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Abstract

Electricity swing options are complex, Bermudan-style derivatives on elec-
trical energy. They can be considered as supply contracts for power, which
give flexibility in both the timing and amount of delivery. Pricing of such
instruments is a challenging task due to the path-dependence of the option,
non-storability of electricity and incompleteness of energy markets. We for-
mulate a model for determining a rational (fair) buyer’s price of a swing
option. In the model, following the robust optimisation approach, we repli-
cate the option by a hedging portfolio consisting of standard energy futures
contracts and a risk-free asset in different scenarios. We develop and apply
a set of simplifications and approximations which make the problem compu-
tationally feasible and validate our valuation scheme by comparing it with
existing, well-established methods for pricing derivatives in some limiting
cases. In order to prove that the approach is correct, we carry out numerical
convergence tests and present the results. Finally, we attempt to determine
a set of the algorithm parameters which provide a good balance between the
time and accuracy of the solution.
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Chapter 1

Introduction

Pricing of the swing options for many periods is a large-scale, complex prob-
lem and the valuation is done under uncertainty, as the future market move-
ments are unknown and often even unpredictable.

The number of possible scenarios of electricity prices movements is ex-
tremely large and the swing option is path-dependent, so it is difficult to use
tree-based valuation schemes. Instead, we notice that just a large enough
selection of the scenarios can be sampled and out of the set of all possible
scenarios and a tractable robust optimisation problem based on polynomial
decision rules can be formulated [1]. We are able to efficiently solve such
problem by using state-of-the art optimisation software like CPLEX1 in rea-
sonable time.

In our valuation scheme we assume that a trading strategy of buying a
single swing option can be replicated by investing in a portfolio of electricity
futures contracts and cash (self-financing trading strategy). Furthermore,
we assume that there is no arbitrage in the market. We attempt to price
a swing contract by solving a stochastic optimisation problem based on a
hedging portfolio of the contracts and cash (or risk-free asset) to find the
riskless buyer’s price of the option.

As the classical approach to the option pricing problem is to replicate an
option with a portfolio of underlying (available) securities in each possible
scenario, the robust valuation scheme we propose is natural and justified.

1CPLEX is a high-performance solver produced by IBM (http://www-
01.ibm.com/software/integration/optimization/cplex/)
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Chapter 1. Introduction

1.1 Structure of the report

We begin with presentation of the background of the swing option pricing
problem. We provide the overview of the energy markets (Section 2.1), define
the derivative itself (Section 2.2) and list some of the methods of pricing such
instruments which can be found in the literature (Section 2.3).

In Chapter 3 we give a brief introduction to the pricing model which we
use to generate different price movement scenarios (which we interchangeably
call samples). We also explain in detail how we price the hedging instruments
which we use in our pricing model.

Next, we introduce of the exact pricing problem in Chapter 4. This prob-
lem is clearly too expensive computationally to solve for large number of
periods. Therefore in Section 4.1, we introduce two simplifications which
result in significant reduction of the number of decision variables and con-
straints. In Section 4.2 we describe how we model the decision variables (in
form of the polynomial decision rules). Next, we verify that our model is
correct by comparing it with the well-known binomial lattice model (Sec-
tion 4.3) and showing that both valuation schemes yield the same results for
simple, path-independent options.

In Chapter 5 we proceed further in simplifying the pricing problem by
introducing the stages aggregation (grouping individual periods into macro-
periods). In Section 5.1 we describe in detail how the exercise patterns
during those macro-periods can be found by solving a deterministic linear
programming problem. We approximate the constraints from the original
problem (Section 5.2) and formulate the final pricing problem (Section 5.3).

Using the approximated model, we proceed to numerical experiments and
evaluate their outcomes in Chapter 6. We propose the configuration of the
algorithm parameters (sample size, number of stages, number of profiles etc.)
which can be used to achieve a reasonable accuracy and we justify this choice.
We verify that the results obtained are correct by performing some numerical
convergence tests in two cases: for polynomial decision rules of degree 1 and
2.

Final conclusions and suggestions for future work can be found in Chapter
7.
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Chapter 1. Introduction

1.2 Contributions

Summary of contributions:

• We formulate the mathematical pricing model for the swing options
in form of the robust optimisation linear programming problem based
on a dynamic hedging strategy with a portfolio of electricity futures
contracts and cash (risk-free asset). The model can be used to find a
risk-free bid (buyer’s) price of the swing option.

• We establish that our model is correct by carrying out some simple tests
and additionally showing that using the binomial lattice method and
our model yield the same results in cases of simpler pricing problems
(i. e. pricing of path-independent options).

• We introduce stages aggregation into our model in order to make it
applicable in terms of computational costs for exotic, path dependent
electricity derivatives pricing problems. On a specific numerical ex-
ample, we show that the approximated model is correct and attempt
to find a set of optimal parameters’ values for the algorithm which
guarantee both reasonable accuracy and solution time.
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Chapter 2

Background

2.1 Energy Markets

2.1.1 Historical background

In the past, electricity market was strictly regulated and controlled by govern-
ments. Prices were set in advance by the authorities and reflected simply the
costs of production of energy which was delivered by state-owned companies
(power plants). Therefore, energy consumers were not exposed to any price
risk. However, in the last two decades, the process of deregulation started
in many countries. Governments decided to liberalise the energy market and
free the prices, so that now they depend only on the market forces of supply
and demand. Electrical energy became a good which can be traded like any
other commodity. In particular, it can now be traded in form of delivery con-
tracts on specialised exchanges, such as European Energy Exchange (EEX)
or Amsterdam Power Exchange (APX).

As a consequence of the liberalisation of the energy market, a need for
managing the price risk became essential. The electricity prices are mean-
reverting, but they exhibit strong seasonalities and temporal jumps and
spikes. As in the case of the traditional commodities, the price risk related to
electrical energy is hedged away through special financial instruments called
derivatives (or options).

Due to high complexity of the energy derivatives and characteristics of the
underlying commodity (see Section 2.3.1) new techniques for valuing these
options had to be developed in order to make trading possible.
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Chapter 2. Background

2.1.2 Money Markets vs. Energy Markets

There are a few fundamental differences between energy and other financial
markets, presented in detail in [13], section 2. Let us summarise them in
brief in this section.

Energy markets are much more immature (the electricity market in par-
ticular) and less liquid in comparison to other financial markets. They have
more (and complex) fundamental price drivers, such as issues of storage,
transfer, weather or advances in technologies of production of energy. How-
ever, in the contrary to the traditional financial markets, the influence of
economic cycles (another fundamental driver) on prices of energy is low.

Finally, the types of financial contracts required by end users of deriva-
tives are much more complex in the energy market. They involve complex
price averaging and take into account customised characteristics of commod-
ity delivery.

2.1.3 European Energy Exchange (EEX)

European Energy Exchange, founded in 2002, based in Leipzig, Germany is
a leading European energy exchange with more than 200 members. Power
on spot, futures contracts for delivery of electricity and vanilla options (puts
and calls) are traded on the exchange.

Later in this report, in our model, we will be developing a trading strategy
based on a hedging portfolio of energy futures and cash (or risk-free asset) to
find the value of the electricity swing option. As we would like to make the
model presented in the paper as close to reality as possible, it is essential to
know and take into account the financial products which are indeed available
in the market. The following contracts are currently tradeable at European
Energy Exchange (EEX) [6]:

• Week futures (starting on Monday and expiring on Sunday on each
calendar week)

• Month futures (starting on 1st and expiring on the last day of each
calendar month)

• Quarter futures (maturity of 3 months, aligned with calendar quarters)

• Year futures

All the above futures with the following two load profiles are traded on EEX
[5]:
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Chapter 2. Background

• Base load (a constant delivery rate on all delivery days from Monday
until Sunday and during all 24 delivery hours of any delivery day during
the delivery period)

• Peak load (a constant delivery rate on all delivery days from Mon-
day until Friday and throughout 12 delivery days from 08:00am until
08:00pm of any delivery day during the delivery period)

Contracts cannot be traded once their delivery period has started. Addition-
ally, we assume that one has to pay for a future contract upfront, before the
delivery starts.

