
Imperial College London

Department of Computing

Efficient Analysis of IT Sizing Models

by

Michail A. Makaronidis

Submitted in partial fulfilment of the requirements for the

MSc Degree in Advanced Computing of Imperial College London

September 2010

 1 . Abstract

Capacity evaluation and planning usually relies on producing a closed queueing network model
and predicting its performance indices. Until recently, analytical modelling of such networks was per-
formed by using algorithms such as Convolution, RECAL or the Mean Value Analysis (MVA), prohibiting
evaluation of systems offering multiple service classes to hundreds or thousands of users, a case com-
monly encountered in modern applications. Acknowledging this demand for performance evaluation,
the Method of Moments (MoM) algorithm was introduced and addressed this problem. It was the first
exact algorithm able to solve closed queueing networks with large population sizes. The MoM al-
gorithm relies on the exact solution of large linear systems with integer coefficients of thousands of di-
gits.

The primary focus of this project is the production of an optimised implementation of the MoM
algorithm as well as the algorithmic design, analysis and implementation of an exact parallel solver for
linear systems it defines. Parallelisation is introduced in both algorithmic and implementation level by
performing the operations over residue number systems and recombining the results by application of
the Chinese Remainder Theorem. Various techniques have been introduced at all stages of this parallel
solver to achieve improved time complexity and practical performance. Moreover, the procedure fea-
tures several methods to achieve high robustness during error propagation when encountering a series
of ill-conditioned linear systems which may be defined by the MoM implementation.

Furthermore, a comprehensive test-set that corresponds to the requirements of modern applic-
ation has been designed and is used to compare the performance of the different algorithms and con-
figurations. Theoretical and experimental results regarding MoM and solver scalability are also presen-
ted. The overall result proved the improved performance of both the MoM algorithm over the estab-
lished ones, namely Convolution and RECAL, and the parallel solver designed as part of this project over
the serial one. The parallel MoM is the most efficient approach for evaluating models with several
classes and queues and many hundreds of users.

Lastly, much attention was paid in the efficient architecture and implementation design from a
software engineering perspective, as the current implementation will be a part of the Java Modelling
Tools (JMT) set of applications and may be augmented and improved in the future.

Key words: Capacity Planning, Closed Queueing Networks, Exact Linear System Solution, Mul-
ticlass Networks, Multimodular Algebra, Parallel Linear System Solution, Performance Analysis, Residue
Number System

3

Chapter 1: Abstract

“What is the wisest thing? Number.”

Pythagoras

This project would not have been accomplished without the comments, continuous ad-
vice and suggestions of my supervisor, Dr. Giuliano Casale. I would therefore like to
wholeheartedly thank him for the countless hours he spent discussing the problems en-
countered and giving invaluable feedback for my work. I am deeply indebted for his
support and personal effort.

Michail A. Makaronidis

4

 2 . Contents

Contents
 1. Abstract.. 3
 2. Contents.. 5
 3. Introduction.. 7

 3.1. Performance Modelling..7
 3.2. Aim of this Project...8
 3.3. Significance of this Project...8

 3.3.a Technical Challenges..9
 3.3.b Scientific Challenges...9

 3.4. Summary of chapters to follow...10
 4. Introduction to Queueing Networks .. 11

 4.1. Queueing Systems..11
 4.1.a Important Results for an M/M/1 System...11
 4.1.b Important Results for an M/M/m System...12
 4.1.c Summary of Notation...12

 4.2. Queueing Networks...13
 4.2.a Single and Multi-class Networks...13
 4.2.b Open and Closed Queueing Networks...14

 4.3. Fundamental Analysis of Queueing Network Models..14
 4.3.a Product Form Queueing Networks..15

 4.4. Example...17
 5. Product Form Queueing Network Algorithms ... 19

 5.1. Introduction..19
 5.2. Computing Performance Indices...20
 5.3. Established Algorithms...20

 5.3.a Convolution..20
 5.3.b Recursion by Chain Algorithm (RECAL)..21
 5.3.c Mean-Value Analysis Algorithm (MVA)...21
 5.3.d LBANC...21
 5.3.e Brief comparison...22

 5.4. Method of Moments (MoM)...22
 5.4.a Introduction...22
 5.4.b Presentation...22

 5.5. Extensions of the Method of Moments..27
 6. Solution of Linear Systems using Modular Arithmetic .. 29

 6.1. Introduction..29
 6.1.a Definitions..29

 6.2. Solution Procedure..31
 6.2.a Unique Characteristics and Requirements of MoM...32
 6.2.b Brief Presentation...33

 6.3. Building the Method..34
 6.3.a Step 1: Determining a lower bound for the product of moduli..35
 6.3.b Step 2: Determining the moduli...38
 6.3.c Step 3: Linear System Sanitisation..42
 6.3.d Step 4: Formulating residual systems of equations..44
 6.3.e Step 5: Solving the residual systems..46
 6.3.f Step 6: Recombining the Results...49

 6.4. Theoretical Properties of the Algorithm...51
 6.4.a Maximum Number of Moduli...51

5

Chapter 2: Contents

 6.4.b Growth Rate of Mthreshold...52
 6.4.c Complexity..53

 7. Implementation.. 55
 7.1. Main Features...55

 7.1.a Use-Case Scenarios...55
 7.2. Abstract Architecture..56
 7.3. Actual Code Design..57

 7.3.a “Control” Package...59
 7.3.b “DataStructures” Package ...60
 7.3.c “Exceptions” Package...62
 7.3.d “LinearSystem” Package...62
 7.3.e “QueueingNet” Package..65
 7.3.f “Utilities” Package...67

 7.4. Testing and Verification...68
 8. Experimental Results and Comparison .. 69

 8.1. Introduction..69
 8.2. Testing Procedure..70
 8.3. Results and Comments..70

 8.3.a Convolution..73
 8.3.b RECAL..73
 8.3.c Method of Moments..74

 8.4. Related Results...84
 8.4.a Word-sized Moduli..84
 8.4.b Comparison of RECAL Implementations..85
 8.4.c Most Complex Queueing Network Feasible by MoM..86
 8.4.d Experimental Growth Rate of the Normalising Constant...87
 8.4.e Experimental Growth Rate of Mthreshold...87

 9. Conclusions and Future Work .. 89
 9.1. Current Advantages and Limitations..89

 9.1.a Parallel Linear System Solver...89
 9.1.b Method of Moments..90
 9.1.c Software Architecture and Implementation..90

 9.2. Future Work..91
 10. Appendix.. 93

 10.1. Software Tools for Evaluating Queueing Networks...93
 10.1.a Java Modelling Tools (JMT)...93
 10.1.b Other Tools...94

 10.2. User's Guide..95
 10.2.a Requirements and Compatibility...95
 10.2.b Format of the Input File...95
 10.2.c Command-Line Arguments...96

 11. References.. 97

6

 3 . Introduction

 3 .1 . Performance Modelling

One of the principal factors that influences the entire life cycle of a computer system is per-
formance; it influences the design, development, configuration and tuning of the system. Other
factors that play a decisive role in a system's evaluation are cost, usability, available features, reliability
and security [1]. Performance can be evaluated by three main methods:

• Measurement, which is possible only once a system is built and able to run.

• Simulation Modelling, which is a technique with a very wide range of applications.
However, it is characterised by the possibility of high development and computational
cost to achieve accurate results – i.e. a trade-off exists between accuracy and cost [2].

• Analytical Modelling , in which the model should satisfy a set of assumptions and
have certain properties, which will make the subsequent formulation of mathematical
equations characterising it behaviour feasible [2]. If this is the case, the system's evalu-
ation can be tacked with typically less computational cost than the Simulation Methods
[3].

In this project, we will only consider this last method of Analytical Modelling.

To describe and analyse the performance of a resource sharing system, queueing network mod-
els have proved to be very helpful, as they are characterised by adaptability and a wide range of capabil-
ities. Their modelling power is not limited to computer systems; other established areas of application
are production systems and communication networks [2]. All these real-life systems share a common
attribute: they contain one or more resources (machinery, communication links, CPU time, I/O
throughput, etc.) that are of finite capacity and therefore need to be shared between the jobs (product
parts, people, telephone calls, programs) that use them. Queueing networks, their subcategories and
significant results will be presented in more detail on the next chapter, “Introduction to Queueing Net-
works” (p. 11).

In this project, we consider a special subcategory of queueing networks named product form
queueing networks. These networks have several specific properties, allowing a simple closed-form
expressions that lead to the development of efficient algorithms to evaluate their performance.
However, as we see during the following chapters and presentation of the algorithms, this efficiency
does not lead to sufficiently small execution times for the majority of the models representing systems
in real-life size. This is owed to the fact that most of these algorithms rely on a recursive computation
of a significant quantity of the network model, called “normalising constant”, which assures that
the state probabilities sum to one in the Markov chain underlying the model. Other methods instead
compute directly mean performance indices, such as the mean queue length - without need of probabil-
ities. This recursive computation needs to be ran over an exponentially large state space and thus leads
to prohibitive computational cost even for small network sizes.

This situation is often made worse by the inability of exactly evaluating the performance of sys-
tems serving customers belonging to different workload classes, i.e. customers that cause a different
burden to the system depending on their type. Such systems are usually represented using special
“multi-class” models and are of huge importance for the modelling and the evaluation of the per-
formance of computer servers and multi-tier web applications, which are the most common IT archi-
tectures behind modern web sites; it is common in these systems that applications or user requests may
have significantly different costs, depending on their type (HTTP request, FTP request, etc.) [4]. Evalu-
ation of the performance characteristics in these models may easily become intractable for large popu-

7

Chapter 3: Introduction

lation sizes [4], where hundreds or thousands of users belonging to different classes access the services
of a system. This large population is however essential to estimate the performance of modern applica-
tions.

Acknowledging this problem and the demand for performance evaluation tools that exists from
the designers of current applications, an algorithm called Method of Moments was proposed, first in
[4] and further optimised in [3]. The algorithm focuses exactly in reducing the cost of computing norm-
alising constants, and therefore performance metrics, for closed multiclass product form queueing net-
work models with large population sizes, making such evaluation feasible. One of the goals of this pro-
ject is the implementation of an optimised version of the MoM algorithm.

It is also important to highlight that all these modelling, estimation and analysis of system per-
formance would not be so prevalent should advanced analytic and simulation engines not exist. There
is a wide variety of software packages which allow the definition and exact or approximate solution of
many different queueing networks, such as open, closed, mixed, single or multi-class and others. These
engines, typically coupled with a GUI front-ends for increased usability, are in wide use by members of
the academia, the industry and the sector's specialists. An example of such a complete GUI with an ana-
lytic engine is JMVA, which uses the JMT engine to perform Mean Value Analysis (MVA) of queueing
network models [5].

 3 .2. Aim of this Project

The main aims of the project are:

1. to produce an optimised Java implementation of the “Method of Mo -
ments” algorithm, as presented in [4],

2. to develop and integrate in the algorithm a parallel solver for linear sys -
tems with integer coefficients over finite fields (modular arithmetic); this is
needed as none of the existing solvers available for solution of linear systems using
modular arithmetic are able to cope with the arbitrary large numbers that will be en-
countered during the evaluation of queueing networks with large population sizes,

3. to compare in terms of run-time, memory usage and other metrics the MoM al-
gorithm developed with the established ones in the field of product form
queueing networks' evaluation, such as Convolution and RECAL, as these are presented
in [4] and

4. to implement an interface enabling usage of the produced algorithm by
JMVA, which is an application of the Java Modelling Tools [5].

This will assist in reducing a single linear system with arbitrary large coefficients to many sim-
pler ones. It can be seen that the process is inherently parallelisable, as each produced linear system
can be solved independently of the others. This is of great importance, as no parallel prototypes cur-
rently exist and parallelisation is expected to improve the algorithm's performance significantly.

 3 .3. Signif icance of this Project

As it can be ascertained from this brief introduction, this project and the MoM algorithm in
general are of primary importance, because they tackle the problem of the unavailability of a fast al-
gorithm for evaluating the performance of large IT models. In particular, there are two main areas
which this Project can influence:

• Firstly, this project builds upon the most efficient family of algorithms

8

Section 3.3 : Significance of this Project

currently available for evaluating closed multi-class product form queueing net-
works, namely MoM, by adding a new parallel solver with the aim to further increase
speed and efficiency. This approach under no way trivial, as no such solver exists that is
able to cope with the demands of MoM. Furthermore, it is necessary to produce such a
version that concentrates on speed, as the currently established algorithms are of no
practical use when it comes to solving networks with large population sizes.

• Next, because it integrates this state of the art algorithm and implementation
with an open-source software framework (JMVA and JMT) widely used by prac-
titioners, students and researchers for evaluating such networks. JMT is a very popular
suite for capacity planning, and has been downloaded many thousands of times since
its first release in 2006 [6]. Therefore, such an implementation and analysis has the po-
tential to influence many users throughout the world.

 3.3.a Technical Challenges

There are several important technical challenges that this project must overcome:

1. Abstract interfaces used to communicate with the JMVA GUI need to be defined. This is
a complex procedure due to the size and the continuous development of the JMT pro-
ject. The JMVA's code and requirements must first be understood. The produced code
should be able to interface with the JMVA, without redundancy and prioritising ease of
understanding by others and ease of adaptability to changes. This is actually a require-
ment for the code of the entire project, as it will be released in the public domain and
many different users and developers should be able to easily understand, maintain and
augment it.

2. The Java implementation of the currently established reference algorithms, namely RE-
CAL and Convolution. These algorithms are in wide use today, together with LBANC and
the MVA algorithm, however their significant computational and memory cost high-
lights the importance of an efficient implementation. Only an efficient implementation
could produce results of sufficiently good quality to be able to be compared to the ones
of the MoM algorithm and lead to reliable conclusions.

3. As it will be seen during the presentation of the algorithms in “Chapter 5”, the Java im-
plementation of the MoM algorithm is significantly more complicated than that of the
established algorithms. Apart from the general algorithm and the data structures
needed for the implementation, a particular challenge stems from the need to solve ex-
actly a linear system of equations dealing with extremely large numbers. It is estimated
that the approach followed in the current project, i.e. reducing each complicated linear
system to many easier ones, will be more efficient than the existing MoM approaches
and prototypes presented in [4], as it can be more easily parallelised. This particular
challenge is interwoven with one of the “Scientific Challenges” presented below,
namely the theoretical and algorithmic formulation of such a solver.

 3.3.b Scientific Challenges

The two main scientific challenges which need to be tackled for the successful completion of
the project are the following:

• The complete comparison in terms of computational requirements (run time, memory
usage and other metrics) of the implemented algorithm and the reference implementa-
tions of the established ones. Such a comparison must be done in a scientifically rigor-
ous manner and every result worthy of remark should be explained. Detailed results

9

Chapter 3: Introduction

should be provided for several sample queueing networks of varying complexity and
population and discussed.

• The formulation and analysis of a parallel algorithm to solve large linear systems of
equations with integer coefficients using modular arithmetic. As it has been already
noted, no such solver exists that can cope with the great order of magnitude of the
numbers arising during convolution equations, so a significant challenge arises in de-
fining, efficiently implementing, testing and discussing this algorithm. The need for
parallelisation further increases said challenge. Lastly, the restriction that the solver
should be portable between different computer architectures and operating systems
greatly reduces the number of different tools, libraries and techniques available.

This approach of solving such a large linear system using modular arithmetic is com-
pletely novel in the field of queueing networks. The main area of applications for such
solvers until now was in the fields of cryptography. It is speculated that the parallelis -
able nature of the solver algorithm can result in an even more optimised version of
MoM.

 3 .4. Summary of chapters to follow

Chapter 4 contains a brief introduction to queueing network models for system performance
evaluation. Definitions and formulas for the main performance indices in networks containing a single
or multiple service centres are presented. The important class of product form queueing networks is
examined and the Jackson, Gordon-Newell and BCMP Theorems are stated and discussed.

Chapter 5 first focuses in the in-depth introduction to the notation and the main definitions
results needed for the formulation of the existing algorithms and MoM. Afterwards, each of these main
algorithms is presented in detail.

Chapter 6 contains a detailed presentation the algorithm used to solve exactly linear systems
in parallel using modular arithmetic as well as several important related results.

Chapter 7 discusses the implementation's structure, the challenges faced and various optim-
isations that were introduced.

Chapter 8 presents the experimental method and results that is used to compare MoM to the
other established algorithms. Furthermore, the advantages of the parallel solver are discussed and oth-
er important properties are verified.

Chapter 9 contains the most important conclusions that summarise the entire project. Cur-
rent limitations and areas of future investigation are highlighted.

Chapter 10 contains a presentation of the software tools already available to analyse such net-
works – including JMT –, as well as the program's User's Guide.

10

 4 . Introduction to Queueing Networks

Queueing network models are widely used to evaluate the performance of congestion systems,
i.e. systems that provide a finite resource or capacity to several users. Such systems include, among
others, computer systems, communication networks and production systems. System performance
evaluation using such models consists of the accurate representation of the systems as a model (defini-
tion and parametrisation) and its subsequent use to calculate performance indices , such as resource
utilisation, system throughout and response time [2].

 4 .1 . Queueing Systems

A model using a general service centre is described using:

• The arrival process of incoming users or customers,

• The service process,

• The queue's size (buffer where waiting customers are being hold),

• The scheduling algorithm of said queue and

• The set of available parallel service centres.

Using Kendall's notation, a queueing system is described as A/B/c, where A symbolises the
arrival process, B the service process and c the number of available service centres. In this case, we as-
sume an infinite queue size and “First Come First Served” (FCFS) scheduling. Two well known examples
are the M/M/1 system, which has Poisson (Markov) arrival process, exponential (Markov) service pro-
cess and one service centre, as well as the M/G/1 system which is the same, except for a non-Markovian
(general) service distribution [2].

Systems like the M/M/1 and M/M/m are associated with a Markov process with a special struc-
ture, which is called a birth-death process . Intuitively, this process has states {0, 1,... } , where each
state denotes the number of jobs in the system, i.e. the queue's length including the job being served, if
it exists. A birth consists of an arrival of a new job and a death of a completion of a job and its sub-
sequent departure from the server. This birth-death process leads to a simple closed-form solution of
the stationary state probabilities, thus the initial system can be easily evaluated using analytical ex-
pressions.

 4.1.a Important Results for an M/M/1 System

An M/M/1 system like the one presented in Fig. 2 is characterised by an exponential arrival
rate λ and service rate μ . Therefore, the birth rate (new arrival) is equal to λ and the death rate
is equal to μ (new departure). The system is considered to be in the stable case if λμ , or equival-
ently its utilisation:

ρ= λ
μ
1 (4.1.1)

In the stable case the stationary probability P  k  of the system having k customers –
equivalently, the associated birth-death process being in state k – can be computed as

P  k = ρk  1− ρ  for k≥0 . It is clear that the stationary probabilities must sum to 1: ∑
k=0

∞

P  k =1 .

11

Chapter 4: Introduction to Queueing Networks

The average queue length , including any task serviced, is calculated as L= ρ
1−ρ

. The

mean response time, which is the sum of the residual time of the task in service and the service

times of the jobs in the queue, is given by the formula W= 1
μ− λ

.

For a more detailed discussion of single server models, the reader can refer to a general refer -
ence book such as [7].

 4.1.b Important Results for an M/M/m System

An M/M/m system is associated with a birth-death process which has birth rate λ and
death rate min { k1, m} μ . This results can also be explained intuitively, as an M/M/m systems es-
sentially consists of m parallel servers. The aggregate arrival rate is λ and the rate of returning from
state k1 to k is  k1  μ , up to a maximum of mμ if all servers are busy.

Similarly to the case of M/M/1 systems, an M/M/m system is considered stable when the

utilisation ρ= λ
mμ
1 . Then, the stationary queue length probability P  k  of the system having k

customers is given by the following formula:

P  k ={
P 0   mρ 

k

k !
, 1≤k≤m

P 0 mm ρk 
m!

, km

 (4.1.2)

The value of P 0  can be computed using the normalising equation ∑
k=0

∞

P  k =1 . The aver-

age queue length is given by L=mρ
P m  ρ

1−ρ 
2 and the mean response time can be calculated as:

W= 1
μ


P m 

mμ  1− ρ 
2 (4.1.3)

 4.1.c Summary of Notation

The notation followed in this Report is summarised in the following table:

Quantity Notation Quantity Notation

Arrival Rate λ
Probability of
having k cus-

tomers
P  k 

Service Rate μ

Average Queue
Length (includ-

ing task ser-
viced)

L

Utilisation ρ
Mean Response

Time W

12

Section 4.2 : Queueing Networks

 4 .2 . Queueing Networks

More complicated systems can be described as a network of resources, using a collection of in -
terconnected single service centres as those examined previously. A queueing network can be
generally defined by defining three main parameters:

• Service centres, thus designating for every service centre the service time, the max-
imum queue length, the scheduling method used and the number of servers it contains.

• Customers, which can be described by their quantity in closed networks, by their ar -
rival process to each of service centre for the open networks and also by their type for
multi-class networks.

• Network Topology, which describes in which way the multiple service centres of the
network connect with each other and how the customers can move between them. The
most significant network topologies are the tandem, cyclic and central server ones. The
central server topology is presented in Fig. 1 (p. 13).

 4.2.a Single and Multi-class Networks

Depending on whether multiple different classes (types) of customers are defined, a network
can be considered as multi-class. In such a queueing network, different behaviour and demands of each
customer type can be modelled, as well as different external arrival processes, service demands and
types of network routing.

Interwoven with the definition of classes for customers lies the notion of chains. A chain actu-
ally consists of a set of classes that represent different phases or steps in the processing of a system for
a given customer. A particular customer, part of a chain, can move from one class to another after being
processed by a particular service centre, according to certain rules. Chains can be used to model differ -
ent customer routing behaviour dependent on the past history; for example, a customer representing a
job in a computer system could be modelled as requiring two steps by using classes: one for program
loading and one for execution [2]. After being processed by a particular service centre, customers can
move between these two classes and possibly follow a different routing afterwards depending on their
current class. Multi-class models aim in representing more precisely the initial system's behaviour and
therefore leading to more accurate and detailed performance indices.

However, we do not consider chains and multi-chain networks in this project, as it has been
proved in [8] that multi-chain networks can be reduced to multi-class ones by definition of some equi-
valence classes .

13

Fig. 1 : An example of the central server topology.

Chapter 4: Introduction to Queueing Networks

 4.2.b Open and Closed Queueing Networks

Networks can be divided depending on whether external arrivals or departures are allowed. If
external arrivals and departures are possible, then the resulting network is considered open, whereas
if they are not possible it is considered as closed.

 4 .3. Fundamental Analysis of Queueing Network Models

The goal of analysing a system as a queueing network model is the evaluation of not only the
performance of the system's components – modelled by different service centres –, but also its per -
formance as a whole. Queueing network analysis is based on defining and analysing the stochastic pro-
cess that governs the model and is usually a Discrete Space Continuous Time Homogeneous Markov
Process [2].

The state of this stochastic process is typically defined as the number of customers in each
queue. The network's behaviour can be evaluated by analysing the evolution and characteristics of this
process. In a network containing M service centres, ni denotes the number of customers in each
centre. Then, the joint queue length can be represented as a vector n=n1, ... , nM  and its stationary

distribution as the row vector P n =P n1, ... , nM  . By P we denote the stationary state probability
vector of the Markov process and by Q its transition rate matrix. If the network is stable, i.e. if the util-
isation of all service centres is below 1 , then the stationary state probability π can be, in principle,
straightforwardly evaluated by solving the following linear system, known as global balance equa-
tions:

PQ=0 (4.3.1)

and normalising the solution to sum to 1. 0 denotes the row vector, all elements of which are
equal to 0 . Then, the needed performance metrics can be derived. Particularly, one must first determ-
ine the set of all states, then determine the transition rates between each pair of states and finally write
this as an equation system for a steady state Μarkov chain PQ=0 and solve for P .

Even though the procedure may sound simple, it is only feasible only for small networks. Solv-
ing the produced linear system is characterised by high computational complexity. The cardinality of
the process' state space, i.e. the number of different states and balance equations, can make the linear
system's solution infeasible in practice. For example, the state space of an open queueing network is in-
finite; an exact solution can be obtained only in special cases, depending on the particular structure of
the matrix Q . Closed queueing networks are associated with a state space which grows exponentially
with the number of network parameters (number of service centres, customers and classes) [2].

Being able to define multiple classes and large population size is not a luxury; it is necessary to
accurately model and evaluate modern IT and other systems. Furthermore, a trade-off exists between
the needed accuracy and the computational cost of the model's analysis. Queueing networks are

14

Fig. 2 : A single service centre queueing system.

Section 4.3 : Fundamental Analysis of Queueing Network Models

however regarded as powerful tools and are widely used, as in several cases their solution can be ob-
tained in a more simple and efficient manner. One such case is the case of the operational analysis
of a queueing network, which only provides asymptotic bound on performance indices and therefore is
appropriate only as an initial approach. Analysis of product form queueing networks however can
provide efficiently more accurate results than these of the operational analysis method.

 4.3.a Product Form Queueing Networks

Using product form queueing networks performance indices such as queue length distribution,
average response time, resource utilisation and throughput can be evaluated for each component and
for the complete system. The contribution of product form queueing networks lies in the fact that, if
certain assumptions regarding the system's characteristics hold, then the stationary joint queue length
probability can be defined using the underlying Markov process in a product form solution:

P n =
1
G

V n ∏
i=1

M

gi ni  (4.3.2)

As before, n=n1, ... , nM  is the row vector of queue lengths. By G we denote the normalising
constant, n is the total network population, ni denotes the number of customers in each centre and
the functions V and gi depend on the network's parameters and the type of service centre
i , i=1,2 , ... , M respectively. For open networks G=1 , whereas for closed ones V n =1 . The func-

tion gi is the stationary queue length distribution of node i in isolation for the case of an open net-
work.

