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Abstract

Separation Logic has been developed over the last few years as a way to reason about pro-
grams in terms of the resources they use, specially when these resources can be shared. The
most widely studied example of such resources is a shared memory heap. Most approaches
to this model consider an ideal memory heap, with additional memory always available for
allocation. Here, we explore a slightly different model where, as is the case when working
with physical memory, it is possible to run out of space. Through this model, we introduce
the notion of arity of a state, which is also present in another quite different model: the par-
tial hydrocarbon model, which provides a simplified representation of interaction between
organic chemistry partial molecules.
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1 Introduction

Separation logic was introduced a few years ago as a powerful tool to reason about programs
in terms of the resources they use, especially when these resources are shared. This is the case
for dynamic memory, where one memory address can be ’pointed at’ by several variables or
by other memory addresses. A logic was needed that allowed to give tight specifications of
programs, mentioning only the resources actually used by them and ensuring that anything not
mentioned remains intact. This kind of reasoning is meant to be automated, so it was developed
in a syntactic fashion, in the style of Hoare logic [4, 5], with axioms and rules that are used to
infer new statements from them. The rules in separation logic follow the style of Hoare logic
rules, but instead of using only classical logic to express the pre and postconditions in Hoare
triples, they use the logic BI of bunched implications [12, 13]. This logic has, in particular, a
new connective: the separating conjunction ∗. The formula A ∗ A′ denotes those heaps that
can be split into two disjoint parts satisfying A and A′ respectively. This new connective makes
it possible to perform spatial reasoning and express restrictions in the sharing of the dynamic
memory heap, and to do so in a concise and scalable way.

The separating conjunction also makes it possible to write the main rule of separation logic:
the Frame Rule. Having a small specification of some command, of the form {A} C {A′}, the
Frame Rule allows us, under some reasonable conditions, to infer a specification {A∗D} C {A′∗
D} for the same command with a bigger initial state. The meaning of the Frame Rule is the
following: if we have a command that acts locally on a portion of the memory, then, if we
consider a bigger portion of the memory, the extended parts will stay intact. This rule being
so important, one can see how something crucial when developing this logic, or extending it to
various other resource models, is to prove soundness of this rule. Yang and O’Hearn managed to
isolate two locality conditions for the commands that are necessary and sufficient to guarantee
soundness of the Frame Rule [2]. These two conditions are Safety Monotonicity and the Frame
Property, and we will become more familiar with them in what follows. Completeness of the
Frame Rule, although not as vital as soundness, is also an important issue. It is proved too in
[2].

In [9] Pym, O’Hearn and Yang explore a variety of resource models that can be described
with BI, such as Petri nets, mobile processes or money. In [3], Calcagno, O’Hearn and Yang
present abstract separation logic, which reasons about separation algebras: partial, cancellative,
commutative monoids. Separation algebras work as an abstract resource model that generalises
over a set of various other models. They prove that the conditions of Safety Monotonicity and
Frame Property still guarantee soundness of the Frame Rule in this asbtract setting.

In this paper we look into some different variants of the standard memory model. While
it is usually considered to have a finite amount af allocated cells but an infinite global set of
addresses, we will explore a couple of approaches with a finite global set of addresses, as it is
in any actual physical memory. In the standard approach, memory allocation never leads to a
memory fault because a fresh memory address is always assumed to be available. Furthermore,
in [1] Reynolds assumes that there is always a set of arbitrary size of contiguous unallocated
cells, in order to be able to use unrestricted address arithmetic. We give in section 3.1 a simple
extension of the model that allows allocation of single cells in a bounded memory setting, and
in section 3.2 we will see how it is far from trivial to give a sensible operational semantics for
allocation of multiple contiguous cells if we consider a bounded heap.

Raza looks into the idea of a finite memory heap too in his PhD thesis [6], although his
approach is quite different to ours. He treats the set of non-allocated addresses as a “unique,
atomic piece of resource”, while we split it into pieces at will, obtaining the advantage of a finer
control over the use of inactive memory cells.
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Through the bounded memory model, we will introduce the notion of arity of a state, and
we will see how memory allocation commands, in particular, need states to have a certain arity
in order not to lead to a memory fault.

In our main approach to the bounded memory model (in section 3.1) we regard arity as
simply the number of cells that can still be allocated. In this approach we will not be able to
allocate blocks of contiguous cells at once (but we will attempt to fix this in a later approach).
A command that wants to allocate a new cell will need to act on a state where at least one cell
is free. In order to prevent framing new portions of memory from being resonsible for memory
faults (for otherwise we would lose soundness of the Frame Rule), some information about free
cells must be included explicitly in the state. With this purpose, we will consider that a certain
amount of reserved, inactive (i.e. non-allocated) cells are also part of our states. We define
our new states in such a way that extending a state to a bigger one will not affect the number
of cells we had already reserved, and so arity will be preserved by framing as needed. Safety
Monotonicity and the Frame Property are proved here for this model, and so is soundness of
the Frame Rule — of course with respect to a set of assertions with a syntax, slightly different
from the usual, that makes them capable of giving information about the arity of states. We
also provide tight specifications for the allocation and deallocation commands and prove their
soundness as well as soundness of all other rules in the logic. Hence, we provide a setting were
we can prove specifications of programs that perform complex allocation/deallocation tasks (as
long as cells are allocated and deallocated one by one) in a setting where the available heap
memory is limited.

One may wonder why we only take a number of reserved cells, instead of a set of specific such
cells. In section 3.1.5 we look into that alternative and expose a big flaw: a naive adaptation
of the usual Frame Property fails. We make an attempt to overcome this problem by giving
an alternative Frame Property that still guarantees soundness of the Frame Rule, in terms
of an equivalence relation between states. However, we see that it would be necessary to
completely renounce to address arithmetic and even modify the semantics of arithmetic and
boolean expressions, which would be a very unnatural thing to do.

As we already announced, our first approach to the bounded memory model will not allow
allocation of several contiguos cells, but this is fixed in 3.2, where instead of reserving just
some number of cells with no predefined shape, we reserve a set of disjoint contiguous blocks
of inactive cells — again with no specific address names. The representation of these gaps is
much more complex to handle than a single natural number, and the task of giving a sensible
operational semantics for memory allocation becomes challenging. Here, we suggest one and
prove that it is sound.

We will also approach the notion of arity of a resource from a quite different point of view:
that of a model of (partial) hydrocarbon molecules. This model represents objects with a
structure much more complex than the structure of the memory model: partial hydrocarbon
molecules can be viewed as graphs with dangling edges. The arity of such a molecule will be
given by its set of dangling edges, since they are the connection points that we can use to create
new bonds between atoms. We give here a syntax for assertions describing this model, define a
simple language of commands for manipulating such molecules and provide tight specifications
for them and prove soundness of these specifications. We also prove Safety Monotonicity, Frame
Property and soundness of the Frame Rule.

The structure of the remainder of this document is the following: in section 2 we introduce
the basic notions of separation logic (reasoning about the standard heap memory model), using
[1, 2] as main references. In section 3 we explore the three approaches to the bounded memory
model previously introduced (sections 3.1, 3.1.5 and 3.2) and the already mentioned partial
hydrocarbon model (section 3.3). To finish, we will present some ideas for future work.
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2 Background

In this subsection we present the basic notions given in [1, 2] about separation logic based on the
standard heap memory resource. We define the memory model with its combination operation,
and give a few commands to manipulate the memory, together with an operational semantics
for them. Then we give the syntax of the assertions used to describe the memory and reason
about it, and also their semantics. After this, we introduce Hoare reasoning with separation
logic, and with it some important notions such as safety and correctness. We present the Frame
Rule and consider the issues of its soundness and completeness. In particular, we introduce
Safety and Termination Monotonicity and the Frame Property, properties they ensure the local
behaviour that we need from our commands and that are the key to soundness of the Frame
Rule.

2.1 The Memory Heap Model

Definition 2.1 (Dynamic Memory Model). We consider stores or stacks that assign a value
(an element in V alues) to each of the elements in a fixed set Variables of variables (considered
as infinite, for simplicity).

Stacks
def
= V ariables→ V alues

We have chosen to use here V alues = Z ∪ {nil}, as opposed to V alues = Z,nil ∈ Z used by
Reynolds [1]. Results in both [1] and [2] work just the same, but we find that it is better to keep
the value nil outside Z to prevent a strange behaviour of evaluation of arithemtic expressions.

Let Addresses be the set of cell addresses and Atoms the set of atomic values, with

Atoms ∪Addresses ⊆ Z

Atoms ∩Addresses = ∅

We consider in this section that Addresses is an infinite subset of Z with unrestricted address
arithmetic allowed on its elements. We also consider, as does [1], a set Addresses such that,
whichever addresses are already allocated, we can always find an arbitrarily big set of contiguous
unallocated cells.

We consider heaps as partial, finite mappings from the set of addressable memory cells into
values.

Heaps
def
= Addresses ⇀fin V alues

We will write dom(h) for the domain of heap h, and e for the heap with empty domain.
Finally, memory states will be considered as some stack, together with some heap:

States
def
= Stacks×Heaps

The combination operation · between heaps is the following: given h, h′ ∈ Heaps, h ·h′ is the
union of both heaps when their domain is disjoint. This combination operation is commutative
and associative.

2.1.1 Syntax and Semantics of Commands

We will use a small language of commands that manipulate our states. Reynolds [1] considers the
simple imperative language originally axiomatized by Hoare ([4, 5]), plus a few more commands
which enable us to perform standard memory manipulating tasks like lookup, update, allocation
and disposal of memory. Their syntax is given in Figure 1, together with the syntax and
semantics of arithmetic and boolean expressions.
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C ::= x := E | x := [E] | x := new(E1, . . . , En) | [E] := E′ | dispose(E) | C;C
| while B do C | if B then C else C ′

E ::= x, y, ... | 0 | 1 | E + E′ | E − E′ | E × E′

B ::= false | B → B′ | E = E′ | E < E′

JxKs = s(x) for any variable x
J0Ks = 0
J1Ks = 1

JE opa E
′Ks = JEKs opa JE′Ks for any arithmetic operator opa, with opa being

the corresponding semantic operator

JfalseKs = false

JB → B′Ks =

{
true if whenever JBKs = true also JB′Ks = true
false otherwise

JE opb E
′Ks = JEKs opb JE′Ks for any boolean operator opb, with opb being

the corresponding semantic operator

Figure 1: Syntax of commands, arithmetic and boolean expressions, and semantics of arithmetic
and boolean expressions for the standard memory heap model

Arithmetic expressions are interpreted as elements of Stacks ⇀ V alues, that is, partial
functions mapping stacks to values. We consider them partial because the presence of the
special value nil can cause some arithmetic expression not to be interpretable as values under
certain stacks. Boolean expressions are elements of Stacks ⇀ {true, false} (partial too, since
they sometimes require evaluation of arithmetic expressions). Note that the semantics of both
arithmetic an boolean expressions does not depend on the heap, but solely on the stack.

Let configurations be objects of the form 〈C, (s, h)〉 (a state together with a command),
〈(s′, h′)〉 or fault, with the last two being terminal configurations. The terminal configuration
fault denotes a memory failure.

The behaviour of the commands can be observed in their operational semantics (Figure 2).
It is a one step operational semantics, given as a binary relation  between configurations.

Notation: given a mapping f : A −→ B, f [x 7→ v] denotes the mapping with domain A∪{x}
that assigns v to x and the same value as f to any other element in A. When A ⊆ A′, feA′

denotes the mapping that results from restricting the domain of f to A′.

It is stressed in [1] that, even though the same := notation is used in some of them, none
of the new commands is an instance of the original assignment command x := E: they involve
interaction with the heap, while x := E only interacts with the stack.

A particular feature of this programming language is that everything, except for allocation of
new memory addresses, takes place in a deterministic way: the memory address to be consulted,
mutated or deallocated is mentioned explicitly. Hence, even if the heap is extended, this will
never have a negative effect on the computation — that is, it will not cause a memory fault. This
local behaviour of the commands is something very desirable. On the other hand, allocation of
memory happens in a nondeterministic way: any inactive memory address can be chosen. We
will see, later in this section, how this is important.
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〈x := E, (s, h)〉 (s[x 7→ JEKs], h)

JEKs = n ∈ dom(h) h(n) = m

〈x := [E], (s, h)〉 〈(s[x 7→ m], h)〉
JEKs /∈ dom(h)

〈x := [E], (s, h)〉 fault

JEKs = n ∈ dom(h)

〈[E] := E′, (s, h)〉 〈(s, h[n 7→ JE′Ks])〉
JEKs /∈ dom(h)

〈[E] := E′, (s, h)〉 fault

m, . . . ,m+ n− 1 /∈ dom(h) v1 = JE1Ks, . . . , vn = JEnKs
〈x := new(E1, . . . , En), (s, h)〉 〈(s[x 7→ m], h[m 7→ v1, . . . ,m+ n− 1 7→ vn])〉

JEKs = n ∈ dom(h)

〈dispose(E), (s, h)〉 〈(s, hedom(h)\{n})〉
JEKs /∈ dom(h)

〈dispose(E), (s, h)〉 fault

〈C, (s, h)〉 〈C ′′, (s′, h′)〉
〈C;C ′, (s, h)〉 〈C ′′;C ′, (s′, h′)〉

〈C, (s, h)〉 〈(s′, h′)〉
〈C;C ′, (s, h)〉 〈C ′, (s′, h′)〉

〈C, (s, h)〉 fault

〈C;C ′, (s, h)〉 fault

JBKs = true

〈if B then C else C ′, (s, h)〉 〈C, (s, h)〉
JBKs = false

〈if B then C else C ′, (s, h)〉 〈C ′, (s, h)〉

JBKs = false

〈while B C, (s, h)〉 〈(s, h)〉
JBKs = true

〈while B C, (s, h)〉 〈C; while B C, (s, h)〉

Figure 2: Operational semantics of commands with respect to the memory model

Something else that can be observed in the operational semantics is how running a program
that refers to a memory address that is not active — i.e. not in the domain of the current
state’s heap — will cause the program to fault. However, if every needed memory cell is active,
the program will never fault. Remember that we assume an infinite number of cells always
available, and even a set of inactive contiguous cells as big as we want. Therefore, memory
allocation can never lead to fault in this setting.

2.1.2 Syntax and Semantics of Program Assertions

We introduce here a language of assertions for reasoning about properties of memory states.
Syntax and semantics of the assertion language for the model are given below. The main
new operator introduced is ∗ (separating conjunction). Its purpose is to express in an explicit
way disjointness between two portions of resource. Some properties of ∗ are commutativity,
associativity and having emp as its neutral element.

A ::= > | ⊥ | B | ¬A | A ∧A′ | A ∨A′ | A→ A′ | ∃x. A | ∀x. A |
emp | E 7→ E′ | A ∗A′ | A —∗ A′

JAK def
= {(s, h) | (s, h) |= A}

The relation denoted by |= between a state and an assertion, with (s, h) |= A denoting
satisfaction of the assertion A by the state (s, h), is given in Figure 3.
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Satisfaction relation

(s, h) |= > always
(s, h) |= ⊥ never
(s, h) |= B ⇔ JBKs = true

(s, h) |= ¬A ⇔ (s, h) 6|= A
(s, h) |= A ∧A′ ⇔ (s, h) |= A and (s, h) |= A′

(s, h) |= A ∨A′ ⇔ (s, h) |= A or (s, h) |= A′

(s, h) |= A→ A′ ⇔ (s, h) |= A implies (s, h) |= A′

(s, h) |= ∃x. A ⇔ for some v ∈ V alues (s[x 7→ v], h) |= A
(s, h) |= ∀x. A ⇔ for every v ∈ V alues (s[x 7→ v], h) |= A
(s, h) |= emp ⇔ dom(h) = ∅

(s, h) |= E 7→ E′ ⇔ dom(h) = {JEKs} and h(JEKs) = JE′Ks
(s, h) |= A ∗A′ ⇔ ∃h1, h2. h = h1 · h2, (s, h1) |= A and (s, h2) |= A′

(s, h) |= A —∗ A′ ⇔ ∀h′. if (s, h′) |= A and h ⊥ h′ then h · h′ |= A′

Figure 3: semantics and satisfaction relation for assertions

2.1.3 Hoare Reasoning with Separation Logic

Since the goal of developing Separation Logic is to be able to reason about correctness of
programs, it is compulsory that we define the notion of correctness that will be considered.
In the heap model explored in [1, 2] two notions of correctness are given: partial and total
correctness.