2.2 Swing Options

The electricity swing options (in other words, the take-or-pay options) are
Bermudan-style path-dependent derivatives with electrical energy as the un-
derlying commodity. The swing options have multiple exercise rights and
have constraints on total volume delivered. A swing contract often comes
together with a standard base load future contract for delivery of electrical
energy during a given period of time at a predetermined price and specifies
the amount of energy to be delivered. The swing contract allows flexibility in
delivery process (both in terms of timing and amounts) around the amount
of the base load contract.

The swing options are mainly used by risk-averse economic agents who
need to hedge against the electricity price risk. The risk could have been
also mitigated by using standard European call or put options, or a series of
American options, but as pointed out in [9] such solution would often result
in overpaying for protection which is not needed. The swing options are
much better and cheaper hedging instruments.

More details about the swing options (detailed characteristics, types and
mathematical formulation) can be found in [9] and in [13].

2.3 Valuation of the Swing Options

2.3.1 Overview

As the market for electricity derivatives arised, so did the need for valuation
of new products. The differences between electricity options and any other
commodities’ derivatives have been listed by Kuhn and Haarbrücker [7] and
include:
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Chapter 2. Background

• Non-storability. The production of electrical energy has to cover de-
mand instantaneously as it cannot be stored efficiently.

• Markets for electricity derivatives are, in general, illiquid. Financial
products are traded over-the-counter and as a consequence spreads are
large and counterparty risk exists.

• Electricity spot prices are mean-reverting, which means that both low
and high levels are temporary and the price will tend to have an average
price over time. However, strong seasonalities, jumps and spikes can
be observed. For example, weather and power plants outages can be
very significant drivers of energy prices.

As a consequence, new sophisticated valuation schemes are required for the
electricity swing options.

2.3.2 Previous approaches

A lot of research has been done in the area of valuing the swing options and
many pricing techniques have been developed in the recent years. Nearly
all of them are variations of the stochastic dynamic programming (SDP)
approach.

Monte Carlo simulation

Monte Carlo simulation technique for pricing swing options was presented by
Ibanez [8]. They derive theoretical properties of price and the optimal exer-
cise frontier of these derivatives and, by applying the Monte Carlo simulation,
compute the optimal exercise frontier recursively to price the option.

Davison and Anderson [4] also proposed a technique for pricing electric-
ity swing options based on the Monte Carlo simulation. Their method works
under very simplified assumptions. They take into account weekly average
on-peak electricity prices, determine an approximate early exercise bound-
ary and run the Monte Carlo simulation to obtain the price. The drawback
of the method is that the resulting prices are underestimate of the true op-
tions’ prices, because the exercise boundaries that are computed using the
techniques shown in the paper are not optimal for the unsimplified models.

Another simulation-based method is the Least Squares Monte Carlo al-
gorithm [10] which uses least squares estimates to approximate conditional
expectations within the stochastic dynamic programming scheme.

Furthermore, as pointed out by Pilipovic [13] (section 10.6), using the
Monte Carlo simulations on the trading floor has two major concerns: pro-
cessing time and market-to-market compliance issues. However, techniques

7



Chapter 2. Background

based on simulation might be useful for testing methodologies used on trading
floors.

Forest of recombining trees

The traditional tree-based approach for valuation of options is based on build-
ing a tree for the option settlement price that defines the movements, up and
down, from node to node, of the option settlement price from now until the
time of option expiration (more details can be found in [13], section 10.5).
The technique works well for American-style option, but is in general hard
to use it for Asian path-dependent options as there it becomes very time-
consuming to arrive at the solution. Another drawback of the method is that
it is expensive in terms of resources (memory) needed, especially for longer
periods.

The approach developed by Jaillet et al. [9] is based on a multistage tree
stochastic dynamic programming method. The procedure starts at the expi-
ration date of the swing option and works backward in time using ”backward
induction” in three dimensions: price, number of exercise rights left and us-
age level. At every time period, an action which adds maximum value to the
solution is chosen. Each exercise of a swing right causes a jump to a next
tree, with fewer exercise rights left. As mentioned earlier, the technique is
expensive and both a lot of time and computer memory are needed to build
and solve the trees.

Other stochastic programming methods

Carmona and Touzi [3] formulate and analyse the problem of valuation of
the swing options as an optimal multiple stopping problem and solve it by
methods of the stochastic calculus.

The multistage stochastic programming technique presented by Kuhn and
Haarbrücker [7] based on a scenario tree model can be applied to difficult elec-
tricity swing option pricing problems which are hard to solve using stochastic
dynamic programming methods. It can be applied to more realistic models,
where several risk factors exist. What is more, constraints on gradient of
consumption rate of energy can be taken into account (in contrary to for
example Jaillet et al. [9] approach, where restrictions were imposed only
on the consumption rate and its integral). Swing options with many exer-
cise times can be priced efficiently using this technique. This is achieved
by introducing a number of simplifying approximations to make the pricing
model computationally tractable: reduction of the information process, dis-
cretization of the probability space and reduction of the number of decision
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Chapter 2. Background

variables. The resulting stochastic linear programming program is tractable
and solvable by LP solvers available in the market (for example CPLEX).
This technique seems to be most flexible and precise, as it does not require
any special structural requirements on price processes and does not impose
unrealistic constraints on the swing options.

Steinbach and Vollbrecht [14] based their pricing model on the one pre-
sented in [7]. They constructured scenario trees and used the idea of value of
stochastic solution (VSS) to help deciding on when to branch and how many
branches to use. A high efficiency of this technique has been achieved by
decomposing the valuation problem into independently solvable subperiod
problems.

Broussev and Pflug [12] develop a game-theoretic model and find the ask
(seller’s) price of the swing option. They base they approach on a hedging
portfolio of futures contracts for the electrical energy. They propose a static
hedging strategy (portfolio is defined before the delivery period of the option
starts).

9



Chapter 3

Forward Price Dynamics

In order to formulate a pricing problem for the electricity swing option, we
start with construction of a pricing model for the underlying commodity
(electrical energy). We assume that the electricity markets are arbitrage-
free, frictionless and efficient. This might not be necessary true in the reality,
but the liquidity of these markets is likely to increase, so the assumption is
justified.

We begin with defining all symbols used later in the report. Let’s assume
we want to price an electricity swing option with delivery period starting at
time 1 and expiring at time I (for some I ≥ 1). The time between start and
expiration is divided into a discrete number of equally-long periods i (i.e.
i ∈ I, I = {1 . . . I}) of length ∆ (later in the report w.l.o.g. we assume that
∆ = 1). Our model will be based on a virtual hedging portfolio - a collection
of electricity futures contracts and cash (risk-free asset). Let C = {0 . . . C}
denote the set of all assets which can be used for hedging (there are C types
of futures contracts in total and the risk-free asset) and let c ∈ C be a single
asset with c = 0 representing the risk-free asset. Then, let Gc

i be the price
of asset c at period i. Similarly, the price of the risk-free asset is denoted by
G0
i .

3.1 Futures contracts

In our model, we attempt to estimate the bid (buyer’s) price by valuing
a hedging portfolio consisting of the standard (tradeable on the European
Energy Exchange) futures contracts. Similarly to the approach presented
in [7], we use a logarithmic, probabilistic model for forward price dynamics
based on a popular Pilipovic model ([13], Section 6.6). This approach is
supported by the fact that forward prices curves are used extensively on

10



Chapter 3. Forward Price Dynamics

trading floors as a tool for supporting decision making process, so it is natural
to base our model on them. The meanings of the symbols used to describe
the stochastic price process are presented in the Table 3.1.