For the case of networks with multiple classes of customers, R denotes the number of these
classes and S the network state, which includes the customer population at each service centre. Then,
for a multi-class product form network, the stationary state probability distribution P is given by the
following formula:

P n1, ... , nM =
1
G
∏
r=1

R

V r K r ∏
i=1

M

gi  ni  (4.3.3)

In the previous formula K r is the population in class r , r=1, 2,... , R and the function V r
depends on network parameters.

Product form queueing networks can be analysed using algorithms that exhibit polynomial
time complexity in the number of network components [2]. This good balance between accuracy and
computational cost is the main reason of their prevalence.

A product form solution only holds under the specific assumptions of quasi-reversibility and
partial balance [2]. Quasi-reversibility means that for a given service centre, the current state, the past
departures and the future arrivals are mutually independent. Partial balance is a prerequisite for quasi-
reversibility and states that the probability flux, i.e. the time average transition rate, out of a state S
due to arrivals of type r customers is equal to the probability flux in state S due to departures of type
r customers. For more details the reader can refer to [9].

Two important results for product form queueing networks are Jackson's Theorem for open
networks and the Gordon-Newell Theorem for the closed ones.

Jackson's Theorem

A very important result for open queueing networks was presented by Jackson in [10]. Jackson's
Theorem specifies the conditions, under which a product form solution in open queueing networks ex-
ist. These are the following: [11]

• The network can have any (unlimited) number of customers.

15

Chapter 4: Introduction to Queueing Networks

• Every node in the network can have Poisson arrivals from outside the network.

• A customer can leave the system from any node.

• All service times are exponentially distributed.

• The queueing scheduling is FCFS.

• The service centre i consists of mi identical servers, each with service rate μ i

Then, if the network in stable, i.e. λ imi μi ,∀ i=1, 2,... , M then the steady state probability of
the network can be expressed as the product of the state probabilities of the individual nodes:

P n =P n1, n2, ... , nM =P n1⋅P n2⋅...⋅P nM  (4.3.4)

If the service rates are constant, then P n =∏
i=1

M

1− ρi  ρi
ni .

Gordon-Newell Theorem

Gordon and Newell in [12] extended Jackson's Theorem for closed product form queueing net-
works. The same assumptions hold, with the added constraint that no customer can enter or leave the
system, as is evident in closed networks. The Gordon-Newell Theorem then states that the steady state
probability distribution exists and is given by:

P n =P n1, n2, ... , nM =
1
G∏i=1

M Di
n i

∏
j=1

n i

ai  j 
 , (4.3.5)

where ai  j  is the scaling factor of the exponential server i when its queue length is j and
the Di is the service demand at a queue i , i.e. the product between the average service time and
the average number of visits of jobs at node i . The normalising constant G is defined by the following
formula:

G=∑
n∈S
∏
i=1

M Di
ni

∏
j=1

ni

ai  j 
 (4.3.6)

and is not easy to compute, because of the large state space. This is highlighted by the example
at the end of this chapter (section 4.4).

BCMP Theorem

The BCMP theorem, named after the authors of the paper where it was first described, is an ex -
tension of Jackson's Theorem over a much larger class of networks. Furthermore, it defines the four
types of the so-called BCMP queueing networks and expresses that the stationary state distribution is
expressed as the product of the distributions of the single queues with necessary parameters and, in
the case of closed networks, with the normalisation constant.

A network of M interconnected queues is known as a BCMP network if each of the queues is
of one of the following four types ([2], [13]):

• Type I: Multi-class service centre with FCFS queueing discipline and exponential service
time distribution, identical for all customer classes.

• Type II: Multi-class service centre with Processor Sharing (PS) scheduling and arbitrary
phase type service time distribution, i.e. formed by a network of exponential stages.

16

Section 4.3 : Fundamental Analysis of Queueing Network Models

• Type III: Multi-class service centre with infinite number of servers, i.e. IS scheduling,
and arbitrary phase type service time distribution.

• Type IV: Multi-class service centre with Last Come First Served with pre-emptive re-
sume (LCFS-PR) scheduling and arbitrary phase type service time distribution.

The requirement for a phase type service time distribution means that the service time must

have rational Laplace transformations, namely of the form L  s =
N  s 
D  s 

.

Furthermore, the following conditions must hold for the BCMP Theorem to be applied:

1. External arrivals to a node must form a Poisson process and

2. A customer leaving node i must either move to a new queue j with pij or leave the system

with probability 1−∑
j=1

M

pij , which is non-zero for some subset of the queues.

Then, the BCMP Theorem is states that for an open, closed or mixed queueing network in which
each queue is of type I, II, III or IV, the steady state probability distribution is given by:

P  n1, n2, ... , nM =C⋅P  n1⋅P  n2⋅...⋅P  nM  (4.3.7)

where C is a normalising constant. Extensions have been made for multi-class networks, as
well as for state-dependent routing. For a multi-class network with R classes, the BCMP theorem is
formulated as follows: [4]

P  S = 1

G  N  ∏r=1

R Z r
n0,r

n0, r !  [∏k=1

M

 nk !∏
r=1

R D k ,r
nk , r

nk , r ! ] (4.3.8)

Where S∈S  N  , nk=∑
r=1

R

nk ,r , Z r the mean delay of a class r , i.e. the mean time

before a job re-enters the network after its completion and G  N  is the normalising constant which
ensures that the above probabilities sum to one:

G  N = ∑
S∈S  N 

∏
r=1

R Z r
n0,r

n0, r ! [∏k=1

M

nk !∏
r=1

R D k ,r
nk , r

nk , r ! ] (4.3.9)

 4 .4 . Example

In this example we will present the calculation of the normalising constant G for a very
simple queueing network with R=2 classes, M=2 queues, N= [1,1] the population per class,
Z r=0 for all classes r and D k , r=1 for all queues k and classes r .

To perform this calculation, we will use eq. (4.3.9) and enumerate all the state space. Substitut-
ing the values of Z r and D k , r results in the much more simplified equation below:

G  N = ∑
S∈S  N 

1

Such a simplification is necessary, as this example aims at presenting the big state space of even
this very simple model. However, this means that in our case, all different states are equiprobable. In
particular, this model has 6 states, i.e. 6 different ways in which the different jobs can exist. The star (*)
denotes the job which is at the first position of each queue.

17

Chapter 4: Introduction to Queueing Networks

State
Queue 1 Queue 2

Class 1 Jobs Class 2 Jobs Class 1 Jobs Class 2 Jobs

1 1* 1 0 0

2 1 1* 0 0

3 1* 0 0 1*

4 0 1* 1* 0

5 0 0 1* 1

6 0 0 1 1*

Therefore, the final normalising constant G is equal to 6 . If we did not know that the net-
work's states were equiprobable, we would now use this normalising constant in conjunction with
equation (4.3.8), in order to calculate the probability of encountering each state.

The number of states increases exponentially as the network becomes more complex. This is
evident even in the simple example above, as we have to consider all different permutations of job or-
ders for each queue. For example, addition of just one more job per class increases the total population
from 2 to four jobs but increases the number of different states to 30.

18

 5 . Product Form Queueing Network
Algorithms

 5 .1 . Introduction

For the description of the following algorithms the notation used in [4] is followed. This nota-
tion is summarised in the following table:

Quantity Notation Quantity Notation

Number of classes R
Total Number of

jobs N

Number of jobs in
class r

N r Number of Queues M

Network Popula-
tion per class

N= N 1, ... , N R
Service Demand of
class r at queue

k
Dk ,r

Mean Delay of
class r

Z r

As service demand Dk ,r of a class r at a queue k we define the product between the aver-
age service time and the average number of visits of class r jobs at node k . Mean delay Z r of a
class r is the mean time before a job re-enters the network after its completion.

In this section, we will consider closed product form queueing networks consisting of load-
independent queues servicing jobs according to a First Come First Served (FCFS), Processor Sharing (PS)
or Last Come First Served with pre-emptive resume (LCFS-PR) basis. Essentially, these are the BCMP
network types I, II and IV respectively, as defined in section “BCMP Theorem” (p. 16). In that section, we
provided the equations (4.3.8) and (4.3.9) which describe the steady (equiv. equilibrium) state probabil-
ity distribution of the model: [4]

P  S = 1

G  N  ∏r=1

R Z r
n0,r

n0, r !  [∏k=1

M

 nk !∏
r=1

R D k ,r
nk , r

nk , r ! ] , (4.3.8)

where S∈S  N  , nk=∑
r=1

R

nk ,r and G  N  is the normalising constant which ensures that the

above probabilities sum to one:

G  N = ∑
S∈S  N 

∏
r=1

R Z r
n0,r

n0, r ! [∏k=1

M

nk !∏
r=1

R D k ,r
nk , r

nk , r ! ] (4.3.9)

We can obtain an upper bound for the maximum number of digits of the normalising constant
of any model. This can be done by replacing all service demands D kr by Dmax=max k , r {D kr , Z r } ,
therefore obtaining a queueing network model with balanced demands. For such models, a closed form
expression for the maximum normalising constant Gmax exists [3], therefore the maximum number of

19

Chapter 5: Product Form Queueing Network Algorithms

digits of Gmax is equal to:

nmax=log Gmax=N log ⌈Dmax  NMR  ⌉ (5.1.1)

There are two approaches regarding the analysis of product form queueing network models: it
can either be performed using the Mean-Value approach, where one recursively computes mean queue
lengths and mean throughputs, or by the normalising constant approach, which aims at the computa-
tion of G  N  . If this normalising constant is computed, the other performance indices such as utilisa-
tions and mean response times can be easily computed [14].

As Δ m we denote a vector of non-negative integers. Then, the normalising constant
G  Δ m , N  will refer to a model which differs from the original queueing network by having included
Δ mk≥0 additional “replicas” of queue k , ∀ k=1,2, ... , M .

 5 .2. Computing Performance Indices

Computation of the value of the normalising constant G of a queueing network model is usu-
ally of low importance on its own. What is more important is the computation of several performance
indices, such as the mean throughput of a class or the mean queue length.

For example, the mean throughput of a class r can be computed as [14]:

X r  m , N =
G  m , N−1r 

G  m , N 
(5.2.1)

Furthermore, the mean class r queue length for queues of type k can be given by [14]:

Q k , r  m , N =D k , r

G  m1k , N−1r 
G m , N 

 (5.2.2)

Other important performance indices, such as mean response times or utilisations, can be ob-
tained using the two above indices X r and Q k , r [7]. However, even though computing these perform-
ance indices may have the same asymptotic complexity as computing the normalising constant G , in
the other algorithms presented except Method of Moments the corresponding constant is much higher.

 5 .3. Established Algorithms

 5.3.a Convolution

The Convolution algorithm, first presented in [15], aims at evaluating the normalising constant.
This is accomplished using the following expression:

G Δ m , N =G  Δ m−1k , N ∑
r=1

R

Dk ,r G  Δ m , N−1r  (5.3.1)

where Δ m−1k denotes the removal of queue k from the network. The above equation is valid
for any choice of queue k . Therefore, it can be solved recursively to evaluate G Δ m , N  . The compu-

tation uses the initial conditions G  0, N =∏
r=1

R Z r
N r

N r!
 and G ⋅,0=1 .

It is evident from the formulation of this algorithm that it is characterised by high computa-

20

Section 5.3 : Established Algorithms

tional cost. Particularly, it has exponential complexity in the number of classes and polynomial in the
total population – O N R  in both time and space. In practice, this means that it is unsuitable for mod-
els containing more than two or three classes and more than a few tens of jobs.

Modern systems, which need models containing many different classes of users and several
hundreds of jobs, cannot be evaluated using this algorithm.

 5.3.b Recursion by Chain Algorithm (RECAL)

In this algorithm, first presented in [16], each queue is completely associated to a specific class,
which is named the self-looping class. This class is composed by jobs looping through the service sta-
tion forever. The RECAL algorithm uses as a recurrence equation a formula known as the population
constraint:

N r G  Δ m , N =Z r G  Δ m , N−1r∑
k=1

M

[ 1Δmk  D k ,r G  Δ m1k , N−1r ] (5.3.2)

The population control equation can be solved recursively to evaluate G  Δ m , N  . The compu-

tation uses the initial conditions as Convolution: G  0, N =∏
r=1

R Z r
N r

N r!
 and G ⋅,0=1 . This algorithm has

both time and space complexity of O N M  , which makes it suitable only for networks with small num-
ber of queues.

 5.3.c Mean-Value Analysis Algorithm (MVA)

The Mean-Value Analysis algorithm, which was presented in [17], avoids the direct evaluation
of the normalisation constant. It uses an iterative method to calculate mean queue sizes, mean waiting
times and throughputs. As many loops as the number of the customers of any type who circulate in the
network are performed. Traffic equations and Little's Law on a particular node and for a particular pop-
ulation size k−1 are connected, using the Arrival Theorem, with the same data in a network with pop-
ulation k . Its complexity grows exponentially with the number of classes.

 5.3.d LBANC

The LBANC algorithm (Local Balance Algorithm for Normalizing Constants), which was first
proposed in [18], is actually the un-normalised version of the MVA algorithm. They are therefore char-
acterised with the same computational requirements and the only difference is that LBANC aims at
computing normalising constants, while MVA directly computes mean performance indices recursively.
The LBANC algorithm uses recursion to solve a variant of eq. (5.3.1), where the queues are added and
not removed:

G  Δ m1k , N =G  Δ m , N ∑
r=1

R

Dk ,r G  Δ m1k , N−1r  (5.3.3)

The above equation holds for any choice of queue k , k=1,2, .. ,M . This equation is named in
[4] as the Convolution Expression. It is significantly more efficient than the Convolution algorithm
for cases of q≪M , where q≤M is the number of queue types for the current population. As is also
the case with the MVA algorithm, LBANC's computational cost grows exponentially with the number of
classes.

21

Chapter 5: Product Form Queueing Network Algorithms

 5.3.e Brief comparison

All of above described algorithms feature a high (exponential) complexity, either in the number
of different classes (Convolution , MVA and LBANC algorithms) or in the number of queues (RECAL). For
example, Convolution exhibits O N R  space and time asymptotic complexity, whereas RECAL exhibits

O N M  . Therefore, none of these algorithms is suitable to be used in the evaluation of the models
used to represent modern systems. These models may contain hundreds or thousands of users and tens
of different classes, facts that may make their computational cost prohibitive in practice.

For the special case of the MVA algorithm, heuristic techniques can be used to assist in reducing
the search space and therefore the computational cost [17]. This approach is not so readily available in
the other algorithms, as only MVA directly computes values that have a direct physical meaning in our
model. However, these techniques still do not improve the worst case cost and in many practical cases
they do not provide sufficient speedup.

The high computational cost associated with the existing algorithms highlights the importance
of the Method of Moments algorithm, which is presented in the next section.

 5 .4. Method of Moments (MoM)

 5.4.a Introduction

The Method of Moments (MoM) is a queueing network performance evaluation algorithm in-
troduced in [4] and further optimised in [3]. The fact that the established algorithms already presented
were unable to evaluate closed queueing networks with large population sizes led to the introduction of
MoM, which is defined as a recursion of the higher-order moments of queue lengths, which it is proved
that they determine the model performance at equilibrium. These are calculated at every iteration us -
ing a linear system of equations. Thus, exact analysis is available at a significantly reduced cost, com -
pared to the MVA algorithm.

The higher-order moment approach means that in the resulting recursion we need to remove
only one job at a time from the network and also the number of evaluated higher-order moments per
step is fixed. Therefore, the algorithm needs to perform a number of steps that grows linearly with the
population size; this is a unique advantage when contrasted with the exponential growing of the recur -
sion tree in the established methods for evaluating queueing networks.

The algorithm's time complexity is log-quadratic in the total computation size, whereas its size
complexity is log-linear.

 5.4.b Presentation

For the formulation of the algorithm we follow the notation used in [4] and presented in the be-
ginning of this chapter (p. 19).

Essentially, the MoM algorithm utilises the Population Constraint and the Convolution Expres-
sion formulas simultaneously to efficiently compute the normalising constant. For a model with R
classes, we can define basis of higher-order moments (Fig. 3) as the set:

V  N =v  N ∪v  N−11 ∪...∪v  N−1R−1  ,

where v n ={G Δ m ,n∣∑
k=1

M

Δmk≤R , Δmk≥0} is the set of normalising constants of all possible

22

Section 5.4 : Method of Moments (MoM)

models with population n and l=∑
k

Δmk added queues for all 0≤l≤R .

If we define a vector ordering, then we will be able to define an ordering of the basis of
moments as well. Therefore, it is decided that vectors of equal length are ordered ascendantly by the
sum of their elements; if they have the same sum, the one with the leftmost non-zero element is con-
sidered greater. The canonical ordering of the basis of moments is achieved by first ordering the norm-
alising constants G  Δ m , N  by their multiplicity vector Δ m and afterwards sorting the constants
with the same Δ m according to their population vector N .

It has also been proved in [4] that there always exist two square matrices A  N  and B  N  ,
which are defined by the coefficients of the Population Constraint (eq. 3.2.2) and the Convolution Ex-
pression (eq. 4.2.3) and which relate in a linear expression all and only the normalising constants in the
bases V  N  and V  N−1R  . Equivalently, V  N  satisfies the matrix difference equation:

A  N  V  N =B  N V  N− I R , (5.4.1)

where both A  N  and B  N  have order independent of the total population N .

The pseudo-code given below (Algorithm 5.4.1), which generates the matrices A  N  and

B  N  , has been adapted from [4]. It is of significant importance to note that the structure of the
matrices can be updated from population N to N I R by only changing the values N R in A  N  to
N R1R , as this can reduce the number of operations necessary between iterations corresponding to

the same class.

Algorithm 5. 4 .1: Generation of the matrices A  N  and B  N 

Input: Population N , Current class examined s

Let A  N  , B  N  be square matrices of order MR
R R with element aij on row i

and column j
Initialise all a ij , bij with 0
i0

for l from 0 to R−1

for all Δ m with M non-negative elements and ∑
k=1

M

Δmk=l

23

Fig. 3 : The basis V  N  for M=R=2 .
Each node represents a different value of
Δ m . The boxed numbers represent the

number of constants G Δ m ,⋅ in V  N  .

Chapter 5: Product Form Queueing Network Algorithms

if ∑
k=1

M

Δmk=R−1

for k from 1 to M /* Add CE for queue k */
ii1
j index of G  Δ m1k , N  in V  N 
aij1

j index of G  Δ m , N  in V  N 
aij−1

for r from 1 to R−1
j index of G  Δ m1k , N−1r  in V  N 
aij−Dkr

end for
j index of G  Δ m1k , N−1R in V  N−1R
bijDkR

end for
end if

end for
end for

for l from 0 to R−1

for all Δ m with M non-negative elements and ∑
k=1

M

Δmk=l

if ∑
k=1

M

Δmk=R−1

for r from 1 to s−1 /* Add PC of class r */
ii1
j index of G  Δ m , N  in V  N 
aijN r

j index of G  Δ m , N−1r in V  N 
aij−Z r

for k from 1 to M
j index of G  Δ m1k , N−1r  in V  N 
aij−mkΔmk  D kr

end for
end for

end if
for r from 1 to s−1 /* Add PC of Class R */

ii1

j index of G  Δ m , N−1s  in V  N  , where N − 10= N
aijN R

bij Z r

for k from 1 to M
j index of G  Δ m1k , N−1s−1R  in V  N−1R
bij mkΔmk  DkR

end for
end for

end for
end for

24

Section 5.4 : Method of Moments (MoM)

while i≤MR
R  R

a ii1
b ii1
i i1

end while

From the above algorithm becomes evident that the maximum absolute value of an element en-
countered in matrices A  N  or B  N  can be bounded by:

M A  N  =M B  N  =Dmax  M  m R  , (5.4.2)

where Dmax is the maximum model value:
Dmax=max k , r {D kr , Z r }

and M  m  denotes the maximum queue multiplicity value encountered in the model.

From the definition of the basis, we can observe that the knowledge of V  N  and V  N−1R 

implies the knowledge of G  N  , G  N−1r  , 1≤r≤R and G  1k , N−1r  , 1≤k≤M , 1≤r≤R . These
normalising constants are enough to calculate performance indices. The remaining constants in the
vectors V  N  and V  N−1R  can be used to estimate variances and covariances of the performance
metrics [4].

If A  N  is not singular, then the basis V  N  can be computed recursively from V  N−1R 
as:

V  N =A−1  N  B  N  V  N− I R (5.4.3)

If N R=0 , we can apply a similar recursion to the class R−1 . The recursion terminates when

V 0  is reached, since it contains only normalising constants G Δ m ,0 =1 or G  Δ m ,0−1R=0 for

any class r . In the special case of A  N  being singular, other approaches need to be used.

The general steps in the MoM iterations can be summarised in the following high-level al-
gorithm 5.4.2, which is taken from [4]:

Algorithm 5. 4 .2: Method of Moments (MoM)

Compute V N 1, 0, ... ,0  using an efficient single class method (e.g. Convolution or LBANC)
for r from 2 to R

Initialize the elements of V N 1, ... , N r−1 ,0,... ,0 based on the previous class results

and the termination conditions G  Δ m ,0 =1 or G  Δ m ,0−1R=0

for nr from 1 to N r

Setup and evaluate eq. (5.4.3) obtaining V= N 1, ... , N r−1 , nr ,0, ... ,0 
end for

end for
Return mean performance indices using known equations and the normalising constants in
V N 1, ... , N R and V N 1, ... , N R−1 

The above pseudocode is written at a high level, far from a concrete implementation. As it has

25

Chapter 5: Product Form Queueing Network Algorithms

been implemented as part of the current project, it is thought that it can be beneficial to provide the
reader with a more concrete and lower-level pseudocode, such as the following algorithm 5.4.3:

Algorithm 5. 4 . 3 : Method of Moments (MoM)

/* a i  denotes the ith element of vector a */
r0

/* Initializing data structures of class r1 */
Generate matrices A , B using Algorithm 4.5.1 with input 〈 [1,0,0,0,... ,0] ,1 〉 , where

[1,0,0,0, ... ,0] a vector of R elements.
N 00
N 0r1
V cur1

for r from 1 to R
/* Processing class r */
for nr from N 0r to N r 

A 'A
Add nr−1 to all N R values of A '
bB⋅ V cur

V prev V cur

V cur A ' 
−1
⋅b

/* Population nr completed */
end for
N 0 r  N r 

/* Class r completed */
if rR

N 0 r1 1
N 0r1

/* Initializing data structures of class r1 */

Generate Matrices A , B using Algorithm 4.5.1 with input 〈 N 0 , r1 〉
end if

end for
Return mean performance indices using known equations and the normalising constants in
V cur=V N 1, ... , N R and V prev=V N 1, ... , N R−1 

It is evident from the above algorithms that MoM requires only N steps to solve a queueing
network model. Furthermore, the number of normalising constants calculated in each step remains
fixed during the recursion and is equal to the cardinality of V  N  , whereas in the case of the RECAL al-
gorithm, the number of calculated constants grows combinatorially.

MoM manages to improve performance over the existing methods by simultaneously exploiting
the Population Constraint and the Convolution Expression formulas, instead of exploiting just one of
them, as does RECAL (only PC) and LBANC (only CE). Adding queue replicas and thereby increasing the
number of shared normalising constants between the equations allows us to formulate a linear system
and use it to estimate several unknown normalising constants. This is feasible as the number of equa-
tions grows faster than the number of unknowns when using MoM's recursion method.

26

Section 5.4 : Method of Moments (MoM)

In practice, MoM can achieve better performance than all existing methods for large enough
networks, e.g. a few tens of jobs and more than two or three classes [4].

One of the main limitations of MoM is the fact that it does not seem to generalise to load-de-
pendent queues. Furthermore, computation using the MoM algorithm requires exact arithmetic, as
rounding errors can result in numerical instabilities. The the algorithm deals with extremely large
numbers, much larger than the datatypes defined in most programming languages, and therefore one
must implement or use special libraries to support arbitrary length arithmetic. The overhead added by
such an approach is regarded as small and the algorithm produces impressive results when implemen-
ted efficiently [4].

The first approach to deal with this linear system with large number is presented in [4] and
uses special libraries supporting arbitrary length arithmetic. Optimisations available, such as low-cost
recalculation of the LU decomposition due to the special structure of the matrix A , further increase
MoM's speed.

Among the goals of this project, an alternative method in dealing with this core part of the
MoM algorithm is examined, implemented and tested. More specifically, using modular arithmetic to
solve the resulting linear system over finite fields and recombining the results afterwards can lead a
further increase in algorithm efficiency in some cases.

 5 .5 . Extensions of the Method of Moments

Apart from the presented MoM algorithm, several other similar algorithms have been presen-
ted which evaluate analytically queueing networks by using the same concept of relying on higher-
-order moments of queue lengths instead of mean values, as for example done by the MVA algorithm.
This allows these algorithms to reduce remarkably the computational cost, especially on models with
large number of jobs.

