
Imperial College London
Department of computing

Hidden Markov Models : A Continuous-Time Version
of the Baum-Welch Algorithm

by

Mohamed ZRAIAA (M.Z)

Submitted in partial fulfilment of the requirements for the MSc Degree in Advanced
Computing of Imperial College London

SEPTEMBER 2010

Abstract

Hidden Markov Models (HMMs) are a popular and widespread tool for modeling a large
range of time series data and for generating sequences of dependent observations. HMMs
have been applied successfully to various complex problems, being especially effective with
those requiring a huge amount of measured data, such as workload access patterns in
computer storage systems and pattern recognition in speech, handwriting and music, to
name but a few. Nowadays, the theory of HMMs is well developed in the case of finite,
discrete processes. However in many applications, such as storage workload modelling [1],
which we discuss in some detail, discrete models are not ideal and we prefer a continuous-
time approach. The aim of this project is to develop such a new theory in continuous time,
based on the discrete HMMs, in particular an adaptation of the so-called Baum-Welch
algorithm to facilitate the efficient computation of the relevant parameters of a HMM.
Therefore this thesis first introduces the main concepts related to HMMs in the discrete
case, then transfers its focus to a particular application, namely workloads in FLASH
memory systems, while trying to spell out the limitations of the discrete approach. Finally
a continuous-time approach is developed that leads to the implementation of a new, but
similar, version of the Baum-Welch algorithm in a very simple context. The substantially
increased complexity inherent in a continuous-time analysis, compared with discrete time,
obviates the numerical analysis of models with more than two hidden states in the timescale
of this project, but the theoretical and algorithmic extension to any number of hidden states
is explained as “future work”.

2

Acknowledgments
First of all I would like to address a special thank to my supervisor Peter Harrsion whose
help and advise were invaluable. He was always around to answer my questions or give me
relevant orientations about this project, sacrificing his own free time. Then I would like to
thank Sarah Leyton, although we only meet once, her previous work was of great help to
master the concept of HMMs. Finally I thank the Department of Computing of Imperial
College for its perfect organization and for all the facilities we have at our disposal.

3

Contents

1 Introduction 5

2 Definition, properties and three basic problems related to HMMs 6

2.1 Hidden Markov Models : Definition . 6

2.2 Some important properties . 8

2.3 Three main issues related to HMMs . 12

2.3.1 Forward-backward algorithm . 13

2.3.2 Expression of the forward and backward variables 14

2.3.3 Properties of the forward and backward variables 15

2.3.4 The so-called forward-backward algorithm 16

2.3.5 Matrix notation . 17

2.3.6 Normalized version of the forward-Backward algorithm 18

2.3.7 The Baum-Welch Algorithm . 21

2.3.8 The Viterbi Algorithm . 22

3 An Application of HMMs to Flash Memory 25

3.1 Summary of the work . 25

3.1.1 Motivations . 25

3.1.2 Flash memories . 25

3.1.3 Construction of the models . 27

3.1.4 Validation of the HMM . 29

3.1.5 Simple measures . 29

3.1.6 Comparison of the autocorrelation functions 29

3.1.7 Towards a continuous-time version 30

3.2 Continuous-time Markov Chain . 30

3.2.1 Defintion . 30

3.2.2 The infinitesimal generator matrix Q 31

3.2.3 Stationary probabilities . 33

3.3 Markov modulated Poisson Process . 33

3.3.1 Definition . 34

3.3.2 Interpretation . 34

4 A continuous-time version of the Baum-Welch
algorithm 36

4.1 The Baum-Welch algorithm . 36

4.1.1 The Expectation-Maximization algorithm 36

4.1.2 The Baum-Welch algorithm . 38

4.2 Continuous-time approach . 43

4.2.1 Likelihood function . 43

4.2.2 First solution . 44

4.2.3 Second solution . 45

4.2.4 Modifications to the Forward-Backward algorithm 49

4.2.5 The continuous-time version of the Baum-Welch algorithm 50

4.2.6 Generalization to n states . 52

4.3 Implementation and results . 52

5 Conclusion and future work 55

4

1 Introduction

Hidden Markov Models (HMMs) and their generalizations are used nowadays in many dif-
ferent areas, essentially providing parsimonious descriptions for time series that can be very
long. Consider, for example, a simulation of the behaviour of a complex computer system
or the logistics of a large hospital. Models of these systems require some representation for
their input, namely when does the next instruction arrive at a computer and what type it is
or when does the next patient enter the hospital and for what reason? It is very important
to be able to describe such inputs in a concise way: HMMs often offer this possibility.

Hidden Markov Models were originally reputed for their application in speech processing
which has occurred mainly within the past few years. The basic theory was published in a
series of classic papers by Baum and his colleagues in the late 1960s and early 1970s and
was implemented for speech recognition applications by Baker, Jelinek and their colleagues
in the 1970s. The large period between the establishment of this theory and its intensive
application is due to several reasons. First, the basic concept of Hidden Markov models
was published in mathematical journals which were not generally read by engineers working
on the specific fields where HMMs were useful. The second reason was that the original
applications of the theory did not provide sufficient tutorial material for most readers to
understand the theory and to be able to apply it to their own research. As a result, several
tutorial papers were written which provided a sufficient level of detail for a number of
research laboratories to begin work using HMMs.

We can enumerate three basic problems associated with HMMs. The first problem is,
given the parameters of the model λ, compute the probabilities of a particular sequence of
observations P (O | λ) with O = (o1, o2, ..., on) the observation sequence. This problem is
solved by the forward-backward algorithm. Secondly, find the optimal sequence of hidden
states that could have generated a given sequence of observations. This can be solved by
posteriori statistical inference, resulting in the Viterbi algorithm. Thirdly, given a sequence
of observations, or set of such sequences, find the most likely set of model parameters.
This issue is solved by the Baum-Welch algorithm, using standard techniques of statistical
inference.

This thesis continues previous work partly carried out by my supervisor Pete Harrison
in a paper “Storage Worload Modelling by Hidden Markov Models: Application to FLASH
Memory” [1], even though I will focus on a more general problem. One of the major
issues discussed in this paper is to find a good representation of a flow of read and write
instructions arriving at a FLASH memory (playing the role of a server), which treats these
instructions according to their type and the sizes of their data transfers – obviously writes
have a heavier demand than reads. However to achieve such a complex model requires a
powerful tool that is able to take into account several crucial parameters of this continuous-
time flow. The authors finally chose to use HMMs. Moreover, to overcome the difficulty
brought about by the inherent continuous-time process, they decided to split the time axis
into 5-ms bins, and in each bin they stored the number of reads and writes, resulting in
a data trace that can be more easily processed. Then, the objective was to derive the
parameters of the HMM by using the so-called Baum-Welch algorithm. They subsequently
tried to reduce the size of the bins to 1 ms, but they noticed that most of the bins were
empty (no instruction in it) which led to an inefficient and falsely correlated traffic model.

The next natural step of this previous work is, rather than using bins and hence discrete
chains to model the input data stream, to try to use continuous-time stochastic processes
to describe the flow of instructions. This obviously brings some difficulty compared to the
discrete-time case and we need to make some assumptions about these processes. All this

5

work represents the central part of my project and it leads to a continuous-time version
of the Baum-Welch algorithm. A much more complicated (continuous-time) form of the
Baum-Welch algorithm is derived and is applied exlicitly to the case of a HMM with two
hidden states. Some numerical results are obtained from a time-stamped trace monitored
from Flash memory accesses, and the numerical extension to higher-order models (with
more than two hidden states) is outlined.

This thesis will be organized as follows. In section 2, we present the mathematical
background of the project, defining some important properties of HMMs while adopting a
formal notation (inspired from [3]), necessary for the rigorous development of the theory.
This is also where we deal with the three basic problems discussed earlier on. In section 3,
we give an overview of previous work and identify the important aspects and assumptions
concerning the continuous-time version. Section 4 develops the mathematical theory leading
to the derivation of a continuous-time version of the Baum-Welch algorithm. Section 5 gives
some preliminary numerical results.

2 Definition, properties and three basic problems re-

lated to HMMs

In this section, we define fully what is a Hidden Markov Model, what are its main prop-
erties and how to solve the three main issues we identified earlier on. Generally, when
one comes to observe and characterise a series of unbounded counts (random variables),
the easiest and simplest model assumes that the counts are generated by a homogeneous
Poisson process, so that the counts are independent identically distributed Poisson random
variables. Unfortunately it turns out that these models are too simple and don’t correspond
to real-life processes (especially, in practice, the variance is greater than the mean, which
is called an overdispersion, whereas they should be equal given the Poisson distibution).
Now if we assume that this series of counts is driven by an underlying process, which is a
Markov Chain, then clearly the resulting process of counts will allow for serial dependence
in addition to overdispersion: this is what we call a Hidden Markov Model. The term
“Hidden” is ambiguous because it only concerns the underlying parameter process, namely
the Markov chain which is assumed to be unobservable. Let us go into details and establish
the notation for the remainder of this project.

2.1 Hidden Markov Models : Definition

We denote by {St}t∈N a discrete time stochastic process. These stochastic processes are
further restricted to a finite or countable set. Usually, a stochastic process is combined
with a Markov chain {Ct}t=0,1,... which is a stochastic process where the transition proba-
bilities depend only on the previous state. Note that, subsequently, we will consider that
the transition probabilities are independent of time, and so the Markov chain is said to
be homogeneous or stationary. The Markov chain is not observed directly; therefore, all
statistical inference has to be done in terms of {St}t=0,1,..., the associated stochastic process.

Definition 2.1 The stochastic process {Ct}t=0,1,... with state space C is called a Markov
Chain if, for each t ∈ N

P (Ct+1 = ct+1 | Ct = ct, Ct−1 = ct−1, ..., C1 = c1) = P (Ct+1 = ct+1 | Ct = ct)

6

for all possible values of c0, c1, . . . , ct, ct+1 ∈ C. This is called the Markov Property.
The transition matrix P = (pcc′)c,c′∈C is the matrix of one step transition probabilities

pcc′ = P (Ct+1 = c′ | Ct = c). Note that P is a stochastic matrix, that is pcc′ ≥ 0 and∑
c′∈S pcc′ = 1, c ∈ C.

Note 2.2 We will denote by Ct
s the collection Cs, ..., Ct(s ≤ t) i.e. Ct

s = cts means Cs =
cs, ..., Ct = ct.

Proposition 2.3 The transition matrix P and the initial distribution of the chain νc =
P (C0 = c), c ∈ C, completely determine the chain in the sense that, for n = 1, 2, ...,

P (Cn
0 = cn0) = νc0pc0,c1pc1,c2 ...pcn−1,cn

Proof The previous result can easily be proven by induction on n. Initialisation: for n = 1,

P (C0 = c0, C1 = c1) = P (C1 = c1 | C0 = c0)P (C0 = c0)

= pc0,c1νc0

Suppose that the proposition is true for some n ∈ N

P (Cn
0 = cn0) = νc0pc0,c1pc1,c2 ...pcn−1,cn

We would then have

P (Cn+1
0 = cn+1

0) = P (Cn+1 = cn+1 | Cn
0 = cn0)P (Cn

0 = cn0)

= P (Cn+1 = cn+1 | Cn = cn)P (Cn
0 = cn0)(MP)

= P (Cn
0 = cn0) = νc0pc0,c1pc1,c2 ...pcn,cn+1

Definition 2.4 (Hidden Markov Model) Suppose that {Ct}t∈N is a Markov chain with
state space C = {1, ..., r}, initial distribution νc(c ∈ S) and transition matrix P = (pcc′)c,c′∈C,
and {St}t∈N is a stochastic process taking values in S = {1, ...,m}. The bivariate stochastic
process {Ct, St}t∈N is said to be a Hidden Markov Model (HMM) if it is a Markov chain
with transition probabilities

P (Ct = ct, St = st | Ct−1 = ct−1, St−1 = st−1) = P (Ct = ct, St = st | Ct−1 = ct−1)

= qct−1,ct · gct,st

where G = (gcs)c∈C,s∈S is a stochastic matrix.

Note that the conditional probability of the joint state (Ct, St) depends only on Ct−1

and not St−1. A useful device for depicting the dependence structure of such model is
the conditional independence graph. In such a graph the absence of an edge between two
vertices indicates that the two variables concerned are conditionally independent given the
other variables. Figure 1 displays the independence of the observations {St} given the
states {Ct} occupied by the Markov chain, as well as the conditional independence of Ct−1

and Ct+1 given Ct, i.e. the Markov property.

7

Figure 1: Conditional independence graph of hidden Markov model.

Note 2.5 The joint probability function of C0, S0, ..., Cn, Sn is the most useful and the
most complete information we can have about this bivariate process. It can be written
(using proposition 2.3) as

Jν,n(cn0 , s
n
0) = P (C0 = c0, S0 = s0, ..., Cn = cn, Sn = sn)

= P (C0 = c0, S0 = s0)P (C1 = c1, S1 = s1 | C0 = c0)...

...P (Cn = cn, Sn = sn | Cn−1 = cn−1)

= νc0gc0,s0qc0,c1gc1,s1 ...qcn−1,cngcn,sn

This is therefore the full likelihood function representing the probability of joint processes.
Given this full likelihood function, we can calculate any probability related to this HMM,
and this is only possible if we can have access to the three sets of parameters νc, P and G.

2.2 Some important properties

In this section we will extract some interesting properties from the previous definition. We
will also try to give an alternative approach to HMMs by giving an equivalent definition.

Proposition 2.6 P (St = st | Ct = ct) = gct,st

8

Proof

P (St = st | Ct = ct) =
P (St = st, Ct = ct)

P (Ct = ct)

=
1

P (Ct = ct)

∑
ct−1

P (St = st, Ct = ct, Ct−1 = ct−1)

=
1

P (Ct = ct)

∑
ct−1

P (St = st, Ct = ct | Ct−1 = ct−1)P (Ct−1 = ct−1)

=
1

P (Ct = ct)

∑
ct−1

pct−1ctgctstP (Ct−1 = ct−1)

=
gctst

P (Ct = ct)

∑
ct−1

P (Ct = ct, Ct−1 = ct−1)

=
gctst

P (Ct = ct)
P (Ct = ct)

= gctst

One important thing concerning HMMs is the context of dependence of the random
variables. Stating clearly which variables are independent or not is the key point and it
would be very complicated to derive a single result without having done such a work. In
fact it follows from the previous definition two major properties from the Hidden Markov
Model {Ct, St}t∈N:

(a) Let n ∈ N. Conditionnally on {Ct}t=0,...,n, {St}t=0,...,n are independent, i.e

P (Sn0 = sn0 | Cn
0 = cn0) =

n∏
i=0

P (Si = si | Ci = ci)

(b) for each t, the conditional distribution of St depends on Ct only, i.e.

P (St = st | St−1
0 = st−1

0 , Ct
0 = ct0) = P (St | Ct = ct)

To prove (a), we use Proposition 2.3, Note 2.5 and Proposition 2.6 and we have

P (Sn0 = sn0 | Cn
0 = cn0) =

P (Sn0 = sn0 , C
n
0 = cn0)

P (Cn
0 = cn0)

=
νc0gc0,s0

∏n
i=1 pci−1,cigci,si

νc0
∏n

i=1 pci−1,ci

=
n∏
i=0

gci,si

=
n∏
i=0

P (Si = si | Ci = ci)

9

To prove (b), we only use (a) and we have

P (St = st | St−1
0 = st−1

0 , Ct
0 = ct0) =

P (St0 = st0, C
t
0 = ct0)

P (St−1
0 = st−1

0 , Ct
0 = ct0)

=
P (St0 = st0, C

t
0 = ct0)∑

st
P (St0 = st0, C

t
0 = ct0)

=
P (St0 = st0 | Ct

0 = ct0)∑
st
P (St0 = st0 | Ct

0 = ct0)

=

∏t
i=0 P (Si = si | Ci = ci)∑

st

∏t
i=0 P (Si = si | Ci = ci)

=

∏t
i=0 P (Si = si | Ci = ci)∏t−1

i=0 P (Si = si | Ci = ci)
∑

st
P (St = st | Ct = ct)

= P (St = st | Ct = ct)

Proposition 2.7 We can state four similar properties for the stochastic process {St} that
could be useful. Note that for simplicity, we shall use a somewhat abbreviated notation
and for instance the event St = st is replaced by St simply.
Firstly, for t = 0, 1, ...n :

P (Sn0 | Ct) = P (St0 | Ct)P (Snt+1 | Ct) (1)

In the case t = n we use the convention that P (Snt+1 | Ct) = 1. Secondly, for t = 0, 1, ..., n−1:

P (Sn0 | Ct, Ct+1) = P (St0 | Ct)P (Snt+1 | Ct+1) (2)

Thirdly, for 1 ≤ t ≤ l ≤ n:

P (Snl | C l
t) = P (Snl | Cl) (3)

Finally, for t = 0, 1, ..., n:

P (STt | Ct) = P (St | Ct)P (Snt+1 | Ct) (4)

Given the structure of the models, none of these properties is surprising, and this can be
quite easily proven as follows.