Symbol Meaning
ξi vector of random variables at time i; ∀ξ ∈ Ξ
ξi set of vectors for all periods from 1 up to i
Fij(ξ

i) price at period i of one future contract expiring in period j
σn nth volatility function; there are N functions in total
µ drift parameter

Table 3.1: Forward price curve symbols

The prices are modelled by the following equation:

log(Fi+1,j(ξ
i+1))− log(Fij(ξ

i)) =
m∑
n=1

(σnj−iξi,n) + µj−i

∀i ∈ I,∀j ≥ i

(3.1)

Where ξin represents the nth element of the vector ξi ∈ Rm. By removing the
recursion, we obtain the following formula:

log(Fij(ξ
i)) = log(F0j) +

i−1∑
l=0

[(
m∑
n=1

σni−lξl,n) + µi−l]

∀i ∈ I,∀j ≥ i

(3.2)

Note that F0j (today’s forward price curve) is assumed to be known in ad-
vance. The spot price at time i is defined as Fii(ξ

i).
Then, having all the forward prices curves calculated, we are able to

calculate price of any contract using the following formula:

Gc
i =

tc∑
j=max{sc,i}

Fij(ξ
i)

∀i ∈ I,∀c ∈ C\{0}

(3.3)

where sc and tc mean respectively start and expiration times of a contract.
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Chapter 3. Forward Price Dynamics

3.2 The Risk-Free Asset

The price of a unit of the risk free-asset at time period i is simply estimated
by a simple compounding formula:

G0
i = erf (i−1)

∀i ∈ I
(3.4)

where rf is a risk-free rate.
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Chapter 4

The Pricing Model

We assume that the bid (or buyer’s) price of the swing option contract is equal
to the maximum expected profit that can be made by the option holder from
exercising the option. We price the option by replicating it by the hedging
portfolio.

Because of the specific features of the electrical energy (non-storability),
we cannot hedge using the underlying security (electrical energy) directly, so
we have to use derivatives which are available in the market. We construct a
hedging portfolio consisting of the electricity futures contracts and the risk-
free asset. Just before beginning of each period i, the amounts of hedging
instruments can be changed (portfolio rebalancing) and the changes depend
on current expectation of the future prices movements (based on the shape
of the forward prices curve at period i). Let xci (ξi) be the number of futures
contracts of type c (or number of units of the risk-free asset) that we own
in time period i and let uci (ξi) denote a change in the number of contracts
between periods i − 1 and i. Let xi = {x0i (ξi) , x1i (ξi) , . . . , xCi (ξi)} be the
vector representing the amounts of all hedging instruments at time i, and let
x = {x0,x1, . . . ,xI} be the array of vectors for all periods i ∈ I and addition-
ally x0 which denotes the amounts of hedging instruments held initially. Sim-
ilarly, we define ui = {u0i (ξi) , u1i (ξi) , . . . , uCi (ξi)} and u = {u1,u2, . . . ,uI}.
Both xci (ξi) and uci (ξi) are the decision variables in our problem. We assume
that initially no futures contracts are held (i.e. xc0 = 0,∀c ∈ C\{0}). We
need to impose a constraint xcI

(
ξI
)
≥ 0, which ensures that at the maturity

(i = I), we have non-negative amounts of all contracts and cash.
The swing option holder has the right to exercise the option at various

time periods for chosen amounts of power. The amount of power purchased
or sold at each period i is represented by the decision variable pi (ξ

i). Let p =
{p1 (ξ1) , p2 (ξ2) , . . . , pI

(
ξI
)
}. In the swing option contracts the limitations

on power purchased (or sold) in each time period i are specified. We denote
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Chapter 4. The Pricing Model

them as p (lower limit) and p (upper limit). Therefore, in our model, we
require:

p ≤ pi
(
ξi
)
≤ p, ∀i ∈ I. (4.1)

Sometimes additional ramping constraints are specified as well. They impose
limitations on the change in amounts of the power the option is exercised for
in neighbouring periods. This is captured in our model in the form of the
following constraint:

|pi
(
ξi
)
− pi−1

(
ξi−1

)
| ≤ ρ, ∀i ∈ I. (4.2)

Where we set the dummy variable p−1 = pstart.
Moreover, between the start time (i = 1) and the expiration (i = I) of

the delivery, the cumulative energy is required to lie between the given target
values e and e.. The strike price of the option is denoted by K.

Symbol Meaning Unit
K Strike price e/MWh
p Lower power limit MW
p̄ Upper power limit MW
pstart Starting level of power MW
ρ Ratchet MW
e Lower energy limit MWh
ē Upper energy limit MWh

Table 4.1: Pricing model parameters

The optimal solution to the robust linear programming problem presented
below (SOIbuyer) represents the (riskless) buyer’s price (bid price) for a swing
option contract.
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Chapter 4. The Pricing Model

max
x,u,p

− x00 (SOIbuyer)

s.t. xci
(
ξi
)

= xci−1
(
ξi−1

)
+ uci

(
ξi
)

∀ξ ∈ Ξ, i ∈ I, c ∈ C
xcI
(
ξI
)
≥ 0 ∀ξ ∈ Ξ, c ∈ C

p
i
≤ pi

(
ξi
)
≤ pi ∀ξ ∈ Ξ, i ∈ I

e ≤
∑
i∈I

pi
(
ξi
)
≤ e ∀ξ ∈ Ξ

|pi
(
ξi
)
− pi−1

(
ξi−1

)
| ≤ ρ ∀ξ ∈ Ξ, i ∈ I

pi
(
ξi
)

(Fii
(
ξi
)
−K)−

∑
c∈C

Gc
iu
c
i

(
ξi
)

+
C∑
c=1

sc≤i≤tc

xci
(
ξi
)
Fii
(
ξi
)
≥ 0 ∀ξ ∈ Ξ, i ∈ I.

The last constraint in the problem SOIbuyer ensures that the value of the
hedging portfolio is non-negative at all times.

Even though the model SOIbuyer is realistic, it is too complex to be solved
(too expensive computationally). Therefore, we need to introduce some sim-
plifications.

4.1 Simplifications

In the next sections, we will identify and apply two simplifications in order
to make the problem SOIbuyer easier to solve.

4.1.1 Reduction of the number of variables

Firstly, the pricing model SOIbuyer can be simplified by reduction of the num-
ber of the decision variables.

By eliminating recursion, we remove all the xci (ξi) ,∀i ∈ I decision vari-
ables from the robust optimisation problem SOIbuyer, resulting in a new prob-
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Chapter 4. The Pricing Model

lem SOIIbuyer.

max
x00,u,p

− x00 (SOIIbuyer)

s.t. xc0 +
I∑
j=1

ucj
(
ξj
)
≥ 0 ∀ξ ∈ Ξ, c ∈ C

p
i
≤ pi

(
ξi
)
≤ pi ∀ξ ∈ Ξ, i ∈ I

e ≤
∑
i∈I

pi
(
ξi
)
≤ e ∀ξ ∈ Ξ∣∣pi (ξi)− pi−1 (ξi−1)∣∣ ≤ ρ ∀ξ ∈ Ξ, i ∈ I

C∑
c=1

sc≤i≤tc

(
i∑

j=1

ucj
(
ξj
))

Fii
(
ξi
)
−
∑
c∈C

Gc
iu
c
i

(
ξi
)

+ pi
(
ξi
) (
Fii
(
ξi
)
−K

)
≥ 0 ∀ξ ∈ Ξ, i ∈ I

4.1.2 Reduction of the number of constraints

Next, we can reduce significantly the number of constraints by modifying the
last constraint. Instead of having one constraint for each period, one single
inequality constraint for all periods can be defined.

max
x00,u,p

− x00 (SOIIIbuyer)

s.t. xc0 +
I∑
j=1

ucj
(
ξj
)
≥ 0 ∀ξ ∈ Ξ, c ∈ C

p
i
≤ pi

(
ξi
)
≤ pi ∀ξ ∈ Ξ, i ∈ I

e ≤
∑
i∈I

pi
(
ξi
)
≤ e ∀ξ ∈ Ξ∣∣pi (ξi)− pi−1 (ξi−1)∣∣ ≤ ρ ∀ξ ∈ Ξ, i ∈ I

∑
i∈I

1

G0
i

 C∑
c=1

sc≤i≤tc

(
i∑

j=1

ucj
(
ξj
))

Fii
(
ξi
)
−
∑
c∈C

Gc
iu
c
i

(
ξi
)

+pi
(
ξi
) (
Fii
(
ξi
)
−K

))
≥ 0 ∀ξ ∈ Ξ

The new problem SOIIIbuyer is much simpler to solve as I constraints from
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SOIIbuyer are exchanged with just one, single constraint. Furthermore, we can

easily show that the problems SOIIbuyer and SOIIIbuyer are in fact equivalent.

