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Abstract

This project explores the problems faced by an independent system operator, when invest-
ing in new electrical infrastructure. The expansion of power generation and transmission
capacities must be made to ensure the power system remains resilient under uncertain
demand and economic conditions. Recently, higher emphasis has been placed on the envi-
ronmental impact of new power plants, as energy companies are under increased political
pressures. A multi-stage stochastic programming model is proposed that allows for invest-
ment in new wind and solar farms, and is suitable under an emissions trading scheme. In
order to obtain a computationally tractable problem a linear decision rule approximation
is applied to both the primal and dual problems which results in the solution of a tractable
linear program. A case study of the electricity system in El Salvador is undertaken to
assess possible investment opportunities and to evaluate the model. The results highlight
a mix of renewable resources as the best option to facilitate rising demand for electricity,
likely increases in fossil-fuel prices and the need for emission-free energy.
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Chapter 1

Introduction

1.1 Motivation

This project is concerned with developing an efficient and computationally tractable model
for the expansion of electrical infrastructure. The task of the system operator can be
described as follows. An existing electrical infrastructure consists of several different
regions, each with a number of generators, connected via a number of transmission lines.
At some initial point in time an investment decision is made regarding which of the
candidate generators and transmission lines to build. The new facilities are then put
into service with the existing system for some time period; then the demand for power,
plant and transmission line failures are all revealed. The system operator then adjusts
the power produced at each generator and transported between regions in order to satisfy
demand, whilst also minimising operating costs. In an extended version of the system
the decision maker will have the opportunity to make further investment and operational
decisions sequentially at later time periods, allowing him to tailor his decisions to the
realisations of the uncertain economic conditions. Hence, the aim of the system operator
is to choose the optimal investments in order to minimise the expected cost whilst hedging
against the worst case realisation of the failure and demand patterns that can reasonably
be expected to occur.

Usually the cost of power cuts to businesses can be significantly higher than the initial
investment cost of the generators and as a result the reliability of the system is crucial.
Beenstock illustrates the importance that these investment decisions can have on busi-
nesses that require a continuous supply of electricity, and states that often generators are
built as a means of insurance against power outages [4]. In this situation the system oper-
ator may be faced with excess supply which also undoubtedly incurs extra, and sometimes
significant, costs. Therefore it is of the utmost importance that the decision maker care-
fully balances the trade off between lower costs, and reliability. Achieving lower costs is
not as straightforward as reducing investment as there is a trade-off between initial costs
and operating costs, which is detailed in Section 2.4. The complexity of the problem is
added to by increasing competition in the sector due to its ongoing liberalisation and the
popularity in viable environmentally friendly alternatives. It is quite clear then that the
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decisions on whether to invest in new facilities or not can have significant consequences
on the robustness of the system and cost to the system operator. The amount of money
invested in such facilities adds to the importance of this decision. In a case study issued
shortly after the electric power blackout in north-eastern U.S. and Canada an estimated
investment of around $50 to $100 billion was needed to modernize the electrical grid [31].
All of this has motivated research within the stochastic programming community for more
accurate and viable models to solve the variety of problems faced in modern electricity
markets.

1.2 Recent Works

A number of works have been published on short-term optimal portfolio management for
an electricity supplier. Fleten et al use a stochastic programming model to coordinate
the generation and dispatch of resources into a competitive energy market over a two year
horizon [20]. It was shown that due to the deregulation of electricity markets and the
introduction of electricity exchanges, methods previously used in other financial markets
can be applied to optimise the value of an electrical portfolio [44]. The timing of when
to release water in hydro-electric plants is a major consideration when trying to optimise
profit. The difficulty arises as the trading periods of financial instruments are usually of a
much shorter time horizon(hours) than the dispatch of electricity(months). Pritchard et
al propose a dynamic programming solution to this problem, taking into account multiple
trading periods [40]. Other models that focus on optimal power generation and trading
in the short to midterm are studied by Gröwe-Kuska & Römisch, Nürnberg & Römisch
and more recently Doege et al [25, 38, 15].

The model developed in this project is concerned with a long-term view of expansion
planning, as opposed to short term scheduling and trading as described above. An influ-
ential case study on expansion of the Brazilian hydroelectric power system comes from
Leopoldino et al. They study a centralised, regulated system of interconnected generat-
ing units with a maximum production and transmission capacity, and use Monte-Carlo
simulation to minimise cost whilst catering for the expected increase in load demand over
time [32]. Nogales et al later proposed a decomposition methodology for the optimal flow
problem of a multi-area decentralised system. An advantage of their model is that they
cater for the increased competition in the sector and it is applicable to an independent
system operator [37]. Chaton and Doucet have recently applied linear decision rules to a
case study of Hydro-Québec [10].

1.3 Contributions

A model for a long-term (decades) capacity expansion problem suitable for an individual
system operator in a deregulated market is proposed. It accounts for a multi-regional
system, such as a national grid, with uncertain demand and allows for multiple investment
periods. A linear decision rule (LDR) approximation, proposed by Kuhn et al, is applied
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to both the primal and dual stochastic programs in order to obtain a tractable linear
program. This, method allows us to estimate the error introduced through the duality
gap [30]. In an attempt to obtain a more accurate solution a continuous piecewise linear
decision (CPLDR) rule approximation, proposed by Georghiou et al, is later applied. The
contributions of this project will primarily focus on the following tasks:

• In Section 2.2 the LDR techniques used to obtain tractable reformulations of the
stochastic capacity expansion problem are introduced. An improvement of this
technique using CPLDR is introduced in Section 2.2.2.

• Chapter 3 introduces two stochastic capacity expansion models, a two-stage and
multi-stage formulation. An implementation of these models is also provided which
provides simulations for the uncertainties in the system.

• The models will be evaluated based on a case study of the electricity system in El
Salvador. The numerical results are detailed in Chapter 5.

• Finally, an evaluation of the capacity expansion models is undertaken and ideas for
future work proposed in Chapter 6.
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Chapter 2

Background

2.1 Mathematical Overview

An overview of some of the technical concepts which are required to understand the main
workings of this project will now be given. It is assumed that the reader has a general
knowledge of probability and linear algebra or linear programming, so basic concepts of
probability will not be covered. Instead an overview of linear and stochastic programming
is given so that the reader can understand the methods used to obtain a tractable problem
of the capacity expansion model.

Mathematical Optimisation

In its simplest form a mathematical optimisation problem is of the form

minimise f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m

The objective of such a problem is to find a vector x = (x1, ..., xn) that minimises the
function f0 : Rn → R. Hence x is known as the optimisation variable and f0 the objective
function. The functions fi : Rn → R are known as the constraint functions and the
constants b1, ..., bm the bounds of the constraints [7].

Linear Program

A linear program is a specific type of mathematical optimisation where the objective
function and constraints are linear. That is, they can be written as a linear combination
of the vector of variables x. They are generally of the form
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minimise c>x

subject to Ax ≤ b

x ≥ 0

x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm

(2.1)

As before our aim is to find an x which minimises the objective function c>x. The feasible
region of the problem is defined to be those values of x which satisfy the conditions Ax ≤ b
with x ≥ 0. The above formulation is often referred to as the primal problem and provides
us with an upper bound of the solution.

It is desirable to re-formulate the above problem to provide us with a lower bound to the
optimal value. The dual of the 2.1 is defined as

maximise b>y

subject to A>y ≥ c

y ≥ 0

b, y ∈ Rm, A ∈ Rm×n, c ∈ Rn

(2.2)

The weak duality theorem states that the dual is bounded above by the primal. More
formally it states that, if x is any feasible primal solution and y is any dual feasible
solution then sup b>y ≤ inf c>x 1. The importance of the relationship between the
primal and dual will become clear later, when the duality gap is used to estimate the loss
in optimality. These are complementary, in the sense that an optimal solution to one
problem yields an optimal solution to the other. The interested reader is referred to Kall
and Wallace for a formal proof of these results [28, p. 72].

Dynamic Decision Making

In real life problems a decision maker may have the option to make multiple decisions at
various points in time, in an attempt to optimise the performance of a stochastic system.
Thus, the decisions made at a later point in time may depend on those decisions made
earlier and on the uncertain data that is revealed. Edwards defines dynamic decision
making by three common features [17]:

1. A series of actions is taken over some extended time to achieve a predetermined
goal.

2. The environment changes spontaneously and accounts for previous decisions.

3. Decisions are interdependent so that later decisions depend on earlier actions.

1Here, inf and sup defined as the infemum and supremum respectively
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Stochastic programs can be used to optimise dynamic systems where later decisions are
modeled as functions of the uncertain data often referred to as decision rules. In their
most basic form stochastic programs consist of only two stages, but often this is extended
to a multi-stage problem.

Probability Theory

A probability space is defined as a triple (Ω,F , P ) where Ω represents the sample space
of all possible outcomes, F is a σ−algebra or set of events of Ω assigned a probability by
the probability measure P , with P (Ω) = 1. From hereon a probability space is assumed
to be of the form (Rk,B(Rk), P ) where B(Rk) is the Borel σ−algebra of Rk. Intuitively
speaking the Borel σ−algebra can be thought of as the set of events which are assigned
probabilities by the probability measure.

A square integrable function of a variable, on an interval, is defined as one whose square
of its absolute value is finite on that interval. The space of all Borel measurable, square
integrable functions from Rk to Rn is denoted by L2

k,n = L2(Rk,B(Rk), P ;Rn). The

elements of the sample space are denoted by ξ ∈ Rk, with their support Ξ defined as
usual, the smallest subset of Rk with probability one. Let E(.) denote the expectation
with respect to all Borel measurable, square integrable functions from Rk to Rn.

A stochastic process can be thought of as a sequence of random variables indexed by time.
Denote a stochastic process by ξ := {ξ(t), t ∈ T} on the probability space (Ω,F , P ). At
a fixed time point t ∈ T , ξ(t) denotes the random variable of the stochastic process ξ
at that time. A sequence of evolving random observations ξ(ω, t) over time t for some
particular event ω is defined as a random walk, or sample path, {ξ(ω, t) : t ≥ 0}. The
simplest, and most relevant, example of a sample is the price of a stock over a period of
time.

The Lebesgue integral is commonly used when dealing with a probability space, as opposed
to the more common Riemann integration. Intuitively speaking, the difference between
the Lebesgue and Riemann integrals are in the approach to summing the area under a
curve. The Riemann integral divides the domain space into portions and uses the value
mapped in the range from the two end points. In contrast, the Lebesgue integral divides
the range space and ask how much of the domain is mapped by the function to the range
space endpoints. Measure theory provides a method for determining how much of the
domain is sent to a particular portion of the range. The Lebesgue integral is denoted by∫

Ω
P (dω) where P is a measure on the probability space.

Two-Stage Stochastic Program

The most common form of stochastic program is the two-stage problem. A two-stage linear
stochastic program with right hand side uncertainty as was first proposed by Dantzig is
now considered [14]. In the first stage a set of decisions is made before the uncertainty
is realised and these are known as here-and-now decisions for obvious reasons. Then, the
uncertain data is revealed and the decision maker can adjust his strategy by making a
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second set of decisions known as wait-and-see or recourse decisions. The recourse decisions
are modeled as decision rules, that is functions of the uncertain information. The decision
maker aims to choose the initial decisions and decision rules which minimise the expected
cost. Formally this can be writen as follows

minimise c>x+ E
[
d(ξ)>y(ξ)

]
subject to Ax+By(ξ) ≤ b(ξ)

x ≥ 0, y ∈ L2
k,m

(2.3)

with the following notation:

c : the first-stage costs with c ∈ Rn1

x : the first-stage decision variables with x ∈ Rn1

d(.) : the second-stage costs with d ∈ L2
k,n2

y(.) : the second-stage decision variables with y ∈ L2
k,n2

A : the first-stage coefficient matrix with A ∈ Rm,n1

B : the second-stage coefficient matrix with B ∈ Rm,n2

b : the constraint variables with b ∈ L2
k,m

The equation 2.3 deals with the case of fixed recourse implying that the recourse matrix B
is independent of ξ. If the above were a case of random recourse then B would be replaced
by B(ξ) as independence is no longer guarenteed. Sochastic programs of the form 2.3 can
also be written in standard form by introducing slack variables s(ξ) ∈ L2

k,m, s.t. s(ξ) ≥ 0.

