related overheads and that we still need to update the matching state for
each of the patterns. Disabling the Combinations with Current Message Only (CCMO)
and Uniquely Satisfied Patterns (USP) optimisations did not increase the execution time
because Skip Contextual (SC) ensures that whenever we test a combination, this one is
successful. When SC is disabled, we try to find combinations when there are not enough
messages in the mailbox, which explains the increase in execution time. The reason is
that single messages match all the patterns in a join. Rank Reordering (RR) had no effect
because all the patterns in each join have the same rank. Finally, the Repeating Receive
and Context Independence (RRCI) optimisation had no perceivable effects because the
mailboxes did not grow large.

108

Figure 6.3: Effect of disabling each of the optimisations in turn on the Santa Claus solution

Single-Lane Bridge problem

Figure 6.4 shows the effects of disabling the optimisations on the Single-Lane Bridge
solution written in JCThorn and presented in section 6.1.2. It shows the average time,
in seconds, that 125 cars took to cross the bridge in each of the directions out of 100 runs.
The reader should note that the scale is logarithmic.

We observe that disabling the RRCI optimisation increased the execution time from
around 3 seconds to almost 128 seconds. The cause lies in the fact that requests from cars
wanting to cross the bridge in the opposite direction of the cars currently in the bridge are
queued. Thus, if the bridge does not remember the position of the last checked request,
it will have to check all the queued requests after each reply.

Dining Philosophers problem

Finally, figure 6.5 shows the effects on JCThorn’s solution to the Dining Philosophers
problem, presented in section 6.1.1. We measured how long it took for the five philosophers
to go through 50 thinking-eating cycles each, and present the average of 100 runs.

In this solution, disabling the optimisations did not have a perceivable effect on the
execution time. For example, RR is not effective in the Dining Philosophers problem
because there are only 5 philosophers at the table, so the number of requests that the
waiter receives is very low. SC is not effective because although we might try to find
combinations to satisfy a join when they are not enough messages in the mailbox, we
would detect this situation when testing the first combination – only two patterns in the
waiter’s join can be satisfied by the same messages.

109

Figure 6.4: Effect of disabling each of the optimisations in turn on the Single-Lane Bridge
solution

Figure 6.5: Effect of disabling each of the optimisations in turn on the Dining Philosophers
solution

110

6.4.2 Thorn versus JCThorn

So far we have only analysed what effects the optimisations have had in join resolution.
Now, we shall compare the relative performance of the original Thorn interpreter against
the JCThorn interpreter, and how solutions with and without joins perform.

Santa Claus problem

Figure 6.6 shows the average time taken by different solutions of the Santa Claus problem
to reach increasing numbers of synchronisation points out of 100 runs. Remarkably, when
run in JCThorn’s interpreter, the solution that does not use joins (given in appendix
A.1) reaches the required number of synchronisation points in about two thirds of the
time as compared to when it was executed in Thorn’s interpreter.

We can explain this fact if we take into account that some of the optimisations in-
troduced also affect programs that do not use joins. In particular, the repeating receive
optimisation (RRCI) remembers the position in the mailbox of the last checked message
in the previous execution of the same receive, which is also useful for those receive

constructs that do not declare joins.

Regarding the solution that uses joins, presented in section 6.1.1, it runs slightly faster
than the solution that does not. This might be the result of a combination of factors. For
example, the solution using joins does not create two secretaries to marshal the groups of
reindeer and elves, and it does not have to append one item to a list every time a message
is received from one of the workers.

Figure 6.6: Comparison of the different solutions to the Santa Claus problem

111

Dining Philosophers problem

For the Dining Philosophers problem, JCThorn’s interpreter is again faster than the
original Thorn interpreter when executing the solution presented in appendix A.1, that
does not use joins. The results are shown in figure 6.7 and presents the average time
it took for the five philosophers to go through 50 thinking-eating cycles each out of 100
runs.

Disappointingly, the solution using joins (listed in section 6.1.1) runs over four times
slower than the solution that does not. This is a consequence of the nature of join
resolution. As we can observe from listing 6.14, the receive in the body of the waiter
declares a join that matches a philosopher with its two corresponding forks. As explained
in section 5.1, finding a valid combination is a relatively expensive operation, with a
polynomial-time worst case.

On the other hand, listing 6.15 shows the receive in the solution that does not use joins.
We observe that once we have received the request from a philosopher, ie. the message
{:take:Id, name:N:}, we can find if the corresponding forks are available in constant
time. The syntax forks(Id) efficiently retrieves the corresponding tuple from the table
containing information about each of the forks. This is a constant time operation because
the ID field has an associated index. Moreover, to discover if it is free, we use the syntax
V ∼ P that returns true if the value V matches the pattern P.

Returning to figure 6.7, we observe that the solution using chords (appendix A.2) is
slightly slower than the solution using joins. This is probably the result of the extra work,
like additional function calls, that is carried out in the translation.

1 receive{
2 { : p h i l : Id , name :N : } from P and { : f o rk : $ (Id) : }
3 and { : f o rk : $ ((Id+1) mod gues t s) : } => {
4 . . .
5 } }

Listing 6.14: Receive in the body of the waiter (Join solution)

1 receive{
2 { : take : Id , name :N : } from P => {
3 i f (f o r k s (Id) ˜ { : taken : f a l s e : }
4 && f o r k s ((Id+1) mod gues t s) ˜ { : taken : f a l s e : }){
5 . . .
6 } } }

Listing 6.15: Receive in the body of the waiter (Non-join solution)

In view of the results, we can conclude that specialised solutions will normally perform
better than the join resolution, as the latter has to work for the general case. However,
joins allow programmers to solve certain problems with less effort, as it is the case for the
Dining Philosophers problem. Thus, they will have to make compromises and evaluate

112

what applications are performance critical, and in what situations fast development is
more important. Nonetheless, the important achievement of joins is that they provide
programmers with choice, which is always valuable.

Figure 6.7: Comparison of the different solutions to the Dining Philosophers problem

Single-Lane Bridge problem

Listing 6.8 shows the performance of the different solutions to the Single-Lane Bridge
problem. In this case, JCThorn’s interpreter also performs better than Thorn’s inter-
preter for the non-join solution (presented in section 6.1.2).

However, the join (section 6.1.2) and chord (appendix A.4) solutions are not only
harder to understand, but also considerably slower. The likely cause is the fact that each
of the receive constructs in the non-join solution have only two cases, while the receive

in the body of the bridge for the join solution declares 6 joins. The higher number of
joins means that more tests with negative results will be performed, which are clearly
unnecessary.