Let  ∗ be the transitive closure of  in what follows.

Definition 2.2. A configuration 〈C, (s, h)〉 is safe iff 〈C, (s, h)〉 6 ∗ fault.

A configuration 〈C, (s, h)〉 must terminate normally iff it is safe and there is no infinite
 -sequence starting from 〈C, (s, h)〉.

Definition 2.3 (Partial Correctness). {A} C {A′} holds iff

∀(s, h) ∈ States. (s, h) |= A implies
〈C, (s, h)〉 is safe and
∀(s′, h′) ∈ States. 〈C, (s, h)〉 〈(s′, h′)〉 implies (s′, h′) |= A′

Definition 2.4 (Total Correctness). [A][C][A′] holds iff

∀(s, h) ∈ States. (s, h) |= A implies
〈C, (s, h)〉 must terminate normally and
∀(s′, h′) ∈ States. 〈C, (s, h)〉 〈(s′, h′)〉 implies (s′, h′) |= A′

We will focus here on partial correctness.

One thing important here, as observed in [2], is that we can be sure that, if {A} C {A′}
holds, then in every state satisfying A the heap has enough resource for C to run safely. We use
a fault-avoiding notion of correctness. So, in particular, nothing that is not explicitly mentioned
in A will be needed by C, and we can be sure that there are no side effects of C — we do not
need to say which cells remain the same, they all do, unless otherwise stated. That is: any cell
in the initial state that is not explicitly mentioned will remain unchanged. This is a very nice
feature for scalability.
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The example given in [2] for this is very simple and clear: suppose we have the triple

{x ↪→ 5} C {x ↪→ 6}

and we know that C does not modify variables. Then no memory cell in the initial heap other
than the one with addres x will be modified by C for, in particular, the state where the heap
contains one single cell at address x with contents 5 is an acceptable starting state, and trying
to dereference any other (inactive) memory address would result in faulting. Hence, only x and
memory addresses allocated by C can be modified by C, according to this specification. Note
that this is not only a consequence of our notion of correctness, but also of the chosen set of
commands: it would not be true anymore if we had some command that could deallocate every
allocated cell without mentioning it explicitly.

Also, since this notion of correctness avoids faulting, we can be sure that if {A} C {A′}
holds, it will never do something like dereferencing a cell that has previously been deallocated.

Finally, let us remark that this fault-avoiding condition refers to all possible computations of
C on any initial state satisfying A. In this setting, as we already said, a command will never fault
if it has the memory resource it needs — it will surely fault if it does not have it. Although there
is nondeterminism in the allocation of new memory and computations can sometimes happen
in various different ways, we need all of these possible computations to behave nicely. We are
interested, as pointed out in [2], in classes of computations.

The original command-specific inference rules of Hoare Logic, such as

{A[E/x]} x := E {A}
(Assignment)

(A[E/x] denotes substitution of any occurrence of x in A for E)

{A} C1 {D} {D} C2 {F}
{A} C1;C2 {F}

(Sequential Composition)

are still sound in this setting, and also some others like Consequence and Substitution:

JA′K ⊆ JAK {A} C {D} JDK ⊆ JD′K
{A′} C {D′}

(Consequence)

{A} C {A′}
({A} C {A′})[E1/x1, . . . , En/xn]

(Substitution)

(where x1, . . . , xn are the variables occurring free in A, C or A′, and if xi is modified by C then
Ei is a variable that does not occur free in any other xj .)

(Note: It is worth mentioning that, despite remaining sound in this setting, the rule

{A[E/x]} x := E {A}

does not match the spirit of separation logic, for it is not tight. The following rule will be used
instead:

{x=̇y} x := E {x=̇E[y/x]}
with x=̇y being an abbreviation for x = y ∧ emp.)

11



However, the following rule
{A}C{D}

{A ∧ F}C{D ∧ F}
is not sound any more. Here is a counterexample that reflects this fact:

{x 7→ −}[x] := 3{x 7→ 3}
{x 7→ − ∧ ¬(x 7→ 3)}[x] := 3{x 7→ 3 ∧ ¬(x 7→ 3)}

It is clear that the postcondition in the conclusion can never hold, even though the precondition
might do.

In spite of losing soundness for this rule, this setting allows a new, much more powerful
rule, that allows us to extend local specifications and is the true heart of Separation Logic: the
Frame Rule

{A} C {A′}
{A ∗D} C {A′ ∗D}

Let us consider the following refinement of this basic version of the rule, given in [2]:

{A} C {A′}
{A ∗D} C {A′ ∗D}

Modifies(C)#D

where Modifies(C) is the set of variables updated by C and the relation # between a set
of variables X and an assertion A is defined so that X#A iff the semantics of the assertion
A is independent from the values assigned to the variables in X. That is X#A iff for any
s, s′ ∈ Stacks with seV ariables\X = s′eV ariables\X we have (s, h) |= A⇒ (s′, h) |= A.

The Frame Rule enables us to extend any specification {A} C {A′} — where A might
describe a limited portion of memory — to a bigger initial state A ∗D, and explicitly state that
the extended part of the heap (disjoint with the original heap) remains unchanged — as long
as C does not change variables free in D.

This restriction is necessary because, even though the heaps for A and D (and for A′ and
D) are disjoint, the variable stack is shared completely. If there was some variable free in D
whose value is changed by C, then the heap would be changed, and we want to avoid that.

So we can give tight specifications of commands in terms, exclusively, of their footprint —
the precise variables and portions of the heap that the command does use — and it is implicit
that everything else will remain unchanged. The Frame Rule, combined with others, will then
allow us to obtain specifications of larger programs (made by combining our basic commands)
and extend them to the whole memory heap in which we will actually run the programs.

We can see an example of these tight specifications in the inference rule for mutation pro-
posed in [1]:

{e 7→ −} [e] := e′ {e 7→ e′}
Thanks to the Frame Rule, any such specification can then be extended to a state with a

bigger heap, in this case

{(e 7→ −) ∗A}[e] := e′{(e 7→ e′) ∗A}
or even given in form of backwards reasoning, in terms of a postcondition D, in this case by
taking A = (e 7→ e′) —∗ D and using the valid implication F ∗ (F —∗ D)⇒ D:

{(e 7→ −) ∗ ((e 7→ e′) —∗ D)}[e] := e′{D}

12



Figure 4 contains a whole set of axioms and rules we can use to reason about program
specifications in the standard memory model.

{x=̇y} x := E {x=̇E[y/x]}

{x = y ∧ (E 7→ z)} x := [E] {x = z ∧ (E[y/x] 7→ z)}
x, y, z distinct

{∃x. (E 7→ x)} [E] := F {E 7→ F}

{x=̇y} x := new(E) {x 7→ E[y/x]}

{∃x. (E 7→ x)} dispose(E) {emp}

{A} C1 {A′′} {A′′} C2 {A′}
{A} C1;C2 {A′}

JA1K ⊆ JA′1K {A′1} C {A′2} JA′2K ⊆ JA2K
{A1} C {A2}

{A ∧B} C1 {A′} {A ∧ ¬B} C2 {A′}
{A} if B then C1 else C2 {A′}

{A ∧B} C {A}
{A} while B do C {A ∧ ¬B}

Figure 4: Rules for the Standard Memory Heap Model

Now that we know how the Frame Rule looks and works, we can understand why it is so
important that memory allocation is done in a nondeterministic way. Imagine this was not the
case, and the portion of memory to be allocated by a program C executed from a state described
by A was deterministically fixed. Suppose {A}C{A′} and C does not deallocate any memory.
Then the memory to be allocated and the memory heap in A must be disjoint. Let D describe
a state in which the heap is disjoint with the heap in A, but not with the portion of memory
that C is going to allocate. A ∗ D would hold in the initial state, but A′ ∗ D would not hold
in the final state, since the heaps that A′ and D describe are not disjoint. This is explained
in very simple and clear way in [2]: “An address that is allocated during an execution from a
small state cannot be allocated starting in a bigger state where it is already active”.

2.1.4 Frame Rule: Soundness

As we announced previously, there are two properties in this setting that are really important
and have been isolated in [2] as responsible for soundness of the Frame Rule: Safety and
Termination Monotonicity and the Frame Property. Since the Frame Rule is what allows us to
use tight specifications when working on correctness of programs, it is very important that it
is sound, so these properties have a central role. We will speak of Safety Monotonicity only,
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here, instead of Safety and Termination Monotonicity, since we are focusing only on partial
correctness.

The properties are formulated like this:

Lemma 2.1 (Safety Monotonicity).
If 〈C, (s, h)〉 is safe and h · h′ ∈ Heaps then 〈C, (s, h · h′)〉 is safe.

Lemma 2.2 (Frame Property).
If 〈C, (s, h0)〉 is safe and 〈C, (s, h0 · h1)〉  ∗ 〈(s′, h′)〉, then there exists some h′0 with

〈C, (s, h0)〉 ∗ 〈(s′, h′0)〉 and h′ = h′0 · h1.

We omit here the details of the proofs, which are given in [2]. So is the following theorem:

Theorem 2.1 (Soundness of the Frame Rule). The Frame Rule is sound for both partial and
total correctness.

There is an interesting remark in [2] about how the Frame Property is formulated. It could
have been (wrongly) formulated like this:

If 〈C, (s, h0)〉 ∗ (s′, h′0) and h0 ⊥ h1, then 〈C, h0 · h1〉 ∗ (s′, h′0 · h1).

This actually does not hold because C, running on (s, h0), might have allocated memory
that is already active in h1. We have already seen how this would be a problem. Hence, we
cannot go from any computation on a small state to one on a bigger state, because issues like
this might arise. What the Frame Property says is slightly different. It says that “if a command
is safe in a given state, then the result of executing it in a larger state can be tracked to some
execution computation on the little state” ([2]). Hence, instead of going from a small state to
a bigger one, what we need is to be able to go from the bigger one back to the small, as long as
it is safe.

2.1.5 Frame Rule: Completeness

One way of understanding completeness of the Frame Rule is that, whenever a specification
statement for some command is a semantic consequence of another (for the same command),
it is possible to derive the first from the second using the Rule of Consequence and the Frame
Rule. Even though we do not look into completeness in the following sections (although it will
definitely be something interesting to study in the future), we give here an overall idea of how
it is formally enunciated by Yang and O’Hearn in [2]. We will not go into details about how
they also prove it.

Instead of reasoning in terms of standard Hoare triples, Yang and O’Hearn use for this
purpose Hoare triples with an unspecified command, {A} − {A′}, and a fixed set X of variables,
which are taken to be the variables modified by the “ghost” command. In this setting, the Frame
Rule looks like this

{A} − {A′}
{A ∗D} − {A′ ∗D}

X#D

(we already defined the relation # in subsection 2.1.3 when we introduced the Frame Rule).

Enunciating completeness requires first of all defining a notion of semantic consequence
between specification statements. This is done using predicate transformers (defined below),
and in particular a subclass of predicate tranformers which verify a locality property — like our
commands did.

To avoid changing the name of predicate transformers — since we are talking here in terms
of assertions and their interpretations and not in terms of predicates — let us consider here the
following definition:
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Definition 2.5 (Predicates). Let the set of all predicates be

Pred
def
= P(States)

(the powerset of States).

Note that, given any assertion A, JAK ∈ P(States) is a predicate.

Definition 2.6 (Predicate Transformers). A predicate transformer is a monotone mapping
from predicates to predicates:

PT
def
= Pred→monotone Pred

t ∈ PT monotone means that if P ⊆ Q then t(P ) ⊆ t(Q).

A correspondence is established in [2] between predicate transformers and the commands
in the considered programming language. We will not give here the formal correspondence,
but we explain how it works. Let us (in a small abuse of notation) refer momentarily with the
same identifier t to some predicate transformer and its corresponding command. Then if we have
{A} t {A′} (for the command t), that is equivalent to JAK ⊆ t(JA′K) (for the predicate transformer
t). As we can see, predicate transformers modify a postcondition into a precondition.

Not every predicate transformer can be seen as corresponding to one of our commands. In
fact, some of these predicate transformers do not even have the nice locality properties that
all our commands had. We are going to consider only a subset of PT: only those predicate
transformers verifying a certain locality condition with respect to our fixed set X of “modified”
variables. We want our predicate transformers to behave in such a way that having them act
on some heap gives us at least all the states that we get by restricting them to act on a smaller
part of the heap, and then extending the heap again with the portion that we had removed (as
long as the part removed is independent of all variables affected by the predicate transformer).

Given P,R ∈ Pred, let P ∗R = {(s, h ∗ h′) | (s, h) ∈ P and (s, h′) ∈ R}.

In an abuse of notation, we will # to represent a relation between sets of variables and
predicates — remember that we use the same notation to represent a relation (very similar
to this one) between sets of variables and assertions. Given P ∈ Pred, we will have X#P iff
(s, h) ∈ P does not depend on the value that s assigns to variables in X, that is

X#P iff (s, h) ∈ P implies ∀s′. (s′edom(s′)\X = sedom(s)\X ⇒ (s′, h) ∈ P )

Definition 2.7 (Locality for X). We will say that the predicate transformer t satisfies locality
for X iff

∀P,Q ∈ Pred. X#P ⇒ t(Q) ∗ P ⊆ t(Q ∗ P )

The subset of all local predicates satisfying this locality condition for X is LPT(X).

This locality condition is equivalent to saying that (the predicate tranformer) t satisfies the
Frame Rule, given in terms of predicate transformers as

∀P,Q,R ∈ Pred. X#R ∧ P ⊆ t(Q)⇒ P ∗R ⊆ t(Q ∗R)
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With the aid of LPT(X), Yang and O’Hearn define a semantic consequence relation between
pairs of specification statements:

{A} − {D} |=X {A′} − {D′} iff for every t ∈ LPT(X),
t |=X {A} − {D} implies t |=X {A′} − {D′}

where t |=X {A} − {D} iff JAK ⊆ t(JDK).
And, finally, let

{A} − {D} `X {A′} − {D′} iff {A′} − {D′} can be derived from {A} − {D}
using the rule of Consequence and the Frame Rule

With all the necessary elements now introduced, we have the following formal enunciation
of completeness:

Theorem 2.2 (Completeness of the Frame Rule).

If {A} − {D} |=X {A′} − {D′} then {A} − {D} `X {A′} − {D′}

And even soundness can be re-enunciated as its converse:

Theorem 2.3 (Soundness of the Frame Rule).

If {A} − {D} `X {A′} − {D′} then {A} − {D} |=X {A′} − {D′}
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3 Resources with arity

The main feature of all the resources that can be reasoned about in a separation logic style is
their combination operation. Whether it is partial, total, deterministic or nondeterministic, it
is what makes it possible for us to take a large resource instance, split it into smaller portions
and focus on these when we do our reasoning, instead of dealing with the whole big instance.
It also allows us to take some resource instance and make it bigger, either by framing another
piece of resource onto it, or following instructions from some programming command — like the
memory allocation command x := new(E1, . . . , En) in the standard memory model presented
in section 2.

