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Abstract

In the context of linear optimisation with unknown parameters, George B. Dantzig first intro-
duced Stochastic Programming in his 1955 paper[1] as a framework for modelling optimisation
problems characterised by recourse decisions. Since its conception, the framework has become
the progressive approach to decision-making under uncertainty.

Stochastic programming problems by nature are dynamic, which makes the computational
complexity of the algorithms to solve such problems #P-hard[3]. An innovative approach, to
overcome the computational intractability of stochastic programs, has been to radically simplify
the recourse decisions to affine functional forms termed linear decision rules. Despite providing
scalability to multi-stage models, this method is not widely used. The prevailing issue is the
hindrance placed on the modeller to derive the conic program approximations.

This project is driven by the aim to alleviate the burden placed on the modeller, and to make
the linear decision rule approximation approach widely accessible to industrial modellers, whe-
reby system-specific knowledge should be sufficient for all intents and purposes. To achieve
this, we propose to design an algebraic modelling language for intuitively describing stochastic
programming models in an expressible format. A parser will also be written to read models
specified in this standardised format. By representing the parsed input in a highly condensed
and efficient structure, we can efficiently generate and solve the conservative and progressive
conic programming instances. The computed solutions of these auto-generated linear programs
will provide the modeller with the upper and lower bounds of the true optimal decisions, which
can then be used to quantify the loss of optimality incurred.

Project Archive: http://www.doc.ic.ac.uk/~ca106/jada.tgz/

http://www.doc.ic.ac.uk/~ca106/jada.tgz/
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1
Introduction

We often regard decision-making as an optimisation problem that takes place over finite time.
Approaches to selecting the optimal decisions for such a problem often begin with formulating
the underlying model as a deterministic optimisation problem, whereby all the parameters are
known to the decision-maker. While this methodology is plausible, it will obviously be limited
in its applicability to real, every-day decision-making problems. In reality, we as human-beings
are required to choose the best-course of action in situations subject to an indeterminism that
emerges from inaccurate measurements, unavailable data or impalpable outcomes. Thus, our
choices become measurable functions of the random elements, and we term such choices as
recourse decisions or decision rules.

1.1 A Historial Perspective
In the context of linear optimisation with unknown parameters, George B. Dantzig first intro-
duced Stochastic Programming in his 1955 paper [1] as a framework for modelling optimisation
problems characterised by recourse decisions. In 1962, Benders formalised a method for opti-
misation under uncertainty[11]. Since its conception, stochastic programming has become the
modus operandi for decision-making under uncertainty, and has been expended in a miscel-
lany of application areas such as finance[5], manufacturing[13], transportation[14] and economic
policy[15], to name a few. When compared with modelling techniques such as statistical decision
analysis, in a large number of application areas, stochastic programming has been proven to
be a far superior paradigm to its deterministic predecessors for modelling optimisation problems.

Stochastic optimisation problems are characteristically dynamic, which makes the computa-
tional complexity of the algorithms to solve such problems #P-hard[3]. In light of this, the
traditional approach has been to substitute the underlying process with a discretized approxi-
mation known as a scenario-tree. In this compact representation, the decision-maker is able
represent the multitude of possible paths as branches that spurt from observations of random
events. However, this method heavily relies on the modeller possessing the exact knowledge of
the underlying probabilities, and reality informs us that these scenario probabilities are consi-
derably complex to calculate accurately[6]. While we could use prior knowledge or heuristics to
specify a distribution, the variables representing the optimal decision policies might be pertur-
bed by such assumptions. Another limitation of the scenario-tree approximation is that scenario

1



1.2 RECENT APPLICATIONS OF OPTIMISATION UNDER UNCERTAINTY 2

trees grow exponentially with the number of stages.

In consideration of the above, rather than replacing the underlying process with a discrete
stochastic process, the functional form of the decision rules can be radically simplified to linear
decision rules. One of the advantages of performing this simplification is that the problem
formulation can now be scaled to decision-making problems with multiple stages. However, this
benefit arises at the expense of accuracy. By constraining the feasible region to those decision
rules that are affinely dependent on the random parameters, we impede our opportunities of
finding the actual optimal decision. As a result, the best solution found using linear decision
rules may not be reflective of the true optimality with respect to the original problem.

1.2 Recent Applications of Optimisation Under Uncertainty
Early applications of stochastic programming include Ferguson and Dantzig’s airline fleet-
assignment model with stochastic demand[4], which was developed after previously formulating
the same model for deterministic demand. This stochastic programming framework models how
one should designate particular planes to routes of scheduled flights. In this model, the objective
is to maximise the expected revenue in accordance with a probability distribution representing
the demand for passengers on each journey. Since this first application, stochastic programming
has manifested in different sectors of industry. We briefly present a few examples below.

Sport (Batting Order)

Stochastic programming also has an application in baseball. The optimisation problem in
question relates to how we can compute the optimal order in which a group of nine outfield-
players should bat, where such an optimal order can increase a team’s total number of wins by
three per season. To contexualise the significance of this, the Major League Baseball playoffs
provide huge financial rewards and remarkably 10% of the teams missed the 1998 playoffs
by three or less wins[9]. Thus, baseball stochastic models capturing the uncertainty in skill
measurement can been used to robustly optimise a heuristic for batting sequences[9].

Aeronautics (Transonic Airfoil Optimization for Low Drag)

In 2002, a group of aerodynamicists at NASA initiated a research effort to decrease the drag
of an airfoil while simultaneously maintaining lift[8]. The parameter of uncertainty in this
application is the ratio of the velocity of an aircraft to the velocity of sound in the gas. This
ratio is also known as the Mach number [7]. The objective depended on minimising the mean
and the standard deviation of the drag, a function of the Mach number, while the variables
representing the lift were deterministically constrained.

Health Care (Surgery Scheduling)

The uncertainty in surgery durations means that scheduling operating rooms can be a complex
problem. So, if surgery operations exceed the expected durations, then potentially all the surge-
ries scheduled for that day can be impacted with delayed starts. Bearing in mind that operating
rooms generate the most expenditures, but also the greatest revenues for hospitals, consequences
of delayed surgeries can manifest by extra costs in hiring staff for overtime. For this reason,
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stochastic optimisation models have been used, in conjunction with practical-experience-based
techniques, to determine operating room schedules to mitigate the consequences of uncertain
surgery durations[10].

1.3 Motivation
Within this section, we aim to address the main idea that underpins this project by descri-
bing the problem and by discussing the current state-of-the-art approaches to tackling the said
problem.

1.3.1 The Problem

The decision rule approximation approach provides the ultimate benefit of scalability, but des-
pite some automation being achieved, the ultimate drawback is that a large part of the model
processing is still required to be manually performed by the modeller. For example, the ma-
nual processing requires an in-depth knowledge about probability and optimisation theory to
formulate the decision rule approximations. This is in addition to a computer science back-
ground to guide the algorithmic design, code implementation and use of optimisation software
to formulate and solve instances of the generated tractable conic programs. The requirement for
the modeller to have expert knowledge in all of the mentioned disciplines to achieve their end
goal is unrealistic and discouraging. The reality is that the industrial modellers only possess
expert knowledge of the physical system to be modelled, which theoretically speaking should
be sufficient.

1.3.2 Current State of Affairs for Algebraic Modelling Languages

Stochastic programming on a large-scale goes beyond applying an algorithm to solve an op-
timisation problem. Prior to optimising an objective function, the underlying model must be
converted to an internal form that is communicable to a solver routine. In the mathematical
programming community, algebraic modelling languages (AML) have been well received as a vo-
cabulary for expressing these underlying models, whereby stochastic programming models can
be formulated by directly defining their equivalent deterministic model. Besides the possible
knowledge barrier and errancies due to manually describing such a model, stating the determi-
nistic equivalent can be cumbersome and resource consumptive. This is owing to the fact that
the sizes of stochastic programming problems are exponentially proportional to the number of
random variables and stages. In the subsequent sections, we discuss two AML implementations
named SMPS and AMPL. Models have been previously specified in these data formats and then
solved by external tools interfaced via the web-based stochastic tool NEOS Solver [19].

SMPS

Birge et al introduced SMPS, an extension of the Mathematical Programming System (MPS)
format1, for standardising the format for inputing multi-stage stochastic programs. The data

1MPS is a file format for representing and persisting linear programming and mixed integer programming
problems[16].
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format has been designed for the ease of compactly describing those large-scale stochastic pro-
grams characterised by scenario-based recourse decisions. The is currently achieved via use of
three text files[17].

• The core file specifies all the deterministic information of the problem in the MPS format.

• The time file serves to decompose the data in the core file into nodes corresponding to
discretised stages.

• The stochastics file contains meta-information about random variables, which the solver
can use to build a deterministic equivalent of the stochastic model.

AMPL

AMPL is A Modelling Language for Mathematical Programming developed at Bell Laboratories.
It offers a formal vocabulary for linear and non-linear optimisation problems through a pseudo-
symbolic algebraic and indexing notation. Optimisation problems are described via two files[18].

• The model file uses particular language constructs to declare variables for constant para-
meters. This is in addition to variables for recourse decisions, which allow for a minimised
or maximised objective function and a set of model constraints to be expressed.

• The data file encapsulates the numerical values for constants and the costs for the decisions
declared in the model file.

Integrated Environments for Decision-making Under Uncertainty

With the provision of an input format for initially specifying the model, all that remains is to
convert the input data into an intermediate representation that an invoked solver can easily
manipulate. There are many integrated environments that combine the modelling, solving and
results analysis components as sub-systems. An example of such is the Stochastic Programming
Integrated Environment (SPInE) available from OptiRisk Systems[20].

Discussion

SMPS is a good modelling tool but as pointed out by Gassmann and Schweitezer[22], this par-
ticular data format has some limitations. In particular, the subroutine construct to allow the
user to specify distribution information has never been properly developed. In addition, the
dependency structure makes the order of processing important[17], which not only complicates
the parsing routine[21] but also restricts the modeller’s choice as to how the model is described.

AMPL’s symbolic notation offers the benefit of being intuitive for mathematically-inclined mo-
dellers and being consistent and formal enough for direct manipulation by a computer system.
However, for modellers who only have system-specific knowledge, this notation is too verbose
and complicated. Besides the learning curve of using such a language, AMPL has no notion
of random parameters or variables, thereby making it impossible to model recourse problems.
Consequently, this limitation has been addressed in SAMPL, which is the stochastic extension
of the AMPL language co-developed by CARISMA and OptiRisk Systems[48].
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The fundamental limitation of using or even extending current modelling languages like AMPL,
SAMPL and SMPS is that they are biased towards scenario-based recourse problems, whereas
our focus is on distribution-based recourse problems.

1.4 Overview of Report
Chapter 2 lays the foundation for this project by first reviewing fundamental concepts relating
to optimisation and probability theory. Following this material, we go on to revise stochastic
programming by formalising a definition of uncertainty and exploring the characteristics and
types of stochastic programs. By re-introducing two particular recourse models, we can go
further to investigate how such models can be solved in light of two-stage and multi-stage sto-
chastic programs.

Chapter 3 re-presents important results from the research paper Primal and Dual Linear De-
cision Rules in Stochastic and Robust Optimisation[2]. We explain to the reader how we can
reformulate intractable stochastic programming problems to compute conservative and pro-
gressive approximations. Additionally, we work through an example application of the linear
decision rule approximation to demonstrate how the matrix components of the tractable conic
programs are generated.

Chapter 4 discusses algebraic modelling languages with respect to a particular stochastic pro-
gramming framework. We look at the language constructs required to model distribution-based
decision problems, and we discuss an existing C++ implementation of this project. We then
conclude this chapter, with a specification of the new input format, JADA. We aim aim to
explain and justify our choice for the syntax and the semantics of JADA’s algebraic modelling
language.

Chapter 5 details our design and implementation of JADA. We discuss the development en-
vironment and justify our choices of the implementation language. As a high-level description,
we explain the overall system architecture. We then decompose the system into the four main
modules respectively responsible for parsing the input file, generating the matrix components of
the linear program, generating the objective function and constraints of the conic programming
instances to be solved, and finally rendering the optimal decision rules of the solved conservative
and progressive linear programs.

Chapter 6 explains an extended implementation to that outlined in chapter 5 by considering
notation for stochastic processes to facilitate highly compact descriptions.

Chapter 7 methodically describes a numerical evaluation of the final deliverable by conside-
ring a simple supply-demand stochastic program that we have previously manually solved, and
a real-life complex model concerning the capacity expansion of public infrastructure. We present
our results in terms of the generated linear programs and the interpreted optimal decision rules.
We also discuss the gaps in optimality for the two decision-making problems.

Chapter 8 concludes this report by summarising our overall contributions, by presenting a
qualitative evaluation of JADA, and lastly by discussing the directions for further development.



2
Background

The aim of this chapter is to introduce some theoretical material that we feel are important
for understanding the nature and implementation of this project. We outline some introduc-
tory concepts to probability and measure theory (see section 2.1)[23] in order to understand
how uncertainty is modelled for structuring stochastic programs. Section 2.2 encompasses a
basic mathematical review of optimisation theory in order to appreciate the differences between
deterministic and stochastic programming. We assume no prior knowledge of stochastic pro-
gramming and thus we explain in detail what stochastic programming problems are, how they
are formulated and also how they are solved. By exploring how solutions to stochastic pro-
gramming problems are computed, we hope this will lay the foundation for chapter 3, where we
re-introduce some key notions for applying linear decision rules for computational tractability[2].

2.1 Probability and Measure Theory

2.1.1 Sigma-algebra

Suppose ψ denotes a set and a set F representing subsets of ψ, then F is a σ-algebra of subsets
of ψ if the following hold:

1. ∀ S1, S2 ∈ F ,

• F is closed under finite intersection, S1
⋂
S2 ∈ F .

• F is closed under finite union, S1
⋃
S2 ∈ F .

• F is closed under complementation, S1\S2 ∈ F .

2. ψ ∈ F .

3. ∀ Si ∈ F ,
(⋃

i∈N
Si
)
∈ F .

Sample Space

The set ψ that has a σ-algebra F is acknowledged as a sample space and is symbolically defined
as the tuple (ψ,F).

6
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Probability Measure

A non-negative function µ : F −→ R is called a measure on (ψ,F) if ∀ Si ∈ F and i ∈ N where
i 6= j and Si

⋂
Sj = ∅:

µ(
⋃
i∈N

Si) =
∑
i∈N

µ(Si) (2.1.1.1)

A measure P is called a probability measure if P(ψ) = 1, where:

1. P(∅) = 0.

2. 0 ≤ P(S) ≤ 1.

3. P(S1
⋃
S2) = P(S1) + P(S2)− P(S1

⋂
S2).

Probability Space

A sample space that has a probability measure P is formally known as a probability space, and
is represented by the tuple (ψ,F ,P).

Borel Sigma-algebra

Let ψ = R and F semantically denote the collection of all intervals in R. Then this collection
must generate a σ-algebra of subsets of R. This σ-algebra of subsets of R is the Borel σ-algebra
in R, which is denoted as B(R). This is the smallest σ-algebra containing F [24].

1. Any subset A of R such that A ∈ B(R) is called a Borel set in R.

2. A function f : ψ −→ R, which has the inverse image f−1(A) = {ω ∈ ψ : f(ω) ∈ A}, is
called a Borel measure.

Support of Probability Measure

The support of probability measure P is the smallest closed set Ξ ⊂ R where P( Ξ ) = 1. Thus,
the probability measure P defined over the measurable space (Ξ,B(R)) yields the probability
space (Ξ,B(R),P). Thus, we can consider ξ ∈ Ξ as a particular realisation of a random data
vector.

Essential Supremum

Assuming the measurable space (Rk,B(Rk),P) and a function f : ψ −→ R, an element α ∈ R is
called an essential supremum (ess-sup) for f if ∀x ∈ X, we have f(x) ≤ α.

2.1.2 Random Variables

A random variable X is a Borel measurable function X : (ψ,F) −→ (R,B(R)). The probability
measure PX for this random variable is:

PX(Y ) = PX(ω : X(ω) ∈ Y ), Y ∈ B(R). (2.1.2.1)
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Distribution Functions

The cumulative distribution function (CDF) of a random variable X is defined as:

FX(x) = PX(ω : X(ω) ≤ x), x ∈ R (2.1.2.2)

where FX : R −→ [0, 1].

A random variable X that is continuously distributed on the set R is called a continuous
random variable. X has a Borel measure fX known as the probability density function (PDF),
for x ∈ R:

FX(x) =
∫ x

−∞
fX(t) dt (2.1.2.3)

where the distribution FX(X) is such that lim
x−→−∞

FX(x) = 0 and lim
x−→+∞

FX(x) = 1.

Additionally, the probability of X belonging to the interval [a, b], where a, b ∈ R, is defined
as:

PX(a ≤ X ≤ b) =
∫ b

a
fX(x) dx. (2.1.2.4)

Independence

Random variables Y1, Y2, · · · , Yn, which are equipped with the probability space (ψ,F ,PYi
) are

independently distributed if the probability of random variable X =
⋂n
i=1 Yi is:

PX(X) = PX

(
n⋂
i=1

Yi

)
=

n∏
i=1

PYi
(Yi), (2.1.2.5)

where Yi ∈ Bi and Borel set Bi ∈ B(R).

The distribution function of the random variable X =
⋂n
i=1 Yi is:

FX(X) = FX

(
n⋂
i=1

Yi

)
=

n∏
i=1

FYi
(Yi) (2.1.2.6)

where independent random variables Y1 ∈ B1, Y2 ∈ B2, · · · , Yn ∈ Bn are equipped with CDFs
FY1 , FY2 , · · · , FYn respectively.

Expectation and Variance

If the random variable X is equipped with the probability space (ψ,F ,PX), then the expected
value of X, denoted by EX , is computed as:

EX [X] =
∫
ψ
X dPX (2.1.2.7)

and its variance, denoted by VarX , is defined as:

VarX [X] = EX
[
(X − EX [X])2

]
. (2.1.2.8)
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If Y1, Y2, · · · , Yn are independently distributed random variables with respective expected values
E[Y1], E[Y2], · · · ,E[Yn], then the expectation of random variable X =

⋂n
i=1 Yi is:

EX(X) = EX

[
n⋂
i=1

Yi

]
=

n∏
i=1

EYi
[Yi]. (2.1.2.9)

If X is a m× n matrix, then the expectation of X is computed as:

EX [X] = EX





x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

... . . . ...

xm,1 xm,2 · · · xm,n




=



EX [x1,1] EX [x1,2] · · · EX [x1,n]

EX [x2,1] EX [x2,2] · · · EX [x2,n]
...

... . . . ...

EX [xm,1] EX [xm,2] · · · EX [xm,n]


.

(2.1.2.10)

Covariance

The covariance quantifies how much two random variables X and Y change together, and is
denoted by Cov[X,Y ]. The covariance is given as:

Cov[X,Y ] = EX,Y
[
(X − EX [X])2(Y − EY [Y ])2

]
(2.1.2.11)

which can further be simplified to:

Cov[X,Y ] = EX,Y [XY −XEY [Y ]− Y EX [X] + EX [X]EY [Y ]]
= EX,Y [XY ]− EX,Y [XEY [Y ]]− EX,Y [Y EX [X]] + EX,Y [EX [X]EY [Y ]]
= EX,Y [XY ]− EX [X]EY [Y ]

(2.1.2.12)

Correlation

The Pearson product-moment correlation co-efficient ρX,Y of two random variables X and Y
quantifies the extent of their dependence, and is defined as:

ρX,Y = Cov[X,Y ]√
VarX(X)

√
VarY (Y )

∈ [−1,+1]. (2.1.2.13)

If X and Y are independent random variables, then they are said to be uncorrelated since
ρX,Y = 0 as EX,Y [XY ] = EX [X]EY [Y ] implies Cov[X,Y ] = 0. If ρX,Y = ±1 then X and Y are
totally correlated.

kth Central Moment

The kth central moment of a random variable X, denoted by µk, is quantified as

µk = EX
[
(X − EX [X])k

]
, (2.1.2.14)

where µ0 = 1 and µ1 = 0. Intuitively, we interpret µ2 as the variance eq. (2.1.2.8).
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Conditional Probability and Expectation

Assuming a probability space (ψ,F ,P) and sets A1, A2 ∈ F where P(A2) > 0, the conditional
probability of A1 given A2 is:

P(A1|A2) = P(A1 ∩A2)
P(A2) . (2.1.2.15)

For a random variableX defined over the probability space (ψ,F ,P), the conditional expectation
of X given B(R) is a Borel measurable function EX [X|B(R)] : ψ −→ R such that ∀B ∈ B(R):∫

B
EX [X|B(R)] dP =

∫
B
X dP (2.1.2.16)

2.1.3 Random Vectors

Supposing X1, · · · , Xn are random variables with the same probability space (Rk,B(Rk),P),
then a multivariate random variable X = (X1, · · · , Xn) is termed a random vector.

Joint Distribution Functions

The random vector (X1, · · · , Xn) generates a probability measure on the space Rn with respect
to the Borel σ-algebra. This Borel measurable function fX1,··· ,Xn is known as its joint probability
density distribution. The joint PDF is:

fX1,··· ,Xn (x1, · · · , xn) = fXn | x1,··· ,xn−1 (xn | x1, · · · , xn−1) · fX1,··· ,Xn−1 (x1, · · · , xn−1)

=
n∏
i=1

fXi | X1,··· ,Xn−1 (xi | x1, · · · , xn−1)

(2.1.3.1a)
where

fXi | X1,··· ,Xi−1 (xi | x1, · · · , xi−1) =
fX1,··· ,Xi (x1, · · · , xi)∫

fX1,··· ,Xi (x1, · · · , xi−1, ti) dti

=
∫
· · ·
∫
fX1,··· ,Xn (x1, · · · , xi, t i+1, · · · , tn) dt i+1 · · · dtn∫

· · ·
∫ ∫

fX1,··· ,Xn (x1, · · · , xi−1, ti, · · · , tn) dti dt i+1 · · · dtn
(2.1.3.1b)

and

fX1,··· ,Xi (x1, · · · , xi) =
∫
· · ·
∫
fX1,··· ,Xn (x1, · · · , xi, xi+1, · · · , xn) dxi+1 · · · dxn. (2.1.3.1c)

We define the joint CDF of random vector X by:

FX1,··· ,Xn (x1, · · · , xn) =
∫ x1

−∞
· · ·

∫ xn
−∞

fX1,··· ,Xn(t1, · · · , tn) d t1 · · · d tn. (2.1.3.2)
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Conditional Distribution

We note that the conditional distribution function of random vector X is:

FXi | X1,··· ,Xi−1 (xi | x1, · · · , xi−1) =

xi∫
−∞

fX1,··· ,Xi(x1, · · · , xi−1, ti) d ti
+∞∫
−∞

fX1,··· ,Xi(x1, · · · , xi−1, ti) d ti

=

+∞∫
−∞
· · ·

+∞∫
−∞

xi∫
−∞

fX1,··· ,Xi(x1, · · · , xi−1, ti, · · · , tn) d ti ti · · · d tn
+∞∫
−∞

fX1,··· ,Xi(x1, · · · , xi−1, ti, · · · , tn) d ti ti · · · d tn
(2.1.3.3)

Marginal Distribution

The probability distributions of each of the random variables Xi from the random vector X is
called the marginal distribution. Assuming a distribution function f (x1, · · · , xn), the marginal
PDF is:

fXi (xi) =
∫
· · ·
∫ ∫

· · ·
∫
fX1,··· ,Xn (x1, · · · , xi−1, xi, xi+1, · · · , xn) dx1 · · · dxi−1 dxi+1 · · · dxn.

(2.1.3.4)

Covariance

Given a random vector X = (X1, X2, · · · , Xn)T, the covariance matrix Ω ∈ Rn×n for X is a
matrix of covariances between the elements of X, where ΩX,i,j = Cov[Xi, Xj ] = EXi,Xj [XiXj ]−
EXi [Xi]EXj [Xj ] :

ΩX =



Cov[X1, X1] Cov[X1, X2] · · · Cov[X1, Xn]

Cov[X2, X1] Cov[X2, X2] · · · Cov[X2, Xn]
...

... . . . ...

Cov[Xn, X1] Cov[Xn, X2] · · · Cov[Xn, Xn]


. (2.1.3.5)

2.1.4 Continuous Uniform Distribution

The continuous uniform distribution U(a, b) is a family of probability distributions such that
for each member of the family, all intervals of identical length on the distribution’s support are
equally probable. The support is parameterised by a, b ∈ R, which correspond to the minimum
and maximum values respectively.
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Distribution Functions

For a random variable X following a continuous uniform distribution U(a, b) , its PDF is:

fX(x) =


1

b− a
, a ≤ x ≤ b

0, otherwise

(2.1.4.1)

and its CDF is:

FX(x) =



0, x < a

x− a
b− a

, a ≤ x ≤ b

1, x > b

(2.1.4.2)

Mean and Variance

By eqs. (2.1.2.7), (2.1.2.8) and (2.1.4.1), we state the expectation and variance of a random
variable X ∼ U(a, b) as:

EX [X] = a+ b

2 and VarX [X] = (b− a)2

12
(2.1.4.3)

respectively.

2.1.5 Sample Mean and Variance

Assuming a random sample x1, x2, · · · , xN from an n-dimensional random variable X, the
sample mean is given by:

x̄ = 1
N

N∑
i=1

xi (2.1.5.1)

and the sample variance is computed as:

σ2 = 1
N − 1

N∑
i=1

(xi − x̄)2. (2.1.5.2)

2.1.6 Modelling Uncertainty

Uncertainty can be modelled by a probability space (Rk,B(Rk),P), where the elements of the
sample space Rk are represented by ξ[2]. Elements of uncertainty in a stochastic programming
problem can be modelled by random vectors.
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2.2 Basic Concepts of Optimisation Theory
In the operations research community, optimisation is an umbrella-term for selecting the best
decision policy or strategy, from a group of possible alternatives, in order to maximise or
minimise a real-valued affine function f .

2.2.1 Deterministic Linear Programming (LP)

The general formulation of a linear program consists of a linear function to be minimised, a set
of problem constraints and a specification of positive variables:

minimise
x∈R

cTx

subject to Ax ≤ b
x ≥ 0

(2.2.1.1)

where A =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... . . . ...

am,1 am,2 · · · am,n


, x =



x1

x2
...

xn


, c =



c1

c2
...

cn


and b =



b1

b2
...

bm


.

• Dimensions m and n are the number of constraints and decision variables respectively.

• x ∈ Rn is a vector of unknown decision variables.

• A ∈ Rm×n is a matrix of known co-efficients representing the left-hand-side of the constraints.

• b ∈ Rm is a vector of known co-efficients representing the right-hand-side of the constraints.

• c ∈ Rn is a vector of known co-efficients representing the costs of the unknown variables
in the objective.

The expression to be minimised or maximised, cTx, is called the objective function, and the
system of equations Ax ≤ b and x ≥ 0 are the constraints which give a bounded convex polytope
(the feasible region) over which the objective function is to be optimised.

Supposing α ≤ β, we use the inequality operator to symbolise componentwise inequality if
α and β are vectors and matrix inequality when α and β are matrices

2.2.2 Duality

The linear programming problem given in eq. (2.2.1.1) is known as the primal problem (P-LP),
which can also be converted into a dual problem (D-LP). It is formulated as:

maximise
y∈R

bTy

subject to ATy ≤ c
y unrestricted

(2.2.2.1)
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where y ∈ Rm = [y1, y2, · · · , ym]T is a vector of unknown dual decision variables, and A, b and
c assume the same definitions as eq. (2.2.1.1).

Duality Theory

There are two fundamental notions that underpin duality theory.

1. The D-LP provides a lower bound to the computed optimal value of the primal linear
program, cTx ≥ bTy.

2. If cTx′ = cTy ′, where x′ and y ′ are feasible solutions to the primal linear program
eq. (2.2.1.1) and the dual linear program eq. (2.2.2.1) respectively, then x′ and y ′ are
also the optimal solutions to their respective linear programs.

2.2.3 Standardisation

We must convert all linear programs into its standard form, which may require transforming
maximisation objectives, negative co-efficients on the right-hand-side of the constraints, inequa-
lity constraints and unrestricted variables.

Maximisation Objective

Maximisation objective functions can be converted into an equivalent minimisation objective
function type by noting maximise

x∈R
f(x) ≡ minimise

x∈R
− f(x).

Negative Co-efficients on the Constraints’ RHS

For an LP to be standardised, the constraints’ right-hand-side vector b must be non-negative.
When b ≤ 0, we can multiply both sides of the constraint by −1, which will consequently reverse
the direction of the inequality.

Inequality Constraints

To bring any LP to standard form, we replace all inequality constraints with equalities by the
introduction of slack or surplus variables, s ∈ Rm.

• If ai represents the ith row of the matrix A, then we transform the inequality aix ≤ bi to
aix+ si = bi by adding a slack variable si for the ith row.

• Similarly, we transform the inequality aix ≥ bi to aix − si = bi by subtracting a surplus
variable si for the ith row.

Unrestricted Variables

The standard form for an LP imposes that all variables must be positive. Supposing the
constraint x′ ≥ 0 is absent from the LP, then the variable x′ can take positive or negative
values, which is the same as saying x′ is unrestricted. Thus, we substitute x′ with x′ = u′ − v′,
where u, v ≥ 0.
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2.2.4 Solutions

Linear programming problems can be solved using the SIMPLEX algorithm. The method traces
the perimeter of the convex polytope (feasible region), given by the system of linear constraints,
to search for the optimal solution.

• A solution to a linear program of the form eq. (2.2.1.1) is a vector x that satisfies the
system of linear constraints Ax = b.

• A feasible solution is the solution x where x ≥ 0.

• An optimal solution is the feasible solution x∗ such that for all feasible solutions x′, we
have cTx∗ ≤ cTx′.

2.2.5 Semidefinite Programming (SDP)

Semidefinite programming is a general form of linear programming and is used in the context
of linear matrix inequalities (LMI). As convex optimisation problems, SDPs aim to minimise a
linear function subject to an affine combination of positive semidefinite symmetric matrices.

An SDP is solved using the interior point method which, in contrast to the SIMPLEX technique,
attempts to find an optimal solution by tracing the interior of the feasible region[30].

We note the following definitions:

• For a matrix A ∈ Rm×m to be positive semidefinite, all of its eigenvalues must be non-
negative or this can be succinctly put as ∀z ∈ Rm, zTAz ≥ 0. We denote matrix A is
positive semidefinite by A � 0.

