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Abstract

This report details two parallel incremental garbage collectors and a framework for building
incremental collectors for the object oriented language Java. It describes the implementation
of the collectors and the framework and evaluates the two collectors through well known
benchmarks and metrics. We extend Jikes a virtual machine designed for researchers with
these collectors and the framework. The �rst of the collectors is an parallel incremental
mark-sweep collector. The second is an parallel incremental copy collector based on previous
work by Brooks[17]. These are the �rst incremental collectors made for Jikes. Experiments
with the collectors indicate a large improvement in �real-time� characteristics of the collectors
as parallelisation is increased.
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Chapter 1

Introduction

1.1 Introduction

Garbage collection is the automatic process of reclaiming memory acquired by a program
that it no longer needs. Many conventional garbage collectors cause the program to pause
whilst garbage collection is in progress. These �stop-the-world� collectors are well suited to
batch processing applications but are less appropriate for real-time applications, including
interactive and safety-critical systems, where the ability to react to events within a speci�ed
time is either desirable or essential.

Incremental collectors seek to avoid the pause problem by interleaving the garbage collec-
tor and program. The idea is to replace the single stop-the-world pause with several smaller
pauses within a single thread of execution. A key issue is ensuring that the collector makes
su�cient progress between these shorter pauses in order to meet some speci�ed quality of
service requirements.

One way to reduce the duration of number of pauses is to perform the collection in
parallel. By exploiting parallelism either more collection work can be performed during
the same pause time, and the number of pauses thus reduced, or each pause time can be
reduced whilst keeping the total number of pauses the same. Whilst a number of parallel
stop-the-world collectors have been developed (see Section 2.1), very little work has be done
on combining incremental collection with parallelism.

In this project we developed a parallel incremental garbage collector for the Java pro-
gramming language, speci�cally for the IBM Jikes Research Virtual Machine (RVM). This
is an implementation of a JVM written in Java itself and is thus allows all the abstractions
of Java. A key aspect of the project is the development of additional tool support for in-
cremental collection in the RVM, through a series of MMTk �plans�. MMTk is a collection
of Java class �les for simplifying the building of garbage collectors, as detailed in Section
2.6.1.

1.1.1 Contributions

We have extended the Jikes RVM in the following ways:
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1.1.1.1 A parallel incremental mark-sweep collector

We present a parallel incremental mark-sweep collector with the following key features:

• Parallel: Any number of collector threads can be run at the same time.

• Incremental: The collector will work in incremental steps interleaving with the pro-
grams threads. We added this to Jikes.

• Soft Real-Time: The collector is able to operate within some de�ned real-time bounds.
This is new to Jikes.

• Incremental work calculations: A new way to calculate the amount of incremental
work to be done in each incremental phase is presented based on work and time. This
is new to the �eld and has its foundation in previous work based purely on time.

• Barriers: The collector utilises a slot based write barrier.

1.1.1.2 A parallel incremental copying collector

A parallel incremental copying collector has been made with the following features:

• Parallel: Any number of collector threads can be run at the same time.

• Incremental: The collector will work in incremental steps interleaving with the pro-
grams threads.

• Soft Real-Time: The collector is able to operate within some de�ned real-time bounds.

• Barriers: The collector utilises a slot based write barrier and an unconditional read
barrier. The unconditional read barrier is a new feature added by us to Jikes.

• Defragmenting: The collector defragments memory.

1.1.1.3 A framework for incremental collectors

Jikes has a rich set of collectors currently implemented (see Section 2.6). It is predominantly
aimed at classical stop-the-world collectors. This however does not re�ect cutting edge
research in garbage collection, more aimed towards real-time collectors. Jikes currently
provides no explicit support for real-time style collectors. We have extended the MMTk by
creating a new plan (see Section 2.6.1) that will be extendible by future programmers so
that they can create their own incremental collectors.

6



Chapter 2

Background

2.1 Overview of garbage collection

Garbage collection is a way to automatically reclaim memory allocated by a computer pro-
gram. For an excellent overview of garbage collection, see Garbage Collection: Algorithms
for Automatic Dynamic Memory Management [35]. The �rst programming language to
have a garbage collector was Lisp, written by McCarthy in 1960 [39]. The �rst Lisp system
utilised a traditional mark-sweep collector (Section 2.1.2). This meant that programmers
no longer had to manually manage memory.

Traditional garbage collectors have two main aims: Firstly to identify an object1 that
cannot be accessed by the program (reachability) and secondly to reclaim the memory used
(collection). A separate part of the memory manager is responsible for allocating memory
for new objects (mutation).

The reachability of an object is established in two main ways in garbage collection.
The �rst is tracing (Figure 2.1), done by traversing the graph of all objects in memory.
This graph begins from the root set. The root set comprises all objects which are directly
accessible by the program. It will generally comprise global variables, static data and the
control stack. An object that is reachable is live and thus will not to be collected. Once the
graph is fully traversed any objects which are not reachable are dead and will be collected.

2.1.1 Reference counting

The reference counting algorithm actually does not use a trace. Instead it maintains a count
for each object, of the number of objects which reference itself. When the count for an object
has reached zero it is no longer reachable and is reclaimed. The mutator is responsible for
maintaining these counts and requires a way to �trap� mutations of the memory graph. This
is done with a write barrier (see Section 2.2.4.1).

The main strength of this approach is that overheads are distributed throughout exe-
cution of the program. Unlike more traditional schemes such as mark-sweep which must
pause the program whilst collection takes place. However this cost is considered somewhat
�lumpy� as the cost of removing pointers is dependent on the size of the subgraph it points

1Object is used to denote a continuous range of bytes in memory as well as the classic language level
object. Note that cell and object essentially are the same thing.
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Figure 2.1: Image demonstrating a completed trace of a memory graph. Note that live
objects have a cell marked black

to. From this approach it is easier to collect unused cells due to the references being main-
tained during program run-time. This di�ers from other traditional tracing collectors where
dead objects reside in memory until collection is run.

There are two main disadvantages to reference counting collection. Firstly each object
requires additional space needed to store the counter. This is stored in the object header.
Due to numeric over�ow (caused by incrementing this number over its bounds) the correct-
ness of the algorithm can be compromised. Secondly reference counting algorithms cannot
handle cyclic data structures.

A data structure is cyclic if an object can be reached by following a path a pointers from
itself. Cyclic data structure are common features of programs including: doubly linked lists,
circular bu�ers and graphs with cycles in them. If the cycle is unlinked from the main
memory graph its members will still have a positive reference count even though they are
dead demonstrated in Figure 2.2.

2.1.2 Mark-sweep

Mark-sweep [39] requires all objects to have an extra bit in their object header for the mark-
phase. It is traditionally a stop-the-world collector meaning the program completely stops
when the garbage collection routine begins. Garbage collection is triggered when an object
allocation to the heap fails. At this point all mutators are paused2, the tracing routine
begins marking all live objects. After this �mark� phase is complete, the collector begins
scanning from the start of the heap for any objects which are not marked (dead objects)
and frees that memory. When the second phase gets to the end of the heap the mutators
are resumed.

2Note that there may be several muator threads running at any one time
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Figure 2.2: Image demonstrating the issues with cycles in reference counting algorithms

Allocation in this algorithm is done via a freelist. A freelist works by linking together
unallocated regions of memory together in a linked list. When an object is reclaimed the
newly freed memory is simply added to the list. The problem arises when a particularly
large object needs to be allocated and there is not a large enough chunk to accommodate it.
Subsequently a garbage collection must occur or consolidation of blocks that are contiguous,
both of which are computationally expensive.

Figure 2.3: Image demonstrating the mark-sweep collection algorithm and its fragmenting
nature

This algorithm correctly handles cyclic structures due to it scanning the memory graph
as a whole in one phase. However mark-sweep is a fragmenting collector. This means
that when it collects it causes memory to become fragmented (Figure 2.3). It is also a
stop-the-world collector which makes it unsuitable for real time systems.
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2.1.3 Mark-compact

Memory fragmentation means that fresh object allocation can be expensive, as a search
must be done over the freelist in order to locate a free slot that can accommodate newly
allocated object. This is normally done with one of the classic �ts algorithms such as: �rst-
�t, best-�t, next-�t and worse-�t. This can lead to an allocation performance hit for the
mutator. The mark-compact collector solves this by compacting memory during collection.

All the mark-compact algorithms have the same mark phase as the mark-sweep collector.
They employ a di�erent form of allocation known as bump-pointer allocation. In this there
is a pointer to the next place to allocate an object. When objects are allocated this bump
pointer is increased by the size of the new object. This means there is always the same cost
to �nd a place for a newly allocated object. Instead of the sweep phase there are two or
more phases where objects must be moved and their pointers �xed accordingly.

The two �nger algorithm [47] uses two sweeps in order to complete its compaction. It
assumes all cells are the same �xed size. In the �rst phase it moves all live objects at the
top of the heap to empty slots at the start of the heap. This works with two pointers (the
two �ngers) which begin at either end of the heap, the one on the left pausing when it �nds
a dead object and the one on the right stopping when it �nds a live object. When both
are paused the dead object is then removed and the live object copied in its place and a
forwarding pointer is left in its old place. The algorithm repeats this until both ��ngers�
meet. After this a second phase starts from the beginning of the heap. Here pointers to
forwarded objects are re-linked to the correct object by replacing the original pointer with
the forwarding pointer.

The Lisp 2 algorithm [38] also known as the sliding algorithm allows for variable sized
objects and preserves the order of the objects. This algorithm is split into three phases and
requires each object to have an additional pointer-sized �eld to store the address of where it
will be moved. The �rst pass, beginning from the head of the heap, sets the �eld of all live
objects to the new address they will be moved to. This is calculated by taking the sum of
the sizes of all live objects encountered thus far and adding that to the start of heap pointer
address. In the second phase all objects with pointers to other objects are updated to their
new location. The third phase relocates the object to its new address and clears the address
stored in the object header.

Threading [28] overcomes the issue with the extra pointer-sized space per object Lisp 2
requires. In threading the object graph is temporarily changed so that all objects referring
to some object P, are contained in a linked list within P. P is then relocated and all objects in
the list updated with the new location of P. After this P is returned to how it was originally.
This is a two phase process and is actually a description of the widely adopted Jonkers [36]
variant of threading. The original by �sher [28] had the object P with a pointer to the
linked list stored elsewhere in memory. This is expensive due to the extra overhead needed
to store the lists.

2.1.4 Copying

The Copying collector is another tracing collector [20]. Originally called the Cheney collec-
tion algorithm it is also known as the semi-space collector and is similar to compactors in
that allocation is cheap, handled by a bump pointer. It also causes compaction to occur nat-
urally through the copying of objects. This, in combination with bump pointer allocation,
means variable sized objects are allocated easily.
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The collector divides the heap into two �semi-spaces�. The �rst of these (from-space)
contains old data and the second (to-space) contains all live data. The collector begins by
��ipping� to-space and from-space so that the current live objects are now in from-space and
to-space is empty3. The collector then traverses the memory graph of objects in from-space
copying each live cell into to-space. When the graph has been fully traversed all the live
objects are in to-space. At this point the from-space is reset; cleared and the pointers reset.
This collector ensures that mutators only ever see objects in to-space which is also known
as the to-space invariant.

This collector has several advantages over other collectors. Allocation is very cheap due
to the compactifying nature of the copying. It has a naturally defragmenting nature through
the copying of objects at each collection (see Figure 2.4). The out of memory check is just a
simple pointer comparison4. New memory is easily acquired by increasing the value of the
free space pointer. Finally similar to mark-sweep due to the tracing nature of the algorithm
it deals with cyclic data structures.

The collector is not without its faults. Firstly it is a stop-the-world collector meaning
the program must be stopped for collection. It automatically utilises twice the amount
of memory as that of all other non copying collectors due to the two semi-spaces. The
counter argument to this extra use of space is that more space is gained from the loss of
fragmentation. Also if object lifetimes are long then the collector has to continually copy
these objects which also causes the �ip operation to become more expensive.

Figure 2.4: Picture demonstrating the copying collectors defragmentation abilities

2.1.5 Generational

Generational collectors work by splitting the heap into two or more sections called genera-
tions. Objects begin life in the youngest generation and are promoted to an older generation.
Collection is done on a generation basis so if the youngest generation is full then it is col-
lected and if an older one is full it, and all generations younger than it, are collected. This
tends to give shorter pause times than a standard collector due to the weak generational
hypothesis [48].

3the reason for this is explained shortly
4Comparing addresses of the bump allocation pointer and the free space pointer
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This states that �most objects die young�. This means that objects in the younger
generation will be the most likely to die and as such this space tends to be smaller than
the other generations. In turn this causes lots of smaller collections to occur frequently and
tends to free a lot of the dead objects. Several other researchers [12, 30, 46, 53] back up
Ungar's claim whilst little evidence to the converse seems to exist.

The promotion policy determines when an object in a young generation is moved to
an older generation. There are several di�erent approaches to promotion. The time based
approach, whereby an object is promoted if it is live for a certain length of wall clock time.
The problem is that program execution rate is machine dependent so the policy becomes
non portable. There is the option of monitoring how much memory has been allocated since
the object was allocated, known as memory time. This is the most accurate5 and consistent
across systems. Finally there are approaches such as number of GC cycles since allocation
and when the younger generation is full objects are promoted.

There is an issue with determining each generation's root set. At the beginning of each
collection the root set for the generation to be collected must be calculated. This means
when a collection on an older generation occurs the tracing algorithm must also consider
all pointers from younger objects (which are also live) that point to the older generation
as roots, these are known as �inter-generational� pointer. This is why, when collection of
an older generation occurs, all younger generations must also be collected. This means
the collector only need know about old to young pointers and have them as part of the
root set for collection of younger generations. As these are much rarer this is favorable to
remembering young to old pointers. In order to track these a write barrier must be utilised.

There are two versions of the write barrier to track and store the old to young pointers:
a remembered set barrier with sequential store bu�ers [33] or a card marking barrier. These
are outlined in more detail in Section 2.2.4.1. There are also schemes for a hybrid of the two
which tends to o�er improvements according the results in [32] and also outlined in Section
2.2.4.1.

Generational collection is considered a �half-way� house between a stop-the-world collec-
tor and an incremental collector. It can o�er the bene�ts of multiple collectors as it can have
a di�erent kind of collector to collect one generation than another. Generally a mark-sweep
style collector is used for younger generations and a copy collector for later generations. The
issue comes with the write barrier. Studies have been very varied on the impact this has
on program execution time. Estimates of the barrier over-head vary from, 2% for Ungars
collector for Berkely Smalltalk [48] and 3% for SOAR [49] to, 4%-27% for Chambers et
al. reports in the optimising compiler for SELF6 [18, 19] and 5%-10% for Appel [6]. This
variation in �gures shows that this is very language/compiler dependent.