As we mentioned in the introduction, in the original memory model it is assumed that the
set Addresses is infinite. However, if we suppose that it is finite, then we might have to face
the case when all of them have already been allocated, and in this case any command that tried
to allocate new memory would lead to fault. We will refer to the ability of a memory state to
be extended as its arity, since it can be described numerically. We will see later how this notion
can be extended to a different kind of resource.

Even within the bounded memory model we can approach arity in different ways. For
example, in our first approach to arity within this model, we will regard it as just the amount of
cells that are yet to be allocated, with allocation taking place for one cell at a time. As we just
said, in order for x := new(E) not to lead to fault, we need to make sure that there will be at
least one cell that has not been allocated yet. We need to include this information in the states
in such a way that safety is preserved by framing (remember the definition of safety given in
section 2: a configuration 〈C, (s, h)〉 is safe iff it can never lead to fault). That is we need to
make sure that Safety Monotonicity holds, otherwise the Frame Rule cannot possibly be sound.
With this aim, we will add a third component to our states, which will be a natural number
and will represent a number of reserved cells. This is, a number of inactive cells over which we
have permission, and which we can safely allocate, regardless of their precise addresses. Since
memory allocation takes place in a nondeterministic fashion, it seems natural that we should
not care about the addresses of the cells held reserved. On the contrary, we treat all free cells
as balls in a big bag, and our only concern is that nobody else takes too many balls from that
bag. As long as they leave enough balls for us — at least as many as we had reserved — we
do not care which ones they take. Furthermore, when we look into the alternative approach of
taking this new third component as a properly specified set of cells addresses, instead of just
a number, we realize that it brings problems with the Frame Property. We will see why this
happens, later in this section.

The first approach just described, with only a natural number as the new component of
states, is a very natural extension of the standard states and is quite easy to work with.
However, it does not allow us to allocate several contiguous cells (with a command like x :=
new(E1, . . . , En)), for information just about some amount of cells is not enough information
to know their relative positions inside the global memory heap. We attempt to fix this in yet
another approach, taking the new third component of states as a set of natural numbers, which
represent the sizes of some disjoint contiguous gaps in the memory heap — not necessarily
describing all the gaps, just some gaps we have permission to use. We give here an opera-
tional semantics for allocation and deallocation of memory in this model, and prove that the
one given for allocation is sensible, which is not a trivial task. Due to time restrictions, Safety
Monotonicity and Frame Property have only been conjectured here.

As for other kinds of resources, to finish, we will look into a partial hydrocarbon model, which
provides a simplified representation of partial hydrcarbon molecules by means of graphs with
labelled nodes representing atoms (labels being H for hydrogen and C for carbon) and a restricted

17



amount of edges attached to each node, in accordance to its label. These edges can either link
two nodes, or be dangling, as if we had taken a static picture of some intermediate moment
during a chemical reaction, when some bonds between atoms have been broken and others are
yet to be formed. It is fairly easy to imagine the notion of arity considered here: it is but the
number of dangling edges coming out of nodes of each kind. A mechanism to preserve a certain
arity when framing — again, to ensure, not Safety Monotonicity, but Liveness Monotonicity, a
similar property suitable for this setting — is used here as well: distinguishing between simply
free edges, and reserved ones.

3.1 The Bounded Heap Model

As we announced, our first approach to the bounded memory model, and to dealing with arity
as one of its features, will be adding a new component to our states: a natural number that will
represent a number of inactive cells held reserved for manipulation with commands.

In this approach, Stacks and Heaps (and Addresses) are taken as defined in section 2, only
now Addresses can be a finite set, with MAX = |Addresses|. States have now the following
shape:

States
def
= {(s, h, n) ∈ Stacks×Heaps× N such that |dom(h)|+ n ≤ MAX}

The combination operation is now

(s, h, n) · (s, h′, n′) = (s, h · h′, n+ n′)

whenever (s, h · h′, n+ n′) ∈ States (in particular h · h′ ∈ Heaps), and undefined otherwise. In
order to combine two states, we need the two heaps to be disjoint, but we also need the total
amount of cells in the state not to exceed the number of cells in Addresses.

The commands will be exactly the ones presented in the introduction, except that x :=
new(E1, . . . , En) now becomes just new(E) — we will only allocate new memory cells one by
one. Arithmetic and boolean expressions will be the same as in section 2, and so will their
semantics.

The revised operational semantics is in Figure 5. It reflects how the memory allocation
command will now fault whenever running on a state that does not possess some free cell. It
also shows how allocation and deallocation of memory affect our new third component.

3.1.1 Assertion Language

To perform reasoning tasks with this model we need to make some changes to the assertion
language, in order for it to be able to express information about the free cells being held.

A ::= > | ⊥ | B | ¬A | A ∧A′ | A ∨A′ | A→ A′ | ∃x. A | ∀x. A |
emp | E 7→ E′ | E 7→ E′, E′′ | A ∗A′ | A —∗ A′ | AE

The satisfaction relation between states and assertions is given in Figure 6. We can see in
that figure how the annotation E in the basic construct AE indicates some lower bound to the
number of free cells held reserved in the state.

There is a close relation between this new assertion language and the one given in section
2. This relation is expressed here in terms of a mapping b·c, which turns assertions of the kind

18



〈x := E, (s, h, n)〉 (s[x 7→ JEKs], h, n)

JEKs = n ∈ dom(h) h(n) = m

〈x := [E], (s, h, n)〉 〈(s[x 7→ m], h, n)〉
JEKs /∈ dom(h)

〈x := [E], (s, h, n)〉 fault

JEKs = k ∈ dom(h)

〈[E] := E′, (s, h, n)〉 〈(s, h[k 7→ JE′Ks], n)〉
JEKs /∈ dom(h)

〈[E] := E′, (s, h, n)〉 fault

n > 0 m ∈ Addresses \ dom(h) v = JEKs
〈x := new(E), (s, h, n)〉 〈(s[x 7→ m], h[m 7→ v], n− 1)〉

n = 0

〈x := new(E), (s, h, n)〉 fault

JEKs = k ∈ dom(h)

〈dispose(E), (s, h, n)〉 〈(s, hedom(h)\{k}, n+ 1)〉
JEKs /∈ dom(h)

〈dispose(E), (s, h, n)〉 fault

〈C, (s, h, n)〉 〈C ′′, (s′, h′, n′)〉
〈C;C ′, (s, h, n)〉 〈C ′′;C ′, (s′, h′, n′)〉

〈C, (s, h)〉 〈(s′, h′, n′)〉
〈C;C ′, (s, h, n)〉 〈C ′, (s′, h′, n′)〉

〈C, (s, h, n)〉 fault

〈C;C ′, (s, h, n)〉 fault

JBKs = true

〈if B then C else C ′, (s, h, n)〉 〈C, (s, h, n)〉
JBKs = false

〈if B then C else C ′, (s, h, n)〉 〈C ′, (s, h, n)〉

JBKs = false

〈while B do C, (s, h, n)〉 〈(s, h, n)〉
JBKs = true

〈while B do C, (s, h, n)〉 〈C; while B do C, (s, h, n)〉

Figure 5: Operational semantics of commands with respect to the bounded heap model

just defined into asssertions with the original syntax — those that described states consisting
just of a stack and a heap — by simply deleting every annotation in the expression.

We will need the following auxiliary lemma:

Lemma 3.1. If every annotation occurring in A is 0 then either ∀n. (s, h, n) |= A or ∀n. (s, h, n) 6|= A.

Proof. We apply structural induction on A, not considering the cases ⊥,∨,→, ∀, since they can
be expressed in terms of >,¬,∧,∃.

− >
Straightforwardly, ∀n. (s, h, n) |= >.

− B

Suppose there is at least one n ∈ N such that (s, h, n) |= B. Then JBKs = true and so
(s, h, n′) |= B for every n′ ∈ N.

− ¬A
Suppose there is at least one n ∈ N such that (s, h, n) |= ¬A. Then (s, h, n) 6|= A. By
induction hypothesis then we have that for every n′ ∈ N it is (s, h, n′) 6|= A, and so
∀n. (s, h, n) |= ¬A.

− A ∧A′

Suppose there is at least one n ∈ N such that (s, h, n) |= A ∧A′. Then (s, h, n) |= A and
(s, h, n) |= A′, and so by structural induction we have ∀n. (s, h, n) |= A and ∀n. (s, h, n) |= A′

and so ∀n. (s, h, n) |= A ∧A′.

19



(s, h, n) |= > always
(s, h, n) |= ⊥ never
(s, h, n) |= B ⇔ JBKs = true
(s, h, n) |= ¬A ⇔ (s, h, n) 6|= A
(s, h, n) |= A ∧A′ ⇔ (s, h, n) |= A and (s, h, n) |= A′

(s, h, n) |= A ∨A′ ⇔ (s, h, n) |= A or (s, h, n) |= A′

(s, h, n) |= A→ A′ ⇔ (s, h, n) |= A implies (s, h, n) |= A′

(s, h, n) |= ∃x. A ⇔ for some v ∈ V alues we have (s[x 7→ v], h, n) |= A
(s, h, n) |= ∀x. A ⇔ for every v ∈ V alues we have (s[x 7→ v], h, n) |= A
(s, h, n) |= emp ⇔ dom(h) = ∅
(s, h, n) |= E 7→ E′ ⇔ dom(h) = JEKs, h(JEKs) = JE′Ks

(s, h, n) |= A ∗A′ ⇔ (s, h, n) = (s, h1 · h2, n1 + n2) for some h1, h2, n1, n2
with (s, h1, n1) |= A and (s, h2, n2) |= A′

(s, h, n) |= A —∗ A′ ⇔ ∀h′, n′ if (s, h′, n′) |= A and (s, h · h′, n+ n′) ∈ States
then (s, h · h′, n+ n′) |= A′

(s, h, n) |= AE ⇔ (s, h, n) |= A and n ≥ JEKs

Figure 6: Semantics of assertions for the Bounded Heap model

− ∃x. A
Suppose there is at least one n ∈ N such that (s, h, n) |= ∃x. A. Then there is v ∈ V alues
such that (s[x 7→ v], h, n) |= A and by structural induction we have ∀n. (s[x 7→ v], h, n) |= A
and so ∀n. (s, h, n) |= ∃x. A.

− emp

Suppose there is at least one n ∈ N such that (s, h, n) |= emp. Then dom(h) = ∅ and so
(s, h, n′) |= emp for every n′ ∈ N.

− E 7→ E′

Suppose there is at least one n ∈ N such that (s, h, n) |= E 7→ E′. Then dom(h) = JEKs
and h(JEKs) = JE′Ks and (s, h, n) |= E 7→ E′ for every n ∈ N.

− A ∗A′

Suppose there is at least one n ∈ N such that (s, h, n) |= A ∗A′. Then for some h1, h2, n1, n2
it is (s, h, n) = (s, h1 · h2, n1 + n2) with (s, h1, n1) |= A and (s, h2, n2) |= A′. But then by
induction hypothesis ∀n1. (s, h1, n1) |= A and ∀n2. (s, h2, n2) |= A′. This implies that
∀n. (s, h, n) |= A ∗A′ because given any n′ ∈ N it is, for instance, n′ = n′+ 0 and we have
(s, h1, n

′) |= A and (s, h2, 0) |= A′, so we have (s, h, n′) |= A ∗A′.

− A —∗ A′

Suppose there is at least one n ∈ N with (s, h, n) |= A —∗ A′. Then for any h′, n′ with
(s, h · h′, n + n′) ∈ States and (s, h′, n′) |= A we have (s, h · h′, n+ n′) |= A′. Now take
any other m ∈ N and suppose there are h′,m′ with (s, h · h′,m + m′) ∈ States and
(s, h′,m′) |= A. Because (s, h, n) |= A —∗ A′ we know that (s, h · h′, n+m′) |= A′. But
then by induction hypothesis it must also be true that (s, h · h′,m+m′) |= A′. Hence,
(s, h,m) |= A —∗ A′ and. since m was arbitrary, ∀m. (s, h,m) |= A —∗ A′.

− AE

Because by hypothesis every annotation in A is 0, it must be E = 0.
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Suppose there is at least one n ∈ N with (s, h, n) |= A0. Then it must be n ≥ 0 and
(s, h, n) |= A. By induction hypothesis we have ∀n. (s, h, n) |= A and since for every
n ∈ N it is n ≥ 0, we have ∀n. (s, h, n) |= A0.

And this is the mentioned relation:

Lemma 3.2. If MAX =∞, every annotation occurring in A is 0 and (s, h, 0) ∈ States then

(s, h, 0) |= A iff (s, h) |= bAc

Proof. We will reason by stuctural induction on A, again omitting the cases ⊥,→,∨,∀.
Throughout all the proof, we will use that MAX = ∞ implies (s, h, 0) ∈ States for any

h ∈ Heaps.

− >
b>c = >.
We always have (s, h, 0) |= >, as well as (s, h) |= >.

− B

bBc = B.
We have (s, h, 0) |= B iff JBKs = true iff (s, h) |= B.

− ¬A
b¬Ac = ¬bAc.
(s, h, 0) |= ¬A iff (s, h, 0) 6|= A iff (by induction hypothesis) (s, h) 6|= bAc iff (s, h) |= ¬bAc.

− A ∧A′

bA ∧A′c = bAc ∧ bA′c.
(s, h, 0) |= A ∧A′ iff both (s, h, 0) |= A and (s, h, 0) |= A′. By induction hypothesis, this is
true if and only if (s, h) |= bAc and (s, h) |= bA′c, which is equivalent to (s, h) |= bAc ∧ bA′c.

− ∃x. A
b∃x. Ac = ∃x. bAc.
(s, h, 0) |= ∃x. A iff, for some v ∈ V alues, it is (s[x 7→ v], h,m) |= A. By induction hy-
pothesis, this is true iff (s[x 7→ v], h) |= bAc or equivalently (s, h) |= ∃x. bAc.

− emp

bempc = emp.
(s, h, 0) |= emp iff dom(h) = ∅ iff (s, h) |= emp.

− E 7→ E′

bE 7→ E′c = E 7→ E′.
(s, h, 0) |= E 7→ E′ iff dom(h) = {JEKs} and h(JEKs) = JE′Ks iff (s, h) |= E 7→ E′.

− A ∗A′

bA ∗A′c = bAc ∗ bA′c.
(s, h, 0) |= A ∗A′ iff (s, h, 0) = (s, h1 ·h2, n1+n2) with (s, h1, n1) |= A and (s, h2, n2) |= A′.
n1, n2 ∈ N and n1 + n2 = 0 implies n1 = n2 = 0, so we have (s, h1, 0) |= A and
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(s, h2, 0) |= A′. By induction hypothesis we then have (s, h1) |= bAc and (s, h2) |= bA′c,
and so (s, h) |= bAc ∗ bA′c.

Now suppose (s, h) |= bAc ∗ bA′c. Then there are h1, h2 ∈ Heaps with h = h1 · h2,
(s, h1) |= bAc and (s, h2) |= bA′c. By induction hypothesis (s, h1, 0) |= A and (s, h2, 0) |= A′,
and also (s, h1 · h2, 0) |= A ∗A′.

− A —∗ A′

bA —∗ A′c = bAc—∗ bA′c.
Taking (s, h, 0) ∈ States we have (s, h, 0) |= A —∗ A′ iff whenever (s, h′, n′) |= A and it is
the case that (s, h ·h′, n′) ∈ States, we also have (s, h · h′, n′) |= A′. Suppose (s, h′) |= bAc
and h · h′ is defined. By induction hypothesis, we have (s, h′, 0) |= A. This implies
that (s, h · h′, 0) |= A′, so again by induction hypothesis we have (s, h · h′) |= bA′c and
so (s, h) |= bAc—∗ bA′c.