• The trace of matrix A ∈ Rm×m is defined to be Trace(A) = a1,1 + a2,2 + · · · + am,m =∑m
i=1 ai,i.

• We define Sk to be the space Rk×k of all symmetric matrices.

Primal Semidefinite Program (P-SDP)

We can formulate the P-SDP as:

minimise
x∈R

cTx

subject to F0 +
m∑
i=1

xiFi � 0
(2.2.5.1)

where Fi ∈ Sk for i = 0, · · · ,m. Vectors c and x assume the same dimensions and semantics as
before. We acknowledge the constraint F0 +

∑m
i=1 xiFi � 0 as an LMI.
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Dual Semidefinite Program (D-SDP)

Similarly, we can define D-SDP as:

maximise
Y ∈Rm×m

− Trace(F0Y )

subject to Trace(FiY ) = ci, ∀i ∈ {1, · · · , n}
Y � 0

(2.2.5.2)

where matrix Y = Y T ∈ Rm×m is the dual variable and the objective function is a linear
combination of Y .

2.3 Stochastic Programming

Deterministic linear programs of the form eq. (2.2.1.1) are intended for modelling optimisation
problems where all of the underlying data elements are known to the decision-maker. However,
if we are modelling real-life decision-making problems, it is perhaps naive to assume all of the
problem data is indeed known, and instead consider that many data elements may be subject
to some degree of uncertainty. Thus, we observe the need to utilise the stochastic programming
framework. which is the state-of-the-art approach to optimising decision problems under un-
certainty.

For stochastic programming, the modeller is required to apply a variety of statistical techniques
and procedures from the operations research toolbox.

2.3.1 Characteristics of the Stochastic Programming Framework

Below we qualify the prominent attributes of stochastic programming.

Recourse Models

The term recourse refers to the opportunity to re-strategise or adapt a solution in response to
information from an observation[26].

In recourse models, some decisions can only be made after uncertainty has been revealed. Thus,
before information applicable to the uncertainties is disclosed, some of the decisions must be
anchored and some decisions must be postponed until after some random experiment. There
are two distinct cases of the recourse model, namely fixed recourse and random recourse.

Decision Stages

The set of decisions made can be generally categorised into two groups[27].

• First-stage decisions are those decisions which occur in the first period of the model,
known as the first-stage, and consequently have to be made before a random experiment
takes place.
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• Second-stage decisions are those decisions that are made after the aforementioned random
experiment has been carried out. The period for when these decisions are taken is known
as the second stage.

Non-anticipativity

We enforce a rule on the recourse decisions called non-anticipativity. This effectively means
that although recourse decisions can respond to past observations, they are not allowed to be
influenced by future observations that have yet to occur.

2.3.2 Components of a Stochastic Program (SP)

In this section we present the basic components of a stochastic programming problem[28].

An Underlying Process

x1 ∈ Rn1 first-stage decision

random experiment

ξ2 ∈ ψ2 observations

x2 ∈ Rn2 second-stage decision
...

random experiment

ξN ∈ ψN observations

xN ∈ RnN final-stage decision

Figure 2.1: Underlying process of a
stochastic program.

Fundamentally, a stochastic program can be considered
as a finite process of interleaving decisions and obser-
vations in stages.

The first-stage of the process revolves around
the selection of an initial decision x1, which
is then succeeded by N − 1 recourse stages.
Each of these recourse stages involve observa-
tions of random variables after a random expe-
riment has occurred, from which a choice of a
new decision is made in reaction to the observa-
tion.

At termination the process produces an outcome mo-
delled as the tuple (x, ξ) ∈ Rn × ψ. The vector
x = [x1, x2, · · · , xN ] ∈ Rn for n =

∑N
1=1 ni is the

trace of the decision-maker’s pattern of action, and
ξ = [ξ2, · · · , ξN ] ∈ ψ = ψ2 × · · · × ψN is the histori-
cal record of observations made.

Cost of Outcomes

The cost attributed to the eventual outcome of
this process can be described by the affine func-
tion c on the domain Rn × ψ such that c(x, ξ) =
c(x1, x2, · · · , xN , ξ2, · · · , ξN ).

Probability Structure

The random vector ξ = [ξ1, · · · , ξN ] has a general probability distribution which is given with
the space ψ. The random variables or components ξi of ξ may or may not be independently
distributed of each other.
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Evolution of Information

The elements of uncertainty have a prior and posterior mode. In the prior mode, only pro-
babilistic information about the random variable ξi is available, but in the posterior mode ξi
becomes static data. We refer to an observation as the transition between this prior and poste-
rior mode.

In the first-stage, when the decision-maker is required to select an initial decision x1, no in-
formation is available about the uncertain elements in the data as no observation can yet be
made. Without loss of generality, we can model ξ1 as a degenerate dummy outcome such that
ξ1 = 1. On the contrary, for recourse decision xi taken in the second stage and beyond, some
of the uncertainty has been revealed through observations of [ξ2, · · · , ξi].

The random vector ξ = [ξ2, · · · , ξN ] is now partitioned into [ξ2, · · · , ξi] and [ξi+1, · · · , ξN ], which
respectively represent the current information and residual uncertainty. Additionally, the pro-
bability space has now been truncated to ψi+1 × · · · × ψN , and the probability distribution for
[ξi+1, · · · , ξN ] in this reduced space is its conditional probability distribution given [ξ2, · · · , ξi].

Recourse Functions

It is mandatory that the recourse decision in stage i is modelled as a function, as opposed to a
constant vector. This allows us to capture the ability of the decision xi to adapt itself to the
current information. Thus, the decision-maker is not simply selecting a vector in Rni , but is
instead selecting a recourse function xi : [ξ2 · · · , ξN ] −→ xi(ξ2, · · · , ξN ) ∈ Rni defined over the
space ψ2 × · · · × ψi in order to state in advance how the decision-maker intends to respond to
all outcomes of the first i observations.

We define a square integrable function to be a function f such that the integral
∫+∞
−∞ |f(x)|2 dx

is finite. We represent the space of all Borel measurable, square-integrable functions from Rk
to Rn by L2

k,n = L2(Γ,Rn), where Γ denotes the probability space (Rk,B(Rk),P). Thus, we can
alternatively model the recourse function as xi ∈ L2

ki,ni .

Policies

A policy refers to the selection of the first-stage decision x1 and the recourse decision xi :
ψ −→ Rn for i = 2, · · · , N such that x(ξ) = [x1, x2(ξ2), · · · , xN (ξ2, · · · , ξN )]. This set of
non-anticipative functions x is called the policy space.

2.3.3 One-stage Stochastic Programs (SP)

In this section we revise one-stage stochastic programs, which are instances of optimisation
problems under uncertainty with a single time period or stage. Stochastic programs of this type
involve an initial observation of a random variable ξ from the sample space ψ. The decision-
maker then chooses a recourse decision x(ξ) ∈ Rn, with an associated cost of c(ξ)Tx(ξ), satisfying
the constraint system A(ξ)x(ξ) ≤ b(ξ).

The stochastic program models an objective to minimise the expected cost E[c(ξ)Tx(ξ)] by
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selecting a recourse function x ∈ L2
k,n. We formulate the corresponding stochastic program as:

minimise
x∈L2

k,n

E[c(ξ)Tx(ξ)]

subject to A(ξ)x(ξ) ≤ b(ξ), P− a.s.
(2.3.3.1)

Standard Form

We bring the primal problem eq. (2.3.3.1) into standard form by augmenting the stochastic
program with slack variables s ∈ L2

k,m to eliminate inequality constraints:

minimise E[c(ξ)Tx(ξ)]
subject to x ∈ L2

k,n, s ∈ L2
k,m

A(ξ)x(ξ) + s(ξ) = b(ξ)

s(ξ) ≥ 0

}
P− a.s.

(2.3.3.2)

and it’s dual form is1:

minimise E[c(ξ)Tx(ξ)]
subject to x ∈ L2

k,n, s ∈ L2
k,m

E[(A(ξ)x(ξ) + s(ξ)− b(ξ))ξT] = 0

s(ξ) ≥ 0

}
P− a.s.

(2.3.3.3)

Well-definition

For well-definition of eq. (2.3.3.2), we assume vectors c(ξ) and b(ξ) are linear combinations of
the random elements ξ. Therefore, we can assume without proof that ∃C ∈ Rn×k such that
c(ξ) = Cξ and ∃B ∈ Rm×k such that b(ξ) = Bξ.

Fixed Recourse

A fixed recourse problem assumes that the constraints matrix A(ξ) is not subject to uncertainty.
To specify that A(ξ) does not depend on ξ, we indicate the equivalence A(ξ) ≡ A ∈ Rm×n.

The support of the probability measure P, which we assume to span the whole of the sample
space ψ, is given by a bounded non-empty set that is defined as:

Ξ = { ξ ∈ Rk : Wξ ≥ h } (2.3.3.4a)

given that
W = [e1,−e1, Ŵ ]T ∈ Rl×k and h = [1,−1, 0, · · · , 0︸ ︷︷ ︸

l−2

] ∈ Rl (2.3.3.4b)

1We refer the reader to the research paper[2] for its derivation.
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where sub-matrix Ŵ ∈ R(l−2)×k and basis vector e1 = [1, 0, · · · , 0︸ ︷︷ ︸
l−1

] ∈ Rk. The consequence of

this definition is that for all ξ ∈ Ξ, we have ξ1 = 1.

Random Recourse

For one-stage stochastic programs with random recourse, we assume that the constraints matrix
A(ξ) is indeed parameterised by uncertainty. We let ξTAµ represent the µth row of A(ξ) where
matrix Aµ ∈ Rk×n for µ = 1, · · · ,m. We also define the µth row of matrix B as bT

µ .

The polyhedral support for probability measure P is now described as:

Ξ = { ξ ∈ Rk : eT
1 ξ = 1, ξTW`ξ ≥ 0, ` = 1, · · · , l } (2.3.3.5)

where matrices W` are from Sk, the space Rk×k of all symmetric matrices.

2.3.4 Multi-stage Stochastic Programs (MSP)

So far, we have considered one-stage stochastic problems with recourse, in which the decision
maker observes a random variable from the sample space, and then chooses a recourse decision
x. In reality, most practical optimisation problems are actually sequential decision processes.
In this section, we review stochastic recourse problems of this kind called multi-stage stochastic
programs.

Temporal Structure

To capture the fact that the decision-maker now chooses multiple decisions that adapt to
observations that evolve over time, we introduce a temporal structure through the indices
t ∈ T = { 1, · · · , T } to denote the stages of the model. It is important to note that although
the values t ∈ T are strongly related to the temporal structure, they may not correspond exactly
to the time periods. This is the case when time periods, at which no observations can be made,
are aggregated with preceding periods to form one stage.

Figure 2.2: An example of three-stage aggregation.

Specifically, we denote the uncertain elements as ξ = [ξ1, · · · , ξT ], where sequential observations
of the random sub-vectors ξt ∈ Rkt are indexed by time points t ∈ T . The dimension kt indi-
cates the size of the current information for stage t. We further assume k1 = 1 to impose that
∀ξ ∈ Ξ, ξ1 = 1. The historical record of observations made up to the time point t is represen-
table as ξ t = [ξ1, · · · , ξ t] such that kt =

∑t
s=1 ks. For consistency, we stipulate that ξ T = ξ and

kT = k.
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Temporal Operators

For t ∈ T , we define truncation operators Pt:

Pt : Rk −→ Rk
t
, ξ 7−→ ξ t (2.3.4.1a)

Informally, we can think of Pt ∈ Rkt×k as the following matrix:

Pt =

k = kT =
∑T

s=1 ks

︷ ︸︸ ︷———————————————-

11 0 · · · 0 0 0 · · · 0

0 1k2 · · · 0 0 0 · · · 0
...

... . . . ...
...

... . . . ...

0 0 · · · 1kt 0 0 · · · 0




kt =

∑t

s=1 ks

————————–︸ ︷︷ ︸
kt =

∑t

s=1 ks

(2.3.4.1b)

Uncertainty Model

We again assume that uncertainty is modelled by the probability space (Rk,B(Rk),P). We
focus on fixed recourse programs and thus define the support for probability measure P to be
identical to eq. (2.3.3.4).

General Formulation

A multi-stage stochastic program involves choosing at time t a decision xt(ξ t) ∈ Rnt given
the current information ξ t and residual uncertainty { ξs | s ≥ t }. Thus, the objective is to
minimise a linear expected cost function by selecting a series of policies xt ∈ L2

kt,nt
, using only

the available observations ξ t, such that particular linear constraints are satisfied.

The primal formulation for decision problems of this type is:

minimise E
[

T∑
t=1

ct(ξ t)Txt(ξ t)
]

subject to xt ∈ L2
kt,nt

, ∀t ∈ T

E
[

T∑
s=1

At,sxs(ξ s)
]
≤ bt(ξ t) P− a.s. ∀t ∈ T

(2.3.4.2)
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Standard Form

We augment the primal problem eq. (2.3.4.2) with a sequence of non-anticipative slack variables
st ∈ L2

kt,mt
for all t ∈ T to yield the following standard form:

minimise E

 T∑
t=1

ct(ξ t)Txt(ξ t)


subject to xt ∈ L2

kt,nt
, st ∈ L2

kt,mt
∀t ∈ T

E [
∑

T
s=1At,sxs(ξ s)] + st(ξ t) = bt(ξ t)

st(ξ t) ≥ 0

}
P− a.s. ∀t ∈ T

(2.3.4.3)

Its dual form is2:

minimise E

 T∑
t=1

ct(ξ t)Txt(ξ t)


subject to xt ∈ L2

kt,nt
, st ∈ L2

kt,mt
∀t ∈ T

E
[∑

T
s=1(At,sxs(ξ s) + st(ξ t)− bt(ξ t)

]
(Ptξ)T = 0

st(ξ t) ≥ 0

}
P− a.s. ∀t ∈ T

(2.3.4.4)

Well-definition

For well-definition of eq. (2.3.4.3), we ascertain that vectors ct(ξ t) and bt(ξ t) are linear non-
anticipative combinations of the uncertain elements ξ t. For that reason, we can assume without
proof that ∃Ct ∈ Rnt×kt such that ct(ξ t) = CtPtξ and ∃Bt ∈ Rmt×kt such that bt(ξ t) =
BtPtξ. We focus on fixed recourse for multi-stage stochastic programs, and therefore assume
the recourse matrices At,s ∈ Rmt×ns to not depend on ξ. In addition, we presume that the
random variables { ξt }t∈T are independent, which implies that Eξ,t(ξ) is affinely dependent on
the uncertain parameters. For notational semantics, we point out that nt and mt determine the
number of decisions taken up to time t and the number of constraints for time t respectively.

2.3.5 Worst-case Stochastic Program (WCSP)

Worst-case optimisation closely models decision-making under uncertainty where the decision-
maker has insufficient information about the probability distribution of the underlying problem’s
uncertain data elements. For this class of optimisation problems, we are unable to formulate
an optimisation model that aims to minimise the expected cost of the decision-maker’s policy
selections.

2We refer the reader to the research paper[2] for its derivation.
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General Formulation I

If we assume that there is an identifiable family f of fitting probability distributions for the
uncertain parameter ξ, then the generic formulation of the worst-case mini-max optimisation
problem is[31]:

minimise
x∈L2

k,n

sup
P∈f
{E[c(x, ξ)] }

subject to A(ξ)x(ξ) ≤ b(ξ), P− a.s.
(2.3.5.1)

Kuhn et al[2] investigated a generalised stochastic programming model in which the probability
distribution for some of the random vectors are known, and for the remaining random vectors
only the polyhedral support of their distributions are known. In this situation, the goal is to
minimise the expected value of the worst-case cost function c(x, ξ) with respect to the expec-
tation for the known random vectors. The worst-case is determined with respect to the finite
support of type eq. (2.3.3.4) for a partly-unknown probability measure P.

Uncertainty Model

We now introduce parameters η ∈ Rkη and ζ ∈ Rkζ , where kη + kζ = k, to model the random
vectors ξ as the tuple (η, ζ). We assume the marginal distribution of η is fully known. We note
that kη ≥ 1 since we know the marginal distribution of ξ1 as the Dirac measure3 concentrated
at 1.

Furthermore, we suppose that the conditional distribution of ζ given η is unknown, but its
conditional polyhedral support is available to the modeller:

Z(η) = { ζ ∈ Rkζ : (η, ζ) ∈ Ξ } (2.3.5.2)

Risk-Averse General Formulation II

The robust form, using our new model for uncertainty, of the one-stage stochastic program as
introduced in section 2.3.3 is:

minimise E
[
ess-sup
ζ∈Z(η)

{ cTx(η, ζ) }
]

subject to x ∈ L2
kηn+ kζ,n

Ax(η, ζ) ≤ b(η, ζ), P− a.s.

(2.3.5.3)

3a Dirac measure is a measure δx on a set X, with any σ-algebra of subsets of X, such that δx({ x }) = 1 for
an arbitrarily chosen x ∈ X.
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Standard Form

We standardise the primal problem eq. (2.3.5.3) by adding slack variables s ∈ L2
kηn+ kζ,m

to
obtain:

minimise E[x0(η)]
subject to x ∈ L2

kηn+ kζ,n
, s ∈ L2

kηn+ kζ,m

cTx(η, ζ) + s0(η, ζ) = x0(η)

Ax(η, ζ) + s(η, ζ) = b(η, ζ)

s0(η, ζ) ≥ 0

s(η, ζ) ≥ 0


P− a.s.

(2.3.5.4)

To justify the equivalence of eq. (2.3.5.4) and eq. (2.3.5.3), we point out that x0 is independent
of the unknown random parameters ζ and only depends on η for which its distribution is fully
known. We repeat the remark from the paper[2] that the conditions

x0 ∗ (η) = ess-sup
ζ∈Z(η)

{ cTx ∗ (η, ζ) }

s0(η, ζ) = x0 ∗ (η)− cTx ∗ (η, ζ)

 P− a.s. (2.3.5.5)

constrain any optimal solution (x∗, s∗, x0∗, s0∗) to eq. (2.3.5.4).

Its dual form is4:

minimise E[x0(η)]
subject to x ∈ L2

kηn+ kζ,n
, s ∈ L2

kηn+ kζ,m

E[cTx(η, ζ) + s0(η, ζ)− x0(η)] = 0

E[Ax(η, ζ) + s(η, ζ)− b(η, ζ)] = 0

s0(η, ζ) ≥ 0

s(η, ζ) ≥ 0


P− a.s.

(2.3.5.6)

Well-definition

For the stochastic program eq. (2.3.5.3) to be well-defined, the valuation

n 7−→ ess-sup
ζ∈Z(η)

{ cTx(η, ζ) } (2.3.5.7)

4We refer the reader to section 2.3.3 and the research paper[2] for an explanation of its derivation.
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must be a measurable function with an integrable minorant5 ∀x ∈ Lkηn+kζ,n2 .

5If ∃β ∈ B such that ∀α ∈ A, β ≤ α, where A ⊂ B and B is an ordered set, then β is the minorant of A.



3
Decision Rule Approximation

3.1 Computational Intractability of Recourse Problems
Stochastic linear programming problems are considerably much more difficult to solve than their
deterministic counterparts. When the random data follows a continuous distribution, multiva-
riate integration must be performed in order to compute the expected costs of each stage.

Dyer and Stougie formally verified the complexity associated with dynamic decision problems
under uncertainty. By assuming stochastic parameters are independently distributed, they were
able to theoretically qualify one-stage stochastic programming problems as #P-hard and multi-
stage stochastic programming problems as #PSPACE-hard in computational complexity[3].

Another complication of stochastic problems is the requirement for the exact probability distri-
bution of uncertain elements to be supplied for random sampling. For real-life decision-making
problems, we can appreciate that defining such exact distributions is not always possible.

3.2 Linear Approximations of Recourse Problems

3.2.1 Recourse-constrained One-stage Stochastic Program

Thus far we have considered recourse decisions of the form x(ξ) ∈ Rn such that x ∈ L2
k,n for

one-stage recourse programs. By introducing linear decision rules, we restrict the functional
form of x(ξ) to be linear combinations of ξ. Thus we further truncate the feasible region to
those solutions which are of the form x(ξ) = Xξ for a X ∈ Rn×k. For fixed recourse problems
we require s(ξ) = Sξ for a S ∈ Rm×k. However, for random recourse problems we will instead
have sµ(ξ) = ξTSµξ for a Sµ ∈ Sk, where µ = 1, · · · ,m.

3.2.2 Multi-stage Stochastic Program with Fixed Recourse

When we consider multi-stage stochastic programs with fixed recourse, we reduce the region of
admissible decision rules to those of the form xt(ξ) = XtPtξ for a Xt ∈ Rnt×kt and st(ξ) = StPtξ
for a St ∈ Rmt×kt , where t ∈ T .

26
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3.2.3 One-stage Worst-case Stochastic Program with Fixed Recourse

For worst-case optimisation of one-stage fixed recourse problems, we make the following decision
rule linearisations:

• ∃X ∈ Rn×k, x(ξ) = Xξ.

• ∃S ∈ Rm×k, s(ξ) = Sξ.

• ∃χ ∈ Rkη , x0(η) = χTPηξ.

• ∃σ ∈ Rk, s0(η) = σTξ.

3.3 Computational Benefits of Linear Decision Rules
The benefit of using linear decision rules is that the stochastic program now has a finite number
of decision variables. However, the problem still has a semi-infinite number of constraints, which
means it is still not easily solved. Through the use of robust optimisation techniques, we can
reduce the number of constraints to a finite set for semidefinite programs. In the following
section we only present the final results of linearising the decision rules, we refer the reader to
the research paper[2] for the step-by-step derivations.

3.4 Tractable Approximations for Recourse-Constrained Sto-
chastic Programs

By applying linear decision rules as a standard robust optimisation technique, we can define a
conservative approximation, which is the primal formulation‘ of a stochastic program. Similarly,
by imposing linear decision rules on the dual of the original problem, we can form a semidefinite
program representing the progressive approximation.

For the following sections, we introduce the matrix M = E[ξξT] as the second-order moment
matrix equipped with the probability measure P.

3.4.1 One-stage Stochastic Program with Fixed Recourse

Below we present the respective conservative and progressive approximations for fixed recourse
problems with one-stage.

minimise Trace(MCTX)
subject to X ∈ Rn×k, Λ ∈ Rm×l

AX + ΛW = B

Λh ≥ 0
Λ ≥ 0

(Cons-SPfixed)
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where Λ is a matrix of decision vectors.

minimise Trace(MCTX)
subject to X ∈ Rn×k, S ∈ Rm×k

AX + S = B

(W − heT
1 )MST ≥ 0

SMe1 ≥ 0

(Prog-SPfixed)

where S is a matrix of decision vectors.

3.4.2 One-stage Stochastic Program with Random Recourse

The semidefinite program representing the conservative approximation for random recourse
problems with one stage is:

minimise Trace(MCTX)
subject to X ∈ Rn×k, S = [S1, · · · , Sm] ∈ Sm, Λ ∈ Rm×l

1
2(ξTAµXξ +XTAT

µ) + Sµ = 1
2(e1b

T
µ + bµe

T
1 )

Sµ −
∑l
`=1 Λµ,lW` � 0

 ∀µ ∈ { 1, · · · ,m }

Λ ≥ 0
(Cons-SPrandom)

where X and Λ are the matrices of decision vectors.

The semidefinite program for the progressive approximation is:

minimise Trace(MCTX)
subject to X ∈ Rn×k, S = [S1, · · · , Sm] ∈ Sm

1
2(ξTAµXξ +XTAT

µ) + Sµ = 1
2(e1b

T
µ + bµe

T
1 )

Trace(W`Q(Sµ)) ≥ 0

Q(Sµ) � 0


∀µ, ` ∈ { 1, · · · ,m }

(Prog-SPrandom)

where X and Sµ are the matrices of decision vectors. The linear function Q : Rk×k −→ Rk×k is
a symmetric tensor of all moments of probability measure P up to the fourth order:

eT
αQ(eβeT

γ )eδ = E[ξα ξβ ξγ ξδ], ∀α, β, γ, δ ∈ { 1, · · · , k }. (3.4.2.1)

In eq. (3.4.2.1), the set { eα }kα=1 represents the standard basis of the real space Rk.
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3.4.3 Multi-stage Stochastic Program

We extend the linear decision rule approximations of one-stage fixed recourse problems for se-
quential decision-making processes that evolve over several time periods.

For the following approximations we introduce Mt ∈ Rek×k
t as the conditional second-order

moment matrix for stage t, and is defined through Eξ[ξ | ξ t] = MtPtξ. Additionally, we note
that the sizes of the linearised stochastic programs are now polynomial in k, l,m =

∑
T
t=1mt

and n =
∑

T
t=1 nt.

The conservative approximation is:

minimise
∑

T
t=1 Trace(PtMPT

t C
T
t Xt)

subject to Xt ∈ Rnt×kt , Λt ∈ Rmt×l∑
T
t=1At,sXsPsMtPt + ΛtW = BtPt

Λth ≥ 0

Λt ≥ 0


∀t ∈ T

(Cons-MSPfixed)

where Xt and Λt are the matrices of decision vectors for stage t.

The progressive approximation is:

minimise
∑

T
t=1 Trace(PtMPT

t C
T
t Xt)

subject to Xt ∈ Rnt×kt , St ∈ Rmt×kt∑
T
t=1At,sXsPsNtPt + StPt = BtPt

(W − heT
1 )MPT

t S
T
t ≥ 0

StPtMe1 ≥ 0


∀t ∈ T

(Prog-MSPfixed)

where Nt = MPT
t (PtMPT

t )−1. Xt and St are the matrices of decision vectors for stage t.

3.4.4 Worst-case Stochastic Program (WCSP)

We also consider the probable situation where the modeller does not have a complete knowledge
of the probability distribution of the random vector ξ. In this section we present the linear de-
cision rule approximations to the worst-case optimisation problems. We refer the reader to the
previous sections for further explanatory details on the derivation of the subsequent approxi-
mations.
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In the stochastic programs below, we introduce the new truncation operator Pη:

Pη : Rk −→ Rkη , (η, ζ) 7−→ η (3.4.4.1)

The conservative approximation is:

minimise χTPηMe1

subject to X ∈ Rn×k, Λ ∈ Rm×l

χ ∈ Rkη , λ ∈ Rl

cTX + λTW = χTPη

AX + ΛW = B

Λh ≥ 0
λTh ≥ 0
Λ ≥ 0
λ ≥ 0

(Cons-WCSPfixed)

where X and Λ are the matrices of decision vectors.

The progressive approximation is:

minimise χTPηMe1

subject to X ∈ Rn×k, S ∈ Rm×k

χ ∈ Rkη , σ ∈ Rk

cTX + σT = χTPη

AX + S = B

(W − heT
1 )MST ≥ 0

(W − heT
1 )Mσ ≥ 0

SMe1 ≥ 0
σMe1 ≥ 0

(Prog-WCSPfixed)

where X and S are the matrices of decision vectors.

3.5 Loss of Optimality
The solutions computed from linearising the decision rules are seldom optimal due to the in-
herent approximation errors. However, we appreciate that this a trade-off for tractability. This
is remarked in Shapiro and Nemirovski’s paper On Complexity of Stochastic Programming Pro-
blems[31]:

The only reason for restricting ourselves with affine decision rules stems from the desire
to end up with a computationally tractable problem. We do not pretend that affine
decision rules approximate well the optimal ones - whether it is so or not, it depends on
the problem, and we usually have no possibility to understand how good in this respect is
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a particular problem we should solve. The rationale behind restricting to affine decision
rules is the belief that in actual applications it is better to pose a modest and achievable
goal rather than an ambitious goal which we do not know how to achieve.

For this reason, we quantify the differences in the primal and dual optimal solutions of the
linearised stochastic programs to measure the loss of optimality incurred by the linear decision
rule approximation.

3.6 An Illustrative Example - The Newsvendor Problem
The newsvendor problem is probably the most simplest form of a stochastic program. We repeat
this example from the paper[34] to demonstrate the linear decision rules approach.

3.6.1 Description

A newspaper vendor faces the dilemma of deciding how many newspapers to order from an
external supplier before knowing the actual demand, which itself is non-deterministic.

3.6.2 Problem Set-up

We denote the cost per x units of newspapers as c′. and the retail price stipulated by the
newspaper vendor as p, where we insist p > c′ for profitability.

The demand d subject to uncertainty is a function of a random variable ξ equipped with a
probability measure P and support Ξ. The random demand is representable as d(ξ) = ξ. We
assume ξ has mean µ and variance σ2. We represent the demand satisfied from the inventory
as −x′(ξ). To further simplify the model, we stipulate that newspapers ordered in excess of the
demand have no salvage value and are therefore thrown away.

3.6.3 Stochastic Optimisation Formulation

In this problem, the goal is to increase profit. We can formulate the newsvendor model as:

minimise c′x+ E ξ[ px′(ξ) ]
subject to x′(ξ) ≥ −x

x′(ξ) ≥ −d(ξ)
x ≥ 0
x′(·) ∈ Y

(3.6.3.1)

where the set Y denotes the space of linear functions from Rn to Rn2 . We remind the reader
that n =

∑
T
t=1 nt.

We can standardise eq. (3.6.3.1) by adding non-anticipative slack variables α(ξ), β(ξ) and γ(ξ)
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to obtain the equivalent form:

minimise cTx+ Eξ[p x′(ξ)]

subject to −x+ α(ξ) = 0

x+ x′(ξ)− β(ξ) = 0

x′(ξ)− γ(ξ) = −d(ξ)

α(ξ), β(ξ), γ(ξ) ≥ 0

x′(·), α(ξ), β(ξ), γ(ξ) ∈ Y



P− a.s.
(3.6.3.2)

3.6.4 Multi-stage Stochastic Program Formulation

We observe that eq. (3.6.3.1) is an instance of a multi-stage stochastic program with fixed
recourse.

minimise Eξ

[
T∑
t=1

ct(ξ t)Txt(ξ t)
]

subject to x1 ∈ L2
k1,n1

, x2 ∈ L2
k2,n2

, s1 ∈ L2
k1,m1

, s2 ∈ L2
k2,m2

A1,1x1(ξ t) + s1(ξ t) = b1(ξ t)

A2,1x1(ξ t) +A2,2x2(ξ t) + s2(ξ t) = b2(ξ t)

s1(ξ), s2(ξ) ≥ 0


P− a.s.

