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Abstract

This report describes an algorithmic trading engine based on reconfigurable hardware, derived from a
software implementation. My approach exploits parallelism and reconfigurability of field-programmable
gate array (FPGA) technology. FPGAs offer many benefits over software solutions, including reduction
in latency for decision making and increased information processing. Both important attributes of a
successful algorithmic trading engine. Experiments show that the peak performance of our hardware
architecture for algorithmic trading is 377 times faster than the corresponding software implementation,
with a reduction of minimum decision latency of 6.25 times. Up to six algorithms can simultaneously
operate on a Xilinx Vertex 5 xc5vlx30 FPGA to further increase performance. Using partial run-time re-
configuration to provide extensive flexibility and allow reaction to changes in market conditions, tailoring
performance of the system to the work load. I present analysis of the reconfiguration ability and what
can be done to reduce price performance loss in algorithms while reconfiguration takes place, such as
buffering information. From my results we can show that an average partial reconfiguration time of 0.002
seconds, which given the historic highest market data rates would result in a worst case scenario of 5,000
messages being missed. Additionally I will describe the technical challenges that arose in implementation
of the test system and the novel solutions that I found for them. Including optimised array averaging
using tree summation, abstract process design patterns and architectures to decrease development time
and provide base functionality to trading algorithms.
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Chapter 1

Introduction

The scene is a large investment bank’s trading floor. You are a trader for the bank and it is your job to
not only to achieve the best possible price for your clients, but also to ensure that you do this without
loosing your employer money. Perhaps if your good, you’ll even make some.

It is 07:55AM and the equity markets are just about to open on what could be a very busy day. A
number of key blue-chip firms will be announcing their profits for last quarter and there will be some
key economic data from the government on inflation. This is likely to make the day very long and you
have already been at work for nearly two hours.

Clients are placing their orders already, before the market open so that you can start immediately
trading them. Your trading interface lists the orders that you are managing, as more and more arrive,
they start to scroll off the bottom of the screen. This is what is being displayed on only one of your
six monitors that you have in front of you, all of which show continually updating information that you
must digest immediately if you are to be as successful as possible.

This doesn’t include the large flat panel televisions that are suspended from the ceiling all around
the trading floor. Alternate televisions are showing the Consumer News and Business Channel (CNBC)
and Sky News. Your colleagues next to you are in the same situation, they will also be trading in the
same select few of stocks that you are. Even though these are relatively few in number, the number
of orders is still increasing. Some change as their owners make amendments, others disappear as their
owner decides to cancel the order, but not a lot of them.

Finally 08:00AM arrives and the markets open. Which orders do you trade first? Is the stock price
rising or falling? How much of the order should I trade now and how much should wait? What is the
expected outcome of the news coming later, will inflation be down or will it rise? Will those companies
announcing profits be in the black or the red? What do other traders around the world think is going
to happen? These are just some of the questions that you have seconds or minutes if you are lucky
to answer. All the while, the information is continually changing, updating and shifting. This endless
stream of work to carry out.

You make it through the day, 16:30PM arrives and the equity markets close until tomorrow morning.
At which point you will have to carry out the whole process again. Before you can go home for the day,
which started at 06:00AM, you need to prepare for tomorrow. What is expected tomorrow and any key
factors that will need to be taken into consideration.

Before you leave, you think, ”Would it not be great if there was a system which could trade some
of the smaller order automatically, which could cope with the ever growing work load? Allowing me to
concentrate my attention on the important orders!”.

1.1 Project Inspiration

Thankfully for our anonymous trader, there are such systems that are readily deployed and used by large
investment banks and other equity trading companies. They arose from specifically the need to be able
to cater to the vast increases in electronic trading flow that have been seen over the last decade because
of increased use of electronic trading. Unfortunately though, it is becoming increasingly more difficult
to be able to maintain system development to the pace of the increase in activity. Amplifying the need
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for ever increasing performance is that ever microsecond saved could result in hundreds of millions of
pounds profit for the owner. It is therefore within the interests of the operator to possess the fastest and
most capable system compared to their competitors. This is where applying reconfigurable hardware
to this problem may result in considerable gains, enabling this to be the case. This project’s goal is to
look at the feasibility of designing and implementing an algorithmic trading engine with its associated
trading algorithms in reconfigurable hardware. Comparing and contrasting the implementation against
an equivalent software version.

These problems have been receiving increasing media attention recently as institutions look for pos-
sible solutions to their computational and latency bottlenecks. These include articles in The Times [1]
and Information Week [2] which look at and discuss many of these problems and overview possible direc-
tions of solutions. Specifically reconfigurable hardware has been looked at in reasonable depth directly by
Automated Trader [3], including why there hadn’t previously been much market penetration by the tech-
nology. Those barriers are starting to be lifted now with the advent of more mature development tools
and high-level programming languages supporting reconfigurable hardware. More recently, it is known
that a some large and respected organisations have been utilising the power of reconfigurable hardware,
specifically a joint venture between Credit Suisse and Celoxica [4]. This strengthens the argument that
the time is right for further research into related areas of the electronic trading flow.

Why does reconfigurable hardware offer a performance benefit over using a conventional software
implementation? Well, reconfigurable hardware doesn’t have any overheads such as the operating system,
this means that all available performance can be utilised effectively. Additionally, reconfigurable hardware
has a natively massively parallel architecture, where software has only just recently started become
more dependent on being executed in parallel to maintain performance. Finally, logic executing in
reconfigurable hardware has a standardised and numerically proven performance. This is partly due to the
lack of an operating system or any other processes, but also dependent on that you can physically study
the implementation and deduce a very accurate expected performance from it. This performance won’t
fluctuate over time, resulting in a highly desirable, extremely low standard deviation on performance.

Implementing anything in reconfigurable hardware is still challenging in itself, even for particularly
simple problems. This is because it requires learning additional technologies and techniques, as well as a
different mind set when programming the device. This provides difficultly to such a project, especially in
light of the problem space, which itself is large and complex, even for software. Another difficulty is faced
in this project is the lack of research and resources about the area. The nature of electronic trading is
that it is very secretive, any performance benefit discovered by an institution would be a closely guarded
secret, in hope that competitors would also have the same ideas. This leaves this project with more work
on setting out the foundations and basis of the work then many of projects which have large amounts of
material available on them.

This collection of problems and challenges provides the prospect for an exciting and importantly very
relevant project. The work carried out here carries very significant real world benefits based on the
outcome of its success. These not only include a faster system now, but a means to being able to cope
with the increased work load of future years.

1.2 Why Algorithmic Trading?

Why algorithmic trading? I choose algorithmic trading specifically because although still as un-
documented as many similar problems within the electronic trading flow, it has some simpler concepts
which with some background can be understood by the reader. It also forms a good base for further
work as more complex scenarios and applications that rely on heavier use of business principles also
utilise underlying order management and algorithmic trading solutions. Algorithmic trading can also be
looked under the guise of being a complex event processor (CEP), this area has had significantly more
research published. Although this research is concerned with processing different information, many of
the principles can be transferred in to this problem space, aiding the project.

Isn’t algorithmic trading evil? Of course many of you may question doing research into these
kinds of activities given the current economic climate. The world has just been through its worst recession
in more than 70 years and the blame has mainly been placed at the feet of the worlds investment banks.
The recession even saw the bankruptcy of one of the worlds largest and successful investment banks,
Lehman Brothers [5]. Although the recession had a number of factors, it does not seem that algorithmic
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trading contributed in anyway, however this doesn’t exonerate it from bad press. More recently, on
the 6th May 2010 the Dow Jones Industrial average fell by near 10% in the matter of minutes before
rebounding to being only 3-4% down [6]. This was one of the biggest and fastest crashes seen in the history
of the equity markets and even though the market recovered some what is still extremely worrying. The
blame for this crash has been aimed at algorithmic trading, in particular high frequency trading. Some
estimates now place algorithmic or high frequency trading as being nearly 66% of all market volume and
increasing daily. At the end of the article [6], the speed of growth in these areas is state for emerging
markets. Emerging markets are those that are just beginning to see more activity and attentions and
the four biggest are noted under the BRICs umbrella (Brazil, Russia, India and China) [7]. Currently
algorithmic trading on the Indian stock exchanges is less than 5%, but growth is expected to be 30% to
40% in 4 to 5 years [6]. This shows the importance of these technologies and this research, as well as
amplifying the problem of handling increased work load. Many people automatically brand something
as evil if they don’t understand it. I am not trying to say that algorithmic trading is completely safe
and should be unregulated. However with any new technologies there are teething problems and given
the environment of this work, much more work is carried out on validation then many other computing
projects. It is also a necessity for systems like this to exist, as without investment banks and equity
markets, then the companies that we know and love wouldn’t be able to exist, producing the products
that we enjoy.

Why reconfigurable hardware? There are other interesting technologies gain ground within
the industry that offer increased performance over using a conventional central processing unit (CPU).
General Purpose Graphics Processing Units (GPGPUs) are one such technology which offers signifi-
cant performance in float-point operations. While this would be another interesting avenue of research,
GPGPU doesn’t align as well with the algorithmic trading problem space. While float-point operations
are useful, they are not critical to trading algorithms with some calculations being integer based. Ad-
ditionally, given current social pressures on companies and industries to become more environmentally
friendly, reconfigurable computing offers better performance over power consumption than both CPU
and GPGPU solutions. Finally, GPGPUs are still limited to being used as co-processors, you cannot
currently deploy a whole system on a GPGPU which is independent from the host system. For example,
the GPGPU solutions would still be reliant on the host machine providing network connections and data
transfer. Many reconfigurable computing boards are now supplied with network controllers that allow
them to be directly plugged in to the network and consume information from the network interface. This
aligns more closely with the long-term goals of this project, of moving the complete algorithmic trading
engine into reconfigurable hardware.

1.3 Objectives and Contributions

This reports serves to show case the important work and contributions that I have made throughout
this project. I have broken the rest of the report into a number of chapters, each specialising in an area
of the project which is critical to its success. I will cover the important design decisions that I have
made throughout the implementation, discussing any problems that were encountered and highlighting
my novel solutions. Specifically this report will cover:

• Presenting all of the information and background required for this project as well
as analysis of existing research and projects. I do not expect the reader to have a strong
grounding in either the business knowledge or reconfigurable hardware. For this reason I have
included a background on the project which will cover these topics as well as looking at the current
state of the art for research in related fields. After reading, the reader will have sufficient knowledge
to comprehend the rest of this report; in chapter 2.

• Presenting a framework designed to facilitate the creation of a wide range of elec-
tronic trading systems with improved compatibility and flexability. I will present my
electronic trading framework which provides an abstract base for modelling different components
of an electronic trading system. This has been designed with flexibility in mind and would provide
an excellent base for further research in the equity trading field. This is shown through the careful
use of software engineering and design principles; in chapter 3.
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• Presenting a method of building electronic trading systems from abstract represen-
tations of their activity. Managing the trading algorithms is a trading engine built on the
framework. This provides an extensible platform for quickly deploying different algorithms im-
plemented in different technologies through its connection interface. This provides unparalleled
flexibility for the operators and a platform capable of performing research on a wide variety of
models and algorithms; in chapter 4.

• Presenting a design pattern for creating trading algorithms which could be used to in-
crease the number of algorithm implementations supported. With the underlying system
complete, I know present my design pattern for creating high performance and flexible algorithms
with shared functionality designed to increase their price effectiveness. Built on top of this pro-
cess I present three concrete implementations of industry accepted algorithms which assess market
favourability individually; in chapter 5.

• Presenting a solution to implementing trading algorithms in hardware using an ab-
stract base algorithm to speed up design. Using partial run-time reconfiguration to
further increasing performance and flexibility of the system. These trading algorithms
specifications where then lifted and transformed into hardware, providing the same functionality
to allow for a direct comparison against their software counterparts. The hardware algorithms
gain the of the reconfigurable hardware and I will show my solutions to mitigating some of the
limitations imposed, such as batch processing; in chapter 6.

• Presenting a method and design of testing for electronic trading systems with event
data generated in real-time. To properly evaluate the effectiveness of the implementation, a
realistic testing harness was required which could supply an unlimited number of pseudo events to
which the system could react. I propose such a method of generating these events in a statistically
correct manner while maintaining randomness and plausibility, preventing the system from entering
cycles; in chapter 7.

• Presenting two technology independent analysis techniques, results from testing and
analysis of the work in the project. The implementations can now be tested using the testing
harness, allowing us to evaluate their performance against each other. I’ll look at a number of
different scenarios including throughput performance, partial run-time reconfiguration and power
consumption of the devices. This will allow us to evaluate the success of the project and provide
motivation for further work; in chapter 8.

• Presenting my conclusions draw from the results presented in chapter 8 and what
they mean for this project. I will wrap up this project and report with a discussion on its
successes and failures. This will provide space for me to discuss changes that I would have made to
the project given time. This leads to exciting areas of further work that completion of this project
has enabled, such as high frequency trading and statistical arbitrage; in chapter 9.

1.4 Published Work

During this project I was fortunate enough to be able to complete a conference paper on some of
the project’s interim work for the ASAP 2010 conference (the 21st IEEE International Conference on
Application-specific Systems, Architectures and Processors) with the help of Prof. Wayne Luk and
Dr. Peter Pietzuch [8]. The paper was accepted as a short paper (poster) for the conference and covered
the hardware design and initial performance studies.

Additionally, I was also able to complete a second paper while working on the project, again with
the help of Prof. Wayne Luk and Dr Peter Pietzuch [9]. This paper was submitted to the FPL 2010
conference (the 20th International Conference on Field Programmable Logic and Applications) and was
accepted as a short paper (poster). The paper covered using runtime-reconfiguration of FPGAs to allow
the algorithms of my implementation to be changed during the trading day. The paper was concerned
with the performance and other issues around using partial run-time reconfiguration.
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Chapter 2

Background

The aim of this project is to explore feasible methods of accelerating an Electronic Trading System
(ETS) specifically an Algorithmic Trading Engine with Field Programmable Gate Arrays (FPGAs).
This project deals with equity trading and the equity trade flow, from clients to exchanges. Therefore,
a good understanding of these topics is required to comprehend the work in this project. Additionally
a good grounding in computer and software engineering principles is required for the more technical
aspects that arise from this work.

The aim of this section is to provide the background needed to understand this project, it will cover
both the business knowledge about equity trading, as well as about working with FPGAs. It will also
cover the current state-of-the-art, showcasing current work and research in this area and how it relates
to this project. In detail, this chapter includes the following topics:

• The concepts behind stock, shares and how they are traded. This is the foundations to the business
knowledge required in this project; in section 2.1.

• An introduction to electronic trading, its motivation and the order trade flow. I will set out how
equity trading has moved from a manual activity to being automated by electronic systems and
the problems that arose with this; in section 2.2.

• Explanation of what algorithmic trading accomplishes and its methods. This will provide scope to
the project and why algorithmic trading is important to todays equity landscape; in section 2.3.

• How to choose when to trade, an introduction to Volume Weighted Average Price (VWAP), Time
Weighted Average Price (TWAP) and Participation; in section 2.4.

• I will discuss my reasoning for the choice of programming language and host operating system that
will be used throughout this project with their effects on the project; in section 2.5.

• Overview of reconfigurable hardware, current FPGA computing platforms and those that are avail-
able for this project; in section 2.6.

• Comparison to existing studies into applications of FPGAs in financial applications and other rele-
vant problem spaces. Additionally, the current state-of-the-art in electronic trading; in section 2.7.

• Summary of the available background, the concepts introduced and how they relate to what this
project’s aims; in section 2.8.

2.1 The Concepts of Equity Trading

Equity trading is the exchange of shares or derivatives built on stock of a particular business. Stock
is a number of shares in that business and shares represent the original amount of capital invested in
the business, the owners of the stock are therefore investors of the business. Stock serves as a security
to creditors of the business as it cannot be withdrawn to the detriment of the owners. At the time of
creation, the total value of shares is the total initial investment in the company, the price of a share at
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Figure 2.1: An example of Vodafone’s share price fluctuating over a number of trading days [12].

this time may be know as its par-value. There may be different types of shares in a business which may
vary certain attributes, such as there their ownership rights and preference status for example. If the
company makes a profit then it may issue all, some or none of the profit as a dividend to its shareholders,
this would be equally divided over the existing shares although different types of shares may receive a
greater percentage than other types [10].

This project focuses on native shares or stock when trading, ignoring any derivatives such as futures
or options. As stock in a company has an intrinsic value, it is classed as an asset and so they can be sold
and bought to or from other entities. If selling, the owner must have permission to do so under the terms
of ownership of the shares. To enable free and easy trading of stock in companies, stock exchanges were
created. These are designed to match buyers and sellers together to trade after agreeing a suitable price.
For shares in a particular company to be traded on an exchange, they must be listed at that exchange.
For a company to be listed it must meet a set of certain criteria set out by the exchange. Smaller
companies that don’t meet the criteria can still be traded but this is normally done over-the-counter,
where the trade is completed directly between the two parties. Orders are normally sent to the exchange
by stock brokers who work on behalf of individuals or entities wishing to trade shares. Historically, this
was because you had to be physically at the exchange to trade, but now with electronic trading, it is
more dependent on the cost of joining an exchange. Stock brokers arrange for the transfer of the stock
from one investor to another after a trade is completed and charge a small fee for the work, normally a
percentage value of the trade [11].

As with any product in limited supply that is traded, share prices fluctuate over time depending on
supply and demand. The amount of shares available is referred to as liquidity. Supply and demand
depends on how well the company in question is performing. A company that is thriving is likely to have
a dividend for its shareholders, making the company more desirable to invest in and the share price go
up. If the company is struggling however, there is unlikely to be any dividend and people won’t want to
invest in the company, making the share price go down. The share price of a company is communicated
through a market ticker which updates every time there is a price change, this information is transmitted
to all interested parties. Figure 2.1 shows an example of how the share price of a company can vary
over time, in this example the company is Vodafone who listed on the London Stock Exchange. The
figure also shows a lot of information such as the number of shares (526.08 million), the day’s price range
(143.15 - 144.40) and the 52 week high and low (111.20 - 148.00). Prices are in Pounds Sterling (£).

Investors want to make money on their investments, this can be done through receiving the dividend
on shares owned. Alternatively, buying shares when they are cheap and selling them when they are more
expensive, taking the difference as profit, minus any brokerage costs. Table 2.1 describes in detail the
two methods of achieving a profit. If however the market doesn’t move in the desired manner then the
investor stands to make a loss, how much of a loss is dependent on how long the investor stays in that
position. If the investor didn’t take any leverage (credit) when buying the shares though, it is impossible
for them to lose more money than the investment they made, as shares have an absolute minimum value
of zero. How investments are chosen is outside the scope of this project.
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Trading Style Name Summary
Long Buying shares cheaply and then selling when they are more expensive

is the obvious strategy. The investor believes that the share price will
go up and this is referred to as going long.

Short An investor can borrow the shares for a fee from an owner, sell them
when they are expensive and wait for the price to drop before re-
purchasing the shares, returning them to the owner. This is referred
to as short selling and the investor hopes that the company’s share
price will decrease.

Table 2.1: Description of the two different trading methods.

2.2 Introduction to Electronic Trading

Electronic trading removed the need for there to be a physical trade floor, allowing trades to be completed
in a virtual environment. This was enabled by the increase in computing power and communications
technology in the early 1970s. Exchange servers would maintain lists of buy and sell orders, ordered by
their price, finding and executing trades automatically [13]. Stock brokers would connect directly into
the electronic market place, passing orders on from clients. Those orders can be telephoned in by an
investor but increasingly they are also placed electronically by the client at their computer.

In 2007, 60% to 70% of the volume traded on the New York Stock Exchange (NYSE) was electronically
traded [2]. In 1961, the average daily traded volume on the NYSE was four million, however by January
2001, that daily volume was already topping two billion trades a day [14]. The increase in electronic
trading had a large number of effects on how the equity markets which are detailed in table 2.2.

On the 1st November 2007, the European Union’s Markets in Financial Instruments Directive (Mi-
FID) [15] came into force. This had a large effect on equity trading within Europe, making it more like
that of North America. The most notable change was now the ability for third-parties separate from
central exchanges to create venues where trading of stock was also allowed. This broke up the monopoly
that had been held by central exchanges such as the London Stock Exchange (LSE) [16] since their
creation, these new venues are called Multi-Lateral Trading Facilities (MTFs). Already a number have

Effect Summary
Decreased Latency The amount of time it took an investors order to reach the market

was heavily reduced. Originally taking minutes by phone call, orders
placed electronically could be at the market in under a second.

Reduced Costs The cost of placing orders dropped sharply as it was significantly
cheaper to automate the trading process with computers than employ
people to do the work.

Increased Participation As the price lowered more investors could afford to start trading,
increasing the amount of competition in the market place.

Increased Transparency The market became much more transparent as relaying market data
to investors was made cheap by the increased use of computer net-
works and the Internet.

Increased Activity The volume of trades increased heavily as more people started trading
and cheaper fees allowed investors to trade more frequently.

Increased Efficiency As the volume and number of investors increased, the amount of
liquidity available also increased, allowing the markets to be more
efficient.

Decreased Price Spread With more volume the spread (or difference) between the bid and ask
prices shrank because of increased competition and visibility.

Table 2.2: Details of the effects on the equity markets with the increased use of electronic trading.
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Figure 2.2: Trade flow from investor to exchanges in Europe via the electronic trading infrastructure.

been created in Europe, on London shares, 40% are traded at alternative venues to the LSE [17], such
as Chi-X [18].

With more venues available, the liquidity that was once in a single place is now fragmented and
requires new techniques to access it. As with all electronic trading there is an automated method which
many brokers use that looks at current and historical market data from these venues and decides where
to send the order or fractions of the order, in an attempt at getting the fastest and best priced executions.
Different venues charge different exchange fees so no longer is the best price what the execution of the
trade is at, but also includes the cost of going to that market. To ensure that no bias is held between
the different venues and the best possible price is achieved by the brokers, brokers must adhere to the
Best Execution Policy (BEP).

Part of the reason why volumes in trades have increase so significantly over the last couple of years is
because of the number of shares being traded has risen. Investors may want to sell or buy large numbers
of shares, but this cannot be done in a single order as it will be against market regulations as it will
move the market. A large order will also make it very clear to other investors about what you are doing,
which is undesirable in the secretive world of investment strategies. One solution to these problems that
arose was venues offered Dark Pools of Liquidity, where orders wouldn’t be published on market data,
preventing anyone from knowing what was available. The second strategy is to work the order in an
automated or algorithmic manner over a period of time, this became Algorithmic Trading.

Figure 2.2 shows the flow of an order from the investor through the electronic trading infrastructure
to the exchanges and alternative venues. All orders enter at the order manager, which can then go onto
automated systems to trade the order or directly to market. The algorithmic trading engine can use the
order router if it wishes or like the order manager, go straight to market. The venue gateway just provides
a proxy to the venues and performs and conversions between data representations for the specific venue.
The majority of electronic trading systems are implemented in C++, running in Unix-like environments
on high performance 64-bit servers. This allows them to cope with the high throughput they must handle,
while being low latency, have a low standard deviation on event processing and remaining reliable.
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2.3 Explanation of Algorithmic Trading

Algorithmic trading was designed to increase the capacity of the number of trades handled by a stock
broker. This was to enable the broker to keep up with the number of orders clients were sending. In
addition, algorithmic trading provides a more standard platform on return than a human doing the same
job, this consistency reduces the risk of the broker making a loss on buying or selling the shares. Finally
algorithmic trading allows large orders to be traded more evenly over the trading day, minimising moving
the market and being able to achieve a better price [19].

Algorithmic trading engines are similar to complex event processors, they take information in about
market conditions normally in the form of market data. They monitor this information and when certain
criteria are met they form a child order, which is a fraction of its parent order which is then sent to
market to trade. The attributes of the child order are dependent on the parent order and the algorithm
that is trading it, obviously the quantity of the child order must be less than the parent order, but
other attributes such as price or order type may differ. There are algorithms that decide which stocks to
buy and sell based on mathematical analysis of market conditions, commonly know as High Frequency
Trading (HFT) or Statistical Arbitrage trading methods. These methods are out of scope of this project
however and we will only be concerned with parent orders being received from clients.

Orders being algorithmically traded are normally traded over a longer period of time, but within the
trading day. Some algorithms will wait a set amount of time to trade, where others will wait for the price
of the shares to become more attractive. More intelligent algorithms may be allowed some flexibility
on how they decide this, allowing them to run faster in favourable market conditions and slower when
the market is against them [20]. Further intelligence can be added by increased processing of market
data and attempting to predict how the market is going to move by the current activity. Having good
trading algorithms is just as important as having competitive fees when trying to attract clients. Good
algorithms may be able to achieve a better price on trades by a client and even with slightly higher
brokerage fees the overall cost may be less than using another competitor. It is also for this reason that
many of the complex algorithms used by brokers are very closely guarded secrets.

Algorithmic trading engines are often very flexible and offer the ability to quickly develop and deploy
new algorithms. This is because an idea for a new algorithm may only be suited to be used for a couple
of hours, but might return a sizeable profit and the ability to create the algorithm quickly is the deciding
factor of whether it will be possible to make use of those market conditions. Also very large clients may
request a special algorithm or feature to be added to an existing algorithm for their use only, as these
very large clients may provide a large amount of revenue for the broker, being able to accommodate
these requests is very desirable.

2.4 Choosing When to Trade

Three simple algorithms will be looked at in this project, with scope for looking at more advanced algo-
rithms later provided the ground work has been completed. The first and simplest is called Participation,
this algorithm attempts to trade an order over a period of time and during that time it will represent a
specified percentage of all market volume (quantity) in that symbol.

Market Volume =
n∑

t=0

Vt (2.1)

Market Volume is calculated by the sum of the volume of all trades of a stock on a market, this
is shown in equation (2.1). Where Vt is the volume at time t and the sum is over all values. The
algorithm will work to keep the amount of the order traded equal to the specified percentage of the
market volume [21], this is illustrated by figure 2.3. Therefore the amount of time that the order takes to
complete depends on how much activity there is on that stock, if the stock is quite illiquid and the order
large then there is a real possibility that the order will not complete within the trading day. Participation
uses the average price of shares as a price benchmark to be compared against, equation (2.2) shows how
this is calculated. Where Pt is the price at time t and n is the total number of points.
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Figure 2.3: A Participate trade of 5% compared against total market volume over the trading day.

Figure 2.4: A TWAP trade child order volumes and distribution over the trading day.
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Figure 2.5: A VWAP trade child order volumes and distribution over the trading day.

Figure 2.6: The upper and lower boundary thresholds of a trade over the trading day.
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AP =
∑n

t=0 Pt

n
(2.2)

To prevent the algorithm sending large quantities of very small orders to the exchange, a minimum
tranche size is set which specifies the minimum size of an order going to market. Only when enough
market activity has occurred will another child order be created.

The second algorithm adheres to the Time Weighted Average Price (TWAP) benchmark, which is
calculated by the summation of the price of a stock multiplied by the time it spent at that price, divided
by the total time, as shown in equation (2.3) [22]. Where Tn is the total time, Tt is the time at which the
Pt was available and Tt−1 is the previous time period. The TWAP algorithm divides an order up into
equal sections which are traded evenly over the allotted time, aiming to match the TWAP benchmark.
Figure 2.4 shows a TWAP order, where child order size is in equal parts of the total order side, traded
over the whole of the day, it is completely independent of market volume. As the order is traded over a
specified time it can be guaranteed to complete by the end of the trading day if the end time is before
the close of market.

TWAP =
∑n

t=0 Pt(Tt − Tt−1)
Tn

(2.3)

Finally, the third algorithm trades an order against the Volume Weighted Average Price (VWAP)
benchmark, which is shown by equation (2.4) [23]. VWAP takes into account the volume of each trade at
its price of a stock over the total amount traded. Again like all algorithms it splits the parent order into
multiple child orders, however a VWAP algorithm varies the quantity of each child order proportionally
to the historic average volume traded at that time. The historic average is normally taken over the last
28 trading days. Figure 2.5 shows a VWAP order, where the historical average has been plotted with
the orders traded volume over time.

VWAP =
∑n

t=0 PtVt∑n
t=0 Vt

(2.4)

In addition, algorithms trading styles can be specified to be passive, aggressive or a mixture. Being
passive implies that all orders sent to market won’t execute immediately as they won’t cross the bid ask
spread and therefore will take time to execute. However being aggressive means crossing the bid ask
spread, this may make the trade more expensive but will ensure that the trade occurs quickly.

As well as monitoring market data to calculate the benchmarks, the algorithms can take into account
what liquidity is available on the market. If the price is attractive the algorithm may decide to speed
up by sending slightly larger order or another small order, conversely if the price is unattractive it can
slow down. The amount the algorithm is allowed to speed up and slow down can be parameterised by
a threshold. This can enable the algorithm to improve the final price of the order and react to market
conditions more intelligently. Figure 2.6 shows a 5% upper and lower threshold, the quantity that the
order has traded at any single point must be within those two limits.