One of this algorithms is the Class-Oriented Method of Moments (CoMoM) [19], which is com-
putes performance indices in closed multi-class queueing networks and scales efficiently as the number
of classes increase. In general, the MoM and CoMoM algorithms feature similar data structures and
characteristics, as well as the same need for exact arithmetic. However, CoMoM scales better than MoM
as the number of classes R increases, whereas MoM scales better as the number of queues M in-
creases. This happens because the two algorithms differ in the choice of the basis of unknowns that is
computed at every iteration. MoM evaluates at each step the normalising constants of populations
N , N−11 ,… , N− 1R−1 and increases the number of queue replicas by R queues or more, whereas

CoMoM evaluates the normalising constants of a much larger set of populations, up to M jobs less, but
with the addition of at most one queue replica.

This makes the MoM algorithm preferable for models with several queues, whereas CoMoM is
best used for models with several classes. CoMoM includes a set of techniques to address singularity
cases, which can be caused by interdependence between the PC and CE equations; in one of this tech-
niques, a Hybrid MVA/CoMoM algorithm is used [19].

Another approach presented is the Generalised Method of Moments algorithm, which was in-
troduced in [20]. This algorithm combines the approaches of MoM and Convolution by extending the
MoM recursion with multiple recursive branches; each of these branches evaluates a model with differ-
ent number of queues. This approach is more efficient than the original recursive structure that is used
for MoM in this project.

27

 6 . Solution of Linear Systems using
Modular Arithmetic

 6 .1 . Introduction

It is well known in the cryptography community that many large linear systems can be solved
using modular arithmetic. It is common in such problems to need to solve large linear systems with in-
teger coefficients. However, the solution of such a linear system is a rational number. The techniques
applied can be extended to handle real coefficients, are parallelisable with great efficiency and can be
adapted to handle sparse matrices.

The approach presented in this section will be used to solve the MoM linear system (5.4.1):

A  N V  N =B  N V  N− I R
As it has been already presented, the need to solve such large integer linear systems exactly is

evident in the MoM algorithm. Furthermore, because MoM's computational cost does mainly depend
on the time needed to solve such linear systems, the implementation proposed in this project would be-
nefit by a multiprocessing approach. As it will be seen in this chapter, there exists a method of reducing
one linear system with integer coefficients to a number of other same-sized linear systems that are the
modular representations (i.e. are calculated using the modulo operation) of the initial one. Then, these
produced linear need to be solved; this may be preferable to solving the initial one when done in paral -
lel. Finally, the results can be combined using the Chinese Remainder Theorem. Parallelisation of the
solving algorithm is relatively straightforward, as each of the produced “residual” linear systems can be
assigned to a different processor. Implementation in distributed memory computing systems has led to
efficient results [21].

It has to be noted however, that any solver that needs to be used by the MoM algorithm cannot
be a simple straightforward solver, like the ones used in practice. It is usual for MoM to need to solve
linear systems where the matrix may be singular. This means that several values of the solution vector
may be unable to be computed. Furthermore, these values may propagate and may be used as the input
of a subsequent linear system's solution. These values are usually unnecessary for MoM to successfully
compute the normalising constant and the performance indices of a queueing network model; however,
the solver has to be able to recognise them and recover from such ill-conditioned systems. Much effort
has been put in the design, implementation and evaluation of a solver exhibiting such robust character-
istics, which is documented in the following sections.

 6.1.a Definitions

The Two Definitions of Modulo

There exist two possible definitions of the modulo operation a mod n , where a∈ℝ and
n∈ℕ ; the two definitions differ in the sign of the remainder. The usual one, which always results in a

non-negative remainder, is named Euclidean definition and was introduced in [22]. Let q∈ℤ be
the quotient of a over n . Then, the result of the operation is a number r∈ℝ where:

• a=n qr and

• 0≤r≤∣n∣ .

29

Chapter 6: Solution of Linear Systems using Modular Arithmetic

The other definition of the modulo operation does not require a non-negative result in all cases.
More specifically, the result of the operation must have the same sign as the number a . Therefore, the
following must hold:

• a=n qr ,

• sgn r =sgn a  and

• ∣r∣≤∣n∣ .

The result of both operations is unique. Both definitions of the modulo operation can be used in
our approach to build, solve and recombine the results of some residual systems. However, the second
definition, which allows a negative modulo, is preferable as a matter of computational efficiency.

This is true, because the linear system built by the MoM algorithm in every iteration usually
contains small negative numbers, of the same magnitude as the maximum value appearing in the mod-
el description; usually a few tens or a few hundreds. However, the divisor n can be arbitrarily large.
Using the first definition of the modulo operation would result in “artificially” filling the linear system
with very large numbers, which would cause an added computational cost as will be explained in more
detail later. The second definition of the modulo in the field of exact solution of integer linear system
using residual techniques was first documented in [23], however its choice was caused by the need for
programming convenience and not efficiency or speed.

Most programming languages use one of these two definitions, whereas others, such as FOR-
TRAN, MATLAB or PROLOG, provide two different operators – sometimes called mod and rem –, one for
each definition.

The interest in using the modulo operation stems from our aim to build a Residue Number Sys -
tem. A Residue Number System basically represents large integers using a set of smaller ones; this can
result in faster computations in practice, whereas it permits parallel computations as well. The maxim-
um representational efficiency is achieved when the smaller integers are prime and therefore do not
share common factors. The key theorem enabling this splitting of computations is the Chinese Re-
mainder one. In the case of large integer linear systems solution, using the same theorem we are able to
represent the large initial system using a set smaller numbers, thus enhancing performance in many
cases. After each smaller system has been solved, the splitting is reversible if several conditions hold; in
such a case one can easily obtain the initial solution.

We will now define these concepts; afterwards, a detailed presentation of our approach will fol-
low.

Congruence Relation in Modular Arithmetic

Two integers a and b are said to be congruent modulo n , n∈ℕ∗ , symbolised as:

a≡b mod n  (6.1.1)

if their difference a −b is an integer multiple of n . The number n is called the modulus of
the congruence. Equivalently, both numbers have the same remainder when divided by n . By conven-
tion: a≡b mod 1⇔ a=b .

Modular Multiplicative Inverse

The modular multiplicative inverse of a number a∈ℤ modulo a number n∈ℕ is a number
x∈ℤ such that ax mod m=1 , or equivalently using the congruence relation:

ax≡1 mod n  (6.1.2)

The most efficient algorithm to calculate the modular multiplicative inverse is the Extended

30

Section 6.1 : Introduction

Euclidean algorithm.

Coprime Integers

Two integers are said to be coprime or relatively prime if their greatest common divisor is
1. An efficient algorithm to discover the greatest common divisor of two integers and, therefore,
whether they are coprime is the Euclidean one.

Chinese Remainder Theorem

The Chinese Remainder Theorem states that, if we have k positive integers n1, n2, … , nk (
ni∈ℕ

∗∀ i=1, 2,... , k) which are pairwise coprime, then, for any given integers a1, a2, … , ak , there ex-
ists an integer x solving the system of simultaneous congruences:

x≡a1 mod n1 
x≡a2 mod n2

⋮
x≡ak mod nk 

Furthermore, it is proved that all solutions x to this system are congruent modulo the product
N=n1 n2 … nk :

x≡ y mod ni ∀ i=1, 2,... , k⇔ x≡ y mod N 

After we have split the initial linear system to a set of new ones, we arrive at the set of their
solutions. The Chinese Remainder Theorem allows us to recombine these solution and reduce it to the
solution of the initial system. Without the existence of this theorem, the solution of such systems would
not be feasible in such a parallel way.

 6 .2 . Solution Procedure

In this section, the procedure followed by the solver in order to compute the solutions of the
linear system produced by the MoM algorithm in every iteration is outlined. The reader is reminded
that the linear system required to be solved by MoM is given by the equation (5.4.1):

A  N V  N =B  N V  N− I R ,

and it is a critical requirement of the MoM for the solution to be provided using arbitrary preci -
sion exact arithmetic.

The matrices A and B are calculated by MoM, whereas V  N− I R  is the solution vector of

the previous linear system and V  N  the solution vector of the current one. Of course, it is the re-
sponsibility of MoM to calculate the first such vector. In order to provide a good design from the view -
point of software engineering, the solver is as decoupled as possible from the MoM implementation.
These qualities of the implementation will be described in a following chapter 7.

For matters of clarity, the current presentation as well as the solver itself uses a different nota -
tion and considers the linear system in the usual form:

Ax=b , (6.2.1)

where A is an n×n matrix and x , b are n element vectors.

Using modular arithmetic, the initial system is solved in several residual ones. Each of the resid-
ual systems is then solved as usual and afterwards the results are recombined.

31

Chapter 6: Solution of Linear Systems using Modular Arithmetic

Below we will describe some of the unique characteristics of the matrices that define the linear
system as well as outline a procedure for the solution of the said system. The main idea of the process
followed in the current project is similar to procedures have been presented, among others, in [24] and
[25] A more implementation-oriented approach can be found in [23]. Other important approaches,
more similar to the one followed in this project, have been presented in [26], [27] and [21].

However, the used to solve the current problem has similarities but is different in many aspects
from the ones presented in the literature. For example, efficiency issues have been the cause of many
design decisions and application of different mathematical tools than other implementations. Another
key characteristic which heavily influenced the formulation of the followed approach is the require-
ment for the solver to be robust, in the sense that it has to process and compute exactly the solutions of
an ill-defined, singular linear system.

Therefore, the current approach forms a sufficient basis for implementation and introduction
of more optimisations in the future, such as the experimentation with different solution methods.
Lastly, the decoupled modular design makes the solution procedure below applicable to other, more op-
timised versions of MoM or even other algorithms in different scientific fields in the future.

 6.2.a Unique Characteristics and Requirements of MoM

1. One of the most important requirements of MoM is the need to perform exact arithmetic [4].
Due to the fact that it is common for operations between numbers with very different mag-
nitude – i.e. more that a thousand orders of magnitude – to arise, the usage of inexact, floating
precision arithmetic would introduce errors due to truncation and approximation. If these er-
rors are multiplied by another very large number, they may become large enough to influence
not only the correctness of the results but also the execution stability of the MoM algorithm.

2. Another key feature of the MoM algorithm is that, in its simplest implementation, one produces
a matrix A that contains columns filled with zeros; these columns correspond to the class r
with population N r=0 . This means that the matrix A that defines the linear system can be
singular, i.e. with zero determinant. The normal approach in such a case if a usual solver is
used, would be to stop the solution of such a system and the execution of the algorithm.
However, our solution process has been design in such a way so as to be able to handle such
cases, discovering the solutions of as many unknowns as possible.

An example of such a linear system is the following:

[
6 0 0 0
6 0 0 −1
−7 4 0 10
0 0 0 2

]⋅x=[
6
2
41
8
]

One can easily determine in the above linear system that x1=1 , x2=2 and x4=4 , but it is
unable to determine the value of x3 ; all relevant information has been lost.

A normal solver would halt its solution, for example as soon as it evaluated a zero determinant.
However, the value of x3 – and any other such elements – may be unnecessary for MoM to
continue its operation and evaluate the model. The solver that was designed as part of this pro -
ject and is presented below must be able to return the values of all computable elements of the
solution vector and flag the element x3 as indeterminable. It is now the responsibility of MoM
to consider whether it can continue from such a state.

3. Imagine now that MoM decides that the execution can continue under these circumstances; if
not other techniques dealing with singularity need to be used, which are presented in [3] and

32

Section 6.2 : Solution Procedure

[4]. The previous solution vector, corresponding to V  N− I R  and which now contains inde-

terminable values, will therefore be multiplied with another matrix B , as per equation (5.4.1).
This means that unless all elements of the respective 3rd column of B are equal to zero, which
is seldom the case, the uncomputable values will propagate even more. As a result, the next lin-
ear system that the solver is required to process may look like the following:

[
6 0 0 0
7 0 0 −8
−7 5 0 10
0 1 0 −1

]⋅x=[
26
⋅
⋅
0
] ,

where the dot symbol represents an indeterminable value. Clearly, the situation for the solver is
now more difficult.

4. It has to be noted however that all element of every solution vector and vector b of equation
(6.2.1) can only contain non-negative and uncomputable values. Negative values will never
arise due to the properties of MoM. The values of the solution vector represent a basis of mo-
ments (see section 5.4.b, p. 22) which is a set of normalising constants; a negative normalising
constant has no natural meaning.

The above characteristics of MoM have greatly influenced the design of this solver and are
some of the main reasons that this implementation differs from the existing ones.

 6.2.b Brief Presentation

The procedure outlined here is used to solve a linear system Ax=b , where A an integer
matrix and b a vector of non-negative elements. This linear system conforms to the requirements and
characteristics presented in the previous section. The procedure extends to rational numbers by scal-
ing. In order for the presentation to be concise and short, many important parts of the procedure are
omitted; among them, the most important is the way the solver deals with singularity case and inde-
terminable values. This omission does not mean that their implementation is a trivial matter. Much ef-
fort has been put to adapt the linear system solution process using modular arithmetic to the ill-condi-
tioned linear systems defined by the MoM algorithm.

Influential in the development and design of this procedure have been [26], [21] and [27].
However, the procedure is uniquely adapted to solving linear systems with requirements similar to the
ones of MoM and consequently contains several novel ideas.

• Find a number M threshold∈ℕ such that:

M threshold=2max ∣d∣, n n−1  n−1 /2
M A 

n−1
M b   , (6.2.2)

where n the number of equations and d=det  A . Also, for a matrix B=[bij] , we de-

note as M B  the maximum absolute element:

M B =max i , j∣b ij∣ (6.2.3)

 A similar definition exists for the maximum absolute element of vector b .

• Choose a set of moduli m1, m2, … , ms∈ℕ , where M=m1 m2 ...ms≥M threshold . The
moduli must be coprime:

gcd mi , m j =1∀ i≠ j (6.2.4)

and must satisfy:

33

Chapter 6: Solution of Linear Systems using Modular Arithmetic

gcd  M , d =1 (6.2.5)

• Formulate the s residue systems of equations: Ax=b mod mi  for each modulo mi .

This can be accomplished not only by using the Euclidean definition of the modulo op-
erator, but also by using the one that allows for a negative result.

• Solve each of the s residue systems using a method similar to Gaussian Elimination.
From each residue system obtain the absolute value of the residue representation d k
of the determinant:

d k=∣det A mod mk  ∣ , (6.2.6)

as well as a vector yk of the residue system's solutions. This vector contains the
residue representation of the final solution vector.

• By the Chinese Remainder Theorem, we can recombine the residue representations to
obtain the initial ones. This can be done using several methods, the preferable of which
is in our case the Single-Radix Conversion Algorithm. An other method which can be
applied is the Mixed-Radix Conversion Algorithm. Both these methods are presented in
more detail in Section 6.3.f (p. 49).

• If the moduli were chosen so as to satisfy (6.2.2), the final vector of solutions x will
now have been determined.

As it can be seen, the process can be parallelised; each residual linear system can be assigned to
a different processor. This way, each linear system that will be solved in parallel will contain smaller
numbers than the initial one.

 6 .3. Building the Method

In this section the procedure followed by the solver will be presented in more detail. The reas-
oning behind several design choices will be explained and literature references will be provided. For
matters of improved clarity and reader comprehension, the procedure will be presented in parallel with
a simple example. More specifically, after each step of the solution is discussed a simple example high-
lighting the most important details of the step will follow.

This approach is not only a way to document and present what has been done; it can also func-
tion as means for a reader to understand precisely how linear systems can be solved efficiently using
linear algebra and residual arithmetic. Such a step-by-step approach does not exist in the literature,
therefore its documentation can be valuable for people who want to apply the same techniques on a
different sector or people who may want to augment and improve the current project and MoM in gen-
eral.

As it has been said before, it is common for the linear system constructed by MoM to be defined
by singular matrices, i.e. matrices the determinant of which is zero. Such a matrix usually contains one
or more columns filled exclusively with zero elements. Furthermore, some of the elements of the right
hand side of the equations may be indeterminable. In any case, the algorithm must be robust and stable

34

Section 6.3 : Building the Method

enough to return the values of as many different variables as possible.

A typical linear system one can examine to understand all aspects of the solver is the following,
where the dots in the right-hand side vector represent indeterminable elements existing as a result of
indeterminable unknowns of a previous MoM iteration:

Ax=b⇒ [
6 0 0 −3 0 0 1
0 0 3 2 0 0 8
−1 2 0 0 0 0 0
0 −2 0 7 0 0 4
0 0 5 3 −1 0 0
3 7 12 0 0 0 0
0 1 2 0 0 0 1

]⋅x=[
27
18
⋅
11
⋅

101
13
] (6.3.1)

It can be easily seen that the determinant of A is zero. We will now solve this system step by
step, presenting the procedure in the meanwhile.

 6.3.a Step 1: Determining a lower bound for the product of moduli

The first operation it is necessary to do is to find the number M threashold , which is the lower
limit for the product of moduli. This is accomplished by using equation (6.2.2):

M threshold=2max ∣d∣, n n−1  n−1 /2
M A 

n−1
M b  

However, it is necessary to notice that several different formulas for calculating M threashold ex-
ist in practice. The formula used here is encountered in [27] and was preferred to other formulas be-
cause of the fact that it leads to superior performance in practice and it is simple to calculate.

Among the other formulas that were considered are:

• The formula M threshold=2 max ∣d∣, M A   , which is presented in [26]. This formula is
simpler to calculate than (6.2.2). However, it can be easily seen that the limit defined by
this equation is lower; this in practice leads in many cases to corrupted results. This is
true, because in the case of MoM the systems formulated contain numbers of far great-
er magnitude in the right hand side b , compared to those encountered in matrix A ,
which are relatively small numbers. This fact is ignored by this equation and is the
main reason that it does not perform satisfactory in this problem.

• The formula M threshhold=2∏
i=1

n

∑
j=1

n

aij
2∏

k=1

n

∣bi∣ , which is presented in [23]. The limit

defined by this formula is a bit more complicated to calculate than the previous formu-
las, but it always manages to recombine the residual results and evaluate the final ones.
However, the main drawback of this technique is that the limit defined can be several
orders of magnitude larger than the other methods, as it can be easily verified.

This usually means that we may need to select more and bigger moduli at a great com-
putational cost: moduli are usually selected, for reasons that will be explained in the
following step, as very large prime numbers [21]. In order to verify that such a number
is prime, several primality tests need to be used, such as the Miller-Rabin primality test
or the Quadratic Sieving technique. These tests may need considerable time to run, es-
pecially on large systems.

35

Chapter 6: Solution of Linear Systems using Modular Arithmetic

• The formula M threshold=2max ∣d∣, M A−1b   , which is used by [21]. This is a formula
that gives a satisfactory limit, i.e. one that can be applied to tackle our problem cor-
rectly. However, it is inefficient to compute because it involves evaluating the inverse
matrix A−1 .

Due to the fact that this is a simple and intuitive formula, which will be recognised
when one has a full view of the entire procedure, several approximations of the maxim-
um possible element of A−1b where introduced in order to be able to use it in prac-
tice. These approximations took advantage of useful inequalities between the various
norms of a real matrix. The reader can find useful references regarding such operations
and bounds of normal, inverse and classical adjugate matrices in [28]. Introducing ap-
proximations results however in values of M threshold that are close to (6.2.2) and there-
fore provide a similar performance. Therefore, the use of (6.2.2) is preferred as it is
much more straightforward to compute.

Evaluating (6.2.2) however involves the evaluation of the determinant of the matrix A . Evalu-
ation of the determinant is a lengthy process, characterised by O n3  time complexity. It is usually in-
volves almost solving the linear system using regular arithmetic, making our modular arithmetic ap-
proach unnecessary. Therefore one can not count on actually evaluating the determinant on real-world
scenarios. As no bounds for the absolute value of the determinant of matrix A are provided by the
MoM algorithm [4], one can only resort in bounding this value using an inequality. A widely used one is
Hadamard's Inequality, which for real valued matrices consisting of n column vectors v j states that:

∣det  A∣≤∏
j=1

n

∥v j∥ , (6.3.2)

where ∥v j∥ the Euclidean length of the column vector in ℝn . Furthermore, if entries on the
n×n matrix are bounded by the maximum element M A  , then:

∣det  A ∣≤nn /2 M A 
n (6.3.3)

Therefore, equation (6.2.2) becomes:

M threshold=2max nn /2
M A n , n n−1  n−1 /2

M A n−1
M b   (6.3.4)

This equation can be computed with little computational cost and leads to good results in prac-
tice. It can be straightforwardly compute using O n2  operations.

If we had to solve a single linear system, this is the point where the current step would end and
we would have to begin choosing the specific set of moduli. However, due to the fact that selection of
the moduli may only be performed at a significant computational cost, it was decided for the usual case
of the MoM algorithm to perform these calculations only once. The consequence is that we have to ad-
apt (6.3.4) so as to provide a threshold value big enough for all possible MoM linear systems based on
the specific model.

The reader may be reminded that the normal procedure to evaluate a queueing network model
using the Method of Moments is to solve as many linear systems as the total population of jobs. The size
of the linear system remains constant throughout the execution and only the contents of the matrices
change. However, it is possible to bound the maximum absolute value contained in every matrix A
and B of MoM based on a particular model (5.4.b, p. 22):

M A  N  =M B  N  =Dmax M  m R  , (5.4.2)

where Dmax is the maximum model value and is defined by Dmax=max k , r {D kr , Z r } .

36

Section 6.3 : Building the Method

One can also provide a maximum limit on the value of normalising constant G , as its maxim-
um number of digits has been presented in (5.1.1) (p. 20):

nmax=⌈logbase Gmax  ⌉=N ⌈logbase Dmax NMR   ⌉⇒

Gmax=base
N ⌈ logbase D max  NMR   ⌉ , (6.3.5)

where N the total population of the queueing network model and base the base of the nu-
merical system we use for representation, i.e. base=2 for the binary system and base=10 for the
decimal one.

In order to be able to perform this step only once, one has to provide an adequate bound for the
maximum element of vector b , which in our case is the right hand side of equation (5.4.1):

b=B  N V  N− I R

V  N− I R  is actually the collection of normalising constants for a network involving one
population less. It is known that the values of normalising constants are at least weakly increasing as
the total population increases. As the true maximum element of matrix B remain below M B  ,
which is constant throughout the execution, one can bound the maximum element of all b vectors as
the maximum element of vector bmax=B  N V  N  . This vector would be the vector b we would have
to evaluate if we had to process a queueing network with one population more in the last class. There-
fore, we can claim that:

M  bmax ≤n M B Gmax , (6.3.6)

Where n the linear system order. As M b ≤M  bmax  , we can consider in the general case

that:

M b =n M B  Gmax
 (6.3.7)

After all these values and bounds have been defined, we are now able to present a final formula
for M threshold , one that is guaranteed to be able to be computed at the beginning of MoM's execution
and be adequate to be used throughout all iterations. This final formula can be constructed, in the case
of binary representation where base=2 , by starting from eq. (6.3.4):

M threshold=2max nn /2
M A 

n
, n n−1  n−1 /2

M A 
n−1

M b   , (6.3.4)

n is the linear system order. Substituting (5.4.2), (6.3.5), (6.3.7) in the previous formula leads us
to:

M threshold=2max { nn /2 [Dmax M  m R ]
n
,

n2  n−1   n−1/ 2 [Dmax M  mR ]
n−1

[Dmax M  m R ]2N ⌈ log2 D max NMR  ⌉} (6.3.8)

Example

In this example we will evaluate M threshold for the linear system (6.3.1). To present the proced-
ure in more clarity, we will use eq. (6.2.2) instead of (6.3.8):

M threshold=2max ∣d∣, n n−1  n−1 /2
M A 

n−1
M b   (6.2.2)

In this case we have n=7 , M A =12 and M b =101 . When computing the maximum ele-

ments we consider For the computation of the maximum absolute value of b we disregard any inde-

37

Chapter 6: Solution of Linear Systems using Modular Arithmetic

terminable values.

The value of the determinant that is needed for the calculation of M threshold cannot be straight-
forwardly evaluated in this case, and this is common in the linear systems defined by MoM. That is true,
as the exact value of the determinant is zero due to the 6 th column. In practice, such a result would
greatly reduce the correctness of our results.

As it has already been said, it is usual for an MoM linear system to be defined by a singular mat-
rix. This makes solution using the known and available methods impossible. Therefore, the modular
technique defined in this chapter has been adapted to be able to cope with this singularity: we approx-
imate the maximum value of the determinant as (eq. (6.3.3)):

∣d∣=nn /2 M  A n (6.3.9)

If the matrix was not singular we could provide a better approximation of the determinant us-
ing equation (6.3.2) or even a full computation of it using one of the known methods. However, the
reader should be reminded that this procedure has been designed with the goal of minimising the time
required by the total of the MoM evaluation and not the time required to solve a single system, so this
computation must be performed only once. Computation using (6.3.9) is therefore the only viable
method.

So, in the case of system (6.3.1) we have:

M threshold=2max nn /2
M A 

n
, n n−1  n−1 /2

M A 
n−1

M b  ⇒
M threshold≃4.56⋅1011

This is quite a big value. The algorithm could solve the current linear system with smaller
threshold values. However, as the procedure is adapted for MoM and in MoM the digits involved grow
exponentially in value (linearly in length) to the total population, the reader has to understand that
this value is selected with MoM in mind.

 6.3.b Step 2: Determining the moduli

In this step we must choose a set of moduli m1, m2, … , ms∈ℕ . Several important theoretical
conditions must hold.

• The product of all the moduli must be greater than M threshold :

M=m1 m2 ...ms≥M threshold

• The moduli must be coprime for the Chinese Remainder Theorem to be applied and
lead to recombination of the results (eq. (6.2.4)):

gcd mi ,m j =1∀ i≠ j

• Lastly, the following property must hold (eq. (6.2.5)):

gcd  M ,d =1
Satisfying and verifying the two last conditions can be time consuming. To ease this procedure,

there is a consensus in the sector toward selecting very large primes as moduli. Such primes satisfy the
coprimality requirement by definition and greatly reduce the probability of encountering a case where
gcd  M ,d =1 ([29], [30] and [31]).