(3.6.4.1a)

More specifically, for T = 2, the components of eq. (3.6.4.1a) are:

t ξ t xt(ξ t) st(ξ t) bt(ξ t) ct(ξ t)

1 ξ1 x α 0 c′

2 [1, ξ2]T x′(ξ t) [β(ξ), γ(ξ)]T [0, d(ξ2)]T p

and the generated matrix components are:

t At,1 At,2 Ct Bt kt nt mt

1 −1 0 c 0 1 1 1

2

−1

0


−1

−1

 [
p 0

] 0 0

0 1

 2 2 2
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We assume that the uncertain elements of the underlying newsvendor model follow a continuous
uniform distribution, ξ ∼ U(a, b). Its probability density function is given as:

fX(x) =


1

b− a
a ≤ x ≤ b

0 otherwise
(3.6.4.1b)

where a = 1 and b = 2.

Noting that ξ1 = 1 and ξ ∈ [a, b], we can now define the support Ξ for the probability measure
P as:

Ξ = { ξ = [ξ1, ξ2]T ∈ Rk : ξ1 = 1, a ≤ ξ2 ≤ b }
= { ξ = [ξ1, ξ2]T ∈ Rk : Wξ ≥ h }

(3.6.4.1c)

The inequality Wξ ≥ h expands to the following:
ξ1
−ξ1
−aξ1 + ξ2
bξ1 − ξ2

 =


ξ1 + 0 · ξ2
−ξ1 + 0 · ξ2
−aξ1 + ξ2
bξ1 − ξ2

 =


1 0
−1 0
−a 1
b −1

 ξ ≥


1
−1
0
0

 (3.6.4.1d)

and we can identity the components of the support asW =


1 0
−1 0
−a 1
b −1

 and h =
[
1 −1 0 0

]T
.

3.6.5 Application of Linear Decision Rules

Informally speaking, we can generically represent the policy space by a super-vector that is
row-wise indexable by time points t.[

x1(ξ 1), x2(ξ 2), · · · , xT−1(ξ T−1), xT (ξ T )
]T

=
[
xT

1 ξ
1, xT

2 ξ
2, · · · , xT

T−1ξ
T−1, xT

T ξ
T

]T
(3.6.5.1a)

which we can expand as: 

x1,1,1 +
∑k1
j=2 x1,1,j ξ j

x2,1,1 +
∑k2
j=2 x2,1,j ξ j
...

xT−1,1,1 +
∑kT−1
j=2 xT−1,1,j ξ j

xT ,1,1 +
∑k
j=2 xT ,1,j ξ j


. (3.6.5.1b)
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For the newsvendor problem, we have the following policy space:x1,1,1 +
∑k1
j=2 x1,1,j ξ j

x2,1,1 +
∑k2
j=2 x2,1,j ξ j

 . (3.6.5.1c)

Thus, we have the linear decision rules:

x1(ξ 1) = X1P1ξ = x1,1,1

x2(ξ 2) = X2P2ξ = x2,1,1 + x2,1,2
(3.6.5.1d)

where X1 = x1,1,1 and X2 = (x2,1,1, x2,1,2).

We assume that the random variables { ξt }t∈T are independently distributed of each other.
Thus we compute the expectation of ξ as:

ξ̄ = Eξ[ξ] = Eξ


ξ1

ξ2


 =

Eξ[ξ1]

Eξ2 [ξ2]

 =

1

µ

 (3.6.5.1e)

and the covariance matrix of ξ is calculated as:

Ωξ =


Cov[ξ1, ξ1] Cov[ξ1, ξ2]

Cov[ξ2, ξ1] Cov[ξ2, ξ2]



Eξ1,ξ1 [ξ1ξ1]− Eξ1 [ξ1]Eξ1 [ξ1] Eξ1,ξ2 [ξ1ξ2]− Eξ1 [ξ1]Eξ2 [ξ2]

Eξ2,ξ1 [ξ2ξ1]− Eξ2 [ξ2]Eξ1 [ξ1] Eξ2,ξ2 [ξ2ξ2]− Eξ2 [ξ2]Eξ2 [ξ2]



=

0 0

0 σ2


(3.6.5.1f)

which gives the second moment matrix M as:

M = Eξ[ξ ξT] = Eξ


ξ1ξ1 ξ1ξ2

ξ2ξ1 ξ2ξ2


 = Eξ


 1 ξ2

ξ2 ξ2
2


 =

Eξ[ξ1
2] Eξ[ξ2]

Eξ[ξ2] Eξ[ξ2
2]

 . (3.6.5.1g)

We point out that Varξ[ξ2] = Eξ[(ξ2 − Eξ[ξ2])] = Eξ[ξ2] − Eξ[ξ]2, which implies Eξ[ξ2] =
Varξ[ξ2] + Eξ[ξ]2 = σ2 + µ2. Therefore,

M =

1 µ

µ σ2 + µ2

 . (3.6.5.1h)
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As MtPtξ = Mtξ
t = Eξ[ξ | ξ t], we have:

M1ξ
1 = Eξ[ξ | ξ1]

= Eξ

[(
ξ1, ξ2

)T
∣∣∣∣∣ ξ1

]

M1ξ1 =

Eξ[ξ1 | ξ1]

Eξ[ξ1 | ξ2]



M1 =

1

µ



M2 ξ
T
2 = Eξ[ξ | ξ2]

= Eξ

[(
ξ1, ξ2

)T
∣∣∣∣∣
(
ξ1, ξ2

)T
]

M2

(
ξ1 ξ2

)
=

Eξ[ξ1 | ξ1 ∩ ξ2]

Eξ[ξ2 | ξ1 ∩ ξ2]



M2

(
ξ1 ξ2

)
=

ξ1

ξ2



M2 =

1 0

0 1

 .
(3.6.5.1i)



4
Algebraic Modelling Languages

In this section, we discuss algebraic modelling languages with respect to a particular stochastic
programming framework, and we define the vocabulary or language constructs required to
describe stochastic programming problems. We then briefly discuss the current implementation,
and then detail our own approach.

4.1 Re-defining the Stochastic Programming Framework
We remind the reader that, although the taxonomy of stochastic programming models extends
beyond recourse problems, this project is steered in the direction of distribution-based recourse-
constrained multi-stage stochastic programming problems. Thus, we can identify the stochastic
framework for such problems necessitates language constructs for describing the temporal struc-
ture and the uncertain data elements (see table 4.1)[48].

Table 4.1: Algebraic modelling language requirements for distribution-based recourse-
constrained multi-stage stochastic optimisation problems.

Model Data Components AML Requirements

Meta-information for the stages that cap-
ture temporal structure of problem.

Explicit mappings of decision variables
and constraints to individual stages.

Random entities which represent the un-
derlying model’s uncertain parameters.

Description of probability distributions
and supports of probability measures for
the random entities.

In figure (4.1), we have adapted the language constructs required for this particular stochastic
framework from those used in the SAMPL platform[48].

36
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Figure 4.1: Language constructs for Stochastic Programming framework.

4.2 Related Work

The problem specification has been previously prototyped in C++1. However, the code-base
for this solution is quite complicated due to lack of internal support for numerical computing in
C++. Consequently, custom data structures and operations for respectively representing and
manipulating matrices, affine functions and constraints have compulsorily been written from
scratch. In addition, the scope for expressibility could be widened by introducing vocabulary
for complex arithmetic expressions involving multiplication and nested parentheses.

For demonstration purposes, we refer the reader to listing 4.1, which presents a description
of the newsvendor problem (see section 3.6) using the current C++ implementation2. We point
out to the reader that the language constructs are those of the form [<keyword >], and that
the random variables are parameterised with two real-values which specify the default shape of
its support. For clarity:

• the construct [support ] describing the random variables’ uncertainty sets,

• the paramterised random variables <variable >[a,b] which specify their distributions,

• and the construct [samples_file ] for supplying information to sample these distribu-
tions

facilitate the decision-maker’s modelling of his or her decision-making under uncertainty.
1Original design and implementation was by W. Wiesemann and A. Georghiou from Department of Compu-

ting, Imperial College London
2Re-produced with permission of W. Wiesemann and A. Georghiou.
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Listing 4.1: Specification of the Newsvendor problem using the legacy system’s algebraic mo-
delling language.
1 ! Newsvendor Model
2
3 [ general ]
4 no_periods 2;
5
6 [ random_variables ]
7 demand [5 ,10] known_at 2 breakpoints {};
8
9 [ support ]

10 demand <= 10;
11 5 <= demand ;
12
13 [ samples_file ]
14 file samples .txt;
15
16 [ decision_variables ]
17 x at_period 1 with_objective 5; ! cost = 5
18 w at_period 2 with_objective 10; ! price = 10
19
20 [ constraints ]
21 -w - x <= 0;
22 -w <= demand ;
23 -x <= 0;
24
25 [end]

4.3 Our Approach: The JADA Input Format
JADA provides a standardised input format for describing stochastic programming problems.
In this section we aim to explain and justify our choice for the syntax and the semantics of
JADA’s algebraic modelling language.

Fundamentally, a JADA file consists of a single model, which is formally described via

• general meta-information,

• declarations of decision and random variables,

• support constraints for the random variables for the representation of uncertainty,

• data samples for the random variables for sampling their distributions,

• recourse constraints, and the

• objective function.

For user convenience, the language has been carefully designed to reflect the structure and
mathematical notation of a linear programming problem. Although some of the subsections of
the model could be merged, such as the recourse and support constraints, we feel that clarity
is more important than brevity. Additionally, we have adopted the capability for source code
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documentation, as present in all programming languages, to allow the user to add in-lined or
block comments to document their models.

Listing 4.2: Code listing showing the template of the JADA file for the Newsvendor problem.
1 //The Newsvendor Model Example
2
3 Model
4 {
5
6 /∗
7 Specify the name of model and the number of stages.
8 ∗/
9 General {...}

10
11 /∗
12 Specify the decision variables for how many newspapers to
13 buy from the supplier, and the random variable representing
14 the stochastic demand.
15 ∗/
16 Variables {...}
17
18 /∗
19 Specify more restrictive constraints for the random variables
20 e.g. stochastic demand should be between five and ten units.
21 ∗/
22 Support {...}
23
24 /∗
25 Specify the text file containing the sample data to derive
26 the expectation and second order moment from.
27 ∗/
28 Samples {...}
29
30 /∗
31 Specify the constraints for the recourse decisions.
32 ∗/
33 Constraints {...}
34
35 /∗
36 Specify the objective to minimise the expected wastage, from
37 overestimating the demand, in order to maximise profit.
38 ∗/
39 Objective {...}
40
41 }
42
43 //End of model

The General Language Construct

The General language construct allows the modeller to declare administrative and temporal
information such as the name of the model (line 5) and the number of stages (line 8).
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Listing 4.3: Code listing showing the General subsection of the JADA file for the Newsvendor
problem.
1 ...
2 General
3 {
4 //A descriptive name for the model
5 name(" Newsvendor Model - Experimental Example ");
6
7 //The multi−stage stochastic programming problem has two stages.
8 stages (2);
9 }

10 ...

Specification of the model’s name is deemed important to achieve meaningful name mangling
for the auto-generated results and log files, and to also permit the modeller to easily identify
them in their temporary directory. Although the number of stages could be easily inferred from
the declaration of the decision and random variables, an explicit declaration of the intended
number of stages allows for efficient cross-validation and internal initialisation of the parser.
Both the name and stages attributes are mandatory.

The Variables Language Construct

The Variables subsection consists of declarations of the linear program’s decision and random
parameters.

Listing 4.4: Code listing showing the Variables subsection of the JADA file for the Newsvendor
problem.
1 ...
2 Variables
3 {
4 //Decision variable for no. newspapers to buy from the supplier to sell

today
5 decision (x ,1);
6
7 //Decision variable for no. newspapers to buy from the supplier to sell

tomorrow
8 decision (w ,2);
9

10 //Random variable representing the stochastic demand
11 random (demand ,2 ,5 ,10);
12 }
13 ...

Declarations of the decision and random variables, using the reserved keywords decision (line
5) and random (line 11) respectively, are compulsorily parameterised by

• a unique alpha-numeric identifier for the variable (first parameter), and

• a natural number representing the stage to which the decision corresponds to (second
parameter).

The random variables receive additional non-optional arguments representing the minimum
(third parameter) and maximum (fourth parameter) values that a random variable can adopt.



4.3 OUR APPROACH: THE JADA INPUT FORMAT 41

These values define the support of the random variable’s probability distribution.

The Constraints Language Construct

The Constraint language construct facilitates the declaration of the recourse constraints.

Listing 4.5: Code listing showing the Constraints subsection of the JADA file for the News-
vendor problem.
1 ...
2 Constraints
3 {
4 w + x >= 0;
5 w >= -demand ;
6 x >= 0;
7 }
8 ...

The modeller is not required to standardise the constraints, as the standardisation for the
linear program is handled by JADA. Thus the constraints can be equalities or inequalities.
In the former case, JADA replaces the equality constraints by a less-than-or-equal-to and a
greater-than-or-equal to inequality. Ultimately, all greater-than-or-equal-to inequalities will be
converted to less-than-or-equal-to inequalities by negation.

The Support Language Construct

The Support language construct permits the modeller to further restrict the support of the
random variables by specifying additional constraints.

Listing 4.6: Code listing showing the Support subsection of the JADA file for the Newsvendor
problem.
1 ...
2 Support
3 {
4 //Stochastic demand is between five and ten units inclusive.
5 demand <= 10;
6 5 <= demand ;
7 }
8 ...

The minimum and maximum values given for the random variables provide the default support
of their distribution, hence this subsection is optional.

The Samples Language Construct

The Samples subsection contains the sample data for generating the expectation and moments
matrices. The modeller provides this information by stating an absolute path to a text-file
containing real-values for the sample data points.

Listing 4.7: Code listing showing the Samples subsection of the JADA file for the Newsvendor
problem.
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1 ...
2 Samples
3 {
4 file("C:/ optimisation / Newsvendor / samples .txt");
5 }
6 ...

The intial implementation assumed that the user would specify the sample data for all the
random variables in one file. However, we had not provided an explicitly structured format for
doing this. Instead, we assumed that there was an equal number of sample data points for each
random variable. Furthermore, the system assumed that the sample data points for each random
variable are assigned to the random variables in the order that they are declared in the input file.

For clarification, suppose a JADA file contained just two random variables rand1 and rand2
such that rand1 had been declared before rand2 in the Variables subsection. Then the text-
file containing the sample data points for the two random variables would have the implicit
structure indicated in figure (4.2).

Figure 4.2: Diagram showing the assumed structure of the sample data file.

By mandating that header information be supplied, we are able to refactor the original format
of the samples data file to eliminate ambiguity and as many syntactical errors as possible.

Listing 4.8: Code listing showing the sample data file for the Newsvendor problem.
1 SampleData
2 {
3
4 Header
5 {
6 population (1);
7
8 samplesize (1000) ;
9

10 //We only have sample data for the stochastic demand
11 variables ( demand );
12 }
13
14 Data
15 {
16 9.736750 , 8.088805 , 9.439970 , 5.742673 ,
17 7.394624 , 7.979058 , 8.002340 , 6.280136 ,
18 ...
19 ...
20 ...
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21 5.232897 , 5.998800 , 7.677094 , 7.566908;
22 }
23
24 }

The header information contains

• the number of random variables for which the file provides sample data for (line 6),

• the number of sample data points per random variable (line 8), and

• the random variables in the order that their sample data has been declared (line 11).

We divide the samples data file into the header information, as described above, and the actual
data. The syntax for the sample data points differ slightly from the original format in the
sense that commas are used to delimit the sample data points rather than whitespaces, and the
declared sample data points are terminated by a semi-colon.

The variables keyword in the header of the sample data file is included to not only disambi-
guate the order in which the sample data have been declared for the random variables, but to
also indicate which random variables the sample data is applicable to. This allows the modeller
to split the sample data across several text files for the random variables. Hence one text-file
could hold sample data for random variable rand1 and the other text-file for random variable
rand2. Having said this, we do encourage use of a small number of sample data files to decrease
the overhead of opening, reading and validating several sample data files. The second functio-
nality of the variables keyword is that it permits the parser to check which random variables
do not intentionally have any sample data. In this case, we sample the probability distribution
of the random variable by using the minimum and maximum parameters of its support.

The Objective Language Construct

The modeller defines the objective function by providing the costs of the decision variables.
The original design followed a more declarative style whereby the keyword goal was used to
indicate the modeller’s intention to either maximise or minimise the objective function (line
4). Moreover, the keyword cost was used to associate a real value with each decision variable
declared (lines 5 and 6).

Listing 4.9: Code listing showing the initial design of the Objective subsection of the JADA
file for the Newsvendor problem.
1 ...
2 Objective
3 {
4 goal( minimise );
5 cost(x ,5);
6 cost(w ,10);
7 }
8 ...

Although this form is explicit and intuitive, it has been deemed too verbose and tedious to
use. Instead, we have made a decision for the objective function to adopt the same format as a
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linear program. Consequently, we allow the user to specify their objective function as an affine
expression.

Listing 4.10: Code listing showing the final design of the Objective subsection of the JADA
file for the Newsvendor problem.
1 ...
2 Objective
3 {
4 minimise expectation x[5] + w[10];
5 }
6 ...

This form is notably simpler and exhibits a certain degree of brevity that the original format
lacked. The linear expression is a summation of variables multiplied by their costs. This multi-
plication is implied by the square brackets, which contain the cost expressions for the individual
decision variables. The cost expressions are affinely dependent on the random variables, in this
case the decisions x and w are functions of the degenerate random variable3.

In extending the design for the Objective subsection, we assume the modeller will stipulate
whether the objective function is to be minimised or maximised with respect to a statistical
measure. Currently, JADA implements the algorithms for minimising or maximising the ex-
pectation of some linear function. However, JADA can be extended to consider optimising the
variance of a linear expression, which will involve algorithms based on quadratic programming.

3We remind the reader that the degenerate dummy outcome ξ1 is equal to 1. Hence the objective function is
equivalent to minimise expectation x[5*ξ1] + w[10*ξ1]



5
Design and Implementation

In this chapter, we explain our choice of implementation language and state the uses of external
libraries to realise the goals of this project. Subsequently, we present some graphical notation
to visualize the architectural blueprint of the system, which includes the interfacing and the
structure of the four different modules for:

• parsing and validating the input file,

• generating the temporal and matrix components of the linear program (LP),

• solving the generated LP, and

• rendering the results.

In explaining the design and implementation of these modules, we aim to justify our design
choices, and explain any problems encountered and how we solve them.

5.1 Development Environment

Implementation Language and External Libraries

Due to the breadth of internal support for technical mathematical computing, we have chosen
to implement the system in MATLAB. The latest versions of MATLAB (R2008a onwards)
facilitate object-oriented programming to take advantages of code re-usability, inheritance, po-
lymorphism, encapsulation and reference behaviour.

Initially, the aim has been to implement the entire system in MATLAB to allow for a maximally
consistent code-base. However, as we detail in section 5.3, implementation of the parser using
MATLAB’s regular expressions library is inadequate for reading in the model. This limitation
was called to our attention during our attempts to extend the JADA syntax to permit more
complex mathematical expressions involving nested parentheses. Our solution is to specify the
entire algebraic modelling language using a context free grammar which is itself expressed using
Extended Backus Naur Form (EBNF).

45
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YALMIP and the LMI Control Toolbox

The legacy system interfaces with the ILOG CPLEX optimisation software package, which is
based on the SIMPLEX technique, to solve the linear programming models. To communicate
with CPLEX, the legacy system passes the generated LP to a CPLEX solver interface as a .lp
file. The optimal solutions are then extracted using regular expressions from a file generated by
CPLEX, and are subsequently interpreted to present the results to the user. The overhead with
performing I/O routines to communicate with CPLEX and the dependency on the assumed
output format of the CPLEX solver is a prevailing issue. Additionally, the implementation of
the legacy system limits its applicability by only catering to users of the CPLEX solvers.

For the reasons stated above, the JADA solver sub-system utilises YALMIP, a convex opti-
misation framework, to provide interfaces to a miscellany of popular solvers such as CPLEX,
SeDuMi, CSDP, SDPA. YALMIP provides a variety of benefits, such as allowing for the low-level
processing, that is required to simplify the models for soundness and efficiency, to be delegated
to its internal routines. As a result, we can just focus on specifying the objective function
and constraints, which are to be submitted via the solvesdp function. The decision matrices
to be solved for are representable as YALMIP’s multi-dimensional symbolic decision variables
(sdpvar), and the numerical values of the declared decision variables, as well as the residual
quantities of the constraints, can be accessed via the double command.

The linear matrix inequalities (LMI) in the constraints system of the approximation models cha-
racterise the linear programs as instances of semi-definite programs. The LMI control toolbox
provides the linear matrix inequality variable (lmivar) to incrementally specify these systems
of LMIs.

5.2 The Overall Design of JADA
In following good software engineering practices, we decouple the overall system architecture
into six main components to facilitate modularity and extensibility. The primary packages
illustrated in figure (5.1) are briefly described below.

The parser package contains the ANTLR implementation of the ParserEngine for reading and
validating an optimisation problem specified in the JADA format. It includes an implementa-
tion of the JADAModel which represents the minimal data extracted from the supplied JADA
file in order to solve the stochastic programming problem.

The generator package encapsulates static classes for generating the matrix components of
the conservative and progressive linear programs.

The approximator package comprises the classes required for computing the objective function
and constraints particular to the conservative and progressive approximations of the original
stochastic program. Additionally, it provides an interface for interacting with the YALMIP
convex optimisation framework to communicate with a variety of popular external solvers.

The model package contains the internal representation of the generated linear program. It com-
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Figure 5.1: UML diagram showing the package structure, where the dashed arrows indicate
the package dependencies. The separation between the Java implementation and MATLAB
implementation is emphasised by the more solid dashed line.

pacts the JADAModel generated by the Parser and the LPModel constructed by the LPGenerator
to produce the OptimisationModel. This merged model is then augmented to allow storage
of computations specific to the ConservativeApproximator and ProgressiveApproximator
classes.

The renderer package handles the presentation to the user of the generated linear program,
the values of the solved variables and the optimal decisions as linear functions of their random
variables.

The utilities package defines a set of re-usable functions and global static attributes for
maintaining system-wide properties, performing exception handling and error propagation, im-
plementing MATLAB’s arithmetic operators in an object-oriented fashion, formatting text, and
for manipulating generic data structures.

5.2.1 Pattern of Interaction

Communication between the user and the system is achieved via the JADA interface, which
exposes functionality to solve a stochastic programming problem described in the JADA format.
After initialising the JADA system, the interface provides functionality for parsing the model,
generating the LP and computing the conservative and progressive solutions to the optimisation
problem. Figure (5.2) illustrates the sequence of system interactions that occur during this
process.

5.3 Parser
Having defined an intuitive and standardised format for specifying a stochastic programming
problem, the next step is to design and implement a parser to
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• read and syntactically analyse the supplied JADA file defined using the algebraic modelling
language as described in section 4.3,

• extract data associated with a pre-defined set of tokens,

• validate the JADA file for correct syntax and semantics, and to

• generate an internal representation of the specified stochastic programming problem for
conic programming instances to be generated.

5.3.1 Regular Expressions Implementation

Initially, the JADA parsing technology had been written solely in MATLAB to keep the imple-
mentation language consistent across the whole of the code-base. As programmtically explained
in listing 5.1, the main function of the Parser class is to take as input an absolute path to a
JADA file, which contains the stochastic programming problem, and to delegate extraction of
the file contents to the JADAFileReader (line 7). The file reader’s output is then piped to
the Tokeniser to build the JADAModel (line 10). The relationships between these classes are
diagrammatically explained in figure (5.3).

Listing 5.1: Code listing showing the parseFile(...) method defined in Parser.m.
1 % + Function Description: parses a JADA file
2 % + Function Input: string representing absolute filepath to JADA

file
3 % + Function Output: a JADAModel
4 jadaModel = function parseFile (self , filePath )
5
6 % Get contents of file
7 fileContents = AMLFileReader . getFileContents ( filePath );
8
9 % Extract tokens and build JADAModel
10 jadaModel = self. tokeniser . generateJADAModel ( fileContents );
11
12 end %parseFile

Tokenisation

The Tokeniser class had been written to follow the delegation design pattern for object-oriented
programming. Thus, by inversion of responsibility, the Tokeniser class (the delegate) has evol-
ved to be a composition of several sub-tokenisers as illustrated in figure (5.4). These composite
classes are responsible for extracting the tokens related to one of the six language constructs
for specifying an instance of a multi-stage stochastic optimisation problem.

The generateJADAModel() method implemented by the Tokeniser iterates over the construct
tokenisers to sequentially process a section of the JADA file. The details of this logic are given
in listings A.1 and A.2. Each of these construct tokenisers provide its own implementation of
the IConstructTokeniser interface, which specifies functionality for

(a) retrieving the construct’s regular expression (getRegex()), and for
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(b) processing the tokens extracted, having applied the regular expression to the contents
of the file, to update an instance of a JADAModel (processTokens(...)).

Regular Expressions

As shown in the second column of tables 5.2 to 5.4, each sub-tokeniser formulates a regular
expression to match a particular section of the contents of the JADA file. To assist with the
construction of these expressions, a set of utility regexes had been pre-defined (see table 5.1).

Construction of the Internal Model

The processTokens(...) method defined in the IConstructTokeniser interface provides the
functionality for building an internal representation of the contents of the JADA file . The third
column of tables 5.2 to 5.4 briefly outlines the incremental construction of the JADA model
with respect to each of the construct tokenisers.

Figure 5.4: UML class diagram showing the structural implementation of the tokenisation
component for the Parser class.
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Figure 5.3: UML class diagram showing the structural implementation of the parser using
MATLAB’s regular expressions library.

Denotation Regex Description

STRING "\w+" An arbitrary string of ASCII characters.

INT [\-]?\d+ A positive or negative integer.

NAT_INT [1-9]\d* A positive, non-zero integer.

FLOAT [\-]?\d+\.\d* A positive or negative real number.

IDENT [A-Za-z]+[0-9_]* An identifier for a variable.

NUM [\-]?\d+\.?\d* An identifier for a variable.

TIMES_OP (NUM\*)?IDENT A variable scaled by linear multiplication.

LINEAR_EXPR TIMES_OP ((\+|\-) TIMES_OP)* A basic linear expression involving only summa-
tions of (scaled) variables with no parentheses.

Table 5.1: Utility Regular Expressions
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Table 5.2: IConstructTokeniser implementations for the General and Variables constructs of JADA’s algebraic modelling language.

Implementation of IConstructTokeniser

Auxiliary Tokeniser getRegex() processTokens(tokens,jadaModel)

GeneralTokeniser

‘General

{

name(STRING);

stages(NAT_INT);

}’

Applies a regular expression to the tokens to ex-
tract the name of the model.

Invokes jadaModel.setName(...) to update the
JADAModel instance.

VariablesTokeniser

‘Variables

{

(decision(IDENT, NAT_INT);)+

(random(IDENT, NAT_INT, FLOAT, FLOAT);)+

}’

Applies regular expressions to the tokens to ex-
tract the decision and random variables declara-
tions respectively. The parameters of the variables
are further extracted.

Invokes jadaModel.addDecisionVariable(...)
and jadaModel.addRandomVariable(...) as ap-
propriate to update the JADAModel instance with
each occurrence.
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Table 5.3: IConstructTokeniser implementations for the Constraints and Support constructs of JADA’s algebraic modelling lan-
guage.

Implementation of IConstructTokeniser

Auxiliary Tokeniser getRegex() processTokens(tokens,jadaModel)

ConstraintsTokeniser

‘Constraints

{

(LINEAR_EXPR(=|>=|<=) LINEAR_EXPR;)+;

}’

Applies a regular expression to the tokens to ex-
tract equality or inequality arithmetic expressions.

Each expression extracted is further decomposed
by applying a series of regular expressions to iso-
late the identifiers for the variables and their
coefficients.

Invokes jadaModel.addRecourseConstraint(...)
to persist the meta-information obtained for the
recourse constraints.

SupportTokeniser

‘Support

{

(LINEAR_EXPR(=|>=|<=) LINEAR_EXPR;)*

}’

As reiterated in section 4.3, specification of
constraints for the Support is optional, hence the
use of the quantifier ‘*’ to indicate zero or multiple
occurrences of equality or inequality expressions.

The processing logic is similar to that implemen-
ted for the recourse constraints. The only dif-
ference is that the support constraints are linear
equalities and/or inequalities involving only ran-
dom variables.

After extracting each constraint, the method
addSupportConstraint(...) is called on the gi-
ven instance of a JADAModel.
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Table 5.4: IConstructTokeniser implementations for the Samples and Objectove constructs of JADA’s algebraic modelling language.

Implementation of IConstructTokeniser

Auxiliary Tokeniser getRegex() processTokens(tokens,jadaModel)

SamplesTokeniser

‘Samples

{

(file(STRING);)+

}’

Having applied a regular expression to identify
the absolute paths to the sample data files, the
processTokens(...) function needs to incorporate an
additional I/O routine to read in the sample data file.
Regular expressions are again used to derive its sample
data points and the random variables to which the sample
data corresponds to.

The obtained sample data is then pas-
sed to the JADAModel instance by invoking
jadaModel.addSampleData(...).

ObjectiveTokeniser

‘Objective

{

(min|max)imise

exp

IDENT[LINEAR_EXPR]

(\+ IDENT[LINEAR_EXPR])* ;

}’

When the regular expression is applied to the tokens, it
determines a minimisation (or else maximisation) objec-
tive, the statistical measure (expectation or else the va-
riance) and the cost expressions of the decision variables.

The cost expressions are subjected to further processing
to identify the random variables and their coefficients.

Each of the aforementioned meta-data are then used to
update the JADAModel instance by calling

• setIsMinimisation(...),

• setIsExpectation(...), and

• setObjectiveFunction(...)

as accordingly.
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Discussion of Limitations

Although this implementation of the parser is sufficient to specify a basic stochastic optimisa-
tion problem, it has many limitations in its applicability. For expressibility, we require a more
complex modelling for linear expressions to allow for a flexibility and convenience in specifying
the recourse constraints, support constraints and the objective function. This includes use of
parentheses to accommodate nested linear expressions.