2.5 Programming Language and Operating System Selection

C++ is the selected programming language of the software components of this project. The biggest driv-
ing factor behind this decision is that in industry this is the programming language of choice, therefore it
makes a logical choice to use now to improve possibilities of system integration with an existing electronic
trading networks. The reason why C++ is chosen is because it offers all of the same functionality as
many popular high-level programming language but in addition has no garbage collector. Some may see
this as a downside, resulting in more work and headaches for the programmer, but in this environment
where every microsecond counts it is very important. Nearly all garbage collectors require the main
application to be halted so that they can perform their duties, at a critical time this could result in an
unnecessary delay to a new order being sent to market and the loss of money. Java programmers have
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the ability to suggest when the garbage collector should run, but cannot force it to execute at a specified
time, but even if they could they would still end up with problem of the application being paused for a
short period of time. C++’s memory maintenance happens as it is required, spreading it out over time
and minimising the effects of freeing unused memory. This means that every time a C++ application
execute, if the inputs are exactly the same then the execution path will be as well. The same cannot be
said for Java. C++ has other benefits, such as being able to work with a number of other programming
languages, making using legacy code and libraries simpler, Python is another language which is very
good at this.

Unix like operating systems are the chosen platform for development and execution of electronic
trading system. Again this mirrors what is seen in industry, maintain the close links with existing plat-
forms. Some of the reasons why unix-like operating systems are chosen over their Windows equivalents
is because of their cost benefit and their openness, allowing for greater performance tuning and control
over the system. However, the main attractive is accurate and precise measurement of time. Windows
based systems have difficultly measuring any time below the millisecond threshold (10−3 seconds). When
measuring performance of the systems in this project we will be interested in events of a microsecond
scale (10−6 seconds). This will allow for performance results to be more accurate and individual events
studied and compared against equivalent events to determine any performance differences.

2.6 Overview of Reconfigurable Hardware

I will assume the reader has a good background in general computing but as reconfigurable hardware is
a specialist subject, I will take this opportunity to provide some background into this area of computing.

2.6.1 Reconfigurable Computing

Reconfigurable computing allows developers to make use of the high performance of a hardware imple-
mentation, while still maintaining the ease of development that software affords. This ability is provided
by the hardware being able to intricately change it’s data path to suite its application. The most com-
mon reconfigurable architecture used today is that of Field Programmable Gate Arrays (FGPAs), these
are made up of a large number of logic blocks which can be connected together to perform different
functions [24]. The alternative to using a reconfigurable architecture, but still retaining the ability to
produce a hardware implementation is to use Application Specific Integrated Circuits (ASICs). However
producing ASICs is still very expensive and so for limited production runs or prototyping it is often
uneconomical to do so. Another advantage of using reconfigurable architectures is that the hardware
device can be repurposed quickly and simply to test another design or even application. This speed and
ability to reuse the hardware has made reconfigurable architecture very successful.

Reconfigurable computing originated in 1960 with Gerald Estrin’s paper titled Organization of Com-
puter Systems - The Fixed Plus Variable Structure Computer [25] [26]. However it wasn’t until 1991 when
the first commercial application of reconfigurable computing was available, produced by Algotronix [27].
Applications of reconfigurable computing are a relatively new area in both industry and research.

2.6.2 FPGA Hardware

The two main suppliers of FPGA hardware are Xilinx [29] and Altera [30], both provide the physical
chips and integration boards allowing the hardware to be connected up to a computer to be used. FPGAs
consist of programmable logic blocks, input, output and internal routing channels. The routing channels
connect the logic blocks together and to the input output channels. Logic blocks can perform a large
number of operations, ranging from simple operations such as AND and OR, to the complex such as
decoders of mathematical operators. Memory is provided by both individual flip-flops and complete
blocks of dedicated memory.

To programme a FPGA device, the developer must supply a Hardware Description Language (HDL)
of the behaviour, one example of a HDL is VHDL which will be covered later with more information
on programming for FPGAs. The HDL is converted to a technology-mapped netlist which describes the
connectivity of the electronic circuit. Using a technique know as place-and-route, which is normally
implemented by a proprietary application from the manufacturer of the FPGA, the netlist is fitted to
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Figure 2.7: One of the ADM-XRC-5T2 FPGA cards used within the Axel Cluster [28].

the FPGA. This map must then be validated by the developer using various verification methods before
it is accepted and a binary file created to configure or reconfigure the device [31].

Xilinx’s current premier product is called the Virtex-6 and Altera’s is the Stratix IV, both are built
on 40nm circuits which improves both power efficiency and performance. FPGAs can be arranged in
different ways with computing hardware to have additional benefits, the simplest as an external stand-
alone processing unit to a co-processor or even the processor embedded in the reconfigurable architecture
[32]. Many FPGA boards have additional internal connections and external methods of connection, such
as network interfaces allowing computation to place from data received directly from another system.

Possible available hardware for this project includes the Axel Heterogenous Cluster [33] which contains
processors, General Purpose Graphics Processing Units (GPGPUs) and FPGAs. Alternatively the Cube
project [34] offers another platform with a large number of FPGAs available. Both are very new and
experimental projects with interesting features. The cube project uses 512 Xilinx Spartan-3 XC3S4000-
5-FG676 FPGAs, each offering 27,648 slices [35], the Axel cluster makes use of the Xilinx Virtex-5
LX330T-FFG1738-1 FPGAs, 51,840 slices [36]. Slices make up the FPGA’s Configurable Logic Blocks
(CLBs) and so can represent the size of the FPGA.

2.6.3 VHDL

VHSIC Hardware Definition Language (VHDL) where VHSIC stands for Very High Speed Integrated
Circuit, was originally developer at the Department of Defence in the United States of America. Its
purpose was to document how the ASICs the received behaved and designed to replace the large manuals
of implementation specific component instructions.

VHDL can be simulated in a logic simulator that supports VHDL files and synthesised into physical
implementation details of a circuit. Synthesis can have different priorities, such as creating the smallest
or more power efficient circuits. VHDL is very similar to the Ada programming language and has native
support for parallelism which features heavily in hardware design.

2.6.4 Handel-C and ROCCC

Handel-C is another HDL and is a large subset of the C programming language with extensions to allow
manipulation of hardware specific attributes. The technology was developed in 1996 at Oxford University
and has been very popular in academic hardware research [37].

Alternatively there is the Riverside Optimizing Compiler for Configurable Computing (ROCCC)
[38] which is an open source C to VHDL compiler for programming FPGAs. ROCCC provides some
interesting features, such as a modular bottom up design, allowing for extensive code reuse and which
works by creating modules in C, compiling them to VHDL and allowing other C or VHDL modules to
make use of existing modules. Addition a Platform Interface Abstraction (PIA) provides the ability to
decouple the implementation from a particular computation platform.
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2.6.5 Hyperstreams and Data Stream Manager

Building on Handel-C, Hyperstreams provides a higher level of abstraction when programming for FPGAs
and has been used to calculate the price of European options [39]. At compile time, Hyperstreams
automatically optimises operator latency, producing a fully pipelined hardware solution. Hyperstreams
helps to speed up the development time when implementing complex algorithms for FPGA chips.

Data Stream Manager (DSM) enables the software hardware communication, allowing a software pro-
gram to interact with a hardware implementation. A DSM stream or channel provides high throughput
unidirectional communication which is independent of implementation, hardware or software. Alter-
natively communication can be performed with the FPGA from the CPU via Direct Memory Access
(DMA) such as in project Axel [33].

2.7 Comparision to Existing Studies

There is little available material on electronic trading applications implemented in hardware or reconfig-
urable architectures. This is partly because it has not previously been a big area of academic research
and also the nature of the industry, advancements in the field tend to carry a large competitive edge and
so go unpublished. Reconfigurable computing is however being used on electronic trading systems, one
example is Credit Suisse’s latest joint venture with Celoxica which has been widely published [4]. Other
research has been performed which is related and may prove insightful to this project.

One study which proved particularly interesting and relevant was FPGA accelerated low-latency
market data feed processing [40], which explored parsing market data feeds directly from a network
interface. The study found that their hardware implementation could handle 3.5 million updates per
second, or roughly 12 times the current real-world maximum rate. The implementation also gained
constant latency when processing messages, providing a solid service to the application layer which
was still implemented in software on the CPU. The relation to this project is that with moving the
application layer down into the hardware, further work could join the two solutions into a single hardware
implementation which would increase performance further.

A similar study Compiling policy descriptions into reconfigurable firewall processors [41], looked at
implementing a network firewall using a policy specific language in hardware, taking the network packets
directly off the interface attached to the FPGA like in the previously mentioned paper. The relation to
this project is in the policy specific language may provide an implementation option for the algorithmic
trading application. Firewall rules are normally written as a set of policies which packets must adhere
to before being able to continue on their journey. This is very similar to how an algorithm may decide
to trade, it can be thought of as constantly wanting to trade, but a set of policies dictate to it when it
is allowed and not allowed to trade. Therefore to successfully trade all policies must be met before the
order is generated and sent to market.

Finally on the network side of FPGA research, Reconfigurable Architecture for Network Flow Analysis
[42] looked at processing network information in hardware. Moving slightly further away from this
project, however some of the goals are still very similar, such as the ability to parse large amounts of
information in real-time rather than produce the answer to a single complex calculation and processing
multiple flows in parallel which can be mapped to handling multiple market data and order feeds. The
advantages that were seen where a huge increase in maximum throughput, going from about 100 Mb/s
for the software to multi-gigabits per second in the hardware implementation.

There has been a large amount of research into other applications of FPGAs within financial compu-
tation, but they have mainly been focused on pricing exercises of derivatives such as options. Accelerating
Quadrature Methods for Option Valuation [43] looked at implementing quadrature methods of finding
the price of options in reconfigurable hardware and GPGPUs, finding that the FPGA implementation
was considerably faster than the software on CPU (32x increase), while being far more economical on
power usage than the equivalent GPGPU implementation (8x decrease). This is particularly interesting
if in future, horizontal scaling of system is the only way of keeping up with demand and if the FPGA
implementation was far more power efficient, then the cost of scaling over the longer term would be
reduced with the added environmental benefits.

In a different approach, Credit Risk Modelling using Hardware Accelerated Monte-Carlo Simulation
[44] looked at implementing Monte-Carlo methods of accelerating financial calculations, in this credit
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risk modelling. This time the speed up observed compared to the software implementation was between
60 and 100 times faster which is an incredible amount quicker. This experimentation used a discrete
event based simulation which can also be related to the work this project is outlining. The orders and
market data events that the system can will receive can be related to events that must be processed and
the different events result in different outcomes.

An algorithmic trading engine can be likened to a complex event processor (CEP) because of it
consuming market data information from which data needs to extracted and decisions on a number of
activities made. CEP has had a lot of focus from both industry and academia and so there is a lot of
available material on the area. Recent focus has been on processing on distributed systems to increase
the event throughput and decrease the latency of processing an event. The Next CEP [45] provides
a number of additional and interesting features distributed placement of processing based on a cost
model of operators. Although not directly related because the algorithmic trading engine has to contain
multiple processors, one for each order as each has a different state and each event must be processed
multiple times in this relation, it does provide an explain for the current state-of-the-art in CEP.

An interesting avenue of research is heterogenous clusters such as the Axel [33] and QP [46] clusters.
As previously mentioned in Section 2.6.2 the Axel project and other heterogenous clusters consist of a
number of high-performance computers each of which contain a number of different processing units. In
the case of Axel and QP this is a general purpose processor followed by multiple general purpose graphic
processing units and FPGAs to assist in computations. The difficulty in this approach is identifying
which areas of a problem are best suited to which computational unit, as each have different performance
properties. Then implementations needs to be produced to execute on the various components, each of
which have different programming methodologies and so is non-trivial. The QP cluster is supplied with
the Phoenix application development framework, where the Axel cluster has a Hardware Abstraction
Model (HAM) and a Map-Reduce framework to aid application development. Heterogenous systems
provide an interesting way of increasing cluster performance, while not significantly increasing the size
of the cluster and managing to improving power efficiency. This project may be suited to running on a
heterogenous system if parts of the model can be translated to the other computation units.

Although not related to financial aspects of computing, Parametric Design for Reconfigurable Software-
Defined Radio [47] provided a lot of insight into run-time reconfiguration of FPGAs. This is a particularly
interesting area and relevant to the aims of the project to create a fully-fledged application. It would be
highly beneficial if the reconfiguration times where acceptable so that during the trading day, algorithms
could be swapped and specialised further, depending on market and trading conditions.

2.8 Summary

In this background I have given an introduction to the business requirements of this project, starting
from an introduction to equity trading before moving on to how algorithmic trading is performed. From
this information, the interest in exploring the implementation of an algorithmic trading engine in a
reconfigurable hardware because of the benefits that such an architecture has over a purely software
based implementation should be clear.

In more detail I have laid out the financial models that this project has explored in hardware. The
topic is extremely vast and there is always the ability to make algorithms more complex and intelligent so
that they perform better. However without the initial work into simple algorithms, this is impossible to
perform. This project provides such work for exploring more complex issues and designs. As this project
heavily relies on reconfigurable computing and FPGAs, a background on the current state-of-the-art has
been provided with introductions on how current applications are developed for hardware.

Finally I have given information about what current research has been performed in similar and
related areas. Although no research has been published in this specific area there is an obvious desire
for hardware implementations of electronic trading systems, as shown by recent news and the obvious
benefits that FPGAs can afford their applications. These resources present a number of ideas which
helped in solving the problems set out by this project and show scope for further work. Through looking
at previous work, I have been able to gain ideas on further directions in which to take this project, such
as partial run-time reconfiguration of the device. These could provides large benefits to this system and
increase performance further over the initial speed boost provided by using reconfigurable hardware.
This has helped increase the quality of this project and the report presented here.
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Chapter 3

Electronic Trading Framework

Equity orders and system communication underpin the overall design of the project. How these are mod-
elled is important later in how the algorithms of the algorithmic trading engine are designed. Therefore
it is paramount that these models are robust and perform the designed operations. As these models are
general in the fact that many systems would make use of them, not only the algorithmic trading engine,
I decided that this part of the project should be treated as a framework. This allows the work here to be
used in many other systems later and ensures that the code is abstract of any specifies to the algorithmic
trading engine.

The framework is separated into to two main packages. The first models the equity order, the second
models inter-system communication. Although the actual communication is out of the scope of this
project, because of the design principles followed in this framework, creating the relevant modules to
serialise the data for communication will plug-in to the framework. In addition I propose some ideas
which would make communication efficient when implemented. Specifically, this chapter will cover the
following:

• I want to show the position of the framework within the structure of the application, helping you
picture the application construction when I cover later topics; in section 3.1.

• Memory management is an important part of the application and poses some difficult problems
which I will show before describing their solutions; in section 3.2.

• Equity order model, including its functionality and attributes. Two concrete models are available
that represent parent and child orders, with parent order supporting split and merge functionality
to create and destroy child orders; in section 3.3.

• The system communication through issuing of commands and responses to control and provide
feedback on orders. Providing interactions with remote systems; in section 3.4.

• How market data is modelled and supplied to the system. The three forms of market data update
in the framework, providing some of the information that the system needs to process and form
decisions upon; in section 3.5.

• Timer events provide notifications into the system. Callbacks are registered and activities can be
triggered on receiving a timer event if other criteria are met; in section 3.6.

• Summary of the work completed within the frame work, its impact on the project and possible
uses for it in other applications and research; in section 3.7.

3.1 System Overview

Figure 3.1 shows an overview of the overall structure of the application which will form over the next few
chapters. There are five main packages within the structure, and I will discuss each package individually
in detail over a chapter. This chapter will focus on the electronic trading framework which underpins
the overall design of the application, seen at the bottom of the diagram. The structure contains no cyclic
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Electronic Trading Framework

Software Trading Algorithms

Order Management Architecture

Hardware Trading Algorithms

Testing Harness

Figure 3.1: Overview of the applications structure, categorised by five main packages.

dependencies at the package level, shown in the diagram. This aids reusability and simplifies maintenance
of the system. The structure is built bottom up, from the framework with all components making uses
of this functionality. Additionally, the Order Management Architecture utilities the algorithms of either
technology and finally the Testing Harness sits on top of this, providing a testing framework.

Prohibiting cyclic dependencies is important as it allows packages to be used independently of others,
only requiring those that are below them. We can see from the diagram that the algorithms could
be used in a different system, as long as they shared use of the electronic trading framework. This
results in packages of high cohesion and low coupling, presenting the layered structure before you. Cyclic
dependencies can be checked in a number of ways, there are tools available which produce graphs from
parsing the source files of a project and these can be checked manually. Also by default, when compiling
a C++ program, if there are cyclic dependencies then the build procedure must be change, these changes
haven’t been made in my build procedure so I know there are know cyclic dependencies.

3.2 Memory Management

C++ relies on the programmer to carry out memory management to prevent memory leaks. This system
requires a large number of objects to have references to the same containers which makes the process of
manual memory management more difficult. It would disastrous if one object deleted a container than
another object still required. A solution provided by the C++ standard template library, smart pointers.
These contain and manage an item, keeping a reference counter of the number of objects that current
have references to that item. When that count reaches zero, the item can safely be deleted. There is a
small amount of overhead in this solution, most of which is derived from ensuring the implementation is
thread safe. I have deemed this a worth trade-off though, as using this solution not only improves faith
in the system being correct but also speeds up development time.

As the smart pointer is itself an object (shared ptr<T>), methods that previous accepted a reference
to an object must now accepted a smart pointer. Two interesting problems arise from this solution, the
first is when singleton objects must be managed by a smart pointer so that they can be used in the
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1 template<class T>
2 class NoOpDeallocator {
3 public:
4 NoOpDeallocator() {
5 }
6
7 NoOpDeallocator(const NoOpDeallocator<T>& copy) {
8 }
9

10 virtual ˜NoOpDeallocator() {
11 }
12
13 void operator()(T* object) {
14 }
15 };

Code Block 3.1: The no operation deallocator for use with the shared ptr to manage singleton objects.

1 NoOpDeallocator<T> deallocator;
2 shared_ptr<T> ptr(&singleton, deallocator);

Code Block 3.2: Use of the no operation deallocator for managing a singleton object.

1 class ClassA: public AbstractClass {
2 public:
3 virtual ˜ClassA() {
4 }
5
6 static shared_ptr<ClassA> create() {
7 shared_ptr<ClassA> result(new ClassA());
8 result->weak_this = result;
9 return result;

10 }
11
12 shared_ptr<ClassA> getSharedPtr() {
13 shared_ptr<ClassA> result(weak_this);
14 return result;
15 }
16
17 protected:
18 ClassA() : AbstractClass() {
19 }
20
21 private:
22 weak_ptr<ClassA> weak_this;
23 };

Code Block 3.3: Creation of an object managed under a shared ptr.

1 shared_ptr<ClassA> typedPtr = dynamic_pointer_cast<ClassA(untypedPtr);
2 if(typedPtr) {
3 // untypedPtr has a ClassA object stored.
4 } else {
5 // untypedPtr doesn’t have a ClassA object stored.
6 }

Code Block 3.4: Safe checking of a smart pointer to prevent errors.

23



same methods. The second objects which wish to reference themselves and use these methods which
only accept a smart pointer. Singleton objects should never be deleted during the program execution,
so if the reference count reaches zero we don’t want the object deleted. This can be achieved through
the use of a deallocator which doesn’t delete the object when asked. Code block 3.1 shows the design
and implementation of such a deallocator, with the method on lines 13 and 14 being the critical method
that does nothing. Code block 3.2 shows how this is used in combination with a smart pointer to avoid
the object being deleted upon the reference count reaching zero.

The second problem is caused by the style of creation for the objects managed by smart pointers.
To ensure that all objects required to be managed are managed, I chose to change the scope of all
constructors from public to protected. This still allows classes to extend these classes but prevents
the creation of these objects from outside of the class. To allow these objects to be created, I provide
a static factory method for each constructor, taking the same parameters as that constructor . It
will create the new object, place it under management and return the smart pointer. Code block 3.3
shows this design. Now we have the problem of if the object wants to refer to itself through a smart
pointer, it cannot contain its own reference counting smart pointer as this would result in the reference
counter never dropping below one and the memory resource would be leaked. The solution is a different
type of smart pointer which doesn’t contribute to the reference count (weak ptr<T>). The object can
contain this and will still be destroyed when necessary, more importantly, a reference countering smart
pointer can be created from this object and provided to any other class. This is shown in method
getSharedPtr() in code block 3.3, with the weak pointer on line 22 which is initialised on line 8 in
the static factory method.

Other benefits to this form of memory management come when dealing with casting the smart point-
ers. Later you will see that this is an important part of the structure of the application. As use of
exceptions within the code base are forbidden because of their performance degradation, even when not
being thrown, confirming a correct cast is more difficult. Casting with smart pointers is carried out by pro-
vided template methods such as shared ptr<T> static pointer cast(shared ptr<U> const
& r); for down casting and shared ptr<T> dynamic pointer cast(shared ptr<U> const &
r); for up casting. These don’t throw exceptions, instead they will return a null smart pointer on
failing. This can be simply checked using an if statement, shown in code block 3.4 and allows for errors
to be handled without exceptions in a clear and careful manner.

3.3 Equity Orders

The equity order model is designed as a storage container to hold all of the relevant information required
by a general trading system. In a full electronic trading network, additional information may be required
which can be catered for by extended the classes provided. Using object oriented principles, the equity
order provides encapsulations and data abstraction, presenting a set interface of methods to operate on
the data held within. The framework provides an abstract base class, Order, which contains most of the
functionality, two concrete classes are provided for use in the ParentOrder and ChildOrder classes.
The ParentOrder class adds the functionality to split itself into multiple, smaller ChildOrders.
These ChildOrders can then be merged back in with the ParentOrder at a later time, after taking
any changes in the state of the ChildOrder under consideration.

The ParentOrder class maintains its own record of its children, this allows the process of pro-
viding functionality across all the children of a ParentOrder to be simplified. To avoid any cycle
dependencies, ChildOrders cannot have a reference to their parent. Instead, in addition to the infor-
mation held by their base class, they contain the unique identifier to their parent order. Table 3.1 lists
the different attributes held by the three order classes, their type and a summary of the reason why the
exist. Figure 3.2 also shows the class diagram for the order package. The relationships between the three
order classes can be seen on the far left of the diagram. The main functionality of the Order class is to
handle executions. These take place at a remote location and notification of the event with its details are
received by the system maintaining the order. The details consist of the quantity of the shares traded
and the price that they were traded upon. An execution reduces the quantity of shares available on the
order by the amount traded and increases the transaction cost by the multiplication of the trade price
and the trade quantity.

ParentOrders posses two critical pieces of functionality. The first is splitting the order into mul-
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Name Type Class Summary
identifier string Order Is unique amongst all orders, al-

lowing them to be differentiated
and stored by using as a key.

symbolName string Order Identifiers which stock the order
is trading shares in, additionally
provides another form of cate-
gorisation.

side bool Order True if the order is buying
shares, otherwise false for selling
shares.

quantity int Order The number of shares that the
order currently has available to
trade.

originalQuantity int Order The original number of shares
that the order had to trade be-
fore taking into account any exe-
cutions or order splits to get the
quantity.

removalFlag int Order True states that the order is
suitable for being removed, false
states that the order cannot cur-
rently be removed.

orderStatus int Order True states that the order is ac-
tive (it has been accepted), false
states that the order is not cur-
rently active.

transactionCost double Order Initially zero, this is increased af-
ter every execution on the order
by the quantity of shares on the
execution multiplied by the price
of the execution.

orderTimeInForce OrderTimeInForce Order Represents the order’s time in
force, described further in sec-
tion 3.3.1.

orderTradingDetails OrderTradingDetails Order Represents the orders trading de-
tails, described further in sec-
tion 3.3.2.

orderType OrderType Order Represents the order’s type, de-
scribed further in section 3.3.3.

orderTime Time Order Represents the time that the or-
der was created.

childrenVolume int ParentOrder Value is sum over all of the chil-
dren’s original quantities.

children map<string,
ChildOrder>

ParentOrder Maintains a reference to every
current child of the parent order,
mapped by the child’s identifier.

parentIdentifier string ChildOrder Identifies the parent of the child
order, allowing the parent to be
found provided a child order and
map of parent orders.

Table 3.1: Overview of the attributes held by an equity order.
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Name Order Lifetime Restrictions Order Execution Restrictions
Day None, an order will last until it

is either completed, cancelled or
the end of the trading day occurs,
which ever is first.

None, any executions on the order
can be any quantity less than or
equal to the order’s current quan-
tity.

ImmediateOrCancel The order only lasts one processing
event before it is either cancelled,
completed or partially completed
depending on any execution sizes.

None, an order will last until it
is either completed, cancelled or
the end of the trading day occurs,
which ever is first.

FillOrKill The order only lasts one process
event before it is either cancelled
or completed.

Any execution on the order can
only be equal to the quantity of the
order, it cannot be less.

Table 3.2: Overview of the types of the order time in force attribute.

tiple, smaller ChildOrders. The second is the converse, merging which joins a ParentOrder with
one of its children. When a ParentOrder is split, the ChildOrder created effectively copies the
ParentOrder’s attributes. These can then be modified by the process that prompted the split, if de-
sired. The decision to split and any modifications are made automatically by the trading algorithm in
the algorithmic trading engine or a human if being traded manually. The only precondition is that the
ChildOrder’s quantity must not be greater than the available quantity on the parent order. Merging
destroys the ChildOrder and the ParentOrder receives the available quantity and the transaction
cost from the child back onto its own. Merging is the final act of a completed ChildOrder (an order is
completed when its available quantity reaches zero). In this case, the parent receives no extra quantity
but the full transaction cost of the child order. When the available quantity and the number of children
of a ParentOrder reaches zero, then the ParentOrder is complete.

When a split or a merge takes place, the ParentOrder must update its map of references of its
children to ensure that it is correct. The reason why I choose to allow the ParentOrder to maintain
a reference to each child, is that certain operations on the ParentOrder require an operation on each
child. For example, if a ParentOrder is requested to be cancelled, all children of that parent must
be successfully cancelled before itself can be. This is simpler to accomplish with this implementation
as ParentOrder can perform the cancel action across all of its children. This ensures that all data
structures remain in a consistent state between transactions and no children are left as orphans. Any
orphaned children could be potentially costly bugs to the owner of the trading system.

The next three subsections cover the three larger attributes of the Order class that contain multiple
pieces of information. What information they store is also dependent on their type. Therefore it was a
natural choice to model the as independent class hierarchies. Each has its own abstract base class which
the Order class refers to, but each concrete class implements the functionality differently, exhibiting
its own behaviour. I was tempted to allow the Order classes to be templated using these three classes,
but after careful consideration I decided that the advantages did not outweigh the disadvantages. The
resulting implementation would have been very verbose and required significantly more code. It would
also have made changing the orders information represented by these classes more difficult as it would
now be integral to the orders type. Finally C++’s template functionality isn’t as good as Java’s generics
functionality to work with, so overall, provided little extra benefit.

3.3.1 Time In Force

There are three different order time in forces supported by the framework. They are Day, textitImmediate
or Cancel and textitFill or Kill. Table 3.2 describes their differences over two categories. Both Immediate
or Cancel and Fill or Kill can be described in terms of a Day order with some additional functionality
and parameter setting. Although this would require further functionality at a lower level within the
application. The design of the classes follows the same hierarchical design which is often used in the
framework and is down in figure 3.2, the further right package. Each of the two categories in table 3.2 is
implemented using a pure virtual function which must be implemented by the concrete class extending
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Name Summary
PegAsk An order which is pegged against the ask price has the same price as the cheapest selling

order on the trading venue.
PegBid An order which is pegged against the bid price has the same price as the most expensive

buying order on the trading venue.
PegMid An order which is pegged against the mid price has the same price as the average price

between the cheapest selling order and most expensive buying order on the trading venue.

Table 3.3: Overview of the order peg types.

the abstract base class. In the case of checking if an order has completed, when the Order class checks its
status, it also takes the or with the result from the time in force. Both the Fill and Kill and Immediate
or Cancel classes return true as they always consider themselves complete. The converse, Day always
returns false, it will only consider itself finished if it has no remaining quantity, which the Order class
checks. In the case of checking the execution quantity, both the available quantity and the suggested
execution quantity are input. The method returns the boolean result of whether they are equal if it is
a Fill or Kill. Both Day and Immediate or Cancel return true if the value of the execution quantity is
less than or equal to the available quantity.