Proposition 4.1.1 The robust problems SOIIbuyer and SOIIIbuyer have the same
optimum.

Proof We need to show that:

1. Any solution which is feasible in SOIIbuyer, is also feasible in SOIIIbuyer.
This is trivially satisfied, since the sum of elements which are all non-
negative is also non-negative. Therefore, any feasible solution of SOIIbuyer
is also feasible in SOIIIbuyer.

2. Any optimal solution of SOIIIbuyer, is also the optimal solution of SOIIbuyer.
Clearly, there is a possibility of finding a solution that is feasible in
SOIIIbuyer, but infeasible in SOIIbuyer. Let’s assume that such a solution
exists and denote it as (x̃00, ũ, p̃) (if such a solution does not exist, then
the proposition is trivially satisfied). In each period, we can control
the amounts of hedging instruments held in the portfolio. We proceed
to show that with the same initial capital x00 = x̃00, one can devise a
strategy which is feasible for SOIIbuyer. For notational convenience, we
set

κi
(
ξi
)

:=
C∑
c=1

sc≤i≤tc

(
i∑

j=0

ucj
(
ξj
))

Fii
(
ξi
)
−

C∑
c=1

Gc
iu
c
i

(
ξi
)

−G0
i ũ

0
i

(
ξi
)

+ pi
(
ξi
) (
Fii
(
ξi
)
−K

)
, ∀i ∈ I.

(4.3)

Suppose that when rebalancing the portfolio before each period i, one
borrows/lends the additional amount κi (ξ

i) /G0
i (respectively, κi (ξ

i)
is negative/positive), i.e.

uci
(
ξi
)

= ũci
(
ξi
)

+
κi (ξ

i)

G0
i

(4.4)
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Then, substituting into the last constraint of SOIIbuyer yields:

C∑
c=1

sc≤i≤tc

(
i∑

j=0

ucj
(
ξj
))

Fii
(
ξi
)
−
∑
c∈C

Gc
iu
c
i

(
ξi
)

+ pi
(
ξi
) (
Fii
(
ξi
)
−K

)

=
C∑
c=1

sc≤i≤tc

(
i∑

j=0

ucj
(
ξj
))

Fii
(
ξi
)
−

C∑
c=1

Gc
iu
c
i

(
ξi
)
−G0

iu
0
i

(
ξi
)

+ pi
(
ξi
) (
Fii
(
ξi
)
−K

)
=

C∑
c=1

sc≤i≤tc

(
i∑

j=0

ucj
(
ξj
))

Fii
(
ξi
)
−

C∑
c=1

Gc
iu
c
i

(
ξi
)
−G0

i ũ
c
i

(
ξi
)
− κi

(
ξi
)

+ pi
(
ξi
) (
Fii
(
ξi
)
−K

)
= 0.

Such a strategy clearly satisfies the last constraint in SOIIbuyer. The only

thing left to verify is the first constraint in SOIIbuyer for c = 0:

x00 +
I∑
j=1

u0j
(
ξj
)

= x00 +
I∑
j=1

ũ0j
(
ξj
)

︸ ︷︷ ︸
≥0

+
I∑
j=1

κj (ξj)

G0
j︸ ︷︷ ︸

≥0

≥ 0

where both terms are positive since (x̃00, ũ, p̃) is feasible in SOIIIbuyer.

Since any feasible point of SOIIbuyer is feasible for SOIIIbuyer and for any feasible

point in SOIIIbuyer, there exist a feasible point in SOIIbuyer with the same objec-

tive value, the two problems SOIIbuyer and SOIIIbuyer have the same optimum
(although the feasible set of the second problem is potentially larger). �

4.2 Polynomial Decision Rules

For modelling the decision variables which values depend on the random
variables, we use the polynomial decision rules. Suppose we begin with the
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vectors of random variables, as defined earlier ξi ∈ Rm:

ξ1 =

 ξ11
...
ξ1m

 , ξ2 =

 ξ21
...
ξ2m

 , . . . , ξi =

 ξi1
...
ξim


Then, for example, the uci (ξi) decision variable can be expressed as:

uci
(
ξi
)

=
∑

n∈Nm×i
0

(υcn
∏
k=1...i
j=1...m

ξ
nkj

kj ) (4.5)

With the following constraint on sum of powers n:∑
k=1...i
j=1...m

nkj ≤ d (4.6)

Where d is a parameter specifying a degree of the polynomials. One could
expect that solving the problem with higher degree of polynomials would
result in more accurate solution. On the other hand, this would make the
linear programming problem harder to solve, as it the number of variables
would increase.

Similarly, we express pi (ξ
i) as:

pi
(
ξi
)

=
∑

n∈Nm×i
0

(πn
∏
k=1...i
j=1...m

ξ
nkj

kj ) (4.7)

The values of the decision variables υcn and πcn,∀c ∈ C, n ∈ Nm×i
0 are to be

found by solving the problem.
A number of samples (ξ vectors are sampled from Ξ) of such polynomials

will be generated (to represent different scenarios), and respective number of
constraints will be added to the linear programming problem which is being
solved. Even though the uncertainty set Ξ is infinite (the number of possible
scenarios), we can claim that the solution will be accurate to some degree,
which can be precisely estimated as described by Campi and Garatti in [2].
Alternatively, we can also estimate the probability of violation of any of the
constraints of a newly generated problem instance by the previously calcu-
lated optimal solution (Section 6.3). As more ξ vectors are sampled, more
constraints are added to the optimisation problem, increasing its complexity,
but also at the same time improving the accuracy of the solution.
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4.3 Comparison with Binomial Lattice Model

In this section we compare our pricing model with the well-known binomial
lattice model. We can use our optimisation problem formulation to price
simple, path-independent call options (with electrical energy as the underly-
ing asset) and compare the results with those obtained by using the binomial
lattice.

In the binomial lattice model, if we know the price of the underlying
asset at the beginning of a single period (of a fixed length), the price at the
beginning of the next period can have only one out of two possible values.
These values are estimated by multiplying the initial price by either u or d
(respectively, price going up or down). We proceed, step by step, forward in
the lattice to find the value of the underlying asset at all periods under all
scenarios.

Let the total number of periods in the pricing problem equal T . At the
last period (T ), assuming that p = 0, we define the value of the option under
some scenario in which price of the underlying equals ST in that period to
be the amount of money which can be gained by exercising the option:

CT = max {p (ST −K) , 0} (4.8)

The price ST differs across scenarios. By the scenarios we mean some com-
binations of the multiplications of the initial price S0 by u and d. In the
binomial lattice model with T periods, we have T unique scenarios.