In general, there are many alternative strategies one can use in order to select the specific mod-
uli that result in the minimum total runtime. The optimal strategy for a given problem depends on im-
portant algorithmic details and design choices of subsequent steps, as well as the advantages and disad-
vantages of the underlying computing system. One should consider as well any how any computational

38

Section 6.3 : Building the Method

benefits measure to the computational cost and complexity of the selection process itself; in many such
cases behaviour similar to the “law of diminishing marginal returns” can be expected.

The literature sources contain no specific set of guidelines regarding when it may be preferen-
tial to use many and smaller moduli and when less in number but bigger ones, or even a completely dif -
ferent (mixed) selection approach. Several approaches have been examined in practice and were con-
sidered when designing this solution algorithm and evaluating the experimental results. Each one of
them has unique advantages and disadvantages:

• Some researchers ([26]) prefer the selection of moduli smaller than the maximum num-
ber representable in the computer's word size W : mi≤W . This approach has the ad-
vantage that some of the subsequent computations may be able to be performed using
floating-point arithmetic. This approach is not applicable in all problems; for example,
MoM requires usage of exact arithmetic in all steps of the computation, so it would not
benefit from such an approach. Furthermore, the word sizes of modern computer sys-
tems may be hundreds orders of magnitude smaller than the values of M threshold en-
countered in typical problems. This means that if relatively small moduli were to be
used, i.e. with length comparable to the word size, then this would mean that the initial
system would be split in a great number of residual systems. Thus, the runtime may not
benefit at all from the usage of inexact arithmetic.

However, this approach may be preferential if used in computing systems consisting of
many different processing nodes, as for example Massively Parallel Computers. Such
systems feature rich interconnection networks and high-bandwidth distributed
memory. On the contrary, the current implementation targets primarily the simple
multi-core Personal Computer or small server hardware, where at most 8-16 different
processing cores are currently available and the memory bandwidth is shared between
all of them. This part will be elaborated more on the next chapter, which discusses
more implementation-specific challenges.

• Other researchers ([12]) prefer using a pre-determined set of moduli for all cases, ac-
knowledging that in several instances the method may fail to produce correct results.
This is unacceptable in MoM, especially since it may be computationally costly to verify
during the runtime whether the results of every linear system are valid or not. Further-
more, there is no unique – or even set of unique – moduli set that can be used and lead
to efficient solution of the linear systems in all real-world cases MoM will be used.

• Another approach that has been examined in practice has been to have a list that con-
tains precomputed candidate moduli in ascending order [23]. The algorithm is able to
calculate M threshold and then multiplies the moduli from the smallest one to the
biggest, accumulating the product. When the product exceeds M threshold , then enough
moduli have been selected. This approach has the advantage that it relies on a precom-
puted list, therefore lifting the requirement of performing primality tests on each can-
didate modulo during the runtime. However, it tends to generate more residual linear
systems than the minimum possible. This approach may be sufficient when implement-
ing the algorithm using a serial programming paradigm, however it does not scale well
during parallelisation. The typical number magnitude encountered in each of the resid-
ual systems that must be solved during a particular invocation may exhibit high di-
versity, resulting in a high deviation in the runtime needed to solve each of them: for
example, one parallel unit may be assigned the solution of an “easier” system that con-
tains smaller numbers whereas another may be assigned a “harder” one. Inevitably, one
processor may need to wait while another one needs more time to produce results. This
time waste cannot be “filled” using techniques applicable in other problems, such as
preparation of the arguments of subsequent invocations; the current version of MoM is

39

Chapter 6: Solution of Linear Systems using Modular Arithmetic

inherently serial in the manner in which it performs the population recursion. The
next linear system remains largely unknown until the previous one has been solved.
Lastly, such an approach is not consistent with the efficient parallel programming ap-
proach, which aims to maximise the processor utilisation throughout the system.

One could argue that using a precomputed list of candidate moduli is impossible in our
case, as the moduli's magnitudes depend on the model's arithmetic qualities. This is
true, however one could produce such a list for models that contain typical delay times,
service demands as those encountered in practice. Such an approach would be benefi-
cial when dealing with a wide gamut of networks. However, on bigger models it may be
impossible to use only precomputed moduli; some of them may need to be computed
during the runtime.

For the above reasons, the most efficient strategy in our case is to try to select as many moduli
with equal magnitude as the number of processing cores; this approach minimises the number of linear
systems that need to be solved in parallel and maximises the percentage of runtime in which the pro-
cessors are doing useful work.

In theory, this strategy would scale ad infinitum if the necessary primality tests that need to be
performed for each candidate prime modulo were fast. In reality, the time needed for such tests when
using Java's arbitrary large prime generator does not scale well enough for increasing desired length of
the primes, as it can be seen in Fig. 4 (p. 41). Therefore, an adaptation of this strategy is performed
when dealing with very large models:

Suppose that the parallel code is running on n different processors. Then, our fist approach is

to select moduli with bit length of approximately b=
⌈log2 M threshold  ⌉

n
. However, this bit length b can

be quite large in some cases; the maximum limit for b in our case based from implementation testing
and benchmarking was set at 2.500 bytes. If the calculated b value is above that, we are forced to
choose between two options:

• A first approach could be to disregard the maximum limit and select arbitrarily large
moduli. This is not the preferable approach, as the amount of time needed to select a
prime number of a given size quickly grows in comparison to its bit length, as the prim -
ality tests can be expensive to perform, as presented in Fig. 4.

40

Section 6.3 : Building the Method

Following this approach may lead us on losing too much time on the moduli selection
operation; therefore, this strategy may not lead to the best result in all cases.

• Thus, a different “divide and conquer”-like approach could be tried. For example, we

could start with an initial pair of 〈b0, n0 〉=〈 ⌈ log2 M threshold 
n ⌉ , n〉 , where n the num-

ber of initially desired moduli (number of processors), and at each iteration set:

〈bi1 , ni1 〉=〈 ⌈b i

2 ⌉ ,2n 〉 , i=0,1, 2, ... ,

until bk≤bthreshold , where b threshold=2,500 in our case. The total number of moduli se-
lected will be s=nk . This approach minimises the amount of time needed to select the
moduli but produces, at the same time, more in number yet simpler residual linear sys-
tems. From experimental results it is verified that this approach and the bit length
threshold value of 2.500 may produce better results in practice, even if each CPU core
maybe required to solve more than one residual linear systems per iteration.

One could further reduce the b threshold value, in order to select smaller moduli or even moduli
fitting within the computer's word size. However, using so small moduli does not yield improved res-
ults, as the amount of residual linear systems that must be solved in such cases becomes very large.

This adapted version can make a more efficient use of processor caches and memory buses as
well, as the maximum numbers existing in the linear system are bounded by the respective modulo.
Thus, a lower modulo results in lower numbers, thus in simpler systems.

Example

In the previous step we had calculated the desired minimum product of moduli as equal to

M threshold≃4.56⋅1011 . Let us suppose that we want to produce two residual systems, i.e. we want to se-

41

Fig. 4 : Modulo selection time vs. its bit size. We
can verify the high growth rate of the selection
time as the desired bit size increases. The exact se-
lection time in not of interest, as it was determined
on a different machine than the testing host.

0 1000 2000 3000 4000 5000 6000

0

50

100

150

200

250

300

Modulo Bit Size

S
e

le
ct

io
n

 T
im

e
 (

se
c)

Chapter 6: Solution of Linear Systems using Modular Arithmetic

lect two moduli. Two good prime candidates are m1=755,239 and m2=1,942,111 , where

m1 m2≃1.47⋅1012 . Both moduli are far below the bit length threshold which would cause us to per-
form the iterations of the adapted strategy and select 4 or more moduli.

What we can see from this example is that even though we were initially considering a linear
system where 11 digits were needed to evaluate the model, we have now reduced it to two systems
which only need 6 and 7 digits, respectively.

Even though the two moduli m1 and m2 may seem very large compared to the ones contained
in the linear system, however the reader must take into account that the modulo selection strategy is
tailored towards efficient support of the MoM algorithm. In this algorithm, the numbers encountered
in the vector b grow exponentially after every invocation; selecting so big moduli is therefore a good
strategy in practice.

 6.3.c Step 3: Linear System Sanitisation

One important and necessary step of the solution process is the Linear System Sanitisation. By
this we mean a set of methods, rules and techniques which are applied to the initial linear system to
transform it to a new one, in which all elements can be computed using simple adaptations of the usual
techniques. This particular step is independent of the use of modular arithmetic; it may be beneficial to
apply similar techniques even if one wants to perform a simple serial solution of the linear system.

Therefore, Linear System Sanitisation detaches MoM from the core part of the solver. It enables
the easy integration of other solution core algorithms than Gaussian Elimination in the future, without
the need for the designer to deal with the technicalities of an ill-conditioned linear system. It also ad-
heres to a key high performance computing: when facing a design trade-off, one should be concerned
with making the common case more efficient instead of adapting the design to handle unusual situ-
ations in the same layer, thus making common cases slower. In our case, detaching the two parts of the
sanitiser and the solver allows each of them to become efficient in its own right.

It also has to be noted that this approach is not encountered in literature, however it is intuit -
ive, it can be merged without many modifications with the rest of the procedure and it can be very use-
ful in practice.

In short, what this part does is to process the initial n×n matrix A and the n -element vec-
tor b and return a new matrix A ' and a new vector b ' . The dimensions of A ' are m×l , where

l≤m≤n , whereas the length of b ' is m .

The transformation of A and b to A ' and b ' can be described using the following steps:

1. Remove all indeterminable elements of b and the corresponding rows of A .

This is necessary as each row of A and b defines a weighted summation of un-
knowns. If the respective element of b is indeterminable, then this equation can be
completely dropped from the linear system.

2. On the edited matrix, remove all zero-colums, i.e. columns that contain only zero ele-
ments. Mark the respective unknowns in the solution vector x as indeterminable.

The removal of rows may seem to create more indeterminable unknowns than those of
the initial system. However, this is not true; the values of these unknowns cannot be de-
termined in any way.

This approach of row removals decreases the size of the initial system, therefore reducing the
amount of operations required to solve it.

There are several repercussions that needed to be considered during the design and imple-

42

Section 6.3 : Building the Method

mentation phase of the project. First of all, the algorithm may produce a new matrix A ' that is not
square. In such a case:

3. If ml the solution of the linear system cannot proceed due to singularity. Several
means of recovery from such cases are documented in [3].

4. If m≥l then the matrix has row rank, i.e. number of linearly independent rows, that is
less than l :

rank A ' ≤l (6.3.10)

To continue from this point onwards, one could consider leaving the matrix as it is, in a
non-square shape, and adapt all methods used in the rest of the solution process to
work on such non-square matrices. Of course, the total cost of operations during the
system solution remains O n3  . However, this choice raises two important issues: the
adaptation of Gaussian Elimination to operate satisfactory in non-square matrices and,
primarily, the definition of a concept similar to the determinant on non-square
matrices. It is known that the determinant is defined only on square matrices and its
value and sign evaluation are interwoven with the solution of linear systems using
modular arithmetic.

Example

Recall the initial linear system (6.3.1):

Ax=b⇒ [
6 0 0 −3 0 0 1
0 0 3 2 0 0 8
−1 2 0 0 0 0 0
0 −2 0 7 0 0 4
0 0 5 3 −1 0 0
3 7 12 0 0 0 0
0 1 2 0 0 0 1

]⋅x=[
27
18
⋅
11
⋅

101
13
]

1. At first we observe that the 3rd and the 5th rows must be removed from the system:

A '=[
6 0 0 −3 0 0 1
0 0 3 2 0 0 8
0 −2 0 7 0 0 4
3 7 12 0 0 0 0
0 1 2 0 0 0 1

] b '=[
27
18
11
101
13
]

2. We remove the 5th and 6th columns of A ' , as they contain only zero vectors. By this
step we know that the 5th and 6th elements of the solution vector x will be indetermin-
able:

A '=[
6 0 0 −3 1
0 0 3 2 8
0 −2 0 7 4
3 7 12 0 0
0 1 2 0 1

] b '=[
27
18
11
101
13
] x=[

?
?
?
?
⋅
⋅
?
]

In the solution vector x we denote by “ ⋅ ” a definitely indeterminable element,

43

Chapter 6: Solution of Linear Systems using Modular Arithmetic

whereas by “ ? ” one that may or may not be determinable. If the row rank of A ' is
equal to its number of columns, then all “ ? ” will be able to be computed; however, we
do not check this condition.

3. Not applicable as m=l=5 in our case.

4. The matrix A ' is square, but this is just a coincidence. If the 3rd element of the initial
vector b was not indeterminable, then we would not have received a square matrix in
this step.

 6.3.d Step 4: Formulating residual systems of equations

During this step we produce s new linear systems, one for each selected modulo m1, …, ms .
These new linear system are named residual linear systems. More specifically, for each modulo mk a
new residual matrix Ak is calculated, where every element ak  i , j  of it is evaluated as:

ak  i , j =a  i , j  mod mk (6.3.11)

where a  i , j  is the respective element of the matrix A ' resulting from the previous step. A

similar definition is used for the residual vector bk :

bk  i =b  i  mod mk (6.3.12)

where b  i  is the ith element of the vector b ' of the previous step.

From a design point of view, there are two important factors that influence the efficiency of the
algorithm in practice:

1. The specific behaviour of the modulo operation used when evaluating negative ele-
ments.

Let us consider the modulo operation using as dividend a number x∈ℝ− and as di-
visor a number n∈ℕ∗ . If we use the Euclidean definition of modulo, which does not
allow for negative results, then the following property holds:

x mod n=nx mod n ,

where nx≤n . This has the consequence that if x is a relatively small number com-
pared to n , then after the modulo operation it becomes comparable to n . As it has
been already discussed, the common case for MoM is for the matrix A to contain
small negative numbers; if the modulo operation does not allow for negative results,
then these small numbers are mapped to much greater ones. This is inefficient, as the
time needed for arithmetic operations on such numbers is influenced by the numbers'
length.

On the other hand, if one uses the definition of modulo that allows for negative num-
bers, then the magnitude of a negative element does not increase. Consider this defini-
tion using x as dividend and n as divisor, where x , n the same as above. In this case
the following property holds:

x mod n=−[−x mod n]

It can be seen that in this case the result has the same magnitude as x . This greatly in-
fluences the total procedure's runtime, especially during the next step, which is the
solution of the residual systems. It is important to note however that one can use

44

Section 6.3 : Building the Method

whichever definition preferable for the modulo; the algorithm can be easily adapted in
order to produce correct results in any case.

Lastly, one has to consider that the definition of the modulo operation used can influ-
ence the efficiency and optimality of the moduli selection strategy used in Step 2 (6.3.b,
p. 38).

2. If the modulo definition allowing negative results is used and the minimum selected
modulo mmin=min m1, m2, …, ms  satisfies the following property:

mminM A  ,

then for any matrix A produced during MoM's iterations the residual elements of
matrix A need not be computed in any case. That is because their values do not
change with respect to the exact modulo mk or even the modulo operation itself. Such

a strategy allows one to perform O  s n2  operations less during each MoM iteration,
where s the number of selected moduli.

Example

In a previous step we selected as moduli m1=755,239 and m2=1,942,111 .

• If the negative definition of the modulo is used, then the residual matrices A1 and A2
are the same as in the previous step:

A1=A2=[
6 0 0 −3 1
0 0 3 2 8
0 −2 0 7 4
3 7 12 0 0
0 1 2 0 1

] ,

whereas the residual vectors b1 and b2 coincidentally remain the same as the previ-

ous b ' :

b1=b2=[
27
18
11
101
13
]

This coincidence means that in this particular case the usage of modular arithmetic
does not provide any meaningful performance gain, as the residual systems are as com-
plex as the initial one. However, this should not be considered a problem; this process
has been optimised with the objective of solving the entire series of MoM iterations as
fast as possible and not with the objective of solving a single stand-alone linear system
as fast as possible. In order to do so, one should select new moduli during every MoM it-
eration. Such an approach was tested and found to impose a severe overhead for each
iteration. The total runtime for all iterations was much greater on the computing sys-
tem architecture targeted by MoM.

• If the Euclidean definition of the modulo operation is used, which only allows non-neg-
ative results, the residual matrix A1 becomes:

45

Chapter 6: Solution of Linear Systems using Modular Arithmetic

A1=[
6 0 0 755236 1
0 0 3 2 8
0 755237 0 7 4
3 7 12 0 0
0 1 2 0 1

]
It is now evident that usage of the usual Euclidean definition of modulo can make the
solution process much more complex, as the residual matrix Ak may contain much
bigger elements than before. Calculations between larger values are more expensive
computationally.

 6.3.e Step 5: Solving the residual systems

At this point, each one of the k linear systems must be solved. In general, one could use sever-
al different solution techniques, such as Gaussian Elimination or LU Decomposition. For this project,
implementation using Gaussian Elimination was preferred, as the Project mainly focused on the re-
search regarding linear system solution using residual systems. Depending on the specific problem, a
reader attempting to apply this solution technique at a different problem in the future may prefer the
usage of a different method depending on the problem requirements, the hardware architecture and
the impact of possible optimisations.

At this step, two operations must be completed:

1. The algorithm should attempt to calculate the value of each unknown of the residual
solutions vector xk , where Ak xk=bk .

Gaussian Elimination can be applied to calculate the values of the unknowns, however
one needs to be cautious as the matrix Ak may not be square. Therefore, during each
iteration of Gaussian Elimination one must eliminate all rows of the matrix. Of course,
the resulting matrix if the operation succeeds will not be upper triangular, as is the case
with normal Gaussian Elimination. It will contain an upper triangular matrix on the up-
per part and some rows that will be full of zeros (eliminated elements), except the last
column. This way one can calculate the values of all unknown elements, unless the mat-
rix is singular.

2. The algorithm should also attempt to calculate the residual determinant d k of Ak .

There is an important consideration here: one can easily evaluate the determinant of a
square triangular matrix using O n  operations, as the product of the diagonal ele-
ments; however, if the matrix is not even square, how can one define the concept of a
determinant? Furthermore, even if one defined a determinant, how could the sign of
this determinant be evaluated?

The reader is reminded that in the simple Gaussian Elimination algorithm on a n×n
square matrix S , the value of the determinant can be computed after the entire pro-
cedure has finished as:

det S =−1 
J [∏

k=1

n

akk] ,

where J is the number of row exchanges performed during the elimination process.

As it has been explained before, a key point that distinguishes the current linear system
solution algorithm to the ones commonly used is the fact that the linear system is ill-
conditioned. The case of modular linear system solvers tackling such systems has not

46

Section 6.3 : Building the Method

been researched enough in practice, as most solvers are able to process only well-
defined, non-singular linear systems. In our case, one can easily end up with a linear
system defined by a non-square matrix. However, an intuitive, simple and fast solution
was found to evaluate the needed residual determinant in such cases.

To begin, one should note that it is not that the matrix Ak needs inherently to be non-
square. It is actually just a simple formalism used to represent a collection of equations
and can be transformed to an equivalent square matrix that defines the same linear
system. The new square matrix will have full row rank, i.e. all its rows will be linearly
independent.

Therefore, we can define for each residual system a canonical form: a canonical l in-
ear system AC⋅x= bC is defined by a square matrix AC which has full rank (i.e. all
rows and all columns are linearly independent) and defines a right-handed coordinate
system in the corresponding Euclidean space with dimension equal to the rank. In such
a case, its determinant is always positive. Using this definition of the canonical linear
system, one can disentangle the exact computation of the residual determinant d k
from the actual residual matrix Ak . Both linear systems, i.e. the one defined by Ak
and the corresponding canonical one, would yield the same results if solved; therefore,
one can introduce an important abstraction:

If we can produce the correct solution vector using any representation of Ak that re-
duces its rank, why not suppose that the system is actually in the canonical form? By
this way, we could keep the results and simply evaluate the determinant. Because we
supposed that the system is canonical, we should expect a positive determinant; if it is
negative, we can just negate it to become positive. This negation can be performed, as it
is equivalent to performing one more row swap on the initial Ak and re-applying
Gaussian Elimination. However, as the results would not change and only the determin-
ant would change sign, we can simply skip the process and just return an always posit -
ive determinant. If it is zero, then the initial linear system cannot be solved.

It is important to clarify that the actual canonical system is never used or calculated, as
it would make the algorithm more complex than possible. However, one could argue
that the process of solving the system is very similar to the one that could be used to
find its canonical form. In any case, it is used only as a theoretical tool, verifying the
correctness of the solution approach and limiting the simplifications one can introduce.

To conclude, after the extended version of Gaussian Elimination is performed on Ak ,
we calculate the determinant using the triangular upper part of it and return its abso-
lute value. So, the “canonical” determinant calculated from a given m× l , m≤ l mat-
rix A k is:

det  Ak =∣∏
i=1

l

aii∣
The followed approach could be made easier to understand if one compared the equi-
valent formal procedure that uses canonical linear systems (Fig. 5) with the actual one
(Fig. 6).

47

Chapter 6: Solution of Linear Systems using Modular Arithmetic

Example

Performing the extended Gaussian Elimination on both residual linear systems leads us to:

48

Fig. 5 : Diagram of procedure to calculate the residual determinant using canonical linear
systems.

Fig. 6 : Diagram of the actual procedure used to calculate the residual determinant using
any linear system.

Section 6.3 : Building the Method

A1=A2=[
6 0 0 −3 1
0 7 12 3/ 2 −1/2
0 0 24 /7 52 /7 27 /7
0 0 0 −9/ 2 37 /8
0 0 0 0 −23/216

] b1=
b2=[

27
175/2

36
−27/ 2

0
]

Using back-substitution we calculate the residual vector of solutions for both systems as:

x1= x2=[
6
5
4
3
0
]

and the canonical determinant as d 1=d 2=69 (no negation is needed).

 6.3.f Step 6: Recombining the Results

By this step, a residual determinant d k and a residual vector of solutions xk has been determ-
ined for each of the k residual systems. However, each solution vector xk of the previous step may
not contain information about all unknowns of the initial linear system produced by MoM; some ele-
ments have been deemed indeterminable in previous steps. This means that at this step, we only need
to process the determinable elements of xk ; the indeterminable unknowns need not be processed at
all.

In order to arrive to the final solution vector x , one must perform the following operations
([21], [26] and [27]):

1. Multiply each element of each solution vector xk by the respective residual determin-
ant d k . This results in new vectors yk .

2. Recombine the s residual determinants d k to obtain the final determinant d , using
any conversion algorithm. If d=0 then the linear system cannot be solved.

3. Recombine the elements that are in the same positions of the s vectors yk , i.e. cor-
respond to the same unknown, to obtain one vector y .

4. Obtain the final vector of solutions x as:

x=
y
d

,

adding information about any uncomputable elements as well.

If conditions (6.2.2), (6.2.3), (6.2.4) and 6.2.5) were respected, then x will satisfy the ini-
tial linear system Ax=b .

Two methods for obtaining a final number f from a set of residue numbers f i are presented:
the single-radix conversion (Algorithm 6.3.1) and the mixed-radix one (Algorithm 6.3.2). The choice of
the recombining algorithm used is very important and can influence design choices made for earlier
steps. Depending on the specific problem one has to solve and the characteristics of the linear systems,
one or the other algorithm can be selected.

49

Chapter 6: Solution of Linear Systems using Modular Arithmetic

Algorithm 6.3.1: Single-Radix Conversion Algorithm

1) Calculate c i= M
mi
 mod−1 mi  for i=1,2,… ,s , where mod−1 the modular

multiplicative inverse operator.
2) Calculate the final number f ~ { f 1, f 2, ... , f s } as:

f =[∑i=1

s

M
mi

c i f i] mod M

Algorithm 6.3.2: Mixed-Radix Conversion Algorithm

1) Calculate c ij=mi mod−1 m j for i , j=1, 2,… ,s , where mod−1 the modular
multiplicative inverse operator.

2) Calculate the following coefficients u1,… ,us :
u1= f 1 mod m1

u2= f 2 – u1  c12 mod m2

u3=[ f 3−u1  c13−u2] c23 mod m3

⋮

us={... [ f s−u0  c1s−u2−...−us−1] cs−1, s } mod ms

3) Calculate the final number f ~ { f 1, f 2, ... , f s } as:

f =u1u2 m1u3 m1 m2...us m1 m2 ... ms−1  mod M

The conversion algorithm must be used to calculate the final determinant and the values of the
determinable unknowns. Both conversion algorithms perform O n2 operations [26], however the
mixed radix conversion algorithm is more applicable to cases where the determinant and the un-
knowns are comparable to the computing system's word size, therefore permitting usage of inexact
arithmetic in this part [26].

On the specific problem of solving the linear systems generated by MoM, usage of inexact float-
ing-point arithmetic is not possible as the solution vector contains normalising constants for different
populations and queues. This means that the final solution can only be computed using exact arithmet-
ic and therefore the application of the Single-Radix Conversion Algorithm using exact arithmetic is ne-
cessary.

Example

In this example, recombination procedure using the Single-Radix Conversion Algorithm will be
presented:

1. We know from the previous step that x1= x2=[
6
5
4
3
0
] and d k=69 . Therefore, we obtain:

50

Section 6.3 : Building the Method

y1= y2=d i x i=[
414
345
276
207
0
]

2. We will now use the Single-Radix Conversion Algorithm to obtain d from d k . Calcula-
tions are omitted as they involve large numbers, however the final result is d=69 .