Multi-Stage Stochastic Program

Notation: In this section a sequence of decisions and random variables are observed,
and so it is important that a distinction between the different notational meanings. The
elements of the sample space are defined in a temporal structure as ξ = (ξ1, ..., ξT ) and
each of the sub-vectors ξt ∈ Rkt are observed at the time points t ∈ T = {1, ..., T}
respectively. For notational simplicity the history of all samples up to the time point t
will be denoted by ξt = (ξ1, ..., ξt) ∈ Rkt where kt =

∑t
s=1 ks. Naturally, Et(.) is defined

as the conditional expectation of the history of observations ξt with respect to P. Writing
A ≥ 0 for some matrix A or v ≥ 0 for some vector v, refers to element wise inequality.

It is usually the case in a dynamic system that a sequence of decisions must be made
over some extended time period T. Hence, the two-stage model needs to be extended to
a multi-stage one. In this system the first-stage decisions x are made at t0 before the
observation ξ1, followed by a sequence of later decisions yt(ξ

t) ∈ Rnt , t ∈ T each made
after ξt is observed, but before future outcomes2. Thus, similarly to before, the objective

2This represents the non-anticipative nature of the system, i.e. yt depends solely on ξt
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is now to choose the initial decision and a sequence of decision rules to minimise the
expected cost. A mutli-stage model is defined as follows

minimise c>x+ E

[
T∑
t=1

dt(ξ
t)>y(ξt)

]

subject to Ax+ Et

[
T∑
s=1

Btsys(ξ
s)

]
≤ bt(ξ

t)

x ≥ 0, yt ∈ L2
kt,mt

(2.4)

with the constraints defined as in stochastic program 2.3.

2.2 Linear Decision Rules

Stochastic programs attempt to integrate the concepts of optimisation & uncertainty and
provide a huge amount of potential in solving real life problems; applicable to a number
of different disciplines. However, the stochastic programming community believe that
dynamic decision problems are extremely difficult to solve, especially when multiple stages
are involved and the uncertain data is revealed sequentially. It has been shown recently
by Dyer and Stougie that when the stochastic parameters are independently distributed,
they are #P-hard, even if the stochastic parameters have the uniform distribution on the
unit square [16]. In recent years many attempts have been made to come up with tractable
approximations to these problems and one such popular approach at the moment is the
use of linear decision rules.

One of the difficulties with stochastic programs is that they require full knowledge of the
distribution of the uncertain data. This information is rarely available and the optimal
solution can be very sensitive to the assumed distribution. This has revived the interest in
robust optimisation as an alternative approach to handling the uncertain data, with the
development of a minimax approach, where the decision maker minimises over the maximal
expected cost of a family of distributions. Jogannathan studied such an approach that
only requires knowledge of the mean and variance of the random parameters by solving an
equivalent convex programming problem [27]. Linear decision rules have only been revived
recently by Ben-Tal et al who introduced the Affinely Adjustable Robust Counterpart
(AARC), a notion which was shown to have a significant reduction in the complexity
of the problem [5]. Shapiro and Nemirovski suggest that, although linear decision rules
almost always incur a loss of accuracy in the optimal solution, in “actual applications it
is better to pose a modest and achievable goal rather than an ambitious goal which we
do not know how to achieve” [41, p. 31-32]. Their success has very recently been seen
in the context of portfolio optimisation over multiple periods [8], and in this project they
will be applied to the problem of capacity expansion.
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2.2.1 Primal and Dual Linear Decision Rules

This section discusses a theory introduced by Kuhn et al that uses linear decision rules
on the primal and dual problem of a stochastic program to represent them as equivalent
tractable linear programs. Furthermore, this technique allows us to estimate the error
introduced via the optimality gap and only requires knowledge of the first two moments
of the probability distribution. This approach is applicable to both our two-stage and
multi-stage programs 2.3 and 2.4. Only the main theorems are stated here and the reader
is advised to see the work by Kuhn et al for a more in-depth understanding [30].

The concept of an affine function f : Rn → Rm, which is simply one that can be written
as the sum of a linear function and a constant, is needed. In this section samples are
taken from Ξ as defined in Appendix A and therefore it is certainly the case that ξ1 = 1
almost surely. This allows for notational simplicity as affine functions of the uncertain
data can be represented as linear decision rules. Formally, the structure of the decision
rules are

x(ξ) = x1 +
k∑
i=2

xiξi = Xξ

This compact notation will be assumed throughout the rest of this project.

One-Stage

This first result is concerning a one-stage stochastic program with fixed recourse, which is
identical to stochastic program 2.3 without any initial decisions made before the uncertain
data is realised. This one stage stochastic program will be hereon referred to by SP . Using
linear decision rules the primal problem is represented by SPu

minimise Tr
(
MC>X

)
subject to X ∈ Rn×k, S ∈ Rm×k

AXξ + Sξ = Bξ

Sξ ≥ 0

}
P− a.s.

(SPu)

The corresponding dual problem SP l can be written as
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minimise Tr
(
MC>X

)
subject to X ∈ Rn×k, S ∈ Rm×k

AX + S = B

∃x ∈ L2
k,n : XM = E(x(ξ)ξ>)

∃s ∈ L2
k,m : SM = E(s(ξ)ξ>)

s(ξ) ≥ 0

 P− a.s.

(SP l)

Here, M is the second order moment matrix defined as M := E(ξξ>). As stated previ-
ously, the primal SPu and dual SP l provide an upper and lower bound to the original
approximation. This can be seen as SPu is obtained by reducing the underlying feasible
set, and is thus more restrictive. Conversely any feasible solution to our original prob-
lem clearly satisfies SP l, although not necessarily the other way round, and hence SP l
provides a lower bound. These problems are still generally intractable as SPu has a semi-
infinite quality, whilst SP l requires the solution of m moment problems. This motivates
us again, by some other means, to drastically reduce the complexity of these problems.

One of the useful properties of linear programs is that they are generally solvable. Thus,
if SPu and SP l can be approximated by linear programs, then they can be efficiently
solved. This is the main concept behind the primal and dual approximation, which for
the one-stage case of fixed recourse can be summarised in the theorem to follow.

Theorem 2.1: If P has a polyhedral support of type (Appendix A) while SP has fixed
recourse and is strictly feasible, then SPu and SP l are equivalent to the linear programs
SP∗u and SP∗l respectively. The sizes of these linear programs is polynomial in k, l, m,
and n, implying that they are efficiently solvable.

minimise Tr
(
MC>X

)
subject to X ∈ Rn×k, λ ∈ Rm×l

AX + ΛW = B

Λh ≥ 0

Λ ≥ 0

(SP∗u)

minimise Tr
(
MC>X

)
subject to X ∈ Rn×k, S ∈ Rm×k

AX + S = B(
W − he>1

)
MS> ≥ 0

(SP∗l )

Proof. See Kuhn et al [30, Section 2]
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Multi-Stage

Shapiro and Nemirovski argue that multi-stage problems are generically computationally
intractable, and with sampling based algorithms existing theoretical qualities deteriorate
dramatically as the number of stages grows [41]. On note of this, it is useful to extend
Theorem 2.1 to the multi-stage case. Again, the multi-stage problem here does not cater
for initial decisions before the first uncertainty element ξ1 is realised but, as before, can
be extended to such a scenario. This multi-stage stochastic program without an initial
decision will be referred to as MSP . The primal LDR approximation MSPu of MSP
can then be formulated as

minimise
T∑
t=1

Tr
(
PtMP>t C

>
t Xt

)
subject to Xt ∈ Rnt×kt , St ∈ Rmt×kt ∀t ∈ T

T∑
s=1

AtsXsPsMtPtξ + StPtξ = BtPtξ

StPtξ ≥ 0

 P− a.s. ∀t ∈ T

(MSPu)

and the dual LDR counterpart, MSP l as

minimise
T∑
t=1

Tr
(
PtMP>t C

>
t Xt

)
subject to Xt ∈ Rnt×kt , St ∈ Rmt×kt ∀t ∈ T

T∑
s=1

AtsXsPsNtPt + StPt = BtPt

∃xt ∈ L2
kt,mt : E(xt(ξ

t)ξ>) = XtPtMt

∃st ∈ L2
kt,mt : E(st(ξ

t)ξ>) = StPtMt

st(ξ
t) ≥ 0


P− a.s. ∀t ∈ T

(MSP l)

where Nt = MP>t (PtMP>t )−1 and Pt acts as a truncation operator to the current time
point t, that is

Pt : Rk → Rkt , ξ 7→ ξt

As with the two-stage problem, although this greatly reduces the complexity, this problem
is still exceptionally difficult to solve. Hence, for problems MSPu and MSP l it is still
necessary to find an efficient way to solve them. It has been shown by Kuhn et al that
these problems can also be translated into linear programs.
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Theorem 2.2: Assume that P has a polyhedral support of type (Appendix A), while
Et(ξ) = MtPtξ almost surely for some Mt ∈ Rk×kt , t ∈ T. If MSPhas deterministic
constraint matrices and is strictly feasible, then MSPu and MSP l are equivalent to
the linear programs MSP∗u and MSP∗l respectively. The sizes of these linear programs
are polynomial k, l,m :=

∑T
t=1 mt, and n :=

∑T
t=1 nt, implying that they are efficiently

solvable.

minimise
T∑
t=1

Tr
(
PtMP>t C

>
t Xt

)
subject to Xt ∈ Rnt×kt ,Λt ∈ Rmt×l

T∑
s=1

AtsXsPsMtPt + ΛtW = BtPt

Λth ≥ 0

Λt ≥ 0


∀t ∈ T

(MSP∗u)

minimise
T∑
t=1

Tr
(
PtMP>t C

>
t Xt

)
subject to Xt ∈ Rnt×kt , St ∈ Rmt×kt

T∑
s=1

AtsXsPsNtPt + StPt = BtPt(
W − he>1

)
MP>t S

>
t ≥ 0

 ∀t ∈ T

(MSP∗l )

Proof. See Kuhn et al [30, Section 4]

2.2.2 Continuous Piecewise Linear Decision Rules

At this point it has been seen that restricting the decision rules to the set of linear
functions results in an equivalent, computationally tractable, linear program. It has been
shown that this restriction sometimes results in infeasible instances of problems and the
approximate solutions may be very far from the actual solution (see the remarks from
Shapiro and Nemirovski [41, p. 31-33]). To overcome this issue and obtain a more
accurate solution Chen et al proposed the use of segregated linear decision rules, where
the idea is to divide each element in the uncertainty vector ξ into its positive and negative
components [11]. The result is a combination of linear decisions applied to the piecewise
uncertainties. More recently Goh and Sim show that SLDR’s obtained in a similar manner
to this provide greater flexibility whilst still preserving the non-anticipative requirements
[24].
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In this section an approach developed by Georghiou et al is explored, which solves a
stochastic program on a lifted probability space that is equivalent to optimizing on our
original parameter space using continuous piecewise linear decision rules (CPLDR’s).
Furthermore, applying the primal and dual approximations discussed in the previous
section to these lifted problems has been shown to provide a better approximation to the
original problem than applying the primal and dual approximations to the LDR’s [21].
For a more in depth understanding of this section it is highly recommended to see the
paper by Georghiou et al.