2.2 Garbage collector terminology

2.2.1 Incremental, parallel an concurrent collection

The terms incremental, parallel and concurrent are sometimes used inconsistently in the
garbage collection literature. We will use the following terminology:

• Incremental: An incremental collector does small chunks of work and in between
allows the mutator to resume. This di�ers from traditional tracing collectors which

5Accuracy being the most appropriate time to promote an object
6SELF is a smalltalk like language
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must �nish a complete GC cycle or stop and forget the work they have done if the
mutator needs to resume.

• Parallel: A parallel collector utilises multiple threads simultaneously to do GC work.
This can be at the same time as the mutator or when the mutator is stopped.

• Concurrent: A concurrent collector runs concurrently on a separate thread to the
mutator. This means that on a multi-core machine the GC would run at the same
time as the mutator.

2.2.2 Real-Time collection

A �real-time� collector ensures it does not encroach on a real-time application bounds. Most
GC literature aims to minimise the maximum pause time of a collector so that it does not
pause the program for longer than the real-time application can tolerate. The issue with
this is that no thought is given to the window which the application needs to run for it to
do some useful work (Figure 2.5).

Figure 2.5: Picture demonstrating the problems with a burst of collection compared to a
stop-the-world collection.

It is important to consider utilization introduced in Cheng and Belloch's paper [22]. Both
maximum pause time and minimum mutator utilisation (MMU) are considered. MMU is
the minimum window of time required by a real-time application to make su�cient progress.
Consider a nuclear reactor monitoring system which can tolerate a maximum pause time
of 50ms and it requires a 5ms window to make su�cient progress. This means there must
be an MMU of 10% with maximum pause times of 50ms in order for the program to work
correctly.

There is also hard verses soft real-time which most papers do not distinguish between.
Soft real-time is a system whereby real-time deadline violations are tolerable and thus the
program can wait until the workload is completed. The system may, however, operate
correctly in a degraded state. Hard real-time is strict in that if the real-time deadlines are
violated the program will fail.

2.2.3 Tri-colour marking abstraction

The tri-colour marking abstraction [23] is used to reason about the correctness of reachability
GC algorithms. The object graph is represented with each node being one of three colours:
white, black or grey. Black nodes are ones which have been visited by the collector and
all object pointers in that node traced. Grey nodes are ones which have been marked for
processing and must have all their own object pointers traced and subsequently the grey
node is turned black. Once there are no grey nodes remaining (so they are all black) the GC
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terminates. When a pointer to a white node is traced it is turned grey. The white nodes
currently have no links found to them. If they stay white when there are no grey nodes left
these are considered dead objects. This abstraction has two separate invariants associated
with it the strong tri-colour invariant and the weak tri-colour invariant

The strong tri-colour invariant [23] states that no black node points to a white node.
It can be demonstrated in the classic copying collector whereby all nodes in to-space are
black nodes, every node these point to in from-space are grey and all other nodes are white.
The weak tri-colour invariant is aimed more at incremental �snapshot-at-the-beginning�
collectors [42]. It states that objects coloured white pointed to by a black node are also
reachable from some grey node through a chain of white nodes. This ensures if a white
object is pointed to by a black node it will eventually be traced due to the grey node. Both
invariants ensure that no reachable object will be collected.

2.2.4 Barriers

Barriers have two main roles in garbage collection. The �rst is in generational/regional
collectors. Here barriers are used to keep track of references that cross generations/regions.
Secondly they are used to synchronise mutator and collectors in real-time schemes. Barriers
come in two di�erent forms: static and non-static. Non-static barriers only cover the heap;
static barriers cover the heap as well as registers, stacks and other data outside the heap.
The impact of barriers on performance has been widely studied [32, 33, 31, 48, 17, 52, 15, 9]
with varying measurements. Zorn [52] reported write barrier overheads of around 2-6% and
worst case read barrier overheads of around 20%; Bacon et al. [9] reported costs for their
Brooks style [17] read barrier as 4% average overhead on SPECjvm98 [3]. Probably the most
useful statistics for us are that of Blackburn et al. [15], here they implement several well
known barriers in the Jikes RVM. With write barriers having a low average overhead of 2%
and less than 6% in worst case and read barriers having a low of 0.85% for an unconditional
(see Section 2.2.4.2) read barrier on a PPC and 5% on a P4.

2.2.4.1 Write Barriers

Write barriers allow the collector to trap every write to memory. They are used throughout
garbage collection in generational, incremental and concurrent collectors.

Boundary The boundary barrier is used in generational collectors. It tests to see if the
source and the target of a write lie in di�erent generations (and as such cross the generation
boundary). If this is the case the source location to which the target references is stored.
This can be utilised in di�erent ways but generally is used for recording old to young
generational pointers.

Object The object barrier is aimed at generational collection. It works by storing the
source of every write in a sequential store bu�er (SSB). Originally this allowed duplicate
entries to be in the SSB, although there are plans whereby each time an object is put into
the SSB a tag bit is set so that it only appears once. When a GC occurs it traces all the
objects in the SSB in order to discover any interesting pointers such as cross generational
pointers.
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Card The card barrier is a unconditional7 write barrier. It is aimed at generational
collectors and assumes that the heap is divided into 2k-byte logical cards. If a write occurs
on one of these cards the card is marked as dirty by the barrier. When a GC is triggered
the dirty cards are scanned in-case it contains a pointer of interest (i.e. an old to young
pointer). The size of the cards determines the speed verses accuracy of this approach.

Hybrid A hybrid barrier is a combination of the above barriers. In the MMTk there is a
hybrid implementation combining the object and the boundary barrier. It uses the boundary
barrier for arrays and the object barrier otherwise. This provides minor improvements in
mutator overhead to that of either barrier on their own [15].

The other version created by Hoskin and Hudson [32] combines the object barrier and
the card marking barrier. Similar to the MMTk barrier this provided lower average barrier
overhead than that of either barrier by itself.

Brooks The Brooks write barrier [17] is used in the incremental copy collector. It is there
to ensure the strong tri-colour invariant holds. Every time there is a write to an object, if
the object is in from-space it is copied to to-space. This, in combination with the Brooks
read barrier (see Section 2.2.4.2), ensures that the mutator never sees a white or grey object.

Yuasa This barrier is utilised in the incremental mark-sweep snapshot-at-the-beginning
collector [51]. This barrier ensures the weak tri-colour invariant is upheld by storing all
write accesses. This essentially colours the objects grey. The stored set of objects are re-
traversed at the end of collection as mutations to the memory graph may have caused once
dead objects to become live.

2.2.4.2 Read Barriers

Read barriers are generally considered the most expensive of the two types of barrier. This
is due to a program doing more reads than writes during normal execution. There have
been many implementations of read barriers and some even created at the hardware level
[40] in order to minimise the performance hit. We shall focus on software read barriers in
this report.

Conditional A conditional read barrier has a test in it that checks if a tag bit is set. If
this tag bit is set then the object has a forwarding pointer and that pointer is followed and
the forwarded object will be returned; otherwise it will just return the object. There are
variations of this [11] whereby if the tag bit is not set and the collector is running then the
object is forwarded and the tag bit is set.

Unconditional An unconditional barrier returns the location of where the forwarding
pointer points to. This means that all objects must always have a forwarding pointer. An
excellent example of this can be seen in the Brooks read barrier. In this fresh objects are
created with a forwarding pointer pointing back to the object itself and when a to-space
copy is made this pointer is redirected to the to-space version.

7An unconditional barrier is one where there is no branching statements in it
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2.2.5 Real-time scheduling

Scheduling for �real-time� collectors has two major goals. First it ensures that a collector
collects enough dead objects so that the program will not halt. Secondly scheduling must
ensure that the mutator makes su�cient progress. Scheduling is aimed at incremental
collectors that do chunks of work at a time.

2.2.5.1 Time based

Time based scheduling [9] uses �xed time quanta to ensure even CPU utilisation. The
mutator is scheduled to run forQT seconds and the collector for CT seconds. This interleaved
execution continues until a collection cycle is �nished. Assuming a perfect scheduler for any
given time interval 4T as the minimum CPU utilization by the mutator over all time
intervals of time width 4T , the MMU, uT (4t), can be de�ned as:

uT (4t) =
QT ·

⌊
4t

QT+CT

⌋
+ x

4t
The �rst part of the numerator is the number of whole mutator quanta in the interval

and x corresponds to the size of the remaining partial mutator quantum:

x = max

(
0,4t− (QT + CT ) ·

⌊
4t

QT + CT

⌋
− CT

)
As the size of the interval (4t) increases the �rst equation simpli�es to:

lim
4t→∞

uT (4t) =
QT

QT + CT

This ensures collectors have constant mutator utilisation rate unlike work based ap-
proaches (Section 2.2.5.2). However against adversarial mutators the program can run out
of memory as the time quanta dedicated to the collector is not enough. There were two
suggestions to alleviate this. First force a full stop-the-world collection when memory was
about to be exhausted. However this means the collector is no longer hard �real-time�. A
better solution suggested was to move the time based scheduler to a work based approach
when memory became scarce. However this was never implemented as it also could stop the
collector being hard �real-time�.

2.2.5.2 Work based

A work based scheduler was �rst used in Baker's incremental collector [11]. It directly
couples the amount of work the collector does with the rate at which the allocator allocates
memory. For every unit of memory the mutator allocates the collector must do k units of
collection. k is calculated when collection is started which ensures that the memory graph is
fully traversed before exhaustion occurs. The formula for a tracing collector with a tracing
rate m is:

m =
H − L
L

where L words are traced during the allocation of H − L new words. In reality L is not
known and must be estimated at the start of a collection based on previous collections.
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Work based scheduling may seem like a simple yet elegant solution to the scheduling
problem. However there are issues. While it ensures that enough memory is collected, it
is directly tied to the allocation rate of the mutator. This means that when the allocation
rate of a program increases so will the time chunk spent in collection. If the mutator
is adversarial, in that it purposely allocates memory in large amounts over small time
intervals, then the MMU will begin to fall. Unfortunately this �bursty� nature of allocation
is actually quite common in real life programs and while pause times still stay low the sum
of pause times over a particularly �bursty� moment will possibly be worse than that of a
stop-the-world collector.

2.3 Real time algorithms

In this section fundamental real-time collectors are outlined. These are core algorithms that
most modern day collectors build upon.

2.3.1 Baker's algorithm

Baker's collector [11] builds on the copying collector of Cheney, making it incremental. It
utilises a conditional read barrier to trap reads of objects in from-space. It also uses work
based scheduling.

Memory is split into two regions, like the semi-space collector, from-space and to-space.
From-space now contains live and dead objects at the same time. Like the semi-space
collector collection is triggered when memory is exhausted. At this point it evacuates8 the
root set to to-space and then incrementally scans the rest of the memory graph. During
this allocation is done at the opposite end of to-space meaning that all newly allocated
objects are coloured black. This can lead to ��oating garbage�; dead objects that will not
be collected until the next GC cycle.

This collector starts it's collection cycle when memory has been exhausted. This means
that these are a lower number of surviving objects, due to them having a longer opportunity
to die. However there is also a greater amount of heap allocation during collection therefore
there is a greater chance for page faults to occur. There is a trade-o� between the overhead
caused by the page faults and the increase in collector time that would be caused if collection
had been triggered at more frequent intervals, due to more interleaving between the collector
and the mutator.

The mutators always see the collection as complete after it is �rst triggered. This is
achieved through the use of a conditional read barrier. In this barrier there is a check if
the object is coloured white9. If this is the case then the barrier copies this object to to-
space and mark it black. This was inherently expensive and is the main issue with Baker's
collector.

2.3.2 Brooks collector

The Brooks [17] collector extends the Baker collector by reducing the cost of the read
barrier, at the cost of some additional memory per object. This is done via the use of an
unconditional read barrier with �indirection� pointers (Figure 2.6). These pointers point

8Evacuation encompasses the action of the copy
9In from-space
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to their respective object in to-space (if one has been created); otherwise they point to
themselves. This means that the read barrier code need only de-reference this pointer in
order to return the latest version of the object. They are created by adding an extra pointer-
sized �eld to the object model which holds the indirection pointer. Essentially this barrier
is trading space for speed.

Figure 2.6: Picture illustrating Brooks indirection pointers

Without Baker's read barrier the strong tri-colour invariant is broken as objects are not
automatically forwarded by the Brooks read barrier. In order to restore this Brooks utilises
an update write barrier. This barrier means that whenever a write is made to the heap
the barrier determines if the object has been forwarded or not. If it has it will forward the
object and thus colour it black; otherwise it will just return the object.

The last modi�cation Brooks proposes is an incremental scanning of the stack. As the
top layers of the stack will be the most frequent to mutate, the incremental scanner starts
from the bottom up. A pointer is used to record how far up the stack has been traced. The
problem is when the collector is operating against an adversarial program that does many
pops and then pushes in succession.

2.3.3 Replicating garbage collection

The replicating collector is an incremental collector written by Nettles et al. [41]. There is no
Read barrier and the to-space invariant is ignored. Instead mutators see from-space objects
until a collection cycle is complete. The collector is based on the Appel's Generational
Collector [6].

In order to keep links from the object in from-space to their to-space counterparts an
extra pointer-sized �eld is needed. This �eld stores a pointer to the object's to-space coun-
terpart. The algorithm incrementally creates a graph of live objects in to-space. However
these objects can be mutated after they have been copied. This is resolved by the use of
a logging write barrier. Every time an object is mutated it is stored and then after the
copying of all live objects is complete the log must be analysed and any updates required
made to the to-space objects.
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There is an interesting question here about the performance implication of using a write
barrier as opposed to a read barrier. According to the �ndings of Nettels et al. it would
appear that results are quite good for their implementation language (ML), having the write
�xup taking only 3% of the collector's total time. There would be issues with a language
with a higher level of destructive writes. There is also the issue of the extra bookkeeping
involved in the mutator log as this may grow to be quite large. Whilst this makes it less
suited to incremental collectors it is still well suited for concurrent collectors as less low level
synchronisation is needed between threads.

2.4 State-of-the-art Real-time collectors

There is an extensive literature on garbage collection with many papers addressing concur-
rent and incremental collectors. However many of the papers do not have fully implemented
algorithms and/or have little information on their real-time characteristics. The collectors
below are the ones with the most interesting additions to garbage collection and clear evalu-
ations of fully implemented algorithms. Interestingly there are only two collectors which can
be truly classi�ed as �real-time�; The Metronome and Garbage-First and even then these
are only soft real-time.

2.4.1 Cheng's collector

Cheng's collector [21, 22] is a replicating, incremental, concurrent and parallel collector. It
builds on work from Nettles and O'Toole's [41] incremental replicating collector which leaves
objects in from-space and then updated the objects to-space counter parts with a mutation
log maintained with a write barrier. This collector requires no read barriers, instead opting
for a mutator logging barrier.