Proof Let us proof these four properties. All proofs follow the same structure, namely, we
first express the probability of interest in terms of probabilities conditional on {Ct}t=0,...n,
then we use the fact conditionally on {Ct}t=0,...n, S0, ..., Sn are independent and that St only
depends on Ct. Finally we use the Markov property of {Ct} if necessary. We will use 3
little lemmas to prove our claims.

Lemma 2.8 For all integers t and l such that 0 ≤ t ≤ l ≤ n:

P (Snl | Cn
t) = P (Snl | Cn

l)

Proof. The left-hand side can be rewritten as:

1

P (Cn
t)

∑
c0,...,ct−1

P (Snl | Cn
0)P (Cn

0)

10

By independence, we have

P (Snl | Cn
0) = P (Sl | Cn

0)...P (Sn | Cn
0)

= P (Sl | Cl)...P (Sn | Cn)

and this can be taken outside the summation where the resulting sum reduces to P (Cn
t).

The left-hand side is therefore P (Sl | Cl)...P (Sn | Cn), which is independent of t. The
right-hand side is just the case when t = l.

Lemma 2.9 For t = 0, ..., n− 1:

P (Snt+1 | Ct
0) = P (Snt+1 | Ct)

Proof. The left-hand side can be rewritten as

1

P (Ct
0)

∑
ct+1,...,cn

P (Cn
0)P (Snt+1 | Cn

0)

Now we apply the previous lemma twice and the Markov property to see that this equals∑
ct+1,...,cn

P (Cn
t+1 | Ct)P (Snt+1 | Cn

t)

The term in the sum is P (Snt+1, C
n
t)/P (Ct), and the result of the sum is therefore P (Snt+1 |

Ct) as required.

Lemma 2.10 For t = 0, ..., n:

P (St0 | Cn
0) = P (St1 | Ct

0)

Proof. As we have seen in the first lemma, the left-hand side is equal to P (S0 | C0)...P (St |
Ct). We can apply the same conditions of independence to derive the same term from the
right-hand side.

Proof of Property (1). Making use of use of mutual independence of S1, ..., Sn given Cn
0 ,

we can write the left-hand side of property (1) as

1

P (Ct)

∑
c0,...,ct−1

∑
ct+1,...,cn

P (Cn
0)(P (St0 | Cn

0)P (Snt+1 | Cn
0))

Finally, by using the last two lemmas, we can show that this equals

1

P (Ct)
P (Snt+1 | Ct)

∑
c0,...,ct−1

P (St0, C
t
0) =

1

P (Ct)
P (St0, Ct)P (Snt+1 | Ct)

which is the right-hand side.
Proof of Property (4). All we have to do is to sum the result of Property (1) with respect
to s1, ..., st−1.
Proof of Property (2). This is probably the most difficult one to prove. The left-hand
side of Property (2) can be written as

1

P (Ct, Ct+1)

∑
c0,...,ct−1

∑
ct+2,...,cn

P (Cn
0)P (St1 | Cn

0)P (STt+1 | C0n)

11

By the third and first lemmas respectively, the last two factors in the above expression
reduce to P (St0 | Ct

0) and P (Snt+1 | Cn
t+1). The Markov property of {Ct} is then used,

and after some routine manipulations of conditional probabilities it emerges that the above
expression is equal to

P (St0 | Ct)
1

P (Ct+1)

∑
ct+2,...,n

P (Snt+2, C
n
t+1) = P (St0 | Ct)P (Snt+1, Ct+1)/P (Ct+1)

as required.
Proof of Property (3).Here again the left-hand side can be written as

1

P (Ct, ..., Cl)

∑
cl+1,...,ct

∑
c0,...,ct−1

P (Snl | Cn
0)P (Cn

0)

Now by the first lemma

P (Snl | Cn
0) = P (Snl | Cn

l),

ans the above expression for the left-hand side therefore equals∑
cl+1,...,ct

P (Snl | Cn
l)P (Cn

l+1 | C l
t)

By the Markov property of {Ct}, this equals∑
cl+1,...,ct

P (Snl | Cn
l)P (Cn

l+1 | Cl) =
1

P (Cl)
P (Snl , C

n
l)

= P (Snl , Cl)/P (Cl)

= P (Snl | Cl)

as required

2.3 Three main issues related to HMMs

Hidden Markov models have been widely and successfully used in many important areas
of research such as speech recognition, hand-writing recognition, . . . This is almost due to
the fact that Hidden Markov models only need a small number of parameters to generate
parsimonious representation of real-life process. However, several problems are to be over-
come when one has come to speak about Hidden Markov models and in particular three
problems which are of interest. The first one is given the parameters of the model (that
we shall specify), one might want to compute the probabilities of a particular sequence of
observations, and of the corresponding hidden state values. This problem is solved by the
forward-backward algorithm. Secondly, one might want to find the most likely sequence of
hidden states that could have generated a given sequence of observations. This problem is
solved by a posteriori statistical inference, resulting in the Viterbi algorithm. Thirdly, given
the a sequence of observations, or set of such sequences, one might want to find the most
likely set of model parameters. This problem is solved by the Baum-Welch algorithm, a
consequence of statistical inference. All these three problems have been solved and this is
exactly this point that gives to HMMs their strength since each problem is computationally
solvable. The following of this subsection describes in details the theoretical solution to
these issues as well as providing a corresponding algorithm.

12

2.3.1 Forward-backward algorithm

This is probably the most important and the most fundamental algorithm about HMMs.
The problem is given the model parameters λ = [the initial distribution ν, the one-step
transition matrix of the hidden Markov chain P , and the matrix given the conditional
probabilities of one observation given the current hidden state G], what can we say about
S1, ..., Sn. Next we define some coefficients that are of great importance for the whole
project.

Definition 2.11 For positive integers k, l, n with l ≥ k, we define the following conditional
probabilities

φk:l|n(clk, s
n
0) = P (Ck = ck, ..., Cl = cl | S0 = s0, ..., Sn = sn)

We will use the notation φk|n = φk:k|n. Sometimes when the context is obvious, we shall
drop the dependence on s0, ..., sn and only write φk(ck) to represent φk|n(ck, s

n
0).

We will see soon how and why these quantities are important to the solution of this
problem. Now let us state the likelihood function of the observations which is the function
we want to compute for all possible sequence of observations.

Definition 2.12 The likelihood function of the observations s0, s1, ..., sn is defined as

Lν,n(s0, s1, ..., sn) = P (S0 = s0, ..., Sn = sn)

It can be seen easily that given the parameters of the Hidden Markov models, we are
able to compute the likelihood function of the observations in this following way using Note
2.5:

Lν,n =
∑

c0,...,cn

Jν,n(cn0 , s
n
0)

=
∑

c0,...,cn

νc0gc0,s0

n∏
i=1

pci−1,cigci,si

So why don’t we stop here ? As you can see, this formula indeed allows us to calculate
the likelihood function of observations but you can also note that the right-hand side of the
formula is a sum over a multi-dimensional domain and it is clearly computationally infeasible
(it is exponential in n). For instance if we assume n = 10 and the number of hidden states
equals 6, only small numbers, then the right-hand side is a sum of 610 = 60466176 terms,
more than 60M terms for relatively small parameter values. This motivates us to find an
alternative way to compute the likelihood function.

13

2.3.2 Expression of the forward and backward variables

To derive the expression of these famous variables, we must go further in the expression of
φk|n(ck, s

n
0) to see what is happening : for 0 ≤ k ≤ n,

φk|n(ck, s
n
0) = P (Ck = ck | Sn0 = sn0)

=
P (Ck = ck, S

n
0 = sn0)

P (Sn0 = sn0)

=

∑
c0,...,ck−1

∑
ck+1,...,cn

Jν,n(cn0 , s
n
0)

P (Sn0 = sn0)

=
1

Lν,n(sn0)

∑
c0,...,ck−1

∑
ck+1,...,cn

νc0gc0,s0

n∏
i=1

pci−1,cigci,si

=
1

Lν,n(sn0)

∑
c0,...,ck−1

νc0gc0,s0

k∏
i=1

pci−1,cigci,si︸ ︷︷ ︸
αν,k(ck,s

k
0)

∑
ck+1,...,cn

n∏
i=k+1

pci−1,cigci,si︸ ︷︷ ︸
βk|n(ck,s

n
k+1)

So we have

φk|n(ck, s
n
0) =

1

Lν,n(sn0)
αν,k(ck, s

k
0) βk|n(ck, s

n
k+1)

These are the forward and backward variables : αν,k(ck, s
k
0) is called the forward variable

or sometimes the forward measure and βk|n(ck, s
n
k+1) is referred to as the backward variable

or the backward measure. The forward measure does depend on the initial distribution ν
whereas the backward variable does not. We will see in the next section why they are given
these names. However given the previous expressions of α and β it is difficult to see which
quantity they represent and so we have to go a bit further to give a full meaning to these
variables.
For k = 0, · · · , n

αν,k(ck, s
k
0) =

∑
c0,...,ck−1

νc0gc0,s0

k∏
i=1

pci−1,cigci,si

=
∑

c0,...,ck−1

Jnu,k(c
k
0, s

k
0)

= P (Sk0 = sk0, Ck = ck)

We finally conclude that αν,k(ck, s
k
0) represents the joint probability of the kth hidden state

being ck and the first k observations being sk0.
Now for k = 0, · · · , n− 1

βk|n(ck, s
n
k+1) =

∑
ck+1,...,cn

n∏
i=k+1

pci−1,cigci,si

=
∑

ck+1,...,cn

P (Cn
k = cnk , S

n
k+1 = snk+1)

P (Ck = ck)

=
P (Ck = ck, S

n
k+1 = snk+1)

P (Ck = ck)

= P (Snk+1 = snk+1 | Ck = ck)

14

And by conventionβn|n(c, snn) = 1.
Here we deduce that βk|n(ck, s

n
k+1) represents the conditional probability of the last n − k

observations being snk+1 given that the kth hidden state is ck. For more simplicity we will
lighten the notation by omitting dependence on sn0 in some of the expressions in the rest
of this project. For example, we would use Lν,n instead of Lν,n(sn0), αν,k(ck) instead of
αν,k(ck, s

k
0) and βk|n(ck) instead of βk|n(ck, s

n
k+1) (generally the observations are supposed to

be known).

2.3.3 Properties of the forward and backward variables

In this subsection, we will outline three main properties relating the forward and back-
ward variables to the likelihood function of observations. Assuming that the forward and
backward variables can be efficiently computed, the next three properties will validate the
usefulness of such variables. Here is one of the most important propositions concerning the
forward and backward algorithm.

Proposition 2.13 For 0 ≤ k ≤ n

(a) αν,k(c)βk|n(c) = P (Sn0 = sn0 | Ck = c)

(b) Lν,k =
∑

c αν,k(c)

(c) Lν,n =
∑

c αν,k(c)βk|n(c)

Proof (a) We already know that

φk|n(c) =
1

Lν,n
αν,k(c) βk|n(c)

Therefore we have

αν,k(c)βk|n(c) = φk|n(c)Lν,n

= P (Ck = c | Sn0 = sn0)Lν,n

= P (Ck = c, Sn0 = sn0)

(b) ∑
c

αν,k(c) =
∑
c

P (Sk0 = sk0, Ck = c)

= P (Sk0 = sk0)

= Lν,k

(c) Finally, using (a) above we can write∑
c

αν,k(c)βk|n(c) =
∑
c

P (Sk0 = sk0, Ck = c)

= P (Sn0 = sn0)

= Lν,n

This last point of the proposition is the key point since it enables us to compute effi-
ciently the likelihood function of observations thanks to the forward and backward measures
providing that we can compute them. The problem now is to know how to compute these
measures quite easily to complete the solution of the first issue. the next subsection exhibit
the key result and make the derivation of a possible algorithm possible.

15

2.3.4 The so-called forward-backward algorithm

As said earlier, in the previous subsection, we need to find an efficient way to compute the
forward and backward variables. Using their summation representations would be useless
because as expensive as the direct computation of the likelihood function of observations
Lν,n. In fact the following result points out a recursive way to compute the forward and
backward variables, so a recursive way to compute the likelihood function. Let us state the
forward-backward recursions.

Proposition 2.14 (a) The forward variable satisfies the recursive relation:

αν,k(c) =
∑
c′

αν,k−1(c′) pc′,c gc,sk

for k = 1, · · · , n with the initial condition αν,0(c) = νc gc,s0.

(b) The backward variable satisfies the recursive relation:

βk|n(c) =
∑
c′

pc,c′ gc′,sk+1
βk+1|n(c′)

for k = n− 1, · · · , 0 with the initial condition βn|n(c) = 1.

After this proposition we finally understand why the measures possess such names : αν,k
is called the forward variable because it can be computed thanks to a forward recursion
(in order to compute the kth variable, we need the k − 1th variable) whereas βk|n is called
the backward variable because it is involved in a backward recursion. The proof is quite
intuitive :

Proof (a) Using the summation representation of the forward measure, we have

αν,k(ck) =
∑

c0,...,ck−1

νc0gc0,s0

k∏
i=1

pci−1,cigci,si

=
∑

c0,...,ck−1

pck−1,ck gck,sk νc0gc0,s0

k−1∏
i=1

pci−1,cigci,si

=
∑
ck−1

pck−1,ck gck,sk
∑

c0,...,ck−2

k−1∏
i=1

pci−1,cigci,si

=
∑
ck−1

pck−1,ck gck,sk αν,k−1(ck−1)

Moreover we have

αν,0(c) = P (S0 = s0, C0 = c)

= P (S0 = s0 | C0 = c)P (C0 = c)

= gc,s0νc

(b) Using the summation representation of the backward measure, we have

16

βk|n(ck) =
∑

ck+1,...,cn

n∏
i=k+1

pci−1,cigci,si

=
∑

ck+1,...,cn

pck,ck+1
gck+1,sk+1

n∏
i=k+2

pci−1,cigci,si

=
∑
ck+1

pck,ck+1
gck+1,sk+1

∑
ck+2,...,cn

n∏
i=k+2

pci−1,cigci,si

=
∑
ck+1

pck,ck+1
gck+1,sk+1

βk+1|n(ck+1)

Note 2.15 The forward-backward algorithm is as follows:

(1) Initialisation:
αν,0(c) = gc,s0νc for all c ∈ C = 1, · · · , r

βn|n(c) = 1 for all c ∈ C = 1, · · · , r

(2) Induction:

αν,k(c) =
∑
c′

αν, k − 1(c′) pc′,c gc,sk

βk|n(c) =
∑
c′

pc,c′ gc′,sk+1
βk+1|n(c′)

(3) Termination:
Either

Lν,n =
∑
c

αnu,n(c) Prop 2.13

Or
Lν,n =

∑
c

αnu,k(c)βk|n(c) Prop 2.13

So we notice that we don’t really need the backward variable to compute the likelihood func-
tion of observations but we will see later the backward measures are important, especially
when implementing the Baum-Welch algorithm.