Firstly, the lifting operator which will be used to construct the lifted parameter space
Rk is defined. The continuous lifting operator L and a linear retraction operator R are
defined as the mappings to and from the lifted space

L : Rk → Rk′ , ξ 7→ ξ′

R : Rk′ → Rk, ξ′ 7→ ξ

The structure of the lifted space is controlled by a series of breakpoints on each coordinate
axis of Rk denoted by

zi1 < ... < ziri−1 i = 2, ..., k,

where ri ∈ N, with r1 = 1 due to the degenerate nature of the first uncertain parameter
ξ1. The vectors ξ′ of the lifted space Rk′ with dimension k′ :=

∑k
i=1 ri can be written as

ξ′ = (ξ′11, ξ
′
21, ..., ξ

′
2r2
, ξ′k1, ..., ξ

′
krk

)>

These breakpoints define the structure of the lifting operator L = (L11, ..., Lkrk) whose
Lij coordinate mapping corresponding to the ξ′ij axis in the lifted space is

Lij(ξ) :=


ξj if ri = 1,

min
{
ξi, z

i
1

}
if ri > 1, j = 1,

max
{

min
{
ξi, z

i
j

}
− zij−1, 0

}
if ri > 1, j = 2, ..., ri − 1

max
{
ξi − ziri−1, 0

}
if ri > 1, j = ri

(2.5)

With this lifting operator the continuous piecewise linear decision rule problems on our
original space Ξ of SP , can be solved by restricting the decision rules to those repre-
sentable as x(ξ) = X ′L(ξ) and y(ξ) = Y ′L(ξ) for X ∈ Rn×k′ and Y ∈ Rm×k′ . The primal
for SP with these restrictions on x is
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minimise Eξ
(
c(ξ)>X ′L(ξ)

)
subject to AX ′L(ξ) ≤ b(ξ) Pξ − a.s

(SPLu)

and the corresponding dual problem is reformulated as

minimise Eξ
(
c(ξ)>x(ξ)

)
subject to x ∈ L2

k,n, s ∈ L2
k,m

Eξ
(
[AX(ξ) + s(ξ)− b(ξ)]L(ξ)>

)
= 0

s(ξ) ≥ 0

}
Pξ − a.s

(SPLl )

These problems that correspond to the CPLDR on Ξ are generally intractable for lifting
operators of the form 2.5. Thus, an alternative approach to solving these problems must
be taken. Consider the stochastic program SP ′ over the lifted probability space Ξ′ = L(Ξ)

minimise Eξ′
(
c(Rξ′)>x(ξ′)

)
subject to Ax(ξ′) ≤ b(Rξ′) Pξ − a.s

(SP ′)

It has been shown that SP ′ is equivalent to SP . Now consider the primal and dual LDR
representations, SP ′u and SP ′l, of SP ′ similar to the formulations of SPu and SP l as
in Section 2.2.1. The following proposition is needed to achieve the goal of solving the
continuous piecewise linear decisions rules formulation.

Proposition 2.1:

1. Problems SPLu and SP ′u are equivalent.

2. Problems SPLl and SP ′l are equivalent.

Proof. See Georghiou et al [21, Section 3]

Now in order to reformulate SP ′u and SP ′l into tractable linear programs SP ′∗u and SP ′∗l
using the techniques in the previous section the convex hull of the lifted space Ξ′ must have
a tractable representation of the form in Appendix A.1. For lifting operators of the form
2.5 there exists a tractable representation for con Ξ′ if Ξ constitutes a hyperrectangle
within

{
ξ ∈ Rk : e>1 ξ = 1

}
. See Georghiou et al for a more in-depth discussion on the

construction of con Ξ′ [21, Section 4].

Thus, the problems SP ′u and SP ′l can be solved using the approximate linear program
formulation and this extra approximation on con Ξ′. Furthermore, solving these problems
is equivalent optimising the CPLDR formulations of SPLu and SPLl . Finally, the following
theorem establishes the benefits in solving this equivalent CPLDR formulation of SP , as
oppose to a LDR problem, by tightening the gap between the upper and lower bounds.
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Theorem 2.2: The optimal values of the approximate problems (SPu), (SP ′u), (SP l)
and (SP ′l) satisfy the following chain of inequalities

infSP l ≤ infSP ′l ≤ infSP = infSP ′ ≤ infSP ′u ≤ infSPu

Proof. See Georghiou et al [21, Section 3]

2.3 Financial Mathematics

2.3.1 Cholesky Decomposition

The Cholesky decomposition is a decomposition of a symmetric positive-definite matrix
into the product of a lower triangular matrix, and it transpose. Formally A can be
decomposed as

A = LL>

where L is a lower triangular matrix with strictly positive diagonal entries often known as
the Cholesky decomposition. The Cholesky decomposition is commonly used in Monte-
Carlo simulations to generate correlated samples from a random variable or stochastic
process. Given the covariance matrix Σ := cov(Xi, Xj) one can premultiply a vector of
independently sampled random variables z by the Cholesky decomposition L of Σ. The
result is a vector of samples u which represent the correlated properties of the covariance
matrix. So if Σ = LL> and z is a vector of independent random values, then u = Lz is a
vector of correlated random values with respect to the covariance matrix.

2.3.2 Wiener Process

A Wiener process is a continuous time stochastic process, sometimes known as Brownian
motion, which has many applications in finance and most notably in the Black-Scholes
option pricing model. It is characterized by the following properties:

• W0 = 0 with probability 1

• (Independent Increments) If 0 ≤ t1 < t2 ≤ t3 < t4 then Wt2 −Wt1 and Wt4 −Wt3

are independent random variables

• If 0 ≤ s < t then Wt −Ws ∼ N(0, t− s)

In the Schwartz model (see Section 4.6), just as in Geometric Brownian motion, the
Wiener process acts as ‘shocks’ on the values of successive prices from S0. Notice how if
s = 0 in the above then Wt ∼ N(0, t) and the variance is proportional to the square root
of time.
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2.3.3 Ito’s Lemma

If a random process x is defined by the Ito process

dx(t) = a(x, t)dt+ b(x, t)dz (2.6)

where z is a standard Wiener process. Suppose also that the process y(t) is defined by
y(t) = F (x, t). Then y(t) satisfies Ito’s equation

dy(t) =

(
dF

dx
a+

dF

dt
+

1

2

d2F

dx2
b2

)
dt+

dF

dx
bdz (2.7)

where z is the same Wiener process as in equation 2.6.

For more information on Ito processes and a formal proof of Ito’s lemma see Luenberger
[33].

2.4 Electricity Markets

Electricity capacity expansions is a fundamental example of a real options paradox. A
real option is the right to undertake some business decision, with the hope that it will
yield later rewards. In capacity expansion the option is to build new power facilities in
the hope that they will reduce future operating costs, increase the resilience of the system
and provide the capacity to meet future demand.

The demand for electrical energy can be seen to fluctuate throughout the day, with a
minimum amount of continuous energy required throughout the day and more during
certain hours. The curve that represents the demand at any hour of the day over the year
(ranging in hours from 0− 8760) is often referred to as the load curve. It is convenient to
view the demand for electricity in capacity requirements vs the utilisation, this curve is
known as the load duration curve. The unique nature of demand has implications on the
types of generators available; as a result investment decisions are made more complex.
The load duration curve can be divided into regions representing the measure of capacity
and the time it is required for. Two bands can be used to split the curve into three
categories: the base, peak and shoulder load. An illustration of a monthly load curve is
given in Figure 2.1a and the corresponding load duration curve is given in Figure 2.1b.

Plants referred to as base load plants will stay active constantly, rarely shutting down,
unless of course they fail, to satisfy the base demand. Therefore, it makes sense that these
base load plants are as economical to run as possible and hence they tend to have higher
investment costs with lower operating costs in comparison to other plants. Examples of
base load plants include nuclear and coal fueled plants. At peak hours for energy demand
extra peak load plants are started up to cope with the rise in demand. These plants are
only used to satisfy a fraction of the demand and it is more important that they do not
cost too much to build, hence they tend to have much lower start-up costs at the expense
of higher operational costs. Peak plants generally burn natural gas to fuel gas turbines
such as diesel or jet fuel. In between base and peak load plants in terms or efficiency,
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Figure 2.1: Electricity demand curves for one week [43]

investment costs and operating costs are shoulder load plants. Whilst it is not the aim
of this project to analyse the short-term load curve and provide a model for optimal
operational scheduling (see Nürnberg [38]), the trade-off the system operator must make
between investment and operational costs must be taken into account.

It is also worth mentioning that not 100% of energy can be captured from production as
waste is produced, and thus plants tend to have an efficiency factor associated with them.
As a general rule of base load plants will tend to be more efficient and cost effective than
peak load plants.

Levelised Cost

The levelised energy cost is the cost of generating energy at a power plant. It can be
thought of as an economic assessment of the overall cost of energy production and includes
investment, operating & maintenance and fuel costs. The levelised energy cost is usually
used to assess the price which electricity should be sold at to ensure profit via a net present
value calculation. However, it can also be used to approximate the fixed investment costs
of a plant and its variable energy production and maintenance costs.

Figure 2.2 illustrates the trade off between investment and operating costs for different
base and peak load plants as we described earlier.

Economies of Scale

Economies of scale refers to the cost advantages related to size of a project. They imply
that as the size of a project increases there are cost advantages which result in a reduction
in the cost per unit. In the electrical power industry there are economies of scale with
both plant and transmission line investment. In simple terms, the larger the plant the
lower the investment cost per MW . As a result these considerations should be accounted
for when considering investment in new plants, clearly a full size industrial wind farm
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Levelised Capital Cost Fixed O&M Variable O&M (fuel)Transmission Investment Total System Levelised Cost

Conventional Coal 69.2 3.8 # 3.6 100.4

Advanced Coal 81.2 5.3 # 3.6 110.5

AC with CCS 92.6 6.3 # 3.9 129.3

Natural Gas 22.9 1.7 # 3.6 83.1

NG - Combined Cycle 22.4 1.6 # 3.6 79.3

NG - CC with CCS 43.8 2.7 # 3.8 113.3

Combustion Turbine 41.1 4.7 # 10.8 139.5

Advanced CT 38.5 4.1 # 10.8 123.5

Advanced Nuclear 94.9 11.7 9 3 119

Wind 130.5 10.4 0 8.4 149.3

Wind-Offshore 159.9 23.8 0 7.4 191.1

Solar PV 376.8 6.4 0 13 396.1

Solar Thermal 224.4 21.8 0 10.4 256.6

Geothermal 88 22.9 0 4.8 115.7

Biomass 73.3 9.1 # 3.8 111

Hydro 103.7 3.5 7 5.7 119.9
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Figure 2.2: Levelised energy cost [18]

with over 50 turbines will have a lower investment cost per unit than to a private resident
who wishes to purchase a small 10m turbine.

Fuel Prices

Thermal power plants burn fossil fuels to power turbines and create energy. As a result,
the cost of energy generation at thermal power plants is largely dependent on the price
of the fossil fuels that they burn which are traded in the commodity markets. The
most common fuels used for energy production are coal, oil and gas. In recent years the
commodity markets have been increasingly volatile and many companies have felt the
impact of this. In the capacity expansion models of this project commodity prices need
to be simulated in order to capture these fluctuating costs. The operational decision that
performs best in the face of volatile prices would then be chosen.

Carbon Cap and Trade

More recently with a huge political emphasis on climate change and greenhouse gas emis-
sions it is becoming increasingly important that the environmental impact of power gen-
eration is properly considered. It is understood that electricity generation accounts for a
large portion of greenhouse gas emissions, and it accounts for 40% of emmisisons in the
United States. These emissions are largely from the burning of fossil fuels such as coal,
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oil or gas; with coal producing more carbon dioxide than any other. To put things into
perspective, the coal fired power plants in Wyoming produce more carbon dioxide in 8
hours than power generators in Vermont do in a whole year [6]. Clearly then this has
become quite a significant problem and it is no wonder that emphasis has been placed on
reducing emissions and creating new ‘green energy’.

One proposed system for reducing greenhouse gas emissions is emissions trading, or cap
and trade. The idea is to provide economic incentives to reduce greenhouse gases. A
central authority provides a cap on the number of emissions, measured in carbon dioxide
equivalents CO2e, and issues an allowance to companies which give them the right to
emit a number of tonnes of CO2e. Whilst total emissions cannot exceed the cap those
companies that have excess credits can sell them on the emissions market, and companies
that need to pollute more can buy extra credits in the secondary markets. In 1997 a
treaty was passed called the Kyoto Protocol where the most developed regions of the
world agreed to legally binding targets for reducing their emissions in the six major
greenhouse gases. The most common greenhouse gases are carbon dioxide, methane,
nitrous oxide and sulfur. Renewable energy providers are also given certificates, or green
tags, for every 1, 000KWh that they produce, which can be sold on the market. Thus,
providing a further incentive for renewable energy providers.