Now suppose (s, h) |= bAc—∗ bA′c. Then whenever (s, h′) |= bAc and h · h′ is defined
we have (s, h · h′) |= bA′c. Suppose (s, h′, n′) |= A. Because every annotation in A must
be 0, applying Lemma 3.1 we have (s, h′, n′′) |= A for every n′′ ∈ N, and in particular
(s, h′, 0) |= A. By induction hypothesis, we know then that (s, h′) |= bAc, and so be-
cause (s, h) |= bAc—∗ bA′c it is (s, h · h′) |= bA′c. But then, by induction hypothesis we
have (s, h · h′, 0) |= A′, and applying again Lemma 3.1 we have (s, h · h′, n′) |= A′. Hence,
(s, h, 0) |= A —∗ A′.

− AE

By hypothesis, it must be E = 0. bA0c = bAc.
(s, h, 0) |= A0 implies, in particular, (s, h, 0) |= A, so by induction hypothesis (s, h) |= bAc.

Now suppose (s, h) |= bAc. Then by induction hypothesis (s, h, 0) |= A, but also 0 ≥ 0, so
(s, h, 0) |= A0.

Let us explain why we needed to impose the restrictions MAX = ∞ and all annontations in
A being 0 to get the previous result.

Suppose we had MAX ∈ N and the assertion trueMAX+1. While every old state (s, h) would
satisfy true = btrueMAX+1c, no (s, h, n) ∈ States, with our current definition of States, would
satisfy trueMAX+1.

Now suppose that, even with MAX =∞, we had to consider the assertion true —∗ true7. The
state (with the new definition of States) (s, h, 0) does not satisfy true —∗ true7 because, taking
(s, h′, 2) ∈ States with h · h′ ∈ Heaps, we have (s, h′, 2) |= true and (s, h · h′, 2) ∈ States but
(s, h · h′, 2) 6|= true7 because 2 < 7. However, (s, h) |= btrue —∗ true7c = true —∗ true because
in the old model true —∗ true ≡ true.

3.1.2 Tight Specifications

Most of the command specific rules used in the original memory model remain the same in
this one. Only the axioms for allocation and deallocation of memory have been changed. The
modified axioms are the following

{x = y ∧ emp1} x := new(E) {x 7→ E[y/x]}
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{∃x. (E 7→ x)} dispose(E) {emp1}

We are going to prove soundness of these axioms, and of all the unmodified rules in this
setting, and we will do it with respect to the same notions of correctness and safety as in the
original heap model (we will only look into partial correctness here). Here they are, adapted to
our new definition of states:

Definition 3.1. A configuration 〈C, (s, h)〉 is safe iff 〈C, (s, h)〉 6 ∗ fault.

Definition 3.2 (Partial Correctness). {A} C {A′} holds iff

∀(s, h) ∈ States.(s, h) |= A implies
〈C, (s, h)〉 is safe and
∀(s′, h′) ∈ States.〈C, (s, h)〉 〈(s′, h′)〉 implies (s′, h′) |= A′

All technical results about this model are stated and proved in subsection 3.1.4. These
results include Safety Monotonicity, Frame Property and Soundness of the Frame Rule, as well
as soundness of all other rules and axioms.

First, however, let us see an example of a proof of a program in this setting.

3.1.3 Example: Proof of a program

One of the main data structures used in programming is lists. Since we cannot allocate con-
tiguous cells in this model, we will work, for the time being, with linked lists without contents.
We will use the following abbreviations to talk about list segments.

(s, h, n) |= ls(x, y,m)⇔ (s, h, n) |= (m = 0 ∧ x = y ∧ emp) ∨ (m > 0 ∧ ∃z. [x 7→ z ∗ ls(z, y,m− 1)])

That is, ls(x, y,m) describes those heaps that form a singly linked list segment of length m
from x to y.

Observations:

− (s, h, n) |= ls(x, y,m) and (s, h, n) |= m > 0 implies (s, h, n) |= ¬x 6= nil (because nil is
not an address and so it is impossible for us to have (s, h, n) |= ∃z. x 7→ z if x = nil).

− (s, h, n) |= x = nil implies (s, h, n) |= m = 0 ∧ x = y ∧ emp (same reason as above).

− (s, h, n) |= x 7→ y iff (s, h, n) |= ls(x, y, 1).

We will use these in our example, as well as the following result:

Lemma 3.3 (Transitivity of lists).

(s, h, n) |= ls(x, y,m) ∗ ls(y, z,m′) implies (s, h, n) |= ls(x, z,m+m′)

Proof. Induction on m:

− m = 0

Let (s, h, n) |= ls(x, y, 0) ∗ ls(y, z,m′), then (s, h, n) |= x = y ∧ ∧emp ∗ ls(y, z,m′), and
that implies (s, h, n) |= ls(x, z,m′).
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− m ≥ 1

Let (s, h, n) |= ls(x, y,m) ∗ ls(y, z,m′), then it must also be the case that
(s, h, n) |= ∃w. [x 7→ w ∗ ls(w, y,m− 1)] ∗ ls(y, z,m′) and so
(s, h, n) |= ∃w. [x 7→ w ∗ ls(w, y,m− 1) ∗ ls(y, z,m′)] giving, by induction hypothesis,
(s, h, n) |= ∃w. [x 7→ w ∗ ls(w, z,m− 1 +m′)], and finally (s, h, n) |= ls(x, z,m+m′).

We will test our logic with the following example: a program that makes a disjoint copy of
a given list. The input to the program is a pointer x to the head of the list.

The program is the following:

C : y := nil;
i := x;
j := nil;
while i 6= nil do y := new(j);

i := [i];
j := y

We want to prove that this program satisfies the following specification:

{ls(x,nil,m)m} C {ls(x,nil,m) ∗ ls(y,nil,m)}

for every m ≥ 0.

We make two separate proofs: one for the case m = 0 and another for m > 0.

− m = 0

{ls(x,nil, 0)0}

{ls(x,nil, 0) ∗ y=̇y}

y := nil

{ls(x,nil, 0) ∗ y=̇nil}

{i=̇i ∗ ls(x,nil, 0) ∗ y=̇nil}

i := x

{i=̇x ∗ ls(x,nil, 0) ∗ y=̇nil}

{i=̇x ∗ ls(x,nil, 0) ∗ y=̇nil ∗ j=̇j}

j := nil

{i=̇x ∗ ls(x,nil, 0) ∗ y=̇nil} ∗ j=̇nil}

while i 6= nil do {y := new(j); i := [i]; j := y}

{(ls(x,nil, 0) ∗ ls(y,nil, 0)) ∧ i = nil}

{ls(x,nil, 0) ∗ ls(y,nil, 0)}
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To infer
{i=̇x ∗ ls(x,nil, 0) ∗ y=̇nil} ∗ j=̇nil}

while i 6= nil do {y := new(j); i := [i]; j := y}

{(ls(x,nil, 0) ∗ ls(y,nil, 0)) ∧ i = nil}

we use the following:

{(i=̇x ∗ ls(x,nil, 0) ∗ y=̇nil} ∗ j=̇nil) ∧ i 6= nil}

{(i=̇x ∗ x=̇nil ∗ y=̇nil} ∗ j=̇nil) ∧ i 6= nil}

{(i=̇nil ∗ y=̇nil} ∗ j=̇nil) ∧ i 6= nil}

{false}

y := new(j); i := [i]; j := y

{ls(x,nil, 0) ∗ ls(y,nil, 0)}

(we have {false} C {A} for any program C and assertion A.)

So we can say that

{ls(x,nil, 0)0} C {ls(x,nil, 0) ∗ ls(y,nil, 0)}

− m > 0
{ls(x,nil,m)m}

{ls(x,nil,m) ∗ empm}

{ls(x,nil,m) ∗ y=̇y ∗ empm}

y := nil

{ls(x,nil,m) ∗ y=̇nil ∗ empm}

{i=̇i ∗ ls(x,nil,m) ∗ y=̇nil ∗ empm}

i := x

{i=̇x ∗ ls(i,nil,m) ∗ y=̇nil ∗ empm}

{i=̇x ∗ ls(i,nil,m) ∗ y=̇nil ∗ j=̇j ∗ empm}

j := nil

{i=̇x ∗ ls(i,nil,m) ∗ y=̇nil ∗ j=̇nil ∗ empm}

{i=̇x ∗ ls(i,nil,m) ∗ y=̇j ∗ j=̇nil ∗ empm}

{ls(x, i, 0) ∗ ls(i,nil,m) ∗ y=̇j ∗ ls(j,nil, 0) ∗ empm}

{∃n. [ls(x, i, n) ∗ ls(i,nil,m− n) ∗ y=̇j ∗ ls(j,nil, n) ∗ empm−n]}

while i 6= nil do {y := new(j); i := [i]; j := y}

{∃n. [ls(x, i, n) ∗ ls(i,nil,m− n) ∗ y=̇j ∗ ls(j,nil, n) ∗ empm−n] ∧ i = nil}

{ls(x, i,m) ∗ ls(i,nil, 0) ∗ ls(y,nil,m) ∗ emp0}

{ls(x,nil,m) ∗ ls(y,nil,m)}
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To infer

{∃n. [ls(x, i, n) ∗ ls(i,nil,m− n) ∗ y=̇j ∗ ls(j,nil, n) ∗ empm−n]}

while i 6= nil do {y := new(j); i := [i]; j := y}

{∃n. [ls(x, i, n) ∗ ls(i,nil,m− n) ∗ y=̇j ∗ ls(j,nil, n) ∗ empm−n] ∧ i = nil}

we use the following:

{∃n. [ls(x, i, n) ∗ ls(i,nil,m− n) ∗ y=̇j ∗ ls(j,nil, n) ∗ empm−n] ∧ i 6= nil}

{(ls(x, i, k) ∗ ls(i,nil,m− k) ∗ y=̇j ∗ ls(j,nil, k) ∗ empm−k) ∧ i 6= nil}

{(ls(x, i, k) ∗ ls(i,nil,m− k) ∗ y=̇j ∗ ls(j,nil, k) ∗ empm−(k+1) ∗ emp1) ∧ i 6= nil}

{(ls(x, i, k) ∗ ls(i,nil,m− k) ∗ emp1 ∧ y = j ∗ ls(j,nil, k) ∗ empm−(k+1)) ∧ i 6= nil}

y := new(j)

{(ls(x, i, k) ∗ ls(i,nil,m− k) ∗ y 7→ j ∗ ls(j,nil, k) ∗ empm−(k+1)) ∧ i 6= nil}

{i = u ∧ (ls(x, u, k) ∗ i 7→ v ∗ ls(v,nil,m− (k + 1))) ∗ y 7→ j ∗ ls(j,nil, k) ∗ empm−(k+1)}

i := [i]

{i = v ∧ (ls(x, u, k) ∗ u 7→ v ∗ ls(v,nil,m− (k + 1))) ∗ y 7→ j ∗ ls(j,nil, k) ∗ empm−(k+1)}

{i = v ∧ (ls(x, v, k + 1) ∗ ls(v,nil,m− (k + 1))) ∗ y 7→ j ∗ ls(j,nil, k) ∗ empm−(k+1)}

{ls(x, i, k + 1) ∗ ls(i,nil,m− (k + 1)) ∗ ls(y,nil, k + 1) ∗ empm−(k+1)}

{ls(x, i, k + 1) ∗ ls(i,nil,m− (k + 1)) ∗ j=̇j ∗ ls(y,nil, k + 1) ∗ empm−(k+1)}

j := y

{ls(x, i, k + 1) ∗ ls(i,nil,m− (k + 1)) ∗ j=̇y ∗ ls(y,nil, k + 1) ∗ empm−(k+1)}

{ls(x, i, k + 1) ∗ ls(i,nil,m− (k + 1)) ∗ y=̇j ∗ ls(y,nil, k + 1) ∗ empm−(k+1)}

{∃n. [ls(x, i, n) ∗ ls(i,nil,m− n) ∗ y=̇j ∗ ls(j,nil, n) ∗ empm−n]}

And so, we have

{ls(x,nil,m)m} C {ls(x,nil,m) ∗ ls(y,nil,m)}

3.1.4 Results

First of all, we will prove Safety Monotonicity and the Frame Property so we can use them to
prove soundness of the Frame Rule immediately after.

Lemma 3.4 (Frame Property). If 〈C, (s, h2, n2)〉 is safe and 〈C, (s, h2 · h1, n2 + n1)〉  ∗
〈(s′, h′, n′)〉 then there exist h′2 ∈ Heaps and n′2 ∈ N such that 〈C, (s, h2, n2)〉  ∗ 〈(s′, h′2, n′2)〉,
h′ = h′2 · h1 and n′ = n′2 + n1.

Proof. We will reason by structural induction on C. The only cases substantially different from
the standard heap model are the cases for allocation and deallocation of memory.

We will use the notation [v 7→ v′] to represent singleton heaps.
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− x := E

〈x := E, (s, h2, n2)〉 is safe and 〈x := E, (s, h2 ·h1, n2 +n1)〉 ∗ 〈(s′, h′, n′)〉. Then it must
be s′ = s[x 7→ JEKs], h′ = h2 · h1 and n′ = n2 + n1, and also the operational semantics
gives us 〈x := E, (s, h2, n2)〉 ∗ (s[x 7→ JEKs], h2, n1).

− x := [E]

〈x := [E], (s, h2, n2)〉 is safe and 〈x := [E], (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉. Then
JEKs ∈ dom(h2) ⊆ dom(h2 · h1) and for some v it is h2(JEKs) = h2 · h1(JEKs) = v. Hence,
we have s′ = s[x 7→ v], h′ = h2 · h1 and n′ = n2 + n1, and also the operational semantics
gives us 〈x := [E], (s, h2, n2)〉 ∗ (s[x 7→ v], h2, n1).

− x := new(E)

〈x := new(E), (s, h2, n2)〉 is safe and 〈x := new(E), (s, h2 · h1, n2 + n1)〉 ∗ 〈(s′, h′, n′)〉.
Then n2 + n1 ≥ n2 > 0 and n′ = n2 + n1 − 1 = (n2 − 1) + n1, and there must be some
m ∈ Addresses \ dom(h2 · h1) with s′ = s[x 7→ m], h′ = h2 · h1 · [m 7→ JEKs] = h2 · [m 7→
JEKs] · h1. Also, the operational semantics gives us 〈x := new(E), (s, h2, n2)〉 ∗ (s[x 7→
m], h2[m 7→ JEKs], n2 − 1).

− [E] := E′

〈[E] := E′, (s, h2, n2)〉 is safe and 〈[E] := E′, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉. Then
JEKs ∈ dom(h2) ⊆ dom(h2 ·h1), n′ = n2 +n1 and h′ = h2 ·h1[JEKs 7→ JE′Ks] = h2[JEKs 7→
JE′Ks] · h1, s′ = s, and the operational semantics gives us 〈[E] := E′, (s, h2, n2)〉  ∗
(s, h2[JEKs 7→ JE′Ks], n2).

− dispose(E)

〈dispose(E′), (s, h2, n2)〉 is safe and 〈dispose(E′), (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉.
Then JEKs ∈ dom(h2) ⊆ dom(h2 · h1), n′ = n2 + n1 + 1 = (n2 + 1) + n1, h

′ = (h2 ·
h1)edom(h2·h1)\JEKs = h2edom(h2)\JEKs · h1 and s′ = s, and the operational semantics gives
〈dispose(E), (s, h2, n2)〉 ∗ (s, h2edom(h2)\JEKs, n2 + 1).