6.4.3 Large mailboxes

We believe that the most important factor in the performance of the joins solver is how it
behaves under heavy load, particularly in those situations where the mailboxes are large.
In this section we recreated a benchmark designed by Hubert Plociniczak, author of the
JErlang language [35], with the aim of measuring this factor.

The code for the benchmark is given in appendix C.2. It consists of a server that
receives messages from a number of clients. The server declares two joins to retrieve the
different messages sent by the clients, which share the synchronous message ‘‘notify’’.

113

Figure 6.8: Comparison of the different solutions to the Single-Lane Bridge problem

The benchmark measures how many replies the server is able to execute in a limited
amount of time.

The clients, after sending each request, sleep for a random amount of time between
0 and 1 seconds in order to simulate the non-deterministic behaviour of any distributed
and concurrent application. However, to get consistent results, a pseudo-random number
generator is used. For simplicity, we have used the Random class declared in the Java API
with a seed value of 17 (Java methods can be called from JCThorn programs).

For each test, the number of clients sending synchronous messages is kept constant.
On the other hand, the number of clients sending asynchronous messages is increased
until the mailbox is flooded and the performance of the solver considerably drops. This
test is performed for different lengths of time. The reader should be aware that the scale
of the horizontal axis is logarithmic.

The test in figure 6.9 increases the number of asynchronous clients from 4 to 1024 and
keeps the number of synchronous clients at a constant value of 10. We observe that the
results are very positive, and with 256 asynchronous clients (128 in the 120 second run),
the server still manages to satisfy large numbers of requests. From then on, it degrades
gracefully and with 512 clients the mailbox is clearly flooded. Nonetheless, the server still
manages to satisfy a low, but still significant, number of requests.

These results clearly surpass the performance of JErlang’s join solver in the same
scenario, presented in [35]. In JErlang, the peak in the number of requests (at slightly
over 900 for the 120 second run) is reached when the number of asynchronous clients is
just 8. Then, the number of synchronisations drops to less than 150 when there are just
12 clients. JCThorn is clearly superior when handling large mailboxes, and with 128

114

Figure 6.9: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 10

Figure 6.10: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 10. SC optimisation disabled

115

asynchronous clients, the server is able to answer over 2200 requests. With 256 clients
the figure drops to 1400, which means that it is able to handle 20 times more clients that
JErlang.

In view of these huge differences in performance between the two languages, the reader
might question how faithful our implementation of the benchmark is. However, the code
from JErlang’s benchmark is publicly available2 and, moreover, we get very similar
results to those in JErlang when we disable the Skip Contextual (SC) optimisation, as
shown in figure 6.10.

We observe that when SC is disabled, the peak in the number of synchronisation points
happens when the number of asynchronous clients is 8, the same as in JErlang. When
the number is 16, the mailbox is already flooded, although the server still manages to
answer an important number of requests.

To understand why the SC optimisation has such a dramatic effect, we should consider
the joins declared in the body of the server after being reordered according to the rank
of their patterns. These joins are shown in listing 6.16. Clearly, when we increase the
number of asynchronous clients, the number of messages in the mailbox satisfying all the
patterns, with the exception of ‘‘notify’’ (ie. the synchronous message), will increase
proportionally.

When SC is disabled, we try to find a combination before all the patterns in the join
have been satisfied. Hence, as we increase the number of asynchronous clients, we will
be testing more combinations that do not involve ‘‘notify’’ messages. Obviously, they
will not be successful and, essentially, we will be wasting a lot of time doing unnecessary
computations.

1 receive{
2 { : packetValue :V, id : Id : } and { : buy : $ (Id) : }
3 and ” n o t i f y ” from S => {
4 . . .
5 }
6 | { : packetValue : , id : Id : } and { : s e cu re : $ (Id) : }
7 and ” n o t i f y ” from S and { : d epo s i t : V1 : } => {
8 . . .
9 } }

Listing 6.16: Joins declared in the server - after rank reordering

On the other hand, it is also interesting to observe what happens when the Rank
Reordering (RR) optimisation is disabled. In JErlang, RR had negative effects on
performance in the benchmark, so the designers were force to include a flag in the compiler
to allow programmers to enable or disable this optimisation. In contrast, it has no negative
effects in JCThorn. This is shown in figure 6.11, which is barely distinguishable from
that shown in figure 6.9. Moreover, the benchmark runs faster with RR enable in the
situation presented in appendix C.1.

2http://www.doc.ic.ac.uk/∼susan/jerlang/

116

Figure 6.11: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 10. RR optimisation disabled

Figure 6.12: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 10. RRCI optimisation disabled

117

The reason why RR does not negatively affect the performance of JCThorn is that
SC ensures that whenever we test a combination, this will be successful. JErlang does
not provide the SC optimisation, so when RR is enabled it will take longer to detect
that there are no ‘‘notify’’ messages in the mailbox, as this pattern will appear last.
Hence, it will test many incomplete combinations. If RR is enabled, ‘‘notify’’ is the
first pattern in the join, so it can detect that a message satisfying it has not been received
sooner.

Figure 6.12 illustrates how the performance degrades when the Repeating Receive and
Context Independence (RRCI) optimisation is disabled. We observe that, in this case,
the number of synchronisation points achieved in a 120-second run starts to fall when we
reach 32 asynchronous clients instead of 128 (recall figure 6.9). This situation is com-
pletely expected, since with RRCI disabled we always start the scan of the mailbox from
the beginning, and not from the last checked message. As we increase the number of
asynchronous clients, there will be more asynchronous messages than ‘‘notify’’ mes-
sages in the mailbox. Hence, as joins fire, the ‘‘notify’’s will be removed from earlier
positions, and every time we start a new scan we will have to checked more asynchronous
messages until we get to the next ‘‘notify’’.

Finally, figure 6.13 shows the results of running with 40 synchronous clients instead
of 10. The peak in the number of synchronisations happens for the 120-second run at the
point of 64 asynchronous clients. The number of synchronisations clearly increases prior
to that point and drops thereafter.

This contrasts with figure 6.9, in which the number of synchronisations remains fairly
stable from the 16-asynchronous-client point to the 128 point. Hence, we deduce that the
number of synchronisations was restricted by the number of synchronous clients, which
clearly was not enough when we only had 10. We also confirm this finding in appendix
C.1, where we reach higher numbers of synchronisation points by allowing synchronous
clients to send messages without interleaved waits.

More importantly, figure 6.13 shows that the server is able to serve a maximum number
of about 9500 requests in a 120-second run when the number of asynchronous clients is
64. This is more than 27 times the maximum number of points that JErlang is able to
solve in the same experiment (ie. 350 synchronisations when there are 12 asynchronous
clients).