2.3.5 Matrix notation

As Levinson et al. (1983) point out, the above results can be stated more succinctly in
matrix notation. Exclusively in this subsection, I will further lighten the notation and omit
the dependence on ν and instead of writing αν,k I will write αk. Thus I will henceforth use
βk and Ln. If we define for all k from 0 to n, the vectors

αk = (αk(1), αk(2), · · · , αk(r))

and similarly
βk = (βk(1), βk(2), · · · , βk(r)),

then the result stated in Prop 2.13 (c) can be written as

Ln = αkβ
T
k for all k/

17

The recusrions for the forward and backward probabilities are given by

αk+1 = αk Bk+1

and
βTk = Bk+1β

T
k+1

if we define Bk = Pλ(sk) and λ(s) is the r x r diagonal matrix with ith diagonal element
equal to gi,s. These recursions start from α0 = ν λ(s0) and βn = 1. The following explicit
expressions for the forward and backward probabilities are therefore available:

αk = νλ(s0)B2B3 · · ·Bk

and
βTk = Bk+1Bk+2 · · ·Bn1

T .

With the convention that an empty product of matrices is the identity matrix, these ex-
pressions hold for all k from 0 to n inclusive.

2.3.6 Normalized version of the forward-Backward algorithm

This forward-backward algorithm was a big revolution in the study of Hidden Markov
models and this algorithm was a way to explore the computation power of such a tool.
However, a problem is still persistent and can’t be detected looking at the theory. Indeed,
the forward and backward measures αν,k(c) and βk|n(c) as described above are largely
unscaled and as n becomes important, these quantity are likely to rapidly tend to zero.
The underlying numerical complication is that the computation of Lν,n as described may
suffer from underflow problems even for relatively small values of n : the elements αν,k(c)
for c ∈ C of the vector of forward probabilities αk help at a particular stage of the algorithm
may be too small to be distinguishable from zero, even if all the other parameters are of
moderate size (namely even if νc and gc,s are of moderate size). Since the likelihood is
additive, Lν,n =

∑
c′ αν,n(c′), it is not possible merely to work with logarithms. What can

be done, however, is described in a famous tutorial given by Rabiner in 1989 where he
coined the term scaling to describe a practical solution to this problem [4]. The idea he
developed is to scale the vector αk at each stage so that the average elements is 1, i.e. to
divide αk by

∑r
c=1 αν,k(c). Thus, the numeric values needed to represent αν,k(c) and βk|n(c)

are kept within reasonable bounds. In fact there are many variations of this technique such
as : the scale factor could be chosen instead to be the largest element of the vector αk.
Here we want to replace the measure αν,k(c) and βk|n(c) by their scaled versions αν,k(c) and

βk|n(c) satisfying both ∑
c

αν,k(c) = 1

and ∑
c

αν,k(c)βk|n(c) = 1

Definition 2.16 The normalized forward measure αν,k(c) is defined by

αν,k(c) =
∑
c′

αν,k(c
′)αν,k(c) =

αν,k(c)

Lν,k

The normalized backward measure βk|n(c) is defined by

βk|n(c) =
Lν,k
Lν,n

βk|n(c)

18

Let us check that the two relations cited above are satisfied with these definitions.
Indeed we have ∑

c

αν,k(c) = L−1
ν,k

∑
c

αν,k(c) = 1

Since we saw in Prop 2.13 that Lν,k =
∑

c αν,k(c) Now concerning the second relation we
have ∑

c

αν,k(c)βk|n(c) = L−1
ν,n

∑
c

αν,k(c)βk|n(c) = L−1
ν,nLν,n = 1

still using Prop 2.13. Therefore the two relations are indeed satisfied. We can also note
that in terms of probability we have :

αν,k(c) =
P (Sk0 = sk0, Ck = c)

P (Sk0 = sk0)

= P (Ck = c | Sk0 = sk0)

= φk|k(c)

Therefore the new normalized forward αν,k(c) variable is nothing but the condition proba-
bility of the kth hidden state being c given the first k observation points sk0. From now on
we will prefer the notation φk|k(c) rather than αν,k(c) to have a clearer idea of what quantity
it represents. Moreover we have the following relation from the definition of φk|n(c):

φk|n(c) = L−1
ν,nαν,k(c)βk|n(c)

= L−1
ν,kαν,k(c)L

−1
ν,nLν,kβk|n(c)

= βk|n(c)βk|n(c)

Thus the expression of φk|n(c), namely the probability of the kth hidden state being c given
the nobservation points sn0 , is simpler when expressed as a function of the new normalized
forward and backward measures.

Now we must try to derive a new Forward-Backward algorithm from these new variables
to definitely solve the problems of underflows.

Proposition 2.17 (The Normalized Forward-Backward algorithm) (a) The new
normalized variable φk|k(c) can be computed recursively according to the new recursive
relation

φk|k(c) = d−1
ν,k

∑
c′

φk−1|k−1(c′)pc′cgcsk

with
dν,k =

∑
c

∑
c′

φk−1|k−1(c′)pc′cgcsk

for k from 1 to n and the initial condition is

φ0|0(c) =
gcs0νc∑
c′ gc′s0νc′

Note that dν,k is just a normalizing term and that the vector φk|k = αν,k does sum to
1 for all k from 0 to n.

(b) The normalized backward measure satisfies the following recursive relation

βk|n(c) = d−1
ν,k+1

∑
c′

pcc′gc′sk+1
βk+1|n(c′)

for k from n− 1 to 0 and with initial condition βn|n = 1.

19

We note a strong similarity with the first version of the Forward-Backward algorithm
since the only major difference is the presence of a normalizing term dν,k which makes
sure that the forward vector φk|k(c) sums up to 1 and hence we can’t obtain an underflow
problem. The next part of this subsection is entirely reserved to the proof of this proposition
which is probably the heavier proof in this whole project.

Proof This proof will be organized as follows :

• We show that dν,k =
Lν,k
Lν,k−1

=
P (Sk0 =sk0)

P (Sk−1
0 =sk−1

0)

• Secondly, we prove the recursive relation for the normalized forward variable using
the recursive relation of the unnormalized one.

• Thirdly, we prove the recursive relation for the normalized backward variable using
the recursive relation of the unnormalized one.

First given the formula of dν,k in the last Proposition, we have

dν,k =
∑
c

∑
c′

φk−1|k−1(c′)pc′cgcsk

=
∑
c

∑
c′

P (Ck−1 = c′ | Sk−1
0 = sk−1

0)pc′cgcsk

=
1

P (Sk−1
0 = sk−1

0)

∑
c

∑
c′

P (Ck−1 = c′, Sk−1
0 = sk−1

0)pc′cgcsk

= L−1
ν,k−1

∑
c

∑
c′

P (Ck−1 = c′, Sk−1
0 = sk−1

0)

× P (Ck = c, Sk = sk | Ck−1 = c′) By def 2.4

= L−1
ν,k−1

∑
c

∑
c′

P (Ck−1 = c′, Sk−1
0 = sk−1

0)

× P (Ck = c, Sk = sk | Ck−1 = c′, Sk−1
0 = sk−1

0)

= L−1
ν,k−1

∑
c

∑
c′

P (Ck−1 = c′, Sk−1
0 = sk−1

0 , Ck = c)

= L−1
ν,k−1P (Sk0 = sk0)

=
Lν,k
Lν,k−1

as required.
Secondly, the right-hand side of the normalized forward recursion is

d−1
ν,k

∑
c′

φk−1|k−1(c′)pc′cgcsk =
Lν,k−1

Lν,k

∑
c′

αν,k−1(c′)

Lν,k
pc′cgcsk

=
αν,k(c)

Lν,k
By recursive relation of the unnormalized forward variable

= φk|k(c)

20

Thirdly, the right-hand side of the normalized backward recursion is

Lν,k
Lν,k+1

∑
c′

pcc′gc′sk+1
βk+1|n(c′) =

Lν,k
Lν,k+1

∑
c′

pcc′gc′sk+1

Lν,k+1

Lν,n
βk+1|n(c′)

=
Lν,k
Lν,n

∑
c′

pcc′gc′sk+1
βk+1|n(c′)

=
Lν,k
Lν,n

βk|n(c′)

= βk|n(c)

Finally concerning the initial conditions

φ0|0(c) = P (C0 = c | S0 = s0)

=
P (C0 = c, S0 = s0)

P (S0 = s0)

=
P (C0 = c, S0 = s0)∑
c′ P (C0 = c′, S0 = s0)

=
gcs0νc∑
c′ gc′s0νc′

and

βn|n(c) =
Lν,n
Lν,n

βn|n(c) = 1

Now that we have derived a new and more efficient version of the forward-backward
algorithm (avoiding underflows), we must find the new expression of the likelihood function
of observations Lν,k for k from 0 to n. There are several ways to do so but one tricky thing
one might notice is given the expression of dν,k we have

dν,k =
Lν,k
Lν,k−1

=
P (Sk0 = sk0)

P (Sk−1
0 = sk−1

0)

= P (Sk0 = sk0 | Sk−1
0 = sk−1

0)

= P (Sk = sk | Sk−1
0 = sk−1

0)

Therefore we can see that Lν,k =
∏k

i=0 dν,i and we can compute the likelihood function
of the first kth observations recursively using the previous normalized forward-backward
algorithm. However, to be cautious, it is better to evaluate the log likelihood defined by
log Lν,k =

∑k
i=0 log dν,i.

2.3.7 The Baum-Welch Algorithm

The Baum-Welch algorithm represents the central part of my project. Historically speaking,
The Baum-Welch algorithm was developed by L.E Baum and his co-workers in a series of
papers published between 1966 and 1972: Baum and Petrie (1966), Baum and Eagon (1972),
Baum ans Sell (1968), Baum et al. (1970), and Baum (1972). The name of Welch seems
to appear only as joint author (with Baum) of a paper listed by Baum et al. (1970) as
submitted for publication. Since the beginning of this paper, in the previous subsections,
we have supposed that all the parameters of the model, often referred to as λ in the
literature where λ represents the conjunction of the initial distribution ν of the underlying
Markov chain {Ct}t∈N, the transition matrix of this same Markov chain, and the conditional

21

probability matrix G supplying the distribution of observations given the hidden state, were
fully known. In fact, in many real-life processes we can’t fully specify the model parameters
and most of them have to be estimated from the observed data. We have already seen
that the likelihood function can be efficiently computed thanks to the forward-backward
algorithm. As far as the Baum-Welch algorithm is concerned, it computes a maximum
likelihood estimates of the parameters and for that reason it is often called ‘The Baum-
Welch re-estimation algorithm’. The algorithm is in fact an early example of an algorithm
of Expectation-Maximisation (EM) algorithm. However in the literature, and in particular
the expository article of Juang and Rabiner (1991) gives only a brief account on the relation
between the Baum-Welch and EM algorithms, and it therefore seems useful to discuss that
relation later in the project. Indeed, I will delay the theory of the Baum-Welch algorithm
until section 4 since I want to make a parallel between the discrete case and the continuous-
time case. For now, I only give the results for the re-estimates of the concerned parameters:

Proposition 2.18 (Baum-Welch) The optimal (with respect to EM) re-estimates for the
HMM parameters during 1 iterative step in the Baum-Welch algorithm are

ν̂j =
αν,0(j)β0|n(j)∑
l αν,0(l)β0|n(l)

ĝjs =

∑n
i=0 δsi,sαν,i(j)βi|n(j)∑n
i=0 αν,i(j)βi|n(j)

p̂jk =
pjk
∑n−1

i=0 αν,i(j)gk,si+1
βi+1|n(k)∑n−1

i=0 αν,i(j)βi|n(j)

where δi,j is the Kronecker symbol taking the value 1 if i = j and 0 otherwise. Note that
we are using the forward and backward variables and so the Baum-Welch algorithm must
necessarily be implemented along with the Forward-Backward algorithm. In fact this is
an iterative process where the forward and backward variables are evaluated with the old
values of the parameters ν,P and G. Once the new values of the parameters are calculated
thanks to the above set of formulas, we re-compute the forward and backward variables with
the updated values of parameters and so on. It can be shown that this process necessarily
converges.

2.3.8 The Viterbi Algorithm

There is one remaining problem that we haven’t treated so far which is the one concerning
the most likely sequence of hidden states that could have generated a given (fully known)
sequence of observations. In the following we assume that the sequence of observations is
fixed. In speech recognition and other applications, it is of interest to determine the states
of the Markov chain that are most likely (under the fitted model which is also assumed
to be specified) to have given rise to the observation sequence. In the context of speech
recognition this is known as the ‘decoding’ problem: see Juang and Rabiner (1991). More
specifically, ‘localized decoding’ of the state at time k refers to the determination of the
state ck which is (a posteriori) most likely, that is :

ck = arg max
0≤c≤r

P (Ck = c | Sn0 = sn0)

for all k from 0 to n.
In contrast, ‘global decoding’ refers to the determination of the jointly optimal sequence of

22

states ĉ0, ..., ĉn which maximizes the conditional probability :

P (Cn
0 = cn0 | Sn0 = sn0)

In general the sequences cn0 and ĉn0 are different. This subsection will deal with the second
case, that is global decoding (determination of the sequence ĉn0) which can be carried out by
using a dynamic programming method known as the Viterbi algorithm. Here the quantity
of interest is therefore φ0:k|k (up to time k for k = 0, ..., n) and it could be useful to derive
a recursive relation as follows

φ0:k+1|k+1(c0, ..., ck+1) = P (Ck+1
0 = ck+1

0 | Sk+1
0 = sk+1

0)

=
P (Ck+1

0 = ck+1
0 , Sk+1

0 = sk+1
0)

P (Sk+1
0 = sk+1

0)

=
1

Lν,k+1

νc0gc0,s0

k+1∏
i=1

pci−1,cigci,si

=
Lν,k
Lν,k+1

1

Lν,k
νc0gc0,s0

k∏
i=1

pci−1,cigci,si pck,ck+1
gck+1,sk+1

=
Lν,k
Lν,k+1

φ0:k|k(c0, ..., ck) pck,ck+1
gck+1,sk+1

Now that we have derived such recursive relation we are going to think in terms of log-
likelihood. In many other books, the approach is undertaken directly on the likelihood. If
denote lk = Lν,k and take the logarithm of the previous equation we have

log(φ0:k+1|k+1(c0, ..., ck+1)) + lk+1 = log(φ0:k|k(c0, ..., ck)) + lk + log(pck,ck+1
) + log(gck+1,sk+1

)

We then define a couple of terms (mk(i), bk(i)):

mk(i) = max
c0,...,ck−1

log(φ0:k|k(c0, ..., ck−1, i)) + lk

which is the maximum a posteriori log probability up to time k and ending with state i.
Note that maximizing the log probability is equivalent to maximizing the probability since
the log is an increasing function. And we define bk(i) as the value of ck−1 for which the
maximum is achieved in the definition ofmk(i). Thus bk(i) is the second state of the optimal
state sequence up to time k and ending with state i. Now it is easy to see that thanks to
the previous recursive relation we have

mk+1(j) = max
i

(mk(i) + log(pij)) + log(gj,sk+1
)

and in this context it naturally comes that bk+1(j) is the i for which the maximum is
achieved in the above formula.

We can also remark that

m0(i) = log(φ0:0|0(i)Lν,0)

= log(P (C0 = i | S0 = s0)P (S0 = s0))

= log((P (C0 = i, S0 = s0))

= log(νigi,s0)

At this point we have all the elements to extract the optimal hidden state sequence. Indeed,
by starting the process with m0(i) = log(νigi,s0), we can obtain the final term mn(j) using

23

the formula mk(i) = maxc0,...,ck−1
log(φ0:k|k(c0, ..., ck−1, i)) + lk for k = 1, ..., n− 1. So if we

maximize mn(j), we obtain the final state ĉn of the jointly optimal sequence of states. In
fact ĉn is just the j for which mn(j) is maximum. Now in order to obtain the rest of the
optimal sequence we just have to run the backward recursion

ĉk = bk+1(ĉk+1)

for k=n-1,...,0 because we know that ĉk is the value of i for which the maximum of
mk+1(ĉk+1) is attained. We can summarize all of this in the Viterbi algorithm.

Proposition 2.19 (Viterbi Algorithm) This algorithm is therefore split into two differ-
ent steps:

• Forward recursion to find the last optimal state ĉn :

m0(i) = log(νigi,s0)

For k = 0, ..., n− 1, compute mk+1(j) for all states j using the equation

mk+1(j) = max
i

(mk(i) + log(pij)) + log(gj,sk+1
)

Finally ĉn = arg maxjmn(j)

• Backward recursion to find the rest of the optimal sequence:
Once we have determined ĉn, we can determine ĉn−1 using the fact that ĉn−1 is just
the n− 1th state for which mn(ĉn) is maximum.