We price the option backwards, using the following formula:

Ct−1 =
1

R
Ê[Ct] + max {p (St−1 −K) , 0} , ∀t < T (4.9)

where Ê[Ct] denotes the expected value with respect to the risk-neutral prob-
abilities q and (1− q) defined as:

q =
R− d
u− d

(4.10)

where R is the risk-free rate growth factor.
The final value of the option is computed when reaching the root of the

lattice, i.e. C1. In order to avoid arbitrage, we always require

u > R > d (4.11)

The details of the risk-neutral pricing and the binomial lattice model can be
found in [11].
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We can also use our pricing model SOIIIbuyer to price the electricity call
option. We need to drop the energy constraint and the ramping constraint,
as they are not needed in this simple case. We set I to be equal to the number
of periods in the binomial lattice and use just one hedging instrument which
can be considered as a future contract with maturity date and time equal
to the start date and time. For example, a contract starting at time i = 2
terminates at i = 2 as well. The degree of the polynomials has to be set to
d = T−1, as we require that many degrees of freedom to take into account all
possible price movements. Instead of the price model described in Chapter
3, we use simple deterministic pricer which multiplies the initial price S0 by
the appropriate sequence of u and d (different and unique for each scenario).
We generate as many samples (scenarios), as there are terminal nodes in the
binomial lattice. So for 2 periods we generate 2 samples of the constraints,
and for 3 periods - 4 samples.

Instead of the ξ vectors with random variables described earlier, we use
predefined values, each representing one of the two possible price movements.
Each scenario is represented by a unique sequence of such values.

4.3.1 Numerical Example

Our choice of the binomial lattice parameters is shown in the Table 4.2.

Parameter Value
u 1.2
R 1.1
d 0.9
S0 20 e/MWh
K 20 e/MWh
p 60 MW

Table 4.2: Binomial lattice parameters

When evaluating the option using equation (4.9) and the binomial lattice
with 2 periods, the price is 145.45 e/MWh. When using larger lattice, with
3 periods, the solution changes to 374.66 e/MWh.

By following the instructions above, we managed to price this simple
option using the model SOIIIbuyer. The linear programming problem for 2
periods, in the form of CPLEX .lp file, is presented on Figure 4.2 obtain
exactly the same results as when using the binomial lattice model and the
recursive pricing formula (both in the case of 2 and 3 periods).

The result presented above is an evidence that our valuation scheme is
correct when used for pricing simple call options.
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Figure 4.1: The option priced on a 2 period binomial lattice model

Maximize

obj: - x00

Subject To

c0: uc11 + 1.2 uc21 + uc22 + x00 >= 0.0

c1: u111 + 1.2 u121 + u122 >= 0.0

c2: p11 <= 60.0

c3: p11 >= 0.0

c4: 1.2 p21 + p22 <= 60.0

c5: 1.2 p21 + p22 >= 0.0

c6: - uc11 - 20.0 u111 + 4.363636363636363 p21

+ 3.6363636363636362 p22 - 1.2 uc21 - uc22

- 26.18181818181818 u121 - 21.818181818181817 u122 + 21.818181818181817 u111

+ 26.18181818181818 u121 + 21.818181818181817 u122 >= 0.0

c7: uc11 + 0.9 uc21 + uc22 + x00 >= 0.0

c8: u111 + 0.9 u121 + u122 >= 0.0

c9: p11 <= 60.0

c10: p11 >= 0.0

c11: 0.9 p21 + p22 <= 60.0

c12: 0.9 p21 + p22 >= 0.0

c13: - uc11 - 20.0 u111 - 1.6363636363636362 p21

- 1.8181818181818181 p22 - 0.9 uc21 - uc22

- 14.727272727272727 u121 - 16.363636363636363 u122 + 16.363636363636363 u111

+ 14.727272727272727 u121 + 16.363636363636363 u122 >= 0.0

Bounds

- inf <= p11 <= + inf

- inf <= p21 <= + inf

- inf <= p22 <= + inf

- inf <= u111 <= + inf

- inf <= u121 <= + inf

- inf <= u122 <= + inf

- inf <= uc11 <= + inf

- inf <= uc21 <= + inf

- inf <= uc22 <= + inf

- inf <= xc0 <= + inf

End

Figure 4.2: CPLEX .lp file with the linear programming problem corresponding
to pricing the option in 2 period binomial lattice model
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Chapter 5

Stages Aggregation

In order to be able to price real electricity swing options with long delivery
periods (typically from a few weeks to a couple of months), we have to
simplify the model SOIIIbuyer further by reducing significantly the number of
decision variables. We do this through aggregating the stages, in principle
following the method presented in [7].

5.1 Exercise Profiles

In order to make the problem computationally possible to solve, we aggregate
individual trading periods (i ∈ I) into T ’macro periods’ and, in a result,
reduce further the number of decision variables. Such periods are defined as:

{it, it + 1, . . . , it+1 − 1},∀1 ≤ t < T

{it, it + 1, . . . , I}, t = T

Trading decisions (uci (ξi) ,∀c ∈ C) are taken only at the beginning of
all macro-periods (only at i = it), at all other single-periods in between the
decision variables are set to zero.

Similarly, the exercise patterns (pi (ξ
i)) have to be chosen at the beginning

of each macro-period. Therefore, we need to pre-specify exercise profiles.
During each of the periods it . . . it+1 − 1, the power we exercise has to be

kept within the power constraints limits (p and p̄). If there was no constraint
on total energy exercised, we would like to exercise the option whenever a
spot price (Fii (ξ

i)) is higher than the strike price (K) for the maximum
possible amount of power (p̄).

By taking the energy constraint into account, the strike price in each pe-
riod i should be adjusted by some parameter. Let this parameter be repre-
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Chapter 5. Stages Aggregation

sented as Li. So the option would be exercised in macro-period t, under some
exercise profile α, if the price is higher than Cα

t = K+Lt (cut-off), assuming
Lt is constant in some it . . . it+1 − 1 interval (Lt = Li,∀i : it ≤ i ≤ it+1 − 1).

We can find a near-optimal strategy for exercising the option for a certain
scenario can be found by solving a simple deterministic linear program:

max

it+1−1∑
j=it

((
Fitj

(
ξj
)
− Cα

t

)
pj
)

s.t. p ≤ pj ≤ p̄,∀j = it . . . tt+1 − 1
|pj − pj−1| < ρ,∀j : it ≤ j ≤ tt+1 − 1

(5.1)

Where ρ is a ratchet to be chosen (as previously) and pj is no longer a decision
variable.

We need to solve (5.1) for α (where α = 1 . . . A) different values of the
cut-off Cα

t . In general, we require A ≥ 2, as we need to have at least 2 profiles
with the following cut-off values:

C1
t = min{Fitj

(
ξj
)
| it ≤ j ≤ it+1 − 1}

and
CA
t = max{Fitj

(
ξj
)
| it ≤ j ≤ it+1 − 1}

However, in order to obtain interesting profiles, we will solve (5.1) for a few
more cut-off values, such that C1

t ≤ C2
t ≤ . . . ≤ CA−1

t ≤ CA
t .

Solving (5.1) for α (where α = 1 . . . A) different values of the cut-off Cα
t

results in A exercise profiles for macro-period t (in the form of the vectors
filled with values representing amounts of power to be exercised at each
atomic period):

pαt = (pαit , . . . , p
α
it+1−1) (5.2)

5.1.1 Example

To illustrate the idea of pre-defined exercise profiles, we present an example
of five exercise patterns found for some exemplary forward prices curve and
a period of one week (168 hours).

We found the exercise profiles by solving the deterministic linear program-
ming problem 5.1. The parameters are set to A = 5, p = 0MW, p = 60MW
ρ = 6MW, K = 20e/MWh and the dummy variable p−1 = pstart = 0MW.