3.3.2 Trading Details

I won’t cover order trading details in much depth here as it is more relevant when discussing the different
algorithm designs. This is because the different order trading details provide a place where additional
information can be stored and used by different modules. They can also store state so that they can
keep track of individual orders through their own pipeline. Again, the design is a class hierarchy, with
the individual types providing a method of identifying order parameters which may affect the systems
decision to accept an order or not. For example, if the order trading details on an order received doesn’t
match any known trading style, then the order is rejected as it is unsupported. Unlike with the order time
in force, there are no abstract methods specified by the base class, this is because the set of attributes that
each of the concrete implementations will have is going to be very diverse. The disadvantage with this
is that the class will have to be cast when required by a module to use that information stored. Figure
3.2 shows that the Order class owns a single copy of an implementation of the OrderTradingDetails
abstract base class. Further details on the specific concrete implementations are provided in chapter 5
with their relevant algorithms.

3.3.3 Type

There are two order types available initially within the framework. It is these that control the price
of the order, which is a notable omission from table 3.1. The first order type is a LimitOrder, this
has a set value for the price which does not change unless the order is amended. The second type is a
PeggedOrder, where the order’s price is depending on the current market price of the order. Table 3.3
describes the three different forms of pegging that a PeggedOrder supports. Instead of each pegging
option directly extending the abstract base class OrderType, they are owned by the PeggedOrder
class. This is shown in figure 3.2 in the left most sub-package.

A pegged order’s price also depends on a number of other attributes. An offset which moves the price
in either positive or negative direction and a limit which prevents the price from exiting a predetermined
boundary. Each individual concrete pegging type prices itself against market data updates that it is
provided with, the different implementations select the correct information for themselves. To streamline
pricing and prevent reduce casts, OrderType contains a method which accepts market data updates to
price itself against, pegged orders override this to price themselves. However LimitOrders ignore this
data as it is of no concern to them.
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Name Summary
NewOrder Provides a new order that the owner would like the system to put under its man-

agement.
CancelOrder Specifies an existing order that the owner would like the system to no longer

manage.
AmendOrder Specifies changes to an existing order which is under the management of the sys-

tem, initiated by the owner if the order.

Table 3.4: Overview of the commands available through system communication.

3.4 System Communication

The main components of the system communication package are Commands and Responses. Additionally
both Market Data Updates and Timer Events are considered part of the communication package. They
are distinctly different though from commands and responses though so I will discuss them later in
this chapter. The hierarchical theme from modelling equity orders carries on throughout the system
communication package. An abstract base class is used to specify common functionality with concrete
classes implementing specific behaviour. This design structure aids further development at a later stage
with the addition of new concrete classes and behaviours.

System communication at the lowest level would be concerned with how the data is serialised before
being transmitted across a network. In this project though I have concentrated on a single system so
their is no need to implement this functionality. However because of the design techniques used, adding
these modules to the framework should be straightforward. Communication would most likely be across
a network, as electronic trading systems would be distributed across multiple hosts for performance and
redundancy. Alternatively, the systems could occupy a single host and communicate using inter-process
communication methods provided by the operating system.

Commands are used to initiate actions on orders, responses are sent as notification of the outcome
of commands. Additionally there are three other responses which are sent independent from receiving a
command and these are used to notify the owner of the order of a state change. Both commands and
responses contain the order that they are relevant to. It would be expensive to continually transmit the
full orders contents between the systems on every communication. Therefore I propose that if the low
level communication modules are implemented that they provide a dictionary of orders previously seen.
This would allow only a unique identifier and any changed information to be communicated, where at
the other system, the module could look up the reference to the instantiated order to pass through and
use within its application instance.

If this framework was to be integrated into an existing infrastructure, their would undoubtedly be
additional information required to be passed with updates or other forms of system communication. The
best solution to this is to make use of C++’s multiple inheritance, creating a new bespoke abstract base
class to store this information. Now after extending all of the frameworks concrete classes with your own
bespoke classes, these can additionally extend your new abstract base classes. Figure 3.5 illustrates this
design principle on an example set of classes.

Table 3.4 outlines the three different commands supported by the framework. They are NewOrder,
CancelOrder and AmendOrder commands. The first six responses outlined in table 3.5 are directly
related to these three commands. There is a response accepting and rejecting each command. There
are three extra responses which are used to notify the owner of a state change on an order. They are
Complete, Execution and ForceCancel, they are the last three responses in table 3.5. Figure 3.5
shows the response packages class hierarchy, this ensures code duplication is kept to a minimum and that
implementing behaviour based on receiving different responses is quickly definable.

Responses carry a significant piece of extra information, they declare whether after being seen, the
order they refer to has ended. The third column in table 3.5 states for which responses this is true. I
added this functionality so that as the response passes through the system architecture, the varying levels
which may hold state about that order know whether they need to update themselves. This ensures that
all data structures are maintained in a consistent state and memory leaks do not occur with unwanted
objects not being deleted. All of the Reject responses carry a string field denotes a message depicting the
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AbstractBaseClass

ConcreteClass1 ConcreteClass2

ExtendedConcreteClass1

ExtendedAbstractBaseClass

ExtendedConcreteClass2

Figure 3.3: Extending a class hierarchy for integration with an existing system.

Name Cause Order Ended Summary
AcceptNew Command No Responds to a NewOrder and confirms that the order

was created successfully
AcceptCancel Command Yes Responds to a CancelOrder and confirms that the or-

der was cancelled successfully.
AcceptAmend Command No Responds to a AmendOrder and confirms that the de-

sired changes to the order were completed successfully.
RejectNew Command Yes Responds to a NewOrder and notifies the owner that

the order was not created on the system.
RejectCancel Command No Responds to a CancelOrder and notifies the owner

that the order could not be cancelled at that time.
RejectAmend Command No Responds to a AmendOrder and notifies the owner that

one or more of the order attribute changes could not be
completed.

Complete Update Yes Independent from a direct command, sent to the owner
of an order which has just been completed and removed
from the system.

Execution Update No Independent from a direct command, sent to the owner
of an order which has just had an execution taken place.

ForceCancel Update Yes Independent from a direct command, sent to the owner
of an order which has been removed from the system
without a CancelOrder having previously been re-
ceived.

Table 3.5: Overview of the responses available through system communication.

30



Pa
ck

ag
e 

co
m

m
un

ic
at

io
n

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

tim
er

Ev
en

t

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

m
ar

ke
tD

at
a

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

co
m

m
an

d

Co
m

m
un

ic
at

io
n

Ti
m

er
Ev

en
t

M
ar

ke
tD

at
a

Le
ve

l1
M

ar
ke

tD
at

a

Le
ve

l2
M

ar
ke

tD
at

a

1

1

Ex
ec

ut
io

nD
at

a

Le
ve

l2
M

ar
ke

tD
at

aE
nt

ry

1

1.
.*

Co
m

m
an

d

N
ew

O
rd

er
Ca

nc
el

O
rd

er
Am

en
dO

rd
er

F
ig

ur
e

3.
4:

C
la

ss
di

ag
ra

m
of

fir
st

ha
lf

of
th

e
co

m
m

un
ic

at
io

n
pa

ck
ag

e,
co

nt
ai

ni
ng

co
m

m
an

ds
,

m
ar

ke
t

da
ta

an
d

ti
m

er
ev

en
ts

.

31



Pa
ck

ag
e 

co
m

m
un

ic
at

io
n

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

re
sp

on
se

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

re
sp

on
se

.u
pd

at
e

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

re
sp

on
se

.c
om

m
an

d

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

re
sp

on
se

.c
om

m
an

d.
ac

ce
pt

Pa
ck

ag
e 

co
m

m
un

ic
at

io
n.

re
sp

on
se

.c
om

m
an

d.
re

je
ct

Re
sp

on
se

Co
m

m
un

ic
at

io
n

Co
m

m
an

dR
es

po
ns

e
Up

da
te

Re
sp

on
se

Co
m

pl
et

e
Ex

ec
ut

io
n

Fo
rc

eC
an

ce
l

Ac
ce

pt
Re

je
ct

Ac
ce

pt
N

ew
Ac

ce
pt

Ca
nc

el
Ac

ce
pt

Am
en

d
Re

je
ct

N
ew

Re
je

ct
Ca

nc
el

Re
je

ct
Am

en
d

F
ig

ur
e

3.
5:

C
la

ss
di

ag
ra

m
of

th
e

se
co

nd
ha

lf
of

th
e

co
m

m
un

ic
at

io
n

pa
ck

ag
e,

co
nt

ai
ni

ng
re

sp
on

se
s.

32



Name Summary
Level1MarketData Carries two pieces of information, the best buying price on the mar-

ket and the best selling price, from this the mid price can be cal-
culated from the average of the two prices. The best buying price
is the most expensive price that an entity is willing to pay for the
stock. The best selling price is the cheapest price that an entity is
will to sell stock at.

Level2MarketData Instead of carrying only two prices, level 2 market data carries the full
information of all of the orders on the market. In addition to all of
the prices, this also includes the size of all of the orders, allowing the
amount of liquidity on the market to be calculated. The information
is provided in two sorted lists, the buy side is sorted in ascending
order where the sell side is sorted in descending order.

ExecutionData Like level 1 market data updates, it carries two pieces of information.
However this a price and quantity pair, but unlike level 2 market data
updates, this represents a trade that has taken place. The price is
the agreed price for the trade and the quantity is the number of
shares exchanged. This allows the price of a symbol to be calculate
over all of the trades that have taken place.

Table 3.6: Overview of the three different market data update types.

reason for the rejection. This is useful when debugging the system and might enable systems to automate
their reaction to a rejection. However in production use, rejections should be rarely seen as it is probably
either due to a malformed order or the system receiving the information encountering problems. Neither
which are desirable. Commands and responses don’t provide any additional functionality and are mainly
used as an abstraction layer and container. Their responsibilities would need increased with the addition
of more low level functionality such as network communication. Further behaviour to handle serialisation
and additionally information required by other systems taking part in the communication would need to
be added.

3.5 Market Data

Market data provides critical information to an algorithmic trading engine. It has three forms within the
frame work, Level1MarketData, Level2MarketData and ExecutionData. These are outlined
further in table 3.6. Level 1 market data updates contain a subset of the information in a level 2 market
data update created at the same time. Therefore, a level 1 market data update can be created from
a level 2 market data update. Figure 3.4 show the class structure of the market data package as the
central package in the figure. The only additional class which isn’t directly part of the class hierarchy
is the Level2MarketDataEntry class which is used to store the pairs of values for each order on the
market, ensuring the pairs remain together. The pair of information is the quantity and the price of that
entry, there exists an entry for every order on the market.

Market data updates are a member of the system communications package. This is because the
updates are normally created in a remote location and are sent through their own infrastructure before
reaching the system via the network interface. Unlike commands and responses though, market data
is a purely unidirectional form of communication. The system subscribes to the information that it is
interested in, the market data infrastructure then pushes new information to the system as it arrives. Nor-
mally the market data infrastructure and receiving the updates would be carried out by third-party tools
and applications. The two biggest market data providers are Thomson Reuters [48] and Bloomberg [49],
both offer extensive amounts of support when working with their data feeds. Additionally, both supply
libraries that implement the low level code to receive and convert the data received into provided repre-
sentations. This would have to be integrated in with the system if it were to receive real market data,
again due to the design of the framework and later applications, this should be a straight forward proce-
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dure. One the data is consumed, it would need to be transformed to the data representation presented
here so that it could be used throughout a system built on this framework. The reason why market data
is taken from providers like Thomson Reuters is because they provide a consolidated market data feed.
This means that information is received from multiple exchanges and sources, aggregated by them and
then provided to us. This simplifies and speeds up the process of getting all of the information that the
system requires.

3.6 Timer Events

The timer events are designed to provide a callback into the system to allow selected functionality to
execute. These callbacks need to be registered with the module that will inject the timer events back into
the system. I have decided to integrate them within the system communication package, even though
it is not likely to be communicated externally but because it passes (all be it, limited) information to
the application. The simple timer event class structure is shown in figure 3.4 on the far right. The
algorithms described later make use of the timer events to ensure that their state is updated regularly
and that if they wish to trade orders at specific times. A schedular is suitable to injecting the events at
the desired times. Timer events could be extended to include further information which could be read
by the user to determine the specific behaviour initiated by the timer. The advantage of modelling them
as part of the system communication is that they could then be communicated externally. This would
involve deploying the injector of timer events on a remote system, but this could then supply events to
multiple systems and further redundancy could be built in.

3.7 Summary

In this chapter, I have presented my solutions to modelling the low level data types within an electronic
trading system. To make the most of this work presented here, I have treated these implementations as a
framework. This required the models to be made as general and as robust as possible to ensure that they
are correct. The benefits though are significant, with this work providing a base for a lot more further
work and speeding up development time by reducing repetition. Further projects to developer order
routers and applications that perform high frequency trading or statistical arbitrage would all benefit
from making use of the framework presented here.

Before setting out the framework, I have shown out it helps to form the foundations for the complete
system. This also ties together the work in the other modules which will be covered in later chapters.
Now you will be able to picture the system as it is being built, knowing the coarse interactions which
hold the application together. The design shown provides a solid layer based pattern which is provides
part of the reason why this application is very flexible and extensive. This is important in allow the
work completed here being as general as possible, meaning that it can be utilised fully for many further
projects and research avenues. I have shown how I have solved the problem of memory management
with the careful use of C++’s standard template library. In this I have laid out a scheme for memory
management that could be used in any number of applications programmed in the C++ language.
This scheme ensures that memory resources are never leaked and the objects that are created are always
under management correctly, preventing anyone from misusing the application framework. This provides
greater trust in the final product, speeding up development time and reducing the amount of time that
is required for maintenance on the software. The memory management routines are spread out, ensuring
that the system doesn’t spend large amount of time maintaining itself, which could result in a price
performance impact of the trading algorithms described later.

I have taken time to discuss my design decisions that I have taken over the process of producing
this framework and shown the limits of the framework. Where these limits have been reached I have
proposed ideas on how when implementing further modules they can be made more efficient, such as
with keeping a dictionary of current orders at the communication layer bridge between the system and
the network. This would prevent unnecessary transfer of information already known between systems,
reducing bandwidth and improving network performance. Using C++’s multiple inheritance, I have
shown how developers how are working with this framework can specialise it to their own applications
and systems. By creating their own abstract base classes to contain all common functionality specifically
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needed, their new concrete classes can extend both their abstract base class and my concrete classes.
This provides a simple and scalable method to adding features and behaviour to the framework, without
adding non-abstract concepts to the framework and reducing the generality of the code base.

Additionally, I have proposed a method of providing callbacks into the system from a remote location
using timer events. These allow developers of a system built on top of this framework to implement
behaviour on a regular basis. Like the rest of the communication principles presented here, they do not
need to be communicated over a network from a remote location. These models and containers would be
just as suited to remaining in a single host, this may provide performance benefits for systems working
with a limited scope of orders as it would eliminate any bottlenecks acquired when communicating over an
ethernet network. Finally, much of the work presented here formalises the interactions and terminology
of many of the business principles that I introduced in chapter 2. These should provide concrete examples
to the read of what is expected when trading equity orders, although the reader may not use understand
completely why and when they would be used. This provides the grounding for understand the rest
of this project which is reinforced by the extensive use of this framework presented in the rest of the
applications described in this project.
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Chapter 4

Order Management Architecture

This chapter presents the underlying controller of the algorithms that will be investigated. We need to
be able to handle the communication principles set out in the chapter 3 and formalise the effects that
they have. This is so we can organise the data that we have and provide it to the relevant modules
for processing in a quick and timely fashion. Therefore the success of the work presented here and a
significant impact on the performance and therefore the quality of later work. We also require processes
to maintain the information that we hold and keep it consistent.

It is the solutions to these points that I will set out in this chapter. Although the algorithms have
no knowledge of the implementations carried out here, I feel that it is best to carry on this story of
how the application was built up, providing the basis for the algorithms. The algorithms only use the
framework and don’t know about any of the order management to avoid cyclic dependencies, where the
order manager requires to know about the algorithms so that it can pass information to them. The
system could have been alternatively structured with the algorithms talking to the order managers,
however this would have resulted in a far more complex and less abstract structure. Specifically, this
chapter will cover the following:

• Design patterns and themes possess a large role in the architecture so it is worth spending some
time discussing their use within the project. Specifically the use of the acyclic visitor pattern to
remove cyclic dependencies within the system; in section 4.1.

• Providing a second abstraction layer for building course grained applications which handle multiple
forms of different data. These provide a design pattern for building any number of large scale
electronic trading systems; in section 4.2.

• Maintaining abstraction, I present my order manager implementation which caters for the abso-
lute minimum amount to be able to successfully trade equity orders. It deals with interpreting
communication and maintaining data; in section 4.3.

• Building on the order manager, I present the necessary extensions required to create a complete
algorithmic trading engine, providing a home for any number of trading algorithms. I will also
discuss advantages gained from system structure used; in section 4.4

• A summary of the contributions that the work presented in this chapter afford and what they mean
for this and further work. Such as developing further trading applications; in section 4.5.

4.1 Visitor Design Pattern

The framework described in chapter 3 models the different actions and communication methods as in-
dividual classes. This has many benefits, but causes one main problem when handling these classes, the
ability to differentiate them from other concrete classes of the same abstract base class. This is required
so that different behaviour can be executed depending on the type of class received. The Visitor design
pattern [50] solves this problem by providing a structure and method of determining individual types
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1 void ConcreteElement::Accept(DegenerateVisitor& visitor) {
2 AbstractConcreteElementVisitor* typedVisitor = dynamic_cast<AbstractConcreteElementVisitor

*>(&visitor);
3
4 if (typedVisitor) {
5 typedVisitor->Visit(*this);
6 } else {
7 // ’visitor’ cannot visit the AbstractConcreteElemeentVisitor, handle error.
8 }
9 }

Code Block 4.1: Example implementation of the Accept method within the ConcreteElement class.

without large if-else blocks. Unfortunately they visitor pattern introduces systemic cyclic dependen-
cies within the code base, causing a large amount of programming overhead. The cyclic dependency can
be seen in figure 4.1a between the AbstractElement, AbstractVisitor and ConcreteElement
classes. An example of the overhead later incurred is if another concrete element needs to be added
which extends the AbstractElement class. This means that the AbstractVisitor class needs up-
dating. Since the AbstractElement class depends on the AbstractVisitor class, every module
that extends textitAbstractElement additionally needs to be recompiled. This recompilation can be very
expensive, particularly in a large system. The process of adding additional concrete implementations of
the AbstractElement class is also more time consuming and difficult.

4.1.1 Acyclic Visitor Pattern

The solution that I choose to implement in my application was to use the Acyclic Visitor design pattern
[51]. Figure 4.1b shows the class diagram for the acyclic visitor design pattern. It is clear to see that there
are no cycles within the dependencies except for between the AbstractConcreteElementVisitor
and the ConcreteElement. However this does not provide the same problem as before as the depen-
dency can be separated from the header file of the ConcreteElement into its source file. It is also
localised to a two classes and the minimum amount of extension required when adding another concrete
class extending the AbstractElement class satisfies all further work needed.

Code block 4.1 shows an example implementation in the ConcreteElement class of the accept
method. The two notable features used by the acyclic visitor pattern are multiple inheritance and run
time information from the dynamic cast. Although the dynamic cast does have a little compu-
tational overhead associated with its use, this is outweighed the design advantages. Additionally, the
accept method should only be used at most once per element being processed which can be seen later
in the design of the other components in the order management architecture.

4.1.2 Communication Package Visitors

The next step is to apply the acyclic visitor pattern to the classes made available within the communi-
cation package in the electronic trading framework. Figure 4.2 shows the four visitor classes required in
the bottom half of the diagram to support all the communication paradigms provided by the framework.
One exists for each of the sub-packages within the communication package. Each of the visitor classes
contains a handle method in place of a visit method which takes a single parameter of a reference
to one of the concrete classes found in that package. I chose to rename the method simple to describe
its function better and in less abstract terms.

One notable additional I have made to the design pattern is that the visit method returns a boolean
value instead of void. This is used to enable error handling rather than using exceptions. Exceptions
can have poor performance associated with them, even when no exception is thrown. I made the decision
to avoid using exceptions within the implementation to minimise any performance impact. Although a
single boolean value doesn’t describe any detail apart from the success of the operation, it can be used
to clean up any previous work up to the failure, making sure all data structures remain in a consistent
state. With careful logging at the point of the problem being encountered, a more explicit message can
be output for the user of the system to view. This also adds to the benefit of using an automatic logging
monitor, which will alert the administrator immediately to any problems.
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Name Summary
Parent Order Interfaces The ParentOrderHandler is used for receiving commands from

upstream systems to manipulate orders within the system. The
ParentOrderEngine provides the facility of being able to send re-
sponses back to the upstream clients which are notifications of the out-
come of the commands received.

Child Order Interfaces The child order interfaces are equivalent to the parent order interfaces,
except they work downstream and the communication handled by the en-
gine and the handler is reversed. The ChildOrderEngine sends com-
mands downstream to other systems while the ChildOrderHandler
receives the responses about these commands.

Market Data Interfaces The MarketDataConsumer carries out the same functionality as the
MarketDataVisitor. There is no MarketDataEngine because the
algorithmic trading engine doesn’t produce any updates that need to be
sent. If the project was later to be expanded to require this functionality
then the best solution would be to create a MarketDataProducer
class. This would implement the functionality to produce updates and
control the MarketDataEngine. Much like how is done within the
parent and child packages but with a clear separation between being
able to receive and being able to send updates.

Timer Event Interfaces The TimerEventHandler follows the same ideas of
the MarketDataConsumer, it is just an abstraction of
TimerEventVisitor. There is little need for a TimerEventEngine
as timer events are injected at the base of the system from a schedular.
If however the timer events were to be fired from a remote system, it
would be beneficial to follow this design ideology.

Table 4.1: Summary of the four package interfaces and their roles.

4.2 Package Interfaces

The package interfaces provide basis for all of the trading application to be built up. They state what
functionality must be supported by the application if it wishes to complete certain tasks and receive
certain communications. These allow applications to be built up quickly and then implement the abstract
methods specified by the interfaces. This is how the order manager is built up first, then later on the
algorithmic trading engine adds further interfaces that it requires. It still inherits all of the work from
the order manager though, preventing code duplication. Both the order manager and the algorithmic
trading engine take parent orders and produce child orders, sending them further down the trading flow.
However not all systems produce child orders, for example an exchange which matches parent orders
does not split them and so doesn’t require to send any child orders on or receive their responses. The
same goes for consuming and producing market data updates, lots of systems consume market data, but
few actually generate it.

There are two main categories of interface, a Handler and an Engine. Handlers are responsible
for sending information up the application, where engines send information down the application and
eventually onto another system. Only the ParentOrderInterface and ChildOrderInterface
have an engine, this is because only these packages require to send information out of the system, where
timer events and market data are just consumed (unidirectional). Adding these additional engines though
would be straight-forward however, but isn’t needed for this project. The four packages are shown in the
top half of figure 4.2 with their relationships to the relevant visitor classes. It also shows that the relevant
handler classes own an engine class where they exist, this determines how the system is assembled. You
will notice that both MarketDataConsumer and TimerEventHandler add no further specification
or implementation. I made the decision to include them for completeness and to further abstract the
visitor classes away. This improves the simplicity of designing a system which extends these interfaces
as they are in a single package. Table 4.1 summaries the four different package interfaces.
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System

Order Manager

Framework

OrderManagerImpl

OrderManagerQueue

NetworkCommunication

Network

Figure 4.4: A single threaded order manager arrangement.

4.3 The Order Manager

The order manager provides functionality for maintaining orders and provides an interface for manipulat-
ing them. This manipulation is only manually at this point, a human trader would use an order manager
to simplify the process of trading orders. The algorithmic trading engine automates this process, using
the same interface provided by the order manager but also adding to it, enabling it to consume data
from additional feeds. Therefore, I choose to develop the order manager first, which would provide the
foundations for the algorithmic trading engine which would extend the order manager’s functionality.
I will use this opportunity to explain some of the design decisions and notable features of the order
manager, then build on this for the algorithmic trading engine section.

Figure 4.3 describes the class diagram for the order manager package, I will refer back to this dia-
gram. In the diagram I have included at the bottom, the relevant package interfaces which are extended
by the classes in the order manager package. Rather than repeat all of the functionality that the inter-
faces specify, I have omitted this information to keep the diagram more succinct. Any new functionality
that the classes add I have included. The package contains four classes, two are additional abstract
classes which link interfaces from the package interfaces. They are OrderManagerInterface and
OrderManagerEngine. The OrderManagerInterface links both the ParentOrderHandler and
the ChildOrderHandler, allowing a class that extends OrderManagerInterface to receive com-
mands from upstream and receive responses from downstream. The OrderManagerEngine links both
the ParentOrderEngine and the ChildOrderEngine, extending OrderManagerEngine allows a
class to send responses upstream and send commands downstream.

It might not be initially clear why I there is separation between the OrderManagerInterface
and the OrderManagerEngine classes. The reason is because that although a class wishing to re-
ceive information must implement the relevant handler classes, it does not need to implement the engine
classes to send the information, it just requires a reference to an engine that it can send its mes-
sages through. This can be seen in figure 4.3 that the OrderManagerInterface additionally uses a
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ParentOrderEngine and a ChildOrderEngine. This is because of its extending the handler inter-
faces and represents possessing this reference. This is the reason why the OrderManagerImpl class
only extends the OrderManagerInterface class as there are no further classes to send information
up to after the implementation class, therefore it is not required to send any information down from
above, as there is no above.

The overall design for the instantiations of the classes forms a ladder. Information is passed up the
ladder for processing and the results are passed down the ladder for sending. This is best represented
in figure 4.4, which shows the implementation class at the bottom with no further classes after it. The
NetworkCommunication class hasn’t been implemented but shows where the information is coming
from into the system. The OrderManagerQueue’s job is to buffer the information from the network
before it is sent on to the order manager implementation. This is where the threading for the order
manager is created, allowing for a network processing thread to take information off the network interface
and place it on the work queue in the OrderManagerQueue class. In the order manager thread, work
is then taken off the queue and processed. As the OrderManagerQueue needs to send information as
well as receive it, it also implements the OrderManagerEngine class, as show in figure 4.4.

Cyclic dependencies are avoided by careful use of abstract class references within the concrete classes.
This leads to an elegant and flexible solution. One possibility is chaining multiple OrderManagerQueues
together, although not particularly useful, the extra buffering may result in a system able to cope better
with extremely high loads, this requires further investigation. However we will later see with the algo-
rithmic trading engine extension that chaining is more effective with the addition of another component
which provides multiplexing and routing between orders.

The OrderManagerImpl provides the implementation of the order manager functionality. The class
maintains all of the parent orders that it has received and any child orders that have been created from
those parent order. The orders are stored in a number of abstract data types, three are maps, mapping
strings to orders and one is a map from strings to another map, which maps strings to ChildOrders.
All operations and transactions performed by the system must keep these containers in a consistent state.
ParentOrders are stored under their own unique identifier, where each parent order will only appear
once in the map. Additionally, parents are stored in another map by their child’s unique identifier. This
map will have duplicate values in it as it is common for a parent order to have multiple children.

Child orders are stored by their own unique identifier, like parent orders are. Additionally children
are stored in a map of maps, which is referenced by their parents unique identifier first and then by their
own unique identifier. This allows all of the children of a single parent order to be addressed without
having to ask the parent order for those references every time. This is a trade off that I have made
between speed and memory footprint, the additional storage containers decrease execution time at the
expense of memory usage. This is an trade off is enabled as computer memory is relatively cheap and
plentiful currently, where computation power is expensive to increase. Additionally, limits on throughput
of orders processed are more likely to be bounded by computational power before limits on storage size
as single order is relatively small.

The implementation provides three pieces of functionality for managing the orders it contains,
createChildOrder, removeParentOrder and removeChildOrder. Only createChildOrder
isn’t used in the automatic management of orders. For example, if an execution comes in for an or-
der, which completes that order then the system will automatically close and remove the order, using
either removeParentOrder or removeChildOrder depending the type of the order. Use of the
createChildOrder method is what will be automated in the algorithmic trading engine. Where the
OrderManagerQueues implementation of all of the abstract methods for handling commands and re-
sponses was limited to passing them up to the next level. The OrderManagerImplementation has
a full implementation of the logic for each of the commands and responses. Such as on receiving a
NewOrder command, it adds the parent order to the storage containers and sends an AcceptNew back,
assuming the order could be accepted. I won’t explicitly describe the control logic for the rest of the
commands and responses, as it is straight-forward from their previous descriptions. It is suffice to know
that the order manager implements this logic and updates its storage containers as required, depending
on the action.
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4.4 Algorithmic Trading Engine

The algorithmic trading engine is an extended version of the order manager which is a novel solution,
increasing code reuse while not suffering from many drawbacks. A bespoke designed system might pro-
vide a margin improvement in performance and or a slightly simpler interface. However the increase in
development time, code and maintenance time required outweigh these advantages. Figure 4.5 shows the
class structure for the algorithmic trading engine package. I have included the classes available in the
order manager package to show which classes are extended. The additional package interfaces used that
the algorithmic trading engine makes use of are included as well. The algorithmic trading engine needs
to consumer market data updates, which is specified by the MarketDataConsumer class. In addition,
the algorithms make use of timer events and so the TimerHandler class is included. Like with the
order manager, an interface is created from which the other classes will inherit their partial specifica-
tions. The AlgorithmicTradingEngineInterface extends the OrderManagerInterface, the
MarketDataConsumer and the TimerHandler to specify all of the functionality required within the
algorithmic trading engine.