− C;C ′

〈C;C ′, (s, h2, n2)〉 is safe and 〈C;C ′, (s, h2·h1, n2+n1)〉 ∗ 〈(s′, h′, n′)〉. Then there is some
(s′′, h′′, n′′) such that 〈C, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′′, h′′, n′′)〉 and 〈C ′, (s′′, h′′, n′′)〉  ∗
〈(s′, h′, n′)〉.
By induction hypothesis there are h′′2, n

′′
2 such that 〈C, (s, h2, n2)〉  ∗ 〈(s′′, h′′2, n′′2)〉 with

h′′ = h′′2 · h1 and n′′ = n′′2 + n1. Because 〈C;C ′, (s, h2, n2)〉 is safe, 〈C ′, (s′′, h′2, n′2)〉 must
be safe too, and since 〈C ′, (s′′, h′′, n′′)〉 = 〈C ′, (s′′, h′′2 · h1, n′′2 + n1)〉 ∗ 〈(s′, h′, n′)〉, again
by induction hypothesis there must be some h′2, n

′
2 with h′ = h′2 ·h1 and n′ = n′2 +n1 such

that 〈C ′, (s′′, h′′2, n′′2)〉 ∗ 〈(s′, h′2, n′2)〉 and so 〈C;C ′, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉.

− while B do C

〈while B do C, (s, h2, n2)〉 is safe and 〈while B do C, (s, h2 ·h1, n2+n1)〉 ∗ 〈(s′, h′, n′)〉.
We will prove, in this case, the following result:

Given m ∈ N, if 〈while B do C, (s, h2, n2)〉 is safe and 〈while B do C, (s, h2 · h1, n2 +
n1)〉  ∗ 〈(s′, h′, n′)〉 in m steps, then there exist h′2 ∈ Heaps and n′2 ∈ N such that
〈while B do C, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉, h′ = h′2 · h1 and n′ = n′2 + n1..

Let us apply induction on m:
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– If m = 1 then it must be JBKs = false and 〈while B do C, (s, h2 · h1, n2 + n1)〉  
〈(s, h2 · h1, n2 + n1)〉. But then also 〈while B do C, (s, h2, n2)〉 〈(s, h2, n2)〉.

– If m > 1 then it must be JBKs = true and 〈while B do C, (s, h2 · h1, n2 + n1)〉  
〈C; while B do C, (s, h2 ·h1, n2 +n1)〉 is the only possible first step in a computation
from 〈while B do C, (s, h2 · h1, n2 + n1)〉.
There must be some (s′′, h′′, n′′) such that 〈C, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′′, h′′, n′′)〉
and 〈while B do C, (s′′, h′′, n′′)〉 ∗ 〈(s′, h′, n′)〉.
By induction hypothesis there are h′′2, n

′′
2 with 〈C, (s, h2, n2)〉  ∗ 〈(s′′, h′′2, n′′2)〉 and

h′′ = h′′2 · h1, n′′ = n′′2 + n1. It follows from this that 〈while B do C, (s, h2, n2)〉  
〈C; while B do C, (s, h2, n2)〉  ∗ 〈while B do C, (s′′, h′′2, n

′′
2)〉, so we have that

〈while B do C, (s′′, h′′2, n
′′
2)〉 must be safe because 〈while B do C, (s, h2, n2)〉 is safe.

On the other hand, similarly, we have 〈while B do C, (s, h2 · h1, n2 + n1)〉  ∗
〈while B do C, (s′′, h′′, n′′)〉 = 〈while B do C, (s′′, h′′2 · h1, n′′2 + n1)〉 and also
〈while B do C, (s′′, h′′2 ·h1, n′′2+n1)〉 ∗ 〈(s′, h′, n′)〉 in less than m steps. Then, by in-
duction (on m) hypothesis, because 〈while B do C, (s′′, h′′2, n

′′
2)〉 is safe, we have that

there are h′2, n
′
2 with h′ = h′2 · h1, n′ = n′2 + n1 and 〈while B do C, (s′′, h′′2, n

′′
2)〉 ∗

〈(s′, h′2, n′2)〉, and consequently 〈while B do C, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉.

− if B then C else C ′

〈if B then C else C ′, (s, h2, n2)〉 is safe and 〈if B then C else C ′, (s, h2 ·h1, n2+n1)〉 ∗
〈(s′, h′, n′)〉. Either JBKs = true or JBKs = false.

If JBKs = true then necessarily we have 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉  
〈C, (s, h2 · h1, n2 + n1)〉 and 〈if B then C else C ′, (s, h2, n2)〉  〈C, (s, h2, n2)〉. Since
we had 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉, we must also have
〈C, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉, and so by induction hypothesis there are h′2, n

′
2

with h′ = h′2 · h1, n′ = n′2 + n1 and 〈C, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉, and consequently with
〈if B then C else C ′, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉.
Similarly, if JBKs = true then we have 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉  
〈C ′, (s, h2 · h1, n2 + n1)〉 and 〈if B then C else C ′, (s, h2, n2)〉  〈C ′, (s, h2, n2)〉. Since
we had 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉, we must also have
〈C ′, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s′, h′, n′)〉, and so by induction hypothesis there are h′2, n

′
2

with h′ = h′2 ·h1, n′ = n′2 +n1 and 〈C ′, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉, and consequently with
〈if B then C else C ′, (s, h2, n2)〉 ∗ 〈(s′, h′2, n′2)〉.

Lemma 3.5 (Safety Monotonicity). If 〈C, (s, h2, n2)〉 is safe then for any h1 ∈ Heaps, any
n1 ∈ N, (s, h2 · h1, n2 + n1) ∈ States implies 〈C, (s, h2 · h1, n2 + n1)〉 is safe too.

Proof. We have 〈C, (s, h2, n2)〉 safe. Suppose (s, h2 · h1, n2 + n1) ∈ States. We need to see that
〈C, (s, h2 · h1, n2 + n1)〉 is safe too. Let us proceed by induction on the structure of C:

− x := E

〈x := E, (s, h2, n2)〉 is safe and 〈x := E, (s, h2 · h1, n2 +n1)〉 is safe too because, according
to our operational semantics, for any state the command x := E never leads to fault.

− x := [E]

〈x := [E], (s, h2, n2)〉 is safe so it must be JEKs ∈ dom(h2) ⊆ dom(h2 · h1) and also
〈x := [E], (s, h2 · h1, n2 + n1)〉 is safe.
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− x := new(E)

〈x := new(E), (s, h2, n2)〉 is safe so it must be n2 > 0. But then n2 + n1 ≥ n2 > 0, so
〈x := new(E), (s, h2 · h1, n2 + n1)〉 is safe too.

− [E] := E′

〈[E] := E, (s, h2, n2)〉 is safe so necessarily JEKs ∈ dom(h2) ⊆ dom(h2 · h1) and therefore
〈[E] := E, (s, h2 · h1, n2 + n1)〉 is safe as well.

− dispose(E)

〈dispose(E), (s, h2, n2)〉 is safe so it must be JEKs ∈ dom(h2) ⊆ dom(h2 · h1) and
〈dispose(E), (s, h2 · h1, n2 + n1)〉 is safe too.

− C;C ′

〈C;C ′, (s, h2, n2)〉 is safe so it must be the case that 〈C, (s, h2, n2)〉 is safe and, for any
(ŝ, ĥ2, n̂2) with 〈C, (s, h2, n2)〉 ∗ 〈(ŝ, ĥ2, n̂2)〉, 〈C ′, (ŝ, ĥ2, n̂2)〉 is safe too.

By structural induction, since 〈C, (s, h2, n2)〉 is safe 〈C, (s, h2 · h1, n2 + n1)〉 must be safe
too. Now suppose 〈C, (s, h2 ·h1, n2 +n1)〉 〈(ŝ, ĥ, n̂)〉. By the Frame Property it must be
(ŝ, ĥ, n̂) = (ŝ, ĥ2 · h1, n̂2 + n1) for some ĥ2, n̂2 with 〈C, (s, h2, n2)〉  ∗ 〈(ŝ, ĥ2, n̂2)〉. Since
〈C ′, (ŝ, ĥ2, n̂2)〉 must be safe, as we just saw, 〈C ′, (ŝ, ĥ, n̂)〉 = 〈C ′, (ŝ, ĥ2 ·h1, n̂2 +n1)〉 must
be safe too, again by structural induction. Hence, 〈C;C ′, (s, h2 · h1, n2 + n1)〉 is safe.

− while B do C

〈while B do C, (s, h2, n2)〉 is safe so it must be one of the following two cases:

JBKs = false, which implies 〈while B do C, (s, h2, n2)〉  〈(s, h2, n2)〉 and then we
have 〈while B do C, (s, h2 · h1, n2 + n1)〉  〈(s, h2 · h1, n2 + n1)〉, and therefore
〈while B do C, (s, h2 · h1, n2 + n1)〉 is safe.

JBKs = true, and so 〈while B do C, (s, h2, n2)〉  〈C; while B do C, (s, h2, n2)〉. Let
us see that 〈while B do C, (s, h2·, n2 + n1)〉 does not lead to fault.

Suppose 〈while B do C, (s, h2 · h1, n2 + n1)〉  ∗ fault. That would imply that
〈C; while B do C, (s, h2 · h1, n2 + n1)〉  ∗ fault. Then we would either have
〈C, (s, h2 · h1, n2 + n1)〉 ∗ fault, or 〈C, (s, h2 · h1, n2 + n1)〉 ∗ 〈(s̃, h̃, ñ)〉 together
with 〈while B do C, (s̃, h̃, ñ)〉 ∗ fault for some (s̃, h̃, ñ).

If 〈C, (s, h2 · h1, n2 + n1)〉  ∗ fault then there would be a contradiction with
the fact that JBKs = true and 〈while B do C, (s, h2, n2)〉 is safe because we
have 〈while B do C, (s, h2, n2)〉  〈C; while B do C, (s, h2, n2)〉 so necessarily
〈C; while B do C, (s, h2, n2)〉 must be safe, and this implies that 〈C, (s, h2, n2)〉 is
safe too, and so by induction hypothesis 〈C, (s, h2 ·h1, n2 +n1)〉 must be safe as well.

If, on the other hand, it is the case that 〈C, (s, h2 · h1, n2 + n1)〉  ∗ 〈(s̃, h̃, ñ)〉 and
〈while B do C, (s̃, h̃, ñ)〉 ∗ fault, then by the Frame Property there must be some
h′2 and n′2 such that h̃ = h′2 ·h1, ñ = n′2+n1 and 〈C, (s, h2, n2)〉 ∗ 〈(s̃, h′2, n′2)〉. Since
we know that 〈while B do C, (s, h2, n2)〉 is safe and 〈C, (s, h2, n2)〉 ∗ 〈(s̃, h′2, n′2)〉,
〈while B do C, (s̃, h′2, n

′
2)〉 must be safe too, and by structural induction we know

that 〈while B do C, (s̃, h̃, ñ)〉 = 〈while B do C, (s̃, h′2 ·h1, n′2 +n1)〉 must be safe as
well. We have reached a contradiction again, so it cannot possibly be the case that
〈while B do C, (s, h2 · h1, n2 + n1)〉 ∗ fault. 〈while B do C, (s, h2 · h1, n2 + n1)〉
must therefore be safe.
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− if B then C else C ′

We know that 〈if B then C else C ′, (s, h2, n2)〉 is safe.

If JBKs = true then 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉 〈C, (s, h2 · h1, n2 + n1)〉
is the only possible first step from 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉, and so is
〈if B then C else C ′, (s, h2, n2)〉 〈C, (s, h2, n2)〉 from 〈if B then C else C ′, (s, h2, n2)〉.
But then, since 〈if B then C else C ′, (s, h2, n2)〉 is safe 〈C, (s, h2, n2)〉 must be safe, and
by induction hypothesis so must be 〈C, (s, h2·h1, n2+n1)〉. Since the only possible first step
from 〈if B then C else C ′, (s, h2 ·h1, n2 +n1)〉 was 〈if B then C else C ′, (s, h2 ·h1, n2 +
n1)〉 〈C, (s, h2 ·h1, n2 +n1)〉, this implies that 〈if B then C else C ′, (s, h2 ·h1, n2 +n1)〉
is safe as well.

Simililarly, if JBKs = false then necessarily 〈if B then C else C ′, (s, h2 · h1, n2 + n1)〉 
〈C ′, (s, h2 · h1, n2 + n1)〉 and 〈if B then C else C ′, (s, h2, n2)〉  〈C ′, (s, h2, n2)〉. And
so 〈if B then C else C ′, (s, h2, n2)〉 safe implies 〈C ′, (s, h2, n2)〉 must be safe, and by
induction hypothesis so must be 〈C ′, (s, h2 ·h1, n2 +n1)〉. Since the only possible first step
from 〈if B then C else C ′, (s, h2 ·h1, n2 +n1)〉 was 〈if B then C else C ′, (s, h2 ·h1, n2 +
n1)〉 〈C ′, (s, h2 ·h1, n2+n1)〉, this implies that 〈if B then C else C ′, (s, h2 ·h1, n2+n1)〉
is safe as well.

Proposition 3.1 (Soundness of the Frame Rule). If {A} C {A′} holds and Modifies(C)#D,
then also {A ∗D} C {A′ ∗D} holds.

Proof. Suppose that {A} C {A′} holds. Then for any state (s, h, n) with (s, h, n) |= A the con-
figuration 〈C, (s, h, n)〉 is safe and whenever 〈C, (s, h, n)〉 〈(s′, h′, n′)〉 we have (s′, h′, n′) |= A′.

Now suppose (s, h, n) |= A ∗D. Then (s, h, n) = (s, h1 · h2, n1 + n2) for some h1, h2, n1, n2
with (s, h1, n1) |= A and (s, h2, n2) |= D. Since {A} C {A′} holds, 〈C, (s, h1, n1)〉 is safe, and
by Safety Monotonicity so is 〈C, (s, h1 ·h2, n1 +n2)〉. Let 〈C, (s, h1 ·h2, n1 +n2)〉 〈(s′, h′, n′)〉,
by the Frame Property there must be some h′1, n

′
1 with 〈C, (s, h1, n1)〉 〈(s′, h′1, n′1)〉— and so

with (s′, h′1, n
′
1) |= A′ — and h′ = h′ · h2, n′ = n′1 + n2.

Now let us remember the definition of the relation #: X#A iff for any s, s′ ∈ Stacks with
seV ariables\X = s′eV ariables\X we have (s, h) |= A⇒ (s′, h) |= A.

Since our s′ is obtained from s by application of C, by definition of Modifies(C) as the set of
variables affected by C, it must be the case that seV ariables\Modifies(C) = s′eV ariables\Modifies(C).
Now since we haveModifies(C)#D by hypothesis, this means that because (s, h2, n2) |= D then
also (s′, h2, n2) |= D. Finally, because (s′, h′1, n

′
1) |= A′, we have (s′, h′1 · h2, n′1 + n2) |= A′ ∗D

and consequently {A ∗D} C {A′ ∗D}.

To prove soundness of all the other rules in the logic we will need some auxiliary results:

Lemma 3.6. JF Ks[x 7→ JEKs] = JF [E/x]Ks.

Proof. Structural induction on F .

− x

JxKs[x 7→ JEKs] = JEKs = Jx[E/x]Ks.

− y 6= x

JyKs[x 7→ JEKs] = JyKs = Jy[E/x]Ks (since y 6= x, it is y = y[E/x]).
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− 0 or 1

J0Ks[x 7→ JEKs] = J0Ks = J0[E/x]Ks and J1Ks[x 7→ JEKs] = J1Ks = J1[E/x]Ks.

− F opa F
′

JF opa F
′Ks[x 7→ JEKs] = JF Ks[x 7→ JEKs] opa JF ′Ks[x 7→ JEKs]. By induction hypothesis,

this is equal to JF [E/x]Ks opa JF ′[E/x]Ks = JF [E/x] opa F
′[E/x]Ks.

Lemma 3.7. If JxKs = JyKs then for any arithmetic expression E, it is JEKs = JE[y/x]Ks.

Proof. Structural induction on E.