The collector overcomes several shortcomings of the Nettles-O'Toole collector. First it
utilises stacklets which are a representation of the stack broken up into small parts and then
each of these parts linked together. This means there is no static write barrier to monitor
the stack. It also aids parallelism as it enables processors to work on one stacklet at a
time, monitor its pushes/pops and synchronise accordingly. It also runs collector threads in
parallel which enables the collector to process a greater workload. Cheng's collector is a fully
replicating collector as opposed to that of Nettles and O'Toole which was a fully replicating
collector during major collection cycles. This means that Cheng's collector requires more
space due to objects being doubly allocated10. This is alleviated somewhat with a �2-phase�
scheme: an aggressive phase, in which no objects are double-allocated and a conservative
phase, in which the root set is recomputed and a second, shorter, collection which doubly-
allocates objects. This causes survival rate to increase by 0.7%.

Several interesting methods are used in order to achieve parallelism. A centralised work
stack is used in which all grey objects are pushed onto and collectors pop their work o�.
There is an issue with pushes and pops occurring simultaneously. In order to combat this
Cheng employs �Rooms�. Rooms can essentially be thought of as critical sections in which
no two processes can be in at the same time. The shared stack has two rooms de�ned:
one for popping and one for pushing. It can only do a pop if it is in the pop room and
similarly for the push room. As only one process is allowed in a room at a time the issue
of concurrent pushes and pops is removed. Interestingly there is no mention of concurrent

10As the collector is replicating the same object will exist in from and to space at the same time.
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pushes and pops being shared so that if a push and a pop happen at the same time the
stack itself never needs to be queried.

The scheduling for each collector thread is work based. This again is susceptible to the
�bursty� nature of memory allocation. However this is helped somewhat by the parallelism
and the two-phase scheme.

2.4.2 Sapphire

Sapphire [34] is a concurrent replicating collector written for Java. Its main aim is to
minimise the mutator pause times. It avoids pausing all threads during the �ip phase of the
replicating algorithm and it is implemented with a write barrier instead of a read barrier.

Sapphire de�nes several distinct memory regions for the heap:

• U region called �uncollected� memory, which will not be collected in this collection
cycle.

• C, a region of memory which is called �collected�, the memory currently being collected
in the current GC cycle. C is further split into regions:

� O (old space) essentially the same as from-space.

� N (new space) essentially the same asto-space.

• S region for each threads stack.

The algorithm begins with a mark-and-copy phase. A tracer �rst traverses the memory
graph to discover live objects in O. All live objects are copied into N. Note that this is
all done concurrently with the mutator, di�erent from Baker's algorithm. It di�ers from
Cheng's collector in that instead of �double allocation� the to and from space objects are
loosely synchronised. This means that any changes made to the copy in O space between two
synchronisation points will be passed to the N copy before passing the second synchronisation
point. This is done by utilising a write barrier and exploits the JVMmemory synchronisation
rules. After this, the �ip phase is started.

The �ip removes any pointers to O objects that threads may see. It is split into several
smaller phases: Pre-Flip, Heap-Flip, Thread-Flip and Post-Flip. The �rst phase starts a
write barrier to check any objects in U or N do not point to O in order to keep up an
invariant that no object in U or N point to objects in O; this is then done in the Heap-Flip
phase. The next phase (Thread-Flip) changes all the O pointers in the thread's stack to
point to N objects; this is relatively easy to do as the write barrier ensures that the invariant
is upheld. Finally the Post-Flip phase does clean up, by freeing of O space and reverting
the write barrier back to the original.

This collector employs two separate write barriers. First during normal execution it uses
an eager write barrier, which updates N region objects with their O objects updates as soon
as they happen. Second it employs a di�erent barrier in the �ip phases to ensure no object
in N or U space point to something in O space.

The Sapphire collector has an excellent way of incrementally doing the �ip phase of a
collection, overcoming the main issue in the Nettles et al collector. It also has an eager
write barrier making changes to copied objects straight away rather than logging them and
doing it later. It also does not use the to-space invariant which other replicating and copy
collector algorithms have employed. There is an issue with root-set calculation phase which
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Figure 2.7: Picture demonstrating arraylets

is done in one go impacting on its real-time bounds. As well as this it has several features
that require it to be implemented for Java or a language with features similar to Java i.e.
with memory synchronisation. Whilst this is a nice idea it restricts the languages for which
this collector can be implemented.

2.4.3 Metronome

The Metronome [10] created by Bacon, Cheng and Rajan di�ers from other collectors in
that it was aimed at Java embedded real-time systems. It also di�ers from other collectors
in that it is only one of two that have a true claim to being �real-time�, although only soft
�real-time�. This is due to it requiring the user to specify the maximum live memory usage
and the average allocation rate over a collection interval.

The collector has a two plans in one approach. It normally acts as a mark-sweep col-
lector, switching to a copy collector when memory becomes fragmented. The collector as a
whole is incremental so it uses an incremental mark-sweep similar to Yusa's snapshot-at-the-
beginning algorithm [51]. It utilises the Yusa write barrier to maintain the weak tri-colour
invariant. The copying portion of the collector is a Brooks-style collector and as such also
uses a Brooks-style read barrier to maintain the to-space invariant.

The scheduling is either time or work based. A comparison of the two show that work
based scheduling can tend to cause poor mutator utilisation. Interestingly their results for
time based scheduling indicate that the problem with space explosion is somewhat alleviated
due to the way the collector utilises parameters to control the collector to keep it within
space bounds.

In order to maintain its real time claim, it uses the parameters listed at the beginning
of this section. The user speci�es these and as such the collector will not perform correctly
if these are badly speci�ed. In order to get these parameters correct the user may have to
do some experimentation. They also utilise arraylets which are a way to break arrays
into small �xed sized sections demonstrated in Figure 2.7. However they seem not to
implement stacklets, opting for a snapshot-at-the-beginning approach. Thus, when dealing
with program stacks which incur a large number of pushes and pops the collector may break
its real-time bounds during root set evacuation. Hence it is only soft �real-time� and not
hard �real-time�. The reason for the lack of stacklets is because they do not scale to large
number of threads well. This is counteracted with a weakened snapshot-at-the-beginning
property. This does not allow any reference from the stack to �escape� to the heap, by it
being logged. This is a combined Yuasa and Dijkstra-style write barrier.
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2.4.4 Stopless, Chicken and Clover

Stopless [43] is a concurrent collector which is lock-free and parallel. It uses �eld level
locking in order to do this. Pizlo et al. then went on to write Chicken and Clover [44] which
are extensions of Stopless. Chicken uses a chicken write barrier and clover uses a statistical
method to locking. Chicken and Clover are less complex and as such have a better lower
and average case performance. This was traded for the lock-free abilities of Stopless and
having a greater worse case performance. All three are written for the Bartok compiler11,
in its language of C#. They employ a concurrent mark-sweep algorithm with a copying
compaction thread if necessary. The architecture of the collectors as a whole work so that
a collector thread and compaction thread must run on separate CPUs to that of mutator
threads. This enables collection, compaction and mutation to all occur at the same time.
The collectors only di�er in the compaction thread implementation.

The mark-sweep collector used is based on the Doligez-Leroy-Gonthier(DLG) collector
[27, 26, 25, 24]. It uses a lock-free virtual mark-stack, a lock-free work stealing mechanism
and a non-blocking mechanism to determine the termination condition. The �rst problem
it overcomes is the issues with the mark-stack over�owing. It does this by putting an
extra header word into each object. This word is used for the mark bit and a forwarding
pointer used to create a linked list of grey objects to be forwarded. Due to the allocation
of these pointers being atomic, using a CAS12 operation to simultaneously mark an object
and modify its pointer, means that these can be stolen and modi�ed in a lock-free manner.
This means it is also possible to have many collector threads, each stealing grey object from
other collectors lists, when their own is exhausted.

2.4.4.1 Stopless

The collectors di�er in the compactor, named CoCo. This works as a partial compactor
for this collector although it is noted it could be used to be a full compaction algorithm
like that used in the Compressor [37]. Objects that are to be moved must �rst be tagged.
The collector thread does this by setting a bit in the object header and adding it to a list
accessible to CoCo. CoCo then begins to copy the object to to-space. However it does this
in a lock-free manner by �rst utilising a read barrier with a cloning mechanism so its cost is
zero when the compactor is not running. It then forwards the from-space object to a �wide�
to-space version of itself. This wide version is larger than the original because each �eld
has an extra word header assigned to it called the status �eld. The read barrier checks this
status �eld to ensure it is reading the most up to date copy of the �eld. A write barrier
must also be employed so to make sure all object writes are only to the latest data and
ensures writes are not lost through the use of a CAS operation. After each �eld is copied
into the wide object a �nal to-space copy is made. At this point there are three versions of
the object: the old one, the wide one and the new to-space one. Now the wide objects �elds
are copied to the to-space object and after this the forwarding pointer from the from-space
object pointed towards the to-space object. Note that the barriers are still in place to ensure
the most up to date version is being used.

The way barriers are controlled is interesting. It at �rst determines what phase the
collector is currently in and dependent on the phase it either goes down the fast path (does
nothing) or slow path (runs the barrier code). This is further optimised by removing the

11Compiler for C#
12Compare and swap
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barrier code completely during phases it is not needed, done via cloning. They do this using
the methods of [7] which enables two pieces of code to be in one place, in this case one that
does nothing and one with the barrier. There is then the issue of having the code in the
right place at the right phase. This is done by using GC safe points.

2.4.4.2 Chicken

The compression outlined above with the wide object is speci�c to Stopless. In Chicken
objects are �rst copied in their entirety and thus the read barrier is an unconditional Brooks
style read and write barrier. It works on the assumption that it is very unlikely that the
mutator will change an object whilst it is being copied and as such, plays �chicken� with
the mutator. However collisions can occur and in order to combat this, the write barrier
is modi�ed to create an �aborting� write barrier. In this barrier if the object is currently
being copied when a write takes place the copy is aborted through a CAS operation so that
a copy is not aborted twice. This means that objects who's copy is aborted will not be
copied in the current compaction phase. A �nal step must be performed in order complete
collection; a �heap �xup� phase. Here one more mark phase must be completed in order
to make sure no objects in to-space point to objects in from-space. In order to do that an
eager read barrier and logging write barrier similar to that of the Metronome collector must
be employed.

2.4.4.3 Clover

Clover ensures that objects will always be copied. This is counteracted by the fact that the
worst case scenario the collector is not lock free. The paper claims that this will occur with
�negligible� probability. It does this by randomly generating a value, α, and assumes that
this place in memory will never be written to. It then uses this alpha to block access to
�elds that are on original versions of the object. It is noted that the chance of this occurring
in a 32 bit system is 1 in 232 and in a 64 bit system 1 in 264. However to ensure 100%
correctness the write barrier checks to see if there is a write to this place in memory and if
so acts accordingly. However this will cause the mutator to block and thus lock freedom is
broken.

Overall these set of collectors work very well. The worse case pause time in experi-
mentation of Stopless, Chicken and Clover was 5ms, 3ms and 1ms respectively. The use of
multiple barriers at di�erent points of execution seems to be key in order for these all to
work.

2.5 Java

Java is an object orientated programming language whose design goals where to be simple,
robust, architecture neutral and portable and high performance [2]. The Java Virtual Ma-
chine (JVM) is how Java gains it's portability. It allows for bytecode created by compiling
Java code on any machine to be interpreted by machine speci�c VMs meaning that code
made on one computer will run on all computer with Java. The language also has garbage
collectors which allow for automatic memory reclamation.

Java bytecode instructions are interpreted by a program thread, each thread having its
own private stack. The stack consists of several stack frames. A new stack frame is pushed
onto the stack whenever a method is invoked.
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• Operand Stack: Used as an intermediate place to store results of bytecode opera-
tions. Most bytecodes interact with the operand stack in some way.

• Local variable array: Stores values which are method speci�c. The length is pre-
calculated at compile time. This holds the parameters of the method and at index 0
the callee reference is stored (return reference). Things are stored in the local variable
array from the operand stack with astore bytecode operations and things are loaded
from the local variables and placed on the operand stack with an aload function.

• Constant pool reference: The constant pool is a per class/interface representation
of the constant pool de�ned in the Java class �le.

2.6 Jikes

The Jikes RVM13 is an open source implementation of a JVM. It came from the Jalepeno
[5] project started at IBM which they subsequently open sourced and it became Jikes. The
most interesting thing about Jikes is that it is written in Java. In order for this to be possible
a boot image of the VM is created and then loaded at runtime. Secondly Jikes does not
have a bytecode interpreter instead it opts to compile everything into native machine code
before execution. There are three versions of this compiler: Baseline, JNI and Optimising.

The Jikes project is well documented and due to the abstractions Java has it allows
for easier implementation. Thus it has a high adoption rate from the research community.
There have been lots of changes to Jikes over the years; most notable for this project is the
introduction of the Memory Management Tool Kit (MMTk).

Jikes is a complex system and for this project we will mainly be editing MMTk code.
The main part of Jikes communicates to MMTk via a set of prede�ned interfaces. The main
ways it does this is when an object is to be allocated it calls an alloc method de�ned by
each collector. This then uses a method which returns a boolean to see if a collection cycle
is needed.

2.6.1 MMTk

MMTk [14] is a framework for building garbage collectors and allows programmers to create
high performance memory managers. The main goals are to be �exible and o�er comparable
performance with the monolithic collectors built for Jikes. Currently there are already
several collectors built with the MMTk these include the classic three collectors (mark-
sweep,reference counting and copying) and generational/hybrid versions of them. It also
has the IMMIX collector written by Blackburn et al [16]. There has also been several other
notable collectors written using the MMTk: The Metronome [10], MC2 [45] and the sliding
views collector [8], although these have not been contributed back to the project, or have
not been maintained. Therefore, they do not ship with Jikes.

The MMTk utilises several clever methods in order to attain its high level design goals.
First it makes use of Compiler Pragmas. These are implemented in the Jikes compiler and
allow programmers to control things such as inlining and interruptibility. It also identi�es
�hot� and �cold� paths and employs lightweight and e�cient mechanisms for frequently
executed paths (the �hot path�). It also makes heavy use of garbage collector design patterns;
�rst outlined by Yeates et al. [50].

13Research Virtual Machine
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The MMTk has what is known as a plan for each collector. Each plan tells the RVM
how the collector should be run and is split into several classes:

• Global class: This class is the main class of the collector. It holds information that
is global to the plan such as spaces, traces and phase de�nitions. It also contains
methods for calculating how many pages are left.

• Collector class: This class de�nes local information for each collector thread. The
MMTk purposely abstracts this into a separate class so that synchronisation is local-
ized and explicit, thus hopefully minimized. This means that anything in this class is
strictly local to each collector thread.