There is no need for an equivalent class to the OrderManagerEngine in the order manager package.
This is because the additional handler classes are unidirectional in travel of information, information is
only received and not sent. This means there is no requirement to have an engine to send information.
The AlgorithmicTradingEngineQueue extends the AlgorithmicTradingEngineInterface
and the OrderManagerQueue. As the OrderManagerQueue implements all of the functionality for
the parent and child handlers this can be reused. Therefore the AlgorithmicTradingEngineQueue
only needs to add the control logic for passing up the market data updates and the timer events. As both
of them are also representations of the Communication class, they can be stored in the work queue in
the OrderManagerQueue.

4.4.1 Multiplexing Information Between Instances

One of the large difference between the algorithmic trading engine and the order manager is that orders
are required to be sorted by two additional criteria. We are now interested in what symbol the order
is trading shares in, as we now need to know what market data updates are relevant to that order.
Additionally we need to know what algorithm is trading an order so that the order is given to the correct
algorithm. One possible solution would have been to extend the OrderManagerImpl class, adding
additional storage containers which would implement these extra sorts. However large amounts of the
functionality for handling the varying commands and responses would have to be rewritten to cater for
these extra containers, which is undesirable.

My solution is to implement a class whose purpose is to sort the information that it receives and pass
it onto the correct algorithmic trading engine implementation (order manager). Instead of a single order
manager existing, now multiple instances are created, one for every combination of symbol being traded
and algorithm available. For example, if there were three trading algorithms available and orders were
accepted that trading over five different symbols, then there would be 15 instances of the order manager
running. This is implemented in the AlgorithmicTradingRouter class. It maintains two storage
containers, one which maps order managers by symbol and by algorithm being used and another which
maps order identifiers to order managers. The reason for the first container is clear and allows access
to the order managers for new information, such as market data updates and new orders. The second
container exists to speed up finding an order manager for repeat or previously existing information, such
a responses to child orders and amend or cancel commands for parent orders. This is again part of the
memory footprint and execution speed trade-off described earlier.

Now with the current design there is a large benefit that can quickly be reaped and could lead a
sizeable increase in performance. This is best explained as a diagram, figure 4.6a shows how the original
configuration of the objects would be, which is based on the order manager’s configuration discussed and
show in figure 4.4. However because of the abstract classes used within the concrete classes, instead of
directly connecting the implementation to the router, we can place another queue object between them,
as shown in figure 4.6b. The extra layer of buffer may not help much but as the queue implements
the threading, it now enables all of the order managers to run in their own, independent thread. This
has obvious benefits on multi-processor or multi-core computers. Another benefit over performance is
fairness in the system. Now with the operating system controlling the scheduling more directly, less
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System

Framework

Algorithmic Trading Engine

Network

NetworkCommunication

AlgorithmicTradingEngineQueue

AlgorithmicTradingEngineImpl #1 AlgorithmicTradingEngineImpl #2 AlgorithmicTradingEngineImpl #3

AlgorithmicTradingEngineRouter

(a) A single thread for the whole of the algorithmic trading engine process.

System

Framework

Algorithmic Trading Engine

Network

NetworkCommunication

AlgorithmicTradingEngineQueue

AlgorithmicTradingEngineImpl #1 AlgorithmicTradingEngineImpl #2 AlgorithmicTradingEngineImpl #3

AlgorithmicTradingEngineQueue #1 AlgorithmicTradingEngineQueue #2 AlgorithmicTradingEngineQueue #3

AlgorithmicTradingEngineRouter

(b) An individual thread for each algorithmic trading engine implementation.

Figure 4.6: Threading levels of the algorithmic trading engine.
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active order managers should not have to wait as much as if they are in the same thread as a very
active order manager. The theory behind this is that on the single threaded implementation, if a symbol
receives ten updates in a row, then these must be processed before any other symbols updates can be.
Now with the multi-threading setup and the routing, these ten updates can be passed to the correct
thread, while other the thread now receives its update sooner.

4.4.2 Handling Market Data Updates and Timer Events

Like with the rest of the algorithmic trading classes, the order manager needs to be updated to handle
market data updates and timer events. The AlgorithmicTradingEngineImpl class extends the
AlgorithmicTradingEngineInterface to add the extra handlers and the OrderManagerImpl
class to provide the functionality for the management of the orders. Little of the inherited functionality
requires modification. The only additions are when a parent order is created or amended. When either of
these actions occurs, we want the order to immediately be put through the algorithm, to see if it can be
traded. For this reason, the implementation maintains a record of the last market data update seen, as
this will be required to be provided with the order to the algorithm. This is because all of the algorithms
are stateless, they rely on the order maintain its own state of how it has been traded and being provided
with the latest information. It is desirable for an order to be tested immediately because on illiquid
stocks (those that receive little activity), there may be a long duration between market data updates
being received. If the order was only traded on a market data update, this would mean there would be a
long period of time before the order came up for trading, possibly missing out on some liquidity available
on the market when it arrived.

The new functionality added to the class handle receiving market data updates or timer events. On
either of these situations, the order manager submits this information, with the details of the orders that
it is currently managing to the algorithm that it is possess. In return the algorithm provides a list of
child orders to create, their size and any additional changes to their parameters that should be made.
The manager then carries out the task list, creating the child orders using the createChildOrder
functionality provided by the OrderManagerImpl class and sends them downstream. Additionally, if
the event as a market data update, then the relevant reference to the last seen update is updated with
the new one.

4.4.3 Calculating Market Metrics

Some algorithms require information and data which is calculated from information that is received by
the system or some historic data. I choose to group the two requirements into a separate subsystem.
The first job of the system is to provide access to the information that it carries, this may include
current information and historic information. I won’t deal here with how historic data is produced,
but this system could be used in that process by recording its current information through the trading
day. The other activity is that it receives all of the market data updates and calculates the various
metrics required. The information can be accessed from anywhere within the system as the class is a
singleton with a static access method. This is also partly due to stop multiple instances from existing
and calculating the same equations. The class is plugged into just the market data update feed and
receives all of the updates that the main system does as well. To prevent the system from using old
data, the metric calculated always gets the update before the main system. This is so that if it requires
information from this object, the latest information has been calculated and can be returned. On old
information the algorithm may not trade when it should have done or conversely, traded at the wrong
time. The metrics that are calculated are explained later in the report when I describe the three concrete
trading algorithms that I have created. Further work to improve this module could include abstracting
the calculation away from the main class and allowing it to store a collection of calculators. A calculator
could then be specified with a trading algorithm and then only a calculator needs to be added to this
class, rather than modification of its internal representations.

47



4.5 Summary

In this chapter I have presented my design and implementation for an algorithmic trading engine which
is based upon an equivalent order manager. The two systems are built up upon a collection of interfaces,
which themselves are built from a set of interfaces which provide the ability to distinguish between
different communication classes. These interfaces form what I term as a design pattern for building
electronic trading systems. They can be used in different configurations depending on the activities and
behaviours of the system being implemented. This has the concrete example in what I have produced
here to show their use.

The design pattern heavily depends on the use of the acyclic visitor pattern to ensure that no cyclic
dependencies are introduced into the implementation. This carries on the theme of guaranteeing that
the code produced is of the highest quality and the maximum flexibility. As previously mentioned that
these interfaces can be used in further project and systems, so can the order manager and the algorithmic
trading engine. Many electronic trading systems such as those dealing with high frequency trading and
statistical arbitrage could easily be tailored to being build upon either system. Allowing the time from
conception to deployment to be heavily reduced.

Further still, through the clever arrangement and design of classes, I have provided a simple and
effective method of coarsely threading the order manager. This is echoed and amplified in the algorithmic
trading engine, which can provide a simple thread to each algorithm independently. Not only leading
to increased performance but additionally increased fairness. Both of which are very important traits
desired of an electronic trading system. Finally, I have introduced new concrete concepts on how orders
are managed and the actions performed on them to manipulate them. This will allow the reader to fully
comprehend the decisions made in the next chapters dealing with implementing the trading algorithms
that this algorithmic trading engine will use.
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Chapter 5

Trading Algorithms in Software

In this chapter I will present my trading algorithm design pattern for algorithms implemented in software.
These algorithms are supported by the algorithmic trading engine and the electronic trading framework
which I have previously discussed. Building on this design pattern, I present my implementation for
threshold trading functionality. This is designed to get all algorithms extending this pattern a base
increase in price performance which will help them to become more effective. Finally, I will present three
concrete trading algorithms that I have created to demonstrate these principles and show how quick and
simple it is to rapidly prototype a new algorithm given the work provided here. This chapter completes
the actual software implementation of the application and secondly provides the specification for the
hardware implementation to follow. Specifically, this chapter will cover the following:

• The interface that I have designed to facilitate communication between the trading algorithms and
the algorithmic trading engine. I’ll also show how the algorithms are managed in such a way that
it lends itself to them being either in software or hardware; in section 5.1.

• I will now present my design pattern for creating trading algorithms and the functionality that
it provides. This will include how threshold trading works and how I decided to evaluate the
favourability of the market at trading time; in section 5.2.

• Using this design pattern, I will provide three concrete example trading algorithms with their
models and specifications that I have produced. I will also cover what opportunities it gives the
developer and show case its flexibility; in section 5.3.

• I will then wrap up with the benefits from the design and implementation, specifically looking at
what they afford to the user. Such as how the trading algorithm design pattern can be used for
future implementations and research; in section 5.4.

5.1 Trading Details and Algorithm Interfaces

It is important to know how the algorithms are built and the interface with algorithmic trading engine.
This interface is shown by figure 5.1, depicting the class structure of the relevant packages. I have included
the AlgorithmicTradingEngineImpl class and its package, this shows that each implementation
possess an algorithm that it solely uses for trading. The implementation receives this algorithm from
the AlgorithmManager and then maintains a local reference. This can be seen in the middle package
of the diagram. This forms the abstract factory design pattern, in which the AlgorithmManager is a
factory class. It is solely responsible for the creation and assignment of algorithms. A simpler solution
would have been to allow the AlgorithmicTradingEngine to create its own instance of an algorithm to
use. This would have resulted in a tighter coupling between the packages. As we want to use the same
algorithmic trading engine when using the trading algorithms in hardware, this would have resulted in
more code to control the creation of those interfaces. This also answers the question of why the abstract
factory pattern is used, this is because we will require a factory for the software algorithms and one for the
hardware algorithms. At the moment, the choice of which factory is used is dependent on the parameters
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of the system at start up. Although a factory for the hardware algorithms is bit of a misnomer however,
it will have to create and manage the interfaces to the hardware algorithms, instead of creating them.

Now that algorithms can be managed and assigned, we need to know what interface an algorithm
must provide so that the algorithmic trading engine can use it to trade automatically. This is provided
by the TradingAlgorithmInterface, the main methods specified are a collection of work functions.
These all take a map of the parent orders to process and an event to process them against. These events
are either timer events or the three different forms of market data update. In addition, the interface
must provide an unique identifier in the form of a name and additionally, a method to setup a new order.
This last method is critical and is used when a new order is received. It makes sure that the order being
setup has the correct state for when it was accepted and then tries to trade the order initially. This
class and methods can be seen at the top of figure 5.1. Although the AlgorithmManager knows about
the different algorithm implementations, this is only during creation, algorithms are otherwise addressed
through their interface. At a later stage, a plug-in manager could be designed allowing for algorithms to
be quickly deployed and added to the system without the whole system requiring recompilation. This
still wouldn’t be possible at run-time though, as to add a new algorithm the whole application would
have to be bought down and started again.

The order trading details provide a storage container for an algorithm to maintain the orders state.
This is shown in figure 5.1 on the right. There is an abstract base class, AlgorithmicTrading which
extends the OrderTradingDetails class, allowing the order to store it. If orders were being manually
traded, there would be an associated class to the AlgorithmicTrading class which would store the
trading details for manually trading the order. Each of the concerete algorithms implemented has their
own extension of the AlgorithmicTrading class. This maintains the parameters and state that the
algorithm is interested in when trading an order. The base AlgorithmicTrading class supplies all of
the information for the algorithm trading pattern functionality to perform its duties.

5.2 An Algorithm Design Pattern and Threshold Trading

I’ll now present my trading algorithm design pattern for the algorithmic trading engine. This allows
for quick development of additional algorithms by implementing the common functionality for this class
of algorithm. In additional it layers out a specification that the programmer must implement in the
algorithm, providing them with the flexibility to carry out any sort of trading they wish. The concrete
algorithms that I will investigate are similar, they differ in two directions, the price metric used for
comparison when calculating the market favourability and the event that an order is traded on.

All of the algorithms can trade a basket of orders, each order then traded independently. The
iteration through the orders to trade is handled by the base algorithm being common functionality. The
TradingAlgorithm abstract base class implements this functionality and specifies the interface for the
concrete algorithms. These extend the TradingAlgorithm class and implement the interface. Most of
the interface is within the private scope, this is because the TradingAlgorithm class will call up to
its concrete implementation to use that functionality. The TradingAlgorithmInterface provides
the public face of an algorithm to the user. The basic TradingAlgorithm does nothing on receiving
any event to the orders it has to trade. In fact because of the implementation, the method returns a
null smart pointer of a child order, which the receiver can check the validity of before carrying out its
operations. Concrete algorithms override this behaviour, but if they decide that they are not interested
in the event then they can call down to the base class to carry out the no operation.

The main attraction of using this design pattern is that it supplies with it the threshold trading
functionality. Its purpose is to try to improve the price of the complete traded when being compared
against a calculated price metric. The current market state will be evaluated against this price metric,
if it is found to be favourable then the amount of the order traded at that point should be increased.
However if it is unfavourable then the amount to be traded should be reduced. This is kept in check
by boundaries preventing the amount of change in the quantity traded becoming more than a specified
percentage. This is required because if the market suddenly became very favourable, then the algorithm
might be tempted to complete the order very quickly. However over time, the price might become even
more favourable and if the order has already completed then the price achieved won’t have been the
best possible. The converse is true, in that the favourability might decrease, but we don’t want to stop
trading because it might become even more worse. There is a trade-off between working quickly and
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Figure 5.2: A threshold trade over a complete trading day with its boundaries and target.

Figure 5.3: Order trading quantity when threshold trading with market favourability.
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1 int TradingAlgorithm::marketMetric(bool side, shared_ptr<Level2MarketData> level2MarketData,
int priceMetric) {

2 int result = 0;
3 bool originallyFavourable = side ? level2MarketData->getBegin(side)->get()->getPrice() <

priceMetric : level2MarketData->getBegin(side)->get()->getPrice() > priceMetric;
4
5 int numberOfEntriesUsed = 0;
6 for (vector<shared_ptr<Level2MarketDataEntry> >::iterator iter = level2MarketData->getBegin(

side); iter != level2MarketData->getEnd(side); iter++) {
7
8 bool currentlyFavourable = side ? iter->get()->getPrice() < priceMetric : iter->get()->

getPrice() > priceMetric;
9

10 if (originallyFavourable && !currentlyFavourable) {
11 break;
12 }
13
14 if (side) {
15 result += (priceMetric - iter->get()->getPrice() == 0) ? 100 : (100 * priceMetric) / (

priceMetric - (priceMetric - iter->get()->getPrice()));
16 } else {
17 result += (iter->get()->getPrice() - priceMetric == 0) ? 100 : (100 * iter->get()->

getPrice()) / (iter->get()->getPrice() - (iter->get()->getPrice() - priceMetric));
18 }
19
20 numberOfEntriesUsed++;
21 }
22
23 return result / numberOfEntriesUsed;
24 }

Code Block 5.1: Calculating the market favourability of an update against a price metric.

slowly, it is expected that trading over a longer period of time will result in a more consistent price
which is closer to specified metric price. Maintaining a price which is better than the price metric means
that the trade was more successful than the rest of the market that day, when performance is measured
against that metric.

Figure 5.2 shows an order using threshold trading and the boundaries that it must remain in, the
upper and lower limits. Figure 5.3 shows another view of this process, the solid line is the target child
order quantity, at every child order trade we should try to trade 100% of the calculated value to trade.
The dotted line shows the current market favourability, varying between 1 and -1. Finally, the dashed
line shows the quantity on the child order, taking the market favourability under consideration. It shows
that while the market favourability is positive, the child order quantity increases to take advantage over
this. If the favourability is negative, then the child order quantity is reduced. In this example, the
traded volume is the same for both the target and actual. However the price achieved by following the
actual quantity should be better than the final price metric at the trade completion. The final line that
rises before being cut off in the positive part of the sine wave, shows the use of trading boundaries.
These are designed to further restrict the order quantities difference from the target quantity. They
work against the total amount of the quantity the order has traded. In this example, the order trades
ahead at the beginning, but reaches the limit, then carries on at the maximum before dropping again
as the favourability does. When it comes to trading behind when the market is unfavourable, because
the order is already ahead, it never reaches its lower limit, so the change from the target quantity is
never restricted. Looking back at figure 5.2, the actual volume line which varies over the trading day,
shows these principles. As the line is initially above the target trade volume at the beginning, we know
the market was favourable then. Later, past 10:00AM, the market is unfavourable and the order slips
back under the target value before trading ahead again past midday. This occurs until either the trade
is complete or the end of the trading day arrives.

The market favourability is calculated from the last level 2 market data update seen, which contains
the details of all of the orders available on the exchange. We are only interested in the information on
the opposite side of the market that our order is on, as it is these orders we could trading with. The
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information from the update is provided sorted, from the first entry we will be able to tell whether the
market is going to be favourable or not. If the first price is less than the price metric, then the market
will be favourable, otherwise not. What we need to calculate now is how favourable or unfavourable the
market is. If the market is initially favourable then we will only consider entries that are favourable.
For example, if there are three entries better than our price metric, those will be factored into our
calculation, the rest will be ignored. However if the first entry is as unfavourable then all entires will
be considered. The reason why unfavourable entries are ignored when the market starts as favourable,
is because the market is favourable and taking unfavourable entries into consideration will reduce the
market favourability.

Code block 5.1 shows the implementation to calculate the market metric. The three parameters
provide the trading side the order, the level 2 market data update and the price metric. All of the
algorithms shown later use this functionality, they can provide their own price metric to differentiate
themselves from others. The market is initially evaluated for favourability on line 5. Then each entry in
the update is iterated over from line 13, favourability is examined again and if the market starts favourable
and becomes unfavourable, the iteration is ends on line 21. Lines 26-34 calculates the incremental
market metric and finally the average result is taken and returned on line 38. You may notice that
integers are used to represent the numbers used. This is because I want to directly compare the software
implementation against the hardware. The hardware implementation that I will be studying initially will
not support floating-point arithmetic. This solution provides a simple method of calculating a market
favourability measure. There are many more complex functions that could be used in its place. However
that is the scope of a financial based project.

5.3 Algorithm Design and Implementation

In this section I will cover the three concrete algorithm implementations that I am presenting in this
project. All of them are derived from an abstract base class which implements all shared functionality.
This allows the concrete implementations to contain their specific equations and control flow. Figure
5.4 outlines the storage containers that each of the algorithms require on orders they trade. They store
the state of the order as it passes through the algorithm and additional parameters that the algorithm
requires. The AlgorithmicTrading class provides all of the parameters to allow the order to threshold
trade and so if a new algorithm is created which utilises this design pattern then its relevant trading
details class should extend AlgorithmicTrading class. Each algorithm using differs the way that it
calculates the orders the difference in what it has traded and what it should traded. This requires a
complex equation that depends on the algorithms trading the order.

The algorithms share some control flow, such as the many checks that are required to prevent illegal
child orders being sent to market. The AlgorithmicTrading class stores these attributes as well, such
as minimum and maximum tranche size. These attributes decide the range of quantities that a child
order is allowed. If a child order is below the minimum tranche size then it will not be traded, if it is
above the maximum, then its quantity will be reduced to the maximum amount allowed. Simpler checks
are also included, such as the child orders size being positive and less than the remaining quantity on
the order. If the child orders quantity is greater than the remaining quantity, it is reduce the remaining
quantity. The only exception on the minimum tranche size limit, is when the remaining quantity is less
than the minimum tranche size, then a single order of the remaining quantity is allowed to be sent to
market, bypassing this restriction. The three algorithms that I have provided for this investigation follow
here. I have started with the simplest, the participation algorithm. In the later algorithms, where they
share features of the participation algorithm, I have stated but omitted these details to avoid repetition.

5.3.1 The Participation Algorithm

AP =
∑n

t=1 Pt

n
(5.1)

Participation uses the average price of executions on the market as its price metric for calculating
the market favourability with. This it provides to the market favourability calculator, which returns the
market favourability. Equation 5.1 shows how the average price is calculated. Where AP is the average
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price, Pt is the price at time t and n is the number of prices seen since the beginning. After calculating
the market favourability the order can try to trade. If the market is unfavourable then the order will
automatically trade nothing if being process on a level 2 market data update. Trading behind when the
market is unfavourable and the event processed by the algorithm is an execution notifications from the
market. If the market is favourable then we need to calculate the difference between what the order
has traded and what the order should have traded. If the difference is positive then the order is trading
ahead, otherwise it is trading behind. This difference is used to ensure that the order does not exit its
trading boundaries, even if the market is very favourable.

∆Traded =
( ∑

Children

QChild

)
−
(

(VCurrent − VInitial)×RParticipation

)
(5.2)

Equation 5.2 shows how the difference in traded values is calculated, represented by ∆Traded. QChild

is the quantity of a child order and the sum is taken across all children. VCurrent is the current traded
volume in the market for today, VInitial was the traded volume when the order accepted, at the start

Package order

Package order.orderTradingDetails

Package order.orderTradingDetails.algorithmicTrading

Package tradingAlgorithms

Package tradingAlgorithms.softwareImpl

OrderTradingDetails

Order

1

1

AlgorithmicTrading

- algorithName : string
- upperBound : double
- lowerBound : double
- minimumTrancheSize : int
- maximumTrancheSize : int

+ getAlgorithmName() : string
+ getUpperBound() : double
+ getLowerBound() : double
+ getMinimumTrancheSize() : int
+ getMaximumTrancheSize() : int

ParticipateTrade

- participationRate : double
- executionCountAtLastTrade : int
- executionCountAtAcceptance : int

+ getParticipationRate() : double
+ getExecutionCountAtLastTrade() : int
+ getExecutionCountAtAcceptance() : int
+ setExecutionCountAtLastTrade(int) : bool
+ setExecutionCountAtAcceptance(int) : bool

TWAPTrade

- tradeDuration : double
- numberOfWaves : int
- lastWaveNumber : int
- timeOrderAccepted : double

+ getTradeDuration() : double
+ getNumberOfWaves() : int
+ getLastWaveNumber() : int
+ increaseWaveNumber(int) : void
+ getTimeOrderAccepted() : double
+ setTimeOrderAccepted(double) : bool

VWAPTrade

- timeOrderAccepted : doube
- timeOfLastTrade : double

+ getTimeOrderAccepted() : double
+ getTimeOfLastTrade() : double
;+ setTimeOrderAccepted(double) : bool
+ setTimeOfLastTrade(double) : bool

ParticipateAlgorithmTWAPAlgorithmVWAPAlgorithm

Figure 5.4: Structure diagram of the order trading details enabling algorithmic trading on equity orders.
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of trading, VCurrent and VInitial will be equal. RParticipation is the rate of participation the algorithm
is attempting to meet as a percentage. This with the parent order, the market metric and the upper
trading ahead boundary are passed to the abstract algorithm, which completes the decision to trade or
not. This includes all the checks to ensure the child order volume is valid.

QNewChild = (VCurrent − VLast)×RParticipation (5.3)

The second event that the participate algorithm trades on is a notification of an execution on the
exchange. This arrives in the form of an execution data update from the market data feed. The first
calculation performed is to find out the quantity of the child order that we are going to try to create, this
is found by equation 5.3. Where QNewChild is the quantity of the new child order to be created, VCurrent

is the current market volume, VLast was the market volume last at the last trade and RParticipation is
the participation rate.

The difference in traded volumes is then calculated with equation 5.2. This is used to prevent the
order exiting the bottom trading boundary when trading behind. If the market is favourable then we
traded the full amount calculated, QNewChild. Otherwise we reduce this amount proportionally to how
unfavourable the market is currently, to a minimum which is the amount the order is allowed to trade
behind. The amount to trade is then updated by the amount to trade behind. This value is then checked
against all of the parameters and modified accordingly and the order is only traded if it is greater in size
than the minimum tranche size.

5.3.2 The Time Weighted Average Price Algorithm

TWAP =
∑n

t=1 Pt(Tt − Tt−1)
Tn

(5.4)

The time weighted average price is used as the price metric when calculating the market favourability
in the TWAP algorithm. Equation 5.4 shows how this is calculated. Where TWAP is the time weighted
average price, Pt is the price at time t. Tt is the current time and Tt−1 is the time of the previous
price update. Tn is the total time that has elapsed and the sum is taking across all values. Like with
the participate algorithm, we also require an equation to calculate the difference in traded values. This
is different between algorithms as the amount they should have traded is different depending on their
trading style.

∆Traded =
( ∑

Children

QChild

)
−
(WLast ×WTotal

QOriginal

)
(5.5)

Equation 5.5 shows this calculation for the TWAP algorithm. Where ∆Traded is the difference in
traded volumes, QChild is the child quantity and the sum is taken across all children. WLast is the last
wave number that was traded and WTotal is the total number of waves that are going to be traded in this
order. Finally QOriginal is the original quantity on the parent order. The market metric is calculated
by the abstract algorithm and the TWAP metric, combined with the ∆Traded which allows the order
to be traded ahead on a favourable market. All of the same checks on the calculated order quantity are
carried out before the volume is submitted.

TNext = TAccepted +
(WLast × TTotal

WTotal

)
(5.6)

The participation algorithm traded on execution updates, the TWAP algorithm trades on receiving
timer events. These notify it that a period of time has elapsed and the algorithm will check to see if
it should trade. If enough time has past since the last wave was sent to market then we can trade.
Therefore TCurrent must be less than TNext. TNext is calculated by equation 5.6. Where TAccepted is
the time the order was accepted, WLast and WTotal are the same as before. TTotal is the total time
the order is going to be traded over. For example, TTotal would be two hours if the owner of the order
wanted it traded evenly and completed in two hours.
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QNewChild =

((TCurrent − TAccepted

TTotal ×WTotal

)
−WLast

)
× QOriginal

WTotal
(5.7)

If it is time to trade, then we can calculate the new child orders quantity, show by equation 5.7.Where
QNewChild is the quantity of the new child order, TCurrent is the current time and TAccepted was the time
the order was accepted and started trading. TTotal, WTotal, WLast and QQuantity are the same as before.
As with participation, we check to see if the amount should be reduced because of an unfavourable
market. For this we need the market metric and difference in traded volumes as described before. This
is the factored into the proposed volume of the new child order. If all of quantity checks are passed after
the market favourability weighting is taking into account then the child order can be created and sent.

5.3.3 The Volume Weighted Average Price Algorithm

V WAP =
∑n

t=1 PtVt∑n
t=1 Vt

(5.8)

The price metric for the VWAP algorithm is the volume weighted average price. This takes into
account the size of an execution, rather than just its price or the time spent at that price. The VWAP
can be found by using equation 5.8. Where Pt is the execution price at time t and Vt is the volume
of execution at time t. The sum is taken across all values provided. The control flow of the VWAP
algorithm is similar to that of the TWAP algorithm.

∆Traded =
( ∑

Children

QChild

)
−
( (VLast − VInitial)×QOriginal

1− VLast

)
(5.9)

During threshold trading we also require the difference in traded volumes which is found with equation
5.9. Where ∆Traded is the difference in traded volumes, QChild is the quantity on a child order with
the sum taken across all children. VList is the market volume at the previous trade as a percentage
through today and VInitial is the market volume when the order was first accepted. QOriginal is the
initial quantity of shares on the ordered, as the market volumes are represented as percentage (fractions
between 0 and 1), 1 is used within the equation as a normalising constant. The VWAP algorithm uses
historic data to help make its decisions. This is why VCurrent and VInitial are represented as percentages
of the progress through the expected daily volume. This value may be inaccurate depending on how the
days activity differs from the historic value. If it is less then expected, then the order may trade more
slowly and therefore possibly not finish before the end of the trading day. Conversely, if it is more, then
the order may trade more quickly, completing earlier. The child order amount is then submitted to the
normal round of checks.