− x

JxKs = JyKs = Jx[y/x]Ks (x[y/x] = y).

− z 6= x

z[y/x] = z and so JzKs = Jz[y/x]Ks.

− 0 or 1

0[y/x] = 0 and 1[y/x] = 1, so J0Ks = J0[y/x]Ks and J1Ks = J1[y/x]Ks.

− F opa F
′

JF opa F
′Ks = JF Ks opa JF ′Ks. By induction hypothesis

JF Ks opa JF ′Ks = JF [y/x]Ks opa JF ′[y/x]Ks = JF [y/x] opa F
′[y/x]Ks = J(F opa F

′)[y/x]Ks.

Lemma 3.8. If dom(s) = dom(s′) = D and seD\{x} = s′eD\{x}, then for any arithmetic
expression E that contains no occurrences of x it is JEKs = JEKs′.

Proof. Structural induction on E.

− z 6= x

z ∈ D \ {x} so s(z) = s′(z), and so JzKs = s(z) = s′(z) = JzKs′.

− 0 or 1

J0Ks = 0 = J0Ks′ and J1Ks = 1 = J1Ks′.

− F opa F
′

JF opa F
′Ks = JF Ks opa JF ′Ks. Since F opa F

′ contains no x, none of F, F ′ contain any x
either. Hence, by induction hypothesis, JF Ks opa JF ′Ks = JF K′s opa JF ′Ks′ = JF opa F

′Ks′.

And, finally, let us prove soundness of the rules. We give them all once again, together, in
Figure 7.

Proposition 3.2 (Soundness). If {A} C {A′} is derivable using the proof rules in Figure 7,
then {A} C {A′} indeed holds in the sense of Definition 3.2.

Proof.
We will just show that, for each proof, if its premises hold then so does its conclusion.
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{x=̇y} x := E {x=̇E[y/x]}

{x = y ∧ (E 7→ z)} x := [E] {x = z ∧ (E[y/x] 7→ z)}
x, y, z distinct

{∃x. (E 7→ x)} [E] := F {E 7→ F}

{x = y ∧ emp1} x := new(E) {x 7→ E[y/x]}

{∃x. (E 7→ x)} dispose(E) {emp1}

{A} C1 {A′′} {A′′} C2 {A′}
{A} C1;C2 {A′}

JA1K ⊆ JA′1K {A′1} C {A′2} JA′2K ⊆ JA2K
{A1} C {A2}

{A ∧B} C1 {A′} {A ∧ ¬B} C2 {A′}
{A} if B then C1 else C2 {A′}

{A ∧B} C {A}
{A} while B do C {A ∧ ¬B}

Figure 7: Rules for the BoundedeHeap Model

−
{x=̇y} x := E {x=̇E[y/x]}
Let (s, h, n) |= x=̇y. This means that dom(h) = ∅ and JxKs = JyKs. We can see in the oper-
ational semantics that 〈x := E, (s, h, n)〉 6 ∗ fault. Indeed, the only possible computation
is 〈x := E, (s, h, n)〉 〈(s[x 7→ JEKs], h, n)〉. To see that (s[x 7→ JEKs], h, n) |= x=̇E[y/x]
we only need to check that JxKs[x 7→ JEKs] = JE[y/x]Ks[x 7→ JEKs].

JxKs[x 7→ JEKs] = JEKs and by Lemma 3.8 JE[y/x]Ks[x 7→ JEKs] = JE[y/x]Ks because
there are no occurrences of x in E[y/x]. But by Lemma 3.7 we have JE[y/x]Ks = JEKs,
so we have JxKs[x 7→ JEKs] = JEKs = JE[y/x]Ks = JE[y/x]Ks[x 7→ JEKs].

−
{x = y ∧ (E 7→ z)} x := [E] {x = z ∧ (E[y/x] 7→ z)}

x, y, z distinct

Let (s, h, n) |= x = y ∧ (E 7→ z). Then JxKs = JyKs, JEKs ∈ dom(h) and h(JEKs) = JzKs.

The operational semantics then gives 〈x := [E], (s, h, n)〉  〈(s[x 7→ JzKs], h, n)〉 as the
only possible computation step.

We need to see that (s[x 7→ JzKs], h, n) |= x = z ∧ (E[y/x] 7→ z), so we need to check that
(s[x 7→ JzKs], h, n) |= x = z and (s[x 7→ JzKs], h, n) |= E[y/x] 7→ z.

(s[x 7→ JzKs], h, n) |= x = z since JxKs[x 7→ JzKs] = JzKs = JzKs[x 7→ JzKs] by Lemma 3.8
since z and x are distinct.
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Also, (s[x 7→ JzKs], h, n) |= E[y/x] 7→ z because, applying Lemma 3.7 (because JxKs =
JyKs) and Lemma 3.8 (because E[y/x] contains no occurrences of x) we have dom(h) =
{JEKs} = {JE[y/x]Ks} = {JE[y/x]Ks[x 7→ JzKs]} and applying Lemma 3.8 again like before
(because z is distinct from x) we have h(JEKs) = JzKs = JzKs[x 7→ JzKs].

−
{∃x. (E 7→ x)} [E] := F {E 7→ F}
Let (s, h,m) |= ∃x. (E 7→ x). This implies dom(h) = {JEKs}.
The operational semantics gives 〈[E] := F, (s, h,m)〉  〈(s, h[JEKs 7→ JF Ks],m)〉 as the
only possible computation step.

We need to see that (s, h[JEKs 7→ JF Ks],m) |= E 7→ F . Let h′ = h[JEKs 7→ JF Ks], we have
m = 0, dom(h′) = dom(h) = {JEKs} and h′(JEKs) = JF Ks, so (s, h′,m) |= E 7→ F , as we
needed to show.

−
{x = y ∧ emp1} x := new(E) {x 7→ E[y/x]}
Let (s, h, n) |= x = y ∧ emp1. That means JxKs = JyKs, dom(h) = ∅ and n ≥ 1.

Since n ≥ 1 > 0, the operational semantics gives 〈x := new(E), (s, h, n)〉 6 ∗ fault and
〈x := new(E), (s, h, n)〉  〈(s[x 7→ m], h[m 7→ JEKs], n − 1)〉 for any m ∈ Addresses,
m /∈ dom(h).

Now we just need to see that for any suchm (s[x 7→ m], h[x 7→ JEKs], n− 1) |= x 7→ E[y/x].
Let s′ = s[x 7→ m], h′ = h[m 7→ JEKs] = [m 7→ JEKs]. We have dom(h′) = {m} = {JxKs′}
and also h′(m) = JEKs = JE[y/x]Ks = JE[y/x]Ks′ (using Lemmas 3.7 — JxKs = JyKs—
and 3.8 —E[y/x] contains no x). Hence, (s′, h′, n− 1) |= x 7→ E[y/x].

−
{∃x. (E 7→ x)} dispose(E) {emp1}
Let (s, h,m) |= ∃x. (E 7→ x). Then dom(h) = {JEKs}.
The operational semantics gives 〈dispose(E), (s, h,m)〉  〈(s, he∅,m + 1)〉 as the only
possible computation step (since dom(h) \ {JEKs} = ∅).
Now (s, he∅,m+ 1) |= emp1 because m+ 1 ≥ 1 and dom(he∅) = ∅.

−
{A} C1 {A′′} {A′′} C2 {A′}

{A} C1;C2 {A′}
Let (s, h, n) |= A. Suppose 〈C1;C2, (s, h, n)〉  ∗ fault, then either 〈C1, (s, h, n)〉  ∗
fault — which is a contradiction because we have {A} C1 {A′′} — or there is some
(s′′, h′′, n′′) such that 〈C1, (s, h, n)〉  ∗ 〈(s′′, h′′, n′′)〉 and 〈C2, (s

′′, h′′, n′′)〉  ∗ fault.
This leads to a contradiction too, since by {A} C1 {A′′} any such (s′′, h′′, n′′) verifies
(s′′, h′′, n′′) |= A′′, and by {A′′} C2 {A′} we have that 〈C2, (s

′′, h′′, n′′)〉 is safe, so it is
impossible that 〈C2, (s

′′, h′′, n′′)〉 ∗ fault. Hence 〈C1;C2, (s, h, n)〉 is safe.

Now suppose we have 〈C1;C2, (s
′′, h′′, n′′)〉  ∗ 〈(s′, h′, n′)〉. Then there must be some

state (s′′, h′′, n′′) such that 〈C1, (s, h, n)〉  ∗ 〈(s′′, h′′, n′′)〉 — and so (s′′, h′′, n′′) |= A′′ as
we have seen before — and 〈C2, (s

′′, h′′, n′′)〉  ∗ 〈(s′, h′, n′)〉. Because (s′′, h′′, n′′) |= A′′

and {A′′} C2 {A′}, we have (s′, h′, n′) |= A′. Therefore, for any (s′, h′, n′) verifying
〈C1;C2, (s

′′, h′′, n′′)〉 ∗ 〈(s′, h′, n′)〉 we have (s′, h′, n′) |= A′.

−
A1 |= A′1 {A′1} C {A′2} A′2 |= A2

{A1} C {A2}
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Let (s, h, n) |= A1. SinceA1 |= A′1, (s, h, n) |= A′1. Now because {A′1} C {A′2}, 〈C, (s, h, n)〉
is safe, and whenever 〈C, (s, h, n)〉  ∗ 〈(s′, h′, n′)〉 we have (s′, h′, n′) |= A′2, so we have
(s′, h′, n′) |= A2 because A′2 |= A2.

−
{A ∧B} C1 {A′} {A ∧ ¬B} C2 {A′}
{A} if B then C1 else C2 {A′}

Let (s, h, n) |= A. Then either (s, h, n) |= A ∧B or (s, h, n) |= A ∧ ¬B.

– (s, h, n) |= A ∧B
Then 〈if B then C1 else C2, (s, h, n)〉  ∗ fault implies 〈C1, (s, h, n)〉  ∗ fault.
That is not possible, since we have {A ∧ B} C1 {A′} by hypothesis. Therefore,
〈if B then C1 else C2, (s, h, n)〉must be safe. Also, if the operational semantics gives
〈if B then C1 else C2, (s, h, n)〉  ∗ 〈(s′, h′, n′)〉 then it must be 〈C1, (s, h, n)〉  ∗
〈(s′, h′, n′)〉, and so (s′, h′, n′) |= A′.

– (s, h, n) |= A ∧ ¬B
Then 〈if B then C1 else C2, (s, h, n)〉  ∗ fault implies 〈C2, (s, h, n)〉  ∗ fault.
That cannot be so, because by hypothesis we have {A ∧ ¬B} C2 {A′}. Hence,
〈if B then C1 else C2, (s, h, n)〉 is safe. Also if 〈if B then C1 else C2, (s, h, n)〉 ∗
〈(s′, h′, n′)〉 then it must be the case that 〈C2, (s, h, n)〉  ∗ 〈(s′, h′, n′)〉, and so
(s′, h′, n′) |= A′.

−
{A ∧B} C {A}

{A} while B do C {A ∧ ¬B}
Suppose 〈while B do C, (s, h, n)〉  ∗ T in a finite number m of steps, with T some
terminal configuration, either of the form 〈(s′, h′, n′)〉 or fault. We will show that if
(s, h, n) |= A then T = 〈(s′, h′, n′)〉 for some s′, h′, n′ with (s′, h′, n′) |= A ∧ ¬B. This will
imply, in particular, that T 6= fault, and so that 〈while B do C, (s, h, n)〉 is safe.

Let us reason by induction on m.

– m = 1

In this case we have 〈while B do C, (s, h, n)〉  T . Suppose (s, h, n) |= B. Then
JBKs = true and 〈while B do C, (s, h, n)〉  〈C; while B do C, (s, h, n)〉. But
〈C; whileB do C, (s, h, n)〉 is not a terminal configuration, so it must be (s, h, n) 6|= B
(and, consequently, JBKs = false). This gives only one possible computation:
〈while B do C, (s, h, n)〉  〈(s, h, n)〉. So we have that in this case T must be
〈(s, h, n)〉. We know by hypothesis that (s, h, n) |= A, and also (s, h, n) 6|= B, so we
have (s, h, n) |= A ∧ ¬B.

– m > 1

As we have seen, (s, h, n) 6|= B implies that m = 1, so in this case it must be
(s, h, n) |= B (and so (s, h, n) |= A ∧B). This gives 〈while B do C, (s, h, n)〉  
〈C; while B do C, (s, h, n)〉 ∗ T .

If T = fault then either 〈C, (s, h, n)〉  ∗ fault, or 〈C, (s, h, n)〉  ∗ 〈(s′′, h′′, n′′)〉
(for some s′′, h′′, n′′) and 〈while B do C, (s′′, h′′, n′′)〉  ∗ fault. 〈C, (s, h, n)〉  ∗
fault leads to contradiction, since we have (s, h, n) |= A ∧B and {A ∧ B} C {A},
and this implies that 〈C, (s, h, n)〉 must be safe.

On the other hand, if T = 〈(s′, h′, n′)〉 for some s′, h′, n′ then it must be the case that
〈C, (s, h, n)〉 ∗ 〈(s′′, h′′, n′′)〉 (for some s′′, h′′, n′′) and 〈whileB do C, (s′′, h′′, n′′)〉 ∗
〈(s′, h′, n′)〉.
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In both cases we have 〈C; whileB do C, (s, h, n)〉 ∗ 〈whileB do C, (s′′, h′′, n′′)〉 ∗
T . Since (s, h, n) |= A ∧B and {A ∧ B} C {A}, it must be (s′′, h′′, n′′) |= A. This
means that we have 〈while B do C, (s′′, h′′, n′′)〉  ∗ T in less than m steps, and
(s′′, h′′, n′′) |= A, and so by induction hypothesis T = 〈(s′, h′, n′)〉 for some (s′, h′, n′)
with (s′, h′, n′) |= A ∧ ¬B.

3.1.5 Alternative Approach

One may wonder why we do not choose to include a properly specified set of addresses instead of
just a number of random cells as the new third component in our states, as we have been doing
throughout this section so far. Since allocation takes place in a nondeterministic mannner, there
is no reason why we should care about the precise addresses of the cells we own. Not only is our
first approach simpler, we will see that some problems arise from considering a specific set of
addresses. Also, it reflects better the notion of arity of a state: memory allocation commands
do not need a certain memory cell available for allocation, they need some such cell.

Stacks and Heaps are still defined as in section 2, and this is the new definition of states:

States
def
= {(s, h, r) ∈ Stacks×Heaps× P(Addresses) such that dom(h) ∩ r = ∅}

The combination operation will now be

(s, h, r) · (s, h′, r′) =

 (s, h · h′, r ∪ r′) if h · h′ is defined and
r ∩ r′ = r ∩ dom(h′) = r′ ∩ dom(h) = ∅

undefined otherwise

The condition for (s, h, r) · (s, h′, r′) being defined is equivalent to (s, h · h′, r ∪ r′) ∈ States
and r ∩ r′ = ∅.

Had this model worked nicely, the operational semantics would have had to be revised so
that memory allocation only took cells that are in the specified set of reserved cells of the state.

An inconvenience of this approach is that the Frame Property does not hold if adapted
straightforwardly from its original formulation:

“If 〈C, (s, h2, r2)〉 6 ∗ fault and 〈C, (s, h2 · h1, r2 ∪ r1)〉  ∗ 〈(s′, h′, r′)〉 then there are h′2
and r′2 such that 〈C, (s, h2, r2)〉 ∗ 〈(s′, h′2, r′2)〉 with h′ = h′2 · h1 and r′ = r′2 ∪ r1.”