3. Recombining all yk vectors, dividing by d=69 and reinserting the indeterminable
vector elements which had been omitted during the system sanitisation step leads us to
the following solution:

x=[
6
5
4
3
⋅
⋅
0
]

One can easily verify that the above x verifies the initial linear system Ax=b .

 6 .4 . Theoretical Properties of the Algorithm

It is important to discuss several results regarding the effects of limiting the maximum modulo
length, the scalability of the algorithm and its complexity from a theoretical viewpoint, before proceed-
ing with the implementation.

 6.4.a Maximum Number of Moduli

As it has been already presented in section 6.3.b, it is not beneficial to select infinitely large
moduli. In practice, we limit the maximum length at b threshold=2,500 . Imagine now that the initial de-
sired length of each modulo is just above that threshold level, for example it is b threshold1 . This would
mean that our algorithm will double the number of selected moduli and halve their length, which
would become:

⌈ b threshold1

2 ⌉=1,251

in this case. One could claim that not enough primes exist with such bit length; therefore their
product may not be able to be larger than M threshold , thus causing the procedure to fail.

It is important to investigate what is the maximum M threshold value that is feasible in such
worst cases by the current algorithm. To achieve this we can use the prime bounding function π  x  ,
which gives the number of primes less than or equal to x . Several approximate formulas exist for this
function, however one does not need a closed expression; π  x  has been bounded in [32] as:

L  x =
x

ln  x  1 1
ln  x  π  x 

x
ln  x  1 1

ln  x 


2.51

ln 2  x  =U  x 

51

Chapter 6: Solution of Linear Systems using Modular Arithmetic

The above bound holds for x≥355,991 , which is more than enough for our case. We can claim
that when selecting primes according to their bit length b , at least nb primes, where:

nb=L 2b1−1 −U 2b 

must exist with this bit length. The above formula is true for b≥19 . As 2b1 is a composite
number, we can simplify the above formula for nb as:

nb=L 2b1 −U 2b  ,

which can be written as:

nb=
2b1 [ln 2b1 1]

ln 2 2b1 
−

2b [ln 2 2b ln 2b 2.51]
ln3 2b 

Evaluating n1,251 yields n1,251≃2.17⋅10749 . It is clear that this number of moduli (i.e. number
of necessary residual systems) is very far above what computer systems can handle; the limit exists
only in theory and does not impose any practical limitations. This means that in such a worst case, the
bit-length of M threshold would need to be more than 1,251 n1,251≃2.71⋅10752 in order for problems to

begin to appear, which could be immediately alleviated by increasing the b threshold value above 2,500 .

 6.4.b Growth Rate of M threshold

It is very important to examine the rate at which the length of M threshold increases. The rate of
such an increase directly influences the scalability of the algorithm. If we use arbitrarily large moduli, it
defines how fast the bit length of each modulo grows, whereas if we limit the maximum length of the
selected moduli, i.e. if we may select more moduli than the number of available processors in some
cases then the rate of increase defines the rate at which we should increase the number of processing
cores in order to maintain the same efficiency as the problem size increases.

The problem size is defined, as far as the modular linear system solver is concerned, by the or -
der of the linear system; we will see in the next Chapter 8, where the experimental results are presen-
ted and discussed, that the same is true for the performance of the MoM algorithm as a whole: the total
runtime depends primarily upon the order of the produced linear system.

M threshold Is given by eq. (6.3.8):

M threshold=2max { nn /2 [Dmax M  m R ]
n
,

n2  n−1   n−1/2 [Dmax M  mR ]
n−1

[Dmax M  m R ]2N ⌈ log2 D max  NMR   ⌉}
We will study the length of its binary representation with regard to n . We can define this

length as:

l threshold=⌈ log2  M threshold  ⌉
Applying the logarithmic operator and disregarding the constant terms leads us to the follow-

ing result, where n the exact order of the linear system and not the order's representation:

l threshold=O n log n   (6.4.1)

52

Section 6.4 : Theoretical Properties of the Algorithm

 6.4.c Complexity

The asymptotic computational cost of the linear system solution algorithm using modular
arithmetic remains the same. We are primarily interested in the number of operations performed. We
will ignore the cost of primality testing, both for simplicity and because modern primality tests are of
polynomial complexity (i.e. the AKS Primality Test [33], which runs in O ln 6ε  p   [34], or even

O ln 4ε  p   [35], where p the exact number to be tested). This means that their complexity may be
able to be reduced further in the future.

 This means that the most complex operation that needs to be performed by the Linear System
solver presented in this chapter is the Gaussian Elimination, which can be performed using O n3  op-
erations where n the linear system order. Therefore, the core complexity of this algorithm remains
the same as the simple serial one, even though constants may vary.

The space requirements of the parallel linear system solver are linearly related to the number
of residual systems. For example, if s residual systems are formed, the total space requirement will be:

  s1 O n2 =O n2 

53

 7 . Implementation

In this chapter, the specific architecture, design and implementation and verification of the
program built as part of this project is presented. It is important to note that much effort has been put
in producing a clean, modular design adhering to good software engineering practice. This was neces-
sary not only for theoretical design purposes; the amount of work needed in order to test the different
implementation options of each version of the Method of Moments algorithm and to produce an effi-
cient implementation far surpasses the amount of work corresponding to an MSc project. Therefore,
the design and the approach used in every part must be thoroughly documented in a general al-
gorithmic level, in a more implementation-oriented level and, lastly, in code level.

 7 .1 . Main Features

The main features of the implemented program are the following:

• Ability to process queueing network model files adhering to a common format.

• Evaluation of the queueing network model using Convolution, RECAL of Method of Mo-
ments.

• Fast non-recursive implementation of RECAL.

• Ability to use two solvers in conjunction with the MoM algorithm: the single-threaded
simple solver and the multi-threaded modular one. The application can automatically
select the best one to solve a particular queueing network.

• Evaluation of performance indices, such as mean throughput of a class r (X r), and
mean class r queue length for queues of type k (Q kr).

• The user is able to define the number of threads used is the case of the parallel MoM
solver.

• Output of time and memory requirements of processing a queueing network model.

• Implementation of an API (application programming interface) in order to assist integ-
ration with JMVA

 7.1.a Use-Case Scenarios

Several use-case scenarios were considered for the formulation of the program's specifications
and the selection of the most important features to implement:

• “User A” may need to evaluate the queueing network model using MoM on a computer
with inadequate installed RAM. He/She would like to be able to complete the perform-
ance evaluation using a non-parallel solver, that has lower memory usage. This user can
be both a human (command-line) user or another program taking advantage of the
provided API.

• “User B” may want to evaluate a queueing network model on a computer which sup-
ports the “Hyper-Threading” technology. He/She would like to be able to tune the
number of threads used in order to reduce the competition between threads for the fi-
nite CPU and memory bandwidth resources. This user can be both a human user or an-
other program.

55

Chapter 7: Implementation

• “User C” may need to process fast many very simple networks, where Convolution and
RECAL algorithms can achieve superior performance than MoM. This user can only be a
human.

 7 .2. Abstract Architecture

As it has already been noted, the basic service this implementation provides is the evaluation of
performance indices, such as the mean queue lengths Q and the mean throughputs X of a specific
queueing network model. Several different algorithms and customisations are available for the user to
select, however the final results are the same in all cases.

The operations taking place in the system during a typical usage scenario are the following, in
the order they are performed:

1. Launching of the main control process and recognition of the users' input, i.e. the com-
mand line arguments, or an API-initiated call from JMVA and recognition of the argu-
ments passed by JMVA.

2. Initialisation of the requested solver using the possible settings specified by the user.

3. Parsing of the specified queueing network model file and loading of it in memory, if no
syntax or other errors are encountered.

4. Calculation of the normalising constant G for the queueing network model. The nor-
malising constant is then stored as a property in the model's representation in memory.

5. Calculation of the performance indices for the queueing network model. The perform-
ance indices are then stored in the model's representation in memory as well.

6. Termination of the process after all results have been printed.

Each one of the above top-level operations of the queueing network evaluator are performed by
one or more subsystems. Several more subsystems exist as well, to support non component-specific op-
erations used widely. In general, each subsystem depends only on subsystems of lower levels, thus elim-
inating circular dependencies, i.e. cases where a system depends on its subsystem from an operation
and the subsystem depends on the upper level system for another operation. It is best to avoid writing
code that contains such dependencies, as they reduce the code maintainability and the ease at which
improvements and modifications can be applied. The main systems forming the core part of the design
and architecture are represented in Fig. 7.

The Control subsystem is responsible for recognising the user's input and calling and initial-

56

Fig. 7 : Main systems composing the implementation

Section 7.2 : Abstract Architecture

ising the other subsystems in the correct order and using the correct arguments. Furthermore, it
defines an API the JMVA application can use to “view” the current implementation as a queueing net-
work solver, with similar operation and usage as the existing ones. To be more specific, the Control
system is responsible for performing operation 1 of the above list and initiating operations 2, 4, 5 and 6.
Its role is mostly “administrative”, however it is fundamental for the correct communication with the
user, which can be a human or another application.

The Queueing Network Model component is responsible for parsing a model description
from an input file and for storing the queueing model representation in memory. Furthermore, it
provides stable interfaces for the other components to read and set model properties and values. Lastly,
it can perform some basic tasks on the model, such as calculation of a maximum limit Gmax for its nor-
malising constant. It performs operation 3 and it supports operations 4 and 5. The role of this compon-
ent is very important, as it abstracts the actual model representation in memory and the actual input
file syntax from the rest of the implementation. Thus, if one wanted to provide support for different in-
put files, only this part of the implementation needs to be modified and tested.

The Abstract Solver component is responsible for computing the normalising constant of a
queueing network model and for computing its performance indices, i.e. the mean throughputs and the
mean queue lengths. The abstract solver can use many different algorithms to evaluate a model and can
use other components, which are not shown in Fig. 7. Essentially, it performs operations 4 and 5.

The Exceptions component supports the Abstract Solver and the Queueing Network
Model components by providing Exception objects that are contains meaningful messages for the
user, shall an error occur during any of the above operations.

 7 .3 . Actual Code Design

The final implementation consists of more than 5,000 lines written in Java 6. The code is split
among 29 Java classes. This makes it a relatively complex application, therefore it was tried to keep a
simple design and maximise code re-use and abstractions. This is hoped to assist further contributions,
in order to produce an even more complete tool.

A graphical overview of the implementation's structure is given in Fig. 8. On the topmost level,
the source code is organised in 6 Java packages:

1. The Control package, which contains the Main class and is responsible to interpret the
user's input and calling the other subsystems appropriately. It implements the Control
component of Fig. 7. This package also contains the code that auto-selects the most ap-
plicable MoM version depending on the model details, as well as an a control class
which can be used as an API by the JMVA or another program. This API allows one to
call the MoM algorithm using the same conventions and operations JMVA uses to call
its existing solvers. This last functionality is very important, as it permits easy integra-
tion of the existing code with JMVA.

2. The DataStructures package, which contains classes defining objects that are used to
represent several of the data structures used throughout the program. Examples of
such objects are the queueing network models, a class defining arbitrarily long rational
numbers etc. Its classes support the operations of both the Abstract Solver and the
Queueing Network Model components of Fig. 7.

3. The Exceptions package, the classes defined in which are used to enhance the excep-
tion handling of the code and to provide meaningful error messages to the user, should
an error occur. It corresponds to the Exceptions subsystems of Fig. 7.

57

Chapter 7: Implementation

58

Fig. 8 : Structural diagram of the different packages, classes and their dependencies. We can verify that
the code does not contain any tangled classes or circular dependencies, which can greatly hinder main-
tainability and code re-use. The diagram was produced using STAN.

Section 7.3 : Actual Code Design

4. The LinearSystem package, which contains classes that implement the various differ-
ent solvers of linear systems Ax=b . The objects of this package are only needed
when the user selects the Method of Moments algorithm to evaluate the system. Tasks
that are part of a linear system solver but can be implemented in parallel are contained
in this package as distinct special objects. This package supports the operations of the
Abstract Solver component of Fig. 7.

5. The QueueingNet package, containing classes implementing three distinct algorithms
to evaluate a queueing network: Convolution, RECAL and MoM. For the case of RECAL
two implementations exist: a simpler implementation using recursive calls and a more
efficient for larger populations non-recursive one. These classes correspond to the Ab-
stract Solver component of Fig. 7. All different solvers implement are designed in
such a way so as to maximise code-sharing. Furthermore, they all implement a common
interface, in order to be handled by the Control package in the same way.

6. The Utilities component, which contains classes implementing functions that are used
throughout the implementation and do not correspond to queueing networks or linear
systems in particular. For example, such methods may include code that performs oper-
ations on or between matrices, code to discover the memory usage and timing routines.
This package supports all other components.

It is important to note that information regarding the function and usage of all classes, variables and
methods have been documented in Javadoc format. This documentation can be found in the source code files of the
implementation.

In the following section more specific details about the classes contained in each of the 6 pack-
ages and optimisation techniques used will be presented.

 7.3.a “Control” Package

The Control package contains the Main class, which is responsible for recognising the user's
arguments and performing the necessary calls to other objects in order to load the input model file into
memory, evaluate it and print the results and some useful statistics about the runtime and memory us-
age. It can also display a message about the program's usage arguments. Furthermore, if called using
particular arguments the Main class supports auto-selecting the best between the parallel of the serial
MoM implementations, depending of the queueing network's characteristics, without the user's inter-
vention. This is a direct application of the implementation characteristics discovered during the experi-
mentation phase.

Furthermore, it contains the MoMSolverDispatcher class. This class allows usage of both the
serial and the parallel Method of Moments algorithms implemented as part of this project by the JMVA
implementation. Integration with JMVA is one of the main technical challenges of this project, there-
fore an interface needed to be implemented which would allow usage of our current solver in the same
way the JMVA implementation uses its existing solver. By integrating the source code of our imple-
mentation with the JMVA code, one would be able to use an MoMSolverDispatcher object to initialise
and solve a queueing network, using the same conventions, notation and method names as the other
JMVA solvers contained in the jmt.analytical package of the JMT course code.

The MoMSolverDispatcher class contains a constructor, where the user needs to specify the
number of classes and the total population. The rest details of the queueing network as well as the de-
sired number of threads are passed using the input(...) method, following the convention used by
JMVA. Finally, invoking the solve(...) method will result in the network's evaluation. The user is then
able to access the computed results (normalising constant and performance indices) using available
getter and setters, which return the values in the format required by JMVA for all solvers. The usage of
the MoMSolverDispatcher object is presented graphically in Fig. 9.

59

Chapter 7: Implementation

 7.3.b “DataStructures” Package

The DataStructures package contains 6 classes, which are used represent data the rest of the
program works on as objects. This design approach was chosen in order to provided more abstract code
to solve each problem, be it a linear system solution or a queueing network evaluation. This allows the
code contained in the other packages to function in a very high level, similar to the one that appears in
the relevant chapters 5, “Product Form Queueing Network Algorithms” and 6, “Solution of Linear Sys-
tems using Modular Arithmetic”.

The following classes are contained as part of this package:

BigRational

The BigRational class is used to support all exact computations throughout the program. A
special such class was deemed necessary, as the normalising constants are, in general, much bigger than
the computer's word size and the maximum numbers representable by single or double precision float-
ing point arithmetic. Furthermore, even if the normalising constants were smaller, the MoM algorithm
would be unable to function using floating point arithmetic; errors introduced could propagate and
lead to incorrect results, as it is an inherently arithmetically unstable algorithm.

Therefore, the BigRational class was implemented. It is able to represent arbitrarily large ra-
tional number, by storing them internally as fractions of arbitrarily long integers. All usual arithmetical
and logical operations are supported, such as addition, subtraction, multiplication, division, negation,
inversion, the two definitions of modulo and comparisons. Much effort has been but in optimising this
library and performing an operation only if it is absolutely necessary. For example, if an operand is
equal to zero then any multiplication need not be performed; this increases the throughput of opera -
tions per second, as the time needed for a multiplication is sufficiently greater than the one needed for
a comparison with zero.

Due to the fact that Java does not support Operator Overloading, usage of this class for arith-
metic operations may force the programmer to adapt its source code. This is however a restriction of
the programming language and not of this implementation. To ease the effects of this restriction, effort

60

Fig. 9 : The MoMSolverDispatcher series of operations to invoke the
MoMSolver. These operations must be used by an external program
that makes use of the implemented API.

Section 7.3 : Actual Code Design

has been put in using a very similar interface to Java's own implementation of arbitrary length arith-
metic, namely the BigInteger and BigDecimal classes. The BigDecimal could not be used in place of

our BigRational, as it cannot represent periodic numbers such as
1
3

.

EnhancedVector

The EnhancedVector class was built to extend the ArrayList<Integer> class with the addi-
tion of many useful methods for operations usually encountered when implementing the various al-
gorithms that evaluate a queueing network. Such methods include easy generation of new Enhanced-
Vector from the queueing network stored in memory, ability to find the maximum and minimum ele -
ments easily and ability to perform arithmetic operations between vectors, such as addition. Further-
more, one can easily add or subtract one from a specific element of the vector and then revert this
modifications by calling a specific method; this is a very useful operation in order to efficiently imple -
ment the various recursions and iterations needed in the algorithms.

Lastly, it was chosen to base this class on the ArrayList<Integer> one instead of Vector<In-
teger>, as the Vector class is deprecated in current Java versions.

MultiplicitiesVector and PopulationVector

These two classes are based on the previously described EnhancedVector class and their con-
tribution is primarily in enhancing type checking and promoting verification throughout the imple-
mentation. At an early stage of the implementation, it was recognised that using the same object,
namely the EnhancedVector, to represent both vectors representing populations and vectors repres-
enting queue multiplicities could easily lead a programmer to errors caused by using a semantically
wrong vector at a wrong position. As the Java compiler cannot recognise semantic errors, two new ob -
jects were introduced: the MultiplicitiesVector and the PopulationVector. This way the semantic
difference was reflected in the syntax level and many programming errors were easily discovered dur-
ing compile-time. The importance of this design choice will be made more evident when several optim-
isations introduced in the Convolution and RECAL algorithms are described.

QNModel

The QNModel class contains a complete representation of a queueing network model as well as
all the methods that are necessary to parse the input file and provide to the rest of the implementation
any needed values. This is accomplished by having several “getter” methods, that provide values such
as populations, number of queues, service demands, queue multiplicities and delay times in the appro-
priate object type (i.e. as integers, BigRationals or other data types). Furthermore, it provides several
“setter” methods that allow code using this QNModel to store the computed normalising constant and
performance indices.

Apart from input file parsing and these more administrative tasks, the QNModel class is re-
sponsible to provide estimations for the maximum possible normalising constant Gmax of the model to
any classes that need it.

It was chosen to implement the model representation in an independent class in order to de-
tach the solvers and the operations on a particular model from the specific syntax of the input file or
the representation of it in the memory. Therefore, the current implementation can be easily extended
to support various different input file formats.

Tuple

The Tuple class creates objects representing a 2-tuple. This is used in parts of the program

61

Chapter 7: Implementation

there exists a relation between two specific objects, and these objects may need to be processed in
pairs; an example could be for each Tuple object to represent a 2-dimensional matrix element. The ob-
jects held in each Tuple can be of any type, without this compromising type safety; this is true as Java
Generics have been used.

 7.3.c “Exceptions” Package

The Exceptions package contains 4 classes which extend the Java Exception object. These
classes allow more improved error-handling and more meaningful error messages to the users, should
an error occur. The classes contained are:

IllegalValueInInputFileException

This Exception object is thrown by the input file parser of the DataStructures.QNModel
class if the input file is syntactically correct, however contains illegal values, such as decimal popula-
tions or negative queue multiplicities.

InconsistentLinearSystemException

The InconsistentLinearSystemException is thrown by any linear system solver, when it ar-
rives at a state where it cannot calculate any of the unknowns of the linear system, i.e. all unknowns
have become indeterminable elements or when the sanitised system's determinant in the case of the
parallel modular solver is equal to zero. Furthermore, it is also thrown when normalising constants ne -
cessary to compute the main normalising constant G of the model or its performance indices have be-
come indeterminable.

More details on the specific conditions on which this exception object is thrown can be found
on the presentation of the LinearSystem and QueueingNet packages below.

InputFileParserException

This is an Exception object thrown by the input file parser of the DataStructures.QNModel
class if the input file does not comply to the proper syntax. The correct syntax is presented in p. 95.

InternalErrorException

The InternalErrorException object may be thrown from various other classes, such as the dif-
ferent queueing network evaluation algorithms, the linear system solvers, the EnhancedVector im-
plementation or even some utility classes. This exception object has the meaning that something that
the program has reached an illegal state from which it cannot recover.

An InternalErrorException object can reflect a hidden bug or inadequate handling of a par-
ticular case, that leads to incorrect results. However, it is usually thrown when the MoM algorithm is
used to evaluate a queueing network that is described by a singular matrix; in such cases a different
evaluation algorithm should be used and the exception is not a fault of the implementation.

 7.3.d “LinearSystem” Package

The LinearSystem package contains all classes related to linear system solution algorithms.
These solvers are needed by the MoM algorithm, however they have the ability to function on their
own; this allows simpler integration and testing of new solvers. Two different solvers can be used: the
plain solver which uses Gaussian Elimination and the parallel solver that uses the modular arithmetic
approach described on the previous chapter, “Solution of Linear Systems using Modular Arithmetic”.

62

Section 7.3 : Actual Code Design

During the design and implementation of the solvers, attention was paid in producing good quality
code, with reduced memory footprint and time-complexity; the creation of new objects was kept at a
minimum, as it can slow-down the system a lot. Several classes are contained in this package; we will
now describe the main function, role and relations between them.

SolverInterface

The SolverInterface class defines the interface every linear system solver must support. Sev-
eral basic methods are supported; among others, one can specify the linear system matrices A and b
and request the solution of the linear system.

This interface allows a common the MoM Solver to be agnostic of the specific implementation
of the linear system solver.

Solver

The Solver class implements SolverInterface and includes declarations of several variables
and implementation of methods needed by any other solver, such as timing functions, shut-down
routines etc. However, it cannot solve any linear system; the actual solution code is provided by the
more specific subclasses of the actual solver used.

SimpleSolver

The SimpleSolver object extends the Solver one. It implements a basic solution of the linear
system using Gaussian Elimination. However, even this solver differs substantially from the usual Gaus-
sian Elimination algorithm; this is because it has to solve singular systems and maintain robustness
when encountering indeterminable values and unknowns.

ParallelSolver

The ParallelSolver class extends the Solver one and provides all the necessary declarations
and definitions dealing with different threads, thread pools, shut-down routines and parallelisation.
Any new Solver object that needs to be executed in parallel can rely on the implementation offered by
this class.

ModularSolver

This class implements a part of procedure used to solve linear systems using exact arithmetic,
as it is presented in the previous chapter, “Solution of Linear Systems using Modular Arithmetic”. In
particular, the solver method performs the following two operations during the initialisation phase:

• Evaluation of a lower limit for the product of moduli (M threshold) based on information
about the maximum anticipated matrix elements and the maximum normalising con-
stant values provided by the MoM Solver.

• Selection of the best applicable moduli by taking into account M threshold and the num-
ber of parallel threads requested by the user. The maximum bit-size of the modulo is
limited and cannot be more than 2.500 bits; each modulo's size is derived using the iter-
ative procedure presented in Section 6.3.b (p. 38). Afterwards, the selection is per-
formed in parallel to reduce runtime, by invoking ModuloSelectionTask objects. The
selection of moduli is performed only once per MoM invocation. Due to the fact that
the modulo size is related to the magnitude of the integer in the system, which grows
linearly from iteration to iteration, the moduli size would need to grow as well. Experi-
mentation has proven that it is beneficial to perform the moduli selection only once

63

Chapter 7: Implementation

per MoM iteration and not for each particular model, in order to decrease the total
computational cost.

After the solver has been initialised, a solution of the liner system can be requested using the
solve(...) method. In order to solve the system, the solver takes advantage of several important theor-
etical properties than can speed up the process and reduce memory usage. This will be explained as the
actions needed to solve the system are presented:

• Firstly, the solver must check if the b vector provided contains exclusively indeterm-
inable values. This would mean that in principle, the linear system is void and contains
no meaningful equations; if this is true, then solution cannot proceed.

• Secondly, system sanitisation is performed using the methods presented in the previous
chapter.

• Thirdly, the solver needs to instantiate the different residual systems that need to be
solved. The residual representation of matrix A is the same between all different mod-
uli if each modulo is greater than the maximum absolute element of A and the mod-
ulo operation allowing negative results is used. Therefore, the calculation of the resid-
ual matrix can be performed only once for all residual systems and the number of ne-
cessary operations is reduces. This is not true for the residual representations of the far
smaller vector b , which must be calculated normally.

• The next step is to produce as many instances of residual system solver objects, i.e. ob-
jects of type ModularSolverParallelTask. Each such object can solve a residual linear
system independently and return the canonical residual determinant and the residual
values of the unknowns. In order to maximise efficiency, a static pool of threads, by de -
fault one per processing core, is used for all solver invocations. If the number of resid-
ual systems than need to be solved is greater than the number of cores, then no more
residual systems than the number of cores are evaluated at a given time. This approach
reduces memory bus congestion and cache competition between the different threads.

• Finally, the results are recombined using the Single-Radix Conversion Algorithm and
returned to the caller of the solve(...) method.

ModularSolverParallelTask

The ModularSolverParallelTask object is an extension of Java's Callable object. This allows
easy parallelisation using native Java libraries and allows the focus of the programmer to remain on the
problem's parallelisation and not on more “administrative” tasks such as thread “house-keeping” and
synchronisation.