An example of such emissions trading system in place is the Chicago Climate Exchange
(CCX) for projects in North America and Brazil. The financial instrument traded on
the climate exchange is the CCX Carbon Financial Instrument (CFI), with each contract
corresponding to 100 metric tons of CO2e emissions.

Cap and Trade clearly adds to the complexity of the capacity expansion problems for the
system operator. Not only must the environmental impact of emissions be considered,
but there is also an added cost to producing highly pollutant energy, and a levy for green
energy.

Renewable Energy

More recently emphasis has been placed on investment in renewable energy sources such as
hydro, geothermal, wind and solar plants. The advantage of such plants is that they often
have lower operating costs which are immune to volatile commodity prices. Their carbon
emissions are also lower than traditional thermal plants. However, these advantages come
at a the price of higher capital costs and the time taken to cover the initial investment
can be quite long. Extra considerations must be made when choosing to invest in such
resources, such as the available wind or solar radiation in a region and the amount of land
that these farms will occupy. A recent phenomenon has been offshore wind farms, where
larger turbines are used which can reach sizes of up to 120m in diameter. These turbines
will often be rated at a capacity of 5MW , in contrast to a 50m diameter turbine rated at
approximately 700KW .

One problem of wind and solar plants is that the energy that they produce throughout
the day cannot be controlled and is unpredictable. This means that the availability of
energy for use at certain times of the day cannot be guaranteed. As a result much effort

19



is put into determining the location of wind and solar farms in regions that will allow
them to perform optimally.

The power produced P in Wh from an individual wind turbine can be calculated based
on its efficiency and size by

P = 0.5× ρ× A× V 3 × Cp (2.8)

where ρ represents the air density in units kg/m3, A is equal to the rotor swept area
from the turbine blades in m2, V is equal to the wind speed in m/s. Cp is a performance
coefficient or the efficiency of the wind turbine in converting the kinetic energy in the
wind into mechanical energy. This factor is limited by Betz’s law which states that the
maximum efficiency of such a turbine cannot exceed 59%.

You can see from this equation that the power generated from a wind turbine is propor-
tional to the wind speed cubed. Hence, proper placement of wind turbines can have a
large impact on the power it produces. For this reason it is generally unlikely that indus-
trial wind turbines are placed in regions with an average wind speed of less than roughly
6m/s. The wind speed at a given location is clearly not constant and needs to be modeled
by a probability distribution. The Weibull distribution closely mirrors the actual hourly
wind speed, and is defined by the probability density function f(x) = ηα−ηxη−1e−(x/α)η

on the support x ∈ [0; +∞); where α > 0 is the scale parameter and η > 0 is the shape
parameter. To model the hourly distribution of wind speeds the shape parameter is often
chosen to be 2, which represents the Rayleigh distribution.

To the amount of energy in Wh generated from a tilted photovolatic panel can be esti-
mated by using the global irradiance on a horizontal surface. The irradiance is a measure
of power available per unit area of solar radiation and, for a period of 1 hour, is measured
in Wh/m2. The global irradiance on a tilted plane is a combination of direct, diffuse and
reflected irradiance. This can be thought of as the direct sunlight on an area, sunlight
from other surrounding unreflective objects the reflected sunlight from mirror like objects.

Thus, the irradiance gives the amount of energy in Wh that can be converted from the
sun by every m2 from a solar panel assuming 100% efficiency. This then needs to be
multiplied by some efficiency coefficient to get the actual energy converted. The power P
in Wh is then

P = Eg × A× Cp (2.9)

where Eg is the global irradiance in in W/m2, A is the area of the solar panel in m2 and
Cp is again the performance coefficient relating to the efficiency of the panel.
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Chapter 3

Electricity Capacity Expansion

In this section the models developed for the electricity capacity expansion problem are
introduced. First, a two-stage model is described which extends naturally to a multi-
stage model discussed in the next section. The notation and definitions used throughout
this chapter are largely influenced by a previous study of capacity expansion problems
by Kuhn et al [29]. It may be useful to see Figure 3.1, for an illustration of a capacity
expansion model.

3.1 Two-Stage

A brief introduction was given earlier to the capacity expansion problem and here the
problem is clearly defined as well as the reasoning behind it. In the capacity expansion
problem both the investment cost and operating cost must be accounted for in order to
create a realistic long term model to minimise the overall cost. This project considers a
regional or national system, and therefore the models must account for the high expense
that may be incurred not only by new generators, but also by new transmission lines.
As Leopoldino illustrates, in the Brazilian system only 55% of the investments go to
generating facilities with a chunk of 30% on transmission lines, thus it would be unrealistic
to ignore this rather significant cost [32, p. 368]. Furthermore, in a deregulated market
power can be transferred between regions as a viable alternative to building new plants,
and regional demand can be satisfied in this manner. Taking a long-term horizon on a
regional level a number of assumptions and considerations need to be made in the model:

• Inter-period dependencies between operating periods can be disregarded

• Demand may increase or decrease between periods

• Failures are likely to occur at some point and the system must be resilient enough
to handle these

• The demand of a region will be correlated with neighboring regions
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• It will be assumed that energy produced from wind and solar farms cannot be stored

• Furthermore, it will be assumed that their will be no major changes in climate over
our time horizon

The capacity expansion problem can then be described as follows. An existing power
system has K =

{
1, ..., k

}
regions, N = {1, ..., n} generating units and M = {1, ...,m}

transmission links. The generators are subdivided into existing N1 ⊂ N and candidates
to be built N2 ⊂ N . Similarly, the transmission links are divided into M1 ⊂ M and
M2 ⊂ M . It is sometimes useful to reference a particular class of power plants within a
subset and for this we will use the superscript. For example the set of all candidate wind
generators is denoted by Nw

1 ⊂ N . Let N(k) denote the number of existing and candidate
generators in region k, M−(k) the transmission lines flowing into region k and M+(k) as
those links flowing out of region k.

At the initial stage the decision maker chooses which plants and transmission lines to
build out of the candidate choices. If a plant n ∈ N2 is built then a cost of cn is incurred.
Similarly if a transmission line m ∈M2 is built then a cost dm is incurred. The first-stage
decision vectors u = (un)n∈N2 and v = (vm)m∈M2 are defined by the binary variables

un =

{
1 if plant n is built,

0 otherwise,

and similarly

vm =

{
1 if transmission line m is built,

0 otherwise,

The vector x = (u, v) then represents the first stage decision variables. Next a sample
ξ(ω, t) is observed from the measurable stochastic process ξ : [0, T ] × Ω → Ξ on the
probability space (Ω,F , P ) which represents the inherent uncertainties in the system.
This process is composed of several stochastic processes, so that ξ = (α, β, γ, δ, π, ζ) is
defined by:

1. α = (αn)n∈N , where αn represents the stochastic failure of generator n. A value
of αn = 1 indicates a fully functional generator and αn = 0 indicates a complete
outage.

2. β = (βm)m∈M , where βm represents the stochastic failure of transmission line m,
with the values as above.

3. γ = (γn)n∈N , where γn is the cost of producing one MWh of energy at generator
n. This value will depend on both fixed O&M costs and stochastic fuel prices. It
is therefore useful to think of it as a vector γn = (γf

n, γ
o
n, γ

g
n, γ

c
n, γ

CO2
n ) with cost

components for fixed costs, oil, gas, coal and carbon emissions.
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4. δ = (δk)k∈K , where δk is the random demand at each region k defined as a factor of
the total demand δ. Concretely speaking, δk = λkδ, with

∑
λk = 1, so that

∑
δk =

δ. This factor model ensures demand between neighboring regions is correlated.

5. π = (πn)n∈N , where πn represents the stochastic value of the carbon credits currently
held for use by generator n at the beginning of the operating period. So, it represents
the number of credits multiplied by the stochastic price of carbon at that time.

6. ζ = (ζ)n∈Nw, s , where ζn is the random energy available in MWh for the wind or
solar farm n.

After a sample is taken, the second-stage decision vector y = (g, f) is made on the
operational scheduling of the system conditional on the first-stage vector x in an attempt
to minimise the operational cost over [0, T ]. These decisions are written as

1. g = (gn)n∈N is the energy generated at plant n in MWh. Each generator will have
an upper bound gn which represents the capacity of the plant.

2. f = (fm)m∈M is the flow of energy through transmission lines between two regions.
A positive flow fm > 0 indicates the flow of energy from start to end, whilst a
negative flow fm < 0 is the opposite. Transmission lines therefore have both an
upper bound fm and lower bound −fm representing the capacity available in both
directions.

candidate 

generator

candidate 

line

existing

line f

demand dk

existing 

generator gn

m

M_(k)

N  (k)1

N  (k)2

M  (k)
+  

}

}

Figure 3.1: An electricity power system

In the model it is the aim to reduce operating costs over the whole time period [0, T ].
This would result in an expectation in the objective function dependent on time, as
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∫
Ω

∫ T

0

∑
n∈N

γn(ω, t)gn(ξ(ω, t))µ(dt)P (dω) (3.1)

where µ represents a Borel measure on the time interval [0, T ] which accounts for dis-
counting and non-trivial time preferences, which will become clear in the next section.
That is, µ is a measure of continuous compounding e−rt where r is the interest rate. It
will also be used to bias our predicted costs towards the assumptions made closer in the
future than those further away. It is required that the constraints in our model represent
an instantaneous moment in time and thus they need to be independent of time. In
this sense it is useful to think of ξ as random vector on the augmented probability space
(Ω′,F ′, P ′) defined as

Ω′ = [0, T ]× Ω F ′ = B([0, T ])⊗F P ′ =
1

µ([0, T ])
µ⊗ P (3.2)

where µ([0, T ]) is a normalising constant, which for continuous compounding is equal to
r/(1 − e−rT ). Then it can be assumed without loss of generality that Ξ represents the
support of ξ, and the expected cost 3.1 simplifies to

µ([0, T ])

∫
Ξ

∑
n∈N

γngn(ξ)P ′(dξ)

which depends on time only through the random variable ξ, with P ′ a probability measure
over ξ. This can then be rewritten as

µ([0, T ])E′
[∑
n∈N

γngn(ξ)

]
(3.3)

where E′ represents the expectation with respect to P ′. This expectation is now indepen-
dent of time as required.