Consideration of nested parentheses necessitates us to ensure that the parentheses are balan-
ced. If the level of nested parentheses is no more than one level, then the regex can be easily
modified to incorporate parentheses. However, for multiple levels of nesting, this is impossible
since regular expressions do not support the notion of recursion. In general, regular expressions
are not apposite for parsing arbitrarily nested text. Ultimately, a metasyntax like Backus Naur
Form (BNF) is required to achieve our goals.

While attempting to implement the parser using regular expressions, we discovered an inherent
awkwardness with modifying the JADA syntax to perform augmentations or modifications. This
is undesirable, since one of the primary architectural requirements for JADA is extensibility.
If the code is difficult to read then it cannot be easily maintained, and if it cannot be easily
maintained then it cannot be easily extended which would make the system redundant when
considering the long-term goals of the project.

Lastly, although validation has not yet been implemented, we are able to discern that efficient
error reporting would be made more difficult with the approach to use regular expressions. The
parseFile(...) routine defined in the Parser class uses the JADAFileReader to read a JADA
file, which collapses the file contents into a single string with no comments or newlines. As a
result, any information that could be used to infer line locations are lost. A tactical solution is
to persist a copy of the original file contents. However, when a regular expression cannot not
yield any matches, there are no output tokens, thus we cannot not indicate to the user a spe-
cific location of the syntactical error. In fact, only a general location relative to the containing
language construct can be used in the error message, which is not useful nor convenient for a
JADA file containing a large model.

5.3.2 ANTLR v3.0 Implementation

The limitations of the approach, to use regular expressions to implement the parser module, has
steered us towards the direction of using a metasyntax to specify the JADA modelling language
as a context free grammar. We have investigated several context-free languages like ANTLR,
Spirit, and YACC++ which not only provide a metasyntax for formally defining programmining
or natural languages but also automatically generate the code for the parser engine.

The legacy system has been programmed in C++ and uses the Spirit Parser Framework as
the parser generator for its standardized input format. It is a relatively good choice, since the
expression templates1 allow the developer to approximate the syntax of Extended Backus Naur
Form entirely in C++. However, apart from the syntax being too heavy-weight, the Spirit

1Expression templates is a metaprogramming technique specific to C++. It permits templates to be used to
denote composites of an expression.
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parser generator framework is commonly limited to moderately sized parsers, which is owing to
the fact that a parser for a full language requires a longer time for compilation. Additionally,
we acknowledge that expression templates have many benefits, but the heavy template usage
usually corresponds to an increase in code size. Lastly, the lack of static verification for the
grammar is a problem. From a developer’s perspective, instances of excessive lookahead and
usages of left recursion are the two main issues when using a context-free language to design
a domain specific language. In the former case, problems of exponential parsing times arise,
and in the latter case infinite recursion becomes a possible occurrence. Thus detection and
error reporting for occurrences of these two problems are very important for a high-quality
implementation[51].

YACC++ is a suitable option, however an unfamiliarity with the language means that there is
an associated learning curve, which is further steepened by the lack of an IDE for assistance.
For the reasons previously mentioned, the new approach adopts ANother Tool for Language
Recognition (ANTLR). This choice is justified by

• the desirable provision of static checking for the grammar,

• support for tree construction facilities to build efficient data structures which represented
a high-condensed version of the parsed input,

• ease at resolving grammar ambiguities,

• extensive documentation, and

• integrable tools for IDEs, such as the ANTLR plugin for Eclipse, to add internal support
for the ANTLR parser generator [52].

ANTLR takes as input the context-free grammar specifying JADA’s domain specific language
and generates Java code for the parser engine using LL(*)2 parsing.

Architectural Design

The parser module consists of several components, the bulk of which is implemented in Java
with wrapper classes implemented in MATLAB to interface with their Java counterparts.
The sub-modules, as seen in figure (5.5) are enlisted below.

• The grammar package defines the parsing rules for the standardised input format.

• The model package contains an implementation for the internal representation of the
parsed input.

• The validation package provides functionality for checking the parsed input for syntac-
tical and semantical errors.

• The processors package comprises the auto-generated code resulting from the compila-
tion of the ANTLR grammar source code.

• The tokens package persists the tokens exported from compiling the grammar.
2An LL parser is a top-down parser for a subset of Backus Naur Form (BNF) grammars. It operates by

parsing the input from left to right, and builds a leftmost derivation of the input string.
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Figure 5.5: UML diagram showing the structure of the parser package, where the dashed arrows
indicate the sub-package dependencies.

• The common package consists of utility bean classes that can be reused across the different
parser sub-packages.

The JADA Grammar

The grammar for JADA’s algebraic modelling language is distributed across five different files.
Their primary purposes are briefly described below.

JADALexer.g is the main lexer source file and provides rules defining literals such as defini-
tions for reserved keywords, alpha-numerical text, numbers (integers and floats), identifiers for
variables, escape sequences, strings, whitespace, comments (in-lined and block), symbols and
mathematical operators. The syntax diagrams for the lexer rules are given in section B.3.

JADAParser.g is the main parser source file. It imports the token vocabulary, as defined by
JADALexer.g, to specify the parsing rules for recognising a stochastic programming problem
declared using the JADA input format. As well as checking for syntax errors, it defines rewrite
rules which it uses to build an abstract syntax tree. The AST it generates is used to represent
the input in an efficiently structured and compact format that can be later traversed. The
syntax diagrams for the parser rules are given in section B.4.

JADATree.g is the tree parser source file. It provides rules for walking over the abstract syntax
tree to interpret expressions and populate and ImmutableJADAModel instance.

SampleDataLexer.g is the lexer source file for the sample data input format. It provides rules
similar to those defined in JADALexer.g. The additional syntax diagrams specific to lexical
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analysis of the sample data file format are given in section B.3.

SampleDataParser.g is the parser source file that we use to parse the sample data file. It
performs some validation routines and, rather than constructing an abstract syntax tree, it
interprets the expressions as the input is being parsed. The syntax diagrams specific to the
sample data input format are given in section B.4.

Co-ordination of the Auto-generated Parser Classes

Compilation of the grammar files JADALexer.g, JADAParser.g, and JADATree.g initiate an
automatic generation of their respective Java classes JADALexer, JADAParser and JADATree.
These classes are co-ordinated by the ParserEngine class as explained in the code listing B.1 in
section B.2. Essentially, the parseFile(...) method defined in the ParserEngine performs
the following steps:

(i) It constructs a file reader to read the JADA file at the given filepath.

(ii) A JADALexer is instantaited with an input stream reader that is built using the file reader.

(iii) It subsequently creates a token stream object using the JADALexer instance, which is
then passed to the constructor of the JADAParser class.

(iv) Tokenisation of the JADA file is then commenced by invoking the start rule on the JA-
DAParser object. The ParserEngine class then uses the return result of the tokenisation
to obtain the AST.

(v) Finally, it instantites a JADATree object using the AST, and traverses the generated tree
to populate an ImmutableJADAModel object.

Validation

The parser is responsible for the validation of the syntax and semantics of the input format.
Most of the model checking is concentrated in JADAParser.g by using fragments of in-lined
Java code and the Validator class (see fig. 5.6b). Table 5.5 summarises the cases to be checked
and the potential error messages that can be propagated.

(a) UML class diagram specifying the utility functions provided by the ValidationUtil class.
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(b) UML class diagram illustrating the structural composition and dependencies of the Validator class.
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(c) UML class diagram explaining the functional behaviour of the Validator class.

Figure 5.5: UML class diagrams delineating the architecture of, and the relationships between, the classes in the validation package.



5.3
PA

R
SE

R
61

Table 5.5: Case table for validating the input defined in the JADA format.

Construct Case Method Error Message

All
Each construct must
only be defined once.

The special ANTLR directive @after{...} allows us
to execute code after running the code for the rule.
Thus, after invoking each rule for a construct, we send
a message to the Validator class to note that the
construct in question has been defined. Immediately
after matching the name of the construct, we use the
Validator instance to check for multiple declarations
of a construct.

The Validator class utilises the
ConstructDeclarationsTracker class to assist
with determining these duplicate definitions. As an
example, the code listing B.2 demonstrates this logic
for the ‘General’ language construct.

We explain to the reader that this check has to
be performed since we do not restrict the modeller to
define the constructs in a particular sequence, other-
wise we could have bypassed this validation check.
If we had constrained the order in which a JADA
file must be specified, then duplicate definitions of
constructs would have been captured as syntactical
errors since the whole model would not have been
matched by the starting parser rule.

E.g. “Multiple definitions of
the ‘General’ construct have
been found (line 7).”

Continued on the next page
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Table 5.5 continued from previous page.

Construct Case Method Error Message

All references to va-
riables should be for-
mally declared via the
Variables construct.

The Validator class maintains a hash table of
IDeclaredVariable objects indexed by their variable
identifier as declared in the Variables section. When
a variable identifier is matched by any of the parsing
rules, the Validator is called to determine whether
the hash table of declared variables contains this iden-
tifier in its key-set.

E.g. “The cost function for
the objective refers to the
unknown variable ‘anUnde-
claredVar’ (line 14).”

E.g. “A recourse constraint
refers to the unknown variable
‘anUndeclaredVar’ (line 19).”

E.g. “A support constraint
refers to the unknown random
variable ‘anUndeclaredRan-
domVar’ (line 122).”

E.g. “The sample data
file ‘samples.txt’ refers to the
unknown random variable
‘anUndeclaredRandomVar’
(line 5).”

General
The number of stages
must be greater than
zero.

The extracted text representing the number of stages
is converted to an integer to determine whether it is
zero-valued.

“The number of stages de-
clared must be greater than
zero.”

Continued on the next page



5.3
PA

R
SE

R
63

Table 5.5 continued from previous page.

Construct Case Method Error Message

The name given for the
model must not be too
long.

The length of the string representing the model’s
name is calculated and ascertained to be between the
range [1, 120].

A maximum length is imposed since we use the
name of the model for name mangling any generated
files. Since, most file systems have a maximum
filename length of 256 characters, we allocate to
ourselves just over 50% of these characters for our
own purposes.

“The length of the model’s
name must be between 1 and
120 characters.”

Variables

The identifiers of decla-
red variables must not
conflict with any of the
reserved keywords.

A static list of reserved keywords is maintained. As
variable identifiers are parsed, the Validator verifies
whether the variable identifier conflicts with any of the
reserved keywords as defined in the lexer source files.

E.g. “the variable identi-
fier ‘decision’ is illegal as it
conflicts with the reserved
keyword ‘decision’ (line 64).”

Variable declarations
must be unique with
respect to their identi-
fiers.

When a decision or random variable identifier is mat-
ched, the Validator checks that the maintained hash
table of IDeclaredVariable objects does not already
contain a variable with the same identifier.

E.g. “Duplicate declarations
of the decision variable ‘aDu-
plicateVar’ were found (line
43).”

Continued on the next page
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Table 5.5 continued from previous page.

Construct Case Method Error Message

The stage attribute of
a variable declaration
must be within the
range [1, maxStages],
where maxStages is
the declared number of
stages.

Due to the fact that we do not stipulate an ordering
for how the constructs should be specified, we might
be able to validate this requirement immediately or
postpone the check. In the former case, the General
construct must have been defined earlier, and thus
the maximum number of stages has been declared.
Consequently, we can corroborate that the stage to
which the decision or random variable belongs to is
indeed within the mandatory range.

However, if say the Variables information was
the first section to be delineated then we need to
persist the stage of the variable in the hash table
of declared variables. Thus, when the number of
stages is known, we are obligated to iterate through
the collection of declared variables to perform the
required validation.

E.g. “The ’stage’ attribute
(second parameter) for a
random variable must be
greater than zero (line 23).”

E.g. “The declared stage
(second parameter) for which
the decision variable ‘x’ cor-
responds to must be from the
set {1, ..., maxStages} (line
56).”

The bounds given
for declared random
variables must be
numerically consistent.

When a random variable declaration is extracted, the
lower and upper bound parameters are converted to
the double primitive type. The Validator then
checks that the lower bound value is indeed smaller
than upper bound value.

E.g. “The lower bound (third
parameter) for random va-
riable ‘y’ must be smaller than
the upper bound value (fourth
parameter) (line 43).”

Support All the variables refer-
red to in the support
constraints must be ran-
dom variables.

The Validator uses the matched identifiers in the
equalities and/or inequalities to check whether they
are elements of the key-set belonging to the hash table
of random variables.

E.g. “A support constraint re-
fers to the variable ’x’ which
has not been declared as a
random variable.”

Continued on the next page
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Table 5.5 continued from previous page.

Construct Case Method Error Message

Samples

All declarations of the
sample files must be
unique.

The Validator class possesses a hash table of
DeclaredSampleDataSource objects that are indexed
by their corresponding filepaths to the sample data
file. When the absolute filepath to the sample data
file is obtained, the Validator class determines whe-
ther the key-set for this hash table contains the parsed
filepath.

E.g. “A duplicate decla-
ration of the sample data
file ‘C:/samples.txt’ has been
found (line 99).

All sample data file
declarations must refe-
rence existent files.

The Validator verifies that the filepath gi-
ven points to an existent file by invoking the
java.io.File.exists() method.

“The sample data file at
the specified location
‘C:/samples.txt’ does not
exist (line 77).”

All sample data file
declarations must refe-
rence a non-empty file.

The Validator verifies that the file at the supplied
filepath is not empty by checking the file length, in
bytes, is non-zero.

“The sample data file at
the specified location
‘C:/samples.txt’ is empty
(line 44).”

All sample data file
declarations must refe-
rence a file with a valid
extension type.

Currently, JADA only considers sample data given as
text files. As a result, the Validator class verifies
that the specified filepath has a .txt extension.

“The sample data file at
the specified location
‘C:/samples.doc’ does not
have a ‘.txt’ extension type
(line 11).”

Continued on the next page
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Table 5.5 continued from previous page.

Construct Case Method Error Message

All variables referred to
in the sample data file
must have been for-
mally declared as ran-
dom variables.

This check is initiated by the SampleDataParser.

The ISampleDataValidator, which is passed to
the constructor of the SampleDataParser, checks
that the variables to be sampled are members of a
hash table maintained for declared random variables
and/or not members of a hash table for declared
decision variables. The ISampleDataValidator is
implemented by the JADAModel class, which allows
the SampleDataParser indirect access to the contents
of the parsed JADA file.

E.g. “A reference to a ran-
dom variable ‘y’ that has not
been declared has been found
for a sample data source de-
claration (line 7).”
E.g. “A sample data source
has been specified for the pa-
rameter ‘y’, which is not a
random variable (line 10).”

A maximum of one
sample data source can
be defined for each ran-
dom variable.

The SampleDataParser indirectly delegates this
check to the JADAModel, as it implements the
ISampleDataValidator interface. The logic used to
perform this validation involves retrieving the meta-
data of the random variable in question and determi-
ning whether the boolean flag indicating whether the
random variable has a sample data has been set.

E.g. “The random variable ‘y’
has been associated with mul-
tiple sample data sources (line
15).”

The random variables
must have a number
of sample data points
equal to the specified
sample size in the
sample data file.

The SampleDataParser keeps a hash table of the
sample data points as a collection of real-valued lists,
which is indexed by the identifier of the random va-
riable. Having extracted the sample size from the hea-
der information, the SampleDataParser is able to ve-
rify that the number of sample data points for each
variable is consistent with the explicitly stated sample
size.

E.g. “The number of sample
data points in the sample data
file ‘C:/samples.txt’ for the
random variable ‘y’ is 999,
which is not equal to the de-
clared sample size of 1000
(line 23).”

Continued on the next page
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Table 5.5 continued from previous page.

Construct Case Method Error Message

Objective

The objective function
must be linear in the
random variables and
the cost coefficients for
the decision variables
must only refer to decla-
red random variables or
real numbers.

The cost coefficient of a decision variable is repre-
sented as a linear expression. When the variables in
this linear expression are isolated by JADAParser, the
Validator is called to check that all the variables have
actually been declared as random variables. This is
achieved by using the identifier of the variable to check
its membership in the hash table of declared random
variables.

“The objective function refers
to the decision variable ‘x’ as
if it were a random variable.
Decision variables are not al-
lowed to be used in the cost
coefficient of a decision va-
riable (line 100).”

The objective function
must abide by the non-
anticipativity property
for decision variables
(see section 2.3.1).

The Validator ascertains that any random variable
referred to in a decision variable’s cost expression is
known before or at the stage the decision variable is
known. To do this, the Validator uses the metadata
stored for the IDeclaredVariable objects to obtain
the corresponding stages of the decision and random
variables respectively, which are then compared.

“The decision variable ‘x’ in
the objective function has a
cost coefficient that depends
on the random variable ‘y’,
which is not known by the
time ‘x’ is known (line 52).”

In the objective func-
tion, random variables
cannot appear outside
the square parentheses.

The Validator checks whether a random variable
has been used as decision variable. To perform this
check, the JADAParser passes the identifier of the va-
riable that prefixes the left square parenthesis. The
Validator instance is then able to use the hash table
of declared random variables to determine if the iden-
tifier it receieves belongs to a random variable instead
of a decision variable.

“The objective function refers
to the random variable ‘y’ as
if it were a decision variable.
Random variables can only be
used in the cost coefficient of
a decision variable (line 8).”

Continued on the next page
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Table 5.5 continued from previous page.

Construct Case Method Error Message

Constraints
Support
Objective

All arithmetic expres-
sions must be linear in
the random variables.

JADAParser defines parser rules for arithmetic expres-
sions, and uses two hash sets to accumulate variables
in the left-hand-side and right-hand-side of the mul-
tiplication and division operations. When processing
the parser rule for these two arithmetic operations,
in-lined Java code is used to check that the hash sets
representing the variables referenced in the operands
operands do not both contain elements.

E.g. “An arithmetic expres-
sion in the Support is not li-
nearly dependent on the ran-
dom variables (line 29).”
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5.3.3 JADA Model

As explained in section 5.3.2, the JADATree class traverses the abstract syntax tree generated
by the JADAParser class to assist with populating an instantiation of a JADAModel. While the
JADATree extracts the physical data represented in the abstract syntax tree, the JADAModel
is actually responsible for pre-processing the data it receives to store and derive the necessary
metadata. Some of the tasks performed include:

• stage-wise aggregation of the variables, recourse constraints and support constraints,

• generating additional support constraints implied by a random variable’s lower and upper
bound values,

• standardising the recourse constraints, support constraints and the objective functions,

• factorising the objective function,

• extracting and validating the sample data, and

• enumerating the positions of the decision and random variables for the matrix components
of the linear program.

The JADAModel class has been designed with the intention of compactly representing a highly
condensed version of the input, which can be efficiently queried by the classes in the generator,
approximator and renderer packages. The JADAModel class exposes particular methods to
its client packages for it be efficiently and conveniently post-processed. These functionalities
include:

• retrieving variables and constraints corresponding to a particular stage,

• sorting variables by their corresponding time period,

• obtaining the objective function as a formal mathematical expression,

• determining the vector position of the variables in the decision and random vector, and

• generating a string representation of the model, which includes the derived parameters.

To restrict modifications to the state of the JADAModel after being populated, we mandate
that the parseFile(...) method defined in ParserEngine returns an ImmutableJADAModel.
The ImmutableJADAModel class implements the decorator design pattern to wrap a JADAModel
object and only expose accessor methods.

5.3.4 Invocation from MATLAB

MATLAB provides the capability for bringing Java classes and methods into its workspace by
generating class definitions in .java files and using a Java compiler to produce the .class files
from them[37]. We currently automate this procedure with a XML-based build script that is
executed with the Apache Ant (‘Another Neat Tool’) open-source software tool.
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The Dynamic Class-path

MATLAB imports Java class definitions from files that are present on the Java class-path, which
is a list of files and directories that MATLAB uses to find class definitions[37]. For our own
purposes, we are required to update the dynamic class-path, which is loadable at all times during
a MATLAB software session using the javaclasspath function. It is also modifiable using the
javaaddpath and javarmpath functions, and refreshable using the command clear(‘java’)
without needing to restart the MATLAB session.

Making the Java-based Parser Implementation Available in the MATLAB Works-
pace

We distribute the library of classes and functions as an aggregated or archived format, known as
a Java Archive (JAR) file, by also using the aforementioned Appache ANT build script. We then
make the multiple class definitions, which had been compressed into the JAR file, available for
use by declaring the absolute file-path to the JAR file and placing it on the dynamic class-path.
Thus, to initiate the parsing process implemented in Java, we can invoke the public methods in
the JAR file.

5.4 Linear Program Generator
In section 3.4.3, we presented to the reader the decision rule approximations developed as a
result of the research paper Primal and Dual Linear Decision Rules in Stochastic and Robust
Optimization[2]. By using the decision rule approximations eqs. (Cons-MSPfixed) and (Prog-
MSPfixed), we can convert a stochastic programming problem given in the JADA standard
input format, as specified in section 4.3, to instances of a linear program that can be commu-
nicated to external solvers.

As explained in section 3.5, the conversion will be an approximation since stochastic pro-
gramming models are traditionally formulated as optimisation problems with infinite dimen-
sions, which are inherently computationally intractable. Thus, the linear programs eqs. (Cons-
MSPfixed) and (Prog-MSPfixed) will provide an overestimate and underestimate of the actual
optimal solution. In this section, we only outline our implementation of the generation of the
matrix components used by these linear programs, and in section 5.5 we discuss the design of
the conservative and progressive approximation routines that were previously referred to.

5.4.1 Pattern of Interaction

The LPGenerator class defines a single public method generate(...), which co-ordinates the
generation of the recourse constraints matrices, the costs matrices, the support matrices and the
second-order and conditional moments matrices. The generate(...) method takes as input
an instance of the ImmutableJADAModel class representing the contents of the parsed JADA
file. It then delegates the generation of the individual components to other matrix generators
as shown in the sequence diagram of figure (5.6).

The LPGenerator compacts the generated matrices into an LPModel object, which we then
compose with the given ImmutableJADAModel instance to instantiate an OptimisationModel
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object. The LPGenerator returns from this method with two initialised LPApproximatorModel
objects, which encapsulate the decision rule matrices and a copy of the OptimisationModel ins-
tance, to represent the models for ConservativeApproximator and ProgressiveApproximator
respectively.

5.4.2 Algorithms

We use pseudo-code notation to explicate our development of the module responsible for auto-
mating the generation of the matrix components appertain to eqs. (Cons-MSPfixed) and (Prog-
MSPfixed).

Generation of the Decision Matrices

The MATLAB class DecisionMatricesGenerator is responsible for the generation of the de-
cision rule matrices. The generation logic is algorithmically explained using the pseudo-code of
5.1 and 5.2. We refer the reader to table 5.6 for a decipherment of the notation used.

Table 5.6: Notation for algorithms 5.1 and 5.2, which explain the generation of the decision rule
matrix components of the linear programs given by eqs. (Cons-MSPfixed) and (Prog-MSPfixed).

T ∈ N def= is the maximum number of stages in the multi-stage stochastic
programming problem.

nt ∈ Z+ def= is a dimension that denotes the number of decisions to be made
at time t.

kt ∈ N def= is a dimension that denotes the cumulative number of observed
outcomes at time t.

mt ∈ Z+ def= is a dimension that denotes the number of recourse conditions
that constrain the decisions at time t.

ξ ∈ RT
def= is the vector of uncertain parameters [ξ1, ξ2, · · · , ξT ].

Υ : string 7→ cell array def= is a hash table that maps auto-generated variable identifiers for
elements of the decision rule matrices Xt, Λt and St to a cell-
array containing a decision variable and the random variable
that it is affinely dependent on.

Y def= denotes the data type sdpvar from the YALMIP convex pro-
gramming framework, which allows us to define symbolic deci-
sion variables.

V def= denotes the data type VariableTerm from our proprietary ma-
thematical expressions library, which allows us to represent
arithmetic expressions as objects.

Xt ∈ Ynt×k
t def= is a 2-D array that represents the originally unknown linear de-

cision rule matrix for the time period t.
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Xsymbolic,t ∈ Vnt×k
t def= is a 2-D array of type VariableTerm that symbolically represents

the originally unknown linear decision rule matrix for the time
period t.

Λt ∈ Ynt×k
t def= is a 2-D array of sdpvar variables that represents the unknown

linear slack decision rule matrix at stage t for the conservative
LP eq. (Cons-MSPfixed).

Λsymbolic,t ∈ Vnt×k
t def= is a 2-D array of type VariableTerm that symbolically represents

the unknown linear slack decision rule matrix at stage t for the
conservative LP eq. (Cons-MSPfixed).

St ∈ Ynt×k
t def= is a 2-D array of sdpvar variables that represents the unknown

linear slack decision rule matrix at stage t for the progressive LP
eq. (Cons-MSPfixed).

Ssymbolic,t ∈ Vnt×k
t def= is a 2-D array of type VariableTerm that symbolically represents

the unknown linear slack decision rule matrix at stage t for the
progressive LP eq. (Prog-MSPfixed).

Π def= is an instance of the Java class ImmutableJADAModel which
contains a compact representation of the parsed input file.

Algorithm 5.1 generate(Π)

1. l← 2 + |Π[‘support constraints’] |SPACE
2. Υ ← ∅SPACE
3. X ≡ {cell(Xt , Xsymbolic,t)}Tt=1 ∧ X ← ∅SPACE
4. Λ ≡ {cell(Λt ,Λsymbolic,t)}Tt=1 ∧ Λ ← ∅SPACE
5. S ≡ {cell(St , Ssymbolic,t) }Tt=1 ∧ S ← ∅SPACE
6. T ← Π[‘maximum stages’]SPACE
7. for t ∈ 1, 2, · · · , T do SPACE
8. nt ← Π[‘decisions aggregator’, t]SPACE
9. kt ← Π[‘uncertainty aggregator’, t]SPACE

10. mt ← Π[‘recourse constraints aggregator’, t]SPACE
11. [Xt, Xsymbolic,t, Υ] ← createSDPVARMatrix(Π, nt, kt, t, false, Υ, ‘x’)SPACE
12. X[t] ← [Xt, Xsymbolic,t]SPACE
13. [Λt, Λsymbolic,t, Υ] ← createSDPVARMatrix(Π, mt, l, t, true, Υ, ‘lambda’)SPACE
14. Λ[t] ← [Λt, Λsymbolic,t]SPACE
15. [St, Ssymbolic,t, Υt] ← createSDPVARMatrix(Π, mt, kt, t, true, Υ, ‘s’)SPACE
16. S[t] ← [St, Ssymbolic,t]SPACE
17. end forSPACE
18. conservativeDecisionRules ← new DecisionRules(X, Λ, Υ, ‘lambda’)SPACE
19. progressiveDecisionRules ← new DecisionRules(X, Λ, Υ, ‘s’)SPACE
20. return [conservativeDecisionRules, progressiveDecisionRules]SPACE
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The method createSDPVARMatrix(...) is a private static method defined in the MATLAB
class DecisionMatricesGenerator. It is invoked to assist with generating the 2-D arrays of
sdpvar variables and VariableTerm objects, and the incremental construction of the decision
rule mappings (see algorithm 5.2).

Algorithm 5.2 createSDPVARMatrix(Π, #rows, #cols, t, isSlack, Υ, decisionsymbol)

1. if ¬isSlack thenSPACE
2. Dt ← Π[‘decision variables’, t, ‘sorted’]SPACE
3. Rt ← Π[‘random variables’, t, ‘sorted’]SPACE
4. end ifSPACE
5. Matrixsymbolic ← VariableTerm.empty(#rows, 0)SPACE
6. if #rows = 0 ∨ #cols = 0 thenSPACE
7. Matrixsdpvar ← 0 ∈ R#rows × #cols SPACE
8. returnSPACE
9. end ifSPACE

10. Matrixsdpvar ← new sdpvar(#rows, #cols)SPACE
11. for i ∈ 1, 2, · · · , #rows do SPACE
12. if ¬isSlack thenSPACE
13. decisionID ← Dt[‘identifier’, i]SPACE
14. end ifSPACE
15. for j ∈ 1, 2, · · · , #cols do SPACE
16. decisionID ← getDecisionVariableID(t, i, j, decisionsymbol)
17. if ¬isSlack thenSPACE
18. if j = 1 thenSPACE
19. randomID ← empty string
20. else
21. randomID ← Rt[‘identifier’, j − 1]SPACE
22. end ifSPACE
23. Υ[decisionID] ← cell(decisionID, randomID) SPACE
24. end ifSPACE
25. Matrixsymbolic(i, j) ← VariableTerm(decisionID, 1.0)SPACE
26. end forSPACE
27. end forSPACE
28. return [Matrixsdpvar, Matrixsymbolic, Υ]SPACE

The creation of the decision rule mappings, denoted by Υ is a tactical solution for maintaining
the logical mappings of the sdpvar variables with their associated affine decision functions x(ξ).
Originally, we relied on an implementation of the sdisplay() function provided by the sdpvar
class. However when it came to rendering the individual decision variables with the names that
were dynamically assigned to them, we encountered several problems due to issues with variable
scope in MATLAB. This is discussed further in section 5.6.1.
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Generation of the Costs Matrices

We abstract the generation of the costs matrices into the class CostsMatricesGenerator. The
implemented generate(...) method takes as input an instance of an ImmutableJADAModel
and outputs a cell-array of real-valued matrices corresponding to the decision costs for each
time period. The implementation of this method is described by algorithm 5.3. In addition to
the notation given in table 5.6, we also provide the following notation in table 5.7 for algorithm
5.3.

Table 5.7: Notation for algorithms 5.3, which explain the generation of the decision costs
matrices for use by the linear programs as defined in eqs. (Cons-MSPfixed) and (Prog-MSPfixed).

Ct ∈ Rnt×kt def= is the matrix of decision costs pertaining to the time period t.

D def= denotes the custom Java class IVariable used to treat our re-
presentation of the decision and random variables in a uniform
manner.

D ∈ Dn×1 def= is a list of decision variable objects of type IVariable.

Rmap : string 7→ D def= is a hash table that maps the identifiers of random variables to
their metadata, which is encapsulated in a IVariable instance.