ĉn−1 = arg max
i

(mk(i) + log(piĉn)) + log(gĉn,sk+1
)

or equivalently
ĉn−1 = bn(ĉn)

So for k = n − 1, ..., 0, ĉk is the state i for which the maximum is attained in the
expression mk+1(ĉk+1), or equivalently, ĉk = bk+1(ĉk+1).

24

3 An Application of HMMs to Flash Memory

This project was initiated by my supervisor Peter Harrison and is in fact a logical suite, as
outlined in the introduction, of a previous project “Storage Worload Modelling by Hidden
Markov Models: Application to FLASH Memory” [1] he worked in with S.K. Leyton, N.M.
Patel and S. Zertal. In this latter paper, they used HMMs to find a representative model
to characterize the stream of read and write instructions arriving at Flash memory chip.
After obtaining industrial benchmark traces, they presented a technique that processes data
from operation type traces and creates a Hidden Markov model to represent efficiently the
workload that generated those traces. They finally tested their HMM by comparing its
autocorrelation function with the one of the data trace. Once a HMM is found it is used
to generate new representative traces which is priceless in many areas because as we know,
obtaining a complete trace from industries is far from being an easy and quick task, and
since HMMs only need a small number of parameters, they constitute a compact way to
create new faithful traces very easily. We shall describe the outlines of this previous project
and see how my project came into existence.

3.1 Summary of the work

3.1.1 Motivations

Currently, we are witnessing an increasing number of networked or/and on-line storage
spaces. Many Internet services are specifically dedicated to supply a virtualized storage
space, and one can easily understand that such services need to treat traffic from many
servers without affecting the storage performance to all applications. In fact there may
be some bottlenecks in the storage systems and the workload models need to take it into
account as well as the time-varying correlated traffic streams. More and more storage
systems present a large layer of Flash in the memory hierarchy between DRAM and Hard
Disk Drives (HDD). That is why one should focus on studying the workload models for
Flash memory.

We all know the great importance of IO traces for workload modelling. However, ob-
taining an IO trace from a production system is often a difficult procedure as traces are very
long (many Gigabytes) and therefore time-consuming. This emphasizes the need to find
an alternative method to the direct use of IO traces. Instead, we could think of a compact
way of representing traces thanks to a small number of key parameters determined on a
first initial trace. Then things become far easier as providing a trace would be equivalent to
providing all the characteristic parameters of this trace. In fact it would be more correct to
have a set of parameters for a class of traces because we may want to deal with a trace with
particular characteristics (for instance a write-dominated trace) and thus with particular
values of parameters.

3.1.2 Flash memories

In the current market, two types of hard disk drives are in competition: high speed storage
(SAS HDD) and high capacity storage (SATA HDD). Furthermore, a new technology has
recently appeared and threatens the domination of HDDs: this is solid-state drive (SSD)
technology also referred to as Flash-based storage. In fact, one crucial factor to assess
the performance of a HDD-based system is to evaluate the disparity between random and
sequential IO requests. Indeed, for a SATA drive, it can treat 100 MB per second for
sequential reads whereas it can only do 0.5 MB per second for random reads. We say that

25

Figure 2: Vector of Flash packages with 40 MB/s channels

there is a huge order of disparity for read requests. Concerning write requests, we can solve
the problem using a Write anywhere file system such as WAFL (described in figures 2 and
3) since writes would be located in pre-selected regions of the disk.

With Flash-based storage, the sequentiality or randomness of IO requests is not a big
issue although we can note that random writes influence the performance of the system,
and so the CPU resources required are better matched to the number of Flash devices. This
allow us to claim that Flash is better suited to the mixture of workloads where different
modes over time arise. Concerning Flash, three main modes are of interest: reads only,
writes only and mixed reads/writes. It can be shown experimentally, that the performance
of a Flash-based system is lower when there is a mixture of reads and writes since read and
write rates vary over time.

26

Figure 3: Flash chip and controller

3.1.3 Construction of the models

One of their main objective was to construct a portable model in terms of Markov modulated
Poisson Processes (see section 3.3) that can faithfully represent correlation and burstiness
in multi-application workloads. Therefore, the underlying workload dynamics is assumed to
be a Markov chain and it is important to derive the key characteristics of this Markov chain,
namely its initial distribution and its one-step transition matrix. HMMs are particularly
suitable when we know that the behaviour of a time series is partly influenced by a sequence
of switching modes (observable or not): these modes will constitute the hidden states of
the HMM and follow the Markovian conditions as described in section 2.

There are several ways to collect traces and it can be done at different stages or layers
in the Flash storage controller stack (figure 4). Along this stack, workloads go through
different layers, each of which proceeds to a transformation that potentially amplifies the
number of IO requests. For instance, in the Flash stack, the workload goes through a
Flash Translation Layer (FTL) that introduces additional traffic depending on the specific
Flash design choices implementation. They chose to collect the trace just after storage
virtualization and before the FTL, because this was the lowest level they could practically
collect detailed traces.

27

Figure 4: Flash chip and controller

From this trace, they created a “binned trace” constituted of a sequence of 5 msec bins
representing the number of reads and writes. They further reduced the size of the trace by
applying a clustered algorithm: they used two values for the number of reads (low number
of reads and high number of reads) and 4 values for the number of writes. This implies
that the observation state space is composed of 8 values that are given below

5.7 0.28
4.45 31.3
5.11 82.1
4.49 183.0
23.7 0.217
24.5 31.7
27.3 81.0
25.8 165.8


Each row is a cluster representative and as we can see the observation values of 1 to 4
represent low reads and increasing writes whilst observation values 5 to 8 represent high
reads and increasing writes. Now from this new processed trace, they applied the Baum-
Welch algorithm and they found out the following parameter values (to 4 decimal places):

Transition matrix P =

0.9972 0.0022 0.0006
0.0005 0.9965 0.0030
0.021 0.0005 0.9974


Conditional probability matrix G =

0.634 0.0 0.0 0.0 0.366 0.0 0.0 0.0
0.076 0.118 0.237 0.112 0.068 0.115 0.199 0.076
0.241 0.393 0.0 0.158 0.205 0.0 0.0


28

3.1.4 Validation of the HMM

As usual, in order to test the faithfulness of a HMM, they decided to generate a Monte
Carlo simulation of the HMM using the parameters previously estimated. They also had to
choose some key metrics to evaluate and compare the performance of the HMM: here they
chose the numbers of reads and writes in each bin. During the performance evaluation,
they considered three traces which are the original binned trace, the clustered trace and
the HMM-generated trace. When they compared the three traces, they found out that the
three traces were very similar with respect to the key metrics, even though the clustering
algorithm involved a loss of information that was measurable thanks to the HMM-generated
trace.

3.1.5 Simple measures

As mentioned in the previous section, using the key metrics, which are the mean count and
its standard deviation per bin, the derived Hidden Markov model has been validated and
a summary of this metrics comparison is given in this following table:

Reads/bin Writes/bin
Raw HMM Raw HMM

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
12.71 12.15 12.84 12.04 27.98 44.82 28.44 45.51

We can remark excellent agreement is obtained for both the mean values and more impres-
sively for the standard deviations.

3.1.6 Comparison of the autocorrelation functions

An important characteristic of any time series model is its serial dependence structure. In
the case of the usual normal-theory models this is specified by the autocorrelation function
(ACF). While that is not true in general of non-normal models, the autocorrelation function
can still be a useful tool in the case of discrete-valued models and only if the observations are
quantitative (the observations space must be a number space) and not merely categorical.

The graphs in figures 5 and 6 show the two autocorrelation functions of the raw data
trace and HMM-generated trace respectively for writes only. As we can see the global shape
of the HMM ACF is very similar to the raw trace’s. The HMM ACF is more noisy that
the raw trace’s one which is a bit weird as usually built models tend to erase noise. We
can see that both ACFs start at about 0.5, then they decrease until becoming negative
at larger lags. However, the behaviour for very large lags is completely different since the
HMM ACF stays in the negative domain for a very short interval and then switches back
to the positive domain which is not the case for the raw trace ACF. This is the reason
why my supervisor Peter Harrison wondered if it was not worth starting thinking about a
continuous time model rather than binned traces.

29

200 400 600 800 1000
Lag

-0.1

0.1

0.2

0.3

0.4

0.5

ACF

Figure 5: ACF for raw writes

200 400 600 800 1000
Lag

-0.1

0.1

0.2

0.3

0.4

0.5

ACF

Figure 6: ACF for HMM writes

3.1.7 Towards a continuous-time version

The performances shown in figures 5 and 6 underline the correctness of the derived HMM
while at the same time showing us the limit of this discrete model. Instead of using ‘binned
traces’ along with the clustering algorithm, one should then try to consider the sequences of
hidden states and the observation points as a doubly stochastic process {(C(t), S(t)), t ≥ 0}
such that {C(t), t ≥ 0} is a continuous-time Markov chain which is explained in the following
section 3.2 and {S(t), t ≥ 0} a simple stochastic process. So the three main hypothesis that
we are establishing for this continuous-time study are: {C(t), t ≥ 0} is a continuous-time
Markov chain, {(C(t), S(t)), t ≥ 0} is a MMPP which we shall see in section 3.3, and the
doubly stochastic process {(C(t), S(t)), t ≥ 0} embedded at arrival times is a HMM.

3.2 Continuous-time Markov Chain

Adopting a continuous-time approach always brings a part of complexity. However, all
the concepts we introduced in the discrete-case have an analogy with continuous time. In
continuous time, the stochastic process is observed at arbitrary instants whereas in discrete
case, the process is supposed to be observed only at particular moments.

To make everything clear, here is a concrete example distinguishing the discrete case
from the continuous case. Assume we observe the number of packets present in a router and
we denote by X(t) the number of packets in the router at time t. We can either make these
observations at integer instants t = 0, 1, · · · and in this case {X(t)}t=0,1,··· is a discrete time
stochastic process, or we can make these observations at times T1 < T2 < · · · < Tn < · · · .
These instants (Tn)n can be deterministic (for instance Tn = n and this is equivalent to
the previous example) or random. For example, Tn can be the time at which the nth
packet leave the router (which is a random time in general) et therefore X(Tn) represents
the number of packets in the router just after the nth packet has gone. In this case, the
process {X(Tn)}n=0,1,··· is still a discrete time stochastic process. On the other hand, if
the observations are made at arbitrary instants, then {X(t), t ≥ 0} is a continuous-time
stochastic process.

3.2.1 Defintion

Definition 3.1 (Continuous Time Markov Chain) A stochastic process {C(t), t ≥ 0}
with state space C (assumed to be finite or countable) is said to be a homogeneous continuous
time Markov chain (CTMC), or Markov process if and only if:

30

• Markov Property (MP): for all n ∈ N, all n-tuple of real numbers t0 < t1 < · · · <
tn < tn+1 and all n+ 2-tuple j0, j1, · · · , jn, jn+1 elements of C,

P [X(tn+1) = jn+1 | X(tn) = jn, · · · , X(t0) = j0] = P [X(tn+1) = jn+1 | X(tn) = jn];

• Homogeneity: for all real numbers s, t and u and all couple (i, j) of C,

P [X(t+ u) = j | X(s+ u) = i] = P [X(t) = j | X(s) = i] = Pt−s(i, j),

independently on t.

One of the most famous and important results about CTMC is the so-called Chapman-
Kolmogoroff equation which states that:
For all t, u, s ∈ R, and for all state couple (i, j) we have

Pt+s(i, j) =
∑
k∈C

Pt(i, k)Ps(k, j)

or put into matrix form,
Pt+s = PtPs

where Pu is the matrix where the entry (i, j) is Pu(i, j). This result is nothing but the
mathematical expression of the following statement :
‘In order to get from state i at time 0 to state j at time t+ s, the process must be in some
state k at time t’.

Proof (Chapman-Kolmogoroff equation) Using the Markov property and the homo-
geneity property

Pt+s(i, j) = P [X(t+ s) = j | X(0) = i]

=
∑
k∈C

P [X(t+ s) = j,X(t) = k | X(0) = i]

=
∑
k∈C

P [X(t+ s) = j | X(0) = i,X(t) = k]P [X(t) = k | X(0) = i]

=
∑
k∈C

P [X(t+ s) = j | X(t) = k]P [X(t) = k | X(0) = i]

=
∑
k∈C

Ps(k, j)Pt(i, k)

3.2.2 The infinitesimal generator matrix Q

The major issue we are confronted to when dealing with continuous-time Markov chains
is that there are no smallest time steps and we can’t use transition matrices (as defined
in Section 2) any more. One quantity that might be of interest is the probability of the
process to be in state j at time t+h given that the process was in state i at time t, for
relatively small values of h and different states i and j,

P [X(t+ h) = j | X(t) = i].

Let g be the function such that: g(h) = P [X(t+ h) = j | X(t) = i]. Then clearly g(0) = 0
since the states are different. Now assuming that g is differentiable at 0, and since we are

31

dealing with small values of h, one important information we could obtain is the first-order
derivative of g

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

P [X(t+ h) = j | X(t) = i]

h
= qij.

We also define qii = −
∑

k∈C,k 6=i qik and we can create the matrix Q = (qij)i,j∈C which is
referred to as the infinitesimal generator matrix of the Markov process or the Q-matrix of
the Markov process. Note that this matrix possesses the following properties

• all off-diagonal elements qij, i 6= j, are non-negative,

• all diagonal entries qii are non-positive and,

• all rows sum to 0.

It can be shown that under certain regularity conditions, we have

lim
t→0

Pt = I

and the Q-matrix satisfies

Q = lim
t→0

Pt − I

t
There exists a deep link between the Q generator matrix and the temporal evolution

of the Markov process: when the process enters state i, it remains in state i according to
an exponential distribution of parameter −qii > 0 and then it instantly jumps to another
state j 6= i with probability −qij/qii. Therefore, a CTMC is fully characterized by its initial
distribution ν = ({P [X(0) = i]}i∈C) and the Q-matrix (note that we had a similar result
for the discrete case with ν and the transition matrix P). The equations justifying this
result are giving right below:

Pt = etQ =
∞∑
n=0

tn

n!
Qn.

Moreover, if we denote the distribution of the process at any time t by pt where

pt = ({P [X(t) = k]}k∈C) = (P [X(t) = 1], P [X(t) = 2], , · · ·)

then we have
pt = νPt = νetQ

Proof First we note that the matrix Pt satisfies, for all t, s ∈ R:{
Pt+s = PtPs

P0 = I

Therefore we know that there exists a matrix X such that:

Pt = P0e
tX .

Using the fact that P0 = I, we can further express Pt = etX and if we now take the first
derivative we have

P′t = XetX

but for t = 0 we find P′0 = X which is also known to be Q = limt→0
Pt−I
t

.
Then, to prove the second result we just have to note that

P [X(t) = i] =
∑
k∈C

P [X(t) = i | X(0) = k]P [X(0) = k]

32

As in discrete time, it is possible to compute the probabilities for all t, but this will
require the computation of etQ. This is very expensive in general (especially when Q is very
large). In fact in general we are interested in stationary probabilities that we shall define
in the next subsection.

3.2.3 Stationary probabilities

The stationary probabilities represent the distribution of the Markov process for t → ∞.
Therefore in vector notation, we want to find the vector p = limt→∞ pt regardless of what
the initial state is. Let ε ∈ R∗+, we can write

pt = pt−εe
εQ

= pt−ε(I + εQ+
ε2

2
Q2 + · · ·).

Now by making t→∞, we see that

p = p(I + εQ+
ε2

2
Q2 + · · ·)

which leads to

0 = p(εQ+
ε2

2
Q2 + · · ·).

Finally if we divide by ε and make ε→ 0, we obtain

p Q = 0.

We have just shown that if the stationary state or steady-state vector p exists then it
satisfies p Q = 0. The following result supplies the conditions under which the stationary
state of a CTMC exists, regardless of the initial state.