Systems such as cap and trade require all emissions over a time period to be less than
some threshold and thus they introduce a dependence on time. This means the constraints
value hi+1 at time ti+1 depend on the value hi at the previous time point ti. To ensure
a decoupling from time a sale of credits rule is proposed, where all the current carbon
credits held by the system operator are sold at the beginning of the period. This is valid
as in the model it is assumed that the independent system operator controls the energy
production at all facilities, and thus is the owner of all the carbon credits. This leaves
the constraints independent of time, except of course through ξ, whilst still accounting
for the existing credits. In this situation all carbon credits required for operation are then
bought from the spot markets as needed.
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3.1.1 Two-Stage Model

A two-stage model of the capacity expansion model can now be formally defined. The
objective function relates to the investment costs from first stage decisions, the expected
operating costs conditional on these decisions and the final term is the sale of all current
carbon credits, again conditional on the investment decisions.

minimise
u,v,f,g

∑
n∈N2

cnun +
∑
m∈M2

dmvm + µ([0, T ])E′
[∑
n∈N

γngn(ξ)

]

−

{∑
n∈N1

πn +
∑
n∈N2

unπn

}
subject to ∑

n∈N

gCO2e
n (ξ) ≤ CO2e ∀n ∈ N∑

n∈N(k)

gn(ξ)−
∑

m∈M+(k)

fm(ξ) +
∑

m∈M−(k)

fm(ξ) ≥ δk ∀k ∈ K

gn(ξ) ≥ 0 ∀n ∈ N1

gn(ξ) ≤ αngn ∀n ∈ N1

gn(ξ) ≥ 0 ∀n ∈ N2

gn(ξ) ≤ αngnun ∀n ∈ N2

gn(ξ) ≤ ζn ∀n ∈ Nw, s

fm(ξ) ≥ −βmfm ∀m ∈M1

fm(ξ) ≤ βmfm ∀m ∈M1

fm(ξ) ≥ −βmfmvm ∀m ∈M2

fm(ξ) ≤ βmfmvm ∀m ∈M2

where

Ξ =
{
ξ = (α, β, γ, δ, π, ζ) : 0 ≤ α, β ≤ e, e>(e− α)+

e>(e− β) ≤ B, γ ∈ [γ, γ], δ ∈ [δ, δ], π ∈ [π, π], ζ ∈ [ζ, ζ]
}

(3.4)

In the above model notice that the term
∑

n∈N1
πsn corresponding to the sale carbon

credits from existing plants could be removed as this is a constant does not impact the
investment decisions. Any investment or operational decision must satisfy a number of
constraints. The first constraint is optional and is included only if a multi-objective
decision is required to minimise costs subject to a maximum rate of carbon emissions1

over the time period [0, T ]. The demand constraint in the second line ensures that the
total power supplied to a region k at any instantaneous time point must not drop below
the expected demand at that region. The remaining generation and flow constraints
ensure that all second stage decisions adhere to the capacity available multiplied by the

1The rate of carbon emissions is in terms of million metric tonnes (mmt) of CO2e per MWh
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availability at that facility due to failures. For candidate plants the multiplication by the
binary decision variables un from the first stage ensure gn ≡ 0 if the plant is not built,
that is if un = 0. The result is analogous for the transmission lines. The added constraints
for wind and solar plants ensure that the power produced at wind or solar farm cannot
exceed the random energy provided from the weather at that time. As renewable energy
operation and fuel cost are negligible the amount of energy produced will only be limited
by availability and weather, and thus will equal the minimum of the maximum of the two
constraints.

3.2 Multi-Stage

The multi-stage model consists of a number of different investment and operational de-
cisions occurring over a total time period of [0, ..., T ]. Investment decisions may only
be made at time points which have a succeeding operational period. This ensures that
investments are made in the face of uncertainty with respect to the resulting operational
decisions to be made in the next stage. Over the time period there may be a number
of possible outcomes regarding the growth or contraction of demand and this can be
represented via a scenario tree with the notation taken from [2].

A scenario tree of S nodes represents the possible outcomes of the random processes
over time. Thus, at each node s there is an associated stochastic process ξs. Each node
occurs with probability ps, such that

∑
s∈L ps = 1. The time point associated with node

s will be denoted by ts. It is assumed that each node s in the tree, except the root node
s = 0, has a unique parent, which is denoted by a(s). Furthermore, the subtree of node s
will be identified by T (s), so that T (0) represents the whole scenario tree. The scenario
tree may not necessarily be balanced and a nodes children may not correspond to the
same time period. It is also necessary to reference the leaf nodes, which represent the
outcome scenarios, and these will be denoted by L. Figure 3.2 provides an illustration of
an example scenario tree.

Figure 3.2: Scenario tree for the multi-stage model

This formulation will require that the objective function takes the expected investment
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and operational costs over all nodes, for their respective time periods. This is a reasonable
goal, as the uncertainty with regards to demand growth over time will impact whether
investment decisions are made today or at a later time point. Postponing some decisions
to a later time point may result in a saving should this scenario not occur.

The notation defined in Section 3.1 will now be extended in the natural way to the multi-
stage case. The investment decision vector x = (xs)s∈T (0)/L is defined by xs = (us, vs)
where s is a non-leaf node in the scenario tree, and us and vs are defined identically
to before. In a similar manner the second stage decision variables can be extended to
y = (ys)s∈T (0)/{0} with ys = (gs, fs) where s is a non-root node in the tree. Decisions
are then made to ensure costs are minimised over the respective time intervals

[
ta(s), ts

]
,

which partition the interval [0, T ].

The mapping ξs :
[
ta(s),, ts

]
× Ωs → Ξs can now be considered as a random vector on the

probability space (Ω′s,F ′s, P ′s) defined similarly to 3.2 as

Ω′s = [ta(s), ts]× Ωs F ′s = B([ta(s), ts])⊗Fs P ′s =
1

µs
([
ta(s), ts

])µs ⊗ Ps
with µs representing the Borel measure on

[
ta(s), ts

]
, accounting for discounting as before,

with probability density function e−rst. In this multi-stage case it is not certain that
ta(s) = 0 and thus the normalising constant µs

([
ta(s), ts

])
is equal to rs/ (e−rsta(s) − e−rsts).

Thus, the expected operating cost analogous to 3.3 is

µ(
[
ta(s), ts

]
)E′s

[∑
n∈N

γsngsn(ξs)

]

where E′s is the expectation of of ξs with respect to the probability measure P ′s.

3.2.1 Multi-Stage Model

With this notation the two-stage model 3.4 extends to a multi-stage scenario tree formu-
lation. The two-stage model can be thought of as a generalisation of a two node scenario
tree with t0 = 0 and t1 = T where node 0 is the root node and node 1 the only child node.
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minimise
u,v,f,g

∑
s∈T (0)/L

ps

{∑
n∈N2

csn(usn − ua(s)n) +
∑
m∈M2

dsm(vsm − va(s)m)

}

+
∑

s∈T (0)/{0}

psµ(
[
ta(s), ts

]
)E′s

[∑
n∈N

γsngsn(ξs)

]

−
∑

s∈T (0)/{0}

ps

{∑
n∈N1

πsn +
∑
n∈N2

ua(s)nπsn

}
subject to ∑

n∈N

gCO2e
sn (ξs) ≤ CO2e ∀n ∈ N∑

n∈N(k)

gsn(ξs)−
∑

m∈M+(k)

fsm(ξs) +
∑

m∈M−(k)

fsm(ξs) ≥ δsk ∀k ∈ K

gsn(ξs) ≥ 0 ∀n ∈ N1

gsn(ξs) ≤ αsngn ∀n ∈ N1

gsn(ξs) ≥ 0 ∀n ∈ N2

gsn(ξs) ≤ αsngnua(s)n ∀n ∈ N2

gsn(ξs) ≤ ζsn ∀n ∈ Nw, s

fsm(ξs) ≥ −βsmfm ∀m ∈M1

fsm(ξs) ≤ βsmfm ∀m ∈M1

fsm(ξs) ≥ −βsmfmva(s)m ∀m ∈M2

fsm(ξs) ≤ βsmfmva(s)m ∀m ∈M2

usn ≥ ua(s)n ∀n ∈ N2

vsm ≥ va(s)m ∀m ∈M2

where

Ξ =
{
ξ = (α, β, γ, δ, π, ζ) : 0 ≤ α, β ≤ e, e>(e− α)+

e>(e− β) ≤ B, γ ∈ [γ, γ], δ ∈ [δ, δ], π ∈ [π, π], ζ ∈ [ζ, ζ]
}

(3.5)

In the multi-stage model the final constraints on the investment decisions us and its
predecessors ua(s) ensure that if a plant is built at an earlier stage of a branch, then it
remains active throughout that scenario. The added difference in the objective function
then ensures that a cost is only incurred at the node in which the facility is built, and no
other. For example, consider a 3 stage linear tree, where plant 3 is built in the second
stage, that is u23 = 1 but u13 = 0. In this case the objective function takes cost of c23 at
node 2, but no other2.

2As this is a linear tree the probability term p2 is clearly equal 1 and is disregarded
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Chapter 4

Sampling

In order to implement the models 3.4 and 3.5 and apply a the primal and dual LDR and
CPLDR approximations the moment matrices M := E(ξξ>) need to be calculated. Think-
ing of the stochastic process ξ as a random vector on the augmented probability space
allows the Monte-Carlo simulations for the random components of ξ to be implemented.

In this section a description of how each component is simulated in such a way that
correlated samples are produced where necessary is given. It will end with an outline of
an algorithm which can be used to simulate the stochastic processes.

4.1 Inverse Transform Sampling

Sample random variables are generated by inverse transform sampling. This states that
if X is a continuous random variable with cumulative distribution function FX , with
inverse F−1

X and if Y is uniformly distributed on [0, 1] then X = F−1
X (Y ) has cumulative

distribution function FX . It is easy to calculate the inverse of the cdf for the most
common distributions and to generate uniformly distributed random numbers in any
modern programming language. Hence, this method provides a simple way to sample any
form of distribution.

4.2 Time

In order to sample the stochastic processes, and to generate correlated samples, a sample
time point t ∈ [ta(s), t] in years is first taken and then a sample for each random vector
as an outcome from Ωs is taken. The probability measure for time is the same Borel
measure µs that defines the augmented probability space with parameter rs. This should
now clarify why it was previously stated that µs not only accounts for discounting, but also
non-trivial time preferences. This enforces bias towards time points closer in the future
and represents that earlier projections are more reliable than those after an extended
period of time. The time point t is sampled using inverse transform sampling on the
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distribution function corresponding to µs.

4.3 Wind

In order to simulate the power generated from a wind turbine or wind farm it is necessary
to first determine the wind speed at a particular location, and then to calculate the power
produced in MWh from the turbines at this wind speed. To simulate the wind speed the
Weibull distribution is parameterised with shape α = 2 and scale η equal to the average
hourly wind speed over a year for the location of the turbine. Taking the average over
the year ensures that all seasonal changes that might reasonably occur are accounted
for. The energy produced from a single turbine is then determined by 2.8 and the whole
farm produces the sum of the power produced by the individual wind turbines. The
wind speeds are again sampled by inverse transform sampling but with a 99% confidence
interval to give a finite support.

4.4 Solar

As there will be a correlation between the hourly system demand and the global irradiance
throughout the day it is important that the irradiance and demand are simulated in such
a way as to represent this correlation. Logically, the relationship is easily visualised as
demand is highest during the day, when it is expected that there is also more sunlight, as
oppose to at midnight when demand is at its lowest, as is the sunlight.

Correlated irradiance and demand can be simulated by considering the historical hourly
data over at least one year for both global irradiance of a region and demand. The amount
of solar energy from a plant is first calculated for each hour over the year based on the
global irradiance at that hour using formula 2.9. It is important that the total area of
all solar panels in the solar farm is considered and not just the individual panel. This
can then be used to construct an hourly curve for the amount of energy produced by
the solar farm a any hour in the year. As the years are seasonal this same energy curve
can be used over all years in the time horizon. Then a sample time point t ∈ [ta(s), t]
as described in 4.2 is taken and translated to the corresponding hour of the year. The
energy in MWh produced by a solar farm at this hour is then obtainable from the solar
energy curve. The corresponding expected demand at this hour, accounting for future
growth, can then also be estimated from the load demand curve. This will then ensure
that samples are correlated based on the historical data, whilst still being representing
the nature of a stochastic process as the energy produced is still random and depends on
time.

An illustration of such a technique is given in Figure 4.1. Whilst studies have been
undertaken to identify if there exists a correlation between the wind and irradiance, not
enough reliable evidence of this topic currently exists to develop an accurate model. Thus,
in this project it is further assumed that wind and solar energies are independent of one
another.
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Figure 4.1: An illustration of sampling solar energy and demand

4.5 Demand

As was briefly mentioned in order to simulate demand knowledge of the load curve of the
national demand for the first year of the total period [0, T ] is required. Then, using the
same time point t that was used to sample the solar power, the hour in the year that this
time belongs to can be calculated and - importantly for demand - in which year. Unlike
global irradiance it is assumed that the load curve will grow over time and the given
predicted growth rate and year sampled are used to predict the future hourly sample
from the load curve. The regional demand is calculated as a factor of the total demand.
This method will ensure demand is correlated with both solar and commodity prices.