This class can be prepared to solve a sanitised residual linear system using the prepare(...)
method. Subsequent invocation leads to solution using the Extended Gaussian Elimination algorithm.
After this operation has been performed, the residual values of the determinant and the unknowns are
available to the caller. An InconsistentLinearSystemException object is thrown if the residual de-
terminant is zero.

ModuloSelectionTask

Parallelisation of the modulo selection process is necessary, as it can account for a significant
part of the runtime when evaluating complex models. Therefore, the selection process was parallelised
using the same approach as the previously described ModularSolverParallelTask. One can prepare a
ModuloSelectionTask object using the desired bit-length of the number to prime number; on invoca-
tion, a prime of such length is chosen and returned.

64

Section 7.3 : Actual Code Design

The Java built-in method used to select a prime is probabilistic, but it can guarantee that the
result may be a composite number with probability less than 2−100 . This is sufficient for the require-
ments of this project.

 7.3.e “QueueingNet” Package

The QueueingNet package contains the implementations of the different algorithms to evalu-
ate the performance of a queueing network model. Separation of this implementation from the under-
lying data structures, as well as subclassing, has resulted in clean and high-level code which is inde -
pendent of the actual underlying implementation. As in the case of the “LinearSystem” package,
various different solver object are contained in this package; all object conform to a particular interface
and hide code-sharing through subclassing. The main function and operations of each class will now be
described:

QNSolverInterface

This is an interface every other queueing network solver object must implement. It defines the
way several basic methods have called. For example, among the methods defined is the method that ini-
tiates the computation of a normalising constant G , the method that computes the performance in-
dices (mean throughputs and mean queue lengths) and other methods that print useful statistics about
the needed runtime and memory usage.

QNSolver

The QNSolver object implements the previous interface and declares several variables and
method implementations that are common for all solvers. However, it does not provide any concrete al-
gorithm to evaluate a queueing network or to compute a normalising constant; these are provided by
QNSolver's subclasses.

RecursiveSolver

A RecursiveSolver provides some methods and optimisation infrastructure which is needed
for the case of the Convolution and RECAL algorithms. There are numerous similarities between these
two algorithms. For example, both Convolution and RECAL use the same initial conditions in order to
compute the normalising constant; the reader can refer to p. 20. Therefore, the methods needed to cal-
culate these initial conditions can be shared between the implementations using subclassing. Further-
more, both Convolution and the plain recursive implementation of RECAL may need the value of a par-
ticular normalising constant, i.e. the normalising constant corresponding to a particular population
vector N and multiplicities vector Δ m ,numerous times throughout their execution. Thus, if this con-
stant were to be recalculated every time, the final algorithm would be much slower as many operations
would need to be repeated.

As a result, an efficient infrastructure has been implemented to store every intermediate com-
puted normalising constant. This structure relies on the implementation of Java HashMaps, which are
able to store and recall pairs of a key and a related value. Addition of a new constant and recalling of an
existing one are very fast operations when using HashMaps.

The reader can refer to Fig. 10 in order to understand the exact way in which this store-and-re-
call data structure functions. For example, if one wants to recall the normalising constant G  m2,

N 2  ,

then it must first select the population N 2 at the initial level. The initial level is actually a HashMap
that relates PopulationVector objects to other HashMaps that relate MultiplicitiesVector objects
to normalising constants. Therefore, by selecting N 2 the user can access a set of MultiplicitiesVector

65

Chapter 7: Implementation

objects. At this second level, the user can select the specific vector m2 ; this results in the return of the

desired normalising constant G  m2,
N 2  , if it has been previously computed and stored in this struc-

ture. If the desired population or multiplicities vector cannot be found, this means that this is the first
time evaluation of the corresponding normalising constant is attempted; therefore calculation must be
performed manually using the recursive relation of the algorithm in use, i.e. either the Convolution Ex-
pression or the Population Constraint (see p. 20), until the initial conditions are reached or another
already computed constant is found.

This caching method is used for all computed constants in the case of ConvolutionSolver and
RECALSolver classes. The RECALNonRecursiveSolver class uses the same structure to store the
constants it needs, but it evades the need to store all computed values. The precise way this is per-
formed will be presented below.

ConvolutionSolver and RECALSolver

These two classes extend the RecursiveSolver one and implement queueing network evalu-
ation using the Convolution and RECAL algorithm respectively. Both algorithm are implemented in
their recursive form and use the structure of Fig. 10 to store all constants they compute, greatly speed-
ing up the computation at the cost of increased memory usage.

RECALNonRecursiveSolver

The RECALNonRecursiveSolver class implements the known RECAL algorithm that relies on
the Population Constraint expression. However, instead of evaluating the final normalising constant re-
cursively starting from the final element and gradually leading to the initial conditions as does RECAL-
Solver, this class evaluates the same constant by evaluating the intermediate constants starting from
the initial conditions and leading to the final desired one. This approach increases the speed of calcula-
tions on large models with delay times and reduces significantly the memory footprint in comparison
with the RECALSolver implementation. This is accomplished as the normalising constants are com-

66

Fig. 10 : Diagram of the structure used to store computed normalising con-
stants by the RecursiveSolver class. To recall G  m2,

N 2  , we select N 2

at the first level and m2 at the second one.

Section 7.3 : Actual Code Design

puted in a specific order, level by level, thus at any time requiring the results of only the immediately
previous recursion level. Essentially, it performs the regular recursion defined by the Population Con-
straint expression backwards. In contrast, the other RECALSolver implementation requires storing
the results of all previous levels, as the constants are not considered in an ordered fashion.

RECALNonRecursiveSolver relies on the structure provided by the RecursiveSolver and
picture in Fig. 10 to store the normalising constants it computes. However, the stored results corres-
ponding to “older” recursion levels are deleted after each new level is completed.

MoMSolver

The MoMSolver class is a direct subclass of the QNSolver one and contains all the imple-
mentation of the MoM algorithm, as described in section “Method of Moments (MoM)”, p. 22. Apart
from the usual solver methods, this class contains an initialisation method, at which the size of the lin-
ear system that describes the queueing network and must be solved at every iteration is calculated and
other variables are initialised. Furthermore, it contains a method used to generate the matrices A and
B used by MoM based on Algorithm 5.4.1. Generation of these matrices can take a substantial amount

of time when evaluating bigger models, therefore an optimisation was introduced:

When the MoM algorithm performs the recursion on the population of a specific class, it is
known that the matrix A for succeeding populations differs only by the addition of 1 at certain matrix
position. These positions are known at the time the matrix for the first population of this particular
class is generated. Therefore, our implementation stores these positions at a list and updates only them
by adding 1 at every iteration. When all populations of this class have been considered, a new set of
matrices A and B must be generated from the beginning. This optimisation increases the speed of
the algorithm, as by using it the cost of generating all matrices A is substantially reduced.

Furthermore, the MoMSolver class writes elements of matrix A by using a special method.
This way, the concrete implementation of the matrix could be easily changed without modifying code
other than this “writer” method. Therefore, introduction of a sparse matrix representation for this
matrix in the future can be quite straightforward, requiring minimal modification of the MoM solver.

Two other important methods contained in this class are the one that computes the normal-
ising constant of the model and the one that computes its performance indices. The normalising con-
stant is computed using Algorithm 5.4.2. The current implementation takes advantage of the optimisa-
tion described above for easy updating of the matrix A . More importantly, the code that computes the
normalising constant is at a high level – close to the one presented in this report as pseudocode – and
can function with any linear system solver that complies with the LinearSystem.SolverInterface
interface class. However, the linear system solver must exhibit the robustness and the ability to deal
with singular systems of the algorithms designed and implemented this project; one cannot simply im-
port a new solver like the ones available in most linear algebra libraries, without modifying its core
heavily.

Lastly, the current class provides a method with can calculate the maximum possible absolute
element of A , given the current model. We have seen that such an estimation is crucial for the selec-
tion of moduli in the case of the parallel modular linear system solver.

 7.3.f “Utilities” Package

The Utilities package contains classes the methods of which perform general operations that
are needed in various parts of the program. Such operations do not have any connection with a particu-
lar queueing network evaluation algorithm or any other feature of the current implementation. Fur-
thermore, they are independent of the rest of the implementation and, therefore, could be immediately
re-used in another program. Three classes are contained:

67

Chapter 7: Implementation

CanonicalMultiplicitiesVectorCalculator

The CanonicalMultiplicitiesVectorCalculator class implements several methods that can
assist in producing an ordered set of vectors by several rules. Vectors of equal length are ordered by the
sum of their elements; if they have the same sum, the one with the leftmost non-zero element is con-
sidered greater.

This method provides a canonical ordering of the vectors. It is useful, because this way one can
consider all vectors summing up to a given number in an ordered manner. This class is being used in
the MoM implementation in order to produce all elements of a basis of moments and to generate
matrices A  N  and B  N  . Furthermore, it is used in the non-recursive implementation of RECAL, in
order to generate the set of vectors that correspond to each iteration.

MiscFunctions

The methods of this class are used in various points of the program, as they support general op -
erations the application of which is not limited to a particular queueing network evaluation algorithm
or linear system solver.

Examples of such operations include calculation of binomial coefficients and factorials, meth-
ods to print 1- or 2-dimensional matrices in various formats, methods to create new arrays of BigRa-
tionals from other arrays containing double precision floating point numbers or integers and methods
to efficiently perform matrix-vector multiplications. Other methods contained in this class allow effi-
cient creation of a matrix copy, i.e. copies of all elements and not a simple copy of the references – us -
ing Native System Calls of Java implemented using the Java Native Interface. This enhances the speed at
which copies of very large size arrays are performed, such as the big sized MoM arrays filled with Bi-
gRational objects, without compromising portability; the Java Virtual Machine is responsible to per-
form the actual native calls. Lastly, there exists a method which can be used to discover the amount of
memory actually in use by the Java Virtual Machine.

Timer

A Timer object can be used to easily time and benchmark any method of a class. The Timer ob-
ject is created and then handled using start() and pause() method calls. When the desired operation
has finished, the interval between all start() and pause() calls can be returned, either in msec or as a
more readable string representing the interval in hours, minutes, seconds and subdivisions.

 7 .4. Testing and Verification

An important part of the implementation process was the testing and verification of the pro-
gram's output. In order to verify that all different algorithms and solvers are working correctly, system-
level testing was performed that involved cross-evaluation of the computed normalising constants and
performance indices for models with varying number of queues, classes, populations and multiplicities.
Furthermore, these results were also compared with other existing reference implementations written
in C, MATLAB and MAPLE.

68

 8 . Experimental Results and Comparison

 8 .1 . Introduction

During the design and implementation phase of this project, there were many details and con-
tradicting approaches that needed to be investigated. The different optimisation techniques needed to
be benchmarked, whereas both the time and space complexity of the different algorithms to evaluate
queueing networks needed to be taken into account for the production of the final result.

In order to be able to quantify the impact of any proposed modification and improvement and
to investigate how theoretically better solutions would measure in the real-life scenarios, a set of differ-
ent queueing network models needed to be created and used. This set of Benchmark Models
should have the following characteristics:

• Some Benchmark Models should be of comparable complexity to the require -
ments of queueing network models of real applications , such as those ex-
amined in [4] and [36].

• Several workload profiles should be defined , corresponding to low, medium
and heavy load for each model. The load is represented by the number of jobs circulat-
ing the system.

• There should exist Benchmark Models inside the test set which can be
evaluated by all different algorithms. This is important, because the established
algorithms other than MoM are usually unable to evaluate models of real-life practical
interest; this is true due to the impractical time and/or space complexity of the re-
spective algorithms.

• Both favourable and unfavourable models should be contained for all al -
gorithms. It can be expected that when comparing so diverse algorithms such as Con-
volution, two implementations of RECAL and two implementations of MoM that use lin-
ear system solvers with difference performance and overheads, one of them cannot be
the optimal choice in terms of speed in all test cases. Such a purpose-built test set could
mislead us in estimating that the “optimal” algorithm would be the best case in all real-
life cases as well, when actually it would be better to obtain a more balanced point of
view.

• Lastly, the selection of the Benchmark Models should be independent of the spe-
cific hardware used to quantify the implementation's behaviour . This is
more beneficial from a research point of view, as some of the algorithms presented as
part of this report can be easily applied in different computing architectures. For ex-
ample, parallelisation can yield quite different results when implemented on a shared
memory multiprocessing environment with congested memory buses and when imple-
mented on a distributed memory parallel architecture [37].

In order to satisfy all these requirements, a set of 48 queueing network models was used. These
models range from R=M=2 to R=M=5 (16 cases); each case can come at three load levels: total
population of 100, 300 or 900 jobs, making a total of 48 cases. Populations are split equally among
classes, with rounding to the nearest integer. Population 100 corresponds to the low load scenario, pop -
ulation 300 to the medium load and population 900 to the high load one. Delay times are set to zero;
this may benefit the runtime of recursive algorithms.

69

Chapter 8: Experimental Results and Comparison

The space covered by all these different models is represented graphically in Fig. 11.

 8 .2. Testing Procedure

The implementation, written on Java 6, was tested and timed at the picard01.doc.ic.ac.uk
machine which has 2 Intel Xeon Processor E5540 (8M Cache, 2.53 GHz, 4 real cores each plus Hyper-
Threading) and 32GB RAM. The operating system was Ubuntu 9.04 with GNU/Linux kernel 2.6.28-15-
generic(x86_64) and the Java Virtual Machine used was Oracle's JVM, Version 6 Update 16. Maximum
runtime limit was set to 1 hour. In order to eliminate the effects of page swapping on the
runtime, the maximum memory available for the JVM was limited to 25 GB . The processes
were run using a non root-privileged user with niceness level (priority level) equal to 0. Other processes
running on the same host simultaneously with the tested program may have influenced the runtime.
Therefore, each test case was run multiple times; this led to more consistent results. In order to evalu-
ate the performance of the parallel implementation of MoM, instances using 2, 4 and 8 threads were ex-
amined. Unless declared otherwise, the time to evaluate a single model corresponds to the time interval
starting from the moment the queueing model description input file is loaded in memory to the mo-
ment all performance indices, i.e. mean throughputs and mean queue lengths, are calculated.

 8 .3. Results and Comments

Before proceeding with the presentation and commenting of the results, it would be beneficial
to provide the reader with an overview of the models that were able to be solved by each algorithm. In
the following figures 12-15, models that were successfully evaluated within the time and memory con-
straints are represented by green markers, whereas unsuccessful run cases are represented by red
markers. The reader is reminded that in general, the closer the marker is to the far upper right corner
of the diagram, the harder the model is to evaluate.

70

Fig. 11 : Graphical representation of the set of queueing network models
used for evaluation and testing purposes. Each star represents a model - a
total of 48 models are used.

Section 8.3 : Results and Comments

71

Fig. 12: Test-cases evaluated successfully by the Convolution algorithm are
represented in green. We can verify the O  N R complexity of the algorithm,
as fewer models are feasible as the number of classes increases. 42% of the
test-set models are feasible.

Fig. 13: This figure represents the same as Fig. 12 but for RECAL. The al-
gorithm's O N M  is confirmed, as RECAL can solve models with more
classes than Convolution, but exhibits worse results as M increases. In
total, 46% of the models are feasible.

Chapter 8: Experimental Results and Comparison

72

Fig. 15 : Same as previous figures but for the parallel versions of MoM,
which can all evaluate the same models. The cost of solving complex models

grows by [MR
R R]

3

, which is faster than the rate at which processors are

added. 90% of the total models are feasible.

Fig. 14 : Same as previous figures but for the serial version of MoM. The al-
gorithm is much more efficient than the previous ones. 85% of the models
tested are feasible.

Section 8.3 : Results and Comments

 8.3.a Convolution

As expected, the Convolution algorithm can only be applied on the most simple models. Its
performance quickly degrades as the number of classes or queues increases ; the same
degradation is noticed as the total population increases . This can be explained by its high time and
space asymptotic complexity which is equal to O N R  , where N the total population of jobs.

A key result highlighting the algorithm's prohibitive complexity is the fact that from all the
test-case models, only the ones with 2 classes (R=2) were able to be evaluated within the time and
space constraints for all three load levels. The runtime and the memory usage for the model sets that
could be completely evaluated are presented in the following Fig. 16 And 17.

From the above diagrams becomes evident that the algorithm does not scale well
enough. Even though the total runtime and memory usage for the small models presented in the fig-
ures is very large but not prohibitive, one has to note it grows very fast as more classes are added. For
example, out of the four queueing network models with R=3 are only one can be evaluated without
failure for the case of medium load (N tot=300); high load (N tot=900) fails in all four cases.

 8.3.b RECAL

The performance of the RECAL algorithm is hampered by its high asymptotic complexity, which
is O N M  for both space and time, where N the total population of jobs. Even though RECAL in
general performs better than Convolution, it stil l does not scale sufficiently well . The
runtime is very sensitive to the number of queues M .

Worse than Convolution, RECAL is only able to evaluate within the time and space constraints
all three load cases in only the simplest test-case model, which contains 2 classes and queues (
R=M=2). Convolution is more sensitive to increments in the number of classes, and thus is able to

solve less systems with high number of classes and lower number of queues; in such cases RECAL is bet-
ter, at least for small populations (low and medium load cases).

73

Fig. 16: Total time needed to evaluate model with
2 classes for varying M.

0 200 400 600 800 1000

0

50

100

150

200

250

300

Total Population (N)

R
u

n
tim

e
 (

se
c)

Fig. 17: Total memory usage when evaluate mod-
el with 2 classes for varying M.

0 200 400 600 800 1000

0,0E+0

5,0E+5

1,0E+6

1,5E+6

2,0E+6

2,5E+6

3,0E+6

3,5E+6

4,0E+6

4,5E+6

Total Population (N)

M
e

m
o

ry
 (

kB
)

M = 2 M = 3 M = 4 M = 5

Chapter 8: Experimental Results and Comparison

The runtime and the memory usage for the those models with R=2 and R=3 that could be
evaluated are presented in Fig. 18 and 19 respectively.

 8.3.c Method of Moments

Introduction and Memory Usage

An MoM algorithm is in almost all cases the fastest way to evaluate the queueing net -
works models contained in the Benchmark Set. It is the only algorithm that has not prohibitive time
requirements in order to evaluate the more complex test-cases. Furthermore, the primary computa-
tional advantage of MoM is its low space complexity. Even when the parallel modular linear system
solver is used, which is characterised by higher space requirements that the serial version, the memory
usage does not exceed a few tens of megabytes (MB). This is true even for the most complex of models.
For comparison, the same memory usage on simpler models can exceed some tens of gigabytes (GB)
when one uses.

This difference becomes evident if ones compares the memory requirements of the different al-
gorithms in order to evaluate a low complexity model. This comparison is represented in Fig. 22 (p. 76);
the memory is represented on a logarithmic scale.

The memory usage in the case of the MoM algorithm is mainly related to the size of the
matrices A and B that are used to represent the queueing network. When the parallel solver is used,
one has to store simultaneously in memory as many instances of the matrix A as the number of selec-
ted moduli; However, this does not impact negatively the memory requirements, as the number of mod-
uli is usually limited. For example, one can verify this behaviour by comparing the memory usage of the
various MoM implementations when evaluating the model with R=4 and M=3 for the tree load
(population) levels; this is presented in Fig. 20.

74

Fig. 18: Total time needed to evaluate model with
R=2 classes for varying M. Models that could

cot be computed are not presented. No model with
M=5 was feasible within the test constraints.

0 200 400 600 800 1000

0,1

1

10

100

1000

Total Population (N)

R
u

n
tim

e
 (

se
c)

Fig. 19 : Same as Fig. 18 but for R=3 .

0 200 400 600 800 1000

0,1

1

10

100

1000

10000

Total Population (N)

R
u

n
tim

e
 (

se
c)

M = 2 M = 3 M = 4

Section 8.3 : Results and Comments

Total Runtime results – Parallelisation

Without any doubt, the MoM algorithm in general is the fastest possible algorithm to evaluate
queueing network model. This is reflected by the fact that the parallel MoM implementations are able
to evaluate 43 out of the 48 networks contained in the test set within the 1 hour limit of maximum
runtime; the serial MoM algorithm is able to evaluate 41 of the 48 models.

In order to qualitatively examine the superiority of the MoM algorithm in comparison with the
established ones, one can compare the time needed by all algorithms to evaluate a single, typical, mod-
el. This model must be relatively simple, in order to be able to be evaluated by all algorithms; therefore,
the case where R=4 and M=3 was chosen, with population of N tot=100 jobs (low load level).
The runtime is presented in the following Fig. 21, whereas memory usage for the same case is presented
in Fig. 22; it has to be noted that this model probably brings MoM at a disadvantage, as it is not the typ -
ical case where the MoM or the parallel implementation can exhibit all its efficiency.

75

Fig. 20 : The memory requirements of evaluating
the queueing network model with R=4 and M=3 are
compared. The memory usage is quantised at MB
units.

0 200 400 600 800 1000

0E+0

2E+3

4E+3

6E+3

8E+3

1E+4

1E+4

Serial MoM MoM (2
threads)

MoM (4
threads)

MoM (8
threads)

Total Population (N)

M
e

m
o

ry
 U

sa
g

e
 (

kB
)

Chapter 8: Experimental Results and Comparison

It is very interesting to compare the performance of MoM when using the serial
Gaussian Elimination solver and when using the parallel l inear system solver that uses
modular arithmetic . However, before proceeding with the comparison, there are several details
about the factors that influence the performance of MoM that need to be clarified.

• The primary computationally intensive part of the MoM algorithm, i .e. the part
that most of the runtime is spent, is the linear system solver. For the reader to un-
derstand this better, we present in the following Fig. 23 the breakdown of the total runtime per-
centage in other functions; namely the time needed by the MoM solver itself, the time needed
to select the moduli (if applicable), the time needed to solve the linear systems and the time
needed to perform the matrix-vector multiplication on the right part of eq. (5.4.1):

A  N V  N =B  N V  N− I R

This matrix-vector is necessary in order to obtain the b vector of the linear systems repres-
enting the next population. The queueing network model tested is the one with R=M=4 ,
for all three load cases. Qualitatively similar results are obtainable from any MoM execution.

76

Fig. 21: Total Runtime needed to evaluate a
queueing network with R=4 , M=3 and
N tot=100 . This case shows how faster all MoM

implementations are in comparison with Convolu-
tion and RECAL. Even though RECAL achieves a
good result in this case, it cannot scale efficiently
as the number of jobs increases.

Convolution

RECAL (r)

Serial MoM

MoM (2 threads)

MoM (4 threads)

MoM (8 threads)

0 20 40 60 80 100 120 140

Runtime (sec)

A
lg

o
ri

th
m

Fig. 22: Memory required to evaluate a queueing
network with R=4 , M=3 and N tot=100 .
This case highlights the low space complexity of all
MoM versions.

Convolution

RECAL (r)

Serial MoM

MoM (2 threads)

MoM (4 threads)

MoM (8 threads)

1
E

+
0

1
E

+
1

1
E

+
2

1
E

+
3

1
E

+
4

1
E

+
5

1
E

+
6

1
E

+
7

Memory Usage (kB)

A
lg

o
ri

th
m

Section 8.3 : Results and Comments

As it can be seen in Fig. 23, MoM's runtime is in all cases dominated by the time needed to solve
the linear systems. Other operations, such as the selection of moduli if it happens to be a paral-
lel case or MoM's self time, usually take a little amount of time: in most cases less than 4% and a
few cases between 4-10%.

The reader has to note that throughout the report except Fig. 23, the amount of time needed to select the
moduli in the parallel cases is included in the linear system's solver runtime.

• The total runtime of the serial MoM is almost proportionally related to the
number of jobs circulating the network. This is because the MoM algorithm must solve
one linear system per job and all such linear systems have the same size. The only difference
between them is the magnitude of the values contained in each of them, which grows monoton-
ically as the total number of population considered increases, thus making each subsequent
solution a little bit harder.

The runtime of the parallel MoM exhibits a mild superlinearity as the population increases.
This can be explained when someone considers the modulo selection strategy used, the total
number of moduli selected, the relation of each modulo to the normalising constant and the
specific computational model used for the implementation, in terms of hardware, software and
their inter-operation.

The above can be seen in Fig. 24, where the runtime for each of the MoM implementations
when evaluating all load cases of the same queueing network as before (R=M=4) is presen-
ted.

77

Fig. 23: The runtime percentage breakdown on different sub-operations.
The graph pertains to the model with R=M=4; however, qualitatively similar
results are obtained from any MoM execution.

Serial – N=100

2 threads – N=100

4 threads – N=100

8 threads – N=100

Serial – N=300

2 threads – N=300

4 threads – N=300

8 threads – N=300

Serial – N=900

2 threads – N=900

4 threads – N=900

8 threads – N=900

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

LS only Self MoM Multiplier Moduli Selection

Chapter 8: Experimental Results and Comparison

In Fig. 24 it is seen that in some extreme cases, the parallel implementation may need to solve a
large number of residual systems, resulting in increased runtime when compared to the serial
version. This is only encountered when using a small number of threads; adding more solves
the problem and produces a substantial speedup. It must be noted that this is just an extreme
case and that the average speed-up for all three load cases is higher, as presented in Fig. 26 (p.
80).

• The time complexity of solving a linear system has O n3  asymptotic complexity, where n
the size of the size of the matrix. The same asymptotic complexity is true for the case of the
parallel modular arithmetic solver as well; this is because each of the residual systems solved in
parallel has the same size as the initial one. However, the constant that is multiplied by O n3 
is different and causes the different performance of the parallel and the serial approach.