QNewChild =
( (VCurrent − VInitial)×QOriginal

1− VInitial

)
−
( ∑

Children

QChild

)
(5.10)

Like TWAP, VWAP trades on timer events. Unlike TWAP, we care about the amount of time that
has elapsed, just that the expected market volume has increase sufficiently to allow us to trade. This
allows VWAP to trade more during the busy periods of the trading day (the morning, mid-afternoon
and before the close of markets) in the hope of achieving a better price which is closer to its price metric.
Equation 5.10 shows how the initial amount to be traded is calculated. Where QNewChild is the quantity
that the new child order will have and VCurrent is the current market volume as a percentage through
the trading day. All of the remaining variables have the same definition as before. You may notice that
equations 5.9 and 5.10 are nearly identical, except for the minus operators arguments switching sides
and the use of VCurrent instead of VLast. The operand switch is because we now want to calculate the
difference between what we should have traded compared to what we have traded. We use the market
favourability metric to reduce the child order quantity if the market is currently unfavourable like the
other algorithms. If the value is larger than the minimum tranche size specified then we can send another
child to market. The proposed child order quantity is then submitted to the rest of the checks to prevent
illegal trading.
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5.4 Summary

In this chapter I have presented an trading algorithm interface which would allow any application which
can communicate over this interface to utilise the power of these algorithms provided. The interfaces
builds upon known design patterns, such as the abstract factory pattern to create an environment with
suitable abstracts that mean that the algorithmic trading engine has no knowledge of the algorithm
that it is using. This is important so that swapping between software and hardware implementations
is seamless and can be accomplished with a parameter change. This would also afford the ability for a
system to support systems with and without reconfigurable hardware attached by automatically detecting
the presence of any hardware and selecting the optimum profile of algorithm implementations to use.

As the design of algorithms is difficult, to speed to process up from design to implementation I
have created a trading algorithm design pattern. This allows a developer to use selected and powerful
functionality which can be individually specialised. Additionally they have full power over the algorithm
to implement any number of complex features that are required. This gives incredible flexibility to the
platform and allows it to support a huge number of algorithms. This gives clients greater flexibility of
algorithms to choose from which would make the system a more attractive proposition to use. This
should attract customers to the operators of the system and increase operating profits.

To confirm the success of the trading algorithm design pattern I have created three concrete examples
using these methods, the Participation, TWAP and VWAP algorithms. I have created the specification
for these algorithms and provided the mathematical models used by them to calculate their state and
make their decisions. These specifications aren’t available anywhere else and I have had to develop
the logic from scratch to be able to show these. They are all based on industry standard approaches,
meaning that I have not had to spend large amounts of time generating trading ideas, however this is
still a considerable piece of work. I have shown ideas on how the trading algorithm design pattern can
be utilised and of course, these three specific algorithms themselves can be extended and modified to
suit clients better. The algorithms provide a basis for research into their performance from a technical
aspect and will be used as a benchmark which the hardware implementations must eclipse to warrant
further research into the area.
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Chapter 6

Trading Algorithms in Hardware

With the software implementation of the algorithmic trading engine and its software trading algorithms
complete, we can move onto implementing the specification described before in reconfigurable hardware.
Rather than repeating the specification again, I will concentrate on the problems that arose during the
translation from software to hardware and the designs that I put in place to speed up development
time when working with reconfigurable hardware. Some of these solutions are general to problems or
optimisations in reconfigurable hardware and have many other possible applications outside of electronic
trading systems. Specifically, this chapter will cover:

• The limitations to programming for reconfigurable hardware and my novel solutions to these prob-
lems. I will also cover the mind set that is required when programming reconfigurable hardware
to ensure the best possible code and how it differs from programming software; in section 6.1.

• I will present my hardware architecture for trading algorithms, taking many cues from the software
algorithm design pattern in the previous chapter. I will cover in detail new process in algorithms
which optimise for parallel computation, such as my array averaging function; in section 6.2.

• It is useful to understand the different layers of parallelism available in reconfigurable hardware,
using concrete examples I will describe the three that are available in this platform and how these
have been fully leveraged in my design to improve performance; in section 6.3.

• I’ll then propose the use of partial run-time reconfiguration of the reconfigurable hardware to
change the algorithm implementation intra-day as a method of increasing performance. This gives
the hardware implementation greater flexibility over the software implementation; in section 6.4.

• The hardware software interface is an important part of the complete system, I will present my
thoughts on how this could be implemented using either direct memory access or alternatively a
network interface provided by the FPGA system board, evaluating both approaches; in section 6.5.

• I’ll round up the contributions in this chapter and discuss the greater picture of the work that has
been presented here and the other areas of research that may benefit from it; in section 6.6

6.1 Limitations

Handel-C affords the user a lot of benefits, such as providing an easy and intuitive language to learn,
especially if the user has a background in C. Handel-C supports a subset of the functionality provided by
C, adding its own facilitating its use on reconfigurable hardware. Some missing features are core pieces
of functionality that are used regularly in software programming languages, providing challenges when
programming in the language. They also make it nearly impossible to cross-compile C code into Handel-
C, as these omissions are likely to have been used. I would be implementing my solution from scratch,
using the specification described earlier. As C isn’t an object oriented language, Handel-C isn’t either.
This provides limitations of how much abstraction can be achieved and code duplication is increases as
code needs to be repeated with a different type. Handel-C does support structs, which can contain
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information to pass around the program. This is why new models for equity orders, market data updates,
etc were created using structs, simplifying passing large quantities of information around the program
and reducing code size.

Abstract data types are a difficult problem to solve in Handel-C. There are none provided by any
libraries because creating one is either difficult or has little point in existence. You could create a list
by using structs as entries and each entry having pointer to the next struct. However you cannot
have a variable length as there is no notion of creating or destroying structs. They either exist in the
hardware or they don’t. This is why a better solution would have been to maintain an array of structs.
Handel-C arrays need to have their size determined at compile time, preventing variable length arrays.
This limits the flexibility of implementations and restricts solutions when dealing with sets of orders or
level 2 market data update entries. This is because those abstract data types can have a varying number
of entries, where now we must decide at compile time their sizes. In hardware, arrays are built up of
sequentially arranged registers, they are heavily optimised for parallel access. As we want out design to
be as parallel as possible, this makes arrays the obvious choice of data structure to use.

My solution to the problem of processing a varying amount of orders or entries is to process them
in batches. Both order and entry batches have a size associated with them that must be determined
at compile time. These sizes specified as a definition allowing them to be changed quickly. A current
limitation of the design is that we can only process a single batch of market data entries to calculate the
market favourability from. Extending this to process multiple batches is left as further work. We must
now choose how many entries from the market data update that we will process, which may result in
some information being lost. It might be the case that our market favourability measure will only be
interested in the top ten entries, in which case choosing the batch size is straight forward. However, if
we want the most accurate measure, which requires all possible information then there is going to be a
difficult decision to make. The design does support multiple batches of orders but with each batch, all
of the other information must be provided again. Each batch is treated independently and the market
favourability must be recalculated. This only happens if there are more orders than the current order
batch size. These limitations where due to making the implementation simple to allow greater analysis
and lack of time. The last batch may not use all of the entries supported if there are less items than the
batch size. In this case, the final batch will not operate at full performance, as some computation paths
will have nothing to process. The entires that require processing are marked with a flag, if the flag is
down then the implementation knows not to carry out any calculations on that data. This is a necessary
compromise that has to be made because of the compile time limitations of array sizes.

One annoyance of using Handel-C, although it does have its advantage, is that you can only make
a single function call per statement. For example, if you defined a function int add(int a, int
b) which returns the sum of the two integers, you cannot use it again or any other defined method in
the same statement. This makes the statement d = add(a, add(b, c)); illegal and you would be
required to write d = add(b, c); d = add(a, d);. The built in operators, such as +, −, / and
× don’t have this limitation. The advantage of this limitation is that you can count the number of cycles
a function or process requires. Only a number of items consume a cycle, such as assignment (”=”).
For example, the statement a = (b + c) * ((d / e) + f); only requires a single cycle, although
it might result in a undesirably long pipeline. The statement a = function(a, b, c, d, e, f)
would require one cycle plus the number of cycles required by the function. Using this information with
the final design placed and routed on the device (the process of making the design ready for use on
the device), we can derive the performance of the implementation. This is possible because when the
implementation is placed and routed, the critical path delay of the circuit can be calculted, from which
the maximum clock speed of the device can be derived.

The final challenge to overcome arises from function use in reconfigurable hardware. In a multi-
threaded software design, as long as the processing is completely independent, all of the threads can
pass through the same code at the same time without any problems. For example, if you abstracted a
complex equation away from the main control thread to simplify making changes to the code, any number
of threads could use that function at the same time. In hardware, a function is a discrete computation
resource, of which there are a limited number. If the design only specifies one, then there is only one to
use at any given time. In a single threaded design this isn’t a problem as the program can only be in one
place at a time. However, reconfigurable computing is designed to be massively parallel and we would
be sacrificing nearly all performance advantage if we did this. Therefore, we need to specify how many
function instances there should exist at compile time, depending on the level of parallelisation used. For
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Figure 6.1: Hardware architecture from input to output highlighting important computational blocks.
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example, if we have an array of four elements and in parallel we would like each element to be processed
by the same function, then we require four instances of that function. Handel-C provides two solutions
to this problem, either through inline functions or arrays of functions. An inline function works
much like that of the software version, where the contents of the function are copied to where they are
required, removing the method call. This duplicates the code of that function where it is used and it can
then be used multiple times simultaneously. The second option is to have an array of functions, they
aren’t arranged in an array, but are accessed like an array element. If we carry on the example above, on
processing an array of four elements, when we declare the function we must specify that there should be
four instances of it. Now when we call that function, from a parallelised for loop, where all iterations
of the loop are executed in parallel. We must also specify which of the functions it uses, normally the
same as the position in the array of the data in question. I make use of both of these features depending
the size of the function and how it is accessed.

Testing the hardware implementation was difficult. Without a device to place the hardware imple-
mentation on and run, the testing that was achievable was limited. This was because it was impossible
to connect the hardware implementation to any of the software test frameworks. Testing within the
Handel-C environment is limited to writing methods which will compare the output of a function with
an expected result. However there is no built in framework to help aid this process, such as the unit
testing framework discussed earlier. There is however a useful simulator built within the development
environment. This allows code to be run at a reasonable speed and the contents of execution can be
inspected. Additionally a limited logger is provided for the simulator environment. This is only avail-
able within the simulator and not on any FPGA chips. Using these I could perform limited testing of
the implementation however further testing would be required when the implementation is placed on a
device for use. This is also because all FPGA chips have slightly different interfaces and specifications,
this means that it is non-trivial to take an implementation an place in on a device and use that same
implementation on a different device. Part of this limitation was also the reason why the hardware was
placed on a device, because of the difficulties in finding a suitable device to use. Although some devices
were available, those that were had APIs that had never been used with the Handel-C environment. That
would have resulted in a large amount time being devoted to placing the implementation on a device and
getting it working. This would have reduced the amount of time that was available for investigating more
interesting areas of the application of reconfigurable computing, such as partial run-time reconfiguration
for swapping algorithms during the trading day, which will be discussed later in depth.

6.2 Architecture

I have created an architecture for the hardware implmentation of the trading algorithms, much like
the design pattern for the software implementation. The idea is to form a base representation of an
algorithm, which the specific algorithms can then utilise different parts of or supply different information
to, depending on their own objectives. The control flow is set out by the base algorithm, providing the
functionality for threshold trading. On top of this the specific algorithms implement their equations
defining their behaviour described their specificaiton. Figure 6.1 shows this architecture design and over
the next few subsections I will cover the important computational units. The inputs are shown coming
from the software layer at the top of the diagram. Filled arrow heads signify a change in the abstraction
layer. Information reaches the hardware layer, where it is processed in the algorithm implementations
before returning to the software layer. This is where the orders are still managed, the child orders are
created and sent to market.

The edge labels through the hardware section describe either the information coming from the Input
Interface or parallelism used throughout the system. For example, 1 : 1 signifies a single threaded
operation, 1 : n shows a fan-out or creation of parallelism. Where n : 1 is the converse, the collapse
of parallelism back to a single-threaded operation and finally n : n maintains parallelism at the same
degree as before. There are two different values of n for describing the parallelism amount, the values
are dependent on the batch sizes. Where n1 is equal to the batch size for equity orders and n2 is equal
to the batch size for the number of entires in a level 2 market data update.
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6.2.1 Base and Specific Algorithms

The main purpose base algorithm is to implement the common functionality and set out the control flow.
This starts from the Process Orders block which uses the Calculate Market Metric module
to find the market favourability. This is then duplicated for every order as the order batch is fanned
out into the Process Order block. Given the type of event information, it will determine the type
of trading that will be carried out. The specific algorithms implement two types of trading which are
Split on Update and Split on Event. This depends on whether it is a market data update or a
trading event that the algorithm was supplied with. These two blocks are implemented by the specific
algorithm. Finally the base algorithm performs a series of checks on the split amount to make sure that
it is within the boundaries set out by the parameters on the order.

6.2.2 Calculating the Market Metric

The market favourability is calculated using the same equations as the software implementation. The
benefit afforded by the hardware implementation is that where the software has to iterate through all of
the entries, performing a calculation on all of them before producing the answer, the hardware can do
much of the calculation at the same time. Each entry can have its comparison value computed against the
market metric individually. The difficulty comes from optimising the summation of the values. Although
it could be hard coded into a single cycle, which would sum all values of the array, this would require
the code to be modified before compilation if the size was changed. Singular summation of an array
is shown in figure 6.2b. However, the advantages of parallelising the computation would be lost of we
simply iterated through the array and summed all the values as this would require a cycle for every entry
in the array, shown by figure 6.2c.

My solution is tree summation, where instead of summing the linearly which is expensive and takes
O(n− 1) time complexity, the entries form leaves of a binary tree which are then summed back to find
a single root node containing the value, the time complexity is O(log(n)). This is best shown in figure
6.2a. Singularly summing all of the entries requires O(1) complexity, but as stated, breaks flexibility.
The figures in 6.2 show the array being summed and the operations with their results occurring at each
cycle of operation. Tree summation is implemented in Handel-C using the parallelised for loop. This
has the same conventions of a regular for loop except the whole loop is carried out within the same
cycle. This is wrapped in a conventional for loop which executes iteratively. The inner loop carries out
the sums on the entries and places the result in the first entries position in the array. In the first iteration
the entries are consecutive, in successive iterations the gap between the entries grows by one entry. If
log(n) where n is the number of entries in the array isn’t a whole number then the resulting addition
is with zero for non-existent entries. After completion, the result can be found in the first entry of the
array. The disadvantage of this solution is that the information within the array is destroyed and cannot
be used else where. If this is undesirable then the array could be copied to another for this process.

As we want to ignore negative values when we carry out the summation, when the pairs are summed,
if the first value is positive and the second value is negative, the first value is summed with zero. In
addition, we would need to know the total number of positive entries. This can be calculated at the same
time as the summation, with the result being placed in the second entires location of the summation.
In future iteration, these are just summed like the first entries. The final result ends up in the middle
entry in the array. With these two final values we can find the average of the array. Figure 6.3 shows
an example of this procedure, in cycle 3,the first value is the sum of the positive integers and in the 5th

as the number of positive values in the array. The average can be found by dividing the first number by
the 5th number, in this case 20/5 = 4, which is clearly the average of the set {7, 5, 4, 3, 1}.

6.2.3 Split on Update and Split on Event

Split on Update is the hardware implementation of the threshold trading feature. When a level
2 market data update is received, every order is given the chance to trade ahead of its target trading
volume, iff the market is favourable at that time. Split on Event is the hardware implementation of
the core trading practice of the specific algorithms. For the participation algorithm it is on an execution
data update from the market and both TWAP and VWAP algorithms are interested in timer events.
Both Split on Update and Split on Event are implemented by the specific algorithms and the
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Figure 6.2: Three different methods of summing an array of values.
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Figure 6.3: An example of the algorithm using tree summation and positive number detection to find
the average of the positive numbers of an array.

base algorithm calls into to their functionality. The lack of classes limits how much code reusability is
available and a hardware software interface for each algorithm is required. This is necessary because of
the different amounts of information each algorithm requires. As each interface has to transfer different
information, adding a small amount of extra code to specify which structs are being passed through
does not increase the over head significantly.

The control flow and equations implemented in hardware replicate those that were described in
software. As each order is completely independent of each other, they can be evaluated simultaneously.
In addition, many of the equations used within these two modules are also independent of each others
results, this allows further parallelism within the design. The two modules both output an array of split
values, one for each order in the same arrangement as the input array. These values are then processed by
the Check Split Amount is Valid module which prevents these split values from exiting trading
boundaries. In addition to the array, a flag is also raised, notifying the module of which form of trading
has occurred. This makes sure the correct parameters are checked against the split amounts.

You may ask yourself have the base algorithm can select between the two different modules. The
obvious choice would have been to use an if-else statement, but this would have been ugly and have
required more work to extend at a later date. Handel-C supports function pointers thankfully which
allow for limited abstraction. This require the two modules to show the shame interface but this wasn’t
a problem as the same information could be supplied to both. This does have some overhead though as
both modules may receive slightly more information than they require. This overhead though will only
be in the implementation size of the algorithm and not in performance though. This allows the Input
Interface to specify the module to use through selecting the correct function pointer for the Process
Order method to invoke. Therefore in the future if the user of the architecture split on another input,
they can program this functionality to have the same interface and then update the Input Interface
to handle receiving this flag. Now the architecture will support a totally new trading functionality and
no internal architecture code needs changing.
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6.3 Parallel Processing

There are three different forms of parallelism supported within the hardware architecture. They are
task-level, pipeline parallelism and expression evaluation parallelism. I will overview all three forms and
give concrete examples of their use within my design. These forms of parallelism have very little overhead
because of the characteristics of reconfigurable hardware. The development tools that are available for
reconfigurable hardware are fully featured in helping utilities massively parallel designs. This simplifies
and speeds up the development process. The highest level of parallelism is task-level parallelism, this
can be represented as the placement of multiple algorithms on a single device. A FPGA is built up
of configurable logic blocks which when connected together reproduce complex behaviour. There are
varying amounts of different types of logic block available which provide specialised operations. An
algorithm implementation requires a certain number of these logic blocks to be placed on the device,
if sufficient blocks do not exist then the implementation cannot be placed. As care has been taken to
reduce an unnecessary bulk within the code and the optimisations provided by the compiler have been
used, I envision that multiple algorithms will be able to be placed on a single FPGA. This is not only
important from a performance perspective, as each algorithm on the device can scale overall performance
by a factor of the number of algorithms available. It is important to ensure the device has a number of
algorithms to select from, as no one algorithm will be used all of the time by the clients. Figure 6.4 shows
task-level based parallelism in the system as a whole. The reconfigurable hardware is represented at the
bottom of the diagram with the three algorithms placed on the device. I have included some additional
space which has been left free, this represents that it may be possible to fit another algorithm on the
device. For example, if the VWAP algorithm was very popular, there could be a performance benefit
from placing a second instance on the device which should double the amount of orders or updates that
can be processed. In the diagram I have included the surrounding system, showing how each algorithm
is tied to a manager which provides the interface between it an the software.

Pipeline parallelism is used to allow multiple tasks to be carried out at the same time. As most of
the data within the process is independent from each other, it means that calculations can be carried
out at the same time. Figure 6.5 best shows this principle, items within the same row of the diagram
are carried out at the same time. The limitation to pipeline parallelism is that before the process can
move onto the next set of calculations, all calculations in the proceeding set need to be completed. For
example, if two modules were executing in parallel, if one module simply added two inputs together and
assigned the result to a variable, this would take only a single cycle. However if the other module had
to carry out intermediate work before completing its calculation, such as summing an array, then both
modules would only finish when the slowest module completed. This means that there could be a lot
of time may be wasted and care has to be taken to prevent huge discrepancies between module pipeline
length to prevent wasted time and resources. One trade-off of producing a long parallel pipeline is the
that it would increase clock speed and power consumption [52] of the implementation. An increased
clock speed may be desirable and the increase in power consumption may be acceptable. However the
parallel pipeline would also increase latency, this may be more difficult to accept given the nature of the
algorithmic trading problem. We are not only interested in processing large amounts of information but
also with as low as possible average and standard deviation on latency. This results in another trade-off
that has to be made when designing the implementation. This trade-off difficult to make though and
would require experimental analysis to discover the best results. However these experiments would be
time-consuming and difficult to produce, therefore it would probably satisfactory to use programmer
intuition on making the best possible decisions.

The final form of parallelism exhibited is expression evaluation. The three code blocks 6.1, 6.2 and
6.3 show the three methods of initialising two variables. Code blocks 6.1 and 6.2 are effectively the
same, 6.2 is more explicit. Handel-C by default will evaluate all expressions sequentially. Code block
6.3 explicitly states that these two variables can be initialised at the same time. Code block 6.3 will
take half the number of cycles of that in either 6.1 or 6.2. This is based on the fact that using the
assignment operator (”=”) requires one cycle when implemented on the device. Using this technique
requires a different frame of mind when programming, you constantly have to remind yourself and think
if what you have just coded can be parallelised. Additionally you may want to consider calculating some
equations before they are required, in order that they can be parallelised. This presents the question, if
the later equation is not required in all branches of the control, should it be moved ahead and always
calculated if there is sufficient information. The decision should be made on whether this additional
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1 int 32 result;
2 unsigned int 4 j;
3 result = 0;
4 j = 0;

Code Block 6.1: Sequential (non-parallel) initialisation of two variables.

1 int 32 result;
2 unsigned int 4 j;
3 seq {
4 result = 0;
5 j = 0;
6 }

Code Block 6.2: Explicit sequential (non-parallel) initialisation of two variables.

1 int 32 result;
2 unsigned int 4 j;
3 par {
4 result = 0;
5 j = 0;
6 }

Code Block 6.3: Parallel initialisation of two variables.

equation will require a longer pipeline than the other equation, if it does then it may slow down the
calculation of the other equation. This might be offset by the fact that 90% of the time we require this
additional calculation, making it worth while to move forward. All of these decision have to be made on
implementation, making the process longer and requiring more planning. Finally, sequential and parallel
blocks can be nested within each other, a parallel block is always nested in at least one sequential block
which is the main program control flow.

6.4 Reconfigurability

Run-time reconfiguration would be an important part of any production quality system. This is because
the resources of a FPGA are limited, meaning that supporting additional algorithms after an core set
might be difficult. There would be tough decisions to make about which algorithms would be supported
at a given time and changing this decision throughout the trading day would not be possible without
fast partial run-time reconfiguration. FPGA chips are expensive and cost grows with the size of the
chip (the amount of resources that it contains), therefore using additional or larger chips may not be
cost effective. We are interested in making the chips as performance effective as possible, with partial
run-time reconfiguration we have the option of tailoring our designs on the chip to market conditions.
This would hopefully have a noticeable increase in performance.

Compilation is an expensive process (it can be considerably more time-consuming than compiling
conventional software) and these implementations would require testing. My suggestion would be to
create a pre-compiled library of acceptable implementation that could be quickly deployed to the device
by the operator. These different implementations could be completely different algorithms or they may
be just different configurations of existing algorithms, using different order and entry batch sizes. These
different batch sizes may be able to cope with different market conditions better than others. For
example, if a stock was particularly liquid it would have a lot of orders on the market, this would make
the level 2 market data updates contain a lot of entries, therefore we may wish to increase the entry
batch size so that more of these could be processed when calculating the market favourability. The size
and granularity of the library can be determined by the user, based on a number of factors, including
the scenarios that they expect to encounter and the capacity of their target device. Figure 6.6 shows
a possible set of configurations for an algorithm to be pre-generated for use during a trading day. The
variables m and n are only bound by the requirements of the use and the ability for the implementation
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 A10,10 . . . A10,n

...
. . .

...
Am,10 . . . Am,n


Figure 6.6: A matrix of different configurations for a single algorithm varying configuration by order and
update batch size. Where m is the order batch size, n is the update batch size and A is the algorithm.
Groups of matrices for differently algorithms could form a library of implementations to deploy.

to be placed on the target device. The variables m and n represent the two different batch sizes.
It is to be expected that during times of increased market activity, fewer algorithms will be used but

they will provide better utilisation. During times of less activity a wider range of algorithms could be
selected to provide better trading functionality.This fine-grained approach to selecting which algorithms
to use gives the user a lot of control, leading to performance benefits in both high and low activity times.
Predicting before hand when to change algorithm implementation is more difficult however, it is not
impossible from a limited point of view. Trading activity throughout the trading day can be coarsely
predicted by expecting higher volumes of orders and activity at the start and end of the trading period.
In addition there is a notable bump in load during the afternoon when the USA comes online. Future
activity increases may have fore warning if a client informs the operator that they are about to place a
significant number of orders. Load can be expected to rise after a particular piece of news is announced
which may affected the markets, these are sometimes known to be happening before the announcement,
leaving time to prepare.

Figures 6.7 explains and shows the process of partial reconfiguration from a high-level perspective.
The first scenario (on the left) has the enough capacity on the device to place an additional algorithm
but the second scenario (on the right) doesn’t have this luxury. After placement of the algorithms, the
data feeds and output are connected up so that they can start processing data. The process doesn’t
intrude on the operation of any algorithms that aren’t being modified and they are able to continue their
work at full performance. On high market data update throughput, it would be appropriate to change
the order batch size to that which was just larger than the current number of orders being processed. In
the case where it cannot be increased enough, then increasing it to where wastage in processing the final
batch is minimised by making the batch size close but above a factor of the total number of orders to
process would be beneficial. With an increased depth of market, the update batch size can be increased
to improve accuracy of decision making, utilising all of the information available. There may be occasions
where an algorithm could be modified to make it more effective in the short term. If one algorithm is
proving popular, then it would improve performance to place more instances on the device.

All of these situations lend themselves to using the run-time reconfigurable features provided by
many FPGAs, allowing implementations to be modified or fully changed quickly. The disadvantage is
that although relatively quickly it does still take a notable amount of time, especially when dealing
with latencies in the millie and micro-second realms. During this time, performance is reduced and
trading opportunities may be lost. For this reason, it would be useful to know how long example
reconfigurations would take. During which, no processing can be completed. In algorithmic trading,
updates can be dropped and left unprocessed or buffered for processing later. Generally only storing the
last good update is required as it contains all the current information for the state of the market. If the
algorithm tried to trade on updates that had expired then it may trade incorrectly causing a detrimental
effect on its price performance. This is because the liquidity it was targeting may no longer be available
when the trade is sent. However some algorithms may require this information for other purposes such
as statistics or internal state. For the time being, the algorithms that we are interested in only require
the last good update when resuming processing.

A software implementation that is designed to be able to load algorithms, has similarities to that of the
hardware implementation. It would suffer from many of the same disadvantages of compiling and testing
new algorithms as the hardware version. It lacks one major disadvantage of limited resources. Unlike our
hardware version, there is no need to compile a library of specific variations of an implementation and
store them separately. This is because an algorithm’s memory footprint is small compared to the data
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that it stores and so having a large number of algorithms ready to accept information in a software based
environment is possible. Memory is finite but I assume that the system running this application has
sufficient memory. As each algorithm uses a certain amount of time on the processing unit to execute,
there is no concern over the implementation size of the algorithm and data representation size is coarsely
grained. This relieves many of the problems faced by the hardware implementation. The software system
can be thought of as having all the implementations ready and having to load them every time it wants to
use them, much like how a reconfigurable hardware device would have to be reconfigured to use another
algorithm. However for software, loading the code from memory is a natural overhead of the system
and extremely quick compared to reconfiguring a hardware device. Therefore there is little benefit in
designing a software system in this way, in addition the reconfigurable architecture affords many methods
of increasing performance by device usage compared to software.

6.5 Bidirectional Hardware Software Interface

There are two possible implementations for the hardware software interface, both having advantages and
disadvantages. The first option I will look at is using direct memory access (DMA), the second is com-
municating via ethernet. DMA is supported between the CPU and the FPGA by having shared memory
owned by the FPGA mapped so that the CPU can read and write it additionally. Communications via
ethernet is supported by the system board that the FPGA is mounted on, which are more commonly
supplying an ethernet controller and interface which the FPGA can directly access.