118

Figure 6.13: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 40

6.5 Scalability

In this section we analyse the effect of joins on the degree of concurrency of the JC-
Thorn language. We base our analysis on the Joe Armstrong challenge [2], that was
later adapted by Plociniczak [35] in order to measure the scalability of JErlang. The
extended challenge can be summarised as following:

1. Put N processes in a ring

2. Associate each process with 3 consecutive neighbours

3. Send synchronisation messages to the last two neighbours and a main, simple mes-
sage to the first neighbour

4. Each process performs a join on the main message and the two synchronisation
messages coming from the precedent processes

5. Send the main message round the ring M times

6. Increase N to see how long does it takes to process the message

7. Increase M to see how long does it takes to process the message

The code for the Armstrong challenge in JCThorn can be found in appendix D.1. We
have also created a second version, presented in appendix D.2, in order to fairly compare
the Thorn and JCThorn interpreters. This version replaces step four by:

119

� Each process executes nested receives, one for each message that receives from its
three precedent processes

Figure 6.14 shows the results of running the first and second versions of the Armstrong
challenge with the JCThorn and Thorn interpreters respectively. We measure the time
taken to run it with rings of different sizes, from 4 to 1024 processes, for different numbers
of rounds, 2 and 4. The most notable feature is that both interpreters produce very similar
results, so we believe that the introduction of joins did not have a negative effect on the
scalability of the language.

Figure 6.14: Armstrong Challenge results

6.6 Integration

Overall, we believe that JCThorn represents an intuitive extension of the Thorn lan-
guage. Programmers that are familiar with Thorn can start writing JCThorn pro-
grams without requiring much additional training. Join and chord resolution maintains
the in-order, first-match evaluation and treats explicit numeric priorities in the same way.
Moreover, we believe that the addition of the join operator (ie. and) to the syntax fits
coherently.

JCThorn also respects the Thornian distinction between bound and free variables in
patterns and supports the before and after clauses next to serve statements, albeit with
some minor deviations due to the semantic differences between the languages. However,
the most radical feature has been the removal of the catch clause next to the serve

statement from the language. The reason was to avoid the unintuitive behaviour that
programs exhibit when they make use of both serve clauses and interpolation patterns.

120

6.7 Summary

In this chapter we have provided an in-depth analysis of the extensions that JCThorn
proposes. We first analysed the expressiveness of joins by comparing different solutions
to the Board Game problem, that we have invented, and to other classic concurrent
problems. These provided some insight into the characteristics of the class of problems
that are more easily solvable in JCThorn, and helped us to determine that joins can
express concepts that are impossible or very hard to articulate in Thorn.

Then, we presented what measures were taken to ensure the correctness of the lan-
guage. We also described the results obtained by running a set of microbenchmarks with
the aim of determining how effective the optimisations included in the language could ever
be. Performance was indeed a very important topic in the analysis, and the next section
was solely dedicated to it. We first examined the effect that each of the optimisations
had in the execution time of applications solving typical concurrent problems. Then, we
compared JCThorn’s interpreter against Thorn’s interpreter and discovered that the
former is faster when executing the same application.

We also discovered that the solution to the Santa Claus problem in JCThorn using
joins is not only easier to write, but also faster. However, specialised solutions to some
other problems will perform better than solutions using joins, as it is the case with the
Dining Philosophers problem. In these situations programmers will need to make com-
promises, and evaluate if the reduction in development time of using joins compensates
for the inevitable performance loss.

A benchmark was also created to measure how JCThorn behaves when mailboxes
grow large. We discovered that JCThorn outperforms languages with the same level
of complexity, such as JErlang. JCThorn is able to efficiently handle 20 times more
clients in the same scenario, and the peak in the number of requests that the server is able
to serve is up to 27 times larger. The differences in performance are due to the number of
optimisations included in JCThorn, which were shown to have very significant effects.
In particular, Skip Contextual was incredibly effective when handling large mailboxes,
and Repeating Receive also had noticeable effects.

We have also determined that the introduction of joins into JCThorn had no negative
effects on the scalability of the language, ie. large numbers of processes are handled as
effectively. Finally, we concluded by commenting on how naturally the changes that
JCThorn proposes can be integrated into the original Thorn language.

121

122

Chapter 7

Conclusions

We have extended the Thorn programming language with constructs based on the Join
Calculus, a process algebra suited for implementation. The result is JCThorn, a language
that we believe will greatly help programmers to solve synchronisation problems. We have
seen that Thorn has limitations and cannot easily express certain component behaviours,
for example, finding the first combination of messages with equal value in the mailbox. In
contrast, expressing this action is straightforward in JCThorn. The root of the problem
in Thorn lies in the fact that the language relies on message-passing for synchronisation
- it does not provide any form of shared memory - and can only retrieve a single message
at a time from a component’s mailbox. Retrieving multiple messages in one operation is
precisely the function of joins and chords, which are the two main additions included in
JCThorn.

Solutions to classic concurrent problems have also been examined. We determined that
joins and chords make the life of a programmer easier in many situations. For instance, the
solution to the Santa Claus problem does not only run faster, but is also easier to write.
In other situations, programmers may need to make compromises, and evaluate if the
gains in development time compensate for the non-prohibited performance cost of using
joins. Remarkably, the peformance of JCThorn considerably outperforms that of other
languages like JErlang, which also supports joins and has a similar level of complexity.
We determined that JCThorn is particularly efficient even when mailboxes have many
messages. Moreover, JCThorn’s interpreter also outperforms Thorn’s interpreter when
executing the same program. This is the result of the multiple optimisations, some novel
and others already known, that have been included in JCThorn.

As a result, we believe that the constructs proposed by JCThorn could be easily
incorporated into the original Thorn language. This is also true because we have paid a
lot of attention to ensuring that JCThorn respects Thorn’s design principles. Accepting
joins would only require two minor compromises by Thorn designers. The first is to
remove catch clauses next to serve statements from the language, which we believe should
not have been in place originally, because when used in conjunction with interpolation
patterns, they result in unexpected program behaviour. However, should the designers
want to keep them, we have hinted at an implementation path that could be considered.
The second modification would consist of changing the type of arguments of before and

123

after clauses to lists. We believe that the expressive power of joins clearly compensates
for accepting these two backwards incompatible changes, because there is no established
Thorn user community. However, Thorn designers may have a different opinion. If
that were the case, many propositions in this report are still relevant. In particular,
some optimisations did result in improvements in the execution time of original Thorn
programs.