As it has been presented in section 5.4.b (p. 22), the order of the linear system generated by
MoM for a given network model is equal to:

MR
R R

The orders of the linear systems corresponding to all queueing network models of the test-set
are presented in Fig. 25.

78

Fig. 24 : Total runtime for each MoM implementa-
tion when evaluating the queueing network model
with R=M=4. The 2-threaded version results in a
slowdown in the high load scenario (N=900), as
8 residual linear systems need to be solved in pairs.
The same version selects 4 residual systems for the
medium load case and still manages to be faster
than the simple serial version.

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

Serial MoM
MoM (2
threads)
MoM (4
threads)
MoM (8
threads)

Total Popuation (N)

T
o

ta
l R

u
n

tim
e

 (
se

c)

Section 8.3 : Results and Comments

At this point we will proceed with the performance comparison of the two versions of MoM
based on the experimental results from our test-case set. The cases at which parallelisation is beneficial
will be highlighted, the achieved speedup will be presented and justified and the limits of the imple-
mentation will be explained.

Attainable Speedup - When is the Parallel MoM preferable to the Serial one?

When testing the MoM implementations using the various test models, it was discovered that it
does not exist a single solver configuration that produces the best results in all models. Which al -
gorithm is better clearly depends on the matrix size that corresponds to the model used. For example,
it was discovered that for models small enough that their l inear system size is less than
approximately 120, the parallel implementation is not beneficial at all, as it may result in a slow-
down instead of a speedup. The relation between the average speedup attainable for each matrix size
when using the parallel algorithm with 2, 4 and 8 threads is presented in Fig. 28 below:

79

Fig. 25: The order n of the matrices generated by MoM for each
queueing network model of the test-case. The number of operations re-
quired to solve such a system is O n3  .

Chapter 8: Experimental Results and Comparison

There are many trends and behaviours one should comment:

5. Overall, the performance scales well , both as an average for all threads and in the case of
8-threaded version. In general, it seems preferable to use as many threads as the
maximum number of independent cores of our machine – 8 in our case. The 8-
threaded version performs similarly to the best one for small matrix sizes and is the best one
for large matrix sizes, i.e. with order of more than 140.

6. There exist some superlinearities in the case of the 2-threaded version at matrix size 280, as
well some smaller ones in the case of the 2- and 4-threaded versions for matrix size 630. This
behaviour will be explained in the following section; in short, it is not caused by superlinear
performance of the parallel algorithm but by imperfect scaling of the serial one due to not op -
timal cache memory usage. Superlinear efficiencies of approximately the same magnitude have
been reported in [21] as well.

7. In general, we can see from the diagram of Fig. 26 that the maximum parallelisation efficiency
possible is achieved in the case of the 2- and 4-threaded versions for models within our test set.
This is an important result and it can be speculated that the 8-threaded version should achieve
such efficiency if it was applied on bigger models. Such models however were not included in
our test set, as they would need more than several hours to run, especially in the case of the
serial version. The current test set is more than able to allow us to compare the different ap-
proaches meaningfully.

8. It is verified that the parallel algorithm leads to speed-up in the average case
only for matrix sizes above approximately 1 20. This phenomenon is expected and is
attributed to several factors:

• A first factor to consider is that the parallel solution of a linear system using modular

80

Fig. 26: Average attainable speedup for each matrix size when using the
parallel algorithm with 2, 4 and 8 threads.

0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

2-threads
4-threads
8-threads

Linear System Size

A
ve

ra
g

e
 S

p
e

e
d

u
p

Section 8.3 : Results and Comments

arithmetic is more costly, in terms of total operations performed in all parallel in-
stances, when compared to the initial serial Gaussian Elimination solver; in short,
there exists a parallelisation overhead . This overhead, when combined with the
need to perform context switches in the parallel algorithm may pose a significant dis-
advantage for the parallel implementation, when running on small models. As ex-
amined in chapter 6, the parallel algorithm needs to perform several operations to
solve the system. Firstly, it must evaluate the threshold value for the product of moduli,
M threshold and select as many moduli as required. Secondly, it must calculate the resid-

ual linear systems for each invocation; even though several optimisations have been in-
troduced, as for example the common residual matrix Ak for all moduli, the total time
needed for such operations is not insignificant, especially on simpler, less computation-
ally intensive on the Gaussian Elimination part, models. One should not forget that such
operations should be repeated as many times as the total population. Lastly, the parallel
algorithm must recombine the residual results at every iteration. This is also a not in-
significant cost in smaller models.

• Another point to consider is the moduli selection strategy and, in particular, the
relation between the magnitude of the moduli and the real, unknown un-
til the execution terminates, normalising constant of the queueing net -
work. As it has been highlighted in Section 6.3.b (p. 38), in some cases, depending on
the arithmetic qualities of the model, the algorithm may be forced to select a particular
M threshold value that leads us in the selection of more moduli than available processing

cores. As it is preferred not to evaluate more residual systems than the number of avail -
able cores at a given time due to contention between threads, the linear systems are
solved in sets.

The two above reasons, namely the overhead of parallelisation and the possible need to solve
more linear systems than existing processing cores during every iteration, justify the fact that
usage of the parallel algorithm may not produce a speedup when processing small-size linear
systems.

To summarise, we can claim that the parallel MoM implementation is preferable to the serial
one when used in queueing network models corresponding to MoM linear systems of size greater that
120 . This means that the multi-threaded implementation can assist in reducing the

runtime of all practically interesting cases ; if a model is simple enough to be described by a
matrix smaller than 120×120 , then solving such a linear system can be quite fast even if one used the
serial algorithm. The main conclusion is that parallelisation can reduce the runtime of the most com-
plex cases, were the total benefit can be significant.

Attainable Efficiency

As it has been already presented before, the average speed-up achieved is satisfactory in the
most important test-cases. It would be interesting to investigate the average parallelisation efficiency
MoM attains in comparison with the linear system matrix size. This efficiency is presented in the fol-
lowing Fig. 27:

81

Chapter 8: Experimental Results and Comparison

There are three main observations that can be made from Fig. 27:

1. The main observation is that all parallel versions of MoM are able to scale good
enough in practice . For medium or large complexity models, depending on the particular
case and configuration, they are able to attain efficiency that is close to the ideal value of 1.

2. When comparing the efficiency of the 2-, the 4- and the 8-threaded versions, one could argue
that an implementation gets “saturated” slower when it runs in more threads. By the term “sat-
uration” we define the maximum matrix size, above which the efficiency stops to increase a lot
and, if projected asymptotically, would reach an upper bound. That upper bound in the case of
the 2- and 4-threaded version is near the ideal speedup of 1. The 8-threaded version is expected
to behave similarly if used in more complex models. Such models however fail to run within the
time constraints for the slower serial version (and possibly the parallel ones with less number
of threads) and as a result such an experimentation is out of the scope of this project.

3. A speedup more than the ideal one can be observed at the larger matrix size. This is attributed
on two main factors:

• This last experimental result is based on the runtime result of only one test model. The par-
allel implementations could evaluate both the low and medium load level case for that
model, whereas the serial one could evaluate only the low load level within the testing con-
straints. Therefore, from a statistics perspective, this single result cannot be as representat-
ive as the others of the totality of the test cases and the different models.

• Furthermore, this result and other superlinear phenomena are attributed to the way the
serial MoM algorithm utilises the cache memory. One should understand the way the calcu-
lations are performed by the implementation in low level. Superlinear efficiencies of ap-
proximately the same magnitude have been as well reported in [21], which presents a dis-

82

Fig. 27: Average efficiency achieved for each matrix size when using the
parallel algorithm with 2, 4 and 8 threads

0 100 200 300 400 500 600 700

0

0,2

0,4

0,6

0,8

1

1,2

All threads
2-threads
4-threads
8-threads

Linear System Matrix Size

P
a

ra
lle

lis
a

tio
n

 E
ffi

ci
e

n
cy

Section 8.3 : Results and Comments

tributed memory implementation.

First of all, the serial algorithm does not perform calculations in modulo. This means that
the numbers encountered in each linear system in the serial case can be
quite larger than those encountered in the corresponding parallel case ,
where each number of the residual system is smaller than the respective modulo.

The implications of this observation are more powerful than one would initially estimate: it
is proven that even though the number of steps of Gaussian Elimination are polynomi-
ally bounded, these steps can deal with long operands. In the worst case, the operands
can be of exponential length [38] . This may not be a problem when one is using float-
ing point arithmetic , as in such cases all operands have a maximum representation length,
which is the precision length of the data type. However, when one uses exact arithmetic, as
it is necessary in the case of MoM, the operands can attain this exponential length in the
worst case. This is the main reason behind the speedup achieved by the modular approach
in general; it also means that the efficiency of the modular approach would be limited if we
had to solve linear systems using floating point arithmetic in all cases, as in modern RISC
processors the such floating point operations take a constant number of CPU ticks to be
completed [39]. Even though IA-32 and AMD64 are CISC instruction sets, they are translated
to RISC micro-operations within the processor [39].

To summarise, a l inear increment in the maximum modulo length – or in the
maximum contained number length for the serial case - can, in the worst case, cause
a superlinear increment in the maximum operand length during Gaussian
Elimination. As the time needed for infinite precision arithmetic is proportional to the
length of the operands' representations, one would on one hand need to perform
polynomially more operations, but on the other hand, the worst-case
amount of time for such operations can grow superlinearly.

Furthermore, there are two main limitations of the computing system we used to imple-
ment this project. One is software related and one is hardware/architecture related.

As it has become clear, the arbitrary precision rational number implementation used in this
project builds upon the arbitrary length integer arithmetic classes provided by Java. These
classes, in order to adhere to the Object Oriented Programming Paradigm and contrary to
the way operations regarding primitive Java data-types are performed, produce a new ob-
ject for each operation. For example, if a=2 , b=3 and c=0 and we try to make the as-
signment c=ab , the result c=5 will be return as a new object, situated at a new
memory address; it will not be in the previous place of c , as c is actually only a reference
(pointer), hidden by Java's syntax. This pointer will now contain a new memory address.

The above behaviour stems from the Object Oriented Design of Java; one could transform
the libraries in order to perform operations in-place, but this would not adhere to the pro-
gramming paradigm and could cause many programming errors when combined with the
lack of operator overloading. In order to make this more clear, executing a command like
c=a.add b (lack of operator overloading) would change both the values of c (desired)

and a (not desired – misleading). In order to solve this problem, one could investigate
porting the application to other languages or investigate the feasibility of implementing a
new library for arbitrary precision arithmetic in Java that performs in-place operations.
Both approaches were out of the scope of this project.

Lack of in-place computations increase the rate at which objects are created
and rendered unused. This increases the strain on the Garbage Collector and on the
cache memory. As far as the cache memory is concerned, this means that different in-
stances of the same variable, i.e. an accumulator variable inside a loop, would have to exist
simultaneously in memory. The processor caching system treats them as different vari-

83

Chapter 8: Experimental Results and Comparison

ables, as they are situated in different memory addresses. Therefore, in certain cases – de-
pending on the specific hardware specifications – the rate at which operations are per-
formed is finally limited by the rate at which the processor can perform write-back opera-
tions. This is an important bottleneck that can affect all MoM implementations of this pro-
ject and, in general, any numerically intensive Java program which does not use primitive
data-types.

All the above factors are combined by the fact that the objects representing the operands
can grow very large – even several kB long – leads us to the conclusion that the Java imple-
mentation makes sub-optimal usage of the processor's cache memory. This is not an al-
gorithmic problem in the part of MoM or the parallel solver, but rather a limitation stem -
ming from the high abstraction level in which a Java program operates. Larger objects
means that fewer of them will be able to be cached; the fact that a new object is created for
each operation's result means that even fewer actually distinct object will be able to remain
cached.

The above limitations are software related. There is one more limitation, which stems from
the fact that we are applying the Gaussian Elimination algorithm on a shared memory mul-
tiprocessing computer system. As the Gaussian Elimination needs to access O n3  memory

distinct elements during its operation (not storage complexity – this remains O n2 ), its
runtime contains a substantial part, more than the one of other typical algorithmic opera-
tions, during which the processor waits for a memory operation to complete after a cache
miss [40]. In this implementation, several “residual” instances of the serial Gaussian Elimin-
ation are run in parallel; therefore, cache contention between threads is increased, as does
memory bus congestion. This can hinder performance in some cases, even though the Intel
“Nehalem” processor architecture used in the testing computer features a distinct memory
controller per core [41]. This phenomenon can be observed in several cases where the par-
allelisation speedup achieved for 2 or 4 threads is lower than the one achieved if more
threads are used. In Fig. 26 (p. 80), one can observe that this is an issue only for linear sys-
tems of order less than 168.

 8 .4. Related Results

In this section several related experimental results will be presented. These results either sup-
port theoretical properties proved in previous chapters of provide useful insight in several choices
made regarding the algorithm's design and implementation.

 8.4.a Word-sized Moduli

In this section we will investigate the effects of selecting moduli that fit within the word-size of
the machine, i.e. moduli that have a length of at most 64 bits. This is an approach that is proposed sev-
eral researchers ([26]), primarily because if one had a linear system with small enough numbers to fit
into the word-size, then inexact floating point arithmetic could be used. However, using inexact
arithmetic has not been possible with MoM for neither the initial nor the residual l in -
ear systems, even if when one takes into account that several of the computed results need exact rep-
resentation and therefore must be stored using exact representation. Therefore, the only reason for
such a selection in our case would have been the hypothesis that the smaller modulo size may take bet -
ter advantage of the processor cache memory and, thus, be much faster than using a larger modulo.
This is, however, not enough; in order to be preferable to select the smaller modulo size, the solution of
each system should be fast enough to nullify the disadvantage that we would have to solve far more re-
sidual linear systems pre MoM iteration. It was proven from experimentation that this is not the case.

84

Section 8.4 : Related Results

From early experimental analysis when the various design aspects of the parallel linear system
solving algorithm were being determined, such an approach was deemed preferential only if one used
the usual definition of the modulo operator that does not allow negative results. In any case, it was
preferential only as long as this modulo definition was used; the implementation using the improved
definition that allows negative results is far faster.

 We will present the performance gap between the two approaches by using the runtime com-
parison of all MoM implementations for the medium load case of the model with R=M=4 . This case
is representative of the total picture.

In the above diagram Fig. 28 it can be seen that the time needed to solve the linear sys -
tem when smaller moduli are selected is far larger than when larger ones are selected .
This is true primarily because the selection of so small moduli minimises the runtime per residual sys-
tem and not the runtime for the initial linear system; when using the smaller modulo size, 128 residual
systems must be solved. In general however, one has to take as well into account the cost of primality
tests; this cost is included in the above runtimes, which present the total time to produce results. This
cost may become significant for moduli sizes of more than a few thousand bits, as presented in Fig. 4 (p.
41), and is the main reason we limit the maximum modulo length at 2,500 bits.

 8.4.b Comparison of RECAL Implementations

In this section we will compare the time and memory needed by the two existing implementa-
tions of the RECAL algorithm to compute a network's normalising constant. As a benchmark model, we
will use the small queueing network with R=M=2 and the load scenarios corresponding to 100 and
300 jobs. The model will be tested in two versions, one with and one without delay times. The high load
case is not used as it cannot be evaluated for all cases and therefore is not meaningful for comparison.

The runtime results and the memory usage is represented in the following figures 29 and 30:

85

Fig. 28 : Total runtime vs. number of processors
for two modulo selection strategies. The case of 1
processor corresponds to the serial MoM imple-
mentation. We can verify that selecting very small
moduli may result in a slowdown.

1 2 3 4 5 6 7 8

1

10

100

1000

10000

Up to 64b
Up to
2,500b

Number of Processors

T
o

ta
l R

u
n

tim
e

 (
se

c)

Chapter 8: Experimental Results and Comparison

As it can be verified from the above figures, the performance and memory requirements of RE-
CAL are substantially influenced by the existence of delay times in the queueing network model. For
networks without delay times, the recursive version is faster but at the cost of a little higher memory
requirements. This happens due to the fact that the recursive version is able to prune big top-level
branches of the recursion process if no delay times exist, achieving this performance benefit. For net -
works with delay times, the non-recursive version is a little faster, but has much less memory require-
ments.

This different behaviour of RECAL depending on the existence or not of delay times is not rep-
licated in MoM. This is very important, as MoM proves to be an algorithm with much more consistent
performance.

 8.4.c Most Complex Queueing Network Feasible by MoM

As it has been already discussed, the test-set used to evaluate and compare the performance of
the different algorithms involved a runtime constraint of 1 hour. All implementations of MoM that
failed to evaluate a test model did so as a result of this time constraint and not due to their memory us-
age.

However, as it is important to know the maximum model that the MoM implementations can
evaluate, various larger models were tried independently of the main testing procedure. This models
had equal number of classes and queues (R=M), as this is the hardest configuration for MoM. The
larger model that did not fail on the picard01.doc.ic.ac.uk host when imposing the maximum
memory usage limit of 25GB was the one representing the queueing network with

86

Fig. 29 : The figure presents the time the two RE-
CAL implementations need to compute the normal-
ising constant of a model with R=M=2 for
varying populations and existence or not of delay
times. We can see that if no delay times exist, the
recursive version is faster as it is able to prune the
computation of some constants. If, however, delay
times exist, the non-recursive version is a little
faster.

Recursive Non-Recursive

0,1

1

10

100

1000

10000

RECAL Version

R
u

n
tim

e
 (

se
c)

Fig. 30: This figure represents memory usage for
the same cases as Fig. 29. We can verify that if no
delay times exist, the non-recursive version is a
little more memory efficient, whereas if delay-
times exist the same version is much more effi-
cient.

Recursive Non-Recursive

1

10

100

1000

10000

RECAL Version

M
e

m
o

ry
 U

sa
g

e
 (

M
B

)

100 w/o
Delay Time

100 with
Delay Time

300 w/o
Delay Time

300 with
Delay Time

Section 8.4 : Related Results

R=M=7 , which is far above the limitations of the other established algorithms. This involved creat-
ing and solving a linear system with order equal to 24,024 . The next linear system with R=M=8
was infeasible, as it required solving a linear system of order 102,960 . The memory was inadequate to
store the approximately 1010 arbitrarily long rational numbers.

 8.4.d Experimental Growth Rate of the Normalising Constant

In the progress report we had verified experimentally that the number of digits of the normal -
ising constant grows almost linearly with regard to the total population of the model. We can verify this
growth rate in the experimental results of the test-cases.

Because we need to compare the three load profiles of all different model sets, we used as a base
the number of digits of the low load case throughout the test-sets. The number of digits of the medium
and high load profiles are represented with regard to this base. The averaged growth rates for all test-
cases are presented in the following Fig. 31, where one can verify the linear growth.

 8.4.e Experim ental Growth Rate of M threshold

Furthermore, it is interesting to investigate the bit size of M threshold as the queueing network
model becomes more complex. As fas as MoM is concerned, the complexity of a queueing network is
quantified by the size of the linear system representing it. It is important to remember that even
though the value of M threshold can be independent of the number of moduli we select, the optimal
strategy in practice is not to select arbitrarily large moduli but to select moduli with bit length lower
than a certain limit value – 2,500 for the current implementation –. The relation between the bit size b
of M threshold :

b=⌈log 2  M threshold  ⌉

87

Fig. 31: Average growth rate of the normalising
constants for all test models. For each load set, the
length of the normalising constant corresponding
to the low load scenario is set as the base, i.e. equal
to 1.

0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8

9

10

Total Population (N)

A
ve

ra
g

e
 L

e
n

g
th

 o
f G

 (
lo

w
 lo

a
d

 =
 1

)

Chapter 8: Experimental Results and Comparison

and the linear system matrix size is presented in the following Fig. 32:

The above figure leads us to the important conclusion that the total required
bit size of the product of moduli scales very well in practice as the MoM linear system de-
scribing this model increases in size. This rate of growth was proven theoretically for large models in
section 6.4.b to be equal to O n log n  and is confirmed by the experimental results. However, the
growth curve is very close to being linear. It is an important characteristic of the parallel linear system
solver that was described in Chapter 6, as it proves its scalability. Even if the optimal maximum bit
length per moduli remains constant at 2,500 in the future, one would have to add more processors at a
close to linear O n log n  rate in order to maintain the same parallelisation efficiency as the queueing
model complexity increases.

This is a result independent of the specific implementation of MoM used, as it
is a characteristic of the linear system solver. If the same parallel solver is used together with
an optimised version of MoM or even with another algorithm, it will be able to maintain the same par -
allelisation efficiency as the problem size increases, by increasing the number of processors almost lin-
early.

88

Fig. 32: Relation between the linear system mat-
rix size and the bit size of M threshold . We can verify
the theoretical result of O n log n  rate of
growth.

0 500 1000 1500

0

5000

10000

15000

20000

25000

Low Load
(100 jobs)
Medium
Load (300
jobs)
High Load
(900 jobs)

Linear System Matrix Size

M
th

re
sh

o
ld

 B
it

S
iz

e

 9 . Conclusions and Future Work

In this chapter, the main conclusions reached as part of this project will be presented. Further -
more, throughout the project's progress, several other important areas of interest have been identified;
it would be beneficial to research and examine these areas in the future, in order to further improve the
performance of the algorithms used to evaluate queueing network models or the parallel linear system
solver which uses modular arithmetic.

At the time of the submission of this report, all necessary interfaces necessary to integrate the
source code as a new solver in the JMVA software have been implemented. The source code and the in-
terfaces will be sent to the maintainer of the JMT project – part of it is JMVA – in order to perform the
actual merging.

 9 .1 . Current Advantages and Limitations

In order to summarise the entire project's outcome and to identify the areas which could be im-
proved in the future, it is first necessary to present the advantages and the limitations of our current
approach. Both the theoretical algorithmic part and the implementation will be examined. The analysis
will be focus on three main parts: the Parallel Linear System Solver of Chapter 6, the Method of Mo-
ments algorithm and the software architecture and implementation.

 9.1.a Parallel Linear System Solver

Overall, the parallel solver designed and implemented as part of this project exhibits very good
results, both regarding its theoretical-algorithmic qualities and its performance.

• First and foremost, it exhibits a very good speedup and efficiency when compared
with the serial l inear system solver . This is the most important result, as it highlights
the quality of both the algorithm's design and the implementation in practice.

• Secondly, it exhibits good scalability properties. Due to the limit we imposed on the maxim-
um length of each modulo and the fact that the rate at which we need to add new moduli in or-
der to maintain the same runtime grows at a tractable rate of O n log n  , the algorithm can
scale efficiently both towards more complex linear systems, and thus more complex queueing
networks, and towards execution over an increased number of processors. Usage of more pro-
cessors decreases the parallelisation overhead, as it enables selection of smaller moduli.

• Lastly, it is a robust solver that can solve the sometimes singular linear systems outputted by
this version of MoM. It is able to withstand the propagation of indeterminable elements from
iteration to iteration; solution may only fail if an indeterminable value is explicitly needed by
the MoM algorithm to proceed with the network evaluation.

• On the other hand, when evaluating complex models – much more complex than those en-
countered in the test set for the 8-threaded version - the M threshold value can become large
enough to require solution of multiple residual l inear systems per processing
core due to the maximum modulo size limit. This is a situation rarely encountered in practice
and even if encountered, it may still be beneficial to solve more smaller residual
systems in parallel than to use the serial algorithm (see Fig. 24), as the cost of solving
a more complex, in terms of number length, linear system grows faster.

This behaviour is a direct result of the fine-tuning of the parallel solver and the modulo selec-

89

Chapter 9: Conclusions and Future Work

tion strategy to behave optimally on models representing real-world cases.

 9.1.b Method of Moments

The MoM algorithm and its extensions are the most efficient algorithms one can use to perform
analytical evaluation of a queueing network model.

• It is much faster than the other existing algorithms for all models and exhibits much
lower space complexity. This makes MoM very efficient in evaluating models of practical
interest.

• Its performance does not exhibit substantial variations depending on whether delay times are
included in the network model. This is true, as the order of the linear system defined by MoM
depends only on the number of classes R and number of queues M .

• The runtime of MoM is dominated by the time it takes to solve the linear sys -
tem in each iteration. This is an important advantage, as many techniques and optimisa-
tions for the most efficient solution of linear systems are available. Furthermore, this makes a
substantial part of the runtime parallelisable, as was exhibited in this project.

• On the other hand, the implementation of MoM and its extensions can be more complex than
those of RECAL or Convolution. However, the achievable performance gain compensates for the
increase in the implementation difficulty.

• Furthermore, the cost of solving the linear system can grow fast as the number of classes R
and number of queues M is increased; this increase is however far smaller than the one exhib-
ited by the other established algorithms. Other, more optimised versions of MoM are more effi-
cient [3].

 9.1.c Software Architecture and Implementation

Much attention was paid for the most efficient implementation of the algorithms, given the
programming system's and time constraints. The experimental result highlight this efficient perform-
ance of the code. However, the there are many good qualities of the code which may remain unseen by
the end-user.

• The entire implementation is built using a modular, object-oriented approach ,
that features good code quality without tangled classes or packages and circu -
lar dependencies , which can hinder maintainability and code modification. This approach
makes the system easy to integrate in other programs, as for example JMVA.

• Existing components can be re-used by new programs, whereas new functionality and
optimisations can be easily introduced with minimal changes, taking advantage of the already
built infrastructure.

• It is a portable implementation , as it is written in Java.