Proposition 3.2 (Stationary probabilities) If the system of equations{
πQ = 0
π · 1 = 1

has a strictly positive solution (all elements in π are strictly positive) then the stationary
distribution p exists, is independent of the initial distribution and is given by

p = π.

3.3 Markov modulated Poisson Process

Since an important assumption made by my supervisor’s group was to consider the bivariate
stochastic process as a Markov-modulated Poisson process (MMPP), one should introduce
very briefly what are MMPPs. As said before, the easiest model we could consider to
describe an arrival stochastic process is to consider the process as a homogeneous Poisson
process (each inter-arrival time is a random variable following an exponential law of a given
parameter called ‘rate’ and all these random variables are independent and identically
distributed), however, in many applications, especially in communications modeling, it
appears that this kind of model is not desirable because not representative enough. In fact a
better model would be to allow these rates to vary randomly over time. Indeed, by adopting
this new approach, we qualitatively model the time-varying arrival rate and capture some of

33

the important correlations between the inter-arrival times while still remaining tractable.
The Markov-modulated Poisson processes are specifically designed for this purpose and
have been extensively used in the area of computer networks. The MMPP is a special case
of Markovian Arrival Process (MAP). We are going to give the definition of an MMPP and
try to extract an interpretation.

3.3.1 Definition

The Markov-modulated Poisson process (MMPP) is a doubly stochastic process whose
current arrival rate is determined or modulated by a continuous-time Markov chain. Thus
the arrival rate at time t is given by λ · C(t), where {C(t), t ≥ 0} is a CTMC with state-
space C = {1, 2, ..., r}. An equivalent definition would be to say that a MMPP is just a
Poisson process whose rate is modulated over time by a r-state Markov process. To give an
illustrative idea, when the Markov chain is in state i, arrivals occur according to a Poisson
process of rate λi. Therefore, an MMPP is fully characterized by the infinitesimal generator
matrix Q and the initial distribution of the associated Markov process and the r arrival
rates λ1, λ2, · · · , λr. We use the notation

λ = (λ1, λ2, · · · , λr)T ,

and

∆ = diag(λ1, λ2, · · · , λr)

We assume that the MMPP is homogeneous, which means Q and ∆ do not depend on t.

3.3.2 Interpretation

One of the most common mistakes made about MMPPs is to think that they are renewal
processes. A renewal process is a generalization of Poisson process in the sense that the
inter-arrival times are not necessarily distributed according to an exponential law, they only
have to be independent and identically distributed. A Markov renewal process is a stochastic
process for which the embedded jump chain (the discrete chain recording the successive
states of the continuous chain) is a Markov chain and each inter-arrival time depends on
the two states delimiting this same inter-arrival time. Here is a rough justification: assume
that there is a first arrival at time t1 and another consecutive one at time t2, and suppose
that C(t1) = i and C(t2) = j. During the evolution of the Markov chain, there is a first
transition or jump between state i to another state k (which can be j) and so there is a
first evolution according to the rate λi. Moreover, when the final state j is attained, there
is no arrival until time t2 and therefore there is another evolution according to the rate λj.
We conclude that the distribution between t1 and t2 depends on state i as well as state j,
which implies that an MMPP is a MAP.

One thing one might want to do is to extract the transition probability matrix for the
embedded Markov chain, that is the discrete-time process {Ck}k∈N = {C(Tk)}k∈N with
{Tk}k∈N the arrival times. Let us define the inter-arrival times by {Dk}k∈N where Dk =
Tk+1 − Tk. Then the bivariate process {Ck, Dk}k∈N is a Markov renewal process with
transition probability matrix (the proof is omitted)

F (d) =

∫ d

0

e(Q−∆)udu ∆

= [I − e(Q−∆)d](∆−Q)−1∆

34

where the elements Fij(d) represent the conditional probabilities

P [Ck = j,Dk ≤ d | Ck−1 = i].

Finally, making d → ∞, we easily see that F (∞) = (∆ − Q)−1∆ which is a stochastic
matrix, the transition probability matrix of the Markov chain embedded at arrival times.

Besides, one common approximation when talking about MMPPs is to approximate
the distribution of the underlying Markov chain at time t pt by the stationary vector π.
Therefore, it is clear that the output of a MMPP can modeled as the mixture of exponential
variables with probability density function

f(t) =
r∑
i=1

πiλie
−λit.

This mixture is called the hyperexponential random distribution. In fact the parameters λ
can be directly estimated from the hyperexponential density except for the Q-matrix. This
Q parameter is one the parameter I was able to evaluate thanks to an adaptation of the
Baum-Welch algorithm that we will discuss in the next section.

35

4 A continuous-time version of the Baum-Welch

algorithm

This section describes in details the work I achieved. There is one remaining issue related to
HMMs we have not discussed yet. This concerns the problem of determining the parameters
of a Hidden Markov model. Namely we would like to compute the initial distribution ν
of the underlying Markov chain, the conditional probability matrix G which gives the
probability of the outcome of an observation conditionally on the hidden state, and finally
the one-step transition matrix P of the underlying Markov chain. In general when we
focus on a particular application, it is very rare that the parameters are known from the
operator. Therefore the first work to do is to choose an appropriate model based on the
data and the context of the specific application, and then try to accurately estimate the
parameters. Hence when a Hidden Markov model appears to be suited, the first task is to
apply the famous Baum-Welch algorithm to estimate the relevant parameters cited above.
The following subsection gives a precise idea of how it works.

4.1 The Baum-Welch algorithm

As mentioned earlier on, the Baum-Welch algorithm is an early version of the Expectation-
Maximization algorithm. One should first present the Expectation-Maximization algorithm
before presenting The Baum-Welch algorithm which is just an application of the EM algo-
rithm to HMMs.

4.1.1 The Expectation-Maximization algorithm

The EM algorithm is a method based on the computation of Maximum likelihood estimates
(MLE) and was first introduced in a 1977 paper by Arthur Dempster, Nan Laird, and
Donald Rubin. In essence, the EM algorithm is an iterative method aiming at finding
MLEs, based on the idea of replacing one difficult likelihood maximization by a sequence
of easier maximizations. The EM algorithm has been extensively used for incomplete data
models. In this kind of model, a part of the data is missing or unobservable and we want
to find MLEs to overcome this problem. We directly understand why such an algorithm is
suitable for Hidden Markov models since clearly the hidden states are unobservable (they
are fictive).

In the context of incomplete data models, we usually denote by (X,Y) = (X1, · · · , Xn, Y1, · · · , Yn)
the vector of complete data, where Y = (Y1, · · · , Yn) is the observed data, and X =
(X1, · · · , Xn) is the unobserved data. We will also use the notation L(θ;x,y) to describe
the likelihood function of the complete data where θ is a vector of unknown parameters
of size K. The EM algorithm performs an alternative sequence of expectation steps (E),
which compute the expected value of the log-likelihood (we always work with log-likelihood
to avoid underflow) under the current estimates of parameters, and maximization steps (M)
which compute a parameters maximizing of the expected log-likelihood found on the (E)
step. In fact the maximum likelihood estimate is determined by the marginal likelihood
function L(θ;x)

L(θ;x) =

∫
L(θ;x,y)dx

which is the actual likelihood of the observations. Of course, the integral symbol is replaced
by a sum symbol if X has a discrete state-space. However this marginal likelihood is often
intractable (see section 2.3.1). Instead, we maximize L(θ;x) by working with only L(θ;x,y)

36

and the conditional probability density function of X given Y and θ. This conditional
probability densitity function (pdf) can be easily expressed as

P (x | y; θ) =
L(θ;x,y)

L(θ;x)
=

L(θ;x,y)∫
L(θ;x,y)dx

Note that the logarithm is an increasing function and maximizing the log-likelihood is
equivalent to maximizing the likelihood itself. Here the likelihood function of observations
is assumed to be positive (which is always the case since the likelihood is always expressed
as a probability function) and so it is possible to take the log. Therefore during an E-step,
we want to compute the expected value of the full log-likelihood logL(θ;X,y), when X
given Y is distributed according to the conditional pdf P (x | y; θ′) for a possibly different
value θ′ of the parameter (which will represent the most recent version of the estimated
parameter during the iterative process of the EM algorithm). Therefore the quantity of
interest called the intermediate quantity or the expectation function is

Q(θ; θ′) = E[logL(θ;X,x) | θ′,y] =

∫
logL(θ;x,y)P (x | y; θ′)dx

Note that it is important to distinguish between the first and second arguments of Q. The
second argument is just a conditioning argument to the expectation and is regarded as
fixed and known during an E-step. Now in the rest of the project we assume that the
observations are fixed Y = y and we will denote L(θ;y) = L(θ). The concavity of the log
function implies the following inequality holds for the intermediate quantity:

logL(θ)− logL(θ′) ≥ Q(θ; θ′)−Q(θ′; θ′)

L(θ′)

Since L(θ′) ∈ [0, 1] we can further claim that

logL(θ)− logL(θ′) ≥ Q(θ; θ′)−Q(θ′; θ′)

Now this is the key point of the EM algorithm. Instead of trying to maximize the log-
likelihood, we see that if we manage to find a value of θ such that Q(θ, θ′) is increased over
Q(θ′, θ′), then it will correspond to an increase of logL(θ) that is at least as large. This is
the strength of the EM algorithm and this is the reason why it is reputed for its speed of
convergence.

To sum up what has been said, the EM algorithm is an iterative process that construct
recursively a sequence (θi)i≥1 of parameter estimates with an initial value (guess) θ0 and
alternates between two kinds of steps as follows:

• E-step: calculate Q(θ, θi)

• M-step: Find a value θi+1 of θ that maximizes Q(θ, θi)

Figure 7 depicts the EM algorithm.

37

Figure 7: An overview of the EM algorithm

From the relation logL(θ)− logL(θ′) ≥ Q(θ; θ′)−Q(θ′; θ′), it can be shown that {θi}i∈N
converges to the incomplete-data MLE. In fact the paper published by Dempster,Laird
and Rubin didn’t prove the convergence correctly (a flaw in the proof was discovered).
It is only in 1983 that C. F. Jeff Wu finally presented a correct and rigorous proof. In
fact what we have shown is that the EM algorithm does increase the likelihood function
of observations but it doesn’t guarantee to obtain the maximum likelihood estimators of
parameters. Indeed, depending on the initial value θ0 we may be caught in a local maximum.
There are several complex methods to escape local maximum attractions amongst which
we can cite the random restart method consisting in trying different initial values.

4.1.2 The Baum-Welch algorithm

In order to derive the Baum-Welch algorithm, we just have to apply the EM algorithm to
our Hidden Markov model which is indeed an incomplete data model where ‘the missign
data’ are hidden states c1, · · · , cn occupied by the Markov chain, and the ‘complete data’
are s1, · · · , sn, c1, · · · , cn. Furthermore the parameter θ can be seen as the conjunction
θ = [ν, P,G]. We recall the reader that the Markov chain {Ct}t∈N has a state space C =
{1, · · · , r} of size r and the stochastic process {St}t∈N has a state space S = {1, · · · ,m}

38

of size m, and this implies that ν is a vector of size r, P is a r-x-r matrix, and G a r-x-m
matrix and finally we have r2 + (m+ 1)r parameters to estimate.

The complete likelihood function (see section 2.1) is given by

Jν,n(θ; cn0 , s
n
0) = νc0gc0,s0

n∏
i=1

pci−1cigcisi

and the log-likelihood is therefore

log Jν,n(cn0 , s
n
0) = log νc0 +

n−1∑
i=0

log pcici+1
+

n∑
i=0

log gcisi

and the intermediate quantity of EM is

Q(θ; θ′) = E[log Jν,n(Cn
0 , s

n
0) | Sn0 = sn0 ; θ′]

=
∑

c0,··· ,cn

log Jν,n(Cn
0 , s

n
0)P (Cn

0 = cn0 | Sn0 = sn0 ; θ′)

=
∑

c0,··· ,cn

log νc0 P (Cn
0 = cn0 | Sn0 = sn0 ; θ′) +

∑
c0,··· ,cn

n−1∑
i=0

log pcici+1
P (Cn

0 = cn0 | Sn0 = sn0 ; θ′) +

∑
c0,··· ,cn

n∑
i=0

log gcisi P (Cn
0 = cn0 | Sn0 = sn0 ; θ′)

=
∑
c0

log νc0
∑

c1,··· ,cn

P (Cn
0 = cn0 | Sn0 = sn0 ; θ′) +

n−1∑
i=0

∑
ci,ci+1

log pcici+1

∑
c0,··· ,ci−1,ci+2,··· ,cn

P (Cn
0 = cn0 | Sn0 = sn0 ; θ′) +

n∑
i=0

∑
ci

gci,si
∑

c0,··· ,ci−1,ci+1··· ,cn

P (Cn
0 = cn0 | Sn0 = sn0 ; θ′)

=
∑
c0

log νc0P (C0 = c0 | Sn0 = sn0 ; θ′) +

n−1∑
i=0

∑
ci,ci+1

log pcici+1
P (Ci = ci, Ci+1 = ci+1 | Sn0 = sn0 ; θ′) +

n∑
i=0

∑
ci

gci,siP (Ci = ci | Sn0 = sn0 ; θ′)

And we finally obtain

Q(θ; θ′) =
∑
c0

log νc0φ0|n(c0; θ′) +
n−1∑
i=0

∑
ci,ci+1

log pcici+1
φi:i+1|n(ci, ci+1; θ′)

+
n∑
i=0

∑
ci

gci,siφi|n(ci; θ
′)

39

As one can see, the intermediate quantity Q(θ; θ′) depends only on the computation of
the marginal distributions φi|n and φi,i+1|n, which can be computed using the Forward-
Backward algorithm described in section 2.3.4. Note that here the argument θ′ is of great
importance since we want to maximize Q(θ; θ′) with respect to θ, that is with respect to
ν, P and G and so the φ coefficients will remain constant since they do not depend on the
same parameters.