The DMA option links the hardware and the software very closely. The first problem to overcome is
the mutual exclusion of the critical shared part of memory which will be used to transfer the information
on. For this I would suggest the use of the Peterson 2P algorithm [53], shown by code block 6.4. This
provides weak fairness and as only a single lock will be required we are free from deadlock. The variable
turn and the array flag would have to exist in the shared memory so that both layers could access
it freely. The software layer requires to write down the information for the calculation and then would
leave the critical region. Now the FPGA would take over, perform its calculation and write back into
the critical region the result of this calculation, the FPGA then leaves. The software takes over again,
after leaving it would immediate register its interest to enter the critical region again. This is because
when the FPGA leaves its calculation will have been completed. The software can read the results out
and remain in the critical region until there is more information to be processed, so it can write this
information down immediately.The FPGA can keep requesting the critical region again immediately after
exiting, knowing that when it gains access again it will have a calculation to perform. There would be
a Peterson 2P algorithm for every trading algorithm placed on the device. This is because they are all
completely independent, allowing easy partial run-time reconfiguration explained previously. Grouping
of the same algorithms would be carried out by the software side of the interface, which would choose
what information is sent to specific algorithms. This would allow work load to be evenly distributed
between the multiple resources. The DMA solution is simpler than the ethernet solution, however it
doesn’t provide the freedom that the ethernet solution does. In the short term, the DMA solution is a
better option, with the proposed further work and development on moving the whole algorithmic trading
engine down to the hardware level, the ethernet solution would be the better option in the long term.

The ethernet system would require the trading algorithm to take information off the network interface,
process this information before sending it back out again. The network interface on the hardware side
would be considerably more complex than that of using DMA. This is because it would have to handle
constructing the data from the individual packets before processing could begin. We would also be
more reliant on other services, such as the network layer and the operating system, failure or delay
in these would result in performance degradation of the trading algorithms. The software side of the

1 flag[i] = 1;
2 turn = i;
3 while(flag[(i % 2) + 1] && turn == i);
4 // enter/use/exit critical region
5 flag[i] = 0;

Code Block 6.4: Peterson 2P lock provides safe and fair mutual exclusion for two processes.
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interface would also be more complex, it would have to implement further functionality to track what
information had been sent and what had been received in response. Furthering the difficulties would
be handling reconfiguration of the devices, knowing what algorithms were currently on the device and
servicing information. This means that the ethernet hardware software interface is only really and option
when implementing the rest of the algorithmic trading engine in hardware. This would remove these
problems of discovering algorithms and transferring information. This is because the system would no
longer be split and would be more unified than again. The communication of updates and orders is
designed to be between remote system, where the communication between the trading engine and the
trading algorithms isn’t.

6.6 Summary

In this chapter I have described some of the limitations and problems associated with developing for a
reconfigurable platform. I have presented my solutions to these problems and how they are applied in my
designs. These solutions are generic so that they could be made use of in any number of other projects
using reconfigurable hardware. Such as how to model data and effective use of function instances to avoid
clashes. I have helped set out the state of mind that is required to effectively program for reconfigurable
hardware, showing the extra thought that is required to make the implementation as effective as possible.

I have presented my hardware architecture which is used to abstract the common functionality of the
algorithms being implemented in this project to reduce code duplication and speed up further algorithm
development. This architecture follows many of the same principles of the software trading algorithm
design pattern already presented in this report. I also showed in detail the optimisations that I used,
particularly focusing on carrying out operations on arrays in a flexible yet time effective manner. My
suggested solution is using tree summing of the array implemented using conventional and parallelised
for loops. This results in operations completing in log(n) time complexity and requires no code alter-
ations when changing the array size. On top of this I have shown how multiple array operations can
be carried out at the same time, on the same array, to find the average of the positive numbers in an
array in the same time complexity. These are general solutions and could be applied to a large number
of applications.

I have discussed the three forms of parallel processing, task-level, pipeline parallelism and expression
evaluation parallelism and how they are used effectively within my implementation. I have shown
through the use of task-level parallelism, a single device can support a large number of different algorithm
implementation simultaneously, increasing both performance and flexibility. I have discussed some of the
issues around pipeline and expression evaluation parallelism, that must be considered by the programmer
when utilising these features. These thought should provide insight to those that are wishing to use
reconfigurable hardware in their own projects and research.

Using task-level parallelism and partial run-time reconfiguration, I have suggested processes of being
able to tailor a device, during the trading day to improve performance and flexibility. These processes
are applicable to many other problems using reconfigurable hardware which would benefit from being
able to modify themselves during operation to cater for different events, data or amounts of work load.
Direct benefits from these features including providing better and more algorithms for clients to use. This
in-turn makes the system more attractive for clients to use, with more clients and work load directly
correlating to revenue for the operator of the system.

Finally I have discussed two methods of communication with the hardware layer from the software
layer. Both direct memory access (DMA) and ethernet communication have benefits. In the short
term, DMA is a much more attractive and simple solution, but in the long term the advantages of
using network communication outweigh the difficulties of implementation. Both of these methods of
communication are relevant to any system using reconfigurable hardware that requires communication
between multiple systems, particularly between different abstraction layers. The network communication
solution provides a road map to moving the whole of the algorithmic trading engine into reconfigurable
hardware, bypassing the software implementation completely. This would result in a highly attractive
solution, although controlling partial run-time reconfiguration from the hardware level would need to be
investigated.
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Chapter 7

Testing Harness

In this chapter I will outline the important work that I have carried out in creating a test harness which
can be used to evaluate any number of electronic trading systems. Over the sections in this chapter I will
cover the libraries that have been utilised how they be been integrated into the code base. This meant
that the interesting structure of creating random but statistically correct event data which can be feed
into the system easier and quicker to develop. Specifically this chapter will cover the following:

• Explanation and overview of the event logger used within the system. Description of the library
integrated with the system and the extensions that I had to create it to complete its functionality
required by this project; in section 7.1.

• Description of the unit testing framework built into the project, providing low-level functionality
testing. Additionally how it is integrated into the main binary, allowing any user to complete a full
self test. Finally its limitations and functionality lacking from a complete system; in section 7.2.

• The creation of a highly accurate and synchronous but flexible event timings. These can be used to
call a method at a specified frequency until an end point. This is critical for testing the system at
different data rates to be able to exam where performance degradation takes place; in section 7.3.

• Generating random event data to be processed by the application. Built up on a set of statistics
which are adjustable depending on the testing needs that can create a number of different test
profiles to stress the system; in section 7.4.

• A summary, describing the benefits of such a testing harness and its application in this project
and other projects testing electronic trading systems. Also the study of trading events and market
conditions; in section 7.5.

7.1 Event Logging

One of the first things required for a production ready system and testing is a good event logging system.
This is so critical because the system has no GUI, so this provides the only form of feedback on the systems
operation. As it is treated as a self-contained black-box, the only way of knowing what the internal state
of the system is through the use of strategic logging output which has been incorporated. Although the
use of a logging manager isn’t particularly relevant to the aims of this project, it was a required part of
work as no logging library provided the functionality required out of the box. Eventually I settled on
using log4cpp for providing the logging functionality. This was because it seemed to be the most active
and well documented logging project for C++. Unfortunately, it doesn’t come with a very user-friendly
front-end for incorporating into your code base. The first item I had to create was a LoggingManager,
which would provide the interface to logging. This makes use of the singleton design pattern to ensure
that only one instance exists at any one time. During setup it makes sure there is a valid log file available,
which is named by the date they it was created. Methods exists for each of the logging levels and for
each level there is a method which streams the output and another which accepts a string to log. The
singleton implementation which I made use of was the one created by Scott Meyers, shown by code block
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1 static ClassA& ClassA::getClassA() {
2 static ClassA instance;
3 return instance;
4 }

Code Block 7.1: Effective implementation of the singleton design pattern in C++.

1 [2010/02/22 00:09:22.144944] [INFO] [LoggingManager started up]
2 [2010/02/22 00:09:22.145022] [INFO] [Starting tests]
3 [2010/02/22 00:09:22.145537] [INFO] [TestParticipateAlgorithm::testOnLevel2Update(): Start]
4 [2010/02/22 00:09:29.331971] [INFO] [TestParticipateAlgorithm::testOnLevel2Update(): Finish]
5 [2010/02/22 00:09:29.332472] [INFO] [Tests completed]

Code Block 7.2: Example log output from the layout manager.

1 ostream& ClassB::stream(ostream& out) {
2 out << "<ClassB>";
3 ClassA::stream(out);
4 return out << "</ClassB>";
5 }
6
7 ostream& operator<<(ostream &out, shared_ptr<ClassA> command) {
8 return command->stream(out);
9 }

10
11 ostream& operator<<(ostream &out, shared_ptr<ClassB> command) {
12 return command->stream(out);
13 }

Code Block 7.3: Streaming all relevant information with class hierarchies in C++

7.1. This implementation of the singleton is very simple yet incredibly robust, ensuring the object is only
created once during the program execution and destroyed at the end of execution. This implementation
is far more concise than a similar object oriented languages, such as Java, which require static variables
to be held in the class, rather than the static method.

The second item that I had to create to complete the logger implementation was the layout manager.
This is a class that the library will use and provides with a large quantity of information, which it will
return as a formatted string. Code block 7.2 shows some example logging from the layout manager, the
format is the date followed by the time to microsecond precision. Next the logging level is output followed
by the logging message. I wanted to add some additional information which would always be output in
the logging as well. This was the class and the method which utilised the logging, this would improve
clarity and debugging of the code, while reducing the amount of unnecessary hard coding. Currently the
only method to do this is to hardcode the string for each method and class when it is output. This is
less than desirable as it leads itself to being forgotten. Sadly I was unable to add this functionality, this
was partly because of the abstractions that the library uses don’t make it possible to backtrack to the
caller. Secondly it is actually very difficult to find out the caller of a method at runtime. With further
time, the best solution is probably to use a set of macros to solve this problem, but without previous
experience and lack of time I choose not to pursue this further. After all this project is about exploring
algorithmic trading in reconfigurable hardware, not implementing a fully-featured logger.

One small problem that had to be over come when supporting streaming of objects to the logger was
how to deal with the class hierarchies. Thankfully the best solution was to carry out the streaming in
a method owned by the object being output. The streaming operator would be a friend method to the
class and take the object to output. This would call the output method on that object before returning
the result. The big advantage came from declaring the output method as pure virtual methods (abstract)
in the abstract base class. The result is that with on any type, the output method called was on the
concrete class, not the abstract class. Another benefit is that in C++ we can define the functionality of
pure virtual methods still, this means that if the abstract class has information that needs to be output,
then the concrete class can call its base classes implementation to output its information two. This is
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shown in code block 7.3 and no matter what streaming operator is called, the output will be the same
if the smart pointer holds a ClassB object, where ClassB extends ClassA.

7.2 Unit Testing

For low-level unit testing I have utilised cppunit library to simplify the process of creating and running
unit tests. Unit tests are associated with classes and are designed to test all of the functionality supported
by that class. Code block 7.4 shows how to run automatically the tests after they have been registered.
A TestRunner is created, all of the registered tests are added to the runner after being read from the
TestFactoryRegistery, the tests are then run and the result output as the result of the programs
completion. This can be integrated into the main program options, allowing any user to carry out a
full self test of the application. This can provide trust in the system that the code being executed is
correct and works. Code block 7.5 shows how the tests are set out, a test class is associated with the
class it is testing. The test class sets out all of the tests that it will run and registers them through the
use of macros, in lines 3 through 6. The class extends the TestFixture class supplied by the unit
testing library. Additionally the setUp() and tearDown() are overridden which are executed before
and after any test methods respectively. This allows a set of objects to be created for testing and then
deleted after their use, so fresh objects can be created for the next test to be run. Finally, for the tests
to be run, the test suite needs to be registered so that it is called when testing is run, code block 7.6
shows the macro which completes this which must exist in the source file of the test class.

All test methods utilise assert methods provided by the unit testing library. The simplest provided
is CPPUNIT ASSERT(bool); which passes the test if the bool value is true, otherwise the test fails.
Others exist, such as comparators, reducing the amount of code required to create a test for an item. I
wanted to include the use of a mocking library for C++, such as gMock or mockpp. This would have
prevented the test classes from requiring use of any classes other than the one they were testing. This
would have provided a better testing environment with less dependencies, unfortunately I didn’t have
sufficient time to perform this integration and get up to speed on using a mocking library. The lack of
use of a mocking library shouldn’t hinder the testing abilities outlined however.

7.3 Event Timer

Before I discuss the creation of the realistic test generations, I required a way of injecting communication
into the system at a specified frequency. As the main processing thread is separate from the commu-
nication generation thread, we can sleep the generation thread between creating and sending events.
Using three boost libraries, date time, thread and function a very simple yet highly accurate and flexible
solution can be created.

Code block 7.7 shows my solution for the event timer problem. It is implemented in its own class, but
this isn’t absolutely necessary and the method could be static as it requires no data from its class. The
method takes a frequency to call a method as a double, an end time represented using boost’s time class
and a function call, using boost’s method binding functionality, this is all shown in the method header
on line 1. The time duration between the method calls is the first item calculated, this is in microsecond
precision and the reason why 1,000,000 is divided by the frequency, on line 2. Next a timer is calculated
which is the time until the next method call, this can be provided to the sleep function to sleep the thread
until the time specified, on lines 3 through 5. Now the method enters a while loop, which terminates
upon the current time becoming greater than the expiry time, this means that if the frequency is very
small, the method can return without ever calling the supplied method, on line 7. Finally, within the
loop, the method is called, the timer has the interval duration added to it and it becomes the time for
the next method call and the thread sleeps until this time. At which point the loop will complete an
iteration and enter the next, on lines 8 through 12. The method returns control of the thread after when
the loop is exited.

The method accepts a bound method with either no arguments, or the arguments already bound
into the bound function and the function must return nothing. Therefore it can accept a large number
of already existing functions without needing to be changed. The advantage to this solution is that if
the method call that it is performing is particularly expensive in time, as long as the final amount of
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1 int main(int argc, char** argv) {
2 LoggingManager::infoStream() << "Starting tests";
3
4 TestRunner runner;
5 runner.addTest(TestFactoryRegistry::getRegistry().makeTest());
6 int result = runner.run("", false);
7
8 LoggingManager::infoStream() << "Tests completed";
9

10 return result;
11 }

Code Block 7.4: Initiating and running all of the unit tests to complete a self-test after automatic
registration.

1 class TestClassA : public CppUnit::TestFixture {
2
3 CPPUNIT_TEST_SUITE( TestClassA );
4 CPPUNIT_TEST( testMethodA );
5 CPPUNIT_TEST( testMethodB );
6 CPPUNIT_TEST_SUITE_END();
7
8 public:
9 TestClassA();

10 virtual ˜TestClassA();
11
12 void setUp();
13
14 void tearDown();
15
16 void testMethodA();
17
18 void testMethodB();
19 };

Code Block 7.5: Class layout for an example unit test class TestClassA.

1 CPPUNIT_TEST_SUITE_REGISTRATION( TestClassA );

Code Block 7.6: Test registration for test class TestClassA in TestClassA.cpp.

1 void EventTimer::sleepInterval(double frequency, boost::posix_time::ptime end, boost::function
<void()> method) {

2 boost::posix_time::time_duration interval(boost::posix_time::microseconds(1000000 /
frequency));

3 boost::posix_time::ptime timer = boost::posix_time::microsec_clock::local_time() + interval;
4
5 boost::this_thread::sleep(timer - boost::posix_time::microsec_clock::local_time());
6
7 while (boost::posix_time::microsec_clock::local_time() < end) {
8 method();
9

10 timer = timer + interval;
11 boost::this_thread::sleep(timer - boost::posix_time::microsec_clock::local_time());
12 }
13 }

Code Block 7.7: A simple but highly accurate and flexible event timer.
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time is less than the frequency interval then the method will remain in time. This is because the time
to sleep till next is iteration is calculated after the method has executed. In the event that the method
takes longer than the frequency interval then the method will try to sleep, but the time will have already
elapsed so it won’t sleep at all and the next iteration will take place. At which point the frequency of
calls is equivalent to how many times the method can be executed in a second. This problem could
be eliminated with careful use of additional threads to execute the method calls independently of the
sleeping thread, but this solution is sufficient for this projects needs. The accuracy of this solution was
measured to be around the 50 microsecond which is more than sufficient for the purposes of this project.

7.4 Realistic Test Generators

The realistic test generators produce the different parts of communication package. They work in a
hierarchical waterfall fashion, CommunicationGenerator is the top controller which will be called and
return the next communication event, this can be seen in figure 7.1. The CommunicationGenerator
uses four of the generators, with the exception of the ResponseGenerator, one is chosen from the
remaining three depending on its internal state. The counter holds the state and is incremented
after every generate() call. Every frequency calls, the CommunicationGenerator returns a
TimerEvent generated by the TimerEventGenerator. The TimerEventGenerator creates a
new TimerEvent and returns it. It is the simplest of all generators as TimerEvents contain no other
information. On all other calls, the generator makes the decision to return a MarketData or issuing a
Command. This decision is made by generating a pseudo-random number which is in the range [0, 100).
If the number generated is below the ratio, then a Command is generated and returned, otherwise a
MarketData update is created and returned.

The only exception to this is the ResponseGenerator which requires a Command to generate
its response output. This generator is designed as a reflector of commands issued by the system and
provides feedback on whether the order was accepted or rejected in our virtual environment. Currently
it doesn’t support generating any update responses such as Execution or ForceCancel. To add
this functionality would have required significantly more work, it would be required to keep track of all
orders that it had accepted. This would have meant it would have had similar functionality to the order
manager, you could use an order manager slightly modified but then you would essentially be testing
something with itself which isn’t a good practice. The ResponseGenerator uses ratios to decide if a
command is accepted or rejected, held by the variable acceptanceRate.

The use of pseudo random number generators (PRNG) to decided which event is created and sent
is important. This is because a PRNG seeded with the same number will produce the same series of
numbers every time it is executed. Additionally, the numbers produce in the range will all have equal
probability of being generated. These two features allow tests to be exactly the same every time they
are run. We also want the ratio of choices to be maintained, so if we want 90% of events to be market
data updates, then out of 100 events generated we should see very nearly 90 updates.

Next, the CommandGenerator generates a new command. Again this uses a PRNG to decide what
type of command to create. This time we also have boundaries to keep the number of active orders
within. These are minimumNumberOfPreviousOrders and maximumNumberOfPreviousOrder.
When started, there will be zero active orders which may be less than the minimum, so until the minimum
is reached new orders will be sent. If the maximum is reached then cancel orders will be sent. If the total
is between the boundaries then a ratio decides whether to increase the number of active orders or cancel
an existing one. The amend command isn’t utilised at the moment as its functionality isn’t properly
supported throughout the system. When an order is created it is added to a map to store it, this is so
that when an order is to be cancelled, one can be selected at random from this map and then cancelled.
The CommandGenerator doesn’t create orders however, that is left to the OrderGenerator. The
disadvantage to the current solution at the moment is that all orders are grouped together. Further
extension could include boundaries for all different stocks being tested. This would make it easier to
create a large number of orders on a single or multiple stocks and small numbers on others.

The OrderGenerator produces parent orders for the CommandGenerators, it decides the order
attributes that it is going to use in creating the new order. To do this though it requires some information
about the stock that the order is to be traded on. For this, there is a class called SymbolData which
stores this information. This includes information such as the price of that stock. The act of choosing
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CommunicationGenerator

- counter : int
- ratio : int
- frequency : int

+ generate() : Communication&
+ generate(Command&) : Communication&

TimerEventGenerator

 

+ generate() : TimerEvent&

MarketDataGenerator

- executionRatio : int
- toReturn : list<MarketData&>

+ generate() : MarketData&
- generateUpdateData(SymbolData&) : MarketData& 
- generateExecutionData(SymbolData&) : MarketData&

CommandGenerator

- minimumNumberOfPreviousOrders : int
- maximumNumberOfPreviousOrders : int
- previousParentOrders : map<string, ParentOrder&>

+ generate() : Command&
- generateNewOrderCommand() : Command&
- generateAmendOrderCommand() : Command&
- generateCancelOrderCommand() : Command&

ResponseGenerator

- acceptanceRate : int

+ generate(Command&) : Response&

SymbolSelector

- symbolWeightings : vector<int>
- symbolDatas : vector<SymbolData&>

+ select() : SymbolData&

SymbolData

- symbolName : string
- defaultPrice : double
- sinWaveOffset : double
- sinWaveHeight : double
- sinWaveWidth : double
- randomness : double
- priceSpread : double
- counter : int
- maximumPrice : double
- minimumPrice : double

+ getSymbolName() : string
+ getNextPrice() : double
+ getNextSpread() : double
+ getMaximumPrice() : double
+ getMinimumPrice() : double

OrderGenerator

- idCounter : int

+ generate() : ParentOrder&

1..*

1

Figure 7.1: Class structure of the generators package showing interactions and waterfall hierarchy.
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what stock to trade is carried out by the SymbolSelector. This maintains all of the SymbolDatas,
each with their own weight. This weight determines how often that symbol is selected for trading. When
asked, it will provide the next SymbolData, which can be used to create an order. In addition there are
a number of other order attributes that need to be decided, such as the order type, order time in force
and order trading details. The most important one is the order trading details, as this will decide which
algorithm trades the generated order. Again, these are all decided by ratios on the individual attributes,
this allows them to be changed depending on the test.

The final generator which I haven’t covered is the MarketDataGenerator. This generator differs
slightly again from the core style. It contains a ratio (executionRatio) which determines the number
of execution updates compared to other updates. What is required in addition, is because a level 1 market
data update is a subset of the information in a level 2 market data update, we must form a level 2 update,
then create a level 1 update from this update. These must be sent separately, so the unsent updates must
be stored within the generator and upon being called again to generate an update, it returns the first
update in this list of pre-calculated updates. Like the OrderGenerator, the MarketDataGenerator
requires SymbolData and the symbol chosen for this update is done by the SymbolSelector. The
biggest downside from this current implementation is there is a direct correlation between the number of
orders that a symbol receives and how active that symbol is for updates. This is unfortunate because it
would be interesting to vary this relationship, however it is more realistic that if a symbol was receiving
a large number of orders then there would be a large number of market data updates. The SymbolData
class calculates the next price point and the spread between the buy and sell prices. This is used by
the MarketDataGenerator to create level 2 market data updates. Firstly, the number of entries on
each side is chosen by random number, again this can be bounded by parameters. Next each of those
updates is move slightly further away from the previous price point on that side. The quantity of the
entry is also randomly generated. The price spread determines the start point of selling side, which is the
sum of the spread and the price generated. The SymbolData must generate the next price and spread
point for a symbol. This is dependent on its internal parameters and state. The greatest problem is in
creating a function which varies the price of a symbol over time in a fashion which is realistic enough
and also simple enough to provide an accurate representation. For this I chose to use the sine function,
manipulated with the parameters to distort its curve into a price of a symbol over time. I chose this
over a more complex function of trying to vary the price over time depending on randomly moving the
price, however this could have fallen into the trap of ending up being very noisy. With the sine wave
solution we have a clean price change over time which can be made noisier by including an amount of
randomness into the price.

Price = PDefault−Price + (RAmount ×RFactor) + (PHeight × sin(POffset + (PWidth × STime))) (7.1)

Equation 7.1 describes how the price for a symbol is calculated. PDefault−Price is the median and
average of the sine wave. RAmount is the amount of randomness, setting this to zero will mean that the
price is a perfect sine wave, RFactor is the generated random number to use. The randomness is used to
slightly fluctuate the price away from the sine wave. PHeight is the height of the sine wave, from which
the maximum and minimum prices can be calculated. POffset is used to move the start of the sine wave
away from time zero, this means some symbols prices will be increasing while others are decreasing at the
same time. PWidth is used to stretch or shrink the sine wave, changing the amount of time to complete a
full cycle. Finally the STime is the state attribute describing the time of the price. The random number
generated has a range of [−1, 1), meaning the randomness can move the price higher or lower.

Spread = PDefault−Spread + abs(RAmount ×RFactor) (7.2)

Equation 7.2 shows the calculation for the price spread between the best buy and best sell price. The
only additional variable is PDefault−Spread which is the default spread to which an amount of randomness
is added. Also note that this time the randomness value is always positive by the absolute being taken.
This is because if the spread was negative then the market would be crossed, the best selling price
would be cheaper than the best buying price. This would mean executions should have taken place that
haven’t and would likely indicate that there was a problem somewhere in the system. You’ll notice that
the spread doesn’t depend on any internal state, simply the randomness and the parameter provided,
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Stock PDefault−Price PDefault−Spread RAmount PHeight POffset PWidth

1 250 1 5 20 0 1
2 40 3 3 5 30 3
3 60 2 4 10 40 2
4 120 1 2 30 100 4
5 200 2 1 15 270 2

Table 7.1: The parameters used to generate graphs 7.2 and 7.3 with equations 7.1 and 7.2.

Figure 7.2: An example of 5 stocks prices varying over time, each with different parameters.

Figure 7.3: An example of the price spread of a single stock varying over time.
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meaning the spread can be generated multiple times without furthering the state of the market data.
From the spread, the full market depth can be built up. This is done first by generating random numbers
which will determine the depth of each side of the market, these are limited by default to a range of
[0, 10). Next for each entry, the price is moved away from its best price (increased if selling, decreased if
buying). The amount it is moved away is a random number in the range [0, 1). Additionally the quantity
of the entry is generated randomly, with a default range of [100, 1000).

To demonstrate the power of these two functions, here is an example of their use. Table 7.1 shows the
parameters used for five stocks. Then using equation 7.1 we can calculate the price over time for these
symbols, this is shown in figure 7.2. It is clear to see that Stock 4 has a very small interval, meaning
that it cycles very quickly, as opposed to Stock 1 which has a very large interval and a cycle takes much
longer. You can see that both Stock 4 and Stock 5 have very low randomness, represented by their near
perfect sine waves. This is opposed to Stock 1 which has a high randomness, couple with its low price
height and long interval, it makes it more difficult to see that it is a sine wave. Using equation 7.1 and
table 7.1 we can also plot the spread of symbol with is generated market depth, this is shown in figure
7.3. In this case I have chosen only to plot Stock 1 on the graph to simplify it and allow for contraction
of the y-axis range. It is clear to see the four lines stack on top of each other, the top line is the Worst
Sell Price, the most expensive, followed by the Best Sell Price which is the cheapest selling price. The
converse is true for the buy side with the Best Buy Price being first as it is the most expensive price and
the Worst Buy Price being the cheapest buying price. If you look carefully, at no point do any of the
four lines cross, the two lines for each side may overlap a little where they are the same. This is when
the best price is equal to the worst price, a single depth market. The two best prices however will never
cross or overlap as this would be a crossed market.

The big advantage to using this design of generating random event data for testing is that apart from
the ResponseGenerator which requires input to respond to, the event stream can be precomputed.
This means that before the test is run, the stream of events can be generated and stored, ready for
replaying when desired. The downside to this is that the storage requirement required may be consid-
erable, especially when requiring a large number of event updates to replay quickly. To counteract this
though, the events could be cycled, this shouldn’t perform any differently, but the system output may
also loop as well, the only thing that would need to be updated would be new order identifiers to make
sure that they don’t cycle as well.

7.5 Summary

In this chapter I have presented my approach to integrated event logging in the system, utilising the
log4cpp logging library to provide the core functionality. I have shown how a LoggingManager provides
the interface to the logging functionality and the manager sets up the log files to ensure absolute clarity.
Further more I have produced a logging format which is clear to understand and uses microsecond
precision for event timing. This greatly enhances debugging and testing of the system. These principles
could be applied to any number of other C++ based projects. I have also discussed the failures of
attempts to include the class and method name producing the logging but have shone light on how this
could still be achieved.

To provide low-level testing and validation of the system, I have integrated a unit testing framework
within the application through the cppunit library. This provides a simple process to creating and
executing tests, tests are automatically registered to a test running, reducing the amount of boiler-plate
code required which could be forgotten. I have proposed how the tests are integrated with the main
binary, allowing any operator to run the system in a self test mode, executing the tests and receiving
confirmation that the system has passed. This provides confidence and trust in the system by assuring
the user that the binary they are about to deploy is correct. I feel that this is a worth practice of all
applications and would recommend that it is used in other projects. There is some overhead in the size
of the binary, but it is not considerable and with the cheapness of storage space it can be mitigated.

Enabling the ability to test the system at different data rates is an important part of the test archi-
tecture. To do so I have created a highly accurate and flexible event timer, utilising the power of the
boost libraries. The timer is accurate to roughly 50 microseconds and will remain this accurate even
when provided with a multitude of different methods to call when the timer fires. This is due to how it
monitors how longer the method takes to complete before decided how long it must sleep until it must
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carry out the process again. The event time is abstract by using bound functions it can be provided with
any number of functions without requiring any code changes. This means that this functionality could
be used in a number of different scenarios, projects and research.