Algorithm 5.3 generate(Π)

1. T ← Π[‘maximum stages’]SPACE
2. D ← Π[‘decision variables’, ‘sorted’]SPACE
3. Rmap ← Π[‘random variables’, ‘as map’]SPACE
4. C ← cell(1, T ) SPACE
5. for t ∈ 1, 2, · · · , T do SPACE
6. nt ← Π[‘decision aggregator’, t]SPACE
7. kt ← Π[‘uncertainty aggregator’, t]SPACE
8. mt ← Π[‘recourse constraints aggregator’, t]SPACE
9. Ct ← 0 ∈ Rnt×kt SPACE

10. for i ∈ 1, 2, · · · , |D| do SPACE
11. decision ← D[i]SPACE
12. decisionstage ← decision[‘stage known at’]SPACE
13. if decisionstage = t thenSPACE
14. Ct ← processDecisionCost(decision[‘position’], Ct, decision, Rmap) SPACE
15. end if
16. end forSPACE
17. C[t] ← cell(Ct)
18. end forSPACE
19. return C SPACE
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The method processDecisionCost(...) (see algorithm 5.4) is an auxiliary function defined in
the class CostsMatricesGenerator. It generates a row of the decision cost matrix at time
period t, such that the row vector created is representative of the decision cost coefficients as
linear combinations of the uncertain elements. The method is parameterised by

• an integer that represents the row-wise vector position of the decision variable,

• an intermediate cost matrix,

• an IVariable, which compacts the meta-information about the decision variable currently
being processed, and

• a hash table that maps the identifiers of the random variables to IVariable objects.

For each decision variable, the method processDecisionCost(...) obtains the variable’s cost
coefficient. The cost coefficient can be a constant term or a linear expression in the random
variables. In the former case, the function processDecisionCost(...) associates this cost
coefficient with the dummy outcome ξ1, and uses this constant value to update the entry of the
cost matrix Ct. The entry is given by the vector position of the decision variable and the vector
position of the random variable3. The latter case is more complex. It necessitates iterating
through the random variables in the linear expression. The processing of each random variable
is then handled by the method processRandomVariableTerm(...) (see algorithm 5.5), which
also identifies two cases as explained below.

(a) If the random variable is a constant term, then the function determines that it belongs to
the first column of the cost matrix.

(b) If the random variable is indeed a variable term, then function obtains the identifier of
the variable and its real-valued coefficient. Using the found identifier, it indexes the map
of random variables to obtain the associated IVariable object, which it can then use to
retrieve the vector position of the random variable. This vector position determines the
column of the cost matrix that the random variable belongs to.

Finally, the method processRandomVariableTerm(...) completes its processing by updating
the cost matrix with the constant term or else with the coefficient of the random variable.

3In this case, the vector position of the random variable is 1.
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Algorithm 5.4 processDecisionCost(decisionposition, Ct, decision, Rmap)

1. cξ ← decision[‘cost coefficient’]SPACE
2. if cξ is a constant thenSPACE
3. Ct(decisionposition, 1) ← cξ[‘value’] SPACE
4. else if cξ is a linear expression thenSPACE
5. for each term ∈ cξ[‘terms’] do SPACE
6. Ct ← processRandomVariableTerm(decisionposition, Ct, term, Rmap)SPACE
7. end for eachSPACE
8. else cξ is a linear expression thenSPACE
9. Ct ← processRandomVariableTerm(decisionposition, Ct, cξ, Rmap)SPACE

10. end ifSPACE
11. return Ct SPACE

Algorithm 5.5 processRandomVariableTerm(decisionposition, Ct, randomD−term, Rmap)

1. if randomD−term is a constant thenSPACE
2. randomposition ← 1 SPACE
3. cξ ← randomD−term SPACE
4. elseSPACE
5. random ← Rmap[randomD−term[‘identifier’]]SPACE
6. randomposition ← random[‘position’]SPACE
7. cξ ← randomD−term[‘coefficient’]SPACE
8. end ifSPACE
9. Ct(decisionposition, randomposition) ← cξ

10. return Ct SPACE

Generation of the Support Matrices

The class SupportMatricesGenerator provides its own implementation of the method generate(...),
which takes an ImmutableJADAModel object, and generates a SupportMatrices object. This
output object contains the matrix components for the support constraints as defined by the
matrix inequality of eq. (2.3.3.4). We refer the reader to the notation itemised in tables 5.6
and 5.8 in order to understand our explanation of the generation logic given by algorithms 5.6,
5.7, and 5.8.

Table 5.8: Notation for algorithms 5.6-5.8, which explain the generation of the support matrices
for use by the linear programs as defined in eqs. (Cons-MSPfixed) and (Prog-MSPfixed).

Ŵ ∈ R(l−2)×k def= is the sub-matrix Ŵ of the support coefficient matrix W =
[e1,−e1, Ŵ ]T ∈ Rl×k as defined by eq. (2.3.3.4)

e1 ∈ Rk def= is the basis vector [1, 0, · · · , 0] ∈ Rk
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h ∈ Rl×1 def= is the vector [1,−1, 0, · · · , 0], which denotes the right-hand-side
of the inequality defined by eq. (2.3.3.4)

C def= denotes the custom Java class IConstraint used to represent
the support constraints as objects.

constraintssupport ∈ C(l−2)×1 def= is the list of IConstraint objects representing the inequalities
Ŵ ξ ≤ 0 in an object-oriented manner. Each constraint has been
standardised such that the right-hand-side of the less-than-or-
equal-to inequality is 0

k ∈ N def= is a dimension that denotes the cumulative number of observed
outcomes by the last stage T , such that k = kT .

L def= denotes the custom Java class ILinearTerm used to generically
represent linear arithmetic expressions as objects.

Algorithm 5.6 generate(Π)

1. constraintssupport ← Π[‘support constraints’, ‘standardised’]SPACE
2. l← 2 + | constraintssupport| SPACE
3. Rmap ← Π[‘random variables’, ‘as map’]SPACE
4. T ← Π[‘maximum stages’]SPACE
5. k ← Π[‘uncertainty aggregator’, T ]SPACE
6. W ← 0 ∈ Rl×kSPACE
7. W (1, 1)← 1SPACE
8. W (2, 1)← −1SPACE
9. for i ∈ 3, 4, · · · , l do SPACE

10. constraint ← constraintssupport[i - 2]SPACE
11. exprLHSC−term ← constraint[‘LHS term’]SPACE
12. W ← processRandomVariableConstraint(exprLHS C−term, Rmap, W , i)SPACE
13. end forSPACE
14. h← 0 ∈ Rl×1SPACE
15. h(1,1) ← 1SPACE
16. h(2,1) ← −1SPACE
17. supportMatrices ← new SupportMatrices(W , h) SPACE
18. return supportMatrices SPACE

As explained, the SupportMatrices object finally outputted from the generate(...) method
contains two matrices that represent the matrix components in eq. (2.3.3.4). The generation
of these matrices involves a systematic processing of the parsed support constraints, which are
retrievable as a list of IConstraint objects from the ImmutableJADAModel instance.

For clarity, we compute the row-dimension l of the support matrix W as the size of this list
of IConstraint objects plus the additional support constraints for the degenerate observed
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outcome at the first stage. This is compactly represented as −1 ≤ ξ1 ≤ 1.

The calcuation of the vector h is straightforward, as shown in lines 14-16 of algorithm 5.6.
We simply initialise the matrix to all zeroes. Subsequently, we then set the entries at positions
(1,1) and (2,1) to -1 and 1 to respectively denote the constant parts of the respective inequalities
−1 ≤ ξ1 and ξ1 ≤ 1.

On the other hand, the derivation of the coefficient matrix W involves considerably more
computational processing. We are required to iterate through all the support constraints
to incrementally build the matrix W , one row vector at a time, using the utility method
processRandomVariableConstraint(...) as provided by the class LPGeneratorUtil. We
point out to the reader that the support constraints have been standardised such that the right-
hand-side expression is zero-valued and all the constraints are less-than-or-equal-to inequalities.

Algorithm 5.7 processRandomVariableConstraint(expr, Rmap, W , i)

1. if expr is a linear expression thenSPACE
2. terms ← expr[‘terms’] SPACE
3. for j ∈ 1, 2, · · · , | terms | do SPACE
4. termj ← terms[j]SPACE
5. W ← processRandomVariableConstraintTerm(termj , Rmap, W , i)SPACE
6. end forSPACE
7. elseSPACE
8. W ← processRandomVariableConstraintTerm(expr, Rmap, W , i)SPACE
9. end ifSPACE

10. return W SPACE

The utility function processRandomVariableConstraint(...) takes as input

• an ILinearTerm object representing the left-hand-side of the support constraint,

• a map of the identifiers of the declared random variables versus their corresponding
IVariable objects,

• a partially computed matrix representing the coefficient matrix W , and

• an integer enumerating the support constraint being processed, which will correspond to
a row index of the matrix W .

Moreover, it identifies whether the obtained left-hand-side expression of the constraint is a
linear combination of more than one of the random variables ξ1, ξ2, · · · , ξT or whether it is just
a single random variable term ξi. In the former case, we iterate over the terms to process
each random variable term individually. However, the latter case is more simple, and we simply
process the left-hand-side term as it is without any additional pre-processing or data extraction.
The actual processing of a random variable is then delegated to a private helper function
processRandomVariableConstraintTerm(...), which updates the jth row of matrix W to
represent the random variable’s participation in the jth support constraint (see algorithm 5.7).
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Algorithm 5.8 processRandomVariableConstraintTerm(randomterm, Rmap, matrix, i)

1. if randomterm is a constant thenSPACE
2. matrix(i,1) ← randomterm[‘value’] SPACE
3. elseSPACE
4. randomID ← randomterm[‘identifier’]SPACE
5. randomposition ← Rmap[randomID]SPACE
6. matrix(i, randomposition) ← (randomterm[‘coefficient’])[‘value’] SPACE
7. end ifSPACE
8. return matrix SPACE

Generation of the Recourse Constraints Matrices

We attribute the responsibility for generating the recourse constraints matrices to the MATLAB
class ConstraintsMatricesGenerator. Its generate(...) method is parameterised by an
ImmutableJADAModel object and returns a RecourseConstraintsMatrices object. We outline
the logic of this processing in algorithms 5.9 and 5.10, and we further augment the notation
given by tables 5.6 to 5.8 with that of table 5.9.

Table 5.9: Notation for algorithms 5.9 and 5.10, which explain the generation of the re-
course constraints matrices for use by the linear programs as defined in eqs. (Cons-MSPfixed)
and (Prog-MSPfixed).

At,s ∈ Rmt×ns def= is a real-valued matrix that pre-multiplies the vector of decision
variables associated with the time period t.

At ∈ cellmt×nt def= is a cell-array of matrices At,s ∈ Rmt×ns for each time period t.

Bt ∈ RMt×kt def= is a real-valued matrix that pre-multiplies the vector of random
variables associated with the time period t.

Dmap : string 7→ D def= is a hash table that maps the identifiers of decision variables to
their metadata, which is encapsulated in a IVariable instance.

constraintsrecourse ∈ Cm×1 def= is the list of IConstraint objects representing the inequali-
ties E [

∑
T
s=1At,sxs(ξ s)] ≤ bt(ξ t) in an object-oriented manner.

Each constraint has been standardised such that the right-hand-
side of the inequality contains only the uncertain parameters,
while the left-hand-since is a deterministic expression (see sec-
tion 2.3.4) involving only the decision variables.
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Algorithm 5.9 generate(Π)

1. T ← Π[‘maximum stages’]SPACE
2. Dmap ← Π[‘decision variables’, ‘as map’]SPACE
3. Rmap ← Π[‘random variables’, ‘as map’]SPACE
4. A,B ← cell(1, T ) SPACE
5. for t ∈ 1, 2, · · · , T do SPACE
6. mt ← Π[‘recourse constraints aggregator’, t]SPACE
7. kt ← Π[‘uncertainty aggregator’, t]SPACE
8. At ← cell(1, T ) SPACE
9. At,s ← 0 ∈ Rmt×ns , where ns ← Π[‘decision aggregator’, s], ∀s ∈ 1, 2, · · · , TSPACE

10. Bt ← 0 ∈ Rmt×ktSPACE
11. constraintsrecourse ← Π[‘recourse constraints’, ‘standardised’, t]SPACE
12. for m ∈ 1, 2, · · · , | constraintsrecourse | do SPACE
13. constraint ← constraintsrecourse[m]SPACE
14. exprLHS ← constraint[‘LHS term’]SPACE
15. for m ∈ 1, 2, · · · , | constraintsrecourse | do SPACE
16. if exprLHS is a linear expression thenSPACE
17. terms ← exprLHS[‘terms’] SPACE
18. for i ∈ 1, 2, · · · , | terms | do SPACE
19. termi ← terms[i]SPACE
20. At ← processLHSConstraintTerm(termi, Dmap, At, m) SPACE
21. end forSPACE
22. elseSPACE
23. At ← processLHSConstraintTerm(exprLHS, Dmap, At, m)SPACE
24. end ifSPACE
25. end for SPACE
26. exprRHS ← constraint[‘RHS term’]SPACE
27. Bt ← processRandomVariableConstraint(exprRHS, Rmap, Bt, m)SPACE
28. end for SPACE
29. A[t] ← At SPACE
30. B[t] ← Bt SPACE
31. end forSPACE
32. return RecourseConstraintsMatrices(A, B) SPACE

The generate(...) method walks through the different time stages, and processes the constraints
that the ImmutableJADAModel instance has assigned to a particular period t. Having obtained
the recourse constraints for a period t, the method then initialises the matrices At ≡ {At,s ∈
Rmt×ns}Ts=1 and Bt ∈ Rmt×k

t to zero-valued matrices.

Each of the retrieved constraints for stage t is then manipulated by extracting the individual
ILinearTerm expressions that respectively correspond to the sides of the inequality. The left-
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hand-side expression exprLHS is handled by the auxiliary method processLHSConstraintTerm(...)
defined in the ConstraintsMatricesGenerator. Furthermore, the processing of the right-hand-
side expression exprRHS is delegated to the utility method processRandomVariableConstraint(...)
provided by the LPGeneratorUtil class (see algorithms 5.7 and 5.8). The derived matrices are
then stored in their respective A and B cell-arrays.

Algorithm 5.10 processLHSConstraintTerm(decisionterm, Dmap, At, m)

1. decision ← Dmap[decisionterm[‘identifier’]] SPACE
2. decisionstage ← decision[‘stage known at’] SPACE
3. decisionposition ← decision[‘position’] SPACE
4. At,s ← At[decisionstage] SPACE
5. At,s(m, decisionposition) ← (decisionterm[‘coefficient])[‘value’] SPACE
6. At[decisionstage] ← cell(At,s) SPACE
7. return At SPACE

The processLHSConstraintTerm(...) incrementally builds the collection of matrices At,s as
it processes each decision variable encountered in the left-hand-side expression of a recourse
constraint. The method is supplied the following arguments:

• an ILinearTerm object representing the decision variable that participates in the left-
hand-side expression of the recourse constraint,

• a map of the identifiers of the declared decision variables versus their corresponding
IVariable objects,

• a cell-array of partially generated matrices representing the recourse constraints for a
specific time period, and

• an integer enumerating the recourse constraint being processed and thus a row index of
the matrix At,s, ∀s = 1, 2, · · · , T .

The method uses the identifier of the decision variable term to index the hash-table Dmap, and
thus access information such as the vector position of the decision variable and the stage it
corresponds to. We use the latter attribute to obtain the relevant constraint matrix At,s, whose
entry at the given row index i and the decision’s vector position is updated with a value. This
value quantifies the decision variable’s participation in the ith recourse constraint at time t.

Generation of the Moments Matrices

The generation of the second-order moments and conditional moments matrices is explai-
ned in algorithm 5.11. The generate(...) method, which is implemented by the class
MomentsMatricesGenerator, has been written to delegate the generation logic rather than
to directly handle the processing. We refer the reader to the notation given in table 5.10, in
addition to that provided thus far.
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Table 5.10: Notation for algorithms 5.11-5.13, which explain the generation of the second order
moments matrix and the conditional moments matrices for use by the linear programs as defined
in eqs. (Cons-MSPfixed) and (Prog-MSPfixed).

ξ̄ ∈ RT def= is the vector of the individual uncertain parameters for all stages
of the multi-stage stochastic programming problem.

Σ ∈ Rk×k def= is the covariance matrix for the random vector ξ ∈ RT .

ME [ξξ T] ∈ Rk×k def= is a real-valued matrix representing the second order moments
E [ξξ T].

Mt ∈ cellk×k
t def= is the real-valued matrix representing the conditional moments

matrix computed as, ME [ξ | ξt], for time period t.

MEt[ξ] ∈ cellk×k def= is a cell-array of the conditional moments matrices Mt for each
time period t.

Algorithm 5.11 generate(Π)

1. [ξ̄,Σ] ← computeExpectationsCovariances(Π) SPACE
2. [ME [ξξ T], MEt[ξ]] ← computeExpectationsCovariances(Π) SPACE
3. return MomentsMatrices(ME [ξξ T], MEt[ξ]) SPACE

We define an auxiliary function to facilitate the computation of the expectation vector and the
covariance matrix, which uses either the support parameters or the sample data(see algorithms
5.12).

The sample expectations and covariances are then supplied to another method to initiate the
derivation of the moments matrices (see algorithm 5.13).

The computation of the second order moments matrix ME [ξξ T] involves calculating the ex-
pectation matrix

E [ξξ T] =



E [ξ2
1 ] E [ξ1 ξ2] · · · E [ξ1 ξT ]

E [ξ2 ξ1] E [ξ2
2 ] · · · E [ξ2 ξT ]

...
... . . . ...

E [ξT ξ1]
... · · · E [ξ2

T ]


. (5.4.2.1)

We note that an independent random variable ξi has a variance defined by Var[ξi] = E[ξi −
E[ξi]] = E[ξ2

i ]− E[ξi]2, which implies that E [ξ2
i ] = V ar[ξi] + E[ξi]2.

Consequently, if ∀i, j = 1, 2, · · · , k we let Var[ξi], E [ξi], Var[ξj ], E [ξj ], and Cov[ξi, ξj ] =
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Cov[ξj , ξi] be respectively denoted by σ2
i , ξ̄i, σ2

j , ξ̄j , and σi,j , then

ME [ξξ T] =



σ1 + ξ̄1
2

σ1,2 + ξ̄1 ξ̄2 · · · E [ξ1 ξT ]

σ2,1 + ξ̄2 ξ̄1 σ2 + ξ̄2
2 · · · σ2,T + ξ̄2 ξ̄T

...
... . . . ...

σT ,1 + ξ̄T ξ̄1 σT ,2 + ξ̄T ξ̄2 · · · σT + ξ̄T
2


. (5.4.2.2)

Algorithm 5.12 computeExpectationsCovariances(Π)

1. k ← Π[‘uncertainty aggregator’, Π[‘maximum stages’]]SPACE
2. R ← Π[‘random variables’, ‘sorted’]SPACE
3. ξ̄ ← 0 ∈ Rk×1 SPACE
4. ξ̄(1, 1)← 1 SPACE
5. Σ← 0 ∈ Rk×k SPACE
6. for i ∈ 1, 2, · · · , | R | do SPACE
7. randomi ← R[i] SPACE
8. if randomi has sample data thenSPACE
9. samplesi ← randomi[‘sample data’] SPACE

10. ξ̄i ← mean(samplesi)SPACE
11. σ2

i ← var(samplesi) SPACE
12. elseSPACE
13. a = randomi[‘lower bound support parameter’]SPACE
14. b = randomi[‘upper bound support parameter’]SPACE
15. ξ̄i ← 1

2(a+ b)SPACE
16. σ2

i ← 1
12(b− a)2SPACE

17. end ifSPACE
18. ξ̄(i+1,1) ← ξ̄i SPACE
19. Σ(i+1,i+1) ← σ2

i SPACE
20. end forSPACE
21. return [ξ̄, Σ] SPACE
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Algorithm 5.13 computeMoments(ξ̄, Σ, Π)

1. ME [ξξ T] ← Σ + ξ̄ξ̄ TSPACE
2. if ME [ξξ T] is singular thenSPACE
3. throw MEException SPACE
4. end ifSPACE
5. T ← Π[‘maximum stages’]SPACE
6. MEt[ξ] ← cell(1, T ) SPACE
7. k ← Π[‘uncertainty aggregator’, T ]SPACE
8. R ← Π[‘random variables’, ‘sorted’]SPACE
9. for t ∈ 1, 2, · · · , T do SPACE

10. kt ← Π[‘uncertainty aggregator’, t]SPACE
11. Mt ← 0 ∈ Rk×kt SPACE
12. Mt(1,1) ← 1 SPACE
13. for j ∈ 1, 2, · · · , | R | do SPACE
14. if (R[i])[‘stage known at’] ≤ t thenSPACE
15. Mt(j,j) ← 1, ∀j = 1, 2, · · · , ktSPACE
16. elseSPACE
17. Mt(j, 1) ← ξ̄(j), ∀j = 1, 2, · · · , kSPACE
18. end ifSPACE
19. end for SPACE
20. MEt[ξ][t] ←Mt SPACE
21. end for SPACE
22. return [ME [ξξ T], MEt[ξ]] SPACE

5.4.3 Problems Encountered

Determining the Singularity of the Second-order Moments Matrix

The second-order moments matrix needs to be inverted for computing the constraints for the
progressive linear program. However, this cannot be done if the symmetric matrix is singular
due to insufficient sample data points. Below we state the approaches explored for determining
matrix singularity for potentially large matrices.

(i) A naive solution is to attempt to inverse such a matrix in a try-catch brace and re-throw
the caught exception with a more intuitive error message. However, we discovered that
MATLAB does not throw an exception in such cases. It merely displays a silent warning
message ‘Matrix is singular to working precision’, with the entries in the resulting matrix
having the IEEE arithmetic representation for positive infinity.

(ii) Linear algebra theory tells us that a matrix is invertible if its determinant is zero-valued.
However, such computation is only appropriate for small matrices since the values of the
determinants increase to large unrepresentable values very quickly.
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(iii) Another approach involves determining if the first smallest eigenvalue of the symmetric
matrix is zero. Although, MATLAB’s eigs(...) function for computing the eigenvalues
is relatively fast, the potential computational memory requirements is a cause of concern.
This is also our justification for not considering an application of a QR decomposition to
find the absolute value of the determinant.

(iv) The last alternative is to check the rank of the matrix, which itself can be quite time-
intensive but is possibly the most efficient in terms of its memory use.

Thus, we proceed with assessing non-singularity by checking that the matrix has full rank using
the function spnrank(...), from the external MATLAB framework SJsingular developed by
San Jose State University, Mathematics Department[53].

Listing 5.2: Utilisation of the spnrank(...) routine to check the singularity of the second-order
moments matrix.
1 ...
2 i f spnrank ( secondOrderMoments ) ~= min( s ize ( secondOrderMoments ))
3 message = ‘The second order moments matrix M is not invertible due to

insufficient sample data points .’;
4 throw( MEException (‘ MomentMatricesGenerator : computeMoments :

singularSecondOrderMomentsMatrix ’, message ));
5 end %if

The spnrank(...) routine implements an algorithm based on Sylvester’s low of inertia[55]. Apart
from providing the benefits of a sufficiently high degree of accuracy, the method also acquires a
required robustness to handle matrices up to dimensions of 682,712 by 682,712[54].

5.5 Approximator
We make the decision to abstract the actual generation of the conservative and progressive
linear programs to reduce the responsibilities of the generator package. In doing so, we
also reduce the overall system coupling. As illustrated by the sequence diagram figure (5.2),
the System initialises the YALMIPApproximators class with the conservative and progressive
LPApproximatorModel instances generated by the LPGenerator class. Using these models, the
linear programs can then be generated to compute the lower and upper bounds of the optimal
solution to the original stochastic programming problem.

5.5.1 Design Structure

The YALMIPApproximators class behaves like a co-ordinator and appropriately distributes the
tasks of generating the objective function and constraints for the conservative and progressive
linear programming problems. In this section, we describe the architectural design of this mo-
dule, the general algorithm for computing the objective function and constraints, and how this
module interfaces with the YALMIP convex programming framework to invoke the exposed ex-
ternal solvers.
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The approximator module has been designed to maximise code re-usability and encapsula-
tion of the underlying models of the parsed and derived meta-information. Consequently, the
LPApproximator class provides the majority of the constraints and objective function computa-
tion, and invokes methods to be overriden by functionality particular to the ConservativeApproximator
and ProgressiveApproximator classes. Additionally, the LPApproximator class is implemen-
ted as a wrapper for the LPApproximatorModel, which receives queries to retrieve or modify
specific data and delegates the requests to the internal model.

The LPApproximatorModel, as diagrammatically explained by the UML class diagram figure
(5.7) is an abstraction of the parsed input file (ImmutableJADAModel), the generated LP matrix
components (LPModel), and dictionary structures to persist the computed objective function
and the constraints for solving and presenting the results.

5.5.2 Algorithms

In this section, we expound on the general computation of the objective function and the
constraints. For the pseudo-code presentation of the logic for the approximator classes, we
direct the attention of the reader to tables 5.6 to 5.11 as points of reference for the notation
used in algorithms 5.14 and 5.15, and sections C.1.1 and C.1.2.

Table 5.11: Notation for algorithms 5.14 and 5.15, which explain the generation of the linear
programs eqs. (Cons-MSPfixed) and (Prog-MSPfixed) that serve to approximate the original
optimisation problem.

Pt : Rk 7→ Rkt , t ∈ T def= is the truncation operator.

Γ def= is an instance of the MATLAB class LPApproximatorModel
which contains a compact representation of the parsed input
file and the derived matrices to be used for computing the ob-
jective function and the constraints.

f
def= is an sdpvar variable that represents the resulting computa-

tion of the objective function using the sdpvar decision rule
matrices.

fsymbolic
def= is an ILinearTerm object that represents the resulting compu-

tation of the objective function using the symbolic decision rule
matrices.

gC(Xsdpvar, Xsymbolic)
def= denotes the computed feasibility equality-constraint for the

conservative linear program.

gP (Xsdpvar, Xsymbolic)
def= denotes the computed feasibility equality-constraint for the pro-

gressive linear program.

hC(Λsdpvar, Λsymbolic)
def= denotes the computed slack decision rule bounds for the conser-

vative linear program.

hP (Ssdpvar, Ssymbolic)
def= denotes the computed slack decision rule bounds for the pro-

gressive linear program.
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Computing the Objective Function

To compute the objective function, we are required to iterate through the stages 1, · · · , T of
the stochastic model, which permits us to calculate the summation of the iterated expression
Trace(PtME [ξξ T]P

T
t C

T
t Xt) (see 5.14).

Algorithm 5.14 computeObjectiveFunction()

1. X ← Γ[‘decision matrices’, ‘sdpvar’]SPACE
2. Xsymbolic ← Γ[‘decision matrices’, ‘symbolic’] SPACE
3. f ← 0.0 SPACE
4. fsymbolic ← new ConstantTerm(0.0)SPACE
5. for t ∈ 1, 2, · · · , Γ[‘maximum stages’] do SPACE
6. Ct ← Γ[‘costs matrices’, t]SPACE
7. if ¬Ct empty do
8. for each (X̂t,) ∈ {(X[t], f), (Xsymbolic[t], fsymbolic)} ∧ ¬ Xt empty do SPACE
9. f̂ ← + Trace(Pt(Γ[‘second order moments’])PT

t C
T
t X̂t)SPACE

10. end for eachSPACE
11. end if
12. end forSPACE
13. Γ[‘objective function’] ← [fsdpvar, fsymbolic] SPACE

We clarify that the computation of the expression Trace(PtME [ξξ T]P
T
t C

T
t Xt) at time period t

is only done if there exists a cost matrix Ct (line 7) and a decision rule matrix Xt (line 8) for
that time period. Thus, in the case where the modeller is not required to make any decision at,
for example, the first stage, then for iteration t = 1 we need not compute any values.

Computing the Constraints

We intentionally implement the method computeConstraints() in the LPApproximator class to
generalise the calculation of the constraints. This involves abstracting away from whether we are
deriving the constraints for the conservative or progressive LP, and then handling variable points
in the code by using abstract methods as placeholders. We refer the reader to sections C.1.1
and C.1.2 in section C.1 for further details of how the abstract methods are overridden by the
derived MATLAB classes ConservativeApproximator and ProgressiveApproximator.
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Algorithm 5.15 computeConstraints()

1. T ← Γ[‘maximum stages’]SPACE
2. X ← Γ[‘decision rules’, ‘sdpvar’]SPACE
3. Xsymbolic ← Γ[‘decision matrices’, ‘symbolic’]SPACE
4. for t ∈ 1, 2, · · · , T do SPACE
5. At ← Γ[‘LHS recourse constraints matrices’, t]SPACE
6. Bt ← Γ[‘RHS recourse constraints matrices’, t]SPACE
7. Ut ← getDecisionRulesOuterFactor(t)SPACE
8. for each (exprLHS , X̂) ∈ {(expr, X), (exprsymbolic, Xsymbolic)} do SPACE
9. exprLHS ←

∑T
s=1,¬At[s]empty At[s]X̂sPsUtPtSPACE

10. exprLHS ← getStandardisedFeasibilityCondition(expr)SPACE
11. end for eachSPACE
12. exprRHS ← BtPtSPACE
13. constraintLHS ← cell(expr, exprsymbolic) SPACE
14. constraintRHS ← cell(exprRHS , exprRHS) SPACE
15. constraintquantifier ← ConstraintQuantifier.EQ
16. g(·)(X, Xsymbolic) ← [constraintLHS , constraintquantifier, constraintRHS ]SPACE
17. h(·)(X, Xsymbolic) ← getPositiveSlacknessCondition(t)SPACE
18. Γ[‘computed constraints’, t] ← cell(g(·)(X, Xsymbolic), h(·)(X, Xsymbolic))SPACE
19. end forSPACE

5.5.3 Interfacing the External Solvers

Once the linear program approximator classes have completed their tasks, the abstract class
Approximators is able to communicate their computed objective functions and the constraints
to the YALMIP framework. JADA interfaces with the external solvers at a single point in the
system, where it invokes the solvesdp(...) command to solve the optimisation problem (see
code listing 5.3).