Proposition 4.1 The parameters that maximise Q(θ; θ′) are:
For 1 ≤ j ≤ r, 1 ≤ k ≤ r and 1 ≤ s ≤ m,

ν̂j =
φ0|n(j; θ′)∑
l φ0|n(l; θ′)

p̂jk =

∑n−1
i=0 φi:i+1|n(j, k; θ′)∑n−1

i=0 φi|n(j; θ′)

ĝjs =

∑n
i=0 δsi,sφi|n(j; θ′)∑n
i=0 φi|n(j; θ′)

Proof To prove this previous proposition we are going to set all the derivatives (w.r.t
each parameter) to zero taking into account the probability constraints. In fact this task is
relatively easy since Q(θ; θ′) is composed of three different terms as follows:

• T1(ν) =
∑

c0
log νc0φ0|n(c0; θ′)

• T2(P) =
∑n−1

i=0

∑
ci,ci+1

log pcici+1
φi:i+1|n(ci, ci+1; θ′)

• T3(G) =
∑n

i=0

∑
ci
gci,siφi|n(ci; θ

′)

and only one parameter among ν, P and G appear in each of these terms. So maximizing
Q(θ; θ′) corresponds to maximizing T1 with respect to ν, T2 with respect to P and T3 with
respect to G.
Firstly, considering T1, adding the Lagrange multiplier µ, using the constraint

∑
l νl = 1,

and setting the derivative to zero we have

∂

∂νj
[T1(ν)− µ

∑
l

νl] =
1

νj
φ0|n(j; θ′)− µ = 0

So we find

ν̂j =
1

µ
φ0|n(j; θ′)

To remove µ we use the constraint
∑

l ν̂l = 1 which gives

1 =
1

µ

∑
l

φ0|n(l; θ′)

µ =
∑
l

φ0|n(l; θ′)

Finally we get

ν̂j =
φ0|n(j; θ′)∑
l φ0|n(l; θ′)

40

Secondly, considering T2, adding the Lagrange multiplier µ, using the constraints
∑

l pjl = 1
(r constraints, one for each different value of j), and setting the derivative to zero we have

∂

∂pjk
[T2(P)− µ

∑
l

pjk] =
n−1∑
i=0

φi:i+1|n(j, k; θ′)− µ = 0

So we find

p̂jk =
1

µ

n−1∑
i=0

φi:i+1|n(j, k; θ′)

To remove µ we use the constraint
∑

k p̂jl = 1 which gives

1 =
1

µ

n−1∑
i=0

φi:i+1|n(j, k; θ′)

µ =
n−1∑
i=0

φi|n(j; θ′)

Finally we get

q̂jk =

∑n−1
i=0 φi:i+1|n(j, k; θ′)∑n−1

i=0 φi|n(j; θ′)

Secondly, considering T3, adding the Lagrange multiplier µ, using the constraints
∑

s gjs = 1
(r constraints, one for each different value of j), and setting the derivative to zero we have

∂

∂gjs
[T3(G)− µ

∑
s

gjs] =
n∑
i=0

δsi,s
gjs

φi|n(j; θ′)− µ = 0

So we find

ĝjs =
1

µ

n∑
i=0

δsi,sφi|n(j; θ′)

To remove µ we use the constraint
∑

s ĝjs = 1 which gives

1 =
1

µ

∑
s

n−1∑
i=0

φi:i+1|n(j, k; θ′)

µ =
n∑
i=0

φi|n(j; θ′)

Finally we get

ĝjs =

∑n
i=0 δsi,sφi|n(j; θ′)∑n
i=0 φi|n(j; θ′)

Note 4.2 We notice that the optimal parameters νj, pjk and gjs are all expressed as func-
tions of conditional distributions φ0|n, φi|n and φi:i+1|n. However, we can’t use them directly
because we don’t know how to compute them efficiently. Instead we should try to reformu-
late them using the forward variable αν,k(c) and the backward variable βk|n(c). In fact for
the first two ones, it is very straightforward, because we already saw them in Section 2.3.1,

φ0|n(j; θ′) = P (C0 = j | Sn0 = sn0) =
1

Lν,n(sn0)
αν,0(j, s0)β0,n(j, sn1)

41

φi|n(j; θ′) = P (Ci = j | Sn0 = sn0) =
1

Lν,n(sn0)
αν,i(j, s

i
0)βi,n(j, sni+1)

For φi:i+1|n(ci, ci+1; θ′) we must go a bit further

φi:i+1 | n(ci, ci+1; θ′) = P (Ci = ci, Ci+1 = ci+1 | Sn0 = sn0)

=
∑

c0,··· ,ci−1,ci+2,··· ,cn

1

P (Sn0 = sn0)
P (Cn

0 = cn0 , S
n
0 = sn0)

=
1

P (Sn0 = sn0)

∑
c0,··· ,ci−1,ci+2,··· ,cn

P (Sn0 = sn0 | Cn
0 = cn0)P (Cn

0 = cn0)

=
1

P (Sn0 = sn0)

∑
c0,··· ,ci−1,ci+2,··· ,cn

P (Si0 = si0 | Ci
0 = ci0)×

P (Si+1 = si+1 | Ci+1 = ci+1)P (Sni+2 = sni+2 | Cn
i+1 = cni+1)×

P (Ci
0 = ci0)pci,ci+1

P (Cn
i+1 = cni+1)

P (Ci+1 = ci+1)

=
1

Lν,n
pci,ci+1

αν,i(ci)gci+1,si+1
βi+1|n(ci+1).

Now replacing the φ terms with these new expressions leads us to the famous Baum-Welch
(re)-estimates that are given below.

Proposition 4.3 (The Baum-Welch re-estimates) During a M-step of the EM algo-
rithm, the optimal re-estimates for the HMM parameters are

ν̂j =
αν,0(j)β0|n(j)∑
l αν,0(l)β0|n(l)

q̂jk =

∑n
i=0 δsi,sαν,i(j)βi|n(j)∑n
i=0 αν,i(j)βi|n(j)

ĝjs =
pjk
∑n−1

i=0 αν,i(j)gk,si+1
βi+1|n(k)∑n−1

i=0 αν,i(j)βi|n(j)

We can now implement the Baum-Welch algorithm along with the Forward-Backward al-
gorithm. Besides, to avoid underflow problems we already saw a normalized version of
the Forward-Backward algorithm using normalized variables αν,k(c) and βk|n(c). Also we
should derive a corresponding normalized version of the Baum-Welch algorithm making use
of these new variables. This is very easy since one can notice that φi|n(j; θ′) = αν,i(j)·βi|n(j).
Moreover using the last expression of φi:i+1|n(ci, ci+1; θ′) we can write

φi:i+1|n(j, k; θ′) = d−1
ν,i+1pjkgk,si+1

αν,i(j)βi+1|n(j).

Proposition 4.4 (Normalized Baum-Welch) During a M-step of the EM algorithm,
the optimal re-estimates for the HMM parameters are

ν̂j =
αν,0(j)β0|n(j)∑
l αν,0(l)β0|n(l)

q̂jk =

∑n
i=0 δsi,sαν,i(j)βi|n(j)∑n
i=0 αν,i(j)βi|n(j)

ĝjs =
pjk
∑n−1

i=0 dν,i+1αν,i(j)gk,si+1
βi+1|n(k)∑n−1

i=0 αν,i(j)βi|n(j)

42

4.2 Continuous-time approach

Section 2 emphasizes the necessity to adopt a different method for the treatment of the
instruction streams arriving at the Flash memory chip. We saw that 5-ms bins don’t capture
correctly the low level behaviour of write instructions (see the comparison of autocorrelation
functions in figure 2) and 1-ms bins create a lot of noise (many empty bins). This is why
we decided to consider the instructions arriving at the Flash memory as a continuous-
time Hidden Markov model. Therefore, we will consider the continuous-time bivariate
stochastic process {C(t), S(t)}t≥0 where {C(t)}t≥0 is a continuous-time Markov chain with
state-space C = {1, 2, . . . , r} representing the hidden state at a given time and {S(t)}t≥0

is the stochastic process of observations with state-space S = {1, 2, . . . ,m}. Moreover we
will also denote by {Ti}i∈N the arrival times of observations satisfying T1 < T2 < · · · <
Tn < · · · . One underlying assumption that will be made is that the embedded bivariate
stochastic process at arrival times is a HMM. The aim of this section is to evaluate the
relevant parameters which are the initial distribution of the CTMC ν, the G-matrix and
the infinitesimal generator of the underlying Markov process Q. To achieve this, we need
to define a new likelihood function.

4.2.1 Likelihood function

We have to keep in mind that we have at our disposal a time-stamped trace and that some-
how we want to apply the Baum-Welch algorithm or more exactly the EM algorithm to
compute estimates. Therefore, for the rest of the project, we will consider {Ti}i∈N={ti}i∈N
where {ti}i∈N is a fixed sequence of observation times. Moreover the state space of ob-
servations will be S = {1, . . . ,m} with m = 2 representing the two instructions READ
and WRITE. Hence, intuitive definitions for the likelihood function of observations and the
complete date likelihood are, respectively,

L(sn0) = P [{S(ti) = si}i=0,1,...,n]

L(sn0 , c
n
0) = P [{S(ti) = si, C(ti) = ci}i=0,1,...,n].

One should now express the full likelihood function according to the relevant parameters
we want to determine. Here is one way to do this

L(sn0 , c
n
0) = P [{S(ti) = si}i=0,1,...,n | {C(ti) = ci}i=0,1,...,n]×

P [{C(ti) = ci}i=0,1,...,n]

The new likelihood function is a product of two probabilities. The first probability can be
worked out similarly as the as Section 2:

P [{S(ti) = si}i=0,1,...,n | {C(ti) = ci}i=0,1,...,n] =
n∏
i=0

P [S(ti) = si | C(ti) = ci]

=
n∏
i=0

gci,si

43

Concerning the second factor, using the Markov property of {C(t), S(t)}t≥0, we write

P [{C(ti) = ci}i=0,1,...,n] = P [C(tn) = cn | C(tn−1) = cn−1, . . . , C(t0) = c0]

P [C(tn−1) = cn−1 | C(tn−2) = cn−2, . . . , C(t0) = c0] . . .

P [C(t1) = c1 = c1 | C(t0) = c0]P [C(t0 = c0]

= P [C(t0) = c0] ·
n−1∏
i=0

P [C(ti+1) = ci+1 | C(ti) = ci]

Using the notation introduced in section 3.2.1, and denoting P [C(t0) = c0] = ν ′c0 and
dk = tk+1 − tk, we can further write

P [{C(ti) = ci}i=0,1,...,n] = ν ′c0

n−1∏
i=0

Pdk(ci, ci+1)

We recall the reader that Pt = (Pt(i, j))(i,j)∈C×S and each entry (i, j) of this matrix is the
conditional probability

Pt(i, j) = P [C(t) = j | C(0) = i] = P [C(t+ u) = j | C(u) = i] for all u ≥ 0

Finally we can write the complete data likelihood function as

L(sn0 , c
n
0) = ν ′c0

n∏
i=0

gci,si

n−1∏
i=0

Pdk(ci, ci+1)

We can see there are many similarities with the discrete-case complete data likelihood. The
first factor ν ′c0 is the probability that the hidden state at time t0 is c0. If t0 = 0 then we
have the identity ν ′c0 = νc0 but this would mean that we have necessarily an observation at
the origin time which is not a trivial assumption and it turns out that this is not the case
for our trace-stamped trace. However, still referring to section 3.2.1, we can have an easy
relation between them which is ν ′ = νPt0 . But to make an analogy with the discrete case
we will work with ν ′ instead of ν and use the previous relation at the very end to obtain
ν. The other difference with the discrete-case is the product

∏n−1
i=0 Pdk(ci, ci+1) because

in the discrete case we had the product
∏n−1

i=0 pci,ci+1
which makes explicitly appear the

relevant parameters, namely the transition matrix P . In continuous time it is a little bit
more complex and we have to work harder to deal with

∏n−1
i=0 Pdk(ci, ci+1). In fact I thought

about two solutions, the first one is an approximated solution which is not applicable if we
don’t know more informations about the Markov process whereas the second solution is an
exact one.

4.2.2 First solution

The infinitesimal generator matrix Q is deeply related to the behaviour of the Markov chain
for short period of time. Indeed in Section 3.2 we saw that limh→0

P [X(t+h)=j|X(t)=i]
h

= qij.
So my first idea was to find some sort of iterative of recursive method to change the scale
of the problem until a certain extent. This is why I used a binary chop method to calculate

44

the product
∏n−1

i=0 Pdk(ci, ci+1) in the following way

Pdk(ck, ck+1) =
∑
c′∈C

P [C(tk+1 = ck+1, C(
tk+1 + tk

2
) = c′ | C(tk) = ck]

=
∑
c′∈C

P [C(tk+1 = ck+1 | C(
tk+1 + tk

2
) = c′, C(tk) = ck] ·

P [C(tk+1+tk
2

) = c′, C(tk) = ck]

P [C(tk) = ck]

=
∑
c′∈C

P [C(tk+1 = ck+1 | C(
tk+1 + tk

2
) = c′] · P [C(

tk+1 + tk
2

) = c′ | C(tk) = ck]

=
∑
c′∈C

Pdk/2(ck, c
′)·Pdk/2(c′, ck+1)

We reiterate the same process for p
dk/2
ck,c′

and p
dk/2
c′,ck+1

until dk becomes small enough (threshold

that we need to establish) such that we can use the first order approximation :

Pdk(ck, ck+1) = qck,ck+1
· dk + o(dk) if ck 6= ck+1

Pdk(ck, ck)
=

∫ ∞
dk

qck,cke
−qck,ck t dt

For instance, if we assume that these previous approximations are acceptable for dk ≤ ε
(ε being a fixed threshold), then we will have to reiterate the process described above
log2(dk/ε) + 1 times.

There are three main problems that make this solution inapplicable in practice. The
first is one concerns the fact that we don’t have any expression for o(dk) and so we can’t
quantify the error we make. The second is that it is not obvious how to set the value of
the threshold ε since it is definitely process-dependent (the slower is the Markov chain,
the greater is ε). The third problem is that this method is very greedy computationally
speaking and so it does not worth implementing it.

4.2.3 Second solution

The second solution is based on the result Pt = etQ and so providing that we can express
explicitly every entry of etQ according to {qij} we will be able to apply the EM algorithm
to derive the MLEs for the parameters. Here again there are three different possibilities to
express etQ that we shall describe.

The Sylvester method. This result states that etQ is a polynomial of tQ of degree
r − 1. That is to say we have

etQ =
r−1∑
i=0

αi(t)Q
i.

This result can be proven using the Cayley-Hamilton theorem stating that Q is a root of
its characteristic polynomial P (X) =

∑n
i=0 aiX

i and therefore we have

P (Q) = 0 ⇐⇒
n∑
i=0

aiQ
i = 0

And so we can express the nth power of Q as a function of the first n− 1 powers (knowing
that an 6= 0):

Qn = − 1

an

n−1∑
i=0

aiQ
i

45

By induction, we can therefore show that the pth power of Q can also be expressed with
only the first n− 1 ones and since etQ is a mere linear combination of powers of Q (etQ =∑∞

n=0
tn

n!
Qn) it is also a linear combination of the first n− 1 powers of Q and this concludes

the proof. The fundamental problem is the determination of the coefficients αi(t) which
seems to be infeasible in our context.

Diagonalization method. From now on and for more simplicity we will assume
that there are only two hidden states. The diagonalization method is based on the fol-
lowing result: if D = diag(λ1, . . . , λn), then Dk = diag(λk1, . . . , λ

k
n) and consequently

eD = diag(eλ1 , . . . , eλn). This means if we manage to diagonalize Q we will be able to
reach our objective. Let us begin the diagonalization method. Since there are only two

hidden states, then there exist two parameters a, b > 0 such that Q =

(
−a a
b −b

)
. We first

need to calculate the eigenvalues of Q:

det(λI −Q) =

∣∣∣∣λ+ a −a
−b λ+ b

∣∣∣∣ = λ(λ+ a+ b).

We find out two eigenvalues λ1 = 0 and λ2 = −(a + b). At this point we are still not
sure that Q is diagonalizable. To find out the eigenvectors associated with the eigenvalue
λ1 = 0, we must solve the following system of equations{

−ax+ ay = 0
bx− by = 0

⇐⇒ x = y

All the eigenvectors associated with λ1 = 0 are of the form (x, x), in particular (1, 1) belongs
to this set. To find out the eigenvectors associated with the eigenvalue λ2 = −(a + b), we
must solve the following system of equations{

−ax+ ay = −(a+ b)y
bx− by = −(a+ b)y

⇐⇒ y = − b
a
x

All the eigenvectors associated with λ1 = 0 are of the form (x,− b
a
x), in particular (a,−b)

belongs to this set and at this stage we can say that Q is diagonalizable since (a,−b) and
(1, 1) are not collinear. Let M be the matrix with these eigenvectors as its columns

M =

(
1 a
1 −b

)
We can finally write the diagonalization equation

Q = M

(
0 0
0 −(a+ b)

)
M−1

We compute M−1 using the relation M−1 = 1
|M |(adjugate(M))T = −1

a+b

(
−b −a
−1 1

)
. Finally

by writing

tQ = − 1

a+ b

(
1 a
1 −b

)(
0 0
0 −(a+ b)t

)(
−b −a
−1 1

)
So

etQ = − 1

a+ b

(
1 a
1 −b

)(
1 0
0 e−(a+b)t

)(
−b −a
−1 1

)
⇐⇒ etQ =

1

a+ b

(
b+ ae−(a+b)t a− ae−(a+b)t

b− be−(a+b)t a+ be−(a+b)t

)
46

Laplace transform. We can confirm the previous result using the Laplace transform.
The Laplace transform is a widely used transform and has many applications, in particular
in signal processing and probability theory. In a way it can be considered as a generalization
of the Fourier transform. Sometimes a problem may appear to be unsolvable in the temporal
domain but by switching it into the Laplace domain and switching it back into the temporal
domain we can considerably reduce the difficulty of the problem so that it becomes feasible.
If f(t) is a function, its Laplace transform denoted by F (s), where s is a complex number,
is given by the integral transform (so it is linear)

F (s) = L(f(t)) =

∫ ∞
0

e−stf(t) dt

The Laplace transform is bijective for the majority of usual functions, and the inverse
Laplace transform is denoted L−1 and satisfies

L−1(F (s)) = f(t)

The Laplace transform of a temporal matrix is the matrix composed of all the Laplace
transforms of its entries. We can therefore write that L(etQ) =

∫∞
0
e−stetQ dt.