4.6 Schwartz Type 1 Model for Commodity Prices

Commodity prices need to be simulated over a long time horizon and it is therefore best to
use a model that represents the tendency of commodity prices to fluctuate around some
mean value. It is also important that the simulated values are on some positive finite
support, so a logarithmic price model needs to be used with a 99% confidence interval
at all time points t ∈ [0, T ]. The Schwartz type 1 model is used which assumes that the
logarithm of the price follows a mean reverting process of the Ornstein-Uhlenbeck type.
An Ornstein-Uhlenbeck process is an Ito process in St given by the stochastic differential
equation

dSt = k(µ− St)dt+ σdWt

where k > 0, µ and σ > 0 are the parameters and Wt is a Wiener process. The parameter
µ represents the mean value, which the price has a tendency to follow, σ represents the
volatility around the mean value caused by shocks from the Wiener process, and k is
the rate at which the variable reverts towards the mean. Applying Ito’s lemma 2.7 with
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yt = xte
kt and solving the resulting stochastic differential equation (see Appendix B)

results in the solution

St ∼ S0e
−kt + µ(1− e−kt) + σ

√
1− e−2kt

2k
N0,1

and thus St is normally distributed. The advantage of using such a process, as oppose to
Geometric Brownian Motion1, is that the drift term is non-constant. So when the current
price is above the mean the drift will be negative, and when it is below the mean the drift
will be positive.

The Schwartz type 1 model is a variation on the Ornstein-Uhlenbeck that results in a
log-normal distribution of prices, ensuring positive values, defined by the Ito process

dSt = k(µ− lnSt)Stdt+ σStdWt (4.1)

It is easy to verify that 4.1 is equivalent to an Ornstein-Uhlenbeck. As a result the solution
to 4.1 is derived in a similar manner to before (see Appendix B), which results in

lnSt ∼ e−kt lnS0 + (1− e−kt)
(
µ− σ2

2k

)
+ σ

√
1− e−2kt

2k
N0,1 (4.2)

and hence St is log-normally distributed. Correlated samples of commodity prices can then
be simulated by first sampling a vector z of independent standard normally distributed
random variables. Then, the Cholesky decomposition of the covariance matrix is used to
transform the vector z into correlated samples u = Lz. The entries in this vector can
then be used along with the time t and the other parameters to the Schwartz models to
evaluate the solution of 4.2 for the respective commodity. This also ensures a correlation
with demand indirectly through the dependence on time.

As with any stochastic model it is essential to estimate the input parameters and these
approximations are commonly based on historical data. Indeed, it is not the aim of
this project to develop an accurate method for estimating such parameters, as this would
usually be the role of a financial analyst or economist. Thus, for simplicity the parameters
k, σ and µ were estimated by a linear regression on the historical stock prices. An example
of this is provided in Appendix C.

4.7 Plant and Transmission Line Failures

Finally, samples need to be provided for the failures of plants α and transmission lines β.
All failures are assumed to be independent of one another and it is required that one can

1Geometric Brownian Motion is a logarithmic stochastic process defined by a Wiener process
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specify the probability pi ∈ [0, 1] of failure at each facility. This was done via representing
each failure as a Bernoulli trial with probability pi of failure. After the facilities which
fail are known the severity of their failures needs to be calculated in such a way that the
failure constraint e>(e− αs) + e>(e− βs) is satisfied.

To do this a sample b representing the total failures is sampled as a uniformly distributed
random variable on [0, B]. This is then distributed on a weighted basis by taking samples
for the failed αi, βj as uniformly distributed random variables on [max(0, 1−B), 1] and
adjusting as follows

total =

nf∑
i=1

αi +

mf∑
j=1

βj

αi = max(1− αi
total

b, 0) ∀i = 1...nf

βj = max(1− βj
total

b, 0) ∀i = 1...nf

An example illustration of the support for two failed plants can is given in Figure 4.2.

Figure 4.2: Support of two failed plants, B = 1

It could be argued that the use of Bernoulli trials has little impact on the actual perfor-
mance of the system. The alternative here being to simply sample uniform failures for
all plants and transmission lines. However, this method gives added flexibility as you can
specify whether certain plants or links cannot fail, that is if pi = 0.
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4.8 A Sampling Algorithm

At this point a method for sampling each of the individual components of ξ has been
established. All the components discussed in this chapter can be combined into Algorithm
1.

Algorithm 1 Simulation of stochastic processes
i = 1
while i ≤ max do

for all non-root nodes s ∈ T (0)/ {0} do
sample t ∈ [ta(s), ts]
for all n ∈ Nw, s do

sample (ζsn) at time t
end for
sample total demand δs for time t
calculate δsk for each region
sample z ∼ N (0, I)
u = Lz
Si = Schwartz(ui, S0i , ki, µi, σi)
sample failures (αsn)n∈N and (βsn)m∈M

end for
i+ +

end while

This algorithm then provides us with a complete simulation for our stochastic process ξ.
The samples generated are used to calculate the moment matrices, required for the LDR
and CPLDR approximations, that will be used to obtain a tractable linear program for
our capacity expansion models.
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Chapter 5

Numerical Results

5.1 Implementation

It was the aim of this project to design and implement the models discussed in Section
3 using the LDR and CPLDR approximations and then to evaluate the models through
a series of numerical results. Here, the overall system implemented for this purpose is
briefly described.

As the purpose of this project was to develop the models and evaluate them, it was
decided that it was not necessary to develop a front end. Furthermore, this would not
have been very user friendly as the programs sometimes take very long times to respond
and it would not have been an efficient use of time. A parser in Java was developed
which took as an input a text file containing the configuration of the current electricity
system. As large amounts of data is required for the load demand curve and the hourly
energy produced by solar farms (see Section 4.4), this data is stored in a separate text file
referenced by the main input file. The input text file contains all the information on the
system which is required by the model. This includes everything from the parameters for
simulation to the location and capacity of generators and transmission lines. This parser
then formulated the system as a model of the form 3.5 and output this to a text file. It
also implemented all the simulations discussed in Section 4 and output samples for the
random variables to a separate text file. Java was chosen as the structure of the electricity
system and the scenario tree naturally extend to an object orientated language.

The two output files generated from the Java program were then passed as an input to
a C++ parser. This C++ program reformulated the models into linear programs using
the techniques detailed in Sections 2.2 and 2.2.2. This part of the system was already
developed by Angelos Georghiou of the Department of Computing at Imperial College.
An industrial linear programming solver, IBM ILOG CPLEX v11.2.1, was then used to
solve these linear programs.

All the experiments in this section were ran on a Intel Core2 Duo 3.00GHz machine with
4GB RAM running Ubuntu v9.04.

35



5.2 El Salvador

The electricity sector in El Salvador has been the subject of much restructuring since the
early 1990’s. In this section we give an overview of the electricity markets in El Salvador
and finish with a series of numerical results to evaluate our models.

5.2.1 History

Until the 1990’s the electricity sector in El Salvador was dominated by the Government-
owned monopoly Commission of the River Lempra (CEL), who controlled generation,
transmission and distribution. In 1996 the General Law of electricity was passed which
began the restructuring of the electricity sector. The law split the main activities of CEL
to introduce the privatisation of electricity generation and distribution. The aim of this
was to increase investment in generation capacity to meet the countries increased demand
for energy and to keep energy prices low for the consumer. As a result of the restructur-
ing a non-profit organisation the Superintendent of Electricity and Telecommunications
(SIGET) was appointed as a regulatory body to enforce compliance with the laws of the
energy sector. SIGET appointed a private company, the Unidad de Transacciones (UT),
to oversee the operation of the transmission system and administration of the wholesale
electricity market. As the UT is not allowed to participate in the buying or selling of en-
ergy its role is to ensure fair bidding within the market. As good practice they have made
it part of standard operating procedure to post hourly data on the price and dispatch of
energy on their website.

Since the restructuring only one government-owned company, the El Salvador transmission
company (Etesal), is responsible for the maintenance and expansion of the transmission
system. In more recent years a higher emphasis has also been placed on introducing more
environmentally friendly initiatives and in 2006 the National Energy Council (NEC) was
created. The goal of the NEC was to analyse the energy sector in El Salvador and promote
the use of renewable resources and the efficient consumption of energy. El Salvador is
an active participant in the SIEPAC project which coordinates the electricity systems
throughout Central America and is connected by two 230Kv transmission lines to the
neighboring countries of Guatemala and Honduras. From 2000-2006 the average annual
increase in maximum demand has been 2.6% whilst average increase in installed generation
capacity has been 2.9% [13, p. 25]. Whilst this sounds impressive the system is still highly
vulnerable to any power outages that may occur. Demand is currently expected to grow
at a rate of 5% annually [23, p. 4].

5.2.2 The El Salvador Electricity Grid

SIGET posts an annual document, the “Bolet́ın de Estad́ısticas Eléctricas”, on the El
Salvador power system and this was used to model the system with a configuration as
outlined in Figure 5.1. The current installed capacity and the transmission links was
obtained from the 2008 bulletin [42, Tables 1 and 29]. In 2008 the total generation
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Power Type Location Owner Capacity (MW )

Geothermal
G1 Ahuachapán LAGEO 95
G2 Berĺın LAGEO 109.4
Thermal
T1(Gas) Acajutla Duke energy 322.1
T2(Gas) Sonsonate CASSA 60
T3(Oil) Santa Ana CESSA 32.6
T4(Gas) Ateos GECSA 11.6
T5(Coal) Talnique Inversiones Energeticas 51.2
T6(Gas) Opico Energia Borealis 13.6
T7(Coal) Nejapa Nejapa power company 144
T8(Oil) Nejapa Hilcasa Energy 6.8
T9(Gas) Soyapango Duke energy 16.2
T10(Gas) Soyapango Textufil 44.1
T11(Gas) Santo Tomás Ingenio el Angel 22.5
T12(Oil) San Rafael Cedros Ingenio la Cabana 21
Hydro
H1 Guajoyo CEL 19.8
H2 Cerrón Grande CEL 172.8
H3 5 de Noviembre CEL 99.4
H4 15 de Septiembre CEL 180

Total Capacity (MW ) = 1422.1

Table 5.1: Current configuration of El Salvador electricity grid [42]

capacity in the system was 1422.1MW divided between a 13 companies as detailed in
Table 5.1. The current mix of electricity generation is: hydropower 33.19%, thermal
52.44% and geothermal 14.37%.

Configuration

In order to model the energy markets in El Salvador the system is viewed from the
perspective of an independent system operator who coordinates the operation of all plants
in order to minimise cost and emissions of the system as a whole. Whilst this might seem
unrealistic this would be the perspective taken by a Government Body seeking to advance
the whole system and not just independent companies. In order to configure the model
information is needed on the demand, greenhouse gas emissions, investment prospects,
operating costs and climate conditions. Whilst a handful of data is available on the
electricity system in El Salvador, most of this information had to approximated based on
data from other sources.
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Figure 5.1: Current configuration of the electricity grid
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As the UT posts hourly data on the national demand of the system a load curve for the
year 2009 was constructed, and the corresponding load duration curve is given in Figure
5.2 [43]. Approximate regional factors for demand were made by considering the amount
of energy consumed in each region over 2008 as a percentage of total energy consumed,
which was available from the SIGET 2008 bulletin [42, Table 30]. This indicated that
whilst most of the energy was generated outside of the capital, more than 50% of the
demand was within the vicinity of San Salvador.
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Figure 5.2: El Salvador load duration curve (2009) [43]

The rate at which thermal and geothermal plants emit carbon in CO2e per MWh was
obtainable from Carbon Monitoring for Action (CARMA). CARMA is a database con-
taining information on the carbon emissions of over 4,000 power companies worldwide [9].
Hydro, wind and solar plants were assumed to have minimal carbon emissions as to make
them negligible. Unfortunately, CARMA does not post the yearly allowance of carbon
credits for the cap and trade system, and this had to be roughly estimated as a percentage
of the plants total emissions for the year 2007. A rough approximation of 30% was used.