Listing 5.3: Interfacing with the available external solvers via YALMIP convex programming
framework.
1 ...
2 %Settings
3 options = sdpsettings (‘verbose ’, 0, ‘cachesolvers ’, true);
4
5 % Function ’solvesdp(F,h,options)’ is the common command to solve
6 % optimization problems of the following kind:
7 % ’min{ h | F >(=) 0}’
8 solvesdp ( constraints , objectiveFunction , options );
9 ...
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5.6 Renderer
The renderer package behaves as a custom reporting engine to present the results to the
modeller. Currently, JADA generates three files for each LP approximation, which amounts
to six files generated in total within a folder ‘.../JADA/results’ created in the user’s temp
directory. The files produced include

• the .lpmodel files which represent the generated linear programs by the ConservativeApproximator
and ProgressiveApproximator classes,

• the .optimality files which contain the optimal values of the decision and slack variables
that were represented as sdpvar objects , and

• the .rules files which specify the optimal decisions as functions of the random variables.

In figs. 5.6d, 5.7c, 5.8a and 5.8b, we use the results of the conservative approximation for the
newsvendor optimisation problem to present examples of the aforementioned files.

5.6.1 Problems Encountered

Variable Scope

We briefly explained in section 5.4.2 the need to maintain a hash-table, which would keep track
of the logical mappings of the sdpvar variables with the declared decision variables. The reason
for this is related to the requirement to present to the user the generated linear program and the
optimal solutions. These representations are both parameterised by these matrices of sdpvar
variables. For clarification, we point out that to display an sdpvar object in symbolic MATLAB
form, the method sdisplay(...) can be invoked with the object supplied as the argument.

Listing 5.4: Example declaration and symbolic display of sdpvar objects from the YALMIP
convex programming framework.
1 >> x = sdpvar (1 ,1)
2 >> y = sdpvar (1 ,1)
3 >> f = [x; 7*x + 2*y + 2*x + 7*y]
4
5 Linear matrix variable 2x1 (full , real , 2 variables )
6
7 >> sdisplay (f)
8
9 ans =
10 ‘x’
11 ‘9*x + 9*y’

The desired identifier for the entry (i,j) of the decision rule matrix Xt at stage t is a mangled
string of the form x_t_i_j, however the sdpvar object provides no functionality for assigning
these variables a specific name to be denoted by. Instead, the object is dynamically assigned an
identifier that corresponds to the name of its declaration. Hence, a workaround is to use MAT-
LAB’s eval(...) function to execute a string containing the desired assignment expression.
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Listing 5.5: Using MATLAB’s eval(...) to declare an sdpvar object with a specific name.
1 ...
2 for t=1: numStages
3 for i: decisionsAggregator (t)
4 for i: decisionsAggregator (t)
5 ...
6 identifier = [‘x_ ’, num2Str (t), ‘_’, num2Str (i), ‘_’, num2Str (j)];
7 eval ([ identifier , ‘ = sdpvar (1 ,1) ’]);
8 decisionMatrix_t (i,j) = eval ( identifier );
9 ...
10 end %for j=1:uncertaintyAggregator(t)
11 end %for i=1:decisionsAggregator(t)
12 end %for t=1:numStages
13 ..

Besides this approach being very awkward and heavily inefficient, we encountered a serious
problem when it came to rendering the sdpvar objects outside the scope that they were defined.
Thus, rather than displaying the mangled identifier, the symbolic display function displayed the
variable name ‘internal’ when invoked outside the DecisionMatricesGenerator class. As a
result, we had to develop an expressions utility library that represented and performed the
linear operations involving variables, vectors and matrices in an object-oriented manner by
overloading MATLAB’s built-in functions.
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Figure 5.7: UML class diagram showing the structural dependencies of the classes in the
approximator package, as well as the point of interfacing of the JADA system with the YALMIP
convex programming framework to access a miscellany of external solvers.



5.6 RENDERER 93

(a) Notification of generated output files as hyper-links in the MATLAB com-
mand window.

(b) The .rules file for the conservative approximation of the newsvendor problem.
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(c) The .lpmodel file for the conservative approximation of the news-
vendor problem.
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(d) The .optimality file for the conservative approximation of the newsvendor optimisation problem.

Figure 5.6: Generated results files for the conservative approximation of the newsvendor problem



6
Incorporating Stochastic Processes for a More

Expressible AML

In chapter 5, we have methodically explained a basic implementation that will allow us to
meet the fundamental requirements of this project. In this chapter we describe an implemented
extension to maximise the expressibility and flexibility associated with specifying a problem in
our input format.

6.0.2 Motivation

As we explained in section 2.3.2, we can consider decision-making under uncertainty as a finite
process, which consists of interleaving decisions and observations that occur over time stages.
Therefore, we can model our decisions and observations as indexable sets.

To extend the JADA syntax, we intend to introduce a notational representation of decision-
making as a stochastic process. Our primary motivation, for enriching the language in this way,
stems from a requirement to allow for the modeller to specify their optimisation problems in a
succinct and flexible manner. For example, consider the abstracted decision-making problem in
eq. (6.0.2.1).

minimise E
[∑T

t=1
∑N
i=1 ci,t xi,t(ξ t)

]
subject to

xi,t ∈ L2
t,1

xmini,t ≤ xi,t(ξ t) ≤ xmaxi,t∑
T
t=1 xi,t(ξ t) ≤ xtotalt


∀i ∈ N, ∀t ∈ T

(6.0.2.1)

A formulation of the equivalent linear program, using our current algebraic modelling language,
requires explicit declarations of the individual decision variables, random variables, as well as
the individual terms in the objective function and constraints. Thus before the modeller can

96
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use our input format, eq. (6.0.2.1) must undergo a preliminary transformation to expand the
summations

∑
t,i and the universal quantifiers ∀. This is obviously tedious and inconvenient if

the JADA file cannot be generated programmatically. To eliminate the need to re-translate the
optimisation problem, we aim to introduce syntax for

• declaraing decision and random processes,

• declaring single-valued and vector-valued constants,

• indexing expressions, and

• iterating over indexed expressions using summation or universal quantifiers.

6.0.3 New Language Features

Decision and Random Processes

We amend our syntax for specifying the optimisation problem’s decision variables and random
variables to allow for a more succinct representation. A family of decision variables need not be
declared individually, but can instead be declared as a decision process that is parameterised
by

• a string which uniquely identifies the decision process,

• an index range, given by two integers, which specify the stage at which the decision process
commences and terminates,

• an integer that quantifies the number decisions at each stage of the process.

Similary, we can describe a random process by giving

• a string which uniquely identifies the random process,

• an range, given by two integers, which specify the stage at which the decision process
commences and terminates, and

• a list of comma-delimited ranges which specify the shape of each of the random variables’
probability distribution.

Thus, if we let T = 3 and N = 3, we can declare the decision and random variables required
for eq. (6.0.2.1) by two single declarations, as shown in code listing 6.1.

Listing 6.1: Modified design for the Variables subsection of the JADA file using eq. (6.0.2.1)
as the motivation example.
1 ...
2 Variables
3 {
4 decision (x ,1:3 ,3);
5 random (y ,2:3 ,0:1000000 ,0:1000000) ;
6 }
7 ...
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We can contrast this with the initial design of the input format, which we specified in section 4.3
and demonstrate in code listing 6.2.

Listing 6.2: Initial design for the Variables subsection of the JADA file using eq. (6.0.2.1) as
the motivational example.
1 ...
2 Variables
3 {
4 decision (x1 ,1);
5 decision (x2 ,2);
6 decision (x3 ,3);
7
8 random (y2 ,2 ,0 ,1000000);
9 random (y3 ,3 ,0 ,1000000);

10 }
11 ...

We point out to the reader that we require an amended modelling of the distribution of the
random variables. To reduce the scope for ambiguity, we use the notation <minimum>:<maximum>
to specify the bounds, rather than use commas to delimit the values of the lower and upper
bounds.

Constant Parameters

To facilitate the modeller’s specification of his or her decision-making problem, we introduce
special variables with known, static values which can be referred to in symbolic expressions and
in definitions of other constants. We use the reserved keyword constant to make an explicit
semantic distinction between the model variables and the constants. The syntax for declaring
a constant parameter is shown in code listing 6.3.

Listing 6.3: Modified design for the General subsection of the JADA file, to introduce declara-
tions of constant parameters.
1 ...
2 General
3 {
4 ...
5 constant ( default_cost ,10);
6 constant ( cost_factor , 1.0 ,2.5 ,3.0);
7 constant ( additional_cost ,1/45+3.0 ,5+12.08765 ,9.0 -3) ;
8
9 constant ( total_cost , additional_cost#1 + default_cost * cost_factor#1,

10 additional_cost#2 + default_cost * cost_factor#2,
11 additional_cost#3 + default_cost * cost_factor#3);
12
13 constant (min ,10 ,17 ,13);
14 constant (max ,20);
15
16 constant (total ,100 ,75);
17 ...
18 }
19 ...
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Constants are defined in the General construct and their declarations are syntactically para-
meterised by a unique identifier and a list of values. In code listing 6.3, we would like to draw
the reader’s attention to the variations in the manner that constants can be declared.

• Constants can be single-valued (line 5) or vector-valued (line 6).

• Constants can be defined using arithmetic expressions (line 7).

• Declarations of constants can refer to previously defined single-valed constants (line 5) or
vector-valued constants (line 11).

Sigma Notation

We utilise eq. (6.0.2.1) as a motivational example for introducing syntactical constructs for spe-
cifying iterated addition. This allows the decision-maker to compactly and precisely express any
sequence of linear terms to be added. We make the choice to model summation using the Sigma
Notation, and in the generic expression

∑β
i=α f(i), we identify the following components[56]:

• the letter k is denotes the index variable or the index of summation and adopts integer
values in the range [α, β],

• the values α and β are the starting and ending index of summation, and

• f(i) is the iterated expression that specifies each individudal term in the final sum.

Code listing 6.4 illustrates the syntactic declaration of a summation to specify the objective
function of eq. (6.0.2.1).

Listing 6.4: Declaration of the objective function the ‘sum’ construct.
1 ...
2 Objective
3 {
4 minimise expectation sum(t=1:3 , i =1:3)( total_cost#i * x#i#t * y#t);
5 }
6 ...

In the initial design, we explained that we modelled multiplication of the decision variables
with the random variables using the square parentheses. Upon further discussion, we noted
that this syntax is not as intuitive as using the normal multiplication symbol ‘*’. Although, the
initial design makes it easier to extract the costs of the decision variables, since it encourages
the modeller to factorise the objective function, we feel familiarity and convenience is more
important.

Universal Quantification

In predicate logic, universal quantification formalises the notion that a logical predicate or
proposition is true for the universe of discourse, which is the set of objects of interest. In
symbolic logic, the universal quantifier ∀ is used to denote universal quantification, and is
informally read as ‘for all’. For the quantified formula ∀P (x),
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• P (x) denotes the predicate or atomic formula, and

• x is an object in the universe of discourse.

For our own purposes, we will introduce universal quantification to aid the modeller’s speci-
fication of the recourse constraints and the support constraints. Its syntax is similar to the
summation construct, except that the iterated expression is a constraint. This is illustrated in
code listing 6.5 for modelling the recourse constraints of eq. (6.0.2.1).

Listing 6.5: Declaration of the recourse constraints using the ‘forall’ construct.
1 ...
2 Constraints
3 {
4 forall (t=1:3 , i =1:3)(min#i <= x#i#t);
5
6 forall (t=1:3 , i =1:3)(x#i#t <= max);
7
8 forall (t=1:3 , i =1:3)(sum(t =1:3)(x#i#t) <= total#t);
9 }

10 ...

Indexing expressions

For vector-valued variables and constants, we allow the user to reference the components of a
declared process or vector using the hash symbol ‘#’. Additionally, we permit references to the
index variables in the iterated expressions using the hash symbol. Thus, the example expression∑

T
t=1 3 ∗ t can be represented as sum(t=1:2)(3*#t).

6.0.4 Parser Modifications

To implement the notation for stochastic processes, we are only required to re-implement parts
of the parser.

• We modify the lexer grammar file JADALexer.g to introduce new lexical tokens for the
reserved keywords ‘sum’ and ‘forall’,

• We augment the rules in the parser file JADAParser.g to capture our new representation
of constants, decision and random processes, indexable expressions, iterated addition, uni-
versal quantification for specifying constraints, and finally the use of explicit multiplication
in the objective function. Additionally, we ensure that the SampleDataParser permits
implicit references to random variables, using the stochastic process notation, to specify
the sample data.

• We re-factor the tree parser grammar file JADATreeParser.g to accommodate the modi-
fied abstract syntax trees we now generate. Furthermore, we perform the expansion of
the iterated expressions at this point in the code-base.

In section D.1 we present some syntax diagrams, which serve to explain the formation of our
parser rules to parse the declarations of constants, declarations and references to decision and
random processes, explicit multiplication in the objective function, and the iterated expressions.
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In addition to the aforementioned syntax diagrams, we refer the reader to the syntax digrams for
the unmodified grammar in sections B.3 and B.4 to understand how expressions are interpreted
for ‘sum’ construct (see figure (6.1)) and ‘forall’ construct (see figure (6.2)).
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Figure 6.1: Diagram showing the interpretation of the summation parser rule for code listing 6.4 (line 4).

Figure 6.2: Diagram showing the interpretation of the universal quantification parser rule for code listing 6.5 (line 4).



7
Numerical Evaluation

In this chapter, we consider two different stochastic programming problems to supplement the
evaluation of the implemented system. For each case-study, we qualify the decision-making
problem by giving a qualitative description and a mathematical formulation of the underlying
optimisation problem. We then specify the decision-making problem using our standardised
input format. Finally, we import the JADA library into MATLAB to parse the specified mo-
del, and to compute the solutions of the generated conservative and progressive linear programs.

Our simulation environment consists of MATLAB R2008a software running on a 32-bit Win-
dows VistaTM Home Premium machine with a 1.90GHz AMD TurionTM 64 X2 TL-58 processor,
which uses dual-core mobile technology and has 1.918GB RAM.

7.1 Case Study A: The Newsvendor Problem

7.1.1 Description

In section 3.6 we discuss a very simple stochastic programming problem to demonstrate the
linear decision rules approximation. We remind the reader that the newsvendor problem is
centered around a newspaper vendor who faces the dilemma of deciding how many newspapers
to order from an external supplier today. The element of uncertainty is characterised by the
non-determinism of the customers’ demand for newspapers tomorrow.

7.1.2 JADA Formulation Using Explicit Syntax

In listing 7.1, we illustrate our specification of the newsvendor problem using our input format,
JADA.

Listing 7.1: A formulation of the newsvendor problem.
1 Model
2 {
3 General
4 {
5 name(" Newsvendor Problem ");
6 stages (2);

103
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7 }
8
9 Variables

10 {
11 random (demand ,2 ,5:10);
12 decision (x ,1 ,1);
13 decision (w ,2 ,1);
14 }
15
16 Support
17 {
18 5 <= demand ; demand <= 10;
19 }
20 Samples {file("C: Workspace /JADA/tests/ examples / newsvendorsamples .txt");}
21
22 Constraints
23 {
24 w + x >= 0;
25 w >= -demand ;
26 x >= 0;
27 }
28
29 Objective { minimise expectation 5*x + 10*w;}
30 }

The sample data file required for this problem is produce by randomly generating numbers
between 5 and 10 using inversion transform sampling.

7.1.3 Generated Matrices

We mention in our discussion of the implementation that we abstract the generation of the
matrices, as required by eqs. (Cons-MSPfixed) and (Prog-MSPfixed) into the generator module.
In this section we list the components generated by the matrices generator classes.

Decision Rules

In this section we present the decision rule matrices generated by the DecisionRuleMatricesGenerator
for both the conservative and progressive linear program (see table 7.1).

Decision Costs

The costs matrices generated by the CostsMatricesGenerator are given in table 7.2.

C1 ∈ R1×1 5.0

C2 ∈ R1×2
(

10.0 0.0
)

Table 7.2: Generated costs matrices for the conservative and progressive approximations.



7.1 CASE STUDY A: THE NEWSVENDOR PROBLEM 105

X1 ∈ R1×1 x1,1,1

X2 ∈ R1×2
(
x2,1,1 x2,1,2

)

Λ1 ∈ R1×6
(

Λ1,1,1 Λ1,1,2 Λ1,1,3 Λ1,1,4 Λ1,1,5 Λ1,1,6

)

Λ2 ∈ R2×6
Λ1,1,1 Λ1,1,2 Λ1,1,3 Λ1,1,4 Λ1,1,5 Λ2,1,6

Λ2,2,1 Λ2,2,2 Λ2,2,3 Λ2,2,4 Λ2,2,5 Λ2,2,6


S1 ∈ R1×1 s1,1,1

S2 ∈ R2×2
s2,1,1 s2,1,2

s2,2,1 s2,2,2


Table 7.1: Generated decision rule matrices for the conservative and progressive approximations.

Recourse Constraints

The post-processing of the parsed recourse constraints involves generation of the matrices
{At,s}2s=1,t=1 and {Bt}2t=1. These components represent the derived parameters for the gene-
ralised inequality constraint E

[∑2
s=T At,sxs(ξ s)

]
≤ bt(ξ t). In table 7.3 we illustrate the values

of these matrices, as derived by the ConstraintsMatricesGenerator, for this optimisation
problem.

A1,1 ∈ R1×1 −1.0

A1,2 ∈ R1×1 0.0

A2,1 ∈ R2×1
(
−1.0 0.0

)T

A2,2 ∈ R2×1
(
−1.0 −1.0

)T

B1 ∈ R1×1 0.0

B2 ∈ R2×2
0.0 0.0

0.0 1.0



Table 7.3: Generated matrices for the recourse constraints to be utilised by the conservative
and progressive approximations.

Support Constraints

The matrices W and h are defined through eq. (2.3.3.4), and are derived by processing the
declared support constraints and the bound parameters specified for the random variables.
Their values, as generated by the SupportMatricesGenerator, are stated in table 7.4.
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W ∈ R6×2
1.0 −1.0 10.0 −5.0 10.0 −5.0

0.0 0.0 −1.0 1.0 −1.0 1.0


T

h ∈ R6×1
(

1.0 −1.0 0.0 0.0 0.0 0.0
)T

Table 7.4: Generated support matrices for the conservative and progressive approximations.

Moments

Finally, in table 7.5 we give the second-order moments M and conditional moments matrices
{Mt}2t=1 generated by the MomentMatricesGenerator.

M1 ∈ R2×1
(

1.0 7.4628
)T

M2 ∈ R2×2
1.0 0.0

0.0 1.0


M ∈ R2×2

 1.0 7.4628

7.4628 57.8368



Table 7.5: Generated moments matrices to be used by the conservative and progressive approxi-
mations.

7.1.4 Generated Linear Programs

Using the generated matrix components (see section 7.1.3), the classes in the approximator
module are able to generate the conservative (see listing 7.2) and progressive (see listing 7.3)
approximations of the original stochastic program.

Listing 7.2: The generated conservative approximation linear program for the newsvendor pro-
blem.

Minimise 5.0x1,1,1 + 10.0x2,1,1 + 74.62809116000001x2,1,2

Subject to
C1: Λ1,1,1 - Λ1,1,2 + 10.0Λ1,1,3 - 5.0Λ1,1,4 + 10.0Λ1,1,5 - 5.0Λ1,1,6 - x1,1,1 = 0

5 C2: -Λ1,1,3 + Λ1,1,4 - Λ1,1,5 + Λ1,1,6 = 0
C3: Λ2,1,1 - Λ2,1,2 + 10.0Λ2,1,3 - 5.0Λ2,1,4 + 10.0Λ2,1,5 - 5.0Λ2,1,6 - x1,1,1 -

x2,1,1 = 0
C4: -Λ2,1,3 + Λ2,1,4 - Λ2,1,5 + Λ2,1,6 - x2,1,2 = 0
C5: Λ2,2,1 - Λ2,2,2 + 10.0Λ2,2,3 - 5.0Λ2,2,4 + 10.0Λ2,2,5 - 5.0Λ2,2,6 - x2,1,1 = 0
C6: -Λ2,2,3 + Λ2,2,4 - Λ2,2,5 + Λ2,2,6 - x2,1,2 = 1

10 C7: Λ1,1,1 - Λ1,1,2 >= 0
C8: Λ2,1,1 - Λ2,1,2 >= 0
C9: Λ2,2,1 - Λ2,2,2 >= 0

Decision Bounds
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15 0 <= Λ1,1,1 <= Inf 0 <= Λ1,1,2 <= Inf 0 <= Λ1,1,3 <= Inf
0 <= Λ1,1,4 <= Inf 0 <= Λ1,1,5 <= Inf 0 <= Λ1,1,6 <= Inf
0 <= Λ2,1,1 <= Inf 0 <= Λ2,1,2 <= Inf 0 <= Λ2,1,3 <= Inf
0 <= Λ2,1,4 <= Inf 0 <= Λ2,1,5 <= Inf 0 <= Λ2,1,6 <= Inf
0 <= Λ2,2,1 <= Inf 0 <= Λ2,2,2 <= Inf 0 <= Λ2,2,3 <= Inf

20 0 <= Λ2,2,4 <= Inf 0 <= Λ2,2,5 <= Inf 0 <= Λ2,2,6 <= Inf

-Inf <= x1,1,1 <= Inf
-Inf <= x2,1,1 <= Inf
-Inf <= x2,1,2 <= Inf

25
End

Listing 7.3: The generated progressive approximation linear program for the newsvendor pro-
blem.

Minimise 5.0x1,1,1 + 10.0x2,1,1 + 74.62809116000001x2,1,2

Subject to
C1: s1,1,1 - x1,1,1 = 0

5 C2: s2,1,1 - x1,1,1 - x2,1,1 = 0
C3: s2,1,2 - x2,1,2 = 0
C4: s2,2,1 - x2,1,1 = 0
C5: s2,2,2 - x2,1,2 = 1
C6: 2.5371908839999993s1,1,1 >= 0

10 C7: 2.4628091160000007s1,1,1 >= 0
C8: 2.5371908839999993s1,1,1 >= 0
C9: 2.4628091160000007s1,1,1 >= 0
C10: 2.5371908839999993s2,1,1 + 16.791328145719817s2,1,2 >= 0
C11: 2.5371908839999993s2,2,1 + 16.791328145719817s2,2,2 >= 0

15 C12: 2.4628091160000007s2,1,1 + 20.52271743428019s2,1,2 >= 0
C13: 2.4628091160000007s2,2,1 + 20.52271743428019s2,2,2 >= 0
C14: 2.5371908839999993s2,1,1 + 16.791328145719817s2,1,2 >= 0
C15: 2.5371908839999993s2,2,1 + 16.791328145719817s2,2,2 >= 0
C16: 2.4628091160000007s2,1,1 + 20.52271743428019s2,1,2 >= 0

20 C17: 2.4628091160000007s2,2,1 + 20.52271743428019s2,2,2 >= 0
C18: s1,1,1 >= 0
C19: s2,1,1 + 7.462809116000001s2,1,2 >= 0
C20: s2,2,1 + 7.462809116000001s2,2,2 >= 0

25 Decision Bounds
0 <= s1,1,1 <= Inf
0 <= s2,1,1 <= Inf
0 <= s2,1,1 <= Inf

30 -Inf <= x1,1,1 <= Inf
-Inf <= x2,1,1 <= Inf
-Inf <= x2,1,2 <= Inf

End
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7.1.5 Computed Solutions

The approximator module interfaces the YALMIP convex programming framework. JADA is
able to communicate instances of the generated approximation linear programs by passing two
parameters, which respectively represent the objective function and the constraints.

< Optimal Objective >
-25.0

< Optimal Objective />

< Decision Variables >
< Stage=’1’ >

x_1_1_1 = 5.000000e+000
< Stage />
< Stage=’2’ >

x_2_1_1 = -5.000000e+000
x_2_1_2 = 5.178669e-016

< Stage />
< Decision Variables />

< Slack Variables >
< Stage=’1’ >

lambda_1_1_1 = 1.923077e-001
lambda_1_1_2 = -5.496885e-017
lambda_1_1_3 = 4.807692e-001
lambda_1_1_4 = 4.807692e-001
lambda_1_1_5 = 4.807692e-001
lambda_1_1_6 = 4.807692e-001

< Stage />
< Stage=’2’ >

lambda_2_1_1 = 7.236667e-017
lambda_2_1_2 = 1.128462e-016
lambda_2_1_3 = 2.205772e-019
lambda_2_1_4 = -1.648091e-016
lambda_2_1_5 = -3.980097e-017
lambda_2_1_6 = -9.453507e-017
lambda_2_2_1 = -3.953631e-016
lambda_2_2_2 = 5.399349e-015
lambda_2_2_3 = -1.110223e-016
lambda_2_2_4 = 1.000000e+000
lambda_2_2_5 = -5.690998e-017
lambda_2_2_6 = -1.572382e-015

< Stage />
< Slack Variables />

Figure 7.1: Computed solutions to the
newsvendor problem’s conservative LP.

< Optimal Objective >
-32.9795738681331

< Optimal Objective />

< Decision Variables >
< Stage=’1’ >

x_1_1_1 = 8.107933e+000
< Stage />
< Stage=’2’ >

x_2_1_1 = -8.687333e-001
x_2_1_2 = -8.687333e-001

< Stage />
< Decision Variables />

< Slack Variables >
< Stage=’1’ >

s_1_1_1 = 8.107933e+000
< Stage />
< Stage=’2’ >

s_2_1_1 = 7.239200e+000
s_2_1_2 = -8.687333e-001
s_2_2_1 = -8.687333e-001
s_2_2_2 = 1.312667e-001

< Stage />
< Slack Variables />

Figure 7.2: Computed solutions to the
newsvendor problem’s progressive LP.

For this case-study, the solutions and interpreted optimal decisions rules to the linear programs
displayed in listings 7.2 and 7.3 are given in figs. 7.1 to 7.3.
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< Optimal Decisions >
< Stage=’1’ >

x = 5.0
< Stage />
< Stage=’2’ >

w = -5.00000000000001 +
5.17866944988629E-016*demand

< Stage />
< Optimal Decisions />

Figure 7.3: Interpreted optimal decisions
rules for the newsvendor problem’s conser-
vative LP.

< Optimal Decisions >
< Stage=’1’ >

x = 8.1079334294196
< Stage />
< Stage=’2’ >

w = -0.868733301289211 -
0.868733301289211*demand

< Stage />
< Optimal Decisions />

Figure 7.4: Interpreted optimal decisions
rules for the newsvendor problem’s progres-
sive LP.

7.1.6 Loss of Optimality

We previously stated in section 3.5 that the solutions computed from using linear decision rules
are rarely truly optimal. This is a by-product of restricting the feasible region to those policies
that are affinely dependent on the uncertain elements. Since the optimal decision rule may
not be linear in the random variables, we may incur losses in optimality from performing this
drastic reduction of the policy space.

Conservative Progressive Approximation Percentage Gap

Approximation (UB) Approximation (LB) UB−LB
LB (%)

Objective Value -25.0 -32.97957387 -24.196

x_1_1_1 5.0 8.107933 n/a

x_2_1_1 -5.0 -0.8687333 n/a

x_2_1_2 5.178669E-16 -0.8687333 n/a

Table 7.6: Loss of optimality incurred by using linear decision rule for the newsvendor problem.

The conservative and progressive approximations provide the upper and lower bounds for the
actual optimal decision rules, and we can use these values to estimate the loss of optimality
incurred as a result of enforcing computational tractability. The results of the conservative
approximation suggest that the newsvendor should purchase 5.0 units of newspapers from the
external vendor today, and then sell 5 units tomorrow. Unfortunately, we cannot numerically
compare the decision rules computed by the conservative and progressive approximation since
the progressive decision rules are only constrained in expectation. However, we can estimate
the percentage gap between the objectives value computed by the conservative and progressive
approximations as -24.196%, which is quite significant. Hence, it might be too optimistic of the
decision-maker to select the upper bound decision rule.
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Figure 7.5: Linear decision rule-based bounds for the newsvendor problem

7.2 Case Study B: Capacity Expansion for an Electricity Power
Plant

7.2.1 Description

Stochastic programming has manifold applications such as public infrastructure investment
planning. As an example, we study an adaptation of a capacity expansion model, proposed by
Kuhn et al[58][57], for a power system comprising of generators, regional consumers, and trans-
mission lines such that future regional demand and energy production costs are uncertain. The
problem is described by a multi-stage stochastic programming problem consisting of two-stages.
In the first stage, the capacity of the current infrastructure is expanded, which yields investment
costs. During the second stage, operational costs are incurred following the execution of the
upgraded electric power system. The improved system is required to satisfy the total demand
across all the regions.

Consequently, the objective is to minimise the expected expansion expenditures and opera-
tional costs. To formalise the description of the problem, we consider that the power grid
consists of R = {1, · · · , r̄}, regions that depend on the electricity supply. Additionally, we sup-
pose that there are G = {1, · · · , ḡ} electricity generators constrained by a production capacity of
x̄g, and L = {1, · · · , ¯̀} electricity transmission lines, which can carry up to ū` units of electricity.

Each electricity generator is allocated to one of regions r ∈ R, and the group of generators
supplying the electricity to region r is denoted by the relation G(r) ⊂ G. The flow of electricity
for region r is represented by the relations L(r, in) ⊂ L and L(r, out) ⊂ L, which respectively
symbolise the set of transmission lines carrying electricity into and out of the region. The sum of
the number of power plants yg, g ∈ G(r), number of electricity transmission lines t`, ` ∈ L(r, in)
going into region r, and the number of electricity transmission lines t`, ` ∈ L(r, out) going out
of region r must at least meet the stochastic demand for electricity to achieve nodal load balance.
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We use the quantities c′g and c′′` to respectively denote the cost of expanding power plant yg by
an amount αg, and the cost of expanding transmission line t` by an amount β`. The first-stage
decisions αg and β` are defined such that the capacity expansion of the generators and electricity
transmission can at most double. The expected operational costs of power plant pg and the
unknown electricity demand for region r are respectively represented by the stochastic elements
ξ′g and ξ′′r . Thus, the total cost of the first-stage capacity expansion is

∑
g∈G c

′
gαg +

∑
`∈L c

′′
`β`,

and the expected total operational cost for the second stage is
∑
g∈G E

[
ξ′gyg

]
.