7.1 Future Work

We expect the new Thorn compiler to be released very soon. When this happens, an
interesting project would be to implement JCThorn in that compiler. Proving that this
can be done efficiently will support the potential adoption of joins by the original Thorn
language. Other future work could include investigating further how the performance of
the join solver could be improved. The Rank Reordering optimisation could be enhanced
by performing a more complex static analysis of the joins. Interpolation patterns matching
the value of a variable, and not of an expression, inside the join pattern with a higher
rank could be replaced by a wildcard pattern defining that variable. This modification
will avoid having to prematurely insert patterns upon which others are dependent, and
will allow higher rank patterns to be positioned closer to the front of the join.

The mailbox is currently implemented by an array-based data structure - the Java
thread-safe class CopyOnWriteArrayList - in which all mutative operations are imple-
mented by making a fresh copy of the underlying array. However, this might not be the
most efficient data structure to support the operations performed during join resolution,
namely sequential access, random access and appending. It would be valuable to examine
how other data structures might affect performance. Regarding the contextual matching
phase, we do not store partial results. Although we ensure that we only test combina-
tions involving new messages, parts of these combinations may only consist of messages
that have already been checked. Thus, we could avoid duplicating work done by storing
partial results. However, maintaining this state has associated overheads, so it would be
interesting to measure how it would impact performance.

Finally, we could evaluate further the expressiveness of the JCThorn language. Ex-
amining solutions to some other concurrent problems will help us understand better what
the real value of joins is.

124

Appendix A

Alternative solutions to typical
concurrent problems

A.1 Dining Philosophers - Thorn’s solution

This is Thorn’s solution to the Dining Philosophers problem. It uses a waiter to which
the philosophers ask for permission before using the forks. The waiter records the state
of each of the philosophers and forks in two tables, phil and forks respectively.

1 spawn DiningPhi l {
body{

3 component Waiter (gue s t s){

5 var f o r k s := table (id){
var taken ;

7 } ;
var p h i l := table (id){

9 var wait ing ;
var p h i l ;

11 var name ;
} ;

13 fun serveFork (Id , p , philName){
f o r k s (Id) := { : taken : t rue : } ;

15 f o r k s ((Id+1) mod gues t s) := { : taken : t rue : } ;
p <<< { : l e f t : Id , r i g h t : ((Id+1) mod gues t s) : } ;

17 }

19 body{

21 /* i n i t i a l i z e s t a t e o f f o r k s and ph i l o s oph e r s */
for (i <− 0 . . (philNum − 1)){

23 f o r k s (i) := { : taken : f a l s e : } ;
}

25 for (i <− 0 . . (philNum − 1)){
p h i l (i) := { : wa i t ing : f a l s e , p h i l : nu l l , name : n u l l : } ;

27 }
var wait ing := [] ;

125

29
while (t rue){

31 receive{

33 { : take : Id , name :N : } from P => {
i f (f o r k s (Id) ˜ { : taken : f a l s e : }

35 && f o r k s ((Id+1) mod gues t s) ˜ { : taken : f a l s e : }){
serveFork (Id , P, N) ;

37 } e l s e {
p h i l (Id) := { : wa i t ing : true , p h i l :P, name :N: } ;

39 }
}

41 | { : drop : Id , name :N : } from P => {
/* drop f o r k s */

43 f o r k s (Id) := { : taken : f a l s e : } ;
f o r k s ((Id+1) mod gues t s) := { : taken : f a l s e : } ;

45 l e f t = (Id + gues t s − 1) mod gues t s ;
r i g h t = (Id+1) mod gues t s ;

47
/* a l l ow l e f t to ea t i f wa i t ing and o ther f o r k a v a i l a b l e */

49 i f (p h i l (l e f t) ˜ { : wa i t ing : true , p h i l : pLeft , name : nameLeft : } &&
f o r k s (l e f t) ˜ { : taken : f a l s e : }){

51 p h i l (l e f t) := { : wa i t ing : f a l s e , p h i l : nu l l , name : n u l l : } ;
serveFork (l e f t , pLeft , nameLeft) ;

53 }

55 /* a l l ow r i g h t to ea t i f wa i t ing and o ther f o r k a v a i l a b l e */
i f (p h i l (r i g h t) ˜ { : wa i t ing : true , p h i l : pRight , name : nameRight : } &&

57 f o r k s ((r i g h t +1) mod gues t s) ˜ { : taken : f a l s e : }){
p h i l (r i g h t) := { : wa i t ing : f a l s e , p h i l : nu l l , name : n u l l : } ;

59 serveFork (r ight , pRight , nameRight) ;
} } } } } }

61
component Phi l (n , id , wa i te r){

63 body{
while (t rue){

65 /* t h i n k i n g */
waite r <<< { : take : id , name : n : } ;

67
receive{

69 { : l e f t : L , r i g h t :R : } => {
/* ea t i ng */

71 wai te r <<< { : drop : id , name : n : } ;
} } } } }

73
w = spawn Waiter (5) ;

75 p h i l s = [
spawn Phi l (”Kant” , 0 , w) ,

77 spawn Phi l (”Hume” , 1 , w) ,
spawn Phi l (”Marx” , 2 , w) ,

79 spawn Phi l (” Plato ” ,3 , w) ,
spawn Phi l (” Nie tz sche ” ,4 , w)] ;

81 } }

Listing A.1: Solution to the Dining Philosophers problem in Thorn

126

A.2 Dining Philosophers - Chord solution

The solution to the Dining Philosophers problem that uses chords is very similar to that
using joins. The fragment below shows how the waiter is written in the solution using
chords.

1 component Waiter (gue s t s){

3 sync p h i l (id , name) and
async f o rk ($ (id)) and

5 async f o rk ($ ((id +1) mod gues t s)) {
return { : l e f t : id , r i g h t : ((id +1) mod gues t s) : } ;

7 }

9 body{
while (t rue){

11 serve ;
} } }

Listing A.2: Solution to the Dining Philosophers problem using chords

A.3 Santa Claus - Thorn’s solution

This is Thorn’s solution to the Santa Claus problem. Santa Claus gets help from two
secretaries, which are responsible of marshalling the groups of elves and reindeer respec-
tively.

spawn SantaClaus {
2 body{

4 component worker (s e c r e t a r y){
body{

6 while (t rue){
s e c r e t a r y <<< ” ready ” ;

8 receive{
”ok” from santa => {

10 /* work */
santa <<< ”done” ;

12 }
} } } }

14
component s e c r e t a r y (santa , sp e c i e s , t o t a l){

16 var count := 1 ;
var workers := [] ;

18 body{
while (t rue){

20 receive {
” ready ” from W =>{

22 workers := [W, workers . . .] ;
i f (count == t o t a l){

24 santa <<< { : type : sp e c i e s , i d s : workers : } ;

127

count := 1 ;
26 workers := [] ;