Investment proposals for new hydro, geothermal and thermal plants in El Salvador were
used from a previous study undertaken in 2006 by Jun Abraham [1]. A number of in-
vestment prospects in wind and solar farms were identified based on the regional climate
outside of the vicinity of San Salvador, due to the space requirements of such power
sources. Data on the average wind speeds of different regions in El Salvador was obtained
from the National Renewable Energy Laboratory (NREL) and an illustration of this is
provided in Appendix E [34]. A number wind projects were chosen in areas where the
average wind speeds exceeded 7m/s. All the wind turbines are taken as 50m in diameter,
at 40% efficiency. The air density was chosen to be equal to that at sea level a value
of 1.2kg/m3. Similarly a number of selected solar projects were proposed based on the
global irradiance for selected regions of El Salvador outside of the capital. The hourly
data for these regions between 1998 - 2002 was obtainable from the State University of
New York (SUNY) [39]. This allowed identification of several options for solar energy and
simulation the of stochastic nature of solar energy as outlined in 4.4. A table of all the
candidate plants is given in Table 5.2. A map of the solar intensity throughout the year
is provided in Appendix D courtesy of NREL [35].

The investment costs for these plants had to be estimated from a number of sources
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Power Type Location Capacity (MW ) Cost $

Geothermal
GC1 Ahuachapán 50 111,485,000
GC2 Berĺın 50 111,485,000
GC3 San Rafael Cedros 55 120,036,000
GC4 Berĺın 44 100,186,000
GC5 Ozatlán 50 111,485,000
GC6 San Miguel 50 111,485,000
Thermal
TC1(Coal) Ateos 100 91,670,000
Hydro
HC1 Guajoyo 243 322,395,000
HC2 San Miguel 59 167,345,000
HC3 15 de Septiembre 23.4 97,287,000
Wind
WC1 Ahuachapán 11.4 24,216,000
WC2 Ahuachapán 7.5 13,446,000
WC3 San Mart́ın 8.8 24,216,000
WC4 Guajoyo 15 24,216,000
WC5 San Mart́ın 9 28,599,000
Solar
SC1 Ahuachapán 7.3 6,677,000
SC2 Sonsonate 9.6 8,855,000
SC3 Cerrón Grande 7.4 6,677,000
SC4 5 de Noviembre 49.7 40,468,000
SC5 15 de Septiembre 14.6 13,140,000
SC6 San Miguel 12.7 11,009,000

Total Capacity (MW ) = 877

Table 5.2: Candidate plants
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accounting for the levelised cost and economies of scale [19, 45, 3]. A table of the average
costs used for all plants is provided in Table 5.3. It should be noted that all costs in this
section are rough estimates and are should not be taken as accurate quotations. These
were merely used to allow calibration of the model.

Power Type Average Cost

Thermal $1,108,000 per MW
Geothermal $ 2,182,000 per MW
Hydro $ 3,025,000 per MW
Solar $50 per m2

Wind $ 700 per MW

Table 5.3: Approximate average investment costs

A number of investment opportunities in new transmission lines were also estimated.
These were based on a weighted basis of the distance from the two end nodes of the
transmission lines. The proposals are outline in Table 5.4.

Line From Node To Node Capacity (MW ) Cost $

LC1 Nejapa San Antonio Abad 150.6 5,800,000
LC2 Ateos Nuevo Cuscatlán 150.6 12,083,000
LC3 Acajutla Ateos 203 18,850,000
LC4 Tecoluca El Pedregal 75.3 4,350,000
LC5 Guajoyo Santa Ana 150.6 17,400,000
LC6 Soyapango Nejapa 150.6 7,250,000
LC7 San Bartolo San Mart́ın 150.6 6,766,000
LC8 Ozatlán San Miguel 75.6 11,116,000

Table 5.4: Candidate transmission lines

All the candidate plants and transmission lines can then be identified as in Figure 5.3.

Operating and maintenance costs consist of a fixed and variable portion and it is assumed
that variable costs for hydropower, wind and solar plants are negligible. The O&M costs
for geothermal and thermal plants was estimated based on data provided by the Energy
Information Administration (EIA) and the amount of fuel needed to produce one MWh
of energy for different fossil fuels [18, 36]. These fuel costs were based on a plant that
is 100% efficient, and thus they are multiplied this by an efficiency factor. A typical
efficiency factor for coal and oil fired plants is around 33%, whilst gas fired plants are
slightly more efficient around 50% [22].
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Commodity S0 ($) k σ µ

Oil 74.49 0.13 0.32 4.9
Gas 192.51 0.41 0.53 5.74
Coal 89.04 0.08 0.28 5.03
Carbon 0.002 0.12 1.03 -3.26

Table 5.5: Schwartz parameters

Finally, to parameterize the Schwartz models for oil, gas, coal and carbon prices a linear
regression as outlined in Appendix C was performed. The historical monthly prices of
WTI crude oil, Australian thermal coal & natural gas from March 2000 to February
2010 provided by the International Monetary Fund (IMF) were used [26]. Historical
monthly prices of CCX Carbon Financial Instruments (CFI) were taken from January
2004 to February 2010 provided from the Chicago Climate Exchange [12]. The parameters
calculated from the linear regression and used in these results - unless the results state
otherwise - are given in Table 5.5.

5.3 Evaluation

In this section a series of experiments are undertaken on the El Salvador system. The cat-
egories to consider in the evaluation are primarily the impact on total cost and investment
costs. Other considerations would be the impact of investment decisions on expected car-
bon emissions and the congestion in the transmission links throughout the day. All results
are for the upper bound of our LDR approximation unless otherwise stated. The results
are based on a linear scenario tree with one investment period at time t0 = 0 and a period
of growth from 2009 - 2024 of 3.06% unless otherwise stated. All demand projections in
this section are roughly estimated based on the projections provided by Jun [1]. This
increase in system demand results in a maximum expected demand of 1402MWh in 15
years. Where the results do not depend on the change in variable B, a fixed failure rate
of B = 0.2 has been chosen. A constant interest rate of 5% has been fixed throughout all
experiments. Where CPLDR have been used the breakpoints are distributed uniformily
over the domain of the support for the components of ξ.

The first experiment was to determine the impact of requiring a more resilient system to
plant and transmission line failures. This was achieved by increasing the value of B in the
support of Ξ in model 3.5. The results given in Figure 5.4b illustrate the increased benefit
obtained by adding 1 breakpoint in reducing the total system cost. In Figure 5.4a for B
between 0.6 and 0.8 there is a clear trade off between higher investment costs and reduced
operating costs, comparing the results for 0 and 1 breakpoints. It can also be seen that
the effect of the extra breakpoint is reduced as the number of failures are increased and
more is said about this in section 5.3.1.

When B = 1 the best choice of plants to build was HC1, HC2, GC3 and GC6 and
all candidate links except from LC8 were built. This highlights the vulnerability of the
transmission network to failures. Under this scenario the total system capacity would
be 1829.1MWh. Conversely, when a failure of B = 0.2 was selected there were differing
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Figure 5.4: The price of reliability

decisions from adding an extra breakpoint and resulting system capacity varied between
1622.1MWh and 1720.1MWh, for 1 breakpoint and 0 breakpoints respectively.
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Figure 5.5: Wind and solar time horizon
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The results in Figure 5.5 are based a three-stage scenario tree with one extra node ap-
pended to our two-stage formulation, observing an operating period from 2024 until time
T . The investment decisions indicate a shift away from expensive thermal plants initially
by investing in plants HC1, HC2, GC3, GC5 and GC6. As the time horizon is extended
further the minimal operating cost of wind and solar farms makes them viable investment
options and after 45 years it is beneficial to build WC3 and SC6 initially. This results in
a much cleaner energy mix than before, with a generating mix of: hydropower 40.72%,
thermal 39.23%, geothermal 18.91%, wind 0.46% and solar 0.67%.

These results do support the general consensus that renewable energies are more unreliable
and take longer to payback. However, part of the reason for this is also because of the
naivety in the way that wind and solar farms simulated in the models. The possibility of
storing the energy generated from these resources, so that energy can be supplied to the
grid even when weather conditions are against us, is not considered. This is a justified
assumption though as it is needed to ensure the constraints are independent of time, and
without this assumption this would be violated. Further restrictions could be imposed
over the support of Ξ in order to further exploit the characteristics of these resources
which could make them more attractive options. These are all fairly complex tasks, and
for the purposes of this project the assumptions made are reasonable and do give some
insight into potential renewable investment. This topic will be discussed in more detail
in Section 6.2.

The effect of a carbon emissions cap and trade system is now analysed. Consider the rate
of carbon emissions constraint in model 3.5 and the impact of limiting amount of CO2e
emitted per year in terms of million metric tonnes (mmt). When carbon is a emitted at a
maximum rate of 2.2mmt/yr the plants built are HC1, GC3 and GC6, whilst restricting
this rate right down to 1.7mmt/yr results in the addition of plants HC2, HC3 and GC5
as well. The resulting energy mix indicates a shift away from fossil fuel plants towards
renewable resources with a lower carbon output. The reason why higher investment in
both wind and solar farms is not seen are identical to the previous comments.
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Figure 5.6: The price of reduced carbon emissions

Figures 5.7a, 5.7b and 5.7c illustrate the impact of fuel prices on total costs and the effect
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of investment costs are given in Figures 5.7d and 5.7e. These were obtained by increasing
the respective parameter µ in 4.2 and taking the expectation with respect to a fixed time
point. For these results the expected commodity prices were taken after 10 years. The
impact of various fuels depends largely on the number of turbines of such a type.
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Figure 5.7: Impact of increased commodity prices

With all prices at their lowest expected cost the earlier results for B = 0.2 indicate that
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plants HC1 and GC3 were built. Even when the carbon and oil price was increased this
had no impact on the investment decisions. When expected coal price exceeds $130 the
additional construction of GC6 is added. The high expected gas prices exceeding $490
results in a additional investment in plants TC1, GC5 and GC6. This highlights the
dependence of the system to volatile gas and coal prices and indicate that it may be
beneficial to consider a more diverse energy mix to reduce this risk. The most likely
choice of candidate plants to accommodate for both volatile coal and gas prices is would
therefore be plants HC1, GC3, GC5 and GC6.

It is important that the time of construction of new plants is made in such a way as to
still meet the expected demand, whilst benefiting from the discounted cost of delaying
investment decisions to a later time. Consider a 3 node linear tree over the period 2009
- 2024 where the second investment node is placed between 2009 and 2024. The results
in Figure 5.8 indicate the effect of varying this second node and indicate the best time to
invest. At all variations of the three-stage scenario tree plant HC1 is always built in the
1st stage as is link LC5. The savings come by deciding on whether to build plant GC3
and links LC2 and LC3 at a later time point or in 2009 along with the others.
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Figure 5.8: The best time to invest

Notice how the best year to invest is 2017 to reduce the overall total system cost, however
this results in a total investment of $788m. Delaying the investment decisions until 2020
results in a total investment cost of $572m, at only slightly higher expected overall cost of
$33m. All these factors would need to be considered in deciding whether it is worthwhile
spending an extra $216m in order to benefit from a significantly smaller later saving.
This also nicely illustrates the trade off between initial costs and later savings due to the
nature of the economics of the different power types.