• Mutator class: This class contains all the code linked to the mutator of the collector.
Here methods to allocate new objects are implemented and read and write barriers.
All information in this class is local to each mutator thread.

• Constraints class: This class has all the constraints for the collector. It is there to
communicate to the host VM/Runtime any features of the selected plan that it needs
to know for instance whether it needs a write barrier or how many header words each
object has.

• TraceLocal class: This class is responsible for implementing the core functionality
computing the transitive closure of the memory graph.

An important aspect to note about the way the MMTk works is the phase stack. Each
step of the collector has a phase associated with it. For instance the root set is computed
in the ROOTS phase. Each phase is split into several simple phases each of which has a
name. Each of the simple phases is created for a speci�c part of the collection: global, for
the global class of the plan, mutator, for the mutator class of the plan and collector, for the
collector class of the plan. A set of simple phases can be joined together to create a complex
phase. It is also possible to create a place holder phase which can be replaced by a collector
at runtime.

There is a common underlying feature of most of the collectors in Jikes. As the collectors
are based on a hierarchical inheritance structure they all stem from one plan known as
Simple. In Simple each plan has several region which it must collect. These are:

• SmallCodeSpace and LargeCodeSpace: This is used to store code in memory

• Non-moving space: This is used to store objects that will not move. These include
things such as the program stack.

• VM Space: This space holds all VM speci�c object such as the boot image of the
VM.

• Immortal space: This is a place for all immortal objects that are allocated after the
VM has �nished booting.

• Large object space: This is where all large objects are stored.

• Meta space: All meta data that is used by the MMTk is allocated here.

• Sanity space: This space is used to store the sanity checker which ensures collections
are correct. This is only used if sanity checking is enabled
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Algorithm 2.1 Code demonstrating some features of Magic

1 public void getObjectClassName(Word word ,Offset offset) {

2 Address address = word.toAddress ();

3 ObjectReference objectReference = address.loadObjectReference(

offset);

4 // increments the address by the offsest

5 //then loads to object reference at that point

6 Object object = objectReference.toObject ();

7 Log.writeln("The objects name is:");

8 Log.write(object.getClass ().toString ());

9 }

Several of these are subject to collection when a GC cycle is run and they utilise a simple
mark-sweep collector in order to be collected. However this would cause issues with some
collectors. It is possible to bypass these spaces by ensuring that no writes occur to these
spaces and making sure other classes of the plan do not call the super class that does things
such as initiate the spaces and schedules them to be collected. This is demonstrated well in
the reference counting plan. However Immortal, VM, Sanity and Meta space must be used
as normal. As they are not subject to collection this will not a�ect the overall collection
cycle of a collector. It should also be noted that all objects that would be allocated in
non-moving space must not move even in GC phases.

Debugging collectors is somewhat easier than on other platforms with the MMTk. The
main way this can be done is by using the MMTk test harness outlined in section 3.1.5.2.
However this is often a misrepresentation of how the collector would work in the full Jikes
collector. To debug in this state is more di�cult having to rely on tools such as GDB [1]
and Valgrind [4].

2.6.2 Magic

Garbage collection requires a lot of low level manipulation of memory. Since Jikes and the
MMTk are in Java this is done in a novel way called Magic [29]. Magic de�nes a set of
extensions to the Java language by adding system programming abilities such as memory
management to take place. In order to do this it requires support from the JIT compiler
and the JVM it is running in. There are a few main types that a programmer needs to know
about when dealing with magic: Word, Address, O�set, Extent and object reference.

A Word is a word sized section of memory which is architecture speci�c and changes
dependent on the machine. The Address type holds a memory address. The O�set type
is a memory o�set with this it is possible to do things such and increasing an Address by
a certain o�set. The Extent type is used to represent a length of memory. Finally the
Object reference type represents a reference pointer to an object in memory. This can be
turned into the object itself. Object references can also be turned into Address values. An
algorithm demonstrating some of the features of Magic can be seen in Algorithm 2.1.

Magic allows developers to utilise high level abstractions for low level languages. This is
part of the reason why it is possible to debug Garbage Collectors directly in IDEs such as
Eclipse.
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2.6.3 The Jikes Compilers

Jikes speed comes from its ability to turn bytecode into native code and heavily optimise it.
The Baseline compiler in Jikes favors correctness over speed. In fact the optimising compiler
has around a 5% success rate compared to the Baseline version.

2.6.3.1 Baseline

The baseline compilers aim is to be correct. As such it is very desirable to use with test
versions of the VM. It is used to dynamically load other compilers and thus is always a part
of the Boot image. It is simpler than the optimising compiler as it maps bytecode directly
to machine speci�c assembly.

2.6.3.2 Optimising

The optimising compiler gives a e�ciency increase to the VM and is used in the production
VM. It breaks down Bytecode into three intermediate representations (IR) before converting
to assembly code. A di�erent level of optimisation is does at each IR representation:

• High-level IR (HIR): Pre HIR any magic 2.6.2which has been called is inserted in HIR
form. Loop unrolling takes place as well as the Basic Blocks of the control �ow graph
are analysed so hot and cold paths can be highlighted. Subsequent to this the HIR is
turned into static single assignment form (SSA). SSA turns the program into a form
where each variable is assigned once. The SSA code is further optimsed and then
reverted back to HIR. Here again the HIR is optimised and then converted into LIR.

• Low-level IR (LIR): The �rst stage of this optimisation is to coalesce moves, move
loop invariants out of loops and common sub-expression elimination. Common sub-
expression elimination is a barrier optimisation technique utilised by Cheng's collector
2.4.1. After this peephole optimisation occurs as well as a general simpli�cation of all
code. The LIR is then moved to Machine-level IR.

• Machine-level IR (MIR): Here architecture speci�c optimisations are applied. Register
allocation occurs before MIR is converted into native machine code.
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Chapter 3

Design and Implementation

3.1 Design and Implementation

In this section we detail the design and implementation of the elements we have created
and highlight common elements in order to design and build a framework for future Jikes
MMTk developers to utilise.

3.1.1 Indirection pointers

An indirection pointer is required to show the mutator where the most recent version of
an object is, once it has been moved. This pointer is stored in the header of the object.
On creation this pointer will point to the object itself. The indirection pointers requires an
extension to the current Jikes header which currently consists of three parts:

• Main object header: This consists of several object speci�c information such as:
the TIB Pointer, a HashCode, a Lock state, an Array Length.

• Garbage collection header: All information that the memory management system
requires includes things such as a mark bit.

• Misc header: Used for experimental con�gurations and is easily expanded, typically
used for pro�ling.

As we are working with the garbage collection subsystem, we extended the garbage collection
header. Currently Jikes has a class, ForwardingWord, which utilises an indirection pointer.
This was unsuitable for our needs as it modi�es the object header in a way such that it
causes issues to occur when a program is running outside of GC. We could not use this as
we need the indirection pointer to run with an incremental collector, which will need to be
active outside of GC.

The next issue is to ensure that all objects are created with the indirection pointer (to
themselves initially). This was done via a postalloc method in the mutator of the GC.
This missed all objects that were allocated in the bootimage 2.6.1. This was recti�ed by
initialising the indirection pointer during the normal Java object header initialisation. All
objects must go through this method including that in the bootimage.

Following this a brooks style read barrier was created in order to test that the indirection
pointers where working correctly. This consists of dereference the pointer to the object we
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Figure 3.1: Picture demonstrating a standard read in Jikes (top) and a barriered read
(bottom)

will read. Jikes object reads work by going to the object (source) where the object (target)
that will be read is in. It then adds an o�set to the head of source to �nd target and then
does an ObjectReference load from this point. In turn our code had to �rst dereference the
container object and then subsequently dereference the pointer to the object (see Figure
3.1).

3.1.2 Incremental Mark Sweep

Incremental mark sweep uses the original mark sweep algorithm interleaving the collector
with the program. The overall execution �ow of this and all the incremental collectors we
made is outlined in Figure 3.2. Collection is broken down into 4 sections:

1. Collection is triggered for the �rst time in an incremental cycle. Housekeeping is done
to prepare di�erent spaces for collection. All roots are then marked. The collector
then allows the mutator to resume.

2. After certain criteria are met, collection is re-triggered. Here the collector threads do
a certain amount of scanning and ensure all dirty queues are cleared. If marking has
�nished then a �ag WORK_COMPLETE is set.

3. The root set is rescanned. This is necessary as mutations to the stack and registers will
not be caught by the write barrier employed. If the work is su�ciently low enough
then the program marks everything needed and moves on to stage 4, otherwise it
moves back to stage 2.

4. The collector sweeps all unmarked objects and does any post collection tidying; includ-
ing handling soft, weak and phantom references and sending noti�cation of collection
termination to the mutators.
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We will now go into some points mentioned above in further detail.

3.1.2.1 The write barrier

We used a slot based write barrier. Once a full collection cycle begins1 this is turned on
via the collectionStarted �ag. The barrier stores any objects which are written into another
objects �eld. There is also a second barrier on all new object allocations which are also
stored. There are two mechanisms for storing the objects: with a sequential store bu�er
and in a linked list of objects.

The SSB is used to store object in a queue for processing later. It has two problems:
1. It can get large and use up undesirable amounts of heap space, 2. it has no way to
determine which objects are already in it and ,as such, there is a risk of adding the same
object twice. The second of these problems can be alleviated by the use of a mark bit to
establish if an object is already in the SSB. This causes an extra bit in the header of all
objects requires the barrier to do a checking step. In the implementation it was possible to
avoid the overhead of the mark bit by using unused bits in the current object header.

The object linked list works by each object having an extra pointer-sized space in it's
header. This is used for the linking in the link list. A pointer to the head of the list is
stored. If an object is in the list then it will have its header pointer marked or be pointing
to another object. This enables us to distinguish between object in the list and objects
which are not. The method �xes the problems with the SSB however at the cost of the
extra pointer in every object.

The object linked list requires the header word in the object to be left even if the object
is no longer there. This is �ne for object overwrites with a merge on the GC portion of the
header. However when an object is set to null the header is destroyed. This creates a major
issue with the object linked list method in that if an object is part of the linked list and it
is set to null there will be a gap in the list. In order to alleviate this dummy objects are
inserted on null writes. This meant that we had an extra overhead on the write barrier to
catch null writes. In implementation we also had to edit the compiler to work with these
dummy null objects. However this was unsuccessful as such we have moved dummy null
objects to future work 4.2.3.1.

Write barriers are needed to track whether pointers have changed between incremental
phases. To do this we log any modi�ed objects and later recheck their pointers. The issue
with this is that we create ��oating garbage�. Floating garbage are objects which are dead
but were missed during collection. Figure 3.3 demonstrates the need for the write barrier
and �oating garbage.

3.1.2.2 Work calculations

How much work a collector should do in a work-based scheme is often di�cult to decide. If
too much is done then the pause time will be too long. If too little is done then the collector
will not be able to keep up with the allocation rate of the program. We have adopted two
di�erent methods for comparison. The �rst is similar to the classical Baker work-based
approach the second is a new time and work-based variation named work-time.

The number of objects which must be traced in a Baker collector, k, is:

k >
L

H − L
1That is when the �rst cycle in a set of incremental collection cycles
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Figure 3.2: Image demonstrating garbage collection cycle of the Incremental Mark Sweep
collector
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Figure 3.3: Image demonstrating the need for a write barrier. The squares represent objects
the arrows represent links the objects have to other object and the colour in the top left of
the squares demonstrates their current colour according to the tri-colour invariant are.

However, in the original Baker collector there were very di�erent barrier techniques
involved. Baker utilised a conditional read barrier which under certain circumstances would
cause the object to be scavenged by the barrier. In the incremental mark-sweep collector
we have a barrier that increases the workload on the collector threads. As such we must
take this into account when scheduling. We also have an extra work cost in that all newly
allocated object will also need to be scavenged. In the work-based approach we allow for k
new allocations at each incremental step. The extra work incurred by the write barrier is
calculated using a count, W, in the write barrier which is incremented each time the barrier
is hit. In order to create smoother collection cycles an average of W is taken by dividing W
by the number of incremental cycles so far, N. So the amount of work we must do at each
incremental step is:

2k +
W

N

The problem is that, in practice k is often very small giving the mutator very little
time to do any work between incremental cycles. As such we have introduce an incremental
trace rate multiplier, M, which allows the user to amplify k meaning fewer incremental
collection cycles and better MMU. However it should be noted that the larger the larger the
incremental grain size and thus fewer incremental cycles will occur but we will spend longer
in garbage collection.

The second method requires more analysis but tries to maximise the MMU. In this
scheme the user speci�es the minimum time between each incremental cycle, T. It should
be noted that this time is not strictly adhered to. Instead the collector will trigger at the
�rst allocation after T time. As many allocations can occur between two time points the
tracing rate must be modi�ed by this amount. The number of allocations, A, is monitored.
Again we have to factor in write barrier hits, W. The issue is that these values may be
very large for one incremental cycle and very small for the next creating very �lumpy� pause
times. Therefore we take average rates giving:

k +
A

N
+
W

N
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Obviously, substantial issue with this is we are now using estimates and, as such, the
formula can become inaccurate. To alleviate this we pre-compute an estimate of the number
of incremental cycles we believe we will need in order to complete collection, R. If this number
of incremental rounds occurs we begin increase the tracing rate by 5% for each round above
R. We found that a 5% increase was generally enough to stop a forced collection in practice.
If we are about to completely run out of heap space we will force a full collection. R is
computed as follows:

R =
L

T

where L = estimated total number of live objects and
T = Current estimated tracing rate

3.1.2.3 Triggering mechanisms

The triggering mechanism for the collector is in two phases: pre collection and during
collection. Pre collection as the name suggests occurs before a full collection cycle has
begun and during collection is the triggering mechanism between incremental cycles. In pre
collection, stage 1 of the collection cycle is triggered when the heap occupancy goes over
a certain limit. By default this is at 78%, matching with �gures established by Yusa [51].
Note that these experiments where not undertaken inn the context of a Java VM. In practice
however they gave reasonable results. Due to this the user is able to tweak this value if they
wish.

In during collection there are two di�erent sets of criteria depending on which scheduling
mechanism is used. The standard one is the work based version. In this collection is triggered
after k allocations have occurred. The second triggering mechanism utilises a time speci�ed
by the user. This time is added to the time when the collector �nished its last incremental
step and the collector is not allowed to retrigger until this time limit has been reached. The
intention of the time based approach is to keep MMU high but at the same time ensure
robustness.

3.1.2.4 The �nal phase

Before the �nal part of collection (Phase 4) of the collection begins the collector must
determine whether there is su�cient work such that it will not break real-time bounds.
As re-scanning the roots for new roots is expensive we want this to occur as few times as
possible but at the same time keep the pause times low. We have taken the original formula
for calculating the amount of work to do. However due to the costly nature of rescanning
the root set we multiply the amount of work to do by a factor, F, which is incremented each
time an rescan attempt is made.