} e l s e {
28 count := count + 1 ;

} } } } } }
30

component santa (){
32 body{

var group ;
34 while (t rue){

/* s l e e p */
36 receive{

38 { : type : r e indee r , i d s : Ids : } prio 10 => {
group := Ids ;

40 }

42 | { : type : e l f e s , i d s : Ids : } =>{
group := Ids ;

44 }
}

46 /* wake up */

48 for (e <− group){
e <<< ”ok” ;

50 }

52 /* he lp workers */

54 for (e <− group){
receive{ ”done” => {}} ;

56 } } } }

58 s = spawn santa () ;
rob in = spawn s e c r e t a r y (s , ” r e i n d e e r ” , 9) ;

60 edna = spawn s e c r e t a r y (s , ” e l f e s ” , 3) ;
r s = %[spawn worker (rob in) | for j <− 1 . . 9] ;

62 es = %[spawn worker (edna) | for j <− 1 . . 10] ;
} }

Listing A.3: Solution to the Santa Claus in Thorn

A.4 Single-Lane Bridge - Chord solution

A bridge that solves the Singe-Lane Bridge problem can be programmed using chords as
shown below.

128

1 module BRIDGE{
component Bridge (){

3
sync enterSouth () and

5 async south (n){
m = n + 1 ;

7 s e l f <−− south (m) ;
return ;

9 }

11 async ex i tSouth () and
async south (n){

13 m = n − 1 ;
i f (m == 0){

15 s e l f <−− empty () ;
} e l s e {

17 s e l f <−− south (m) ;
} }

19
sync enterNorth () and

21 async north (n){
m = n + 1 ;

23 s e l f <−− north (m) ;
return ;

25 }

27 async ex i tNorth () and
async north (n){

29 m = n − 1 ;
i f (m == 0){

31 s e l f <−− empty () ;
} e l s e {

33 s e l f <−− north (m) ;
} }

35
sync enterNorth () and

37 async empty (){
s e l f <−− north (1) ;

39 return ;
}

41
sync enterSouth () and

43 async empty (){
s e l f <−− south (1) ;

45 return ;
}

47
body{

49 s e l f <−− empty () ;
while (t rue){

51 serve ;
} } } }

Listing A.4: Solution to the Single-Lane Bridge problem in Thorn

129

Appendix B

Microbenchmarks

spawn microCCMO {
2 body{

import FromJava . * ;
4 ITER = 60 ;

outer = thisComp () ;
6 s t a r t = currentTime () ;

8 component c l i e n t (s){
body{

10 /* Note , mai lbox w i l l over f low , one ex t ra 4 every round */
for (i <− 1 . . ITER){

12 s <<< 1 ; s <<< 1 ;
s <<< 4 ; s <<< 4 ;

14 s <<< 4 ; s <<< 2 ;
s <<< 2 ; s <<< 1 ;

16 } } }

18 component s e r v e r (){
body{

20 for (i <− 1 . . ITER){
receive{

22 1 and 1 and 2 and 4 and 4 and 1 => { /* do noth ing */ }
} }

24 outer <<< ”done” ;
} }

26
s = spawn s e r v e r () ;

28 c = spawn c l i e n t (s) ;
recv{”done” => {}} ;

30 end = currentTime () ;
execTime = (end − s t a r t) / 1000 ;

32 p r i n t l n (”$execTime”) ;
} }

Listing B.1: Microbenchmark to test CCMO optimisation

130

1 spawn microCC {
body{

3 import FromJava . * ;
ITER = 1000 ;

5 outer = thisComp () ;
s t a r t = currentTime () ;

7
component c l i e n t (s){

9 body{
for (i <− 1 . . ITER){

11 s <<< { : book : ”Brave New World” : } ;
s <<< [29 ,03 ,1986] ;

13 s <<< 7 ;
s <<< ”La Dolce Vita ” ;

15 s <<< { : author : ” Albert Camus” : } ;
s <<< [”key” , 432] ;

17 s <<< { : name : ” Peter J . ” , address : ”London” : } ;
s <<< [0 ,1 ,2 ,3] ;

19 s <<< ” Imper ia l Co l l ege ” ;
s <<< { : Morroco : ” M i r l e f t ” : } ;

21 } } }

23 component s e r v e r (){
body{

25 for (i <− 1 . . ITER){
receive{

27 { : book : ”Brave New World” : } and [x , y , z]
and 7 and ”La Dolce Vita ” and { : author : ” Albert Camus” : }

29 and [”key” , 432] and { : name : ” Peter J . ” , address : ”London” : }
and [0 ,1 ,2 ,3] and ” Imper ia l Co l l ege ”

31 and { : Morroco : ” M i r l e f t ” : } => {
/* do noth ing */

33 } } }
outer <<< ”done” ;

35 } }

37 s = spawn s e r v e r () ;
c = spawn c l i e n t (s) ;

39 recv{”done” => {}} ;
end = currentTime () ;

41 execTime = (end − s t a r t) / 1000 ;
p r i n t l n (”$execTime”) ;

43 } }

Listing B.2: Microbenchmark to test CC optimisation

131

1 spawn microUSP {
body{

3 import FromJava . * ;
ITER = 1000 ;

5 outer = thisComp () ;
s t a r t = currentTime () ;

7
component c l i e n t (s){

9 body{
for (i <− 1 . . ITER){

11 s <<< { : data : ”one” : } ;
s <<< ”one” ;

13 s <<< ”two” ;
s <<< [1] ;

15 s <<< { : data : ”two” : } ;
s <<< { : data : ” three ” : } ;

17 s <<< { : data : ” four ” : } ;
s <<< { : data : ” f i v e ” : } ;

19 s <<< [2 ,3] ;
s <<< [4 ,5] ;

21 s <<< [6 ,7] ;
s <<< [8 ,9] ;

23 } } }

25 component s e r v e r (){
body{

27 for (i <− 1 . . ITER){
receive{

29 x and [a , b . . .] and [c , d . . .] and [e , f . . .] and [g , h . . .]
and { : data : n : } and { : data : j : } and { : data : k : }

31 and { : data : l : } and [m] and { : data : ”one” : } and ”one” => {
/* do noth ing */

33 } } }
outer <<< ”done” ;

35 } }

37 s = spawn s e r v e r () ;
c = spawn c l i e n t (s) ;

39 recv{”done” => {}} ;
end = currentTime () ;

41 execTime = (end − s t a r t) / 1000 ;
p r i n t l n (”$execTime”) ;

43 } }

Listing B.3: Microbenchmark to test USP optimisation

In this section we have listed the code from the microbenchmarks to test the following
optimisations: CCMO, CC and USP. To test the RRCI optimisation the Single-Lane
Bridge problem was used. The microbenchmark for the SC optimisation was the Santa
Claus problem.