5.3.1 Accuracy of Linear Decision Rules

The investment decisions rely heavily on the accuracy of the LDR approximations to the
operational schedule of the power system. As stated before this can be approximated
through the gap between our upper and lower bound results. If it is assumed that plants
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HC1, HC2, GC3 and GC6 are built then results for the lower and upper bound can be
obtained which only account for the expected operating costs. The resulting model is
one without any binary investment variables and only approximates the linear decision
rules. The results in Figure 5.9 show that adding a breakpoint has very little effect on
the approximation when the failure rate B is high. This could be due to the shape of
the true decision rule and indeed a better approximation might be possible with a more
precise placing of the breakpoint. To visualise this consider that our LDR must include
the region that the true decision rules does. If the true decision rule was piecewise linear,
with a global maximum at x0, then adding a breakpoint at x0 results in a very accurate
approximation. However, if the breakpoint is not placed at x0 our approximate LDR will
not approximate the decision rule as well as the more precise breakpoint and may result
in an approximation closely representing that without any breakpoints at all.
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Figure 5.9: Accuracy of the LDR’s

As a final consideration, and to illustrate the flexibility that our model 3.5 allows, we
consider a three stage scenario tree with B = 0.5. We observe a period of growth from
2009 to 2019 where expected demand could either be high, at 3.77%, or low, at 2.99%
each with equal probability. The results indicate that the best investment options are
plants HC1 and GC3, and links LC4, LC5 and LC6 with a resulting system capacity of
1720.1MW . Suppose now that we want to use these results to analyse basic characteristics
about our proposed electrical grid to the existing. We can consider the new system in
which plants HC1, GC3 and links LC4, LC5 and LC6 are existing already and use the
LDR approximations given for the operating schedule to investigate the transmission line
utilisation. The average utilisation of the available transmission lines in the two systems
could be compared for an arbritrary projected load demand cycle or based on historical
data. We used the load demand data provided from UT on for the single day of 5-Jan-
2009 [43]. The results in Figures 5.10a and 5.10b illustrate the transmission line utilisation
under a fully functional system and with a failed line between 15 de Septiembre and San
Mart́ın ( i.e β = 0.5 ) as this was the highest utilised transmission line for the given date.

It might also be of interest to analyse not just the capacity mix of the new system as we
have done previously, but the amount of power generated from different energy sources
throughout the day. Considering the same date as with the transmission line utilisation,
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Figure 5.10: Comparison of transmission line utilisation

the total load demand throughout the day was 15, 811MWh. Figure 5.11 shows how the
load demand would have been achieved from each source in the current and proposed
system with plants HC1 and GC3 in place.
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Figure 5.11: Comparison of generated energy

This set of results indicate that under higher system demand the traffic in the system
actually increases under the proposed system, with the new plants and transmission lines
in place. This is justified by the high demand for energy in the vicinity of San Salvador,
with the majority of energy being supplied from rural areas requiring transportation. As
the new plants result in a lower mix of expensive thermal energy throughout the day, and
as transmission costs are ignored, it is more beneficial to transport the cheaper energy
than to generate expensive thermal energy close to San Salvador. The high utilisation
under all circumstances indicates the reliability of El Salvador to the transmission sys-
tem. This means that satisfying load demand is highly vulnerable to transmission losses.
Although not necessarily the least cost route, investigation should be undertaken into the
construction of even more transmission lines to reduce the potential risk of a blackout.

It is worth taking a moment to discuss the solution time and complexity the problems
within these results. This won’t be discussed in depth as it is not a real concern of this
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project as capacity expansion proposals tend to span over many years, so anything under a
week to solve the system would be viable. To solve a two stage model with no breakpoints,
as in Figure 5.4, the upper bound solution time took anything from 2 minutes to more than
30 minutes. Adding a breakpoint to this the solution time increased rather significantly
and times ranged from 30 minutes to anything up to 3 hours. A scenario tree with more
than 2 nodes increases the solution time more significantly still, with several hours not
uncommon. The lower bound for most of the problems above with binary investment
variables was intractable and thus we cannot directly measure the error introduced by
our LDR approximations with binary variables. It is still unsure as to the exact reason
why this is however, a calculated guess would be at the large number of random variables
in the model for the system failures. Whilst this is an inconvenience it could be argued
that the lower bound solution would never actually be used as it is, by construction, an
infeasible solution. In the LDR comparison of the upper and lower bounds in Figure 5.9
a lower bound was obtained by removing the binary decisions and the solution time was
significantly longer than for the upper bound. Especially when more than 1 breakpoint
is added the time ran into a number of days. The model with the highest complexity, for
which a feasible upper bound solution was obtainable, was a 4 stage scenario tree which
consisted of 58 binary variables, 258 decisions rules and 303 random variables. The results
for this model were not included in the above analysis as they added nothing new to the
existing results and were similar to those in 5.11.
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Chapter 6

Conclusion

6.1 Qualitative Evaluation

In this project Linear Decision Rule and Continuous Piecewise Linear Decision Rule ap-
proaches to solving a multi-stage stochastic electricity capacity expansion problem have
been explored. Both methods result in the solution of a linear program which can be
solved by a variety of industrial solvers. A multi-stage capacity expansion model that al-
lows for multi-objective optimisation with environmental constraints has been successfully
developed. The inclusion of wind and solar farms as alternative investments compared to
the more traditional capacity expansion models gives this model added flexibility. Whilst
the simplified modeling of wind and solar resources does allow for their inclusion in the
capacity expansion problem, it is clear that their are inherent inaccuracies in the as-
sumptions made about their characteristics. An implementation has been created which
transforms the electricity grid in question into a model of the form 3.5 and provides a
simulation of the stochastic processes, including a Monte-Carlo simulation of commodity
prices via the Schwartz model.

A detailed evaluation of the model has been undertaken through a case study of the
El Salvador electricity system. The model was provides a flexible approach to various
investment opportunities depending on the changing requirements of the system opera-
tor. Furthermore, the LDR approximations can be used to analyse more fundamental
properties of the electricity grid as a result of the investment decisions.

The results indicate the downfall of the lower bound in its intractability for more complex
problems with a high number of binary decision variables. Indeed, even when a lower
bound was obtainable without binary decisions the approximate error introduced for such
a complex problems was rather high. However, using CPLDR in some cases significantly
reduced this gap and although precise placement of the breakpoints may reduce this gap
still further.
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6.2 Future Work

It is no surprise that capacity expansion problems have a vast mix of factors and compli-
cations which mean that a number of assumptions need to be made to obtain a tractable
model for these problems. This project highlights a number of areas for further research
which would give better understanding of the characteristics of electricity generation and
improve the accuracy of the model

• It is clear that research needs to be undertaken into improving the tractability of
the lower bound. This would allow better estimation of the accuracy of the primal
and dual LDR approximation.

• A technique for more precise placement of the breakpoints with CPLDR could be
developed and tested. This would optimize the accuracy of the CPLDR approxi-
mation and lead to more efficient use of breakpoints.

• Further work needs to be undertaken on the modeling of wind and solar resources.
This could be in the form of restricting the support to ensure that, for example,
it cannot happen that solar energy is at its lowest, generally during the nighttime,
when demand is at its highest, which occurs generally during the daytime or early
evening. Additional complexity could also be added to the model to ensure that
energy from these resources can be stored, however this would introduce a depen-
dence on time which introduces another consideration. A consideration for climate
change over long time horizons could also be included.

• An extension of the model for the use in “smart grids” could be undertaken. This
would allow the system operator to influence the use of energy in the system, creating
a more reliable and cost efficient system.

• It could be argued that modeling transmission lines by a single link is unrealistic
as in real life systems a transmission line is composed of several lines, to allow
for maintenance work to be undertaken. A better understanding of the nature
of the transmission system might enable incorporation of this without drastically
increasing the complexity.

• The model could be extended to cope for rolling blackouts. These are intentional
power outages in certain regions that avoid a complete system blackout, and are
necessary to ensure that the load demand of high priority regions can still be ser-
viced.

• Finally, an extension of the model for use in a power system consisting of multiple
companies in competition which is connected to an energy spot market could be ex-
plored. This would require methods from the field of game theory and the objective
would then be to maximise profit as oppose to minimising cost.
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Appendix A

Polyhedral Support

In both Theorems 2.1 and 2.2 proposed by Kuhn et al certain assumptions are made about
the support of the probability measure P. Here they are restated to keep this project self
contained. The assumptions are that the support is a nonempty compact polyhedron of
form

Ξ =
{
ξ ∈ Rk : Wξ ≥ h

}
(A.1)

where W ∈ Rl×k and h ∈ Rl. It is further assumed, without loss of generality, that

W = (e1,−e1, Ŵ
>)> and h = (1,−1, 0...0)>

with Ŵ ∈ Rl−2×k, and e1 ∈ Rk is the defined as a standard unit basis vector. This
restriction will enforce every element ξ to have a first element equal to 1, allowing us to
represent affine functions in a compact form. It is also required for Ξ to span the whole
sample space Rk, which holds if the system Ŵ ξ ≥ 0 is strictly feasible.

57



Appendix B

Stochastic Processes

Ornstein-Uhlenbeck Solution

Proposition B.1: The solution to an Ornstein-Uhlenbeck process

dSt = k(µ− St)dt+ σdWt (B.1)

where k > 0, µ and σ > 0 are the parameters and Wt is a Wiener process is

St ∼ S0e
−kt + µ(1− e−kt) + σ

√
1− e−2kt

2k
N0,1

and hence St is normally distributed.

Proof. Defining F (s, t) = Ste
kt the components of the Ito’s lemma are calculated as

dF

dS
= ekt

dF

dt
= kSte

kt d2F

dS2
= 0

a = k(µ− St) b = σ

substituting these into Ito’s Lemma 2.7 we have

dyt =
(
kekt(µ− St) + kSte

kt
)
dt+ σektdWt

dyt =
(
kµekt

)
dt+ σektdWt

which on solution of the differential equation gives
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ektSt − S0 ∼ µ(ekt − 1) + σ

√
e2kt − 1

2k
N0,1

St ∼ S0e
−kt + µ(1− e−kt) + σ

√
1− e−2kt

2k
N0,1

and hence St is normally distributed as required.

Schwartz Type 1 Solution

Proposition B.2: The solution to the Schwartz Type 1 stochastic process

dSt = k(µ− lnSt)Stdt+ σStdWt

where k > 0, µ and σ > 0 are the parameters and Wt is a Wiener process is

lnSt ∼ e−kt lnS0 + (1− e−kt)
(
µ− σ2

2k

)
+ σ

√
1− e−2kt

2k
N0,1

Proof. Substituting Xt = lnSt in Ito’s Lemma gives

dXt =

(
k(µ−Xt)−

σ2

2

)
dt+ σdWt

dXt = k (α−Xt) dt+ σdWt

with α = µ− σ2/2k. This as an Ornstein-Uhlenbeck process of the form B.1 and hence,
from the previous proposition, has solution

Xt ∼ X0e−kt + α(1− e−kt) + σ

√
1− e−2kt

2k
N0,1

lnSt ∼ lnS0e−kt + α(1− e−kt) + σ

√
1− e−2kt

2k
N0,1
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Appendix C

Linear Regression

In this Appendix a it is shown how to perform a linear regression on historical futures
prices in order to estimate the parameters k, µ and σ for the Schwartz type 1. Firstly, note
that obviously S0 is taken to be the current price of the futures. The other parameters
can then be found by considering the relationship between consecutive observations to be
linear with respect to a standard normal term ε as

lnSi+1 = a lnSi + b+ ε

where a,b and ε depend on k, σ and µ through

a = e−kδt

b = (1− e−kδt)
(
µ− σ2

2k

)
s.d.(ε) = σ

√
1− e−2kδt

2k

where s.d. represents the standard deviation. Upon rewriting these equations obtain our
model parameters, corresponding to a movement of one unit of time δt

k = − ln a

δt

σ = s.d.(ε)

√
2k

1− e−2kδt

µ =
b

1− e−kδt
+
σ2

2k
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The parameters a, b and ε can be obtained by linear regression for n + 1 realisations of
the price Si, i ∈ 0, ..., n by calculating

Sx =
n∑
i=1

Si−1 Sy =
n∑
i=1

Si

Sxx =
n∑
i=1

S2
i−1 Sxy =

n∑
i=1

Si−1Si Syy =
n∑
i=1

S2
i

the parameters of the least squares fit are then given by

a =
nSxy − SxSy
nSxx − S2

x

b =
Sy − aSx

n

s.d.(ε) =

√
nSyy − S2

y − a(nSxy − SxSy)
n(n− 2)

It is important that these parameters are annualized as the time points t ∈ [0, T ] corre-
spond to years. So if, for example, prices are given per month multiply k by 12 and σ by√

12.
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Appendix D

A Map of El Salvador Irradiation

Special thanks to NREL and UNEP SWERA for allowing the publication of Figures D.1
and E.1.
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Figure D.1: Annual average irradiance of Central America [35]
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Appendix E

A Map of El Salvador Wind Speeds
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Figure E.1: Annual average wind speed for El Salvador [34]
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