One can notice that in the first profile, where the prices are always non-
negative, one would like to exercise as much power as possible in every hour.
However, because of the ramping constraint and pstart = 0MW, we observe
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Figure 5.1: Shifted forward price curve for first exercise profile

Figure 5.2: First power exercise profile

the delay (in the first 10 hours) in reaching the maximum level of power
which can be exercised.

Figure 5.3: Shifted forward price curve for second exercise profile

The second exercise profile is more interesting. The prices at some of
the hours shifted with the second cut-off value become negative and it is not
profitable to exercise at these times. However, again due to the existence of
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Figure 5.4: Second power exercise profile

the ramping constraint, the option holder is not able to reduce the amount
of power to zero immediately, whenever the forward prices curve becomes
negative.

Figure 5.5: Shifted forward price curve for third exercise profile

Figure 5.6: Third power exercise profile

In the last exercise profile, all the shifted prices are below zero (as pre-
sented on Figure 5.9). In such situation, the option holder does not wish
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Figure 5.7: Shifted forward price curve for fourth exercise profile

Figure 5.8: Fourth power exercise profile

to exercise at any hour. Therefore, the resulting profile is just a straight,
horizontal line aligned with the x axis (Figure 5.10).

Figure 5.9: Shifted forward price curve for fifth exercise profile
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Figure 5.10: Fifth power exercise profile

5.2 Approximation of the Constraints

In this section, we attempt to approximate the original pricing model SOIIIbuyer

by making use of the exercise profiles and modifying the constraints appro-
priately.

The only constraints which need to be changed are those which involve
power amount decision variables.

Let’s define the amounts of power the option is exercised for in each
macro-period t using the equation (5.2):

pt =
A∑
α=1

(λαt
(
ξt
)
pαt ) (5.3)

Where λαt (ξt) is unknown and represents a decision variable. We require∑A
α=1 λ

α
t (ξt) = 1 and λαt (ξt) ≥ 0, ∀α = 1 . . . A. All the elements of the pt

vector need to be bounded by the power limits p and p.
As the energy constraint restricts the aggregate amount of power which

can be exercised in all periods, it needs to be changed and related to the
chosen exercise profiles. Let eαt represent the amount of energy the option is
exercised for in macro-period t under some exercise profile α.

eαt = eTpαt =

it+1−1∑
i=it

pαi (5.4)

Where e is a vector of ones, i.e. eT = [1, 1, . . . , 1].
Next, taking into account all exercise profiles, the total energy (e) is
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represented as:

e =
T∑
t=1

eTpt =
T∑
t=1

A∑
α=1

λαt
(
ξt
)
eαt (5.5)

Hence, we obtain the energy constraint in a certain scenario:

e ≤
T∑
t=1

A∑
α=1

λαt
(
ξt
)
eαt ≤ ē (5.6)

Finally, the last constraint (5.7) from the original problem SOIIIbuyer needs
to be modified accordingly to depend on the new λ (ξ) variables instead of
the original power decision variables p (ξ).

∑
i∈I

1

G0
i

 C∑
c=1

sc≤i≤tc

(
i∑

j=1

ucj
(
ξj
))

Fii
(
ξi
)
−
∑
c∈C

Gc
iu
c
i

(
ξi
)

+pi
(
ξi
) (
Fii
(
ξi
)
−K

))
≥ 0 ∀ξ ∈ Ξ

(5.7)

The power decision variable appears in the third term of the constraint
(5.7):

pi
(
ξi
)

(Fii
(
ξi
)
−K) (5.8)

By aggregating the stages, (5.8) changes to:

it+1−1∑
i=it

pi
(
ξi
)

(Fii
(
ξi
)
−K) (5.9)

Now let St be the vector of all spot prices of single periods within the
macro-period t, i.e.:

St =

 Fitit (ξit)
...

Fit+1−1it+1−1 (ξit+1−1)


and (St−Ke) is a vector of all differences between the spot and strike prices
in all single periods in one macro-period t:
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Then, (5.9) can be represented as:

it+1−1∑
i=it

pi
(
ξi
)

(Fii
(
ξi
)
−K) = (St −Ke)Tpt

=
A∑
α=1

λαt
(
ξt
)

(St −Ke)Tpαt ∀ξ ∈ Ξ

(5.10)

Substituting into the constraint, yields:

T∑
t=1

1

G0
t

(
A∑
α=1

λαt
(
ξt
)

(St −Ke)Tpαt −
∑
c∈C

Gc
iu
c
i

(
ξi
)

+
C∑
c=1

sc≤t≤tc

(
t∑

j=1

ujc
(
ξj
)
eTSt

) ≥ 0 ∀ξ ∈ Ξ

(5.11)
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5.3 The Final Pricing Model

By introducing all the approximations into the model SOIIIbuyer, we obtain the

final model SOIVbuyer.

max
x00,u,λ

− x00 (SOIVbuyer)

s.t. xc0 +
T∑
j=1

ucj
(
ξj
)
≥ 0 ∀ξ ∈ Ξ, c ∈ C

A∑
α=1

λαt
(
ξt
)

= 1 ∀ξ ∈ Ξ, t < T

λαt
(
ξt
)
≥ 0 ∀ξ ∈ Ξ, t < T

e ≤
T∑
t=1

(
A∑
α=1

λαt
(
ξt
)
eαt

)
≤ ē ∀ξ ∈ Ξ

T∑
t=1

1

G0
t

(
A∑
α=1

λαt
(
ξt
)

(St −Ke)Tpαt −
∑
c∈C

Gc
iu
c
i

(
ξi
)

+
C∑
c=1

sc≤t≤tc

(
t∑

j=1

ujc
(
ξj
)

eTSt

) ≥ 0 ∀ξ ∈ Ξ

In the next sections we will show how this model can be used to price the
electricity swing options in practice and evaluate our pricing scheme.

31



Chapter 6

Numerical Results and
Evaluation

In this section, in order to verify the degree of accuracy of our valuation
scheme and to establish whether it can be used in practical situation, we will
carry out a series of numerical experiments1. Unless otherwise noted, in all
computational results are based on the parameters values presented in the
Table 6.1.

tstart = 1 Aug 2004, 00:00 ∆ = 1 h
tend = 31 Oct 2004, 24:00 I = 2208 h
p = 0 MW ρ = 6 MW
p̄ = 60 MW A = 6
pstart = 0 MW m = 2
e = 0 MWh K = 20e/MWh
ē = 52992 MWh rf = 0

Table 6.1: Model parameters choice

We denote the beginning and end of the delivery period by tstart and tend
respectively. The risk-free rate is set to zero for the sake of simplicity.

Our numerical experiments indicate that the pricing model SOIVbuyer with
polynomials of degree 1 (d = 1), 5 aggregated stages, 6 power exercise profiles
(A = 6) and 3000 samples, and quarter, month and week futures as hedging
instruments, achieves reasonable accuracy and solution time of approximately
13 seconds. The option value estimated by using these parameters equals
8.21982Ee.

1All calculations were carried out on a 2.26 GHz Intel Core 2 Duo PC with 4GB of
RAM and the instances of the problem SOIV

buyer were solved with CPLEX 11.2.1.
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6.1 Electricity Prices

For our numerical calculations we used a forward prices curve for period of
3 months, from 1 August 2004 (00:00) to 31 October 2004 (24:00). Part of
this curve is shown on Figure 6.1.

Figure 6.1: Future prices curve used in the first contract week

6.1.1 Forward price model parameters

In the prices generation process we used two volatility functions σ1
i and σ2

i

defined as:
σ1
i = ν1e

−α1(I−i)

and
σ2
i = ν2(e

−α2(I−i) − e−α1(I−i))

Where ν1, ν2, α1 and α2 are parameters.
We decided to use the same values of parameters for the price process as

used in [7]. Therefore, we use two volatility functions with parameters set
to α1 = 6.849E−04 h−1, α2 = 0, ν1 = 1.068E−0.2 h−1/2 and ν2 = 2.671E−03
h−1/2. You can see the generated expected spot prices curve on Figure 6.2.