3.1.2.5 Incremental Parallel Mark Sweep

When making a parallel collector we must consider how to allow multiple threads to do the
tracing work at the same time. In order to do this we require the tracing algorithm to be
multi-thread safe and also ensure that each thread does a similar amount of work. The
mark-sweep algorithm is naturally multi-thread safe as if multiple threads try to mark the
same object at the same time nothing will happen, the object will just become marked. The
work balancing is an interesting factor in a parallel collector.
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Jikes implements the work sharing with an unsynchronised central work stack. In our
future work section we propose a new method of work sharing with each collector thread
having its own personal trace deque 4.2.3.1.

We also have to consider the work each processor will do. We have two options. We can
either lower the pause times for each incremental cycle by dividing the work calculation by
the number of collector threads, P. Alternatively we can reduce the number of incremental
sections we need to do by allowing each processor to do the same given amount of work.
We have opted for the second approach as we have found that the longest pause times are
caused by step 3/43.1.2. This means we need to change our estimate of the number of
rounds of work we will need to do to:

R =
L

T × P

3.1.3 Brooks Style Incremental Copy Collector

The copying collector employs the same execution �ow as the mark-sweep collector. It has all
the features of a classical semi-space collector so we used the standard semi-space collector
as a base for development. There were several components which needed to be tackled in
order to get this into a Brooks style collector. These concern the tracing algorithm, barrier
code and the integration of all the incremental features from the incremental mark-sweep
collector.

3.1.3.1 Tracing algorithm

The tracing algorithm had to be modi�ed to work with the new indirection pointers we
had created 3.1.1. The base algorithm works with the forwarding pointer class. This had a
method that was able to distinguish whether an object was forwarded or not. This was done
with a bit mask on the forwarding address. Instead of doing this we opted for the single
threaded version to have a mark-bit in the header. This was marked by the collector thread
when the object had been forwarded successfully. This did not add extra overhead to the
object header as there were several bits that where unused which we were able to engineer
to use for our purpose. The performance implications of this would be that this is a much
simpler system that of the bitmask system and thus should be slightly faster. However it
would not be suitable for parallel collectors as there was no direct synchronisation over this
mark bit. The new tracing algorithm is shown in algorithm 3.2.

3.1.3.2 Barriers

Similar to the Brooks collector we use both a write and a read barrier to ensure the weak
tri colour invariant.

Write Barrier The write barrier is di�erent to the original barrier employed by Brooks.
Brook's original scheme coloured object hit by the write barrier black. This meant that
if the object was currently in from-space (white) it would have to be moved into to-space
and then all its children traced. We felt that this was an unnecessary cost for the write
barrier to incur and so used a similar write barrier to our incremental mark sweep collector.
This colours the objects grey, ready to be moved. Their children are scanned during a
collection cycle and not at while the mutator is running (like the Brooks write barrier). The

34



Algorithm 3.1 Algorithm demonstrating the parallel incremental copying tracing algo-
rithm

1 public ObjectReference traceObject(TransitiveClosure trace ,

ObjectReference object , int allocator) {

2 /* If the object in question is already in to-space , then do

nothing */

3 if (! fromSpace) return object;

4 if (isToggleBit(object)) {

5 /* Now extract the object reference from the forwarding word

and return it */

6 return getForwardingPointer(object);

7 } else {

8 ObjectReference newObject = VM.objectModel.copy(object ,

allocator);

9 /* Set the forwarding pointer and the toggle bit of the

object */

10 setForwardingPointer(object , newObject);

11 setToggleBit(object , (byte) 1);

12 trace.processNode(newObject); // Scan it later

13 return newObject;

14 }

15 }

consequence of this is that the collector threads will have to do more work than the collector
threads of the Brooks collector. We feel that due to the time saved by not o�oading this
to the mutator this is justi�ed.

There is a second reason for this write barrier. Due to the multiple space paradigm
adopted by Jikes that we could only modify so much. We would have only been able to
remove: large object space and large code space. The other spaces use a mark sweep style
algorithm for collection. As this is the same write barrier we made for the incremental
mark-sweep collector (3.1.2.1) we were able to collect the Jikes spaces incrementally as well.
This is desirable as it is not possible to just collect one space at one time as pointers between
spaces can point into into other spaces.

Read Barrier The read barrier is, in theory, the same as speci�ed in the original Brooks
collector. It works by unconditionally dereferencing the indirection pointer which is stored
in each object. In practice, however, it was not possible to implement it this way. The �rst
problem is that null objects do not have a header and so have no indirection pointer. This
meant that if we tried to dereference a null object this would fail. Thus we had to put a null
check in the barrier. This simply checked if the object the program wanted to read was null
and if so did not attempt to do a dereference. The second issue was discussed before with
the Jikes implementation of read barriers which requires two pointer dereferences; one to
�nd the object containing the actual object we wish to read and then a second to actually
read the object itself.

The read barrier for Jikes did not provide 100% coverage of all objects. It did cover the
program heap correctly. However objects could escape from the heap onto the stack. This
would mean we had a pointer on the stack which could potentially point to an old object.
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There were several solutions to this outlined in Section 3.1.3.3.

3.1.3.3 Fixing the read barrier

There are three alternative solutions to the read barrier issue, with objects escaping to
the stack. First was to make a way to incrementally scan the stack. This would mean
we would have to monitor the stack for mutations and then rescan and redirect these as
they happened. Alternatively we could try to catch objects before they got to the stack
and eagerly redirect them. The third way would be to put a partial read barrier over the
stack. The �rst thing we did before attempting to is ensure that the problem lay with the
stack. This was done by creating a complex incremental phase (see 2.6.1). This is similar
to the incremental phase except that now multiple elements could be added to it. When
the elements of the complex incremental phase where �nished a check would be done on
a boolean to see if the incremental phase could be discarded. The reason for the complex
incremental phase was to allow us to rescan all the roots after each incremental scan step.
This indeed showed that the issue lay in the stack.

We opted to try to catch objects before they entered the stack and then eagerly forward
them. The main reason for this is we felt that it would be able to be completed during the
remaining time and in theory should be faster than putting a read barrier over the stack.
However on attempting to do this we had issues capturing objects escaping to the stack
through Magic 2.6.2 calls. In fact on injecting code into Magic to eagerly forward object we
created more errors than we solved.

We therefore elected for approach 3; put a partial barrier over the stack. This was created
only for the optimising compiler. This was done by inserting HIR (see Section 2.6.3.2) during
the transition from bytecode to HIR. The reason for this is that it is the most natural
place to hijack speci�c bytecode operations and we would gain all the optimisations o�ered
by the Jikes optimising compiler. The opcodes which were chosen to have barrier code
inserted into them were: checkcast, invokeinterface, invokespecial, invokevirtual, if_acmpeq
and if_acmpneq. Code was inserted at the point where the object references where popped
o� the stack. See algorithm 3.2 for an example on the if_acmp bytecode.

The IR code we inserted was a direct call to the barrier method we had made through
the MMTK. It would of been nicer to inline the code directly however we felt that as we
inserted this at the top of the optimising compiler that it would be optimised enough. Had
we put in the code ourselves we could of done things such as null check folding. This would
have allowed our barrier to execute the null check implicitly whilst also running the barrier
code itself.

3.1.3.4 Parallel Brooks Style Incremental Copy Collector

The parallelisation of the copying collector was not as trivial as the mark-sweep collector.
The main issue lay in the setting of the indirection pointer during scavenging. In the single-
threaded version we did not have to worry about multiple collector threads scavenging the
same or interconnected objects simultaneously. This posed a major problem with indirection
pointers which now had to be set atomically when they were changed during scavenging.
Also, we had to ensure that no two collector threads tried to copy the same object at the
same time.

We did this in a lock-free manner due to the overheads that would be incurred by locks.
The �rst stage is at the beginning of the traceObject method. Here objects raced to gain
the right to scavenge an object. This process worked by utilising the inbuilt CaS operations
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Algorithm 3.2 Algorithm demonstrating the bytecode

1 /* Pop objects off the stack as this is an ifcmp we pop 2

value */

2 Operand op1res = popRef ();

3 Operand op0res = popRef ();

4

5 /* Create temporary registers to hold results from barrier

code */

6 Operand op1 = gc.temps.makeTemp(op1res.getType ());

7 Operand op0 = gc.temps.makeTemp(op0res.getType ());

8

9 /* Get the method name and the class name the bytecode

belongs to */

10 String bcodeClass = gc.method.getDeclaringClass ().toString ()

;

11 String bcodesMethod = gc.method.getName ().toString ();

12

13 /* Check that bytecode is not a memeber of the following

classes or methods */

14 /* This is to stop barrier code being inserted into barrier

code creating an infinte loop */

15 if(!( bcodeClass.startsWith("org.mmtk.policy.Inc") ||

bcodesMethod.equals("resolveInternal")

16 || bcodesMethod.equals("<init >") || bcodesMethod.equals

("<clinit >")))

17 {

18 /* Create IR code to call barrier code */

19 appendInstruction(Call.create1(CALL , (RegisterOperand)

op1 , IRTools.AC(Entrypoints.

getForwardingPointerNullCheckIfCmp.getOffset ()),

20 MethodOperand.STATIC(Entrypoints.

getForwardingPointerNullCheckIfCmp),

op1res));

21 appendInstruction(Call.create1(CALL ,( RegisterOperand)

op0 , IRTools.AC(Entrypoints.

getForwardingPointerNullCheckIfCmp.getOffset ()),

22 MethodOperand.STATIC(Entrypoints.

getForwardingPointerNullCheckIfCmp),

op0res));

23 }

24 else

25 {

26 op1 = op1res;

27 op0 = op0res;

28 }
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that Jikes provides. This works on a pair-wise prepare and attempt method. The prepare
gains the value of the address as signals to the VM that a critical section has been entered.
The attempt method attempts to write a value to that address if the value given is the
same as the original. This set is atomic. There were no address-level versions of these calls
so these had to be implemented. Once this had occurred the collector would either return
a zero address or the correct address. If the zero address was returned then the collector
thread had lost the race and would have poll, waiting for a non-zero address to be written.
The winner would then go on to forward the object itself. At which point both would return
the location of the new object. Algorithm 3.3 demonstrates the parallel tracing algorithm.

3.1.4 Framework for incremental collectors

We now had two working collectors and were able to take common elements from both
creating subclasses and a sub-plan. This would allow future garbage collection developers
using Jikes and the MMTk to create their own incremental collectors with relative ease. A
UML diagram of the plans are show in 3.4. We will now delve into each of the classes in
more detail:

• Incremental class: Here all the core global elements for collectors are stored. This
includes all the global variables for work calculation, the work calculation function,
the scheduling code and the phase stack.

• IncrementalCollector class: Contains the collect method which is responsible for
scheduling the phase stack and some accounting code. The incremental collection
phases are also handled in this class.

• IncrementalConstraints class: All the constraints for an incremental collector.

• IncrementalMutator class: Contains the alloc and posalloc methods for incremen-
tal collectors which have the accounting code for allocations. This also ensures all new
objects are marked grey. We have also put the common write barrier code in here.
This is overridible if others do not wish to use it or use their own write barriers.

• IncrementalTraceLocal: This has the force retrace methods used when an object
needs to be retraced when it is marked from black to grey.

These classes along with the incremental phases and incremental spaces we have created
will enable user of the MMTk to develop their own incremental collector variants.

3.1.5 Testing

To ensure our collectors work they were thoroughly tested. We also ensured that the re-
gression tests of Jikes work so that we have not interfered with Jikes itself. It should be
noted that for the changes made for the read barrier extensions for the copying collector
the regression tests were compromised. Due to a check on generated HIR code from speci�c
bytecodes.

3.1.5.1 Jikes

Jikes has a great test framework to enable developers to easily test and benchmark the
changes they have made. It also has several di�erent build levels which have di�erent levels
of features for testing outlined below:

38



Algorithm 3.3 Algorithm demonstrating the parallel incremental copying tracing algo-
rithm

1 public ObjectReference traceObject(TransitiveClosure trace ,

ObjectReference object , int allocator) {

2 /* If the object in question is already in to-space , then do

nothing */

3 if (! fromSpace) return object;

4

5 /* Try to forward the object */

6 ObjectReference obj = getForwardingPointerTryingForward(object)

;

7

8 if (obj.toAddress ().isZero () || object.toAddress ().NE(obj.

toAddress ())) {

9 /* Somebody else got to it first. */

10

11 /* We must wait (spin) if the object is not yet fully

forwarded */

12

13 while (obj.toAddress ().isZero ())

14 {

15 obj = getForwardingPointerTryingForward(object);

16 }

17

18 /* Now extract the object reference from the forwarding word

and return it */

19 return obj;

20 } else {

21 /* We are the designated copier , so forward it and enqueue

it */

22 ObjectReference newObject = VM.objectModel.copy(object ,

allocator);

23 setForwardingPointer(object , newObject);

24 trace.processNode(newObject); // Scan it later

25 return newObject;

26 }

27 }
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Figure 3.4: UML diagram of the new incremental garbage collectors
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• BaseBaseCollectorPlan: A .properties �le must be created in order to create new
Base versions. To do this look at current examples. This build target is aimed at
the testing of a garbage collector. It takes the shortest amount of time to build of
the following plans, but in turn creates the slowest virtual machine and only has the
garbage collector named. So for instance if we wanted to build the Base version of a
SemiSpace collector our target would be BaseBaseSemiSpace. This is only for testing
quick changes to the codebase and should not be relied upon to behave exactly the
same as the other builds.

• Prototype: Similar to the BaseBaseCollector. However this contains all the collectors
in this build. This will determine whether any other collectors have been broken from
the changes made. This build should be used sparingly to test other collectors it is
still not a good representation of the �nal RVM.

• Prototype-Opt: Again, like the previous two builds prototype-opt is designed to be
a quick build. It is however still slower that other more advanced builds but contains
more feature of Jikes than the Prototype build. The optimising compiler and the
adaptive system are both here. This means the user will get a much better picture of
if their code has broken either of these which makes probably the most usable for full
system tests of the collector.

• Development: Here we get a much better performing RVM. However, the build time
is much longer. It has all the Jikes features enabled and also assertions and debugging
enabled. This means debugging and any errors will be found with this build and it
should be used before every commit to the Jikes repository. This should be used at
the end of every milestone.

• Production: This is the fastest build of the RVM. It is the same as the development
build apart from with assertions and debugging turned o�. This also takes quite a
while to build but will be faster than the other builds. This should only be used for
benchmarking and not for testing.

Jikes also provides a series of tests for users to run. These tests go through performance as
well as correctness:

• Core: The core set of tests are functionality tests that ensure the correctness of Jikes.
It runs its tests on the four main build targets (Prototype,Protoype-Opt,Development,Production)

• Performance: This runs a set of performance tests to benchmark Jikes. It runs
SPECjvm98, SPECjbb2005 and the Dacapo benchmarks.