132

Appendix C

Benchmark

C.1 More results

Figure C.1 shows the result of running the benchmark with 40 synchronous clients. The
random delayed between consecutive sends in the synchronous clients has been removed.
This fact explains the large number of requests that the server is able to handle. The
peak is 30000 when there are 128 asynchronous clients in the 120 second run.

Figure C.1 shows the same experiment, but with the Rank Reordering optimisation
disabled. We observe that the performance is slightly worse. For the 10, 20 and 40
second runs, the number of requests that the server is able to handle start to drop when
the number of asynchronous clients reaches 128 instead of 256. Moreover, the maximum
number of synchronisation for this runs is also considerably lower.

Figure C.3 shows the effect of assigning higher numeric priority to reindeer. In the
similar experiment presented in section 6.4.3 of chapter 6, the reindeer only had positional
priority. The explicit numeric priority does not have a dramatic effect on performance,
although the mailbox floods slightly earlier.

133

Figure C.1: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 40. Synchronous clients are not delayed after sending a
message in this experiment

Figure C.2: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 40. Synchronous clients are not delayed after sending a
message in this experiment. Rank Reordering optimisation disabled

134

Figure C.3: Effect of increasing the number of asynchronous clients on the amount of
synchronisation points that the server is able to analyse in a give amount of time. The
number of synchronous clients is 10. Explicit numeric priority to reindeer

135

C.2 Code

1 spawn Benchmark {
body{

3 INTERVAL = 10000;
ASYNC CLIENTS = 64 ;

5 SYNC CLIENTS = 10 ;
outer = thisComp () ;

7
component syncCl i ent (s){

9 body{
import FromJava . * ;

11 s t a r t = currentTime () ;
end = s t a r t + INTERVAL;

13 var curr := 0 ;
while (curr < end){

15 curr := currentTime () ;
s <<< ” n o t i f y ” ;

17 receive{
{ : ok : ”buy” , id : Id : } =>{}

19 | { : ok : ” s e l l ” , id : Id : } => {}
timeout (10000) {}

21 }
sleepRandom () ;

23 } } }

25 component packetGen (s){
body{

27 import FromJava . * ;
s t a r t = currentTime () ;

29 end = s t a r t + INTERVAL;
var curr := 0 ;

31 while (curr < end){
curr := currentTime () ;

33 s <<< { : packetValue : 45 , id : 3 : } ;
sleepRandom () ;

35 } } }

37 component buyer (s){
body{

39 import FromJava . * ;
s t a r t = currentTime () ;

41 end = s t a r t + INTERVAL;
var curr := 0 ;

43 while (curr < end){
curr := currentTime () ;

45 s <<< { : buy : 3 : } ;
sleepRandom () ;

47 } } }

49 component depos i t (s){
body{

51 import FromJava . * ;
s t a r t = currentTime () ;

136

53 end = s t a r t + INTERVAL;
var curr := 0 ;

55 while (curr < end){
curr := currentTime () ;

57 s <<< { : d epo s i t : 56 : } ;
sleepRandom () ;

59 } } }

61 component s e cure (s){
body{

63 import FromJava . * ;
s t a r t = currentTime () ;

65 end = s t a r t + INTERVAL;
var curr := 0 ;

67 while (curr < end){
curr := currentTime () ;

69 s <<< { : s e cu re : 3 : } ;
sleepRandom () ;

71 } } }

73 component s e r v e r (){
body{

75 import FromJava . * ;
s t a r t = currentTime () ;

77 end = s t a r t + INTERVAL;
var curr := 0 ;

79 var counter := 0 ;
while (curr < end){

81 curr := currentTime () ;
receive{

83 ” n o t i f y ” from S and { : packetValue :V, id : Id : }
and { : buy : $ (Id) : } => {

85 S <<< { : ok : ”buy” , id : Id : } ;
counter := counter + 1 ;

87 }
| ” n o t i f y ” from S and { : d epo s i t : V1 : }

89 and { : packetValue : , id : Id : } and { : s e cu re : $ (Id) : } => {
S <<< { : ok : ” s e l l ” , id : Id : } ;

91 counter := counter + 1 ;
}

93 timeout (2000) {}
}

95 }
p r i n t l n (” $counter ”) ; outer <<< ”done” ;

97 } }

99 s = spawn s e r v e r () ;
%[spawn syncCl i ent (s) | for j <− 1 . . SYNC CLIENTS] ;

101 %[spawn packetGen (s) | for j <− 1 . . ASYNC CLIENTS] ;
%[spawn buyer (s) | for j <− 1 . . (ASYNC CLIENTS/2)] ;

103 %[spawn depos i t (s) | for j <− 1 . . (ASYNC CLIENTS/2)] ;
%[spawn s e cure (s) | for j <− 1 . . (ASYNC CLIENTS/2)] ;

105 } }

Listing C.1: Benchmark that generates large mailboxes

137

Appendix D

Armstrong Challege

D.1 With joins

1 spawn Amstrong {
body{

3 ROUNDS = 4 ;
PROCESSES = 1000;

5 OUTER = thisComp () ;

7 component s t a r tP ro c e s s (id){
body{

9 import FromJava . * ;
s t a r t = currentTime () ;

11 var next ;
var next2 ;

13 var next3 ;
OUTER <<< ” ready” ;

15 receive{ ”go” => {}} ;
receive{ N => { next := N; }}

17 receive{ N2 => { next2 := N2 ;}}
receive{ N3 => { next3 := N3 ;}}

19
next <<< { : type : 1 :} ;

21 next2 <<< { : type : 2 :} ;
next3 <<< { : type : 3 :} ;

23 yo = thisComp () ;

25 for (i <− 1 . . ROUNDS){
receive{

27 { : type : 1 :} and { : type : 2 :} and { : type : 3 :} => {
i f (i < ROUNDS){

29 next <<< { : type : 1 :} ;
next2 <<< { : type : 2 :} ;

31 next3 <<< { : type : 3 :} ;
} } } }

33
end = currentTime () ;

35 execTime = (end − s t a r t) / 1000 ;
p r i n t l n (”$execTime”) ;

37 } }

39 component endProcess (id , next){
body{

41 var next2 ;
var next3 ;

43 OUTER <<< ” ready” ;
receive{ ”go” => {}} ;

45
receive{ N2 => { next2 := N2 ;}}

47 receive{ N3 => { next3 := N3 ;}} ;

49 next2 <<< { : type : 2 :} ;
next3 <<< { : type : 3 :} ;

51 yo = thisComp () ;