Proposition 4.5 The following identity holds

e−stetQ = e−stI+tQ

Proof Starting from the right-hand side we write

e−stI+tQ =
∞∑
n=0

(−stI + tQ)n

n!

=
∞∑
n=0

n∑
k=0

1

n!

(
n

k

)
(−st)kIk (tQ)n−k

=
∞∑
n=0

n∑
k=0

(−st)k

k!

(tQ)n−k

(n− k)!

=
∞∑
k=0

∞∑
n=k

(−st)k

k!

(tQ)n−k

(n− k)!

=
∞∑
k=0

∞∑
m=0

(−st)k

k!

(tQ)m

m!

=
∞∑
n=0

(−st)n

n!

∞∑
m=0

(tQ)m

m!

= e−stetQ

Proposition 4.6 for all real number t and all matrix Q we have:

L(etQ) = (sI −Q)−1

Proof The proof is straightforward

L(etQ) =

∫ ∞
0

e−stI+tQ dt = (Q− sI)−1
[
e−(Q−sI)t]∞

0
= (sI −Q)−1

47

Let us calculate etQ = L−1((sI −Q)−1) =

(
Pt(1, 1) Pt(1, 2)
Pt(2, 1) Pt(2, 2)

)
.

We denote by A = sI−Q =

(
s+ a −a
−b s+ b

)
. In order to take the inverse of A we are going

to use the formula

A−1 =
1

det(A)
CT

where C is the adjugate matrix (that is the matrix of cofactors). First of all we calculate
the determinant

det(A) =| A |= (s+ a)(s+ b)− ab = s(s+ a+ b)

Then we can directly calculate the matrix of cofactors C which is very straightforward :

C =

(
s+ b b
a s+ a

)
Finally we can express the inverse of A as follows

A−1 =
1

s(s+ a+ b)

(
s+ b a
b s+ a

)
Now we can take the inverse Laplace transform, element by element. Let us begin with the
first term of the previous matrix, namely (A−1)1,1:

L−1((A−1)1,1) = L−1

(
s+ b

s(s+ a+ b)

)
To make use of the table given the most classical inverse Laplace transform, we are going
to use partial fraction decomposition on the previous rational fraction.

s+ b

s(s+ a+ b)
=

b
a+b

s
+

a
a+b

s+ a+ b

Thus we end up with

L−1

(
s+ b

s(s+ a+ b)

)
=

1

a+ b
[b+ ae−(a+b)t]U(t)

U(t) being the Heaviside function which basically equals 0 if t ≤ 0 and 1 if t > 0. Since
we are only dealing with positive values of t (we will apply it for t = dk = tk+1 − tk > 0),
we will omit it in the remainder of the calculations. By adopting the same procedure to
calculate all other inverse Laplace transforms, we obtain this final matrix :

etQ =
1

a+ b

(
b+ ae−(a+b)t a− ae−(a+b)t

b− be−(a+b)t a+ be−(a+b)t

)
We can check that this is the same matrix we obtained with the diagonalization method.
The following proposition is another way to check our result.

Proposition 4.7 Let A and B be two square matrices of size n with A having each of its
rows summing to 0, then the product AB will also have each of its rows summing to 0. In
particular for all p ∈ N∗, the rows of Ap sum to 0.

48

Proof Let C = AB with C = (cij)i,j∈{1,...,n}. The result for the sum of the ith row of C is
given by

n∑
j=1

cij =
n∑
j=1

n∑
k=1

aikbkj =
n∑
k=1

n∑
j=1

aikbkj =
n∑
k=1

aik︸ ︷︷ ︸
0

n∑
j=1

bkj = 0 (5)

Thus etQ = (I + tQ+ t2

2
Q2 + . . .) must have its rows summing up to 1 which can be easily

checked in our case.

4.2.4 Modifications to the Forward-Backward algorithm

Now that we can fully and explicitly express the likelihood function with the parameters
θ = [ν ′, Q,G], one would be tempted to copy the Baum-Welch algorithm from the discrete
case. However we must keep in mind that the Baum-Welch algorithm uses the Forward
and Backward measures and if when we recall the associated recursions

αν,k(c) =
∑
c′

αν,k−1(c′) pc′,c gc,sk

βk|n(c) =
∑
c′

pc,c′ gc′,sk+1
βk+1|n(c′)

we notice that P , the one-step transition matrix of the discrete Markov chain, appears in it.
It would seem that we can’t use them for the continuous-time version of the Baum-Welch
algorithm. But in fact we can obtain a similar result by bringing some minor modifications.
Indeed to make use of the results we have already found out in section 2, we can notice
that considering the following transforms

event Ck = ck → event C(tk) = ck

event Sk = sk → event S(tk) = sk

we can define our own new φ’s coefficients, our own forward and backward variables as
follows

φk:l|n(ck, . . . , l) = P (C(tk) = ck, . . . , C(tl) = cl | S(t0) = s0, . . . , S(tn) = sn)

αk(c) = P (S(t0) = s0, . . . , S(tk) = sk, C(tk) = ck)

βk(c) = P (S(t0) = s0, . . . , S(tk) = sk | C(tk) = ck).

So the transforms suggested above allow us to transform the parameter pck−1,ck into Pdk−1
(ck−1, ck)

and finally by analogy, we can derive our recursions:

αν,k(c) =
∑
c′

αν,k−1(c′)Pdk−1
(c′, c) gc,sk

βk|n(c) =
∑
c′

Pdk(c, c
′) gc′,sk+1

βk+1|n(c′)

49

4.2.5 The continuous-time version of the Baum-Welch algorithm

Now let’s get back to the expression of the likelihood

L({sn0}, {cn0}; θ) = ν ′c0

n∏
i=0

gci,si

n−1∏
k=0

Pdk(ck, ck+1)

From the previous expression, we can then compute the log-likelihood :

Log(L({sn0}, {cn0}; θ)) = log(P (C(t0) = c0))
n∑
i=0

log(gci,si) +
n−1∑
k=0

log(Pdk(ck, ck+1))

When calculating the intermediate quantity Q(θ; θ′) of EM we have

Q(θ; θ′) = Eθ[logL({sn0}, {cn0}) | S(t0) = s0, . . . , S(tn) = sn]

=
∑
c0

log(P (C(t0) = c0))φ0(c0; θ′) +
n∑
i=0

∑
ci

log(gci,si)φi(ci; θ
′)

+
n−1∑
k=0

∑
ck,ck+1

log(Pdk(ck, ck+1))φk,k+1(ck, ck+1; θ′)

We can here again use T1, T2 and T3 to denote the three distinct sums in Q(θ; θ′). Note that
we have the exact same first two terms as in the discrete case and thus the re-estimates for
ν ′ and G have exactly the same expression as ν and G for the discrete case. Let’s focus on
the third term T3 and considering the two hidden states we write :

T3 =
n−1∑
i=0

∑
k,l

log(Pdi(k, l))φi,i+1(k, l; θ′)

=
n−1∑
i=0

φi,i+1(1, 1)log(Pdi(1, 1)) + φi,i+1(1, 2)log(Pdi(1, 2)) + φi,i+1(2, 1)log(Pdi(2, 1))

+φi,i+1(2, 2)log(Pdi(2, 2))

During a maximisation step of the EM algorithm we will have to find the optimal values
for a and b such that T3 is maximum. We therefore need to solve, for each iteration of the
algorithm, the following system of constrained equations :

∂T3/∂a = 0
∂T3/∂b = 0
a > 0
b > 0

Therefore the first thing we must do is to calculate the first derivatives of Pt(i, j) with
respect to a and b. Here are the results I found :{

∂Pt(1, 1)/∂a = [1− ta− a
a+b

] e
−(a+b)t

a+b
− b

(a+b)2

∂Pt(1, 1)/∂b = [− a
a+b
− ta] e

−(a+b)t

a+b
− b

(a+b)2
+ 1

a+b{
∂Pt(2, 2)/∂a = [− b

a+b
− tb] e−(a+b)t

a+b
− a

(a+b)2
+ 1

a+b

∂Pt(2, 2)/∂b = [1− tb− b
a+b

] e
−(a+b)t

a+b
− a

(a+b)2

50

{
∂Pt(1, 2)/∂a = [ta+ a

a+b
− 1] e

−(a+b)t

a+b
− a

(a+b)2
+ 1

(a+b)

∂Pt(1, 2)/∂b = [a
a+b

+ ta] e
−(a+b)t

a+b
− a

(a+b)2{
∂Pt(2, 1)/∂a = [tb+ b

a+b
] e
−(a+b)t

a+b
− b

(a+b)2

∂Pt(2, 1)/∂b = [tb+ b
a+b
− 1] e

−(a+b)t

a+b
− b

(a+b)2
+ 1

(a+b)

Finally we can fully express the previous system of constrained equations with a and b,
thus we obtain these huge equations :

• With respect to a

n−1∑
i=0

φi,i+1(1, 1) ∗
[1− ta− a

a+b
] e
−(a+b)t

a+b
− b

(a+b)2

1
a+b

(b+ ae−(a+b)t)

+φi,i+1(1, 2) ∗
[ta+ a

a+b
− 1] e

−(a+b)t

a+b
− a

(a+b)2
+ 1

(a+b)

1
a+b

(a− ae−(a+b)t)

+φi,i+1(2, 1) ∗
[tb+ b

a+b
] e
−(a+b)t

a+b
− b

(a+b)2

1
a+b

(b− be−(a+b)t)

+φi,i+1(2, 2) ∗
[− b

a+b
− tb] e−(a+b)t

a+b
− a

(a+b)2
+ 1

a+b

1
a+b

(a+ be−(a+b)t)

= 0 (6)

• with respect to b

n−1∑
i=0

φi,i+1(1, 1) ∗
[− a

a+b
− ta] e

−(a+b)t

a+b
− b

(a+b)2
+ 1

a+b

1
a+b

(b+ ae−(a+b)t)

+φi,i+1(1, 2) ∗
[a
a+b

+ ta] e
−(a+b)t

a+b
− a

(a+b)2

1
a+b

(a− ae−(a+b)t)

+φi,i+1(2, 1) ∗
[tb+ b

a+b
− 1] e

−(a+b)t

a+b
− b

(a+b)2
+ 1

(a+b)

1
a+b

(b− be−(a+b)t)

+φi,i+1(2, 2) ∗
[1− tb− b

a+b
] e
−(a+b)t

a+b
− a

(a+b)2

1
a+b

(a+ be−(a+b)t)

= 0 (7)

Using the analogy presented in the previous subsection, we can express φi,i+1(ci, ci+1) as

φi,i+1(ci, ci+1) =
1

L(sn0)
Pdi(ci, ci+1)αi(ci)gci+1,si+1

βi+1(ci+1).

Note that the computation of φi,i+1(ci, ci+1) requires the computation of L(sn0) which is
intractable, but in fact we don’t need to because in the previous equations we can simplify
them and it only remains the numerators Pdi(ci, ci+1)αi(ci)gci+1,si+1

βi+1(ci+1). Of course, this
is unsolvable by hand and so we need a mathematical Software as MATLAB or Mathematica
to solve this system of equations.

51

Proposition 4.8 During a M-step, the optimal re-estimates for parameters ν ′, G, and Q
with two hidden states are

ν̂ ′(j) =
α0(j)β0(j)∑
l α0(l)β0(l)

ĝjs =

∑n
i=0 δsi,sαi(j)βi(j)∑n
i=0 αi(j)βi(j)

(â; b̂) = solution of


(6)
(7)
a > 0
b > 0

with Q =

(
−â â

b̂ −b̂

)

Finally when the optimal ν ′ is found, we can compute the vector ν using the formula:

ν̂ = ν̂ ′Pt0
−1 = ν ′e−t0Q̂

4.2.6 Generalization to n states

So far we have only considered 2 hidden states and so Q was a square matrix of size 2.
If we now assume that there are exactly r states, for r ≥ 3, can we adopt the previous
demonstration? It turns out that it is not so simple. Indeed, if we now assume r hidden
states, then Q is a r-by-r matrix with exactly r2 − r = r(r − 1) parameters to determine
(recall that the diagonal elements qii are equal to −

∑
1≤j≤r,j 6=i qij), hence r(r−1) equations

(one equation for each derivative). The main problem we are confronted to when assuming
r states is that we would have to find the roots of a r-order polynomial in both methods
presented earlier on, namely the diagonalization and the Laplace transform methods. In-
deed, concerning the diagonalization method, we need to find the eigenvalues of Q and
therefore this means finding the roots of the characteristic polynomial det(λI − Q) which
is a r-order polynomial. On the other hand, concerning the Laplace transform, we need
to find the roots of det(sI −Q) to be able to apply the partial-fraction decomposition. In
either case we can’t find the roots of a r-order polynomial and moreover we would have to
find a symbolic expression of the roots according to the parameters qij which is a very com-
plicated problem. The least we can do is to introduce the roots a1, . . . , ar of the polynomial
we are considering, and by expanding the polynomial (X−a1) . . . (X−ar), we can identify
each term w.r.t qij’s and finally we can formulate a system of r equations. This is still a
difficult problem to solve it but I invite the reader to consult a paper from my supervisor
[33] dealing with a similar problem with simpler assumptions that he solved numerically
using MATHEMATICA.

4.3 Implementation and results

As said earlier, we are going to use a time-stamped trace that I got from my supervisor
Peter Harrison. As seen in section 2, before using this trace, his group first processed this
data trace by splitting the time axis into 5-millisecond bins so that they could use the HMM
results derived in section 2 for the discrete case. However I don’t need to pre-process it as
my theory takes the continuous time into account. This time-stamped trace is basically just
composed of two columns, the first one representing the observation times (in microseconds)
and the second one representing the observation types (reads (r) or writes (w)). To apply
my previous algorithm I just modified this trace such that a read instruction (r) correspond
to a ‘1’ and a write instruction (w) corresponds to a ‘2’. My final data traces (for the first
10 points) looks like:

52

Observation instants (µs) Instruction type
1 0

1514 2
2133 1
2142 1
2744 1
2748 2
2749 1
3727 1
3771 2

First we need to set our initial conditions for our parameters ν ′, Q and G. However, the
initial conditions depend on the contextual information that we have about the concerned
process. For instance, assume the initial hidden state is determined by a biased coin and
we know that ‘heads’ are more likely to appear than ‘tails’, then clearly we should take this
prior information into account in our model by setting our initial distribution such that the
probability of the state associated with ‘heads’ is greater than the other state, for example
ν = (3/4 1/4). Unfortunately I don’t have such contextual information and this is the
reason why I decided to apply an equiprobable distribution:

ν ′ = (0.5 0.5) G =

(
0.5 0.5
0.5 0.5

)

The case of Q is a bit harder since there are no “usual” values for elements of a infinitesi-
mal generator matrix. Unlike the discrete case where the entries of the one-step transition
matrix P are bounded since they represent a probability, the elements of the Q-matrix are
largely unscaled and are process-dependent. For instance a small value for a means that
the first state c0 is more likely to hold for a long time since it represents the parameter
of the exponential distribution of a holding time in state c0. Besides, in order to suc-
cessfully implement the EM algorithm, we need to establish a STOP condition and in my
algorithm I chose to stop the successive iterations when two successive estimates of G are
distant by no more than ε = 10−5, that is we stop the while-loop at the nth iteration when
‖Gn−1−Gn‖ < ε. My algorithm is attached as Appendix. Since a and b are unscaled I de-
cided to try different initial values for a and b and the results are presented in the below table

53

b
=

1
b

=
50

b
=

10
0

a
=

1

ν̂
=

(1
.0

00
0

0.
00

00
)

Ĝ
=

(0.
96

72
0.

03
28

0.
00

27
0.

99
73

)
Q̂

=

(−0
.2

62
7

0.
26

27
0.

27
90

−
0.

27
90

)
N
it
s

=
85

ν̂
=

(0
.0

00
5

0.
99

95
)

Ĝ
=

(0.
51

62
0.

48
38

0.
99

89
0.