Let us understand where the problem lies. Suppose we have a configuration 〈C, (s, h2, r2)〉
such that 〈C, (s, h2, r2)〉 6 ∗ fault, and let 〈C, (s, h2 · h1, r2 ∪ r1)〉  ∗ 〈(s′, h′, r′)〉. Suppose
command C allocates some cell of memory which it never deallocates again. The chosen cell to
be allocated when executing C on (s, h2 · h1, r2 ∪ r1) might be one in r1, and then it would be
impossible to track the computation on the big state back to the smaller state.

Let us see this better with a specific counterexample: take C as x := new(nil) and consider
states (s, h1, r1), (s, h2, r2) with h1 = h2 = e, r1 = {5} and r2 = {7}. Their combination would
result in state (s, h1 · h2, r1 ∪ r2) = (s, e, {5, 7}), and a computation on this big state could be
〈x := new(nil), (s, e, {5, 7})〉  ∗ 〈(s[x 7→ 7], [7 7→ nil], {5})〉. We would need to find r′2 such
that 〈x := new(nil), (s, e, {5})〉 ∗ 〈(s[x 7→ 7], [7 7→ nil], r′2)〉 and {5} = r′2 ∪ {7}, when this is
clearly impossible.
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We tried finding a modified version of the Frame Property that would hold in this setting,
and that would still guarantee soundness of the Frame Rule. What we did is try to find a
reasonable notion of isomorphy between heaps, in the form of an equivalence relation between
states. We chose the following relation, v:

Definition 3.3 (Heap Isomorphism). Given h, h′ ∈ Heaps, we shall say that a bijective map-
ping f : Addresses→ Addresses is a heap isomorphism between h and h′ iff for any a ∈ dom(h)
we have

− if h(a) ∈ Atoms ∪ {nil} then h′(f(a)) = h(a).

− if h(a) ∈ Addresses then h′(f(a)) = f(h(a)).

Definition 3.4 (Isomorphic States). Given two states (s, h, r), (s′, h′, r′) ∈ States we shall say
that they are isomorphic, and will denote it (s, h, r) v (s′, h′, r′), iff

− |r′| = |r|

− there is a heap isomorphism f between h and h′ such that for any arithmetic expresssion
E we have

– if JEKs ∈ Atoms ∪ {nil} then JEKs′ = JEKs

– if JEKs ∈ Addresses then JEKs′ = f(JEKs)

At first sight, it seems a reasonable equivalence relation and, ideally, it would have made
the following modified Frame Property hold:

If 〈C, (s, h2, r2)〉 is safe and 〈C, (s, h2 · h1, r2 ∪ r1)〉 ∗ 〈(s′, h′, r′)〉 then there are s′, h′2 and r′2
such that 〈C, (s, h2, r2)〉 ∗ 〈(s′, h′2, r′2)〉 and (s′, h′, r′) v (s′, h′2 · h1, r′2 ∪ h1).

However, the possibility of performing address arithmetic ruins everything. Not even the
following basic property, clearly necessary for the given modified Frame Property to guarantee
soundness of the Frame Rule, holds:

If (s, h, r) v (s′, h′, r′) then (s, h, r) |= A implies (s′, h′, r′) |= A too.

Consider the assertion x < y. There could be two isomorphic states (s, h, r), (s′, h′, r′) with
JEKs, JEKs′ ∈ Addresses but JEKs < JE′Ks and JEKs′ < JE′Ks′. We would need to modify the
semantics of arithmetic and boolean assertions so as to ensure that addresses cannot be used
at all in arithmetic or boolean expressions, which would be a very unnatural thing to do.

3.2 The Bounded Heap Model: allocating contiguous cells

Our first approach to the bounded heap model had a considerable flaw: it did not allow allocation
of several contiguous cells. Address arithmetic, however, is quite useful to represent various
data structures [1] such as lists — grouping two contiguous cells together so that one holds the
contents and the other points to the next element in the list — or binary trees — similarly,
grouping three contiguous cells so that one holds the contents and the other two point to the
children.
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Definition 3.5. Taking Stacks, Heaps, Addresses and MAX defined as in section 3.1, we can
take a multiset of natural numbers as the new third component of our states, representing
disjoint contiguous gaps in the memory over which we have permission:

States ⊆ Stacks×Heaps×MP(N)

(where MP(N) = {A | A is a multiset and a ∈ A implies a ∈ N}) with (s, h, g) ∈ States (we
use the letter g for gaps) iff g = {g1, . . . , gn} is finite and ∃{m1, . . . ,mn} ∈ Addresses \ dom(h)
such that, if we define

Si = {mi,mi + 1, . . . ,mi + gi − 1}

then
⋃n

i=1 Si ⊆ Addresses\dom(h) and for every j, i ∈ {1, . . . , n} with i 6= j, we have Si∩Sj = ∅.

What this definition says is that the gaps described in the third component can be located,
disjointly, in our finite memory heap with all cells in dom(h) being already allocated.

The combination operation now will be:

(s, h1, g1) · (s, h2, g2) = (s, h1 · h2, g1 ∪ g2)

iff (s, h1 · h2, g1 ∪ g2) ∈ States, and undefined otherwise.

The reserved blocks can be anywhere in the memory heap, as long as they take no cells
that are allocated according to the heap component of the state. For example, suppose we have
MAX = 15 and a state (s, h, g) where dom(h) = {5, 6} and g = {2, 4, 5}. One possible way of
locating the gaps in the memory would be

1 5 10 15

(Allocated cells in black.)
But the gaps could also be distributed, for example, in the following way:

1 5 10 15

The commands remain the same as in section 3.1, except for the allocation and dealloca-
tion commands — not only can we allocate contiguous cells now, but also deallocate several
contiguous cells at once:

C ::= ... | x := new(E1, . . . , En) | dispose(E,E′)

We propose the following operational semantics for allocation/deallocation of memory:

JEKs = n JE′K = m {m, . . . ,m+ n− 1} ⊆ dom(h)

〈dispose(E,E′), (s, h, g)〉 ∗ 〈(s, hedom(h)\{m,...,m+n−1}, g ∪ {n}〉)

JEKs = n JE′K = m {m, . . . ,m+ n− 1} 6⊆ dom(h)

〈dispose(E,E′), (s, h, g)〉 ∗ fault
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∃gi ∈ g such that n ≤ gi {a, . . . , a+ n− 1} ⊆ Addresses \ dom(h)

〈x := new(E1, . . . , En), (s, h, g)〉 ∗ 〈(s[x 7→ a], h[a 7→ JE1Ks, . . . , a+ n− 1JEnKs], g(gi, n)〉)

@gi ∈ g such that n ≤ gi
〈x := new(E1, . . . , En), (s, h, g)〉 ∗ fault

for all a ∈ Addresses {a, . . . , a+ n− 1} 6⊆ Addresses \ dom(h)

〈x := new(E1, . . . , En), (s, h, g)〉 ∗ fault
with

g(gi, n) =



∅ if |g| < 3 and n = gi

{dgi−n2 e} if |g| < 3 and n < gi

g \ {gi, gmax1, gmax2}
if |g| ≥ 3, n = gi and gmax1, gmax2

are the two biggest elements in g \ {gi}
(gmax2 ≤ gmax1)

(g \ {gi, gmax1, gmax2}) ∪ {dgi−n2 e}
if |g| ≥ 3, n < gi and gmax1, gmax2

are the two biggest elements in g \ {gi}
(gmax2 ≤ gmax1)

While the operational semantics for memory deallocation is quite straightforward, the oper-
ational semantics for the command x := new(E1, . . . , En) is not so. We have chosen to make it
dependent only on the component describing the gaps — not dependent at all on the allocated
memory component — in order to make it concise.

When we deallocate a block of n contiguous cells, we just have to add a new gap of the same
size to our reserved gaps. However, when we allocate n contiguous cells we cannot be sure of
where they are going to be placed in the memory just by the information in g, and it is not
straightforward to calculate the size of the remaining gaps. This results, inevitably, in some
reserved cells being lost.

However, the given operational semantics is sound in the following sense:

Proposition 3.3. If according to the given operational semantics we have

〈x := new(E1, . . . , En), (s, h, g)〉 ∗ 〈(s′, h′, g′)〉

then (s′, h′, g′) ∈ States.

Before giving the proof for this result, let us see what our initial attempts to find a sensible
operational semantics for memory allocation in this model were. For each one, we will see
an example that shows why they do not work. All the approaches differ in their definition of
g(gi, n).

In our first attempt we defined g(gi, n) as follows:

g(gi, n) =

{
g \ {gi} if n = gi
(g \ {gi}) ∪ {dgi−n2 e} if n < gi

An example of why this is not a sensible operational semantics for x := new(E1, . . . , En)
would be this: take (s, h, g) with Addresses = {1, . . . , 10}, dom(h) = {4, 5} and g = {3, 5}:
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1 5 10

If we try to allocate 3 contiguous cells (x := new(E1, E2, E3)), this operational semantics
could lead us to terminal configuration 〈(s[x 7→ 7], h[7 7→ JE1Ks, 8 7→ JE2Ks, 9 7→ JE3Ks], {5})〉
taking gi = 3 and {7, 8, 9} ⊆ Addresses \ dom(h). However, allocating cells 7, 8, 9 results in a
memory heap with shape

1 5 10

which contains no gap of size 5. The problem is that the gap actually used to allocate the n
cells may be different from (and larger than) the one described by gi. This means that naively
removing gi from the list of gaps is not good enough.

The is how g(gi, n) looked in our second attempt:

g(gi, n) =

{
g \ {gmax} if n = gi
(g \ {gmax}) ∪ {dgi−n2 e} if n < gi

with gmax being the greatest element in g.
Again, here we have an example of why this is not a good operational semantics for memory

allocation in this model: consider (s, h, g) with Addresses = {1, . . . , 30}, dom(h) = {11, 21}
and g = {2, 3, 5, 9, 9}:

1 5 10 15 20 25 30

If we try to allocate 9 contiguous cells (x := new(E1, . . . , E9)), this operational semantics
could lead to terminal configuration 〈(s[x 7→ 1], h[1 7→ JE1Ks, . . . , 9 7→ JE9Ks], {2, 3, 5, 9})〉 taking
gi = 9 and {1, . . . , 9} ⊆ Addresses \ dom(h). However, allocating cells 1, . . . , 9 produces a
memory heap with shape

1 5 10 15 20 25 30

and it is not possible to fit there four disjoint gaps of sizes 2, 3, 5, 9.

The last failed attempt was to define:

g(gi, n) =



∅ if |g| < 2 and n = gi

{dgi−n2 e} if |g| < 2 and n < gi

g \ {gi, gmax} if |g| ≥ 2, n = gi

(g \ {gi, gmax}) ∪ {dgi−n2 e} if |g| ≥ 2, n < gi

with gmax being the greatest element in g \ {gi}.
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Once more, here we have an example that shows why this is not a sensible operational
semantics for x := new(E1, . . . , En): take (s, h, g) with Addresses = {1, . . . , 19}, dom(h) =
{13} and g = {4, 4, 4, 6}:

1 5 10 15 19

Allocating 6 contiguous cells (x := new(E1, . . . , E6)) with this operational semantics can
lead to terminal configuration 〈(s[x 7→ 4], h[4 7→ JE1Ks, . . . , 9 7→ JE6Ks], {4, 4})〉 if gi is taken to
be 6 ({4, . . . , 9} ⊆ Addresses \ dom(h)). However, allocating cells 4, . . . , 9 results in a memory
heap with shape

1 5 10 15 19

which obviously cannot hold two gaps of size 4.

Finally, here is the proof to Proposition 3.3.

Proof. Let (s, h, g) ∈ States and suppose 〈x := new(E1, . . . , En), (s, h, g)〉 ∗ 〈(s′, h′, g(gi, n))〉.
Let us consider some fixed arbitrary positions for the gaps described by the elements in g inside
the heap described by h. With the gaps fixed in the memory, we will explore all the possibilities
for how the new n cells can be allocated, and in each of them we will find a way to locate the
gaps described by g(gi, n) within Addresses \ dom(h′). That is, we will find a way to assign
each element in g(gi, n) to describe a gap in Addresses \ dom(h′) so that the gaps described by
any two elements of g(gi, n) are disjoint. This will prove that (s′, h′, g(gi, n)) ∈ States.

Throughout the proof, we will refer to the gaps in the initial fixed (arbitrary) distribution
as the gap initially described by gj .

We can consider, without loss of generality, that no cells apart from the ones assigned to
our gaps in the chosen arbitrary distribution are used in the allocation. If this was the case,
then it would mean that fewer cells from the gaps we are considering have been taken, and so
we would have fewer restrictions to locate the gaps described by g(gi, n).

We study the different cases considered in the definition of g(gi, n):

− If |g| < 3 and n = gi then g(gi, n) = ∅, which is always an acceptable set of reserved gaps.

− If |g| < 3 and n < gi then g(gi, n) = {dgi−n2 e}.
The n cells will get allocated somewhere inside the at most two gaps initially located in
the heap.

Whether there are two gaps or just the one described by gi, if they are allocated using
only the gap corresponding to gi, then for sure there will still be a contiguous gap of size
at least dgi−n2 e — after taking n contiguous cells from the gap, there will stil be gi − n
cells, separated in at most two blocks, of which one must surely be bigger than dgi−n2 e.
If |g| = 2 and they get allocated in the gap corresponding to the other gj ∈ g \ {gi}, then
there will still be a gap of size gi, and so a gap of size dgi−n2 e contained in it.
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Finally, if the two gaps are placed adjacently and the n cells get allocated using cells from
both gaps, then there will still be a contiguous gap of size at least dgi−n2 e— we can follow
the same reasoning as in the case where only the gap gi was used, only starting with an
even bigger gap.

− If |g| ≥ 3 and n < gi and gmax1, gmax2 are the two biggest elements in g \ {gi} then
g(gi, n) = (g \ {gi, gmax1, gmax2}) ∪ {dgi−n2 e}.
Let us consider the elements in g = {g1, . . . , gm} enumerated in increasing order: g1 ≤
g2 ≤ · · · ≤ gi ≤ · · · ≤ gm).

– Suppose the n cells are allocated using only the gap initially described by gi.

Then obviously all the elements in g(gi, n)\{dgi−n2 e} can still be used to describe the
same gaps as they initially described. Also, as explained in the previous case, after
allocating n cells in the gap of size gi, no matter where in the gap they have been
allocated, there will still be a gap of size at least dgi−n2 e, which we can now assign to
be described by dgi−n2 e ∈ g(gi, n).

– Suppose the n cells are allocated using only a gap smaller than gi (gk with k < i).

If gi, gmax1, gmax2 are the three greatest elements in g then it might be the case
that gk = gmax1 or gk = gmax2. If gk = gmax1 or gk = gmax2 then every element
in g(gi, n) \ {dgi−n2 e} can still describe the same gap as before, for they are intact,
and {dgi−n2 e} can describe any subset of dgi−n2 e < gi contiguous cells contained in
the gap initially described by gi. If gk 6= gmax1, gmax2 (gk < gi, gmax1, gmax2), then
every gj ∈ g(gi, n) \ {gk, dgi−n2 e} can still describe the same gap as before, gk can
describe any subset of gk < gi, gmax1, gmax2 cells of the gap initially described by
min{gi, gmax1, gmax2} and dgi−n2 e < max{gi, gmax1, gmax2} (since dgi−n2 e < gi) can
describe any subset of dgi−n2 e contiguous cells contained in the gap initially described
by max{gi, gmax1, gmax2}.
If gi, gmax1, gmax2 are not the three greatest elements in g then we know it must
be gk < gi < gmax1, gmax2. Then, again, every gj ∈ g(gi, n) \ {gk, dgi−n2 e} can
still describe the same gap as before, gk can describe, for example, any subset of
gk < gmax1 cells of the gap initially described by gmax1 and dgi−n2 e < gi can describe
any subset of dgi−n2 e contiguous cells contained in the gap initially described by gi.