Using the aforementioned notation, the decision-making problem can be specified by eq. (7.2.1.1).

minimise
∑
g∈G c

′
gαg +

∑
`∈L c

′′
`β` + E

[∑
g∈G ξ

′
gyg
]

subject to

αg ∈ R, β` ∈ R, yg ∈ L2
k,k, t` ∈ L2

k,k

1 ≤ αg ≤ 2 ∀g ∈ G

1 ≤ β` ≤ 2 ∀` ∈ L

0 ≤ yg ≤ ūgαg ∀g ∈ G

|t`| ≤ ū`β` ∀` ∈ L∑
g∈G pg +

∑
`∈L(r,in) t` −

∑
`∈L(r,out) t` ≥ ξ′′r ∀r ∈ R



P− a.s.
(7.2.1.1)

JADA Formulation Using Stochastic Processes

For purposes of experimentation, we first contextualise eq. (7.2.1.1) with numerical values. We
begin by assuming that the power grid consists of five regions R = 1, 2, 3, 4, 5 such that the
stochastic regional demands are

• ξ′′1 = ξ̂′′1 ,

• ξ′′2 = 30 + 1.2ξ̂′′2 ,

• ξ′′3 = 30 + 1.4ξ̂′′3 ,

• ξ′′4 = 30 + 1.6ξ̂′′4 , and

• ξ′′3 = 30 + 1.8ξ̂′′5 ,

where ∀r ∈ R, ξ̂′′r ∈ [0, 120]. Secondly, we assume that there are three electricity generators
G = 1, 2, 3 and thus three power plants y1, y2, y3. The power plants incur respective uncertain
operational costs of

• ξ′1 = 20 + ξ̂′2,

• ξ′2 = 100 + ξ̂′3, and

• ξ′3 = 20 + ξ̂′2,
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where ξ′1 ∈ [0, 80], ξ′2 ∈ [0, 80], and ξ′3 ∈ [0, 100]. Additionally, we suppose that

• the cost of expanding the capacity of power plant y1 by α1 is c′1 = 100,

• the cost of expanding the capacity of power plant y2 by α2 is c′2 = 40, and

• the cost of expanding the capacity of power plant y3 by α3 is c′3 = 150.

We also define costs of expanding the capacity of five transmission lines t1, t2, t3, t4, t5 by amounts
β, β2, β3, β4, β5 to be c′′1 = 500, c′′2 = 20, c′′3 = 400, c′′4 = 60, c′′5 = 10 respectively.

Furthermore, we impose the maximum production capacity of the generators to be ūg = 350,
and the maximum capacity of the transmission line to be ū` = 350.

Finally, to model the flow of electricity, we require that

G(r) =



{3}, r = 1

∅, r = 2

{2}, r = 3

∅, r = 4

{1}, r = 5

L(r, in) =



{1}, r = 1

{2, 4}, r = 2

∅, r = 3

{3, 5}, r = 4

∅, r = 5

L(r, out) =



{2}, r = 1

∅, r = 2

{1, 3}, r = 3

{4}, r = 4

{5}, r = 5

Thus, we can formulate the program in our standardised input format by the description given in
listing 7.4. The numerical data the sample file required for this problem are similarly generated
using the inversion sampling method.

Listing 7.4: A formulation of the electricity power plant capacity expansion problem.
Model
{

General
{

5 name(" E l e c t r i c i t y P o w e r P l a n t E x p a n s i o n ");
stages (2);

constant ( line_capacity , 350);
constant ( generator_capacity , 350);

10 constant ( line_expansion_cost , 500, 20, 400, 60, 10);
constant ( plant_expansion_cost , 100, 40, 150);
constant ( default_op_cost , 20, 20, 100);

}

15 Variables
{

random (demand_1 ,2 ,0:120);
random (demand_2 ,2 ,0:120);
random (demand_3 ,2 ,0:120);

20 random (demand_4 ,2 ,0:120);
random (demand_5 ,2 ,0:120);

random (op_cost_1 ,2 ,0:80);
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random (op_cost_2 ,2 ,0:80);
25 random (op_cost_3 ,2 ,0:100);

decision ( plant_expansion ,1 ,3);
decision ( line_expansion ,1 ,5);

30 decision (plant ,2 ,3);
decision (line ,2 ,5);

}

Support {}
35

Samples
{

file(" C :/ W o r k s p a c e / J A D A / t e s t s / e x a m p l e s / e l e c t r i c i t y s a m p l e s . txt ");
}

40
Constraints
{

forall (i=1:5)( line_expansion#i#1 >= 1);
forall (i=1:5)( line_expansion#i#1 <= 2);

45
forall (i=1:3)( plant_expansion#i#1 >= 1);
forall (i=1:3)( plant_expansion#i#1 <= 2);

forall (i=1:3)(plant#i#2 >= 0);
50 forall (i=1:3)(plant#i#2 <= generator_capacity * plant_expansion#i#1);

forall (i=1:5)(-line#i#2 <= line_capacity * line_expansion#i#1);
forall (i=1:5) (+ line#i#2 <= line_capacity * line_expansion#i#1);

55 plant#3#2 - line#2#2 + line#1#2 = demand_1 ;
line#2#2 + line#4#2 = 30 + 1.2* demand_2 ;
plant#2#2 - line#1#2 - line#3#2 = 30 + 1.4* demand_3 ;
line#3#2 + line#5#2 - line#4#2 = 30 + 1.6* demand_4 ;
plant#1#2 - line#5#2 = 30 + 1.8* demand_5 ;

60 }

Objective
{

minimise expectation
65 sum(i =1:3)( plant_expansion_cost#i* plant_expansion#i#1) +

sum(i=1:3)( line_expansion_cost#i* line_expansion#i#1) +
sum(i=1:3)( plant#i#1* default_op_cost#i) +
plant#1#2* op_cost_1 +
plant#2#2* op_cost_2 +

70 plant#3#2* op_cost_3 ;
}

}

7.2.2 Generated Matrices

In this section we state the matrix components derived by the classes in the generator package.
We point out to the reader that this problem is significantly more complex and larger than the
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newsvendor problem, which necessitates some mathematical abbreviation in our presentation of
the matrices.

Decision Rules

The decision rule matrices generated by the DecisionRuleMatricesGenerator for both the
conservative LP and progressive LP are illustrated in table 7.7.

X1 ∈ R8×1
(
x1,1,1 x1,1,2 · · · x1,1,8

)T

X2 ∈ R8×9


x2,1,1 x2,1,2 · · · x2,1,9

x2,2,1 x2,2,2 · · · x2,2,9
...

... . . . ...

x2,8,1 x2,8,2 · · · x2,8,9



S1 ∈ R16×1
(
s1,1,1 s1,1,2 · · · s1,1,16

)T

S2 ∈ R26×9


s2,1,1 s2,1,2 · · · s2,1,9

s2,2,1 s2,2,2 · · · s2,2,9
...

... . . . ...

s2,26,1 s2,26,2 · · · s2,26,9



Λ1 ∈ R16×18


Λ1,1,1 Λ1,1,2 · · · Λ1,1,18

Λ1,2,1 Λ1,2,2 · · · Λ1,2,18
...

... . . . ...

Λ1,16,1 Λ1,16,2 · · · Λ1,16,18


Λ2 ∈ R26×18



Λ2,1,1 Λ2,1,2 · · · Λ2,1,18

Λ2,2,1 Λ2,2,2 · · · Λ2,2,18
...

... . . . ...

Λ2,26,1 Λ2,26,2 · · · Λ2,26,18


Table 7.7: Generated decision rule matrices for the conservative and progressive approximations.

Decision Costs

The costs matrices generated by the CostsMatricesGenerator are given in table 7.8.

C1 ∈ R8×1 ( 500.0 20.0 400.0 0.0 0.0 100.0 40.0 150.0 )T C2 ∈ R8×9
 0 ∈ R5×6 0 ∈ R5×3

0 ∈ R3×6 I3


Table 7.8: Generated costs matrices for the conservative and progressive approximations.
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Recourse Constraints

We repeat for emphasis that the MATLAB class ConstraintsMatricesGenerator is solely
responsible for generating the recourse matrices {At,s}2s=1,t=1 and {Bt}2t=1. We tabulate their
values for the capacity expansion optimisation problem in table 7.9.

Support Constraints

The support matrices W and h, as generated by the SupportMatricesGenerator, are given in
table 7.10.

Moments

In table 7.11 we provide the second-order moments M and conditional moments matrices
{Mt}2t=1 generated by the MomentMatricesGenerator.

M1 ∈ R9×1
(

1.0000 60.3017 60.1545 59.8222 59.5402 60.1717 40.1614 39.9090 50.2953
)T

M2 ∈ R9×9 I9

M ∈ R2×2


1.0000 60.3017 60.1545 59.8222 59.5402 60.1717 40.1614 39.9090 50.2953
60.3017 4821.4002 3627.4194 3607.3796 3590.3749 3628.4561 2421.7972 2406.5777 3032.8886
60.1545 3627.4194 4829.908 3598.5785 3581.6154 3619.6036 2415.8886 2400.7063 3025.4892
59.8222 3607.3796 3598.5785 4787.373 3561.8286 3599.607 2402.542 2387.4435 3008.7747
59.5402 3590.3749 3581.6154 3561.8286 4764.7501 3582.639 2391.2168 2376.1895 2994.5919
60.1717 3628.4561 3619.6036 3599.607 3582.639 4831.3749 2416.5791 2401.3924 3026.3538
40.1614 2421.7972 2415.8886 2402.542 2391.2168 2416.5791 2144.4994 1602.7989 2019.9267
39.9090 2406.5777 2400.7063 2387.4435 2376.1895 2401.3924 1602.7989 2129.0338 2007.2327
50.2953 3032.8886 3025.4892 3008.7747 2994.5919 3026.3538 2019.9267 2007.2327 3361.9614


Table 7.11: Generated moments matrices to be used by the conservative and progressive ap-
proximations.

7.2.3 Computed Solutions

The solutions obtained via the YALMIP framework are shown in figs. 7.6 and 7.8. In figs. 7.7
and 7.9 we present the interpreted optimal decisions rules to the approximation linear programs
for the electricity capacity expansion problem.
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< Optimal Objective >
25772.3478372735

< Optimal Objective />

< Decision Variables >
< Stage=’1’ >

x_1_1_1 = 1.000000e+0000 x_1_2_1 = 1.000000e+000
x_1_3_1 = 1.000000e+000 x_1_4_1 = 1.000000e+000
x_1_5_1 = 1.000000e+000 x_1_6_1 = 1.000000e+000
x_1_7_1 = 1.000000e+000 x_1_8_1 = 1.588571e+000

< Stage />
< Stage=’2’ >

x_2_1_1 = -2.000000e+002 x_2_1_2 = -2.971647e-015
x_2_1_3 = 1.200000e+000 x_2_1_4 = -1.250000e+000
x_2_1_5 = -2.769181e-014 x_2_1_6 = -1.512108e-015
x_2_1_7 = -1.653449e-013 x_2_1_8 = 6.438113e-014
x_2_1_9 = -1.000142e-014 x_2_2_1 = -2.000000e+002
x_2_2_2 = -1.000000e+000 x_2_2_3 = 1.200000e+000
x_2_2_4 = -1.904012e-014 x_2_2_5 = 6.833333e-001
x_2_2_6 = 2.700000e+000 x_2_2_7 = -5.416062e-015
x_2_2_8 = 4.170734e-014 x_2_2_9 = 3.521231e-014
x_2_3_1 = 1.700000e+002 x_2_3_2 = -3.598754e-015
x_2_3_3 = -9.354732e-015 x_2_3_4 = -2.047225e-014
x_2_3_5 = -1.529152e-014 x_2_3_6 = 1.000000e-001
x_2_3_7 = 6.235177e-014 x_2_3_8 = -3.150353e-014
x_2_3_9 = -1.171583e-014 x_2_4_1 = 2.300000e+002
x_2_4_2 = 1.000000e+000 x_2_4_3 = -1.403247e-014
x_2_4_4 = 7.072075e-015 x_2_4_5 = -6.833333e-001
x_2_4_6 = -2.700000e+000 x_2_4_7 = 8.002106e-015
x_2_4_8 = -5.272765e-014 x_2_4_9 = -3.927626e-014
x_2_5_1 = 9.000000e+001 x_2_5_2 = 1.000000e+000
x_2_5_3 = 3.433845e-014 x_2_5_4 = -4.463825e-016
x_2_5_5 = 9.166667e-001 x_2_5_6 = -2.800000e+000
x_2_5_7 = -2.667339e-014 x_2_5_8 = -4.261779e-014
x_2_5_9 = -1.832792e-014 x_2_6_1 = 1.200000e+002
x_2_6_2 = 1.000000e+000 x_2_6_3 = 4.960989e-014
x_2_6_4 = 4.149621e-014 x_2_6_5 = 9.166667e-001
x_2_6_6 = -1.000000e+000 x_2_6_7 = -4.367358e-014
x_2_6_8 = 5.208795e-015 x_2_6_9 = -2.914600e-014
x_2_7_1 = 9.984410e-012 x_2_7_2 = -7.019332e-015
x_2_7_3 = 1.200000e+000 x_2_7_4 = 1.500000e-001
x_2_7_5 = -2.456491e-016 x_2_7_6 = 1.000000e-001
x_2_7_7 = -4.494931e-014 x_2_7_8 = 6.796603e-014
x_2_7_9 = -2.667757e-014 x_2_8_1 = -7.725711e-012
x_2_8_2 = -3.167493e-015 x_2_8_3 = 9.071152e-015
x_2_8_4 = 1.250000e+000 x_2_8_5 = 6.833333e-001
x_2_8_6 = 2.700000e+000 x_2_8_7 = 1.799048e-013
x_2_8_8 = -6.421585e-016 x_2_8_9 = 2.352973e-014

< Stage />
< Decision Variables />

< Slack Variables >
...

< Slack Variables />

Figure 7.6: Computed solutions to the conservative linear program for the electricity capacity
expansion model.
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< Optimal Decisions >
< Stage=’1’ >

line_expansion#1#1 = 0.999999999985026
line_expansion#2#1 = 1.00000000000404
line_expansion#3#1 = 0.99999999999651
line_expansion#4#1 = 0.999999999988034
line_expansion#5#1 = 0.99999999999162
plant_expansion#1#1 = 0.999999999999997
plant_expansion#2#1 = 0.999999999992891
plant_expansion#3#1 = 1.58857142856044

< Stage />
< Stage=’2’ >

line#1#2 = -199.999999995828 - 2.97164688708029E-015*demand_1 +
1.19999999999998*demand_2 - 1.24999999999096*demand_3 -
2.76918118518227E-014*demand_4 - 1.51210766305398E-015*demand_5 -
1.65344938538876E-013*op_cost_1 + 6.43811323763965E-014*op_cost_2 -
1.00014201888485E-014*op_cost_3

line#2#2 = -199.999999995834 - 0.999999999999979*demand_1 +
1.19999999999999*demand_2 - 1.90401205587901E-014*demand_3 +
0.683333333333035*demand_4 + 2.69999999997741*demand_5 -
5.41606173904003E-015*op_cost_1 + 4.17073405506132E-014*op_cost_2 +
3.52123107909882E-014*op_cost_3

line#3#2 = 169.999999995851 - 3.59875387316148E-015*demand_1 -
9.35473248342136E-015*demand_2 - 2.04722523658326E-014*demand_3 -
1.52915225192612E-014*demand_4 + 0.100000000022777*demand_5 +
6.23517691950487E-014*op_cost_1 - 3.15035298291395E-014*op_cost_2 -
1.17158302262111E-014*op_cost_3

line#4#2 = 229.999999995824 + 0.999999999999994*demand_1 -
1.40324662485488E-014*demand_2 + 7.07207482780756E-015*demand_3 -
0.683333333332958*demand_4 - 2.69999999997744*demand_5 +
8.00210551188517E-015*op_cost_1 - 5.27276463830384E-014*op_cost_2 -
3.92762587950921E-014*op_cost_3

line#5#2 = 89.9999999999728 + 0.999999999999969*demand_1 + 3.43384459301636E-014*demand_2 -
4.46382454598795E-016*demand_3 + 0.916666666667051*demand_4 -
2.79999999999989*demand_5 - 2.66733897049477E-014*op_cost_1 -
4.26177864307544E-014*op_cost_2 - 1.83279153683046E-014*op_cost_3

plant#1#2 = 119.999999999948 + 0.999999999999993*demand_1 +
4.9609893258212E-014*demand_2 + 4.1496208083337E-014*demand_3 +
0.916666666667045*demand_4 - 0.999999999999552*demand_5 -
4.36735803496969E-014*op_cost_1 + 5.20879507970329E-015*op_cost_2 -
2.91460033918584E-014*op_cost_3

plant#2#2 = 9.98440989626027E-012 - 7.01933197017602E-015*demand_1 +
1.19999999999996*demand_2 + 0.150000000009056*demand_3 -
2.45649134601739E-016*demand_4 + 0.100000000022789*demand_5 -
4.4949309925928E-014*op_cost_1 + 6.79660313719804E-014*op_cost_2 -
2.66775703185374E-014*op_cost_3

plant#3#2 = -7.72571103288292E-012 - 3.16749276514095E-015*demand_1 +
9.0711521825775E-015*demand_2 + 1.24999999999094*demand_3 +
0.683333333333024*demand_4 + 2.69999999997742*demand_5 +
1.79904753795269E-013*op_cost_1 - 6.42158533279032E-016*op_cost_2
+ 2.35297306289402E-014*op_cost_3

< Stage />
< Optimal Decisions />

Figure 7.7: Interpreted optimal decisions rules for the conservative approximation of the elec-
tricity capacity expansion model.



7.2 CASE STUDY B: CAPACITY EXPANSION FOR AN ELECTRICITY POWER PLANT 118

< Optimal Objective >
24529.9855379761

< Optimal Objective />

< Decision Variables >
< Stage=’1’ >

x_1_1_1 = 1.000000e+0000 x_1_2_1 = 1.000000e+000
x_1_3_1 = 1.000000e+000 x_1_4_1 = 1.000000e+000
x_1_5_1 = 1.000000e+000 x_1_6_1 = 1.000000e+000
x_1_7_1 = 1.000000e+000 x_1_8_1 = 1.000000e+000

< Stage />
< Stage=’2’ >

x_2_1_1 = -6.857143e+000 x_2_1_2 = 2.857143e-001
x_2_1_3 = 1.371429e-001 x_2_1_4 = -3.600000e-001
x_2_1_5 = -9.142857e-002 x_2_1_6 = -5.142857e-002
x_2_1_7 = 3.005970e-011 x_2_1_8 = -1.961303e-011
x_2_1_9 = 9.450557e-012 x_2_2_1 = 2.742857e+001
x_2_2_2 = -1.428571e-001 x_2_2_3 = 6.514286e-001
x_2_2_4 = 4.000000e-002 x_2_2_5 = 3.657143e-001
x_2_2_6 = 2.057143e-001 x_2_2_7 = 1.930458e-011
x_2_2_8 = -4.529188e-012 x_2_2_9 = -2.171491e-012
x_2_3_1 = 1.800000e+001 x_2_3_2 = -8.149550e-012
x_2_3_3 = 2.400000e-001 x_2_3_4 = -2.800000e-001
x_2_3_5 = 6.400000e-001 x_2_3_6 = 3.600000e-001
x_2_3_7 = -1.055264e-011 x_2_3_8 = 6.031963e-012
x_2_3_9 = 1.212859e-012 x_2_4_1 = 2.571429e+000
x_2_4_2 = 1.428571e-001 x_2_4_3 = 5.485714e-001
x_2_4_4 = -4.000000e-002 x_2_4_5 = -3.657143e-001
x_2_4_6 = -2.057143e-001 x_2_4_7 = -1.823779e-011
x_2_4_8 = 5.524008e-012 x_2_4_9 = 2.915237e-012
x_2_5_1 = 1.457143e+001 x_2_5_2 = 1.428571e-001
x_2_5_3 = 3.085714e-001 x_2_5_4 = 2.400000e-001
x_2_5_5 = 5.942857e-001 x_2_5_6 = -5.657143e-001
x_2_5_7 = -8.996728e-012 x_2_5_8 = -1.559486e-012
x_2_5_9 = 2.373522e-012 x_2_6_1 = 4.457143e+001
x_2_6_2 = 1.428571e-001 x_2_6_3 = 3.085714e-001
x_2_6_4 = 2.400000e-001 x_2_6_5 = 5.942857e-001
x_2_6_6 = 1.234286e+000 x_2_6_7 = -9.953358e-012
x_2_6_8 = -2.480769e-012 x_2_6_9 = 1.542871e-012
x_2_7_1 = 4.114286e+001 x_2_7_2 = 2.857143e-001
x_2_7_3 = 3.771429e-001 x_2_7_4 = 7.600000e-001
x_2_7_5 = 5.485714e-001 x_2_7_6 = 3.085714e-001
x_2_7_7 = 1.940364e-011 x_2_7_8 = -1.355301e-011
x_2_7_9 = 1.060338e-011 x_2_8_1 = 3.428571e+001
x_2_8_2 = 5.714286e-001 x_2_8_3 = 5.142857e-001
x_2_8_4 = 4.000000e-001 x_2_8_5 = 4.571429e-001
x_2_8_6 = 2.571429e-001 x_2_8_7 = -1.077438e-011
x_2_8_8 = 1.503961e-011 x_2_8_9 = -1.173440e-011

< Stage />

< Slack Variables >
...

< Slack Variables />

Figure 7.8: Computed solutions to the progressive linear program for the electricity capacity
expansion model.
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< Optimal Decisions >
< Stage=’1’ >

line_expansion#1#1 = 0.999999999999921
line_expansion#2#1 = 0.999999999999927
line_expansion#3#1 = 0.999999999999927
line_expansion#4#1 = 0.99999999999992
line_expansion#5#1 = 0.999999999999911
plant_expansion#1#1 = 0.999999999999935
plant_expansion#2#1 = 0.999999999999932
plant_expansion#3#1 = 0.999999999999919

< Stage />
< Stage=’2’ >

line#1#2 = -6.8571428571269 + 0.285714285719237*demand_1 +
0.137142857134923*demand_2 - 0.359999999960832*demand_3 -
0.0914285714451321*demand_4 - 0.0514285714218868*demand_5 +
3.00597046707533E-011*op_cost_1 - 1.96130335159752E-011*op_cost_2 +
9.45055716384964E-012*op_cost_3

line#2#2 = 27.428571428698 - 0.142857142836771*demand_1 + 0.651428571438912*demand_2 +
0.039999999977285*demand_3 + 0.365714285708921*demand_4 +
0.205714285713234*demand_5 + 1.9304581215532E-011*op_cost_1 -
4.52918805442036E-012*op_cost_2 - 2.17149115403608E-012*op_cost_3

line#3#2 = 18.000000000186 - 8.14954976076009E-012*demand_1 +
0.239999999984477*demand_2 - 0.280000000010678*demand_3 +
0.639999999992917*demand_4 + 0.359999999993548*demand_5 -
1.05526407498919E-011*op_cost_1 + 6.03196341847378E-012*op_cost_2 +
1.21285864728281E-012*op_cost_3

line#4#2 = 2.57142857138849 + 0.142857142836145*demand_1 +
0.548571428560489*demand_2 - 0.0399999999778181*demand_3 -
0.365714285709523*demand_4 - 0.20571428571385*demand_5 -
1.8237785288433E-011*op_cost_1 + 5.52400769935196E-012*op_cost_2 +
2.91523656064935E-012*op_cost_3

line#5#2 = 14.5714285714449 + 0.142857142843594*demand_1 + 0.308571428575262*demand_2 +
0.240000000031993*demand_3 + 0.594285714296922*demand_4 -
0.565714285708092*demand_5 - 8.99672777246986E-012*op_cost_1 -
1.5594856776024E-012*op_cost_2 + 2.37352215518716E-012*op_cost_3

plant#1#2 = 44.5714285717671 + 0.142857142842949*demand_1 + 0.308571428574587*demand_2 +
0.240000000031359*demand_3 + 0.594285714296364*demand_4 +
1.23428571429126*demand_5 - 9.9533575221588E-012*op_cost_1 -
2.48076890469225E-012*op_cost_2 + 1.54287054126588E-012*op_cost_3

plant#2#2 = 41.1428571430798 + 0.285714285710988*demand_1 + 0.377142857119463*demand_2 +
0.760000000028682*demand_3 + 0.548571428547721*demand_4 +
0.308571428571783*demand_5 + 1.94036380988528E-011*op_cost_1 -
1.35530083027858E-011*op_cost_2 + 1.06033814986285E-011*op_cost_3

plant#3#2 = 34.2857142858298 + 0.571428571443967*demand_1 + 0.514285714303974*demand_2 +
0.399999999938192*demand_3 + 0.457142857153961*demand_4 +
0.25714285713509*demand_5 - 1.07743817897251E-011*op_cost_1 +
1.50396077497604E-011*op_cost_2 - 1.17343989514811E-011*op_cost_3

< Stage />
< Optimal Decisions />

Figure 7.9: Interpreted optimal decisions rules for the progressive approximation of the electri-
city capacity expansion model.
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7.2.4 Discussion of Results and Loss of Optimality

What is perhaps quite surprising from the results is that the operational costs offer an insigni-
ficant contribution to the decision as to whether to expand the capacities of the power plants
and electricity transmission lines. From figs. 7.7 and 7.9, we can infer that the decision rules
are dominated by the demand for supply from the regional customers.

With regards to losses in optimality, we can conclude that the true optimal objective lies within
the range [24529.9855379761, 25772.3478372735], which yields a relatively small percentage gap
of 5.0645%. Thus, decision-maker may be indifferent to the upper-bound and the true optimal
value.
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A1,1 ∈ R16×8


−I5 0 ∈ R5×3

I5 0 ∈ R5×3

0 ∈ R3×5 −I3

0 ∈ R3×5 I3



A2,1 ∈ R26×8


0 ∈ R3×5 0 ∈ R3×3

0 ∈ R3×5 −350I3

−350I5 0 ∈ R5×3

−350I5 0 ∈ R5×3

0 ∈ R10×5 0 ∈ R10×3



A2,2 ∈ R26×8


0 ∈ R3×5 −I3

0 ∈ R3×5 I3

−I5 0 ∈ R5×3

I5 0 ∈ R5×3(
−1.0 −1.0
−1.0 1.0

)
0 ∈ R2×3( 0.0 1.0

0.0 −1.0
) ( 0.0 1.0 0.0

0.0 −1.0 0.0
)

(−1.0 0.0
1.0 0.0

) (−1.0 0.0 0.0
1.0 0.0 0.0

)
0 ∈ R2×2

(
−1.0 −1.0 −1.0
−1.0 −1.0 −1.0

)
0 ∈ R2×2 ( 0.0 0.0 −1.0

0.0 0.0 1.0
)

0 ∈ R2×2 (1− 1)T

0 ∈ R2×2 0 ∈ R2×1( 0.0 1.0
0.0 −1.0

)
0 ∈ R2×1

0 ∈ R2×2 0 ∈ R2×1(
−1.0 1.0
1.0 −1.0

)
0 ∈ R2×1



B1 ∈ R16×1


(−1.0 −1.0 −1.0 −1.0 −1.0 )T

( 2.0 2.0 2.0 2.0 2.0 )T

(−1.0 −1.0 −1.0 )T

( 2.0 2.0 2.0 )T



B2 ∈ R26×9


0 ∈ R16×1 0 ∈ R16×2 0 ∈ R16×3 0 ∈ R16×3( 0.0
0.0
30.0
−30.0

) (
1.0 0.0
−1.0 0.0
0.0 1.2
0.0 −1.2

)
0 ∈ R4×3 0 ∈ R4×3


30.0
−30.0
30.0
−30.0
30.0
−30.0

 0 ∈ R6×2

 1.4 0.0 0.0
−1.4 0.0 0.0
0.0 1.6 0.0
0.0 0.0 1.8
0.0 0.0 −1.8

 0 ∈ R6×3


Table 7.9: Generated matrices for the recourse constraints to be utilised by the conservative
and progressive approximations.
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W ∈ R18×9


( 1.0
−1.0

)
0 ∈ R2×2 0 ∈ R2×2 0 ∈ R2×2 0 ∈ R2×2

( 120.0
0.0

120.0
0.0

) (
−1.0 0.0
1.0 0.0
0.0 −1.0
0.0 1.0

)
0 ∈ R4×2 0 ∈ R4×2 0 ∈ R4×2

( 120.0
0.0

120.0
0.0

)
0 ∈ R4×2

(
−1.0 0.0
1.0 0.0
0.0 −1.0
0.0 1.0

)
0 ∈ R4×2 0 ∈ R4×2

( 120.0
0.0
80.0
0.0

)
0 ∈ R4×2 0 ∈ R4×2

(
−1.0 0.0
1.0 0.0
0.0 −1.0
0.0 1.0

)
0 ∈ R4×2

( 80.0
0.0

100.0
0.0

)
0 ∈ R4×2 0 ∈ R4×2 0 ∈ R4×2

(
−1.0 0.0
1.0 0.0
0.0 −1.0
0.0 1.0

)


h ∈ R18×1

(
1.0 −1.0 0 ∈ R1×16

)T

Table 7.10: Generated support matrices for the conservative and progressive approximations.



8
Conclusion

The overarching goal of this project is to allow industrial modellers to describe decision problems
that are subject to some degree of uncertainty. The format for this description is what we
refer to as our algebraic modelling language (AML). Our standardised input format has been
implemented in such a way that the syntactical design allows for descriptions of system-specific
knowledge to be supplied in a manner that is natural, expressive and compact. This is to
ensure that the final delivery successfully helps to alleviate the burden placed on the modeller
to formulate highly complex decision-making problems.

8.1 Contributions
For emphasis, we state our primary contributions thus far.

1. We have specified and designed an algebraic modelling language for stochastic program-
ming, whereby the modeller can intuitively specify an optimisation model for decision-
making under uncertainty (see section 4.3).

2. We have implemented a parsing routine that can read stochastic models that have been
specified in our standardised input format (see section 5.3). As a final result, the parser
constructs a highly condensed representation of the input file which can be efficiently
queried and manipulated by the client modules (see section 5.3.3).

3. To derive instances of tractable conic programming problems, we have designed and im-
plemented algorithms to generate the matrix components utilised in eq. (Cons-MSPfixed)
and eq. (Prog-MSPfixed) (see section 5.4).

4. Using the derived matrix components, we are able to compute the objective function and
constraints to automate the generation of the conservative and progressive linear programs
(see section 5.5).

5. Furthermore, we have introduced a layer of abstraction to interface with a variety of
popular external solvers using the YALMIP framework (see section 5.5.3).

6. We have also interpreted the computed solutions to specify the optimal decision rules, and
present the results to the user (see section 5.6).