• MMTk-unit-tests: This runs a suite of unit tests to check it is still working correctly.
This will enable us to get a quick overview of any issues we have caused with our
changes we make to the MMTk.

• Pre-commit: This is meant to be run and passed before committing any code to
Jikes repository. This test is quite extensive it runs against the prototype and the
development build targets. It �rst runs a series of functionality tests, then it is also
benchmarked with the Dacapo benchmark, �nally it does a code style check. This test
ensures that any code committed to the Jikes repository is up to standard.
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3.1.5.2 MMTk test harness

The MMTk also includes a test harness. With this we can debug our collector code from
within an IDE. We are also able to write specialised tests so that we can test for strange
edge cases and such. It should be noted however that this is a controlled environment setup
to just test the collector and the collector ran very di�erently in a real build.
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Chapter 4

Evaluation

In this section we will evaluate the collectors we have made. First we will test the impact of
the indirection pointers. We then benchmark the incremental mark-sweep collector in both
parallel and non parallel modes. We also will assess the impact of our new parallel work load
balancing scheme and our replacements for SSBs. Finally we will appraise the incremental
copying collector with its read barrier extensions, again in parallel and non parallel mode.

4.1 Benchmarking

Benchmarking was performed on a machine with 2 Intel Xeon E5345 2.33 GHz Quad core
processors with 8MB L2 cache and 8GB RAM with a 12GB swap �le. The operating system
is Ubuntu 9.04 server edition x64. The computer was not running X and had a network
connection with all regular Linux programs installed. All benchmarks were run twice in a
row and the second time taken. This is to give the VM time to �warm up� compiling and
optimising all code. This was done as we want to test the GC, not the rest of the Jikes VM.

In order to reduce variation in runtime the pseudo adaptive driver for the Jikes RVM
compiler was used. This applies compiler optimisations according to advice computed ahead
of time. This avoids variations in methods that are regarded as �hot�. Despite this there will
always be a slight variation in run times. Thus, all experiments were conducted 10 times
and averages taken.

We used the following benchmarks from the Dacapo suite [13]. Due to time constraints
and failures in some of the benchmarks in Jikes (eclipse and chart) we opted to use the
following benchmarks:

• antlr - parses one or more grammar �les and generates a parser and lexical analyser
for each

• bloat - performs a number of optimizations and analysis on Java bytecode �les

• fop - takes an XSL-FO �le, parses it and formats it, generating a PDF �le

• jython - interprets a the pybench Python benchmark

• luindex - Uses lucene to indexes a set of documents; the works of Shakespeare and the
King James Bible
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• lusearch - Uses lucene to do a text search of keywords over a corpus of data comprising
the works of Shakespeare and the King James Bible (multi threaded)

• pmd - analyses a set of Java classes for a range of source code problems

• xalan - transforms XML documents into HTML (multi-threaded)

The graphs shown are interesting samples showing trends and anomalies over all the bench-
marks. Appendix B.1 shows all relevant graphs generated. There is also tabulated numerical
data shown in Appendix A. We also should note that we have called the tracing rate mul-
tiplier k in the evaluation.

4.1.1 Indirection pointers

antlr bloat fop jython luindex lusearch pmd xalan

Non Read Barrier 5410 8121.6 1532.2 7453.2 9447.2 3074.4 5810.2 3530.8

Std Read Barrier 5465.6 10689 1660.8 9855.2 11237 28769 7922.2 42058.8

Stack Read Barrier 5989.4 17160.6 1930.6 13384 15210 32614 9966.6 60523

Std Read Barrier Ov. 1% 32% 8% 32% 19% 836% 36% 1091%

Stack Read Barrier Ov. 11% 111% 26% 80% 61% 961% 72% 1609%

Table 4.1: Table demonstrating end to end times for benchmarks and the overhead caused
by the read and the stack read barrier

The results show a very interesting pattern occurring. The read barrier is very costly, in
fact, the standard read barrier has a higher cost than indicated in the Blackburn et al. paper
[15]. This is probably due to our unconditional read barrier not being fully unconditional
due to need of a null check 3.1.1. The di�erences between the single threaded benchmarks
can be explained due to a more reads in the bloat, jython and pmd benchmarks. This will
result in more read barrier hits and thus higher overheads.

The overheads for the standard read barrier increase by a factor of 8-10 in the multi-
threaded benchmarks (xalan, lusearch). This is somewhat strange and probably indicates
a synchronisation issue with the barrier. However the code in the barrier is quite simple so
there may be an underlying synchronisation issue with read barriers in Jikes. Unfortunately
we have not had time to fully debug this issue and have not come to a full conclusion.

The Stack based read barrier is, as expected, worse than the standard read barrier. Now
as the costs are imposed on object compares, casting and other operations there will be a
lot more chances to cause overhead. On average there is 37.2% additional overhead over the
single threaded benchmarks and a 118.4% increase over all benchmarks. The benchmarks
increase with a range of 16 - 48% which follows from the benchmarks complexities.

4.1.2 Incremental Mark Sweep

We will now evaluate our incremental mark-sweep collector. We will be doing the following
analysis outlined in 4.2.
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Analysis Desired outcome

1. Varying k analysing overhead,
maximum pause time and average pause

time

Investigating the e�ects of varying k on
these three criteria and also comparisons

between stop the world collector
2. Doing the same on the IncMS with a

mark-bit
Investigating the e�ects on these criteria

based on using a mark-bit
3. Analysing overhead, maximum pause

time and average pause time for
time-work based approach varying k for

di�erent times

Establishing the costs of the time-work
based approach.

4. Analysing the pause time distribution
and average mutator utilisation of the
incremental mark-sweep both work and
time-work based for �best� values of k

and time.

Evaluate the potential for the
approaches.

Analysing MMU for our work-time
based approach.

Evaluating the e�ectiveness of time-work
based approach on MMU.

Table 4.2: Table analysing the experiments for incremental mark-sweep

4.1.2.1 Experiment 1

The overhead �gures (Figure 4.1) tend to follow a trend of decreasing as k is increased as
seen in 4.1d. This is to be expected as when the incremental grain size is increased there will
be less GC cycles and so the costs associated with switching between GC and the program
are reduced. There is a large drop when increasing the grain size from 300 to 3000 this shows
that a small increase in the grain size can cause the overhead to shift quickly. The question
may be asked why do we not set k to in�nity as the trend shows lower overheads for higher
values of k. If we did this it would increase the grain size so much that our collector would
work like a STW collector with a rescanning roots phase which would put overheads higher
than that of a STW collector. This is demonstrated in the graphs for antlr 4.1a seeing an
upward trend for k=30000.

The jython �gures 4.1c seem the most out of place of all the results with a large spike at
k=3000. On investigation jython succumbs to a large issue with the logging write barrier,
in that if a large number of writes occur between incremental cycles a large amount of extra
scanning must be done.

Maximum pause times (Figure 4.2) are quite application dependent. These maximums
are centered around the rescanning roots portion of collection. This is because currently
there is no incremental scavenging of soft, weak and phantom references. This portion of
collection will therefore take longer than the other portions. However our maximum pause
time is signi�cantly lower than that of the STW collector by an average of 52% for k =
3000. This is a good result as this is one of the main points of an incremental collector.

Figure 4.2a shows the general trend of the maximum pause time going down k is in-
creased. This is to be expected as at greater ks the collector will do more work at each
incremental step. This means there will be fewer chances for the write barrier being hit and
allocations to occur. Therefore there will be a lower chance of a spiked pause time from a
spike of writes or allocations. However 2 benchmarks follow the pattern in 4.21b. On closer
inspection we see that at this k the write barrier is hit a lot between 2 incremental cycles
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Figure 4.1: Results for overheads, Incremental Mark-Sweep on single core using the work-
based approach
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Figure 4.2: Results for maximum pause times, Incremental Mark-Sweep on single core using
the work-based approach
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Figure 4.3: Results for average pause times, Incremental Mark-Sweep on single core using
the work-based approach

causing this peak. It should be noted however that the maximum pause time is still lower
than that of the baseline garbage collector.

The average pause times (Figure 4.3) follow a tread of a higher average as k is increased.
This follows from the fact that as k is increased the coarser incremental grain size becomes.
This in turn will cause less incremental collections to occur and thus the average collection
time to go up. These averages are signi�cantly lower than the STW versions at an average
of 2.8% of the original.

The outlier to this trend is xalan 4.3b. This is in line with the maximum pause time being
very high for k = 3000. Again this is due to a large number of writes between incremental
phases causing the amount of work needed to be done to spike. The use of a Mark-Bit
should stop this.

Conclusion The mark-sweep work-based approach enables us to shorten the average and
maximum pause time signi�cantly. However it does increase overhead compared with the
baseline version but this is to be expected with �real-time� collectors. The best trade-o�
between overhead and pause times at k = 3000. An issue with this approach is it is not
resiliently to sudden bursts of writes. This should be amended with the addition of a mark-
bit.

4.1.2.2 Experiment 2

The total overheads (Figure 4.4) of including the mark-bit on the whole cause an increase
in overheads. This is to be expected as due to the increased cost of the write barrier now
having a check on the mark-bit.

The maximum pause times (Figure 4.5) from the mark bit versions are lower than the
mark bit. This is to be expected as with the mark-bit there is a lower chance of a sudden
burst of writes causing a pause time spike. An excellent example of this is shown for the
xalan benchmark at k = 3000 (Figure 4.5d). For the original example (Figure 4.2c) there is
a large spike a k = 3000. In the mark-bit version (Figure 4.5d) this spike has been removed.

The average pause time is essentially the same with the exception of xalan (Figure 4.5d).
Xalan we see a big drop at k = 3000 which is excellent as it shows that the mark-bit is doing
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Figure 4.4: Results for overheads, Incremental Mark-Sweep with mark-bit on single core
using the work-based approach
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Figure 4.5: Results for maximum pause times, Incremental Mark-Sweep with mark-bit on
single core using the work-based approach
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Figure 4.6: Results for average pause times, Incremental Mark-Sweep with mark-bit on
single core using the work-based approach
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Figure 4.7: Results for overheads, Incremental Mark-Sweep on single core using the work-
time approach

its job reducing the work incurred by the write barrier.

Conclusion These results show that using a mark-bit tends to lend itself to better results
with respect to pause times. From now on the collectors will utilise the write barrier with
a mark-bit unless otherwise stated.

4.1.2.3 Experiment 3

The overheads for work-time 4.7 tend to be quite random. This is to be expected as the
work-time approach is very susceptible to bursty allocations and bursty writes. Changing
k can have a better or a worse a�ect dependent on benchmark. This is due to the k value
being more e�ective due to a more aggressive tracing rate algorithm. As such the e�ect of
having a k that is too large much sooner than for the work-based approach.

An average decrease in overheads is observed when compared to the standard work based
approach. This is good as it shows that and increase in mutator utilisation shows a decrease
in overheads. The only one where this does not follow is antlr. This is due to this being a
very short running benchmark and an increase in mutator utilisation would not cause have
much of an impact on pause times.
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Figure 4.8: Results for maximum pause times, Incremental Mark-Sweep with mark-bit on
single core using the work-time approach
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Figure 4.9: Results for average pause times, Incremental Mark-Sweep with mark-bit on
single core using the work-time approach

The general case for maximum pause time shown in 4.8a shows an increase in k causes
an increase in pause times. These pause times come from the stack rescanning phase which
has little to do with k. We were unable to pro�le this issue and are unsure why it has
occurred.

Generally the time periods stack, with the higher time at the top and the smaller at
the bottom. This is due to a larger window occurring before the rescanning phase. As the
maximum pause times lie here there generally is more work at this point due to this larger
window. However in some situations 4.8b this does not happen. In this situation on further
investigation we found that at k = 3000 for the 10ms time that a forced collection was
incurred causing the max pause time to spike. This demonstrates that there is no set k and
t con�guration that will work for all applications and they need to be tuned appropriately.

The average pause time results (Figure 4.9) shows the pattern you would expect with
average pause time increasing as k increases and as the time is increased. However the jump
from k = 300 to k = 3000 is very large. This shows again that the tracing rate is more
aggressive than the work-based approach.
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Figure 4.10: Pause time distribution for Incremental Mark-Sweep work-based k = 3000 (non
omission)

Conclusion Overall that work-time increases the mutator utilisation and thus decreases
overheads. However it is more susceptible to poorly con�gured k value causing poor per-
formance. This approach is e�ected by �bursty� write and allocations more so than the
work-based approach due to an increase in the possible window for this to occur.

4.1.2.4 Experiment 4

In this experiment we are trying to show the potential for the di�erent approaches. We
speculate on certain measures by modifying the data sets. To begin analysis of the pause
time distribution of the incremental work based collector is undertaken.

In Figure 4.10 two groups of pause times have formed, one between 0.5 - 6 ms and one
between 10 - 15 ms. The ones at the lower end will be the pause times caused by the
incremental trace work and the ones at the top end will be the root set evacuation and the
rescanning phase. Figure 4.11 shows the pause time distribution minus the root rescanning
and the initial root evacuation phase. This will somewhat emulate the pause times which
could be achieved if incremental stack scanning were implemented 4.2.3.1.

The omitted version shows that the pause times for this collector are signi�cantly lower
than that of standard STW Mark-Sweep. The graph also demonstrates that if we were to
implement future work outlined in 4.2.3.1 it could be possible to have sub 10ms pause times.
This is because with incremental stack scanning the cost of the initial scan would no longer
be incurred.

Figure 4.12 shows an example of the average mutator utilisation. This is calculated by
taking set window sizes and seeing how long the mutator was running for during that time
span. This graph shows that the work based approach allows the mutator to run for short
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Figure 4.11: Pause time distribution for Incremental Mark-Sweep work-based k = 3000
(omission)
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Figure 4.12: Average Mutator utilisation for Incremental Mark-Sweep work-based k = 3000
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Figure 4.13: Pause time distribution for Incremental Mark-Sweep time-work based approach
k = 300 t = 5ms (omission)

amount of times between incremental cycles demonstrating the incremental nature of this
approach. This also shows when collections occur. Comparing this to the standard MS the
incremental approach has better mutator utilisation.

Figure 4.13 shows that the work-time based version of the pause time distribution graph.
Notice that this style of collector has higher pause times than the work based approach.
This is due to the mutator having a set amount of time to do work between incremental
cycles. There are quite a few times in excess of 10ms and these tend to be due to the work
calculation not keeping up with the allocation rate. In Figure 4.14 there is an example of a
benchmark having a forced collection causing a large pause time. This a�ect only occurs at
the beginning of collection due to poor estimates of the amount of scavenging needed to be
done. A possible solution to this for the future would be to make the �rst few phases more
aggressive in collection and then scale this back over time.