00
11

)
Q̂

=

(−1
.5

46
8

1.
54

68
80
.5

31
6
−

80
.5

31
6)

N
it
s

=
24

ν̂
=

(0
.0

05
4

0.
99

46
)

Ĝ
=

(0.
52

07
0.

47
93

0.
99

96
0.

00
04

)
Q̂

=

(−1
.1

73
4

1.
17

34
12

1.
76

91
−

12
1.

76
91

)
N
it
s

=
17

a
=

50

ν̂
=

(1
.0

00
0

0.
00

00
)

Ĝ
=

(0.
99

90
0.

00
10

0.
51

59
0.

48
41

)
Q̂

=

(−6
9.

76
26

69
.7

62
6

1.
37

81
−

1.
37

81

)
N
it
s

=
15

ν̂
=

(1
.0

00
0

0.
00

00
)

Ĝ
=

(0.
97

54
0.

02
46

0.
22

98
0.

77
02

)
Q̂

=

(−1
76
.6

57
7

17
6.

65
77

11
6.

31
51

−
11

6.
31

51

)
N
it
s

=
17

3

ν̂
=

(1
.0

00
0

0.
00

00
)

Ĝ
=

(0.
96

73
0.

03
27

0.
10

08
0.

89
92

)
Q̂

=

(−1
89
.1

35
0

18
9.

13
50

18
2.

75
90

−
18

2.
75

90

)
N
it
s

=
24

5

a
=

10
0

ν̂
=

(0
.9

99
4

0.
00

06
)

Ĝ
=

(0.
99

95
0.

00
05

0.
52

06
0.

47
94

)
Q̂

=

(−1
06
.3

69
2

10
6.

36
92

1.
05

56
−

1.
05

56

)
N
it
s

=
10

ν̂
=

(1
.0

00
0

0.
00

00
)

Ĝ
=

(0.
98

11
0.

01
89

0.
34

20
0.

65
80

)
Q̂

=

(−1
94
.6

98
8

19
4.

69
88

78
.4

43
0
−

78
.4

43
0)

N
it
s

=
11

7

ν̂
=

(1
.0

00
0

0.
00

00
)

Ĝ
=

(0.
97

46
0.

02
54

0.
21

55
0.

78
45

)
Q̂

=

(−2
01
.5

14
0

20
1.

51
40

13
9.

35
65

−
13

9.
35

65

)
N
it
s

=
17

6

In this table we have displayed the parameters we want to estimate along with the
number of iterations Nits before convergence. From this table we can notice that we know
what the initial state is with a probability greater than 0.95 in every case. Also we remark
an important dependence between the initial values of a and b, and the final estimates
we get. The rate of convergence Nits is also affected by the initial parameters because
changing the initial values of a and b may make us move to another initial point of T3(a, b)
where the gradient is higher and therefore the convergence is longer. Furthermore when

54

we change the initial values of a and b, we also affect the initial values of the forward and
backward variables and therefore we change all values of all estimates: this is the reason
why even we change the value of a or b by a small amount, we may end up with totally
different estimates.

Note 4.9 In section 3.3, we also assumed the doubly stochastic process to be a Markov-
modulated Poisson process. The current rate of this MMPP is determined by {C(t), t ≥ 0},
in other words there are only two rates λ0 and λ1 (respectively associated with hidden
states c0 and c1). Besides, we know that an inter-arrival time of a MMPP follows the
hyperexponential random distribution f(t) =

∑r
i=1 πiλie

−λit, with π = (π1 π2) the steady-
state vector of {C(t), t ≥ 0}. Moreover we know that we can obtain π from the Q-matrix
solving the constrained equations: {

πQ = 0
π · 1 = 1

Once we obtain π, we can apply another EM algorithm to determine the MLEs for λ0 and
λ1. But we can also proceed otherwise and use an approximation to determine λ0 and λ1.
Indeed, let’s pick out Ĝ and Q̂ form the central cell of the previous table (case when initial
parameters are a=50 and b=50):

Ĝ =

(
0.9754 0.0246
0.2298 0.7702

)
Q̂ =

(
−176.6577 176.6577
116.3151 −116.3151

)
By solving the previous system of equations we find π = (0.3970 0.6030). Here is the
approximation: if we denote T the total time of the trace, nr the number of reads and nw
the number of writes, then we can approximate the number of reads par unit of time nr/T
and the number of writes per unit of time nw/T using:{

nr
T

=
∑2

j=1 πjgj,1λj
nw
T

=
∑2

j=1 πjgj,2λj

This is a simple system of equations for which we find λ = (λ0 = 0.0013 λ1 = 0.0012).

5 Conclusion and future work

In this paper we have described a new methodology to adapt the use of Hidden Markov
models to continuous-time processes. We have firstly introduced HMMs as an efficient
tool allowing us to represent real-life system faithfully and parsimoniously. Then we have
discussed the three canonical issues related to HMMs and we have shown how to solve them
in a tractable way: this gave birth to the three well known algorithm that are the Forward-
Backward algorithm, the Viterbi algorithm and the Baum-Welch algorithm. In the second
part we have discussed a successful application of HMMs to Flash memory partly carried
out by my supervisor Peter Harrison. Although the results were surprisingly satisfying,
especially when comparing simple metrics as mean count and its standard deviation, Peter
wanted to improve the matching between the ACFs. From this point we have considered a
continuous-time bivariate stochastic process playing the role of a Hidden Markov model at
arrival times and we needed to make some further assumption: this process was assumed
to be a Markov-modulated Poisson process. The next natural step was to derive the new
parameters of this bivariate process, and in order to reach such a goal, we have adapted the
discrete-case theory to continuous time. In particular we have found a new way to compute

55

the parameter re-estimates in a very simple context where {C(t)} switched between two
states only over the time.

We can extend this work in many directions but one of the most imperative one is to
generate new traces using the model parameters we have found. Then we could compare
the raw trace with the newly generated one using some specific metrics as the mean count
of reads and writes, the number of consecutive reads and writes, etc. We can also focus
on taking into account more than 2 hidden states but this seems to be a harder problem.
Finally we could create a model with more observation states using the sizes of instructions
and for instance we could create a 4-state observation space with large-sized/small-sized
reads/writes.

56

References

[1] P. G. Harrison, S. K. Leyton, N. M. Patel and S. Zertal, Storage Workload Modelling
by Hidden Markov Models: Application to Flash Memory, 2010.

[2] Susanna Wau Men Au-Yeung, P. G. Harrison and William J. Knottenbelt, A queueing
Network Model of Patient Flow in an Accident and Emergency Department, 2006.

[3] S. K. Leyton, Statistical Inference in Hidden Markov Models, 2008.

[4] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech
recognition, Proc. IEEE, 77:257-285, 1989.

[5] Sean R. Eddy, Hidden Markov models - protein structures, Current Opinion in
Structural Biology, 1996.

[6] Olivier Cappe, Eric Moulines, and Tobias Ryden. Inference in Hidden Markov Models.
Springer Series in Statistics. Springer, 2005.

[7] Iain L. MacDonald and Walter Zucchini. Hidden Markov and other Models for discrete-
valued Time Series.Monographs on Statistics and Applied Probability. Chapman &
Hall/CRC, 1997.

[8] Albert, P.S. A two-state Markov mixture model for a time series of epileptic seizure
counts. Biometrics 47, 1371-1381, 1991.

[9] Albert, P.S. A Markov model for sequences of ordinal data from a relapsing Biomet-
rics 50, 51-60, 1991.

[10] J. Grandell, Doubly stochastic Poisson Processes. Springer, Berlin, 1976.

[11] H.Heffes and D.M. Lucantoni, A Markov modulated characterization of packetized voice
and data traffic and related statistical multiplexer performance, IEEE J. Selected
Areas Comm. 4(6), 856-868, 1986.

[12] J.J. Hunter, On the moments of Markov renewal Poisson processes, Adv. Appl. Probab.
1, 188-210, 1969.

[13] J.F.C. Kingman, On doubly stochastic Poisson processes, Roy. Cambridge Phil. Soc.
60, 923-960, 1964.

[14] D.M. Lucantoni and V. Ramaswami, Efficient Algorithms for solving the non-linear
matrix equations arising in phase type queues, Comm. Statist. Stochastic Models 1,
29-52, 1985.

[15] K.S. Meier, A fitiing algorithm for Markov-modulated Poisson processes having two
arrival rates, European J. Oper. Res. 29, 370-377, 1987.

[16] A. Azzalini, Maximum likelihood estimation of order m for stationary stochastic pro-
cesses. Biometrika 70, 381-387, 1983.

[17] A. Azzalini and A.W. Bowman, A look at some data on the Old Faithful geyser. Appl.
Satist. 39, 357-365, 1990.

57

[18] P. Baldi, Y. Chauvin, T. Haunkapiller and M.A. McClure, emphHidden Markov models
of biological primary sequence information. Proc. Nat. Acad. Sci. U.S.A. 91, 1059-1063,
1994.

[19] F.G. Ball and J.A. Rice Statistical Inference for Stochastic Processes. Academic Press,
London, 1992.

[20] L.E. Baum, An inequality and associated maximization technique in statistical esti-
mation for probabilistic functions of Markov processes. Proc. Third Symposium on
Inequalities, ed. O. Shisha. Academic Press, New York, 1-8, 1972.

[21] L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state
Markov chains. Ann. Math. Statist. 37, 1554-1563, 1966.

[22] P. Billingsley, Statistical methods in Markov chains. Ann. Math. Statist. 32, 12-40,
1961.

[23] S. Bisgaard and L.E. Travis, Existence and uniqueness of the solution of the likelihood
equations for binary Markov chains. Statist. Prob. Letters 12, 29-35, 1991.

[24] C. Chatfield, Statistical inference regarding Markov chain models. Appl. Statist. 22,
7-20, 1973.

[25] D.R. Cox and P.A.W Lewis, The Statistical Analysis of Series of Events. Methuen,
London, 1966.

[26] D.R. Cox and H.D. Miller, The Theory of Stochastic Processes. Chapman&Hall, Lon-
don, 1965.

[27] D.R. Cox and E.J. Snell, Analysis of Binary Data. Second edition, Chapman&Hall,
London, 1989.

[28] C. Moler and C. van Loan, nineteen dubious ways to compute the exponential matrix.
SIAM Rev. 20, 801-836, 1978.

[29] C.C. Paige, G.P.H. Styan and P.G. Wachter, Computation of the stationary distribution
of a Markov chain. J. Statist. Comput. Simulation 4, 173-186, 1975.

[30] R. Pyke, Markov renewal processes: definitions and preliminary properties. Ann. Math.
Statist/ 32, 1231-1242, 1961.

[31] V. Ramaswami, Stable recursion for the steady state vector for Markov chains of
M/G/1 type. Comm. Statist. Stochastic Models 4, 183-188, 1988.

[32] B. Sengupta, Markov processes whose steady state distribution is matrix-exponential
with an application to the GI/PH/1 queue. Adv. Appl. Probab. 21, 159-180, 1986.

[33] A.J. Field and P.G. Harrison, Busy Periods in Fluid Queues with Multiple Emptying
Input States. Journal of Applied Probability, 2010, to appear.

58

Appendix

function res = BaumWelch(x0)

N=100; %Number of points

S = textread(’ProcessedTrace.txt’);

S = S(1:N,1:2);

Times = S(:,1);

Obs = S(:,2);

%%%%%% initialization of parameters %%%%%%%%%%%%%%

a=x0(1);

b=x0(2);

Q = [[-a a];[b -b]];

nu = [1/2 1/2];

G = [nu ; nu];

alpha = ones(N,2);

beta = alpha;

phi = zeros(N-1,4);

Gmem = 0;

D=zeros(N,1);

options = optimset(’LargeScale’,’off’,’MaxFunEvals’, 5000);

%%%%%% Baum-Welch algorithm

Nits = 0;

while (norm(G-Gmem)>10^(-5) || Nits == 0) %%%% STOP condition

Gmem = G

%*********** Update the alphas *************%

alpha(1,:) = [nu(1)*G(1,Obs(1)) nu(2)*G(2,Obs(1))];

alpha(1,:) = alpha(1,:)/sum(alpha(1,:));

for t= 2:N

E = expm((Times(t)-Times(t-1))*Q);

for j=1:2

alpha(t,j) = G(j,Obs(t))*E(1,j)*alpha(t-1,1) + G(j,Obs(t))*E(2,j)*alpha(t-1,2);

end

D(t) = sum(alpha(t,:));

alpha(t,:) = alpha(t,:)/D(t);

end

%*********** Update the betas *************%

for t=1:N-1

t1 = N-t;

E = expm((Times(t1+1)-Times(t1))*Q);

for j=1:2

59

beta(t1,j) = G(1,Obs(t1+1))*E(j,1)*beta(t1+1,1) + G(2,Obs(t1+1))*E(j,2)*beta(t1+1,2);

end

beta(t1,:) = beta(t1,:)/D(t1+1);

end

beta;

%*********** Update the phis *************%

for t=1:N-1

E = expm((Times(t+1)-Times(t))*Q);

phi(t,1) = E(1,1)*alpha(t,1)*G(1,Obs(t+1))*beta(t+1,1)/D(t+1);

phi(t,2) = E(1,2)*alpha(t,1)*G(2,Obs(t+1))*beta(t+1,2)/D(t+1);

phi(t,3) = E(2,1)*alpha(t,2)*G(1,Obs(t+1))*beta(t+1,1)/D(t+1);

phi(t,4) = E(2,2)*alpha(t,2)*G(2,Obs(t+1))*beta(t+1,2)/D(t+1);

end

phi;

%\\\\\\\\\\\\\\\\\\\\\\\Update the parameters //////////////////////////%

%***************Updating the initial distribution nu *******************%

nu(1) = alpha(1,1)*beta(1,1) / (alpha(1,1)*beta(1,1) + alpha(1,2)*beta(1,2)) ;

nu(2) = alpha(1,2)*beta(1,2) / (alpha(1,1)*beta(1,1) + alpha(1,2)*beta(1,2)) ;

%*************** Updating the G matrix ****************************%

for i=1:2

for j = 1:2

temp1 = 0;

temp2 = 0;

for k = 1:N

if (Obs(k)) == j

temp1 = temp1 + alpha(k,i)*beta(k,i);

end

temp2 = temp2 + alpha(k,i)*beta(k,i);

end

G(i,j) = temp1/temp2;

end

end

%**************** Updating the Generator matrix Q********************%

s = fsolve(@myfun, [a b], options)

a=s(1);

b=s(2);

Q = [[-a a];[b -b]]

60

Nits = Nits + 1

end

%**************** Definition of Equations********************%

function F = myfun(x)

F1 = 0;

F2 = 0;

for i=1:N-1

d = Times(i+1)-Times(i);

e = exp(-(x(1)+x(2))*d);

F1 = F1 + phi(i,1) * ((1-d*x(1)- x(1)/(x(1)+x(2)))*e - x(2)/(x(1)+x(2)))/(x(2)+x(1)*e) +

phi(i,2) * ((d*x(1)-1+ x(1)/(x(1)+x(2)))*e - x(1)/(x(1)+x(2))+1)/(x(1)-x(1)*e) +

phi(i,3)*((d*x(2)+ x(2)/(x(1)+x(2)))*e - x(2)/(x(1)+x(2)))/(x(2)-x(2)*e) +

phi(i,4)*((-d*x(2)- x(2)/(x(1)+x(2)))*e - x(1)/(x(1)+x(2))+1)/(x(1)+x(2)*e);

F2 = F2 + phi(i,1) * ((-x(1)/(x(1)+x(2))-d*x(1))*e - x(2)/(x(1)+x(2))+1)/(x(2)+x(1)*e) +

phi(i,2) * ((d*x(1)+ x(1)/(x(1)+x(2)))*e - x(1)/(x(1)+x(2)))/(x(1)-x(1)*e) +

phi(i,3)*((d*x(2)+ x(2)/(x(1)+x(2))-1)*e - x(2)/(x(1)+x(2))+1)/(x(2)-x(2)*e) +

phi(i,4)*((1-x(2)/(x(1)+x(2))-d*x(2))*e - x(1)/(x(1)+x(2)))/(x(1)+x(2)*e);

end

F=[F1 F2];

end

end

61