123
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7. As an extension, we have implemented notation for stochastic processes, which allows the
modeller increased flexibility in specifying very compact models (see chapter 6).

8.2 Qualitative Evaluation
In this section, we aim to evaluate the final product. In addition to verifying correctness of the
computed results, we also focus on the effectiveness of the algebraic modelling language and we
discuss our concerns for the performance of the automated model processing.

8.2.1 Verification of Correctness

For our implementation, the basics for establishing code correctness begins with an automa-
ted test-harness to unit test the parser using the JUnit framework, and custom MATLAB test
classes. Currently, the JUnit classes soley establish the correctness of the parsing routine, and
focused on verifying correct construction of the internal model. Our justification for this prio-
ritisation is that the computations, which are derived from the internal model, can only be
correct if the intermediate representation of the input has itself been formed accurately.

For black-box testing, we have specified and manually solved a simplified adaptation of the
newsvendor problem using the linear decision rule approximation (see chapter 3)[2]. In sec-
tion 3.6, we illustrate the structure of the matrix components for the conservative and progres-
sive linear programs. From inspection, we are able to validate that the routines we have written
to automate the generation of these matrices appear to be correct.

In section 4.2 we discussed an existing system that has been prototyped to address the same
objectives of this project. While our intention is to replace the legacy system, we also utilise
the original prototype as an oracle for checking the accuracy and validity of our computations.
Listing 4.1 illustrates the equivalent specification of the newsvendor problem using the initial
prototype. In addition to specifying the same numerical parameters for the both models, we
have also supplied both formulations with the same sample data. The results generated by the
legacy system for the newsvendor model are given in figs. 8.1 and 8.2.

Decisions_upper.txt:
x_1_1_1 = +5.0
x_1_1_2 = -5.0
x_2_2_2 = 0.0

Objective.txt:
-25

Figure 8.1: Contents of the generated re-
sults files upon solving the newsvendor pro-
blem’s conservative LP using the legacy
system.

Solutions_lower.txt:
x_1_1_1 = +6.61801327791999
x_1_1_2 = -6.61801327791999
x_2_2_2 = 0.0

Objective.txt:
33.0900663895999

Figure 8.2: Contents of the generated re-
sults files upon solving the newsvendor pro-
blem’s progressive LP using the legacy sys-
tem.

Figure (8.3) explains that, while our conservative solutions coincide with those computed by
the legacy system, the progressive results are consistently different. Having conducted several
investigations involving manual comparisons of the generated matrices, we are yet to pinpoint
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Figure 8.3: Graph illustrating the differences in the values computed by JADA and the legacy
system.

the exact cause for the disagreement in values. However, we do report that the difference in the
objective value (0.33%) can be considered insignificant.

For purposes of evaluating the expressibility and robustness of our system, we specified a
decision-making problem centered on the capacity expansion of an electric power plant. This mo-
del is considerably more complex, which is reflected in the size of the generated linear programs.
The conservative approximation has 420 linear constraints, while the progressive approxima-
tion has 964 constraints1. In figure (8.4) we present the conservative solutions as computed by
the original prototype, and we note that the optimal objective value of the progressive LP is
12191.5436214909.
In section 7.2.4 we mentioned our surprise regarding JADA’s computed optimal decision rules
being insignificantly influenced by the uncertainty of the operational costs. Comparisons with
the legacy system suggest that our results are incorrect. Rather than being dominated by the
stochastic regional demand, the decision rules are also functions of the operational costs, which
logically seems appropriate. Therefore, we can conclude that there are still some lingering issues
regarding the correctness of our implementation.

1The stated values are exclusive of the inequalities for the bounds of the decision variables
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Decisions_upper.txt:
at period 1 u1 = 1.085810
at period 1 u2 = 2.000000
at period 1 u3 = 1.000000
at period 1 v1 = 1.000000
at period 1 v2 = 1.000000
at period 1 v3 = 1.000000
at period 1 v4 = 1.000000
at period 1 v5 = 1.000000
at period 2 f1 = 0.633140*demand_1 + 1.200000*demand_2
at period 2 f2 = -0.366860*demand_1 + 1.200000*demand_2
at period 2 f3 = 90.000000 +0.366860*demand_1 - 0.566580*demand_3 +

1.799720*demand_5 - 1.500000*var_cost_2
at period 2 f4 = 30.000000 +0.366860*demand_1
at period 2 f5 = -30.000000 +0.566580*demand_3 + 1.600000*demand_4 -

1.799720*demand_5 + 1.500000*var_cost_2
at period 2 g1 = 0.566580*demand_3 + 1.600000*demand_4 + 0.000280*demand_5 +

1.500000*var_cost_2
at period 2 g2 = 120.000000 + 1.000000*demand_1 + 1.200000*demand_2 +

0.833420*demand_3 + 1.799720*demand_5 - 1.500000*var_cost_2
at period 2 g3 = 0.0

Objective.txt:
32911.4789892197

Optimality2.txt:
optimal

Figure 8.4: Contents of the generated results files upon solving the newsvendor problem’s
conservative LP using the legacy system.
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8.2.2 Irreducible Algebraic Modelling Language Requirements

We have adapted the specifications for programming languages[47] to determine a set of desirable
properties for evaluating the effectiveness of our algebraic modelling languages. In particular,
we note the need for adequacy, high learnability, and productivity.

The Adequacy Requirement

To evaluate the practicality of our algebraic modelling language, we conducted several experi-
ments, two of which have been methodically detailed in chapter 7. To ensure we satisfied the
minimum specification for this project, we initially set ourselves the target of ensuring our input
format could allow for relatively simple multi-stage stochastic programs with fixed recourse to
be described.

In reality, the stochastic programming problems we expect to be specified in our grammar
are more complicated than the newsvendor problem (see section 3.6 and section 7.1). For this
reason, we also considered a more complex, real-life decision-making problem concerned with
the capacity expansion and investment planning. Such problems typically involve more deci-
sions and are characterised by many stochastic parameters. In section 7.2, we have shown that
JADA is more than capable of allowing the decision-maker to formulate a description for such
a problem.

While our algebraic modelling language is adequate for those models studied in chapter 7,
its vocabulary is inadequate to describe the inventory model considered by Kuhn et al in [2](see
appendix E). In particular, we are required to augment the syntax to allow for highly complex
expressions involving trigonometric functions and standard mathematical constants.

The Learnability Requirement

We assume that the end-users of JADA will be industrial modellers who are experts of their
respective systems but lack a thorough understanding of optimisation theory or algorithm de-
sign. For this reason, our grammar has been designed to incorporate literal, common vocabulary
that can translate to any decision-making problem, as opposed to purely mathematical notation.

In addition, we have recognised that learnability can be severely impeded by ambiguous syntax,
which is we have revised several of our designs to avoid re-defining conventional uses of notation
and aim for conformation where possible. For example, two constructive critiques of an initial
design addressed the use of square parentheses to denote the multiplication of the decision and
random variables in the objective, and our choice to refer to expectation by the reserved key-
word ‘exp’. In the former case, we persisted with the use of square brackets to encourage the
modeller to factorise the cost coefficients of the decision variables. Although, this decreased
the complexity in extracting the cost vector, it was admittedly not as intuitive as the conven-
tional asterisk symbol ‘*’ to denote multiplication. In the latter case, it had been suggested
that denoting expectation by the keyword ‘exp’ could be confused by the exponential function.
Consequently, we now denote the expectation measure by the reserved keyword ‘expectation’.

Furthermore, wedeliberately decomposed the standard format for describing a model into six
distinct sections. This inherently serves to provide categories for declaring temporal attributes,
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variables, distribution data, costs and constraints. Not only does this achieve a structure that
can be easily learned, but it allows the model to be incrementally built. Moreover, we made a
choice earlier on in the design process to not impose a strict order for the way these sections
were defined. Although this does complicate the parsing logic, it permits the end-user some
flexibility of declaring the sections in an order that is personally easier to learn and thus re-
member.

Unfortunately, we were unable to carry out any usability testing during the completion of
this project to objectively assess the degree of learnability. If such tests were to be carried out
in the near future, we would need to collate opinions on the our language’s degree of brevity,
simplicity and the effectiveness of the mechanisms in place for error prevention.

The Productivity Requirement

This requirement aims to evaluate an AML that is already characterised by high learnability and
adequate expressibility. We refer the reader to our additional implementation of the stochastic
process notation to evaluate how well our language encourages the modeller’s productivity.

Upon reviewing the minimal implementation, it had been pointed out that while the language
could, to some extent, adequately permit specification of stochastic programs, it did not support
capabilities for rapid prototyping and high-level expressibility. This flaw needed to be addressed
to successfully avoid burdening the modeller with excessive low level processing. We considered
two high-level constructs, which were iterated addition and universal quantification. Not only
did this drastically reduce the time spent formulating the program, but it also significantly
decreased the size of the program in the user’s storage space.

8.2.3 Performance

Beyond parallel for-loops[40], MATLAB does not provide capabilities for concurrency. This is
quite problematic since the current performance of the classes aimed at automating the model
processing do require a considerable amount of processing time. We are able to identify two
causes for the degradation in performance, which include

• overloading MATLAB built-in functions with our custom MATLAB data classes from the
expressions utility package, and

• the inability to preallocate arrays for instances where the maximum size is not known.

Unfortunately there are not many efficient options available to us to resolve the second cause,
but a tactical solution has been to provide an initial size and resize the array accordingly if
more or less storage is required. The first cause arises from our need to symbolically perform
the matrix multiplications to present the generated linear programs to the user. By overloading
MATLAB’s built-in functions, we have negatively affected the performance. While this perfor-
mance issue was not severe for simple models like the newsvendor problem or smaller versions
of the capacity expansion models, when we experimented with stochastic programs involving a
greater number of variables and constraints, the negative impact of overloading methods, such
as the plus function2, was immediately apparent.

2For example, if the plus function is overloaded to handle any of the integer classes differently, then some of
the MATLAB’s internal optimisations for the plus function may be disabled[38].
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We do ask the reader to note that we have performed some optimisations to the MATLAB
code, which include using vectorising algorithms to convert for and while loops to equivalent
vector or matrix operations. Additionally, we have used the repmat function to initialise arrays
or matrices by replication[41] where appropriate. However, even the frequency of usage for the
latter approach has had to be restricted since the repmat function is memory intensive[42].

8.3 Further Work
In this section we suggest directions for future development. In addition to addressing the
correctness and performance issues, we can also consider extending JADA with regards to the
syntax of the algebraic modelling language, the scope of the stochastic programming framework,
and the software design.

8.3.1 Extending the Language

In section 8.2.2 we highlighted some prevailing inadequacies of the JADA grammar. In addition
to not providing support for mathematical functions, we have not considered binary decision
variables or logical expressions for defining the constraints, such as set membership, which can
be easily implemented. In addition, we could also incorporate language and functionality for
multi-stage stochastic mean-variance portfolio optimisation [59][62], which requires quadratic
objective functions and ellipsoidal uncertainty sets[64].

8.3.2 Extending the Problem Scope

The expected overall deliverable focuses on multi-stage stochastic programming problems with
fixed recourse, therefore we can extend the functional capabilities of the modelling language and
solver sub-system to handle multi-stage programs with random recourse. Widening the problem
scope would also allow for the decision-maker to model worst-case optimisation problems.

Random Recourse-Constrained MSPs

The approximation models eqs. (Cons-MSPfixed) and (Prog-MSPfixed) assume that the recourse
matrices are deterministic. By investigating into the cases where these recourse matrices are
in fact dependent on the uncertain parameters, we can extend the AML to also model random
recourse-constrained problems. The formulations eqs. (Cons-SPrandom) and (Prog-SPrandom)
formulate the conservative and progressive programs for approximating one-stage programs
with random recourse. We can incorporate a temporal structure into the core model to capture
multi-stage stochastic programs with random recourse. To facilitate the computations of eqs.
(Cons-SPrandom) and (Prog-SPrandom) for multiple time periods, we have to further sample the
distribution of the random variables to derive Q(Sµ) the tensor of all moments of its associated
probability measure up to the fourth order. We can implement eq. (2.1.2.14) to achieve this.

Worst-case Optimisation for MSPs with Fixed and Random Recourse

We remind the reader that worst-case optimisation considers the situation where the decision-
maker has insufficient knowledege about the probability distributions of the uncertain para-
meters, and thus there are a plausible family of distributions for which the problem’s random
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variables could follow. The AML must now allow the random outcomes to be modelled as a
tuple ξ = (η, ζ). The probability measure P is not fully known, and thus we might need to
introduce new language constructs to allow the modeller to specify the marginal distribution of
η and the conditional support for ζ. At a higher-level we consider worst-case optimisation for
multi-stage problems, with fixed recourse and random recourse respectively by extending the
minimal implementation and the previous extension.

8.3.3 Improving the Design and Implementation

The ultimate goal of the project is a fully-integrated environment for decision-making under
uncertainty. We would like to extend the functional behavior of the system to allow the user to
specify models and interpret the results in a user-friendly manner with maximal automation.
Examples of these improvements include:

• Extending the system for supporting multiple data formats and sources for supplying the
sampling data such as XML tables, spreadsheets and database tables.

• Sophisticated reporting and analytical engines for user-friendly visualisations of the re-
sults. We can improve the presentation of the results by generating output in a PDF for-
mat where mathematical notation can be correctly typesetted for readability, and where
tables rather than pseudo-XML can be used to display the solutions computed by YAL-
MIP.

• A graphical user-interface to further assist and automate the input of the model descrip-
tion. In the end, we envision a custom integrated development environment (IDE) with
syntax highlighting, code completion, context-sensitive content assistance, save and load
functionality, and basic template generation for specifying and editing models in the AML
format.

• For time-scalable models such as the inventory management system (see appendix E), it
is possible to automate the generation of the results over many stages. Thus, we can
further enrich the reporting engine with MATLAB charting functions to graphically plot
the percentage gaps in the linear decision rule bounds over the many finite time horizons.
In addition, we can introduce functionality to enable such simulations to be paused and
resumed for user convenience.



A
Parser Implementation using Regular Expressions

A.1 Tokeniser.m

Listing A.1: Code listing showing the generateJADAModel(...) function defined in
Tokeniser.m.
1
2 % + Function Description: extracts the tokens from the contents of a JADA

file
3 % + Function Input: string representing file contents of a JADA file
4 % + Function Output: a complete JADAModel
5 jadaModel = function generateJADAModel (self , fileContents )
6
7 %prepare contents − remove white spaces and newlines
8 fileContents = regexprep ( fileContents {:}, ’\s’, ’’);
9 fileContents = cat (2, fileContents {:});
10
11 %check file contains the ’Model’ language construct
12 index = ismember ( fileContents , LanguageConstructs .MODEL)==1;
13
14 %create an empty JADAModel to be filled by the construct tokenisers
15 jadaModel = JADAModel ();
16
17 %build a cell−array of the construct tokenisers
18 constructs = {self.general , self.variables , self.objective , self.

constraints ,
19 self.samples , self. support };
20
21 %iterate through language constructs to extract and process tokens
22 cellfun (@( construct ) Tokeniser . tokeniseLanguageConstruct ( fileContents ,
23 jadaModel ,
24 construct ),
25 constructs );
26
27 end %generateJADAModel
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Listing A.2: Code listing showing the auxiliary function tokeniseLanguageConstruct(...)
for generateJADAModel(...) as was defined in Tokeniser.m.
1 % + Function Description: auxiliiary method to extract and process tokens
2 % + Function Input: #1) string representing name of construct
3 % #2) intermediate representation of the
4 % parsed file contents
5 % (partially complete JADAModel)
6 % #3) Implementation of an IConstructTokeniser
7 % + Function Output: none
8 function tokeniseLanguageConstruct ( fileContents , jadaModel , construct )
9
10 %get and apply language construct’s regular expression to extract its

tokens
11 tokens = ( regexp ( fileContents , construct . getRegex (), ’tokens ’);
12 tokens = GenericStructures . flattenCellArray (tokens , false);
13
14 %delegate processing of extracted tokens to language construct
15 construct . processTokens (tokens , jadaModel );
16
17 end %tokeniseLanguageConstruct



B
Parser Implementation using ANTLR Version 3.0

B.1 Alternative Context-Free Grammars

Table B.1: Comparison of Investigated Context-free Grammars.

Name Parsing Output Grammar/ Lexer Development IDE License

Algorithm Languages Code Platform

ANTLR LL(*) C Mixed Generated Java Vir-
tual

Yes BSD

C++ Machine

C#

Java

Python

Spirit Recursive C++ Mixed Internal All No Boost

Descent

YACC++ LR(1) C++ Mixed Generated/ All No proprietary

LALR(1) C# External
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B.2 ParserEngine.java

Listing B.1: Code listing showing the co-ordination of the auto-generated Java classes for the
parsing logic.
1 /**
2 * @Class This class co - orindates reading in a model , ANTLR tokenisation
3 * and generation of an internal representation
4 * ( ImmutableJADAModel ) of the JADA file
5 **/
6 public class ParserEngine
7 {
8
9 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 // METHODS
11 // ***********************************************************************
12
13 /**
14 * Default Constructor
15 */
16 public ParserEngine () {}
17
18 /**
19 * Parses a JADA file to generate an internal representation
20 * ( ImmutableJADAModel )
21 *
22 * @param String representing an absolute filepath reference to a JADA file
23 *
24 * @return An ImmutableJADAModel instance which represents the
25 * underlying data of the model specified in the file
26 */
27 public static ImmutableJADAModel parseFile ( String filepath )
28 throws IOException , RecognitionException
29 {
30 // Construct a file reader to read JADA file at given filepath
31 FileReader reader = new FileReader ( filepath );
32
33 // Construct a JADA Lexer
34 JADALexer lexer = new JADALexer (new ANTLRReaderStream ( reader ));
35
36 // Close file reader
37 reader .close ();
38
39 // Tokenise contents of file and return generated internal representation
40 return parse(lexer );
41 }
42
43 /**
44 * Parses a string representing the file contents of a JADA file
45 * to generate an internal representation ( ImmutableJADAModel )
46 *
47 * @param String representing an absolute filepath reference to a JADA file
48 *
49 * @return An ImmutableJADAModel instance which represents the
50 * underlying data of the model specified in the file
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51 */
52 public static ImmutableJADAModel parseContents ( String fileContents )
53 throws IOException , RecognitionException
54 {
55 // Return an immutable equivalent model
56 return parse(new JADALexer (new ANTLRStringStream ( fileContents )));
57 }
58
59 /**
60 * Helper method for parsing a model specified in JADA syntax
61 *
62 * @param a JADALexer object
63 *
64 * @return An ImmutableJADAModel instance which represents the
65 * underlying data of the specified model
66 */
67 private static ImmutableJADAModel parse( JADALexer lexer )
68 throws IOException , RecognitionException
69 {
70 // Construct a JADA Parser
71 JADAParser parser = new JADAParser (new CommonTokenStream (lexer ));
72
73 // Tokenise JADA file by invoking start rule to get a parser result
74 JADAParser . model_return result = parser . model ();
75
76 // Get the AST
77 CommonTree ast = ( CommonTree ) result . getTree ();
78
79 // Process the AST to generate an ImmutableJADAModel to return
80 JADATree treeParser = new JADATree (new CommonTreeNodeStream (ast));
81
82 // Return an immutable equivalent model
83 return treeParser . model (). getImmutableJADAModel ();
84 }
85
86 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87 // END METHODS
88 // ***********************************************************************
89 }
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B.3 Lexer Syntax Diagrams

B.3.1 Numbers

(a) Digit

(b) Integer (INT)

(c) Float

Figure B.1: Syntax diagrams representing the context-free grammar specified in the lexer source
files for numbers.

B.3.2 Variable Identifiers

(a) Underscore
(USCR)

(b) Alphabetical Character (ALPHA)

(c) Identifier (IDENT)

Figure B.2: Syntax diagrams representing the context-free grammar specified in the lexer source
files for variable identifiers.
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B.3.3 Strings and Whitespace

(a) Double Quotation Marks
(DBLQUOTES)

(b) Backslash
(BKSLASH)

(c) String

(d) Whitespace

Figure B.3: Syntax diagrams representing the context-free grammar specified in the lexer source
files for strings and whitespace.

B.3.4 Escape Sequences

(a) Hexadecimal Digit (HEX_DIGIT)

(b) Octal Escape Sequence (OCTAL_ESC)

(c) Unicode Escape Sequence (UNICODE_ESC)

(d) Escape Sequence (ESC_SEQ)

Figure B.4: Syntax diagrams representing the context-free grammar specified in the lexer source
files for escape sequences.
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B.3.5 In-lined and Block Comments

(a) Comment

Figure B.5: Syntax diagrams representing the context-free grammar specified in the lexer source
files for comments.

B.3.6 Mathematical Operators

(a) Addition
(PLUS)

(b) Subtraction
(MINUS)

(c) Multiplication
(TIMES)

(d) Division
(DIV)

(e) Equals (f) Less-Than-Or-Equal-To (LTE) (g) Greater-Than-Or-Equal-To (GTE)

Figure B.6: Syntax diagrams representing the context-free grammar specified in the JADALexer
source file for mathematical operators.
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B.3.7 Symbols (Delimiters and Terminals)

(a) Left Bracket
(LBRACKET)

(b) Right Bracket
(RBRACKET)

(c) Left Parenthesis
(LPAREN)

(d) Right Parenthesis
(RPAREN)

(e) Left Square Parenthesis
(LSQPAREN)

(f) Right Square Parenthesis
(RSQPAREN)

(g) Dot (h) Comma (i) Semi-Colon
(SEMI)

Figure B.7: Syntax diagrams representing the context-free grammar specified in the lexer source
files for symbols.

B.3.8 Reserved Keywords

(a) Header

(b) Population

(c) Samplesize

(d) Variables

(e) Data

Figure B.8: Syntax diagrams representing the context-free grammar specified in the
SampleDataLexer source file for the reserved keywords.
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(a) Model

(b) General

(c) Name

(d) Stages

(e) Variables

(f) Decision

(g) Random
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(h) Samples

(i) File

(j) Support

(k) Constraints

(l) Objective

(m) Minimise

(n) Maximise

(o) Expectation

Figure B.8: Syntax diagrams representing the context-free grammar specified in the JADALexer
source file for the reserved keywords.
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B.4 Parser Syntax Diagrams

B.4.1 General Language Construct

(a) Name

(b) Stages

(c) General

Figure B.9: Syntax diagrams representing the context-free grammar specified in the JADAParser
source file for the General language construct.

B.4.2 Variables Language Construct

(a) Decision Variable (decisionVar)

(b) Random Variable (randomVar)

(c) Variables

Figure B.10: Syntax diagrams representing the context-free grammar specified in the
JADAParser source file for the Variables language construct.

B.4.3 Constraints Language Construct

Figure B.11: Syntax diagrams representing the context-free grammar specified in the
JADAParser source file for the Constraints language construct.
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B.4.4 Support Language Construct

Figure B.12: Syntax diagrams representing the context-free grammar specified in the
JADAParser source file for the Support language construct.

B.4.5 Samples Language Construct

(a) File Samples (fileSmpls)

(b) Samples

Figure B.13: Syntax diagrams representing the context-free grammar specified in the
JADAParser source file for the Samples language construct.

B.4.6 Objective Language Construct

(a) Maximisation/Minimisation (goal) (b) Statistic

(c) Decision Cost (costTerm)

(d) Objective

Figure B.14: Syntax diagrams representing the context-free grammar specified in the
JADAParser source file for the Objective language construct.
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B.4.7 Arithmetic Expressions Constructs

(a) Number

(b) Atomic Expression

(c) Negation

(d) Unary Expression

(e) Multiplicative Expression Expression

(f) Additive Expression Expression
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(g) Relational Operators Expression

(h) Relational Expression Expression

Figure B.14: Syntax diagrams representing the context-free grammar specified in the
JADAParser source file for the arithmetic expressions.

B.4.8 Sample Data File Constructs

(a) Population

(b) Sample Size

(c) Sampled Variables

(d) Sampled Variable

(e) Header

(f) Data

(g) Sample Data

Figure B.15: Syntax diagrams representing the context-free grammar specified in the
SampleDataParser source file for the sample data.
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B.5 Validation Logic

Listing B.2: Code listing demonstrating the validation logic for checking multiple declarations
of a language construct.
1 // PARSER RULES: ‘GENERAL ’ MODEL -SUB -BODY Specification
2 general
3 ...
4 // _________________ Post - processing
5 @after
6 {
7 validator . setGeneralAlreadyDeclared (true);
8 }
9

10 // _________________ Define rule
11 : GENERAL
12 {
13 validator . checkConstructNotAlreadyDeclared
14 ( Construct . GENERAL_CONSTRUCT , $GENERAL . getLine ());
15 }
16 ...
17 ;

B.6 Importing the Parser into the MATLAB Workspace

Listing B.3: Code listing illustrating how the parseFile(...) method defined in the loaded
class definition ParserEngine.class is invoked in the MATLAB class wrapper Parser.m.
1 % + Function Description: parses an JADA file
2 % + Function Input: absolute filepath to JADA file
3 % + Function Output: ImmutableJADAModel (Java object) contains
4 % internal representation of parsed file
5 function jadaModel = parseFile ( filePath )
6
7 jadaModel = system . parser . ParserEngine . parseFile ( filePath );
8
9 end %parseFile



C
Conservative and Progressive Constraints

Computations

C.1 Implementation of the Placeholder Methods

C.1.1 Conservative Approximation

getDecisionRulesOuterFactor(t)

return Γ[‘second order moments’]

getStandardisedFeasibilityCondition(expr)

return expr + (Γ[‘slack decision rules’, t])(Γ[‘LHS support matrix’])

getPositiveSlacknessCondition(t)

h← Γ[‘RHS support matrix’]

Λsymbolic,t ← Γ[‘slack decision rules’, t]

constraintLHS ← cell(Λsymbolic,th,Λsymbolic,t)

constraintRHS ← cell(0.0, new ConstantTerm(0.0))

constraintquantifier ← ConstraintQuantifier.GTE

return [constraintLHS , constraintquantifier, constraintRHS ]

C.1.2 Progressive Approximation

getDecisionRulesOuterFactor(t)

ME [ξξ T] ← Γ[‘second order moments’]

return ME [ξξ T]P
T
t (PtME [ξξ T]P

T
t )−1
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getStandardisedFeasibilityCondition(expr)

return expr + (Γ[‘slack decision rules’, t])Pt

getPositiveSlacknessCondition(t)

W ← Γ[‘LHS support matrix’]

h← Γ[‘RHS support matrix’]

e1 ← Γ[‘basis vector’]

constraintLHS ← cell((W − heT
1 )ME [ξξ T]Pt

TSt
T, StPtME [ξξ T]e1)

constraintRHS ← cell(0.0, new ConstantTerm(0.0))

constraintquantifier ← ConstraintQuantifier.GTE

return [constraintLHS , constraintquantifier, constraintRHS ]



D
Extended Parser Implementation For Stochastic

Processes Notation

D.1 Lexer Syntax Diagrams

D.1.1 Extended Reserved Keywords

(a) Constant

(b) Summation (c) Universal Quantification (forall)

Figure D.1: Syntax diagrams representing the extended context-free grammar specified in the
JADALexer source file for reserved keywords.

D.2 Parser Syntax Diagrams

D.2.1 Extended General Language Construct

(a) Constants

(b) General

Figure D.2: Syntax diagrams representing the extended context-free grammar specified in the
JADAParser source file for the General language construct.
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D.2.2 Extended Variables Language Construct

(a) Decision Variable (decisionVar)

(b) Random Variable (randomVar)

Figure D.3: Syntax diagrams representing the extended context-free grammar specified in the
JADAParser source file for the Variables language construct.

D.2.3 Extended Objective Language Construct

(a) Objective

Figure D.4: Syntax diagrams representing the extended context-free grammar specified in the
JADAParser source file for the Objective language construct.

D.2.4 Extended Arithmetic Expressions Constructs

(a) Iterated Expression Bounds

(b) Iterants

(c) Summation

(d) Universal Quantification (forall)

(e) Relational Expression Expression



PARSER SYNTAX DIAGRAMS 151

(f) Atomic Expression

Figure D.4: Syntax diagrams representing the extended context-free grammar specified in the
JADAParser source file for the arithmetic expressions.

D.2.5 Extended Sample Data File Constructs

(a) Sampled Variable

Figure D.5: Syntax diagrams representing the extended context-free grammar specified in the
SampleDataParser source file for the sample data.



E
Additional Case Study: An Inventory

Management System

Suppose the existence of an single product inventory system made up I factories, where all the
goods produced by the factories are delivered to a warehouse. The decision-maker’s objective is
to meet a random demand at a minimum expected production cost. Given a planning horizon
of T bi-weekly periods, we assume the following model:

• Random variable ξt denotes the stochastic demand of the produced good in period.

• The cost of producing one unit of the product at factory i is representable as ci,t.

• Quantity x̄i,t is the maximum production capacity of factory i.

• Decision variable xi,t is the amount of goods produced by factory i.

• x̄tot,i determines the cumulative production capacity over the total planning horizon for

factory i. We make the assumption that x̄tot,i <
T∑
t=1

x̄i,t.

The other static parameters of the model are:

• the initial inventory level x0,wh.

• x̄wh and x̂wh, which represent the permitted maximum and minimum inventory levels
respectively.

The stochastic demand is modelled as a random vector ξ = (ξ1, · · · , ξT ) that follows a uniform
distribution. The support Ξ for its probability measure P defined as:

Ξ = [(1− θ) ξ ∗ ςt, (1 + θ) ξ ∗ ςt]Tt=1, (E.0.5.1)

where ξ ∗ denotes the average demand and θ represents the variability in demand. The seaso-
nability factor ςt captures the expectation of spring having the highest demands through the
following definition:

ςt = 1 + 1
2 sin

[
π

12(t− 1)
]
. (E.0.5.2)
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We can formulate the problem description as the following stochastic program:

minimise E
[
T∑
t=1

I∑
i=1

ci,t xi,t(ξ t)
]

subject to xi,t ∈ L2
t,1

0 ≤ xi,t(ξ t) ≤ x̄i,t(ξ t)
T∑
t=1

xi,t(ξ t) ≤ x̄tot,i

x̂wh ≤ x0,wh +
t∑

s=1

I∑
i=1

xi,s(ξ s)−
T∑
s=1

ξs ≤ x̄wh


∀i ∈ I, ∀t ∈ T

(E.0.5.3)
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