6.2 Valuation Under No Uncertainty

We can test our model and assess its accuracy by using it to value the op-
tion and comparing the result with outcomes of an analytical computation,
which can be performed in some cases. When all sampled forward prices
curves coincide (there is no uncertainty), and additionally, there are neither
constraints on energy nor ramping constraints on power, we can calculate
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Figure 6.2: The expected value of the spot price distribution in the first contract
week estimated on sample of size 1000.

the value of the option analytically in a spreadsheet using the formula 6.1.

Price = p̄
I∑
j=1

max{F0i −K, 0} (6.1)

That is, the bid price of the option is equal to the maximum amount of
money which can be gained by exercising the option (exercise whenever the
price is higher than the strike price).

Using the original curve (Figure 6.1) and formula 6.1 we can evaluate the
bid price of the swing option, which amounts to 1.38287E6e.

We can verify the correctness of the basic pricing model presented in the
chapter 4. By solving the problem SOIIIbuyer with energy limits set to e = 0
MWh, e = Ip = 132480 MWh (which is the maximum amount of energy
which can be obtained by exercising the option between tstart and tend) and
ρ = p = 60 MW, we obtain exactly the same result as by using the formula
6.1 which shows that our problem formulation is correct.

Next, we can verify the accuracy of the approximated model SOIVbuyer
(with aggregated stages) presented in Section 5. The accuracy of the model
depends on the number of exercise profiles used. When using 5 profiles, the
option value is evaluated to 1.37171E6e, underestimating analytical value
by 0.8%. When using 10 and 100 profiles the option values are respectively
1.37922E6e (underestimation of 0.3%) and 1.38155E6e (0.1%). We observe
that the value of the solution improves when increasing the number of exercise
profiles used. However, even the results obtained when using relatively few
profiles (5) are satisfactory and show that our valuation scheme is accurate.
Therefore, our choice of 6 exercise profiles is justified.

In order to validate our result we can also compare it with the option
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value calculated analytically by Haarbrücker and Kuhn in [7] which amounts
to 1.426E6e. Our price is lower, which is correct, as we estimate the buyer’s
price (not the equilibrium price).

6.3 Estimation of Violation Probability

We used the polynomial decision rules as described in the Section 4.2, where
we mentioned that we needed to estimate the required number of samples
(scenarios) we must use in order to minimize the probability of violation of
any subsequently generated problem instance.

We proceed by solving the problem SOIVbuyer several times, each time using
different numbers of samples. Then, for each of the problems solved, we
generate a large number (1000) of new problem instances (samples), plug in
the computed optimal values of the decision variables and check whether any
of the constraints is violated. If so, we treat the whole instance (sample)
as violated and proceed to next one. The results obtained by following this
procedure are presented on Figure 6.3.

Figure 6.3: Probability of violation of a new sample as a function of number of
samples used to compute the optimal values of decision variables. Parameters set
as presented in Table 6.1, with d = 2, A = 6, and only base load month futures
used for hedging.

We observe that when we use 3000 samples the violation probability is
low (0.02) and does not improve significantly when we increase it further.
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The result also confirmes that following the robust optimisation approach
yields meaningful results, as a subset of relatively few samples fetched from
Ξ includes most of the scenarios possible.

We conclude that using 3000 samples gives acceptable results. There-
fore, unless noted otherwise, this number of samples will be used in all the
numerical experiments.

6.4 Degree of Polynomials

We need to choose appropriate degree of the polynomial decision rules used to
model the decision variables. There is a clear trade-off between the accuracy
and time required to reach the solution. As we raise the degree, we expect
both the precision and the solution time to increase. We conducted a small
numerical experiment which results are presented in the Table 6.2.

Degree (d) Option Value Solution Time
0 8.13399E5e 1.33 sec
1 8.21982E5e 13.38 sec
2 8.28744E5e 17 minutes

Table 6.2: Solving problem SOIVbuyer with various values of d (degree of the poly-
nomial decision rules). A = 6, 3000 samples and base load quarterly, monthly and
weekly futures used for hedging only.

We observe the dramatic increase in the solution time for degree 2 com-
pared to degree 1. For degree 3, the problem is not computationally feasible
at all (the solution has not been found even after 3 hours). At the same time,
we observe that the improvement in the option value is not very significant.
In the next sections of the report we will investigate some detailed results
for both choices of the degree value.
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6.5 Valuation Using Polynomials of Degree 1

In order to carry out meaningful numerical experiments, we need to find
appropriate number of stages which will be used and choose hedging instru-
ments that we will use.

6.5.1 Choice of hedging instruments

We need to carefully choose the hedging instruments which will be used in
our trading strategy. As mentioned before in Section 2.1.3, we have futures
contracts with four different maturities tradeable in the market. Additionally,
each of them comes in two types: base or peak load.

As we price the option using the forward prices curve of length of three
months and thus with delivery period length of three months, yearly contracts
are clearly not to be chosen. Once the delivery period of a given contract has
started, it cannot be traded anymore. Therefore, using quarterly contracts
alone would yield similar results to static hedging (deciding upon amounts of
the hedging instruments purchased or sold upfront, before the option delivery
period starts), as they could be traded only initially.

Therefore, for valuation of the option, we will mainly use either monthly
or weekly futures. In the chosen delivery period of length of three months,
starting on tstart and commencing on tend, there could be at most three
monthly contracts defined and thirteen weekly contracts (starting on Mon-
day and expiring on Sunday in every calendar week). Clearly, using the latter
results in substantial increase in the number of random variables and, as a
result, increases the solution time. Also, we cannot use the weekly contracts
alone, as the delivery period for the swing option is not aligned with the
futures’ starting day (the option’s delivery period starts on Sunday, whereas
weekly futures start on Monday). For the same reason, we do not use peak
load contracts alone, as prices at some of the periods would be left unhedged.

The results obtained when using different hedging instruments are sum-
marised in the Table 6.3. Using base and peak load contracts together pro-
vides more flexibility in comparison to using just the base load ones. There-
fore, the option value is always a bit higher. However, the difference in
the option value is not as significant as is the increase in the solution time
(especially when using all quarterly, weekly and monthly futures).

We see that the solution improves when we increase the number of types
of contracts used. Furthermore, we observe that the solution time obtained
when using base load quarterly, monthly and weekly futures is relatively low
(13.38 seconds) and therefore this choice is optimal. This justifies our choice
of the hedging instruments made at the beginning of the chapter.
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Base Load Base & Peak Load

Quarterly
7.85591E5e 8.01432E5e
(3.27 sec) (3.45 sec)

Quarterly 8.09879E5e 8.11185E5e
& Monthly (4.11 sec) (5.06 sec)
Quarterly, 8.21982E5e 8.22914E5e

Weekly & Monthly (13.38 sec) (117.29 sec)

Table 6.3: Results of numerical experiments with various futures contracts used
as hedging instruments with polynomials’ degree set to 1 (d = 1), A = 6, 3000 sam-
ples and 5 stages. The results are presented in form of the option value computed
and the solution time is shown in each case in the brackets.

6.5.2 Number of stages used

In order to determine the influence of the number of stages (macro-periods)
used on the value of the solution we conduct another numerical experiment.
Keeping all other parameters fixed, we modify the number of stages and
note the option value obtained. When increasing the number of samples, we
reuse already generated constraints and just add newly generated scenarios to
existing ones. This reduces computational cost of generation of the problems.