Figure 4.15 shows a picture that di�ers to the work based approach. The work based
approach never dropped below 20% mutator utilisation for this benchmark. This has not
been then same for the work-based approach dropping to 0% at some points. However this
is somewhat mitigated by the mutator jumping much higher in between incremental steps.
The full garbage collection cycles take slightly longer than the work-based approach. This
will be due to the mutator window causing more work for the collector. It should be noted
that these �gures are not better than the work-based but we have not had time to tune the
work time parameters.

Conclusion The incremental mark-sweep approach has a great deal of promise. It has
good �real-time� characteristics and consistently outperforms the standard mark-sweep col-
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Figure 4.14: Graph demonstrating pause time distribution for IncMS time-work based ap-
proach k = 300 t = 5ms (omission)
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4.1.2.5 Experiment 5
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Figure 4.16: MMU for Incremental Mark-Sweep work based k = 3000
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Figure 4.17: MMU for Incremental Mark-Sweep time-work k = 300 t = 5ms

MMU is calculated similar to the average mutator utilisation. A window is chosen and the
lowest mutator utilisation is recorded. This window is then increased and the �gure is taken
again. This demonstrates what percentage the MMU is for a certain interval. The �gures
show that the MMU of the work-time based approach is better than that of the work-based
approach. This is show by the MMU graph of the work-time approach increasing from 0%
before the work-based. Observe that generally the percentage is higher at all intervals.

Conclusion This shows that our work-time approach is better than that of the traditional
work-based approach. If the minimum pause time was decreased this could be further
improved on the MMU.

4.1.3 Incremental Parallel Mark-Sweep

We know evaluate the parallel incremental mark-sweep collector. Figure 4.18 shows the
experiments we will conduct for incremental parallel mark-sweep.
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Analysis Desired outcome

1. Varying number of cores for k=3000
analysing overhead, maximum pause

time and average pause time

To establish the e�ect on vary the
number of processors on these statistics

comparing them to using a single
processor

2. Varying the number of cores and
times for k=300 analysing overhead,

maximum pause time and average pause
time

To establish the e�ect on these statistics
when more cores are added in the

work-time approach

3. Analyse pause time distribution and
average mutator utilisation for best

con�guration of cores

To discuss the potential of this approach

4 Compare the MMU for the best core
con�guration with that of a single core.

To discover if adding more cores has an
e�ect on MMU

Figure 4.18: Table showing experiments for Incremental Parallel Mark-Sweep

4.1.3.1 Experiment 1

The overheads (Figure 4.19) in the general case (Figure 4.19b) show a large spike in over-
heads for 2 cores. Intuitively adding more cores would yield better results however this is
not the case. The reason for this is that there is a set amount of extra overhead needed in
a parallel collector to co-ordinate many threads. In the case of Jikes this can be seen in the
Phase stack handling as after each phase all threads must synchronise. This in combination
with the large numbers of GC cycles, caused by incremental collection, pushes the overheads
of parallel garbage collection beyond the increase in tracing rate.

However there is a drop below the original overhead when the collector uses 4 cores.
This shows that 4 cores does enough work to o�set the overheads of parallel collection.
A decrease tends to occur at 8 cores however this time it is much less than 4 to 8 cores.
Sometimes an increase occurs at 8 cores (Figure 4.19c). This will be due to the overheads
needed to co-ordinate the collector threads is greater than the increase in tracing.

Figure 4.20b shows the general pattern for the maximum pause times with a increase
from 1 - 2 cores and then a decrease using 4 and 8 cores. This is due to the same reason as
for the overheads however it is magni�ed somewhat as these maximum pause times occur
at the root evacuation and the root rescanning phases which have larger phase stacks and
thus more synchronisation points.

Note that the decrease slows a lot between 4 and 8 cores. This is due to the amount
of extra work which can be done with 8 cores, not o�setting the inherent costs of synchro-
nisation between collector threads. However if a larger heap size was used there would be
a greater decrease as there would be more work to do and having more cores would be
bene�cial.

The averages 4.21 for parallel incremental mark-sweep come in two di�erent variants.
First the average increases linearly as the cores are increased 4.21a. This makes sense as
when the number of cores are increased, the number of pauses will decrease and so the
average will increase. The second pattern 4.21b shows again a spike at 2 cores similar to
max pause and overhead general pattern. This will be due to the expense incurred using 2
cores vs. 1 core.
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Figure 4.19: Results for overheads, Parallel Incremental Mark-Sweep using work-based k =
3000 varying cores
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Figure 4.20: Results for maximum pause times, Parallel Incremental Mark-Sweep using
work-based k = 3000 varying cores
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Figure 4.21: Results for average pause times, Parallel Incremental Mark-Sweep using work-
based k = 3000 varying cores
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Figure 4.22: Results for overheads, Incremental Mark-Sweep using work-time k = 3000 t =
5ms varying cores

Conclusion Overall putting the collector in parallel more cores are needed to o�set the ex-
tra overheads caused by parallelisation. However generally the statistics are better standard
mark-sweep version despite these problems.

4.1.3.2 Experiment 2

The overheads 4.22 for parallel mark-sweep work-time based show a variety of results. Graph
4.22b is expected to happen, with overheads falling as more cores are added. However some
graphs 4.22a do not show this at all and actually appear quite random. We have not had
time to explain this and it requires further investigation however it does seem to demonstrate
that the core con�guration could be application speci�c.

The graphs for max pause times 4.23 are somewhat erratic like the overheads. However
there tends to be a decrease in pause times for 2 cores but then an increase for 4 and 8.
Again we are unsure of why this has occurred. Looking at the raw pause times these pauses
are on the root rescan phase. Normally this is expected to go down with more cores. It
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Figure 4.23: Results for maximum pause times, Parallel Incremental Mark-Sweep using
work-time k = 3000 t = 5ms varying cores
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Figure 4.24: Results for average pause times, Incremental Mark-Sweep using work-time k
= 3000 t = 5ms varying cores

could be due to thread synchronisation overhead caused by the syncing in the transition
between phases, but this is just speculation.

Average pause times (Figure 4.24) tend to decrease with 2 cores. This makes sense as on
average the time needed to do the two most expensive phases of collection (root evacuation
and root rescanning) will be cut. We then see the average move back up with more cores
which also makes sense as when we increase the number of cores we will have less GC cycles
and as such a higher average.

4.1.3.3 Experiment 3

Figure 4.27 shows, as for the single core version, 2 distinct groups of pause times. As for
the single core version this will be one set (the higher one) for the root scan and root rescan
phases; the other for the incremental phases. Similar to the single core version with omission
(Figure 4.26) of the start and end phases of collection there are much lower pause times
than before. The distributions of the pause times are now lower than in the single core
version due to more work is done in each incremental phase. This will cause there to be less
incremental cycles which means there is less chance for the write barrier to be triggered.
This means that less work will need to be done and thus the lower pause times occur.
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Figure 4.25: Pause time distribution for Parallel Incremental Mark-Sweep work-based k =
3000 8 Cores (non omission)

Figure 4.27 shows the pause time distribution for the work-time approach. When com-
paring it with the work-based we see that the work-time approach has lower pause times.
This is di�erent to the single core results where work-time overheads increase. We believe
this to be because the parallel approach causes signi�cantly fewer GC cycles. This means
that the pauses of the work-time caused by the write barrier or allocations are less likely
and as such there are lower pause times.

64



 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.001  0.01  0.1  1  10  100  1000  10000

F
re

qu
en

cy

Pause time (milliseconds)

Incremental Mark Sweep Work Based jython 8 core (Omitted)

IncMS8

Figure 4.26: Pause time distribution for Parallel Incremental Mark-Sweep work based k =
3000 8 cores
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Figure 4.28: Average mutator utilisation for Parallel Incremental Mark-Sweep work-based
k = 3000 t = 5ms
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Figure 4.27: Pause time distribution for Parallel Incremental Mark-Sweep work-time based
k = 3000 t = 5ms 8 cores

The average mutator utilisation (Figure 4.28) demonstrates where the potential lies in
the multi core approach. Compared to the single core approach drops are shorter than
in the single core version. This shows that the multi core approach gives better average
mutator utilisation than that of a single core which is an important real-time characteristic.
An increase in window size would have given more interesting results but we wanted a
comparison with the single core version to keep things consistent.

Conclusion The work-time approach is better overall than the work-based approach when
run in parallel. This is promising and we hope to see the work-time preform well in Exper-
iment 4 4.1.3.4 like in the single core tests. This will verify that our work-time approach is
better than work-based collection.
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4.1.3.4 Experiment 4
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Figure 4.29: MMU for Parallel Incremental Mark-Sweep work based k = 3000 8 cores
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Figure 4.30: MMU for Parallel Incremental Mark-Sweep work-time based k = 3000 t = 5ms
8 cores

In Figures 4.29 and 4.30 we see the MMU for the work-based and work-time based ap-
proaches. First both are better than there single core counterpart which demonstrates that
increasing core improves MMU. When we come to analyse them individually we see that
the work-time approach is signi�cantly better than the work-based counterpart. This will
be because the extra cores doing work combined with the work-time approach give the mu-
tator more space than work and thus increasing MMU. This demonstrates that the parallel
incremental mark-sweep collector exhibits excellent real-time characteristics.

4.1.4 Incremental Copy Collector

We will now evaluate our incremental copying collector. We have carried out the experiments
outlined in 4.3:

68



Analysis Desired outcome

1. Varying k analysing overhead,
maximum pause time and average pause

time

Investigating the e�ects of varying k on
these three criteria and also compare
with stop the world collector. This will

give us our �best� k value.
2. Analysing overhead, maximum pause

time and average pause time for
time-work based approach varying k for

di�erent times

Establishing the costs of the time-work
based approach when applied to an
incremental copying collector and

establish our �best� k and time value.
3. Analysing the pause time distribution

and mutator utilisation of the
incremental copying both work and
time-work based for �best� values of k

and time.

Evaluate the potential for the
approaches.

4. Analysing MMU for our work-time
based approach.

Evaluating the e�ectiveness of time-work
based approach on MMU.

Table 4.3: Table analysing experiments for the Incremental Copying Collector

4.1.4.1 Experiment 1

The overhead �gures 4.31 are particularly high for incremental copying collection. This is
somewhat expected as the cost of the stack based read barrier is very high. If we subtract
this cost we get an average overhead of 40%. This is more in line with the overhead �gures
of incremental mark-sweep.

The maximum pause times (Figure 4.32) are also a lot higher than that of the incremental
mark-sweep algorithm. This is expected as copying an object to scavenge it is more expensive
than setting a mark bit. However on average there is a lower maximum pause time than
the base semi-space collector.

The average pause times generally follow the pattern of 4.33a increasing with k. Due to
the same reason as the incremental mark-sweep collector in that with a coarser grain size
fewer collection cycles will be done which will be larger and thus a higher average. The
exception to this rule is in the jython benchmark 4.33b. The reason for this is similar to the
large pause time in that when k = 3000 there is an in�ux of writes during one incremental
cycle which causes collection to be forced. Note that this did not happen on every run. This
issue is magni�ed in a copying collector due to the heap being halved.

4.1.4.2 Experiment 2

The overheads for the work-time based 4.34 approach are quite erratic. This is most likely
due to the associated randomness caused by the time-work based approach in that in any
time quanta it is unknown if a burst in allocations or writes will occur. However we have
not had time to con�rm this with more in depth analysis.

The overhead is slightly higher than the work based method. This is because more
activity is allowed between collection cycles and thus there will be higher overhead in the
root rescanning phase. Con�rmation of this was given after examining the raw results in
more detail.
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(c) luindex overheads for di�erent p's

Figure 4.31: Results for overheads, Incremental Copy using work-based varying k

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Copy K vs Max pause time jython

IncSSWB

(a) jython max pause times for di�erent p's
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(b) pmd max pause times for di�erent p's

Figure 4.32: Results for maximum pause times, Incremental Copy using work-based varying
k
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(b) jython average pause times for di�erent p's

Figure 4.33: Results for average pause times, Incremental Copy using work-based varying k
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Figure 4.34: Results for overheads, Incremental Copy on single core using the work-time
approach
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Figure 4.35: Results for maximum pause times, Incremental Copy on single core using the
work-time approach
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Figure 4.36: Results for average pause times, Incremental Copy on single core using the
work-time approach

The maximum pause time (Figure 4.35) has increased over the work-based approach.
This is to be expected as the work-time approach gives more opportunity for the mutator
to run.

In 4.35c as the time frame is increased there is a higher maximum pause times. This
follows from that as we increase t the collector will have more work to do and thus the max
pause time will increase. However overall this pattern is not followed by all the benchmarks
4.35b, 4.35a. Once again we have been unable to analyse this fully in order to say why this
is but we believe that the read barrier is slowing the collector down at such a rate that a
lot of results are unexpected.

The average pause times generally have a similar pattern 4.36a to what is expected, with
the average pause time increasing as the grain size is increased, k. What is strange is that
at the di�erent time quanta there is the same average time. As the read barrier overhead is
causing the mutators to become slower it is reasonable to assume that the number of write
barrier hits and allocation rate are less than normal. This will mean that the main reason
for di�erences between time frames will be smaller and as such the variance between the
times normally seen is not here.

The jython benchmark is di�erent to the trend. This seems to be a common theme for
jython in this set of benchmarks and is probably due to a speci�c characteristic of jython.
However we have not had time to investigate this so can only speculate.

Conclusion The bene�ts gained from the work-time approach that were demonstrated in
the mark-sweep collector are not present here. This is due to the large overhead incurred
by the stack based read barrier meaning the mutator cannot make much progress during
these time periods.
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4.1.4.3 Experiment 3
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Figure 4.37: Pause time distribution for Incremental Copy work-based k = 300 (non omis-
sion)

There are 3 separate groups in the pause time distribution graph (Figure 4.37). However
there is a group clustered from 15-5 ms. This group occurs at later portions of the program
after collection statistics have stabilised. The 1-0.5 ms is seen in the beginning of the
program. This is probably due to poor estimation of the work calculation. The other group
at 15ms+ are the primary root evacuation phase and the root rescan phase. It is interesting
to note that generally there is an increase in this pause time from the mark-sweep algorithm.
This is to be expected as scavenging in the copy collector is more expensive than in the
mark-sweep collector.
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Figure 4.38: Pause time distribution for Incremental Copy work-based k = 300
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Figure 4.39: Bad pause time distribution for Incremental Copy work-based k = 300

When the initial root scan and the root rescan phase are removed (Figure 4.38) the
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pause times are all lower than 15ms. However this is not always the case as seen in 4.39.
The reason for this is that the increased overheads of copying objects are more expensive
than originally thought. Note that our pause time distributions are still signi�cantly better
than the baseline version of the GC.
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Figure 4.40: Average Mutator utilisation for Incremental Copy work-based k = 300

The average mutator utilisation (Figure 4.40) shows that the real-time characteristics of
copy collector are not as good as the mark-sweep. This is to be expected due to the extra
overheads of copying. What is good is there is still shorter periods of drops to 0% especially
compared with the baseline version of the collector.