Finally, I have presented my design for creating statistically random test events in predetermined
ratios. This allows for realistic test data to be generated before testing or just in time, to be injected
into the system. The generators of this data are arranged in a hierarchical waterfall structure but can
be removed from the complete package and used independently. Such as if only market data updates
were require, then the market data generator could be lifted with its dependencies and used in another
application or piece of research. Alternatively, the operator of the generators can arrange the ratios of
generation so that the complete generated will only generate market data updates, removing the need
for the package to be cut up. This provides the user with a large amount of power and use for such a
test generator has wide reaching effects. It would be extremely useful when building and testing any
number of electronic trading systems and it isn’t dependent on how they are implemented, whether it
is in software or it is in hardware. I have also presented in detail the equations that I have invented to
produce a moving price and depth of market for any number of stocks, provided with a set of parameters.
This produces a realistic fluctuation in price data which should enable all of the behaviour of an electronic
trading system to be observed.
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Chapter 8

Evaluation and Results

With any new research, a strong emphasis should be placed on evaluating the work that has been carried
out. I have been looking at is a applying existing ideas to new technologies in this project, therefore we
are interested in how effective these new solutions are compared to the original. I will not only look at
the computational performance of the system, which is obviously very important, but also a number of
other areas of performance. Specifically this chapter will cover the following:

• Introduction to the details of the implementations and the testing methods. I will also discuss how
I carried out the testing to avoid any skewness in results where required; in section 8.1.

• Performance analysis will hopefully confirm my hypothesis that reconfigurable hardware provides
sufficient acceleration over software to warrant its use within the algorithmic trading setting. In-
cluding a technology independent analysis with wide reaching applications; in section 8.2.

• Partial run-time reconfiguration provides flexibility at the expensive of time, we need to know
how much time to decide if it is an acceptable trade-off. Again I will use technology independent
analysis methods to further understanding; in section 8.3.

• Power consumption is an important consideration for companies with a large computing footprint,
given the current environmental climate. Therefore it is useful to know of any power efficiency
gains over the previous solution; in section 8.4

• Additionally cost and space efficiency are important when considering a new technological solutions.
Therefore I present analysis of the current options and comparison taking into account performance
achieved; in section 8.5.

• I will look at the effectiveness of the software produced in this project to add some qualitative
analysis to the successes of this project. This will cover how the framework meets its objectives;
in section 8.6.

• Summary of the information and work presented in this chapter, covering the other applications of
the technology independent analysis techniques presented. This will allow for conclusions on these
results to be draw in the next chapter; in section 8.7.

8.1 Implementation and Testing Details

The hardware implementation was developed in Handel-C [54]. The development environment used was
the Mentor Graphics DK Design Suite 5.2 which compiles the Handel-C implementation and exports
it as an Electronic Design Interchange Format (EDIF). Then Xilinx ISE Webpack 11.1 was used to
place and route the design on the target chip, in this case the Xilinx Vertex 5 xc5vlx30. This chip was
selected because it is one of the smaller chips available from Xilinx, therefore making it one of the most
affordable and common chips in industry. Additionally, it was the largest chip supported by the Xilinx
ISE Webpack 11.1.
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The software implementation has the same specification as the hardware architecture, allowing for a
better comparison between the two implementations. The software was implemented in C++ and the
reason for this were previously discussed in chapter 2. The software implementation doesn’t carry out
batch processing as this was unneeded due to variable sized abstract data types available. In addition the
implementation wasn’t heavily multi-thread. Further work includes introducing multiple worker threads
to process collections of orders and entries in parallel. For the time being will can assume that multiple
instances of the application are running, one per processor available, to discover the full performance
of the software implementation. The development environment used was Eclipse with the CDT plug-in
to aid C++ development on Mac OS X 10.6.2 using g++ 4.2.1 for compilation with full optimisation
enabled. The host machine was a MacBook Pro with 2.33GHz Core 2 Duo, 3GB of 667MHz CL5 DDR2
and 500GB 7,200rpm hard drive with 32MB of cache formatted in Journaled HFS+. As Mac OS X isn’t
a real-time operating system, all software implementation tests where executed multiple times. This
reduced any skew in the results from the operating system prioritising other processes on some test.

8.2 Performance Testing

Arguably the most important testing is on the performance of the two systems. With this project though
this is easier said then done. I have been dealing with very complex procedures and even with clever
event generators discussed, producing meaningful tests and results is difficult. This was not aided by the
limited time available and the inability to be able to put the hardware implementation onto an FPGA
chip because of the lack of a suitable device. Never the less, because of the features of reconfigurable
hardware, they lend themselves heavily to theoretical analysis easier than software does. This is how
much of the analysis is carried out initially in research and production. Therefore I will first present
my technology independent performance analysis which will model the performance of the hardware
system mathematically. Then to produce results I can use the data from the hardware implementation
and with the software results draw preliminary comparison and evaluation of the two systems. For the
initial testing results, because I wanted to be able to compare the two implementations directly, the
order manager was bypassed. This was because if it was used in the software testing then we would have
its overhead, where with the analytical analysis of the hardware implementation this couldn’t be taken
into consideration. This was the downside of not having any available devices to place the hardware
implementations on before the project was due. For the test data, the test generators described earlier
where utilised to generate a set of orders that were repeatedly used. Then a set of updates where
generated with the ten entries on each side, to max out the hardware entry batch size. The calculation
where timed over these two sets of data.

8.2.1 Performance Technology Independent Analysis

Using the work in chapter 6 we can perform technological analysis independent of any specific techno-
logical implementation. In this section I will outline analysis of such a model in preparation for any
implementation. If we assume that we have Ltotal logic cells available and each algorithm requires Lused

logic cells then we can calculate the total number of algorithms that can fit on a single device, Nengines

defined as equation 8.1.

Nengines = bLtotal/Lusedc (8.1)

Defining Borders to be the batch size used for orders and Bentries for the batch size of the number of mar-
ket date entries per update supported. The market favourability calculation is defined by equation 8.2.
Where Cmetric is the number of cycles taken to perform the calculation, Centries−const is the number
cycles required calculate the metric free of the number of entries. Likewise we can calculate the number
of cycles to process a batch of orders, Corders and Corders−const being the constant number of cycles
required for each order, by equation 8.3.

Cmetric = 2× (Centries−const + Bentries) (8.2)

Corders = Corders−const ×Borders (8.3)

84



The total number of cycles being equal to the sum of the number of cycles to calculate the metric and
process the orders. If Fmax is the maximum operating frequency of the system, then we can calculate
the maximum update throughput, Tmax−updates, in updates per second by equation 8.4. The expression
will process up to Borders per update because of the batch processing. Conversely the maximum number
throughput, Tmax−orders by equation 8.5.

Tmax−updates =
Nengines × Fmax

Cmetric + Corders
(8.4)

Tmax−orders =
Nengines ×Borders × (Fmax − Cmetric)

Corders
(8.5)

Although these are maximum throughput for processing updates or orders, in most situations the
system will have to deal with multiple order batches and multiple updates per second. When the system
has more than Borders but does not have so many that it must spend a whole second processing them all,
allowing it to handle multiple updates per second. This is expressed in equation 8.6, where Norder−batches

is defined in equation 8.7 and Norders is the number of orders to be processed. Norder−batches is the
number of batches are required to process Norders.

Tupdates =
Nengines × Fmax

Cmetric + (Norder−batches × Corders)
(8.6)

Norder−batches = dNorders/Borderse (8.7)

We also care about the latency of processing, not only the overall maximum throughput. For example,
if we have a very large throughput, but processing takes a long time then the implementation would be
useless, by the time the decision was made, the result would be out of date. Again we can form an mathe-
matical model for this property, shown by equations 8.8, 8.9 and 8.10. Where Lavg−decision is calculated
from the average from the minimum latency Lmin−decision and the maximum latency Lmax−decision.
Lavg−decision is the average latency of the decision being made and the rest of the variables are as the
same defined previously.

Lmin−decision =
Cmetric + Corders

Fmax
(8.8)

Lmax−decision = Norder−batches ×
Cmetric + Corders

Fmax
(8.9)

Lavg−decision =
Lmin−decision + Lmax−decision

2
(8.10)

8.2.2 Performance Analysis Results

Using the work in subection 8.2.1 with the implementation data from chapter 6 we can produce per-
formance results. Setting both Borders and Bentries to 10 in our implementation, we can calculate the
number of cycles required to perform certain operations. This is possible because only a small set of
actions in Handel-C require a cycle. The results can be seen in top half of table 8.1. Exporting the
implementation into Xilinx’s ISE we can place and route the design to find out the resources that are
used by the implementation and calculate Nengines. Table 8.2 shows how many implementations of
an algorithm the Xilinx Vertex 5 xc5vlx30 chip can support with its total 4800 logic slices available.
Algorithms can be used multiple times on a single chip, so a realistic number of algorithms available
is 6, which is possible unless all algorithms were to be the TWAP algorithm. Therefore we shall use
6 algorithms for all further calculations, it is advisable not to use 100% of available system resources.
This is because as system resource usages gets closer to 100% there is performance degradation seen in
the system. The number of engines supported is calculated by taking the floor of the amount of each
resource available divided by the amount used, then the minimum number from these calculations for
each algorithm is selected as the maximum number of engines possible on the device.
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Xilinx ISE produces the Critical Path Delay (CPD) of the system, from which the theoretical maxi-
mum clock speed of the device can be derived. Although this can only be used as an upper limit, using
the same chip as mentioned above, ISE calculated a CPD of 1.765ns which equates to 566.6MHz. With
Fmax set to 566.6MHz we can calculate the value of the throughput equations from subsection 8.2.1, this
estimates maximum performance. The mixed throughput equation results are best shown as a graphs
because Norder−batches varies as well. Figure 8.1 and 8.2 show both the order and update throughput
with the number of order batches varying between 1 and 100000. The number of orders being processed
remains roughly the same no matter the number of batches being processed. As expected the number of
updates being processed drops steadily as the number of batches increases. This is due to large batches of
orders taking more time to process a single update. The figures show the average performance across the
three algorithms. The bottom half of table 8.1 shows the maximum throughput of each of the algorithm
independently. It is clear to see that the participate algorithm is the quickest, followed by the VWAP
and finally the TWAP algorithm. The update throughput is always an order of magnitude less than the
order throughput, this is because orders are processed in batches of ten, where updates are processed
individually. The worst case scenario is that there is only a single order being managed and so nine
computational slots of the order batch are unused and wasted.

The software implementation was executed on the development machine which is accepted as having
reasonable performance. Tests were executed as described in section 8.1, they were also executed on a
number of other machines to compare performance and consistency between the different processors. The
development machine performed the best and all machines produced consistent results. One of the main
reasons for this was probably because the system had been developed and optimised for that environment,
secondly all other machines tested were shared with other users and their activities could have had serious
effects on performance. The tests were executed multiple times with an average execution time of 30ms
for when processing for the maximum number of updates. As the processor used has two physical cores it
is possible to run two executions simultaneously together, much like running multiple algorithms together
on a single FPGA chip, this enables us to double the number orders and updates processed in the amount
of time. The software results for the worst case scenario found the maximum number of updates that
could be processed per second was 1,390,000 per process executing. On the dual-core test machines the
result was double, at 2,790,000 updates per second.

The frequency that the hardware runs at must equal or improve upon performance than that of the
software implementation. This frequency or Fequal must also be less than 566.6MHz which is the theoret-
ical maximum calculated from the CPD. Using equation 8.4 rearranged to find Fmax given Tmax−updates

as the maximum performance of the software implementation, to equal the software’s performance the
hardware would have to run at 2.5MHz. Even after having to factor in other performance degrading
operations that would be required in a production system, this is an obtainable number. It should also
be possible to run in excess of this frequency to increase performance. Figures 8.1 and 8.2 graphically
show the difference in performance between the software and hardware implementations. It also shows
that the hardware version tracks consistently against the software, showing no difference in scaling. Our
results show that the hardware implementation is 377 times faster than the software version which is a
promising increase in performance. Figure 8.3 shows performance scaling of the two systems as clock
speed is increased. Additionally I have plotted both the software and hardware maximum performances
on the x-axis. The important point is the intersection of the Hardware curve and the Software Maximum
line. This crosses at the previously declared 2.5MHz, it can be seen that that this is very early on in the
graph. Its worth noting that although the Hardware curve carries on past the Hardware Maximum line,
this performance cannot be reached as this device is unable to reach those clocks speeds.

I will now look at the life expectancy of each systems. Obviously any system created should last a
sufficiently long period of time, this will offset any initial costs. The initial cost of the hardware (omitting
any failures which require replacement parts) and the cost of development are spread over a much longer
period of time, making the system more attractive. We have two different directions which we have
compared the two implementations, the number of orders processed and the number of updates processed
per second. Statistics on either of these figures from current markets is very limited, especially with order
quantities and no metrics on the number of parent orders being managed by systems. Thankfully there
are some metrics for market data update throughput, I have taken those used here from Market Data
Peaks [55]. They consolidate updates from 15 American markets, so they present a rather extreme, but
valid view of work load. Taking some of their data on market peak message rates, we can extrapolate
out behind and in front of the data to provide a roadmap of how peak update throughput will look in
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Calculation Algorithm Name
Participate TWAP VWAP

Cycles
Update 31 31 31
Event 41 41 41
Metric 13 13 13

# Engines 7 5 6

Throughput

Updates/s 10500000 10500000 10500000
Orders/s 138000000 138000000 138000000

Max Updates/s 73400000 52400000 62900000
Max Orders/s 967000000 690000000 829000000

Table 8.1: The number of cycles each activity and maximum processing throughput.

Resources Algorithm Name xc5vlx30 FPGAParticipate TWAP VWAP
Slice Logic Utilization Used Used Used Available
Number of Slice Registers 544 560 562 19200
Number of Slice LUTs 1732 2473 2256 19200
Number of Occupied Slices 619 811 770 4800
Number of Bonded IOBs 4 4 4 220
Number of BUFG/BUFGCTRLs 1 1 1 32
Number of DSP48Es 4 5 5 32
Number of Route-Thrus 88 114 102 -
Number of LUT Flip Flop Pairs 2004 2652 2456 -
Number of Engines 7 5 6 -

Table 8.2: Resource usage for the implementations on the Xilinx Vertex 5 xc5vlx30 FPGA.

Figure 8.1: Order throughput while the number of order batches increases.
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Figure 8.2: Update throughput while the number of order batches increases.

Figure 8.3: Update throughput while the number of order batches increases.
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Figure 8.4: System performance against market data throughput increase over time.

Figure 8.5: Order processing latency against number of orders being processed.
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the future. This is shown as the diagonal line in figure 8.4. On this graph I have also plotted the current
hardware and software performance as straight lines on the y-axis. The intersection point shows where
expected market data peaks will eclipse the performance of the system. It is clear that the software
implementation is already running into this problem with the expected intersection towards the end of
this year (2010). The hardware implementation on the other hand looks to be able to cope until 2017,
which gives the system a life expectance of 5 to 6 years conservatively. The assumption of market data
throughput growth is that it doubles every 18 months, much like Moore’s Law on silicon performance.
You could argue then that the software performance would remain just under that of the market data
throughput, however this would require the host for the software to be replaced frequently with the
latest processors, increasing the cost of the system. Additionally, with new systems, the software would
have to be transferred across and tested to ensure that it still worked correctly. Finally, there would be
nearly no headroom available, if there was a sudden market explosion in activity then it would be quite
possible for the system to be overwhelmed at a critical time. We can deduce from this that not only is the
hardware implementation faster, it also offers much better life expectancy both are equally important
in an industrial setting. The closeness of the performance to the current market data throughput of
the software could explain why some companies are now evaluating the effectiveness of FPGAs and the
media coverage it is now attracting.

Finally we can investigate the latency of processing orders. Figure 8.5 shows the latency difference
between the two systems. I have plotted the minimum, maximum and average for both of the systems.
The minimum should be the amount of time it takes to make a decision for a single order, the maximum
is the amount of time until the last order has a decision. The average is taken between them as an
expected value for the latency of the system. What we can see in the graph is two horizontal lines,
these are the minimum latencies for the systems. Next you’ll notice the stepped lines, these are a
characteristic of the hardware implementation with its batch processing functionality. The final point is
the two lines to the left of the graph with very steep gradients. These are the average and maximum
for the software implementation, it shows why there is such a performance difference between hardware
and software, with the hardware possessing a significantly shallower gradient. What is also interesting
is that we can see that the performance difference between the minimum latencies is much less than the
overall throughput performance. The hardware’s minimum latency is 0.08 compared to the softwares 0.5
microseconds, therefore the hardware is 6.25× faster. Considerably less than overall performance, but
still very welcome and should allow the algorithm better price performance.

8.3 Partial Run-Time Reconfiguration Testing

I will now take this opportunity now to evaluate the possibility of using using partial run-time reconfigu-
ration to increase performance further. Like with performance testing, I will first present an technology
independent mathematical model for analysing any number of hardware implementations. This ensures
that the work presented here is as general as possible, allowing many other pieces of research or projects
to make use of it to analyse their own implementations. I will then use these models to analyse my own
implementation and evaluate its own effectiveness. This will be in a number of different scenarios and
finally I will draw a conclusion based on looking at how much market data throughput there is during the
reconfiguration time to determine if this is a viable option. These statistics will be draw from real-world
examples and look at a worse case situation.

8.3.1 Partial Run-Time Reconfiguration Technology Independent Analysis

I now present a simple analytical model for estimating the time to complete a reconfiguration of the
target device, exploring both full and partial reconfiguration. The total time of a reconfiguration of the
device or Tfull, can be calculated by equation 8.11. Where Sconfig is the size of the device configuration
in bytes and Supdate is the number of bytes that can be updated every reconfiguration cycle with Fconfig

as the reconfiguration frequency in hertz.

Tfull =
Sconfig

Supdate × Fconfig
(8.11)
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If the device doesn’t require to be fully reconfigured, time and performance can be saved by only
reconfiguring part of the device while leaving the remaining section of the device to carrying on processing
information. If the device supports partial reconfiguration, we can calculate Tpartial using equation 8.12.
Where Ncolumns is the number of columns the implementation requires and Nframes is the number of
frames in a single column. Sframe is the size of a frame in bytes, Supdate and Fconfig are the same as
before. A frame is the minimum amount of configuration information that can be accessed.

Tpartial =
Ncolumns ×Nframes × Sframe

Supdate × Fconfig
(8.12)

Now we are able to calculate the time that it would take to reconfigure the device given the changes to
be made and the capabilities of the device. We can use this information to calculate how many updates
would be seen during this time using equation 8.13. This is dependent on the update throughput, which
in reality varies constantly depending on market activity, but for the purpose of this project I shall use
a selected number of throughput levels. Where Nupdates is the number of updates seen over the time
Treconfig with a throughput of updates of TPupdates in updates per second. Each update not processed
could signify a missed opportunities to trade or loss of accuracy, therefore it is important that this
number is low. Using a column based reconfiguration system we can estimate the number of messages,
Nmessages, that would be received using equation 8.14. Where Ncolumns is the number of columns in
the reconfiguration, Treconfig−col is the time to reconfigure a column and TPmessages is the message
throughput.

Nupdates = TPupdates × Treconfig (8.13)

Nmessages = Ncolumns × Treconfig−col × TPmessages (8.14)

If the algorithm is required to process all updates, then the user could choose to buffer these on chip
to maintain performance. This would be particularly effective if the solution was using a hardware-based
market data handler, such as the one presented in [40]. For this we require to know how much storage,
Stotal−updates in bytes, would be required. This can be calculated using equation 8.15, where Nupdates

is the maximum number of updates that we are required to store over the reconfiguration period and
Supdate is the size of a single update in bytes. Supdate is defined by equation 8.16, where Nupdate−entries

is the number of price quantity entries looked at in the update. In batch processing this is equal to the
batch processing size of market data updates. Sdata−representation is the size of the internal representation
of data used in bytes, for example in a 32 bit integer representation, 4 bytes are used. The factor of two
signifies that each entry is a pair, representing the quantity and price of the entry.

Stotal−updates = Nupdates × Supdate (8.15)

Supdate = 2×Nupdate−entries × Sdata−representation (8.16)

8.3.2 Partial Run-Time Reconfiguration Analysis Results

The design and implementation process was the same as before, compiling into EDIF before exporting into
Xilinx ISE to place and route the design. Remaining consistent, I will carry on using the Xilinx Vertex 5
xc5vlx30 FPGA as the target device to produce the results using the independent analysis in subsection
8.3.1. The xc5vlx30 is made up as an array of 80 rows and 30 columns, there are a total of 4,800 slices
available [56]. There are a total of 8,374,016 configuration bits and there are 6,376 configuration frames
and each frame has 1,312 bits [57]. On average a single column contains 4800/30 = 160 slices or 212.5
frames. The xc5vlx30 can have its reconfiguration clock clocked up to 50MHz and the reconfiguration
data path is 16 bits, providing up to 800 Mbit/s transfer [57]. Using this information, the analysis and
the information from our design, we can calculate the time to reconfigure the target device under a
number of scenarios.

Table 8.3 describes the three different scenarios and links them to their associated graphs with the re-
sults of the scenario. Table 8.4 shows the results from the variations created from the existing algorithms,

91



Scenario Details
#1 (Figure 8.6) Varying the order batch size, increases the order throughput processed. This is

useful in times of high market activity, when there are a large number of orders.
Decreasing the batch size will allow the algorithm to cope with a higher number
of updates.

#2 (Figure 8.7) Varying the update batch size, increases the accuracy of decision making by pro-
cessing more of the update. This increases resource usage on the device, unused
space is wasted space. Therefore it is beneficial to keep the batch size as close to
the actual number of entires arriving in market data updates.

#3 (Figure 8.8) Varying both order and update batch size, this delivers the advantages and disad-
vantages of both the previous scenarios, depending on the size of the variation.

Table 8.3: The three different scenarios available when reconfiguring the device.

Participate TWAP VWAP
Nslices Ncols Tpartial Nslices Ncols Tpartial Nslices Ncols Tpartial

A5,5 512 4 0.001394 823 6 0.002091 726 5 0.001743
A5,10 538 4 0.001394 791 5 0.001743 672 5 0.001743
A5,15 462 3 0.001046 846 6 0.002091 762 5 0.001743
A5,20 558 4 0.001394 710 5 0.001743 659 5 0.001743
A10,5 665 5 0.001743 868 6 0.002091 826 6 0.002091
A15,5 641 5 0.001743 1,006 7 0.002440 870 6 0.002091
A20,5 770 5 0.001743 896 6 0.002091 1,135 8 0.002788
A10,10 662 5 0.001743 802 6 0.002091 736 5 0.001743
A15,15 718 5 0.001743 820 6 0.002091 980 7 0.002440
A20,20 737 5 0.001743 1,112 7 0.002440 1,062 7 0.002440

Table 8.4: Algorithms size and reconfiguration time, varying by order and update batch sizes.

their size and time to complete a partial reconfiguration of the device by placing that implementation.
The graphs linked by table 8.3 are figures 8.6, 8.7 and 8.8. These show the difference between how
the algorithms scale against each other in the different scenarios. The graphs show the implementation
space requirements when placed on the target device. In nearly all of the graphs the resource utilisation
increases as the batch size for the order and or update batch increases. This increase is not linear though
and in fact can sometimes decrease with larger parameters. The only explanation that I can provide to
this is that compliers optimisation procedures are more effective when presented with a larger imple-
mentation. The worst offender appears to be the TWAP algorithm, which is also the largest algorithm.
When increasing the order and update batch size the increases seem to be more apparent. This leads
to me to assume that when increasing both parameters, the implementation size is rising significantly
enough even with optimisation it cannot be made smaller than a previous implementation. What is also
interesting is that the increases of the algorithms do not scale similar when compared against each other.
This possess the question of whether some implementations are more efficient than others.

Figure 8.9 shows the stepping in the reconfiguration time because the reconfiguration takes place
column by column and the size of the reconfiguration determines the number of columns that need
reconfiguring. From this information we can deduce how many messages would be missed or need
buffering. A historic maximum peak in market data information can be take as 2,526,103 messages per
second recored on February 11, 2010 [55]. This peak is the aggregate of 15 american markets and it
would be extremely unlikely for a single system to require data from all of these venues. We can deduce
the number of messages missed per column by omitting Ncolumns from equation 8.14. In this case we
can infer that with a reconfiguration time of 0.00035 seconds be column, ˜880 messages would be missed
per column needing reconfiguration. It is worth noting again that this is for 15 venues and thousands of
symbols. In reality a system would only be processing a small fraction of these updates and not receiving
the rest. Slow stocks (those that do not receive much activity) would normally have no updates within
this reconfiguration time. Busy stocks may receive a couple of updates, using a 32 bit data representation
and an update entry batch size of 10, each update requires 640 bits to store. This would allow 2MB of
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Figure 8.6: Implementation size against order batch size increasing.

Figure 8.7: Implementation size against update batch size increasing.
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Figure 8.8: Implementation size against order and update batch size increasing together.

Figure 8.9: Reconfiguration time based against the number of slices being reconfigured.
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Manufacturer Name Code Cores Frequency Vmin (V) Vmax (V) Power (W)
Intel Core 2 Duo T7600 2 2.33GHz 1.0375 1.300 34
Intel Xeon 3065 2 2.33GHz 0.8500 1.5 65

Table 8.5: Power consumption of the Intel processor used for testing with comparison.

Algorithm Power Consumption (W)
Participate TWAP VWAP

Configuration

A5,5 0.603 0.626 0.617
A5,10 0.600 0.624 0.615
A5,15 0.600 0.623 0.616
A5,20 0.603 0.627 0.619
A10,5 0.612 0.634 0.628
A15,5 0.623 0.644 0.648
A20,5 0.633 0.654 0.648
A10,10 0.610 0.632 0.625
A15,15 0.621 0.643 0.636
A20,20 0.635 0.656 0.650

Table 8.6: Power consumption of algorithms when varying their order and update batch sizes.

storage to store 25,000 updates. This doesn’t include the information required to categorise updates such
as stock name. As this would only be required once per category I have omitted it here as it is small.

8.4 Power Consumption Comparison

Power consumption is of growing importance because of change of attitudes to the environment. No
longer can companies afford to pay large electricity bills supporting huge compute farms or the public
image of appearing to be wasteful with electricity. Therefore it would be advantageous for our new
solution in reconfigurable hardware to be more power efficient than the software solution. We already
know that this is likely to be the case as FPGAs are known to be extremely power efficient and from the
previous analysis, we know that it holds a sizeable performance benefit over the software implementation.

Some of you may question the use of a mobile processor in the software testing. This has advantages
as processors designed for laptops are normally far more power efficient than their desktop or server
brothers. This is because of the limited space for cooling, ensuring that the laptop does not weigh too
much or is too large. Secondly as laptops are designed to run off battery power, a more power efficient
processor will be able to run longer on a battery or for a shorter period of time on a smaller battery.
Which in turn would make the laptop smaller and lighter. To show this effective I have compared the
processor used in testing with an equivalent server process also supplied by Intel, in table 8.5. The
information form this table is taken directly form Intel [58]. The processor used is on the top row, with
the server processor below it. You can see that they are very similar in specification, the same number
of cores, clock speed, amount of cache and lithography size. Additionally they were released at the same
period of time, Q3 ’07 and Q4 ’07. It would be expected that the performance would be very similar, but
that the server processor will probably have the edge on a number of activities because it will have a few
more features designed for high performance computing. Crucially though, the power consumption of the
sever processor is nearly double (1.9×) that of the mobile processor. As we are certainly not expecting
the server processor to have that kind of performance advantage over the mobile processor, the mobile
processor will give us a better performance per watt than the server processor could. The use of mobile
processor in high-performance computers is not a new idea, research in this area has been performed
by a number of parties, including CERN [59]. Many commercial server companies are now also offering
their own solutions in this space as well, such as Kontron [60]. Both of these use Intel’s Atom processor
which is primarily designed as a cheap and lower powered processor for very small laptops. However
they have been found to be very effective in the area of power efficient computing.

95



Figure 8.10: Power consumption size against order batch size increasing.

Figure 8.11: Power consumption against update batch size increasing.
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Figure 8.12: Power consumption against order and update batch size increasing together.

Figure 8.13: Power consumption against clock frequency
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Knowing the maximum power consumption of the software implementation, we now need to look at
the power consumption of the hardware version. For this we can make use of my original designs after
they have been placed and routed by Xilinx ISE. This produces a map report of the implementation which
contains large amounts of information about how it is expected to perform. Xilinx provides a spread sheet
[61] for calculating the power consumption of implementations by loading in the map report. You can
also modify a number of parameters, such as the device clock speed which affects the power consumption.
The results are at the maximum clock speed previously calculated to keep results consistent. The results
from this experiment can be seen in table 8.6 and I have looked at all of the algorithm configurations
which were studied in the partial run-time reconfiguration analysis. Additionally I have plotted this
information in three graphs found in figures 8.10, 8.11 and 8.12. The first interesting result is that
increasing the update entry batch size does not appear to increase power consumption. This ties in with
the results in implementation size which show that increasing the update batch size doesn’t appear to
have a trend of increasing implementation size. It can be seen that when increasing the order batch size
though we get noticeable increases in power consumption. It is scaling linearly and at a rate which is
acceptable. Another interesting point is that the power consumption usage graphs are much smoother
than their associated implementation size graphs. This adds weight to the idea that the compiler can
carry out better optimisations on implementations of larger parameters. The amount of logic that is
being used is increasing, but the computational density is better.