53 for (i <− 1 . . ROUNDS){

138

receive{
55 { : type : 1 :} and { : type : 2 :} and { : type : 3 :} => {

i f (i < ROUNDS){
57 next <<< { : type : 1 :} ;

next2 <<< { : type : 2 :} ;

59 next3 <<< { : type : 3 :} ;
} e l s e {

61 next <<< { : type : 1 :} ;
} } } } } }

63
component beforeEndProcess (id , next , next2){

65 body{
var next3 ;

67 OUTER <<< ” ready” ;
receive{ ”go” => {}} ;

69 receive{ N3 => { next3 := N3 ;}} ;
next3 <<< { : type : 3 :} ;

71 yo = thisComp () ;

73 for (i <− 1 . . ROUNDS){
receive{

75 { : type : 1 :} and { : type : 2 :} and { : type : 3 :} => {
i f (i < ROUNDS){

77 next <<< { : type : 1 :} ;
next2 <<< { : type : 2 :} ;

79 next3 <<< { : type : 3 :} ;
} e l s e {

81 next <<< { : type : 1 :} ;
next2 <<< { : type : 2 :} ;

83 } } } } } }

85 component proce s s (id , next , next2 , next3){
body{

87 OUTER <<< ” ready” ;
yo = thisComp () ;

89
for (i <− 1 . . ROUNDS){

91 receive{
{ : type : 1 :} and { : type : 2 :} and { : type : 3 :} => {

93 p r i n t l n (” i t e r : $ i id : $ id ”) ;
next <<< { : type : 1 :} ;

95 next2 <<< { : type : 2 :} ;
next3 <<< { : type : 3 :} ;

97 } } } } }

99 s tartP = spawn s t a r tP ro c e s s (PROCESSES) ;
endP = spawn endProcess ((PROCESSES − 1) , s tartP) ;

101 beforeEndP = spawn beforeEndProcess ((PROCESSES − 2) , endP , startP) ;

103 var secondP := beforeEndP ;
var thirdP := endP ;

105 var fourthP := startP ;
for (j <− 1 . . (PROCESSES − 3)){

107 temp = spawn proce s s ((PROCESSES − (2 + j)) , secondP , thirdP , fourthP) ;
fourthP := thirdP ;

109 thirdP := secondP ;
secondP := temp ;

111 }

113 for (i <− 1 . . PROCESSES){
receive{ ” ready” => {}} ;

115 }

117 beforeEndP <<< ”go” ;
endP <<< ”go” ;

119 s tartP <<< ”go” ;

121 beforeEndP <<< secondP ;

123 endP <<< secondP ;
endP <<< thirdP ;

125
s tartP <<< secondP ;

127 s tartP <<< thirdP ;
startP <<< fourthP ;

129 }body
}Amstrong ;

Listing D.1: Armstrong Challenge with joins

139

D.2 Without joins

This version of the Armstrong Challenge does not use joins. Instead, three nested receive
statements are used in every node. We only give the fragment of code belonging to one
of the nodes, since the rest of the code is very similar to the version using joins.

1 component proce s s (id , next , next2 , next3){
body{

3 OUTER <<< ” ready ” ;
yo = thisComp () ;

5
for (i <− 1 . . ROUNDS){

7 receive{
{ : type : 1 : } => {

9 receive{
{ : type : 2 : } => {

11 receive{
{ : type : 3 : } => {

13 next <<< { : type : 1 : } ;
next2 <<< { : type : 2 : } ;

15 next3 <<< { : type : 3 : } ;
} } } } } } } } }

Listing D.2: Armstrong Challenge without joins

140

Appendix E

Log of changes

We list all the changes made to the grammar file and the interpreter. The + prefix means
lines of code added, and the ! prefix lines of code modified. M stands for modified and A

for added. In the interpreter section, the total number of lines changed in each package
are listed.

Grammar

grammar/grammar-fisher.jj +112 !118

Interpreter

� src.fisher.desugar +155 !487

– M: AbstractDesugarer.java

– M: DistDesugarer.java

� src.fisher.eval.interfaces +1184 !20

– A: NonBindingPatternMatcher.java

– M: Computer.java

– M: Evaller.java

– M: EvalUtil.java

– M: Frame.java

– A: JoinMatcher.java

– Rename: Matchiste.java to BindingPatternMatcher.java

� src.fisher.ingest +7 !19

– M: Ingester.java

141

� src.fisher.run +9 !5

– M: Thorn.java

� src.fisher.runtime +5 !8

– M: ClassDynamicTh.java

– M: ObjectTh.java

� src.fisher.runtime.dist +162 !256

– A: ComponentJoinState.java

– M: ComponentThread.java

– M: Letter.java

– A: LetterLinkedList.java

– M: LetterWithSerializedContents.java

– A: MailboxEntry.java

– A: RecvMatchStateHandler.java

� src.fisher.runtime.lib.http +3

– M: MscComp2HTTPSocket.java

� src.fisher.runtime.lib.socketeer +3

– M: MsgComp2StringSocket.java

� src.fisher.statics +443 !2

– M: ExtractSealsFromModuleMember.java

– M: Sealant.java

– M: SealKind.java

– M: SealMaker.java

– A: JoinStaticAnalysis.java

� src.fisher.statics.purity +18

– M: StaticPurityChecker.java

� src.fisher.syn +1220 !286

– A: ChannelDecl.java

– A: ChordBody.java

– A: ChordDecl.java

– M: HighLevelCommunication.java

– A: JoinDecl.java

142

– A: JoinPat.java

– A: JoinSignature.java

– M: Pat.java

– M: Recv.java

– M: Spawn.java

� src.fisher.syn.visitor +40

– M: PureticVisitor.java

– M: PureticWalker.java

– M: VanillaVisitor.java

– M: VanillaWalker.java

– M: Visitor.java

� src.fisher.test +331 !47

– M: AllTests.java

– A: DistTestJoins.java

� src.fisher.util +97

– A: Ignacio.java

� TOTAL: +3677 !1130 , both: 4807

Testcase

Added folder /testcase/joins, that contains 26 new testcases.

Applications

Added folder apps/ with all the applications covered in this report. For example, solutions
to the Dining Philosopher problem, the benchmark, etc.

143

Bibliography

[1] Process calculus. http://en.wikipedia.org/wiki/Process_calculus. [Accessed
on December 2009].

[2] J. Armstrong. Concurrency oriented programming in Erlang. Invited talk, FFG,
2003.

[3] JCM Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2-3):131–146, 2005.

[4] J.P. Banatre and D. Le Metayer. The GAMMA model and its discipline of program-
ming. SCI. COMP. PROGRAM., 15(1):55–77, 1990.