Figure 6.4: Option value as a function of number of stages. Parameters: d = 1,
A = 6, 3000 samples, base load quarterly, monthly and weekly futures used for
hedging.
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The results are presented on Figure 6.4. We observe that, when using
polynomials of degree 1, the option price saturates when we use more than 1
stage. This is a very good result, as adding additional stages to the problem
(i.e. increasing the T parameter) is very expensive from the computational
point of view. Therefore, we would like to achieve a reasonable accuracy
using as few stages as possible. Also, from the practical point of view, the
least possible number of aggregated stages is preferred. This is due to the
transaction costs, which are not encapsulated by our model. Companies do
not want to rebalance their hedging portfolios often due to the costs and
administrative constraints.

6.5.3 Results

In order to estimate the accuracy of our method, we perform a numerical
convergence analysis. The results can be observed on Figures 6.5 and 6.6.

Figure 6.5: Convergence of the option price when increasing the number of
scenarios used. Parameters: d = 1, A = 6, 5 stages, base load quarterly, monthly
and weekly futures used for hedging

We observe convergence in both cases. As we increase the computational
complexity of the problem (either by increasing number of constraints or
number of decision variables), the solution improves, which shows that our
approximations are valid and the model is correct.
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Figure 6.6: Convergence of the option price with increase in number of profiles.
Parameters: d = 1, 5 stages, 3000 samples, base load quarterly, monthly and
weekly futures used for hedging
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6.6 Valuation Using Polynomials of Degree 2

6.6.1 Choice of hedging instruments

Similarly to what we did in Section 6.5.1, we need to decide upon the hedg-
ing instruments used. However, having the degree of the polynomial decision
rules set to 2, the pricing problem becomes much more expensive computa-
tionally to solve. We present the solution times for various base load futures
in Table 6.4.

Futures
Option Value

Solution
Contracts Used Time

Base Load
7.73624E5e 4 minutes

Quarterly
Base Load

8.16674E5e 11 minutes
Monthly

Base Load
8.17863E5e 17 minutes

Quarterly & Monthly
Base Load

8.28744E5e 2 hoursQuarterly,
Monthly & Weekly

Table 6.4: Results of numerical experiments with various hedging instruments
with polynomials’ degree set to 2 (d = 2), A = 6, 3000 samples and 4 stages

Because of computational reasons, for the numerical experiments carried
out using degree of the polynomials set to 2, we based the hedging strategy
on monthly futures only (base load contracts only and base and peak load
contracts together). This choice is justified by the results in the table, where
we observe that the option value computed using both quarterly and monthly
futures is very close to that obtained using monthly contracts only.

6.6.2 Number of stages used

When using the polynomials of degree 2, computations involving large num-
ber of stages is even more expensive than in the case where we had d set to
1 (Section 6.5.2).

The solution time increases rapidly with the number of stages. It is
approximately 600 seconds for four stages, and over 1200 seconds for 5 stages.
The problem with 6 stages is not solvable in a reasonable time as it takes
more than a couple of hours.
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Figure 6.7: Option value as a function of number of stages. Parameters: d = 2,
A = 6, 3000 samples, base load monthly futures used for hedging.

On Figure 6.7, we observe that the option value obtained saturates when
we increase the number of stages. However, the convergence is slower than
in the case presented in Section 6.5.2, so we have to use at least 4 stages
to achieve reasonable accuracy. In fact, this is the only plausible choice, as
using 5 stages is impractical from the computational point of view.

6.6.3 Results

As in Section 6.5.3, we perform a numerical convergence analysis for two
cases (varying number of samples and profiles used) to validate the results
obtained when using the polynomials of degree 2.

The results presented on Figures 6.8 and 6.9 suggest that the option price
converges when increasing the size of the problem. However, we were not able
to produce results for number of samples higher than 5000 and more than 12
profiles, because of the computational complexity.

As expected, the option price estimated using both base and peak load
contracts is always higher (the solution is more accurate).
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Figure 6.8: Convergence of the option price when increasing the number of
scenarios used. Parameters: d = 2, A = 6.

Figure 6.9: Convergence of the option price with increase in number of profiles.
Parameters: d = 2, 3000 samples.
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6.7 Evaluation of the results

The results obtained in our numerical experiments presented in Sections 6.5
and 6.6 suggest that using the polynomial decision rules of degree 1 is pre-
ferred, as the solution time is much smaller. In such a set up it is also possible
(from computational point of view) to use more types of hedging instruments
and more stages. Therefore, the solution can be more accurate.

Graphs presented in Section 6.5 support our assertion that approxima-
tions based on 5 stages, 6 exercise profiles, 3000 samples and choice of base
load quarterly, monthly and weekly futures contracts are reasonably accurate.
The solution time of approximately 13 seconds is acceptable and ensures that
our valuation scheme can be used in practice on trading desks. If one needed
to decrease the solution time further, we observe from Figure 6.4 that the
number of stages can be in fact reduced to just 2 stages without loosing much
of the accuracy. Such an action results in decrease of the solution time to
approx. 2 seconds, which is a very good result. For example, by using the
method presented in [7] one can achieve solution time of approx. 4 seconds.

In Section 6.6 we attempted to use the polynomials of degree 2. Unfor-
tunately, the solution times were highly unsatisfactory.

We managed to solve the problem with up to 8 stages using polynomial
decision rules of degree 1 and up to 5 stages with degree equal to 2. This is
a significant improvement compared to the static hedging strategy proposed
in [12].

We replicated the swing option using futures contracts for delivery of the
electrical energy and we experimented with all types of the contracts which
are tradeable at European Energy Exchange. We made our valuation scheme
realistic by reflecting the real instruments in the model exactly according to
their specifications outlined in [6]. We observed that using both base and
peak load contracts yielded similar results to using just the base load ones.
We expect that if the problem was formulated differently, so that prices at
peak hours would behave in a different manner from those at other times,
using both types of hedging instruments would give different results.
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Conclusions and Future Work

In this report, we proposed a new scheme for valuation of the electricity
swing options, based on the robust optimisation approach. We introduced
a few simplifications and approximations into our pricing model to make it
computationally possible to solve in a reasonable time. The correctness of the
approach based on replicating the option by the hedging portfolio of cash and
futures has been validated by comparing it with the binomial lattice model
for pricing simple call options.

We presented some numerical results showing how our valuation scheme
can be used in practice. The method is efficient and produces meaningful
results. It can be used to provide both rough estimates of the option price
in a split second or compute the accurate value of the contract, depending
on the number of decision variables and constraints used.

Further work in the area could involve formulating a model for finding
the seller’s price of the option. Then, having both bid and ask prices, the
equilibrium price could be estimated. Also, transaction costs were not in-
corporated into our model. We assumed that we can rebalance our hedging
portfolio without being charged with additional costs of purchasing or sell-
ing futures contracts. If the scheme was to be used in practice, it would be
desirable to take such costs into account.

In the future, one can also try to use more powerful machine for solv-
ing the problem instances. Hopefully, if more CPU power was available,
solving problem instances with polynomials of degree 2 would become more
computationally feasible.

Finally, possibly the solution time of large problems can be reduced by
solving them in stages: firstly, generate a small problem instance (with rela-
tively small number of scenarios), solve it, save the optimal basis, and pass
it to a larger problem. However, it needs to be investigated whether such
method would improve solution times significantly.

45



References

[1] A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and
applications. Mathematical Programming, 92(3):453–480, 2002.

[2] M. C. Campi and S. Garatti. The exact feasibility of randomized
solutions of uncertain convex programs. SIAM J. on Optimization,
19(3):1211–1230, 2008.

[3] Ren Carmona and Nizar Touzi. Optimal multiple stopping and valuation
of swing options. Mathematical Finance, 18(2):239–268, 2008.

[4] M. Davison and L. Anderson. Approximate recursive valuation of elec-
tricity swing options. Technical report, The University of Western On-
tario, October 2003.

[5] European Energy Exchange AG, Leipzig, Germany. EEX Product In-
formation: Power, 0001d edition, July 2008.

[6] European Energy Exchange AG, Leipzig, Germany. The products of
EEX Group, 2009.
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