With these performance figures, we can look at the performance per watt for each of the implementa-
tions. Using the throughput metric of updates processed per second we can find out how many updates
can be processed per joule of energy used. We can use the maximum figure of power consumption for
the CPU as testing was at maximising performance, preventing the CPU from performing any power
saving activities, such as reducing its operating voltage. For the software solutions we have a figure of
2790000/34 = 82000updates/joule and for the hardware solution 62900000/((0.610 + 0.632 + 0.625)/3×
6) = 62900000/3.734 = 16800000updates/joule. This points to an improvement per watt of 204×, where
the value of 3.734 was calculated as the average power consumption for an algorithm with batch sizes
set to 10 and 6 algorithms placed on the device. These result are within the same order of magnitude as
the previous performance related results, showing just how much of an effect that performance has on
the other attractiveness features of the hardware implementation. As a final experiment, I have looked
at how the algorithms scale with a varying clock speed. The results are shown in figure 8.13 which
shows that power consumed grows linearly with clock speed as well. This means that we don’t expect
to find a better performance per joule figure as performance also linearly scales with clock speed. This
means we can be safe in the knowledge of knowing that we should run our devices at the maximum clock
speed supported.

8.5 Cost and Space Effectiveness Comparison

Even though we have seen that reconfigurable hardware looks like an attractive option for accelerating
trading algorithms, there is still at least one criteria they must meet before they are to gain momentum
in industry. That is their cost effectiveness. The first disadvantage is that we require a host machine
to support the FPGA board and this will execute the software layer of the application. This means
that our cost will already incur the same cost as not using the FPGA plus the additional cost of the
FPGA. With further work, moving the whole application down into hardware, a FPGA board that is
independent of a host could be used. This is a board which provides its own network interface and then
is run separately. This may not be the most attractive solution though as it would limit the amount
of insight into a running system. Probably the best solution is use a host machine which would then
support multiple FPGA boards internal, this is available because most FPGA boards connect through
the PCI or PCI-Express bus on a system board. Many system boards provide up to seven slots available.
However there may be limitations to using all of these, such as bandwidth and cooling issues. In the
most powerful systems utilising a large number of graphic processing units (GPUs) which are very power
hungry and hot, a maximum of four can be placed within a system, using a single slot each but the space
of two. For this reason we will assume that this is also the maximum number of FPGA boards that
could be placed within a system reliably.

The second problem that we have to address is that of initial cost. What I will present is the most
readily available data on cost. These are for development boards which most likely wouldn’t be used for a
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production ready installation. They would be required while developing and testing the implementation,
but they have extra features which aren’t required by my design that increase their price. To put this
in perspective, the Xilinx Vertex-5 xc5vlx50t FPGA chips, which is 50% larger than the xc5vlx30 that
we have previously been studying is available $550 to $600 each. This doesn’t include the support board
which could cost the same again, especially if specially developed for this application. The xc5vlx50t is
also available from Xilinx as a development board, with built in ethernet controller, this however costs
$2,000. Which is approximately double the cost of the specialised board. This raises the cost significantly
of the system. The other factor we can’t take into account is buying the components in bulk, which
a company setting up an electronic trading system in reconfigurable hardware would surely do to safe
further money.

We can build an abstract representation of this information though which can be manipulated to
evaluate the cost and space effectiveness of the these implementations. I propose that cost value of
the two systems can be calculated by the performance of the respective system over its initial cost,
disregarding any additional running costs or assuming they are identical between the systems. As the
performance and cost scales differently between the different implementation, I present an equality to
allow comparison between the different systems shown by equation 8.17. Where Psoftware and Phardware

is the raw performance of the two implementations respectively, Nprocessors and Nfpga is the number of
computation units available in each of the systems. Sfpga is the size of the hardware computational unit
and Sengine is the size of the algorithm placed on it, taking the floor of this division allows us to find
how many algorithms can be placed on a single FPGA. Chost is the cost of the host system and Cfpga

is the cost of each FPGA board used. We need this equality to be true to make the cost of the FPGA
effective against using a conventional software based solutions.

Psoftware ×Nprocessors

Chost
<

Phardware ×Nfpga × bSfpga/Senginec
Chost + (Nfpga × Cfpga)

(8.17)

Given the numerator of the equation finds absolute performance, we can tell that when comparing
these two values that the cost provides a scaling factor. As the hardware cost value shares the cost value
of the software implementation, it can be see that the additional cost of the FPGA provides the scaling
factor. The worst case scenario is with the fewest possible number of FPGAs available, which is of course
1. This results in the smallest difference between the cost of the host and the cost of the FPGAs, meaning
the cost of the host has more of an effect on the calculation. Using our previous results we can now
calculate the maximum value compared to the cost of the host that can be spent on FPGAs while keeping
them cost effective for their performance. As we will be comparing against the price of the xc5vlx50t
board which is 50% larger than the xc5vlx30, the number of engines deployable now increases to 9 from 6.
Given that the majority of servers are dual-processor systems and the prevalences of quad-core processors
currently, it is safe to assume that the software implementation will have 8 processing cores available,
taken as being roughly the same performance each as a single core on the test machine. Applying this
information to our equations and with a little rearrangement, we end up with equation 8.18.

Cfpga < 332.33× Chost (8.18)

This result shows that the cost of the FPGA used must not eclipse 332.33 times the value of the host
system. If it were to, then it would be more cost effective to purchase hosts to run the software until the
same performance was reached. This isn’t taking into consideration the space required by those systems
and the cost of running them though. We know previously that we can expect to pay about $2,000 for
the FPGA board, this means to remain cost effective, the host server would need to cost less than $6,
this is an impossible target and shows how cost effectiveness of reconfigurable hardware.

We can now carry out the same process but looking at the space utilised by the systems running these
implementations. Space is becoming more of an issue for companies with a large computing footprint.
Data-centre space is often very expensive, additionally many of these servers will be located as close
as possible to the exchange where they are sending orders. This is to reduce WAN costs and latency
between the server and the exchange, in fact some of the small exchanges now offer co-location facilities
next to their servers. This means that the space required by the implementation is more important than
ever. Again we can use an equality to determine at which point either of the implementations becomes
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more attractive, this is shown in equation 8.19. The new variables Usoftware−host and Uhardware−host

represent the rack space in rack units required by each of the implementations. The equality looks very
similar to that used for cost effectiveness, this is because we are again comparing it against performance.
The main difference this time is that the hardware implementation isn’t dependent on the software space
used. A rack unit is a measure of space in a standard server rack. A full-height rack is normally 42 units,
which is limited by the standard height of a room ceiling.

Psoftware ×Nprocessors

Usoftware−host
<

Phardware ×Nfpga × bSfpga/Senginec
Uhardware−host

(8.19)

We can use the same information for performance as before, taking the worst case scenario of only
a single FPGA board being utilised. This results in the equality shown by equation 8.20. Knowing
the height required by the FPGA implementation we can calculate the space required by the software
implementation to be able to reach a greater computation density. As the FPGA boards available are
full-height PCI-Express board, they require at least a 4 unit height server, the result is that the software
implementation would have to occupy only 0.012 units. A single rack unit is 44.45mm (1.75 inches),
this would mean the software server would be required to be less than 0.53mm high, an impossibility.
Currently the greatest density server option for dual processor server is a blade configuration which
supports 10 servers in 7 rack units, or each occupying 31.1mm, which is nearly 600% larger than required
to beat the computational density of the hardware implementation.

Uhardware−host < 333.33× Csoftware−host (8.20)

We have looked and discovered that currently the software implementation cannot compete on either
the cost or the computational density scales. What are the current comparisons available at the moment.
We can expect a host server to use in the cost calculates as roughly $3000, based on an average server
supplied from a manufacturer. As previously mentioned, a suitable development board costs roughly
$2000, this gives a combined cost of $5000. Opposed to the software implementation of $3000. Using
absolute update throughput performance, the software implementation processes 930updates/$ where the
hardware implementation offers 165, 800updates/$. This results in an improvement per $ spent of 178
times, giving the hardware implementation incredible cost effectiveness. Looking at the computational
density performance, we can fit a software server in 31.1mm where the hardware implementation will
need a full 177.8mm of rack space. This gives us the results of 4, 660, 000updates/mm for the hardware
and 89, 000updates/mm. This only gives an improvement of 52 times the software implementation, but
it is still a sizeable improvement. Both of these figures would be increased when using multiple FPGAs
per hardware host.

8.6 Software Analysis

The electronic trading framework and the order manager provide the bulk of the software backbone of
this project, although the order manager wasn’t used in the final evaluation quite as much as I had
hoped. Both of these modules have been developed with the strictest guidelines for software engineering
best practises. They exhibit zero cyclic dependencies, allowing different components of them to be taken
and used in a large number of other projects. This also aids in reducing maintenance and compilation
time, giving the developer a better environment in which to work. The modules are arranged as layers,
although they do not adhere to strict layering where a module can only use the contents of the module
immediately before it. They practise loose layering where modules can utilise any module that come
before them in the chain.

The heavy use of abstract classes and interfaces within the code base provides plenty of anchors for the
project to become collaborative. The project has so far solely been developed by me, but this is a highly
unrealistic arrangement for development of such a large and wide ranging application. These interfaces
would allow other developers to be quickly on-boarded with the project, speeding up development time.
Examples include implementing the low level communication methods in the bottom of the framework
and developing other electronic trading systems with the package interfaces presented.
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These interfaces also provide extension points for use when the framework is picked up by another
development time. I have shown through C++’s multiple inheritance feature how simple it is to effectively
extend the concrete models provided by the framework so that they contain more specific information and
logic. This is also furthered by the design patterns and architectures presented for the trading algorithms.
They provide general functionality which can be made use of by the developers or ignored. The developer
can pass as much control as they like over to the abstract algorithm, only dealing with the few interesting
pieces of behaviour which are critical to their algorithm. The open closed principle states A module should
be open for extension but closed for modification, this is shown throughout the framework and abstract
design patterns. In particularly, it is shown within the hardware implementation with the operation
performed depending on the function pointer provided to the architecture. This means that increasing
functionality of the framework doesn’t require modification, just provided with a different input.

I believe the frameworks and software presented here are easy and intuitive to learn. Some under-
standing of the business principles being modelled is required but otherwise their layout and structure is
very natural. Naming principles are consistent and explicit, the code is also supplied with a reasonable
number of unit tests and documentation. This is only the first iteration of the frameworks so I have not
had to deal with problems of existing users when making modifications to the framework. Many people
do not think that a framework is reusable until it has three clients, this framework doesn’t currently have
three clients but there are certainly more applications that could benefit from using the framework. Such
as order routers, high frequency trading engine and post-trade systems, all of which would gain benefits
collectively from using the same framework. Another advantage is that once a developer has learnt the
framework they would find it easy to transfer between projects using the framework and get up to speed.
This would reduce the amount of time wasted when a developer swaps projects and has to learn new
frameworks and libraries. This helps the company using the framework to save money on the salaries of
their developers as they are more productive.

In short the software provided in this project projects a great background for being used in the future,
adds a design methodology and code structure to projects it is used in and provides all of the initial
functionality that is required by electronic trading systems.

8.7 Summary

In this chapter I have evaluated the performance of much of the work presented in this report. I have
not limited these metrics to just computational performance but also looked at power, cost and space
efficiency gains made by the new implementation. I have presented the implementation and testing
details of the experiments that have I have performed here that give credibility to the conclusions that
I will make in the final chapter of this report. Starting with performance testing, my two focuses have
been on throughput and latency. To start with I have presented a technology independent analysis of
performance for a solution based in reconfigurable hardware. This is abstract and provides grounds for
many other projects to utilise when performing their preliminary performance analysis of their applica-
tions. Using this and the implementations described in previous chapters I have been able to evaluated
the performance of the two systems. Given that the systems follow identical specifications, this allows
for direct comparison between them without any doubt in the results. I have looked at results under a
number of scenarios which all provide correlating evidence. Additionally I have looked at how the new
implementation will scale with the increases expected in work load over the next decade.

I have studied the plausibility of using partial run-time reconfiguration within the system which was
proposed as a means of improving performance further and increasing the flexibility of the system. Like
with the performance analysis, I have provided a technology independent analysis of this functionality
which has then been used with my implementation to evaluate the effectiveness of the available tech-
nology. Again this mathematical analysis is abstract, allowing it to be applied to a number of different
scenarios, technologies and projects. Using these models and known information about current reconfig-
urable hardware, I have evaluated my implementation, looking at three different scenarios for the three
algorithms provided in this project. This has looked at the implementation size of each of the algorithms
and how it changes with their computational batch size varied.

To complete the performance comparison, I have looked at the power, cost and space efficiency of
both of the implementation. Using the algorithm library created for the partial run-time reconfiguration
analysis section, I have studied the power profiles of the algorithms and how it varies with different
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parameters. I have also looked at how power usage scales with clock frequency of the algorithms to
ensure that the most power efficiency design to performance is used. Using similar techniques of analysis,
I have looked at the cost of the implementation compared to the software equivalent and the space that
they both consume. Both of these are gaining importance within companies as they look to make their
operations as efficient as possible. Without an improvement in performance per dollar, their would be
little attractiveness to using such a solution in industry as alternatives would produce better performance
for the investment made.
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Chapter 9

Conclusion and Further Work

I began this project with the view of evaluating the possibility of using a reconfigurable hardware solution
for accelerating an algorithmic trading engine, specifically the trading algorithms. The evaluation was
based mainly on performance but also looked at a number of other important characteristics which are
fundamental when choosing one platform over another. In this chapter I will review the project and
address any possible further work enabled during this process.

9.1 Project Review

At the beginning of this project I outlined the background required to understand the work carried out
and presented here. I explored a number of different industry standard algorithm trading styles based
on mathematical models that would later go on to formalise my concrete examples of the design patterns
and architectures that I would present with my system for evaluation. The reasons on why a reconfig-
urable hardware platform had been chosen for investigation were outlined with the requirements for an
algorithmic trading engine. Additionally I laid out an overview of the currently available reconfigurable
hardware technologies and the state of the art in research within the area.

Secondly I presented my implementation of an abstract electronic trading framework which is de-
signed to facilitate the development of any number of electronic trading systems. This would increase
compatibility between different systems, aiding their communication. I also laid out the design principles
underlying the software parts of this project, the problems that they presented and how they were solved.
The framework provided the starting point for the rest of the work presented in this report.

Thirdly I created a bespoke order manager with an algorithmic trading engine extension on top to
increase functionality. I discussed how the architecture of the system presented itself to easily being
coarsely threaded to improve performance. Additionally I covered in detail the process of separating
communication into its constituent components through the application of the acyclic visitor design
pattern and the abstractions built on that to provide components to construct a more sophisticated
electronic trading system above them.

Fourthly I presented my proposed design pattern for creating trading algorithms which complied with
the algorithm interface set out by the algorithmic trading engine. This provides a method of standar-
dising the trading algorithms, affording them important low-level functionality in threshold trading to
help improve their price performance while reducing the amount of time required to develop a trading
algorithm. This approach provides a powerful solution to the complex task of designing algorithms and
would enable less technically savvy individuals to write specifications describing complex behaviour that
could be quickly translated into an implementation. Demonstrating the power of this pattern, I pre-
sented three algorithms in mathematical models which I have then implemented using these procedures
to provide concrete examples.

Fifthly I have carried over these specifications and the idea of creating an abstract design pattern
for trading algorithms into reconfigurable hardware. Instead of a design pattern I have presented an
architecture which achieves the same criteria as the design pattern. Decreasing development time and
complexity of creating new algorithms while affording important base functionality. I have explored
the possibility of using partial run-time reconfiguration of the devices to further increase performance
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and allow the algorithms to be specialised to current market conditions. All the while not significantly
reducing the price performance of the algorithm or the amount of time lost during reconfiguration. I
have proposed two methods of implementing the hardware software interface to enable communication
between the different systems, comparing and contrasting the advantages and disadvantages of both.

Sixthly I outlined the testing methods that were utilised within this project to ensure the code
developed was of the highest quality and some of the additional work that was required to enable the
system to be complete. I have presented my solution for the difficult task of creating realistic testing event
data for the complex environment of electronic trading. This included generating market data prices for
a number of desired symbols which fluctuated and varied over an infinite time span. This provides a
useful test harness for all other electronic trading systems and an improvement in many existing testing
solutions using static data captured from a production source.

Finally I have evaluated the two implementations, comparing them against each other to determine
the benefits that they each hold over the other. This included the performance acceleration provided
by the use of reconfigurable hardware. As well as investigating the power consumption, space and cost
implications of such a system, it was discovered that such a system does require marginally more power,
space and initial cost. However because of the large increases in performance it offers considerably better
usage statistics than the amount required by the software solution to equal the hardware solutions per-
formance. This leads to an extremely attractive solutions that definitely warrants further investigations
and work to place into production. I also looked at the long term viability of such a system with current
estimates proposing that such a system would have a life expectancy of 5 to 6 years without requiring
significant updates. This is opposed to the softwares solution which has less than a years life expectancy.

9.2 Project Remarks

In this report I have proposed an implementation of algorithms for trading equity orders in reconfigurable
hardware and compared it to an equivalent software implementation. I have evaluated the performance
and found it to be superior, increasing maximum throughput of both orders and updates. In addition I
have looked at the size of the implementations and how many can be placed on a single device, making the
implementation more cost effective, flexible and increasing performance. The hardware is approximately
377 times faster than the equivalent software implementation and I have shown that it is possible to
place on average 6 hardware engines on a single FPGA chip to reach this speed up. With more complex
algorithms we can expect both figures to decrease, however it is safe to assume that there would remain
a similar speed up. Additionally I have shown a reduction in minimum decision making latency from
0.5 microseconds for the software solution to 0.08 microsecond with reconfigurable hardware. Coupled
with the much shallower growth curve for the hardware solution, this explains why there is a significant
performance acceleration afforded by the reconfigurable hardware. Finally on the performance analysis
topic, I have looked at the life expectancy of the implementations. Using current statistics on work load
available, I have extrapolated out into the future, predicting the growth over time. Using the performance
results I have been able to come to the conclusion that the current software implementation is already
reaching the point where it may no longer be able to cope with any spikes in activity. The hardware
solution however appears to have another 5 to 6 years conservatively before it will require replacement.

I have also looked at using partial run-time reconfiguration to allow for changes to be made to a device
during the trading day, making it more effective and flexible so that it can cope better with varying market
conditions. We have shown that the device can maintain a high utilisation percentage making it highly
cost effective while loosing none of its ability to implement multiple complex implementations. Based
on the column reconfiguration technique, I have shown that t takes 0.00035 seconds to reconfigure a
single column. The concrete examples provided consume between 3 and 8 columns each. To show that
the loss of time is minimal I have looked at what the current peak market data update rate has been
recently and how many messages would have been missed or required buffering during that time. These
figures were taken from a large number of stock exchanges concurrently where normally we would only be
interested in one or two venues and a selection of stocks on each of those venues. With current expected
market data update rates, we can expect to miss or need to buffer about 880 messages per column
reconfigured. However as each message only requires 640 bits of storage, in a single 2MB buffer we can
hold 25,000 updates. Giving plenty of head room for further expansion. I have presented a solution for
reducing the time to produce a set of alternative algorithms that can be deployed by suggesting that
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the user builds a library of valid implementations. These can be deployed quickly and simply given
the appropriate situation. The time required to compile and test the implementation can be completed
before the algorithms are required. I have also discovered that optimisations at compilation vary greatly
depending on the size of the implementation. This shows in our results where an increase in parameters
does not necessarily result in increased resource usage from a high level perspective. Therefore when
generating a library it would be worth using a benchmark to discover which algorithm parameters are
the most effective and efficient. This allows for inefficient designs to be removed from the library to
prevent their use.

Looking at power, space and cost efficiency gains. I have shown that the reconfigurable hardware
solution is 204 times more power efficient in terms of the number of updates processed per joule of energy
consumed. Additionally I have shown that running a FPGA chip will only consume 3.7 watts more power
when utilised as suggested in this report. This is a negligible considering most servers consume over 100
times this amount alone. I have also shown that the software solution cannot beat the reconfigurable
hardware solution on either cost or space efficiency. For it to do so, the server running the software would
have to cost less than $6 and occupy less than 0.53mm of height in a standard server rack. Both are
impossible targets. The increase in performance per $ is 178 times, but one system hosting a FPGA is
likely to cost about double that of just the server for the software solution. It is also likely to take up more
than 4 times the amount of space in a server rack. However these are worthy trade-offs given the longevity
expected of the system and large performance increase it affords. All of these improvements combined
offer an extremely attractive solution to the problem of ever increasing work load and competition in the
algorithmic trading space. The greatest problem remaining now seems to be the lack of programmers
available for harnessing the power afforded by reconfigurable hardware. I feel that I have shown that
this is not the case. A software engineer with a solid background in computing can quickly pick up these
new technologies and paradigms, given that I had no previous experience working with reconfigurable
hardware before starting this project. Therefore I find no reason why investment institutions shouldn’t
seriously consider using reconfigurable hardware for acceleration in their next electronic trading platform
and systems.

9.3 Further Work

Here I will present possible avenues of further work and research that this project has opened up. Many
of them came from the discoveries and thoughts that arose during completing this project, which also
supplies a base for much of the work suggested here. This would allow much of the work to be carried out
quickly with interesting results, but as always with projects like this, unfortunately there was insufficient
time for me to carry out any of these points.

• Remove market favourability recalculation between order batches on the same mar-
ket data update. Currently each order batch is treated independently from every other batch.
Although this is not always the case if they share the same ancillary information in the market
data update that is being processed. Two solutions present themselves, the software could provide
notification that the update was the same as the previous batch. If the trading algorithm stored
the previous market favourability calculated then this could be retrieved. The problem with this is
that the manager for the algorithm would have to ensure that order batches for the same update
were calculated consecutively. A better solution would be to provide the algorithm with the up-
dates independently, it will then calculated the market favourability, storing the last value for each
symbol. Then when presented with an order batch, it can always use the current value calculated.

• Support multiple batches of market data update entries. This current limitation on calcu-
lating the market favourability could be particularly problematic for some users and so should be
high priority for correcting. The best solution would being implemented together with the above
point, with market data updates being provided separately and calculated independently from
when they are needed for order processing. This should allow for greater flexibility of the number
of entries that are supplied to the system.

• Investigation into the performance difference between different number representa-
tions. Currently both software and hardware implementation utilise only 32-bit integer number
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representations. This is limiting for accuracy and size efficiency on the hardware. Two investi-
gation scenarios present themselves, an investigation into varying the integer size representation
in the hardware implementation may result in a more size effective implementation. The benefits
from this are that more algorithms will be able to be placed on a single chip or a smaller, more cost
effective chip would be available to use and support the same number of algorithms. This should
provide a further increase in performance over the software implementation. Secondly, investiga-
tion into using floating-point arithmetic to increase accuracy of calculations. This would be better
suited to investigating the price performance of the algorithms to quantify any improvements.
However, FPGAs are not optimised for floating-point arithmetic, so further performance analysis
would be required to ensure that the hardware implementation still provided an acceleration over
the software solution.

• Implementation of the bidirectional hardware software interface. Due to time constraints
and lack of available suitable devices to place my designs on, implementation of the interface should
take a high priority. Previously I have explored two methods of implementation, using either direct
memory access (DMA) or a network interface. Both have their advantages and disadvantages,
current I favour making use of the network interface as it supplies greater flexibility and it is more
in keeping with the long-term goals of this project, which are moving the whole algorithmic trading
engine into reconfigurable hardware. Although the initial work would be greater in supporting the
network communication, it would provide longevity to the system and provides interesting areas
of research, such as controlling partial run-time reconfiguration from within the device.

• Investigation into using a more heterogeneous computing approach for computation. In
this project I have looked at accelerating the performance of trading algorithms with reconfigurable
hardware. Instead of looking at these solution individually, all computational units should be
combined to provide further performance increases. Further investigation into the use of general
purpose graphic processing units (GPGPUs) may offer further performance benefits. As all three
computational units (including central processing units (CPUs) provide difference characteristics,
investigation should be carried out to discover if different algorithm implementations are more
suited to one of the different computational units. Then the use of that algorithm can be prioritised
to that device to receive the maximum speed up. Another scenario is that some algorithms may
be more heavily utilised than others, it would be beneficial to make sure that these algorithms are
executing on the fastest of all the computational units. Other less used algorithms could then be
relegated back to slower computational units as the effect of them running slower would be less felt
than heavily utilised algorithms.

• Greater thread density within the software implementation. Currently the software im-
plementation is very coarsely threaded, this could be limiting its potential. Therefore it would be
worth spending time increasing the level of threading within the implementation and reassessing its
performance. The likelihood is that the hardware will still be considerably faster than the software,
but the difference should be reduced. This is of obvious advantage if the heterogeneous computing
approach described above is chosen as the direction of work and the software algorithms will still
have a useful place within the design. It would also allow for fairer comparison.

• Abstract trading algorithm definition language (ATADL). With the use of a heterogeneous
computing solution, all or at least some of the trading algorithms would need to be implemented
for different computational units to make the system most effective. This would create a large
amount of development work if it had to be done by hand every time. For this reason, I propose
the creation of a technology abstract trading algorithm definition language which would generate
the specified algorithm in multiple different implementations for the computational units. This
would abstract the process away of designing the algorithms from creating the algorithms, making
the process purer. The other advantage is that less technologically savvy individuals or people who
lack the experience working with some of the specialised computational units such as the GPGPUs
and FPGAs would no longer require knowledge in these areas. The disadvantage is that creating
a definition language that could sufficiently specify all of the different functionality that may be
desired by an algorithm would be difficult, large and complex. Additionally, new functionality
may have to be introduced as it is invented by the business, requiring the language to be extended
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frequently. There would be also considerable work in verification of the implementations generated
and automated testing of the abstract implementations and the concrete implementations created.

• Implementation of the whole algorithmic trading engine in reconfigurable hardware.
Rather than taking the approach of using heterogeneous computing solutions, the whole imple-
mentation could be moved to reconfigurable computing. This would provide an absolute speed
improvement and a very attractive system. Cost may be a prohibitive factor as considerably large
FPGA chips would be required which carry a premier. Another disadvantage is that more complex
abstract data types are used within the engine than the algorithms. This would require solving
first, my suggestion is that each algorithmic trading engine would support a set of orders, once
this capacity is full then another engine would be required to accept any more orders. A decision
would have to be made though on the ratio of parent to child orders, as a limit on the number of
active child orders for each parent order would have to be put in place. The last problem would be
designing the storage containers, there would have to be maintenance routines which would ensure
that the orders were organised and any free space was discovered so that new orders could be
accepted if there was available space. My solution to this would be to maintain an address books
of unused space which could be kept in an array, acting as a list. It would consist of an array of the
same size as the number of orders supported. Each entry would list a free entry in the main array
with non-free entries marked. Then an integer position of the end of the list could be maintained.
This would provide a method of accessing the end of the list, to add information onto. Finally,
information would be taken from the front of the list (the first element of the array) and then all
successive elements would be moved forward one place. The beauty of this solution is that it could
be achieved in a single cycle in reconfigurable hardware, as each cell can take the value of the cell
behind it, with the last cell taking a flag for in use.

• Investigation into the placement size of algorithms while varying their parameters.
As we saw in the evaluation of the hardware implementation, the size of the implementation
when placed on the device differs with the parameters for the algorithm compilation. This is to
be expected, what wasn’t was that when increasing some parameters, the size of the algorithm
decreased slightly. This has been attributed to the compiler of the algorithm being able to carry
out further optimisations on a slightly larger design. Therefore a finer-grained investigation into
the parameters of the algorithm and its size could provide information on the optimum algorithms
to be held in the placement library for deployment. That we any algorithms which do not provide
a performance benefit over another but consume more resources on the device can be removed so
that they are never deployed.

9.4 Final Remarks

Having completed this project I would like to review the opening scenario at the start. What difference
would have been made to the work of our anonymous trader had he adopted my reconfigurable hardware
solution? If we assume that the solution was adopted then the traded would have had greater faith in
the technological solution for automating the trading of his smaller orders. This would be because of
the increased performance benefits which show that the system could still perform optimally even with
a significantly increased work load than expected. This is due to the 377 times increase in total capacity
over the previous software based solution.

Additionally he would have greater faith in the price performance of the algorithms executing on the
system because of their reduced latency in decision making, down from 0.5 microseconds to less than
0.08. This ensures that our algorithmic trading engine makes its decisions before the competitors system,
meaning that our orders reach the attractive liquidity first and we get the price that we wanted. Denying
our competitors that price in the process. All this has been achieved by less than double the cost of the
initial hardware which was running the software solution and given the better price performance of the
algorithm, a cost that should pay for itself multiple times over quickly.
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