[5] N. Bansal and M. Sviridenko. The santa claus problem. In Proceedings of the thirty-
eighth annual ACM symposium on Theory of computing, page 40. ACM, 2006.

[6] M. Ben. Principles of concurrent and distributed programming. 2006.

[7] N. Benton. Jingle bells: Solving the santa claus problem in polyphonic c#, 2003.

[8] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.
ACM Transactions on Programming Languages and Systems (TOPLAS), 26(5):769–
804, 2004.

[9] G. Berry and G.Boudol. The chemical abstract machine. Theoretical computer sci-
ence, 96(1):217–248, 1992.

[10] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strnǐsa, J. Vitek, and
T. Wrigstad. Thorn: robust concurrent scripting on the JVM. In Proceeding of the
24th ACM SIGPLAN conference companion on Object oriented programming systems
languages and applications, pages 789–790. ACM, 2009.

[11] S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective-caml. Migration,
1000(1):n2.

[12] K.D. Cooper and L. Torczon. Engineering a compiler. Elsevier, 2004.

[13] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message
passing. Technical Report2003, 77.

144

http://en.wikipedia.org/wiki/Process_calculus

[14] S. Drossopoulou, A. Petrounias, A. Buckley, and S. Eisenbach. School: A small
chorded object-oriented language. Electronic Notes in Theoretical Computer Science,
135(3):37–47, 2006.

[15] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 372–385. ACM New York, NY, USA, 1996.

[16] C. Fournet, G. Gonthier, J.J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile
agents. Lecture Notes in Computer Science, 1119:406–421, 1996.

[17] M. Hennessy and R. Milner. On observing nondeterminism and concurrency.
Springer.

[18] CAR Hoare. Communicating sequential processes. Communications of the ACM,
21(8):677, 1978.

[19] C. Holzbaur, M. de la Banda, D. Jeffery, and P. Stuckey. Optimizing compilation of
constraint handling rules. Logic Programming, pages 74–89.

[20] D.C. Hyde. Introduction to the programming language Occam. Department of Com-
puter Science Bucknell University, Lewisburg, 1995.

[21] G.S. Itzstein and M. Jasiunas. On implementing high level concurrency in Java.
Lecture Notes in Computer Science, 2823:151–165, 2003.

[22] G.S. Itzstein and D. Kearney. Applications of join Java. Australian Computer Science
Communications, 24(3):46, 2002.

[23] S. Krishnaprasad. Concurrent/Distributed programming illustrated using the dining
philosophers problem. Journal of Computing Sciences in Colleges, 18(4):110, 2003.

[24] F. Le Fessant and L. Maranget. Compiling join-patterns. Electronic Notes in Theo-
retical Computer Science, 16(3):205–224, 1998.

[25] Q. Ma and L. Maranget. Compiling pattern matching in join-patterns. Lecture notes
in computer science, pages 417–431, 2004.

[26] Paul Mackay. Why has the actor model not succeeded? Accessed on December
2009, from: http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/.
[Accessed on December 2009].

[27] J. Magee and J. Kramer. State models and java programs. Wiley, 1999.

[28] L. Maranger and L.Mandel. JoCaml Documentation and Manual (Release 3.11).
INRA, INRA, INRA, 2008.

[29] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. 1993.

145

http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/

[30] R. Milner. A calculus of communicating systems. Springer-Verlag New York, Inc.
Secaucus, NJ, USA, 1982.

[31] R. Milner. Communicating and mobile systems: the pi-calculus. Cambridge Univ Pr,
1999.

[32] T.W.F.Z. Nardelli and S.L.J.O.J. Vitek. Integrating Typed and Untyped Code in a
Scripting Language.

[33] D.A. Park. Concurrent programming in a nutshell. Journal of Computing Sciences
in Colleges, 23(4):51–57, 2008.

[34] B.C. Pierce and D.N. Turner. Pict: A programming language based on the pi-
calculus. Proof, language and interaction: Essays in honour of Robin Milner, 1997.

[35] H. Plociniczak. JErlang: Erlang with Joins.

[36] A.S. Tanenbaum. Modern operating systems. Prentice Hall Englewood Cliffs, NJ,
2001.

[37] J.A. Trono. A new exercise in concurrency. ACM SIGCSE Bulletin, 26(3):8–10,
1994.

146

	Introduction
	Contributions
	Report structure

	Background
	Concurrent programming overview
	Join Calculus for Shared Memory
	Join Calculus for Message Passing

	Join Calculus
	Process algebras
	Introduction to the Reflexive CHAM and the Join-Calculus
	RCHAM formally

	Languages with support for Join-patterns
	JErlang
	Jocaml
	Polyphonic C#
	Join Java
	School

	Thorn
	Classes
	Pattern Matching
	Built-in Data Types
	Pure data
	Components
	High-level Communication
	Low-level Communication
	Type System
	Modules
	De Bruijn index

	Summary

	The language
	Introduction
	Joins
	Chords
	Algebraic patterns on arguments
	Inheritance

	Common features to both joins and chords
	Resolution and priorities
	Non-linear patterns and side conditions
	Timeouts

	Incompatibilities with Thorn
	Before and After
	Catch

	Summary

	The implementation
	Overview
	Grammar and AST
	Joins implementation
	Review of other languages
	Runtime
	Local matching phase
	Contextual matching phase

	Chords implementation
	Translation
	Catch translation problems

	Summary

	State explosion problem and optimisations
	State explosion problem
	Successful optimisations
	Fail Fast (FF)
	Combinations with Current Message Only (CCMO)
	Repeating Receive and Context Independence (RRCI)
	Just-in-time Update of State
	Skip Contextual Phase (SC)
	Rank Reordering of join Patterns (RR)
	Uniquely Satisfied Patterns (USP)
	Single pattern joins

	Failed optimisations
	Letter Contents Cache (CC)
	Runtime reordering

	Summary

	Evaluation
	Expressiveness
	Solutions enhanced by joins
	Solutions worsened by joins
	When to use joins
	Numeric priorities

	Correctness
	Microbenchmarks to test optimisations
	Performance
	Effect of optimisations in typical concurrent problems
	Thorn versus JCThorn
	Large mailboxes

	Scalability
	Integration
	Summary

	Conclusions
	Future Work

	Alternative solutions to typical concurrent problems
	Dining Philosophers - Thorn's solution
	Dining Philosophers - Chord solution
	Santa Claus - Thorn's solution
	Single-Lane Bridge - Chord solution

	Microbenchmarks
	Benchmark
	More results
	Code

	Armstrong Challege
	With joins
	Without joins

	Log of changes
	Bibliography