Conclusion Overall I think that whilst the copying collector is good it has a issues the
same core issues as the incremental mark-sweep but compounded. This is because the
tracing is now more expensive.

4.1.4.4 Experiment 4

For the MMU (Figure 4.41, 4.42) there is an interesting set of results showing increase at
around the 80ms mark. What is interesting is that this occurs on both approaches. This
is somewhat di�cult to explain and due to a lack of time we have been unable to explore
this. We believe it is due to the increased overheads of the copying collector coupled with
the extra work incurred by the work-time approach causing work-time to be no better
than work-based. However we must again stress that the work-time collector is much more
susceptible to poor choices of k and as such performance is probably being hindered by this.

76



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  200000  400000  600000  800000  1e+06  1.2e+06

M
in

im
um

 m
ut

at
or

 u
til

is
at

io
n 

%

Interval (microseconds)

Incremental Copy Work Based bloat (Omitted) MMU

MMU

Figure 4.41: MMU graph for Incremental Copy work-based k = 300
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Figure 4.42: MMU graph for Incremental Copy work-time based k=300 t = 10ms
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4.1.5 Parallel Brooks Style Incremental Copy Collector

Unfortunately due to an implementation issue the parallel copying collector was unable to
�nish several benchmarks on the machine speci�ed. We could of analysed the partial results
but felt they would be uninteresting as comparisons would be very speculative. We instead
show results gathered from the machine the collector was developed on. This machine
were: An Intel(R) Core(TM)2 Duo CPU T9400 @ 2.53GHz, with 8 GB of ram and no
swap space. The OS was Ubuntu Jaunty 9.04 ia32. The OS was running X with standard
networking connections enabled. We also ran the baseline version of the collector to do
relevant comparisons between our collector and the baseline version.

4.1.5.1 Development machine results

For the development machine we decided to concentrate on testing the real-time character-
istics of the collector. We conducted the experiments outlined in 4.4.

Analysis Desired outcome

1. Analyse the pause time distributions and
mutator utilisation for the multiple core
approach comparing to the single core

Establish if using more cores gives a bene�t
to these characteristics

2. Analyse the MMU of the multi core
approach vs the single core

Establish the e�ect on MMU of adding
multiple cores to the approach

Table 4.4: Experiments for Parallel Incremental Copying on development machine

4.1.5.2 Experiment 1

Figure 4.43 shows the pause time distribution for luindex running on 2 cores. Note the large
outlier which has occurred at around 5000 ms. On investigation this was a rescan phase
which took a particular long time. This coupled with the overhead which using multiple
cores causes a very large pause time.
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Figure 4.43: Pause time distribution for Parallel Incremental Copy work-based k = 300 p
= 2 (non omission)
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Figure 4.44: Pause time distribution for Parallel Incremental Copy work-based k = 300 p
= 2
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The omitted version (Figure 4.44) of the pause time distributions shows great potential
in the multi core approach. The pause times are all sub 5 ms. However this is not the case
for all benchmarks as can be seen in Figure 4.45. The reason for this is that xalan is a much
more demanding application when it comes to memory management. This means that more
collection work has to be done and as such there is a higher chance of larger pause times.
What could be done in the future is to estimate this pause time pre-collection and then
either opt to have each core do less work. This would mean that there would be more GC
cycles but shorter pause.
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Figure 4.45: Bad pause time distribution for Incremental Copying work-based k = 300 p =
2

Figure 4.45 shows a worse pause time distribution than what occurred in Figure 4.44. In
general there is a sub 15 ms pause time. This is good however the outliers, which lie between
20-80 ms, cause the overall maximum to be greater. The reason for these higher values is
due to the tracing rate not keeping up with allocation and write barrier hits cause a spike
in the amount of tracing rate to do. It is very hard to mitigate this. With the multi-core
approach we could make collectors do work which scales with spikes to smooth them.
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Figure 4.46: Average Mutator utilisation for Incremental Copy work-based 2 cores
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Figure 4.47: Average Mutator utilisation for Incremental Copy work-based 2 cores

Figures 4.46 and 4.47 show the average mutator utilisation for xalan and luindex. Notice
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Figure 4.48: Average Mutator utilisation for Incremental Copy work-based single core

the large di�erence between the two graphs and this is largely due to the di�erences between
the two benchmarks (xalan is multi threaded and long running while luindex is shorter
running and not multi threaded).

Figures 4.48 and 4.49 are the same benchmarks for a single core. Notice that the total
time for each benchmark to run decreases in the 2 core version by 64% for xalan and 92%
for luindex. This indicates that the multi-core approach will greatly decrease overheads for
the Incremental Copy collector.

Generally the mutator utilisation is higher in the multi-core graphs. This is especially
apparent when comparing luindex. This shows that the real time characteristics of the
multi-core are better than that of the single core.

The number of spikes in the single core approach is much greater than the multi-core.
This will be because of one of the multi-cores aim to reduce the number of GC cycles and
thus reduce overheads.

Conclusion Over these results the multi-core has much better real-time characteristics
than the single core. This e�ect appears much greater than in the mark-sweep collector.
This will be because the cost of scavenging is greater in the copy collector and thus adding
extra core would be more useful than in mark-sweep.

4.1.5.3 Experiment 2

Figures 4.50 and 4.51 show the MMU for the luindex benchmark. Here the MMU for the 2
core outstrips that of the single core. Demonstrating the �real-time� characteristics of the
multi-core approach are better than the single core. This is the same as for the parallel
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Figure 4.49: Average Mutator utilisation for Incremental Copy work-based single core
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Figure 4.50: MMU for Incremental Copy work-based single core
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Figure 4.51: MMU for Incremental Copy work-based 2 cores

incremental mark-sweep. We hypothesise that this trend would continue up to 8 cores.
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4.2 Conclusions

4.2.1 The Collectors

We have given back two incremental collectors to the Jikes comunity. Our collectors out-
perform the baseline version over all aspects of analysis. Whilst there was an increase in
overhead due to our approach this is to be expected from a �real-time� garbage collector.
We have also shown the impact of adding more cores to garbage collection does not always
give preferable results largely due to implicit overhead caused by parallel garbage collection.
What we do tend to �nd is that for a certain core con�guration dependent on heap size we
get a performance increase from the multi-core approach.

We have shown that our approaches have potential to achieve constantly shorter pause
times (sub 10ms for the platforms described) for both style collectors. Also we have shown
that �real-time� characteristics for collectors become signi�cantly better with multiple cores
than on a single core despite an increase in overheads.

We also proved that our new work-time based metrics for the incremental tracing rate
shows better �real-time� characteristics than the classic work-based approach. This is
promising however what would be good to do is now evaluate the work-time approach
against pure time based incremental tracing.

4.2.2 The Framework

The main contributions of this project is a new framework for building incremental collectors.
This has been given back to the Jikes community in the form of a set of incremental sub-
plans. This framework will allow future developers to create their own incremental garbage
collector. This will grow Jikes as a platform for developing �real-time� garbage collectors.
We have demonstrated the frameworks extensibility through the use of it in construction
our two garbage collectors.

4.2.3 Future work

4.2.3.1 Extensions to the current collectors

The current collectors have several features that could be extended. The �rst is our new
parallel work balancing mechanism. In this we would have each collector thread have their
own scavenge deque. The collector threads would use these until they were exhausted after
which they would �steal� work from other collectors. The stealing mechanism would take
from the tail of the deque so that it did not interfere with the collector. This would need
some locking to ensure that no two collector threads get the same piece of work. The
processes from which to steal would be determined from a centralised counter which would
be incremented each time a collector thread needed to steal.

As the evaluation showed, the collectors main issues where with the pause times in the
beginning and end where we had to scavenge and then rescavenge the root set. In order to
alleviate this we could incrementally scavenge the stack. This would enable us to spread
the cost of the associated pauses.

The read barrier overhead was increased due to a need to do a null check on objects.
This could be �xed with a dummy null object which always had an indirection pointer.
With this we could also use our linked list object storage method for write barriers.
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4.2.3.2 Incremental Immix

We have now created a framework for developing incremental collectors. However, currently
the collectors we have made are well known and widely used. To demonstrate the usefulness
of this collector further we could apply our incremental framework to a more novel collector.
An excellent candidate for this would be the Immix collector[16]. This is already made in
the VM.

The main plans for future work can be outlined as follows:

• Make Immix extend the incremental plan: This will be similar to how it was
done for the mark-sweep plan.

• Create a logging write barrier: This barrier will be active during collection cycles
so that if any writes occur that object can be rescanned.

• Make the defragmentation step incremental: Immix works by occasionally de-
fragmenting memory in an e�cient manner this defragmenting could be made to be
incremental by splitting it into smaller chunks similar to splitting the closure stage of
the other collectors.

4.2.3.3 A Collector Similar To The Metronome

Currently we have created two incremental collectors. One that is fragmenting but fast and
one that is defragmenting but slower. As such we have the building blocks to create a more
advanced collector combining these. This would be a collector similar to the metronome
collector[10].

Below is an outline of the main features of the Metronome and implementation speci�cs.

• Combining the Incremental Semi-space and Mark-Sweep together: We will
�rst have to determine when a certain threshold of fragmentation has been reached.
This could be done with a time di�erence between separate collection cycles or how
long it took the mutator to allocate a new object on the heap last allocation. Then a
method to utilise two collectors in one space. This should not be too di�cult as Jikes
allows users to rebind the collector to a di�erent space on-the-�y. The problem will be
that semi-space collectors use bump pointer allocation and mark-sweep uses free lists.
We could use both or create a way to merge the two dependent on cycle. Finally we
need a way to switch the barriers dependent on what space is currently live. It will be
simpler to use a boolean in order to change what code is utilised however it could be
possible to implement cloning like in STOPLESS which is the more desirable method.

• Creating Stacklets/Arraylets: By doing this it allows the collector to incremen-
tally scan the stack and arrays. Arraylets should be made �rst �rst as it has less
impact on how the collector as a whole works. The implementation of an array can
be seen in: RVMArray. There needs to be a way of being able to split the array into
smaller chunks and scan the array chunk at a time. Stacklets will be a lot harder to
create in Jikes due to it being implemented at a very low level. The current imple-
mentation of the stack is split into a few sections: StackBrowser used to explore the
stack, StackManager used to manage the compiler-speci�c portion of the stackframe,
StackTrace describes the state of the call stack at a particular instance, StackframeLay-
outConstants constants used to represent the stack note this is architecture speci�c.
These will need to be reimplemented so that we can scan the stack section at a time
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it should be noted that linking the stack together when it is partially between to and
from space during a copy cycle will be particularly hard and may need extra pointers
in the header of the stacklets.

• Time based scheduling: This is the least desirable of these three points however
also probably easiest to implement. A new scheduling algorithm will be created that
is time-based. To do this you will need to utilise Timer objects. This algorithm would
allow us to evaluate the time-based approach against our work-time approach.
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Appendix A

Evaluation Results

Note some tables have been omitted for brevity
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Table A.2: 1 core avg pause
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Table A.3: 1 core max pause
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Table A.4: 2 core run time
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3
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1
9
7
3
3
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1
5
0
7
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3
3
8
8
0
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2
1
4
9
8
.0

Table A.5: 2 core avg time
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1
1
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3
6
1
.0

9
5
2
8
2
.0

Table A.6: 2 core max pause
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Table A.7: 4 core run time
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Table A.8: 4 core max pause
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Table A.13: Running Time 1 core
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Table A.14: Avg pause times 1 core
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Table A.15: Max pause times 1 core
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Appendix B

Evaluation Graphs

Note some graphs have been omitted for brevity
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B.1 Overhead, Average and Max Pause Graphs
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Figure B.1: Graphed results for overhead on single core

105



 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time antlr

IncMSWB

(a) antlr maximum pause time graph

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time bloat

IncMSWB

(b) bloat maximum pause times

-1.01

-1.005

-1

-0.995

-0.99
 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time fop

IncMSWB

(c) fop maximum pause times

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time jython

IncMSWB

(d) jython maximum pause times

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time luindex

IncMSWB

(e) luindex maximum pause times

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 27000

 28000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time lusearch

IncMSWB

(f) lusearch maximum pause times

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 36000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time pmd

IncMSWB

(g) pmd maximum pause times

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  5000  10000  15000  20000  25000  30000

M
ax

 p
au

se
 ti

m
es

 (
m

ic
ro

 s
ec

on
ds

)

K value

Incremental Mark Sweep K vs Max pause time xalan

IncMSWB

(h) xalan maximum pause times

Figure B.2: Graphed results for maximum pause time on single core
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Figure B.3: Graphed results for average pause times
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Figure B.4: Graphed results for overhead on single core
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Figure B.5: Graphed results for maximum pause time on single core
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Figure B.6: Graphed results for average pause times
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B.1.3 Incremental Mark-Sweep time-work
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Figure B.7: Graphed results for the overhead of the time-work based approach
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Figure B.8: Graphed results for maximum pause time of the time-work based approach
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Figure B.9: Graphed results for average pause time of the time-work based approach
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B.1.4 Parallel Incremental Mark-Sweep
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Figure B.10: Graphed total overhead for varying core work based k = 3000
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Figure B.11: Graphed max pause times for varying core work based k = 3000
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Figure B.12: Graphed avgerage pause times for varying core work based k = 3000
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B.1.5 Parallel Incremental Mark-Sweep Work Time
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Figure B.13: Graphed total overhead for varying core work based k = 3000
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Figure B.14: Graphed max pause time for varying core's k=3000
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Figure B.15: Graphed avgerage pause times for varying core work based k = 3000
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B.1.6 Incremental Copying Collector
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Figure B.16: Graphed total overhead for varying core work based k = 3000
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Figure B.17: Graphed max pause times for varying core work based k = 3000
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Figure B.18: Graphed avgerage pause times for varying core work based k = 3000
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B.1.7 Incremental Copying Collector work-time
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Figure B.19: Graphed total overhead for varying core work based k = 3000
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Figure B.20: Graphed max pause times for varying core work based k = 3000
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Figure B.21: Graphed avgerage pause times for varying core work based k = 3000
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B.2 MMU, Average CPU utilistaion and Pause Time
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Figure B.22: Pause time distibution �gure for IncMS Work based k = 3000
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Figure B.23: Pause time distribution �gures for IncMS Work based k = 3000 continued
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Figure B.24: Average CPU utilisation for IncMS Work based k = 3000
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Figure B.25: Average CPU utilisation for IncMS Work based k = 3000 (Continued)
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Figure B.26: Average CPU utilisation for IncMS Work based k = 3000 (Continued)
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Figure B.27: Average CPU utilisation for IncMS Work based k = 3000 (Continued)
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