• On the other hand, selection of Java to solve this numerically intensive problem has introduced
several constraints, with most important the inability to perform in place exact arith -
metic computations . However, portability and integration with the JMVA tool was deemed
more important than the achievement of the optimal performance. Furthermore, the parallel-
isation efficiency of the algorithm has not been reduced by this implementation choice, as both
the serial and the parallel solvers use the same library we implemented for exact computations.

90

Section 9.2 : Future Work

 9 .2 . Future Work

In order to achieve improved performance in the future, the most beneficial step can be the in-
tegration of the existing parallel solver with an optimised version of MoM, such as the one presen-
ted in [3], or the Class-Oriented MoM (CoMoM), presented in [19]. The key point to understand here
is that the main computational cost of evaluating a queueing network using MoM stems from the linear
system solution; therefore, any decrease in the linear system size is expected to produce a cubic (

O n3 ) decrease in the algorithm's runtime. Such a benefit cannot be ignored, as it is the most effect-
ive way to increase the envelope of queuing network models that can be evaluated in practice.

The implementation of a more efficient MoM algorithm can be performed simultaneously with
the improved handling of the cases where we need to evaluate a queueing network defined by a
singular matrix. Several related techniques are presented in [3]. Furthermore,

After the linear system size has been reduced, one could investigate representation of the lin-
ear system using sparse matrices. This is expected to substantially reduce the memory requirement
of the implementation, making possible the evaluation of even larger models. Of course, in such a case a
matrix re-ordering using the Reverse Cuthill – Mc Kee algorithm [42] or the Approximate
Minimum Degree algorithm [43] may be necessary to reduce the number of performed operations
and, most importantly, to reduce the number of “fil l- ins” , i.e. the number of matrix elements
that were initially zero but became non-zero due to row operations.

To further reduce the parallelisation overhead, the possibility of using a precomputed prime
moduli l ist could be investigated. Such approach may be preferable to be used in conjunction with an
increase in the maximum modulo size, enabling usage of one residual system per processor for even
more complex models. In any case, faster primality tests should be investigated, such as an adapta-
tion of the Agrawal – Kayal – Saxena (AKS) primality test which is presented in [35] and fea-
tures O ln 4ε  p   time complexity.

Furthermore, ability of producing a stricter bound for the M threshold value used by the
parallel linear system solver should be investigated. When used in conjunction with MoM, discovering
such a stricter bound may involve producing an easily computable stricter bound for the maxim-
um normalising constant of the queueing network model than the one of eq. (5.1.1) (p. 20) or bet-
ter bounding the value of the maximum possible determinant of the linear system.

Lastly, one could as well investigate using or producing a library that can perform exact
arithmetic operations in-place , at least as long as the result does not exceed a maximum pre-al-
located length. The fact that the numbers contained in a residual system are bounded in length can as -
sist in this process. However, achieving such fine-grained control over the computer hardware may not
be possible in Java; such an approach may require porting the implementation in another
programming language, like C or C++. However, using such a language can be beneficial, as efficient
linear algebra libraries and implementations of most of the algorithms proposed above are readily
available for C++. In this case, integration with JMVA could be preserved by calling one application from
within the other. This would also allow the parallelisation in a distributed memory system , for
example by using MPI and would reduce the memory bus congestion that can be an issue in the parallel
solver.

In any case, many areas open for future improvement have been highlighted by our current ap-
proach. It is important to note that one of most important characteristics of our current implementa -
tion, namely the independence of the MoM algorithm implementation from the parallel
l inear system solver, can greatly assist in improving one of these two parts with no
regard of the other . Lastly, it is inherently possible to test various network evaluation algorithms
using the same solver and, conversely, to use the same network evaluation algorithm to test various
solvers.

91

 10 . Appendix

 10.1 . Software Tools for Evaluating Queueing Networks

Queueing networks are very popular and powerful tools that can assist in the design, evaluation
and improvement of existing system offering a finite resource to a number of users, such as communic -
ation networks, computer systems, etc. With users ranging from academics and researchers to industri-
al and governmental organisations, it is not surprising that a wide variety of software tools are available
for modelling a system and evaluating the resulting network. Each system focuses on satisfying a differ-
ent set of requirements, but all make heavy use of optimised algorithms and techniques to increase effi-
ciency. A brief presentation of the most significant such tools will follow. More details will be given for
the JMT and JMVA systems, as this project aims to augment their functionality.

 10.1.a Java Modelling Tools (JMT)

The Java Modelling Tools is s a suite of applications developed by Politecnico di Milano and re-
leased under GPL license. It offers a complete framework for performance evaluation, system tuning,
capacity planning and workload characterisation studies. One of the main goals of its development was
portability between different operating systems, so Java was the programming language of choice. The
complete suite encompasses six different applications:

1. JSIMgraph and JSIMwiz: Queueing network models simulator with graphical user interface and
a wizard-based user interface, respectively.

These tools generate the XML specifications of the simulation models used by the discrete-state
simulation engine. Also, it visualises complex networks, assists in debugging of problems in the
model and gives feedback to the user about the current state of the simulation and the estim -
ated performance indices.

2. JMVA: Mean Value Analysis of queueing network models

Using the JMVA application, a user can easily define a network model by specifying parameters
such as mean service demands, arrival rates and population sizes or import a model created
graphically using JSIMgraph or JSIMwiz. The model is then evaluated by the analytical engine
of JMT, which uses mainly – but not only - the MVA algorithm. Goal of the current project is the
integration of the MoM algorithm into this application. The JMVA engine is usually faster than
the JSIMengine of JSIMgraph and JSIMwiz for models which contain less that 3-4 classes, but at
the cost of increased memory usage. This is a common difference between simulation and ana-
lytical for performance evaluation. Integration of the MoM algorithm into JMVA can assist in
reducing these run-time requirements.

3. JABA: Asymptotic Analysis of queueing network models

JABA assists in detecting performance bottlenecks in multi-class closed queueing networks us-
ing a geometrical approach. This reduces the computational costs of long simulative analysis
over different mixes of requests.

4. JWAT: Workload Analysis from log and usage data

Main aim of this tool is to assist in the derivation of the parameters needed to define the net-
work models by analysing log files and using advanced preprocessing, clustering and character-
isation techniques.

93

Chapter 10: Appendix

5. JMCH: Markov chain simulator (teaching tool)

JMT supports a rich feature set for performance evaluation, such as solution of capacity plan-
ning models using simulation or analytical approaches, feature extraction and preprocessing of log
files, clustering algorithms for the selection of the most important workload cases under which a sys-
tem should be evaluated, determination of the optimal load conditions and automatic identification of
bottlenecks. Furthermore, it can produce a wide variety of performance indices, such as mean queue
lengths, throughputs and response times. It is specifically tailored towards the performance evaluation
of IT systems, such as multi-tier architectures, storage arrays and communication networks. A distinct-
ive characteristic of JMT is that it aims at the non-technical or new user, by being accompanied by rich
documentation and a set of wizard interfaces that guide the user in the accomplishment of tasks. This
hiding of the complexity reduces the learning curve of new users. As the JMT comprises of a diverse set
of applications and algorithms, the integration of the applications into the tool and the communication
of the GUI with the underlying algorithms is based on XML, simplifying the usage of external software
and algorithms.

 10.1.b Other Tools

Several other software tools used for performance evaluation are presented below in alphabet-
ical order. Some of these tools use other approaches or different algorithms than the exact analytical
modelling used by JMVA.

Möbius

The Möbius framework [44] is a multi-paradigm environment that allows the definition of
composite performance and dependability models based on formalisms such as stochastic activity net-
works (SANs), fault trees and the PEPA stochastic process algebra. It is widely used both in academia
and industry. One of the main features is the ability to distribute tasks (series of experiments) over a
network to support more efficient evaluation of real-world systems.

OPEDo

OPEDo, a tool for the “Optimisation of Performance and Dependability Models”, [45] is a soft-
ware tool used for numerical optimisation of performance metrics on discrete event systems. It imple-
ments local, global and hybrid search methods to iteratively seek the optimum solution. The underly-
ing model is regarded as a “black-box”; OPEDo interfaces to external applications for model definition
and evaluation. The available black-box model definition and evaluation engines include the analytical
solver of JMT, as well as simulation and other engines.

PIPE2

PIPE2, the “Platform-Independent Petri Net Editor 2” [46] enables creation and analysis of
Generalised Stochastic Petri Net (GSPN) models. It provides structural analysis and performance analys-
is modules; new pluggable analysis modules can be added during run-time and extend the system's
functionality Among the performance analysis tools included in PIPE2 is an efficient Markov chain
steady-state analyser, a semi-Markov response time analyse r implemented using MPI and other tools
that focus on passage time analysis.

QPME

QPME (Queueing Petri net Modelling Environment) [47] is a tool that supports the modelling
and analysis of systems using queueing Petri nets. Petri nets combine the modelling power and express-
iveness of queueing networks and stochastic Petri nets and are appropriate for modelling distributed

94

Section 10 .1 : Software Tools for Evaluating Queueing Networks

systems and analysing their performance and scalability. QPME currently supports a simulation engine
for evaluating such networks and development of an analytical solver is an ongoing project.

SHARPE

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) [48] is a
hierarchical modelling tool that focuses on analysis of reliability, availability, performance and per-
formability using stochastic models. It includes analytical algorithms for performance evaluation of
closed single- and multi-chain product form queueing networks.

TANGRAM-II

TANGRAM-II [49] is an “Integrated Modelling Environment for Computer Systems and Net-
works” evolving for more than 15 years. It features an analytical solution engine that supports both
Markovian and non-Markovian models and a simulation engine. Calculating performance indices and
having a complete documentation are among its main characteristics. The analytical solution engine
can evaluate models both in steady and in transient states using several iterative methods.

 10.2 . User's Guide

In this section we will present the program's usage and requirements. The program is free soft-
ware and is distributed under the terms of the GNU General Public License version 3, or any later ver -
sion.

 10.2.a Requirements and Compatibility

The source code conforms to the requirements of Java 6. However, all of the used features are
available from at least the Java 5 version. It can be compiled using any Java 5 supporting compiler and
can run in any Java Virtual Machine that supports at least this version of Java.

There are no minimum hardware requirements in order to run this program; any modern com-
puter will be able to do so. However, for efficient usage of the MoM algorithm on a range of models at
least 1GB of RAM memory is recommended. For the case of the Convolution and RECAL algorithms, at
least 4GB should be used to be able to solve a variety of models; however, 12GB is the recommended
size. Convolution and RECAL algorithms are only included for testing purposes and normally usage of
MoM should be preferred.

Furthermore, the program can run in both single- and multi-processor systems. However, using
the parallel version on a single-processor system will not result in any performance benefit. It is pos-
sible to run more parallel threads than the number of available processors, but this ability only exists
for testing purposes.

Lastly, it is important to note that on systems supporting Intel's Hyper-Threading Technology it
is recommended to instantiate as many threads as the number of real CPU cores and not logical ones.
This has to be defined manually using the respective argument, as the JVM does not support any plat-
form-independent way of distinguishing between physical and logical processors.

 10.2.b Format of the Input File

The implementation takes as input the description of a queueing network model in a particular
form, which is the following:

95

Chapter 10: Appendix

6. The 1st line contains the number of classes R .

7. The 2nd line contains the populations N r of the classes, separated by spaces.

8. The 3rd line contains the total delay time Z r for each class.

9. The 4th line contains the number of different queue types M .

10. Finally, a M×1R  matrix is contained. The first column of this matrix contains the
multiplicity mk of a particular queue k , whereas the rest of it contains the service demands
D kr any pair of class r and queue k .

An example of such an input file is the following, which defines a network with 3 classes and 4
queues:

R 3
N tr 10 10 10
Z tr 0 0 0
M 4
m | D 1 9 23 44

1 27 33 28
1 32 15 38
1 2 48 45

 10.2.c Command-Line Arguments

In order to evaluate a queueing network model described in an input file, one has to call the
program using several command-line arguments. Usually, the program is invoked as:

java -jar MoM.jar <Algorithm> <Output Performance Indices> <Input File> [<Number
of Threads>]

From the four supported arguments, only the first three are necessary; the last one, defining
the number of threads is optional.

1. The first argument defines which algorithm should be used. The user can input 0 for Convolu-
tion, 1 for the recursive implementation of RECAL, 2 for non-recursive RECAL, 3 for MoM using
the parallel solver, 4 for MoM using the serial solver and 5 to allow the program to select the
best solver automatically depending on the linear system order. For linear systems of order less
than 120 the serial solver if preferred, as discovered by the experimental results.

2. The second argument can be 0 or 1, depending on whether the user needs only the
value of the normalising constant G of the model or needs the calculation of performance in-
dices (mean throughputs and mean queue lengths) as well.

3. The third argument defines the path to the desired input file describing the queueing network.

4. The last argument specifies the desired number of threads. Unless the parallel solver is used, it
is ignored. If the user does not specify the number of threads, as many threads as the number of
available processors will be used by the program. This argument exists for testing purposes and
for limiting the maximum number of threads on systems supporting Intel's Hyper-Threading
Technology; on such systems, usage of as many threads as the number of real and not logical
cores is recommended.

96

 11 . References

[1] S.S. Lavenberg, “A perspective on queueing models of computer performance.,” Performance Evalu-
ation, vol. 10, 1989, pp. 53–76.

[2] S. Balsamo, “Product form queueing networks,” Lecture Notes in Computer Science, 2000, pp. 377–402.
[3] G. Casale, “An efficient algorithm for the exact analysis of multiclass queueing networks with

large population sizes,” Proceedings of the joint international conference on Measurement and modeling
of computer systems, 2006, p. 180.

[4] G. Casale, “Exact Analysis of Performance Models by the Method of Moments,” under submission,
2009.

[5] M. Bertoli, G. Casale, and G. Serazzi, “Java modelling tools: an open source suite for queueing net -
work modelling and workload analysis,” Proc. of QEST, 2006, pp. 119–120.

[6] M. Bertoli, G. Casale, and G. Serazzi, “JMT: performance engineering tools for system modeling,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, 2009, pp. 10–15.

[7] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik, Quantitative system performance: computer
system analysis using queueing network models, Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1984.

[8] J. Zahorjan, “An exact solution method for the general class of closed separable queueing net-
works,” SIGSIM Simul. Dig., vol. 11, 1979, pp. 107-112.

[9] R.D. Nelson, “The mathematics of product form queuing networks,” ACM Computing Surveys (CSUR),
vol. 25, 1993, p. 369.

[10] J.R. Jackson, “Jobshop-like Queueing Systems,” Management Science, vol. 10, Oct. 1963, pp. 131-142.
[11] A. Willig, “A short introduction to queueing theory,” Technical University Berlin, Telecommunication

Networks Group, 1999.
[12] W.J. Gordon and G.F. Newell, “Closed queuing systems with exponential servers,” Operations Re-

search, vol. 15, 1967, pp. 254–265.
[13] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios, “Open, closed, and mixed networks of

queues with different classes of customers,” Journal of the ACM (JACM), vol. 22, 1975, p. 260.
[14] M. Reiser and H. Kobayashi, “Queuing networks with multiple closed chains: theory and computa-

tional algorithms,” IBM Journal of Research and Development, vol. 19, 1975, pp. 283–294.
[15] J.P. Buzen, “Computational algorithms for closed queueing networks with exponential servers,”

Communications of the ACM, vol. 16, 1973, pp. 527–531.
[16] A.E. Conway and N.D. Georganas, “RECAL—a new efficient algorithm for the exact analysis of mul-

tiple-chain closed queuing networks,” Journal of the ACM (JACM), vol. 33, 1986, pp. 768–791.
[17] M. Reiser and S.S. Lavenberg, “Mean-value analysis of closed multichain queuing networks,” Journ-

al of the ACM (JACM), vol. 27, 1980, pp. 313–322.
[18] K.M. Chandy and C.H. Sauer, “Computational algorithms for product form queueing networks,”

1980.
[19] G. Casale, “CoMoM: Efficient class-oriented evaluation of multiclass performance models,” IEEE

Transactions on Software Engineering, vol. 35, 2009, pp. 162–177.
[20] G. Casale, “The Multi-Branched Method of Moments for Queueing Networks,” Arxiv preprint

arXiv:0902.3065, 2009.
[21] H. González and E. Martinez, “A Parallel Code for Solving Linear System Equations with Multimod-

ular Algebra,” Revista Investigacion Operacional, vol. 23, 2002, pp. 175-184.
[22] R.T. Boute, “The Euclidean definition of the functions div and mod,” ACM Trans. Program. Lang. Syst.,

vol. 14, 1992, pp. 127-144.
[23] J.A. Howell, “Algorithm 406: exact solution of linear equations using residue arithmetic [F4],” Com-

mun. ACM, vol. 14, 1971, pp. 180-184.
[24] H. Takahasi and Y. Ishibashi, “A new method for exact calculations by a digital computer,” Informa-

tion Processing in Japan, vol. 1, 1961, pp. 28-42.

97

Chapter 11: References

[25] I. Borosh and A.S. Fraenkel, “Exact solutions of linear equations with rational coefficients by con-
gruence techniques,” Mathematics of Computation, vol. 20, 1966, pp. 107–112.

[26] Ç.K. Koç, “A parallel algorithm for exact solution of linear equations via congruence technique,”
Computers & Mathematics with Applications, vol. 23, 1992, pp. 13–24.

[27] M. Morháč, “Error-Free Algorithms to Solve Special and General Discrete Systems of Linear Equa-
tions.”

[28] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge Univ Pr, 1990.
[29] M. Newman, “Solving equations exactly,” Journal of Research of the National Bureau of Standards, 71B,

vol. 4, pp. 171–179.
[30] E.H. Bareiss, “Computational solutions of matrix problems over an integral domain,” Journal of the

Institute of Mathematics and its Applications, vol. 10, 1972, pp. 68–104.
[31] D.M. Young and R.T. Gregory, A survey of numerical mathematics, Dover Pubns, 1988.
[32] P. Dusart, “Autour de la fonction qui compte le nombre de nombres premiers,” Université de Li-

moges.
[33] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of Mathematics, vol. 160, 2004, pp.

781–793.
[34] H.W. Lenstra and C. Pomerance, “Primality testing with Gaussian periods,” FST TCS 2002: Founda-

tions of Software Technology and Theoretical Computer Science, 2002, pp. 1–1.
[35] R.E. Crandall and J.S. Papadopoulos, “On the implementation of AKS-class primality tests,” Unpub-

lished (http://images. apple. com/ca/acg/pdf/aks3. pdf), 2003.
[36] S.D. Kounev and A. Buchmann, “Performance modeling and evaluation of large-scale J2EE applica-

tions,” CMG-CONFERENCE-, 2003, pp. 273–284.
[37] D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture: A Hardware/Software Approach, Mor-

gan Kaufmann, 1998.
[38] X.G. Fang and G. Havas, “On the worst-case complexity of integer gaussian elimination,” Proceed-

ings of the 1997 international symposium on Symbolic and algebraic computation, 1997, pp. 28–31.
[39] J.L. Hennessy, D.A. Patterson, and D. Goldberg, Computer architecture: a quantitative approach, Mor-

gan Kaufmann, 2003.
[40] R.H. Saavedra and A.J. Smith, “Measuring cache and TLB performance and their effect on bench-

mark runtimes,” IEEE Transactions on Computers, vol. 44, 1995, pp. 1223–1235.
[41] V. Datasheet, “Intel® Xeon® Processor 5500 Series,” 2009.
[42] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” Proceedings of the

1969 24th national conference, 1969, pp. 157–172.
[43] P.R. Amestoy, T.A. Davis, and I.S. Duff, “An approximate minimum degree ordering algorithm,”

SIAM Journal on Matrix Analysis and Applications, vol. 17, 1996, pp. 886–905.
[44] S. Gaonkar, K. Keefe, R. Lamprecht, E. Rozier, P. Kemper, and W.H. Sanders, “Performance and de-

pendability modeling with Möbius,” ACM SIGMETRICS Performance Evaluation Review, vol. 36, 2009,
pp. 16–21.

[45] M. Arns, P. Buchholz, and D. Müller, “OPEDo: a tool for the optimization of performance and de-
pendability models,” ACM SIGMETRICS Performance Evaluation Review, vol. 36, 2009, pp. 22–27.

[46] N.J. Dingle, W.J. Knottenbelt, and T. Suto, “PIPE2: a tool for the performance evaluation of general -
ised stochastic Petri Nets,” SIGMETRICS Perform. Eval. Rev., vol. 36, 2009, pp. 34-39.

[47] S. Kounev and C. Dutz, “QPME: a performance modeling tool based on queueing Petri Nets,” 2009.
[48] K.S. Trivedi and R. Sahner, “SHARPE at the age of twenty two,” SIGMETRICS Perform. Eval. Rev., vol.

36, 2009, pp. 52-57.
[49] E.S. e Silva, D.R. Figueiredo, and R.M. Leao, “The TANGRAM-II Integrated Modeling Environment

for Computer Systems and Networks.”

98

	 1. Abstract
	 2. Contents
	 3. Introduction
	 3.1. Performance Modelling
	 3.2. Aim of this Project
	 3.3. Significance of this Project
	 3.3.a Technical Challenges
	 3.3.b Scientific Challenges

	 3.4. Summary of chapters to follow

	 4. Introduction to Queueing Networks
	 4.1. Queueing Systems
	 4.1.a Important Results for an M/M/1 System
	 4.1.b Important Results for an M/M/m System
	 4.1.c Summary of Notation

	 4.2. Queueing Networks
	 4.2.a Single and Multi-class Networks
	 4.2.b Open and Closed Queueing Networks

	 4.3. Fundamental Analysis of Queueing Network Models
	 4.3.a Product Form Queueing Networks
	Jackson's Theorem
	Gordon-Newell Theorem
	BCMP Theorem

	 4.4. Example

	 5. Product Form Queueing Network Algorithms
	 5.1. Introduction
	 5.2. Computing Performance Indices
	 5.3. Established Algorithms
	 5.3.a Convolution
	 5.3.b Recursion by Chain Algorithm (RECAL)
	 5.3.c Mean-Value Analysis Algorithm (MVA)
	 5.3.d LBANC
	 5.3.e Brief comparison

	 5.4. Method of Moments (MoM)
	 5.4.a Introduction
	 5.4.b Presentation

	 5.5. Extensions of the Method of Moments

	 6. Solution of Linear Systems using Modular Arithmetic
	 6.1. Introduction
	 6.1.a Definitions
	The Two Definitions of Modulo
	Congruence Relation in Modular Arithmetic
	Modular Multiplicative Inverse
	Coprime Integers
	Chinese Remainder Theorem

	 6.2. Solution Procedure
	 6.2.a Unique Characteristics and Requirements of MoM
	 6.2.b Brief Presentation

	 6.3. Building the Method
	 6.3.a Step 1: Determining a lower bound for the product of moduli
	Example

	 6.3.b Step 2: Determining the moduli
	Example

	 6.3.c Step 3: Linear System Sanitisation
	Example

	 6.3.d Step 4: Formulating residual systems of equations
	Example

	 6.3.e Step 5: Solving the residual systems
	Example

	 6.3.f Step 6: Recombining the Results
	Example

	 6.4. Theoretical Properties of the Algorithm
	 6.4.a Maximum Number of Moduli
	 6.4.b Growth Rate of Mthreshold
	 6.4.c Complexity

	 7. Implementation
	 7.1. Main Features
	 7.1.a Use-Case Scenarios

	 7.2. Abstract Architecture
	 7.3. Actual Code Design
	 7.3.a “Control” Package
	 7.3.b “DataStructures” Package
	BigRational
	EnhancedVector
	MultiplicitiesVector and PopulationVector
	QNModel
	Tuple

	 7.3.c “Exceptions” Package
	IllegalValueInInputFileException
	InconsistentLinearSystemException
	InputFileParserException
	InternalErrorException

	 7.3.d “LinearSystem” Package
	SolverInterface
	Solver
	SimpleSolver
	ParallelSolver
	ModularSolver
	ModularSolverParallelTask
	ModuloSelectionTask

	 7.3.e “QueueingNet” Package
	QNSolverInterface
	QNSolver
	RecursiveSolver
	ConvolutionSolver and RECALSolver
	RECALNonRecursiveSolver
	MoMSolver

	 7.3.f “Utilities” Package
	CanonicalMultiplicitiesVectorCalculator
	MiscFunctions
	Timer

	 7.4. Testing and Verification

	 8. Experimental Results and Comparison
	 8.1. Introduction
	 8.2. Testing Procedure
	 8.3. Results and Comments
	 8.3.a Convolution
	 8.3.b RECAL
	 8.3.c Method of Moments
	Introduction and Memory Usage
	Total Runtime results – Parallelisation
	Attainable Speedup - When is the Parallel MoM preferable to the Serial one?
	Attainable Efficiency

	 8.4. Related Results
	 8.4.a Word-sized Moduli
	 8.4.b Comparison of RECAL Implementations
	 8.4.c Most Complex Queueing Network Feasible by MoM
	 8.4.d Experimental Growth Rate of the Normalising Constant
	 8.4.e Experimental Growth Rate of Mthreshold

	 9. Conclusions and Future Work
	 9.1. Current Advantages and Limitations
	 9.1.a Parallel Linear System Solver
	 9.1.b Method of Moments
	 9.1.c Software Architecture and Implementation

	 9.2. Future Work

	 10. Appendix
	 10.1. Software Tools for Evaluating Queueing Networks
	 10.1.a Java Modelling Tools (JMT)
	 10.1.b Other Tools
	Möbius
	OPEDo
	PIPE2
	QPME
	SHARPE
	TANGRAM-II

	 10.2. User's Guide
	 10.2.a Requirements and Compatibility
	 10.2.b Format of the Input File
	 10.2.c Command-Line Arguments

	 11. References