– Suppose the n cells are allocated using only a gap bigger than gi (gk with k > i).
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If gk = gmax1 or gk = gmax2 then every element in g(gi, n)\{dgi−n2 e} can still describe
the same gap as before, for they are intact, and dgi−n2 e can describe any subset of
dgi−n2 e < gi contiguous cells contained in the gap initially described by gi.

If gi < gk < gmax1, gmax2, then every gj ∈ g(gi, n) \ {gk, dgi−n2 e} can still describe
the same gap as before, gk can describe, for example, any subset of gk < gmax1 cells
of the gap initially described by gmax1} and dgi−n2 e < gi can describe any subset of
dgi−n2 e contiguous cells contained in the gap initially described by gi.

– Suppose the n cells are allocated using r+1 (r ≥ 1) different gaps gk, gk+p1 , . . . , gk+pr

— these gaps must be placed adjacently.

If all these gaps are fully taken

then it must be gk+gk+p1+· · ·+gk+pr = n < gi (n < gi since dgi−n2 e > 0). In this case
we can split the gap initially described by gi into r+2 gaps of sizes gk, gk+p1 , . . . , gk+pr

and dgi−n2 e. Thus, every element in g(gi, n) can describe either the gap it originally
described, or the subgap assigned to it in the gap initially described by gi — note
that some of these gk, gk+p1 , . . . , gk+pr might be gmax1 or gmax2 if gi > gmax1, gmax2,
in which case we would not even need to use the corresponding subgap, with the
argument still holding.

If all these gaps are fully taken except for one

we can assume without loss of generality that it is the least of these gaps, gk, that
is not fully taken (since they are placed adjacently, the order in which they are
distributed is irrelevant). It must then be gk+p1 + · · ·+ gk+pr < n < gi, and so again
we can split the gap initially described by gi into r+1 subgaps of sizes gk+p1 , . . . , gk+pr

and dgi−n2 e. Thus, every element in g(gi, n) \ {gk} can describe either the gap it
originally described (if it is still a gap), or the subgap assigned to it in the gap initially
described by gi. As for gk, since it is the least of gk, gk+p1 , . . . , gk+pr with r ≥ 1 and
gk+p1 + · · · + gk+pr < n < gi, it also must be gk < gi, so gk ≤ max{gmax1, gmax2}.
Hence, it can describe any subgap of gk contiguous cells contained in the gap initially
described by max{gmax1, gmax2}.
Finally, the only remaining possible case is that all these gaps are fully taken except
for two. Again, we can suppose without loss of generality that it is the least two, gk
and gk+p1 , that are not fully taken (p1 < · · · < pr).

If r = 1 then either gk > gi and gk+p1 > gi, or gk = gi and gk+p1 > gi, or gk < gi and
gk+p1 > gi, or gk < gi and gk+p1 = gi or gk < gi and gk+p1 < gi.

If gk > gi and gk+p1 > gi
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then also gmax1, gmax2 > gi. If this is the case and also gk, gk+p1 < gmax2 < gmax1,
then they can each describe some subset of gmax1 and gmax2. If gk+p1 = gmax2 then it
will not be in g(gi, n) and gk can describe some subgap of the gap initially described
by gmax2. If {gk, gk+p1} = {gmax2, gmax1} then none of them will be in g(gi, n).
Every other element in g(gi, n) \ {gk, gk+p1 , d

gi−n
2 e} can describe the gap it originally

described, and dgi−n2 e can describe some subgap of the gap initially described by gi.

If gk = gi and gk+p1 > gi

then at least gk+p1 ≤ gmax1 and we do not need to care about gk. gk+p1 can describe,
if it is not gmax1 or gmax2 (and so not in g(gi, n)), any subgap of size gk+p1 of the
gap initially described by gmax1. Every other element in g(gi, n) \ {gk+p1 , d

gi−n
2 e}

can describe the gap it originally described, and dgi−n2 e can describe some subgap of
the gap initially described by gi = gk because, since less than n contiguous cells have
been taken from it, there will still be a gap big enough.

If gk < gi and gk+p1 > gi

then at least gk+p1 ≤ gmax1 and gk ≤ gmax2. Again, gk+p1 can describe, if necessary,
any subgap of size gk+p1 of the gap initially described by gmax1. gk+p1 can describe
any subgap of size gk of the gap initially described by gmax2. Every other element in
g(gi, n) \ {gk, gk+p1 , d

gi−n
2 e} can describe the gap it originally described, and dgi−n2 e

can describe some subgap of the gap initially described by gi.

If gk < gi and gk+p1 = gi

then surely gk ≤ gmax1 and we do not need to care about gk+p1 . gk can describe,
if it is not gmax1 or gmax2 (and so not in g(gi, n)), any subgap of size gk of the gap
initially described by gmax1. Every other element in g(gi, n) \ {gk+p1 , d

gi−n
2 e} can
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describe the gap it originally described, and dgi−n2 e can describe some subgap of the
gap initially described by gi = gk+p1 because again less than n contiguous cells have
been taken from it, so there will be a gap big enough.

If gk < gi and gk+p1 < gi

then surely gk ≤ gmax2 and gk+p1 ≤ gmax1, so if gk or gk+p1 are in g(gi, n) they
can be assigned to describe corresponding subgaps of gmax2 and gmax1. Every other
element in g(gi, n) \ {gk, gk+p1 , d

gi−n
2 e} can describe the gap it originally described,

and dgi−n2 e can describe some subgap of the gap initially described by gi.

If r > 1

then we have gk ≤ gk+p1 ≤ gk+p2 + · · · + gk+pr < n < gi and so again we can split
the gap initially described by gi into r subgaps of sizes gk+p2 , . . . , gk+pr and dgi−n2 e.
Thus, every element in g(gi, n) \ {gk, gk+p1} can describe either the gap it originally
described (if it is still a gap), or the subgap assigned to it in the gap initially described
by gi. As for gk and gk+p1 , gk ≤ gk+p1 ≤ gk+p2 + · · ·+ gk+pr < n < gi implies that, in
particular, gk ≤ gk+p1 ≤ gk+p2 < gi, and so it must be gk ≤ gmax2 and gk+p1 ≤ gmax1.
Hence, if gk or gk+p1 are in g(gi, n) they can be assigned to describe corresponding
subgaps of gmax2 and gmax1.

− If |g| ≥ 3 and n = gi and gmax1, gmax2 are the two biggest elements in g \ {gi} then
g(gi, n) = g \ {gi, gmax1, gmax2}.
The arguments used in the previous case work here as well, we just do not need to find a
gap for dgi−n2 e.

Due to time restrictions, the work on this adaptation of the memory model has been very
limited — we have not proved soundness in this setting for the rest of rules, including the Frame
Rule.

3.3 The Partial Hydrocarbon Model

This model provides a simplified representation of organic chemistry molecules (even not nec-
essarily stable combinations of hydrogen and carbon atoms — combinations that could happen
in the middle of a chemical reaction). The main feature of this resource model is that its
combination operation is, unlike that of the heap model, nondeterministic.

Another particular feature of this model is that we will be interested in liveness of com-
putations, rather than safety. While the focus in the memory model is on avoiding memory
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faults that may cause our programs to crash (we wanted every possible computation from a
given state not to lead to fault), here we are interested in the possibility of building certain
molecules by combining some others — we are happy if there is at least one computation that
leads to the desired result —, which is a liveness property. We regard the nondeterminism in
the commands in this model as angelic (refer to [7]): we trust that the right computation will
somehow be chosen among all others. The kind of nondeterminism in the heap model would be
demonic ([7]) since we had to consider that the worst could happen.

The previous work on this model ([17]) included the abstract definition of the resource
and a programming language to manipulate it, together with an operational semantics which
was proved to be sensible. We only conjectured Liveness Monotonicity (a property similar to
Safety Monotonicity, adapted to the model) and the Frame Property. Here, we prove these
properties and we see how they guarantee soundness of the Frame Rule. We had also sketched
an assertion language to describe instances of the resource, and here we improve it and use
it to give a whole set of command-specific axioms and rules to reason about programs that
manipulate this resource, and we prove these sound.

Before looking into how arity is present in this model, let us explain how the model is
defined.

We imagine molecules as undirected graphs, with nodes playing the part of atoms, and edges
between nodes playing the part of bonds between atoms. Stable molecules have no free bonds,
yet we can imagine instants in the middle of chemical reactions, when some bonds have been
broken and others need to be formed. We represent these partial hydrocarbon molecules as
undirected graphs with dangling edges.

Hydrocarbon molecules are built from hydrogen and carbon atoms, with hydrogen atoms
having exactly one free bond and carbon atoms having exactly four.

H C

Hence, in our graphs, each node representing a hydrogen atom will have one edge attached
— either dangling or linking it to another node — and each one representing a carbon atom
will have four — again, any combination of regular and dangling edges.

We can imagine now one possible intermediate state, with two very simple partial molecules,
consisting each of a single carbon atom. It is quite natural to think that these two resources
could be combined in various ways (supposing we do not necessarily require the result to be a
stable molecule): we could just let them stay side by side, without sharing bonds, or let them
share a single bond, or two, or three. This can be represented naturally as a nondeterministic
binary operation.

We choose the following model to represent the graphs associated to partial hydrocarbon
molecules: a partial hydrocarbon is a mapping from a finite set of nodes to a pair consisting of i)
a label that records which kind of atom the node represents (H for hydrogen, C for carbon) and
ii) an adjacency set that indicates whether the edges corresponding to that node are dangling
or connecting it with another node.

In the model we have two different kinds of dangling edges: free edges and reserved edges.
The motivation for this comes from the notion of arity, which we will explore after the following
definition:
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Let π1 (respectively π2) give the projection of the first (respectively second) component of
a pair, and

MP(X) := {Y | Y is a multiset and y ∈ Y ⇒ y ∈ X}

be a variant of P(X) that considers multisets.

Definition 3.6 (Partial Hydrocarbon Set). A partial hydrocarbon set is a mapping

h ∈ N⇀fin {H, C} ×MP(dom(h) ∪ {�,�})

such that, for all n,m ∈ dom(h) (where dom(h) = {n ∈ N | h(n) is defined}) we have

1. π1(h(n)) = H⇒ |π2(h(n))| = 1

2. π1(h(n)) = C⇒ |π2(h(n))| = 4

3. |{n, n, n, n} ∩ π2(h(m))| = |{m,m,m,m} ∩ π2(h(n))|

Free edges, represented by �, are only available for the purposes of framing on new pieces
of resource. Reserved edges (represented by �), however, are reserved only for manipulation by
commands. When we introduce the commands later we will see how they require a certain arity
— certain capacity for extension, certain connection points — from the resource. Like the third
component that we added to the states of the bounded memory model, distinguishing between
reserved edges and free edges will allow the arity of a resource to be preserved under resource
composition (i.e. under framing).

The adjacency set is given as a multiset because a carbon atom (with four edges) can have
several free or reserved edges, or have a double or triple bond with another atom.

The combination operation in this model works in the following way: if the domains of two
partial hydrocarbons h1, h2 are not disjoint, then h1 ◦ h2 is not defined. If they are disjoint,
then h1 ◦ h2 will be the set of all the possible ways of taking the union of h1 and h2 and joining
some number of their free edges together (reserved edges may not be altered).

Definition 3.7 (Hydrocarbon Model). Our resource model is 〈H, ◦, e〉, where

H is the set of all partial hydrocarbon sets.

e is the “unit resource”. It is the partial hydrocarbon set with dom(e) = ∅.
◦ : H × H → P(H) is a commutative binary total operation, defined as follows: given

h1, h2 ∈ H, if dom(h1) ∩ dom(h2) 6= ∅, then h1 ◦ h2 = ∅. If dom(h1) ∩ dom(h2) = ∅, then
h ∈ h1 ◦ h2 iff h ∈ H and

− dom(h) = dom(h1) ∪ dom(h2)

− π1(h(n)) = π1(hi(n)) for all n ∈ dom(hi), i = 1, 2

− π2(h(n)) = π2(hi(n)) \Xn ∪X ′n if n ∈ dom(hi), {i, j} = {1, 2}

for some Xn, X
′
n with Xn ⊆MP({�}), X ′n ⊆ dom(hj) and |X ′n| = |Xn|.

We can observe in this definition that if both of the graphs being combined have a node
with a free edge, then ◦ allows these nodes to be bonded together (losing the corresponding
free edges). Nodes within the same original dom(hi) that were not bonded together before the
combination will not be bonded together after either.
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Example 3.1. Let h, h′ with

dom(h) = {1, 2}, h(1) = (C, {2, 2,�,�}), h(2) = (C, {1, 1,�,�})

dom(h′) = {3}, h′(3) = (H, {�})

H

C C

Then h ◦ h′ = {h1, h2, h3}, where h1, h2, h3 are given as follows:

dom(h1) = {1, 2, 3}
h1(1) = (C, {2, 2,�, 3}), h1(2) = (C, {1, 1,�,�}), h1(3) = (H, {1})

H

C C

dom(h2) = {1, 2, 3}
h2(1) = (C, {2, 2,�,�}), h2(2) = (C, {1, 1,�, 3}), h2(3) = (H, {2})

H

CC

dom(h3) = {1, 2, 3}
h3(1) = (C, {2, 2,�,�}), h3(2) = (C, {1, 1,�,�}), h3(3) = (H, {�})
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H

C C

(h3 represents the possibility of not bonding any free edges.)

Since nodes in the same original partial molecule cannot be bonded as a result of the combi-
nation operation, h4 /∈ h ◦ h′:

dom(h4) = {1, 2, 3}
h4(1) = (C, {2, 2,�, 2}), h4(2) = (C, {1, 1,�, 1}), h4(3) = (H, {�})

H

C C

And since reserved edges cannot be bonded this way either, none of h5, h6 are in h ◦ h′:
dom5(h5) = {1, 2, 3}

h5(1) = (C, {2, 2, 3,�}), h5(2) = (C, {1, 1,�,�}), h5(3) = (H, {1})

H

C C

dom(h6) = {1, 2, 3}
h6(1) = (C, {2, 2,�,�}), h6(2) = (C, {1, 1, 3,�}), h6(3) = (H, {2})

H

CC
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It is also worth pointing out that, since the first condition for h to be in h1 ◦ h2 is to be in
H, it is necessary that |Xn ∩ π2(hi(n))| = |X ′n| (n ∈ dom(hi)) — that is, for any node n the
number of free edges that we remove from its adjacency set must be the same as the number of
new bonds being created for that same node — and n ∈ X ′m ⇔ m ∈ X ′n — when we bond two
nodes together, each of them must enter the adjacency et of the other.

To talk about associativity, we must first extend our operation to act on P(H) × P(H)
instead of just H×H, for obvious reasons. We will have ◦ : P(H)×P(H)→ P(H) as expected:
given A,B ∈ P(H)

A ◦B = {h′ ◦ h ∈ H | h′ ∈ hA ◦ hB for some hA ∈ A, hB ∈ B

The following result was proved in [17]:

Lemma 3.9 (Associativity). The model given by 〈H, ◦, e〉 is associative: for any A,B,C ∈
P(H), we have

(A ◦B) ◦ C = A ◦ (B ◦ C)

Proof.

− (A ◦B) ◦ C ⊆ A ◦ (B ◦ C)

Let h ∈ (A◦B)◦C, then ∃hA ∈ A, hB ∈ B, hAB ∈ hA ◦hB, hC ∈ C such that h ∈ hAB ◦hC
dom(h) = dom(hAB) ∪ dom(hC) = dom(hA) ∪ dom(hB) ∪ dom(hC)

π1(h(n)) =


π1(hAB(n)) = π1(hA(n)) if n ∈ dom(hA)
π1(hAB(n)) = π1(hB(n)) if n ∈ dom(hB)
π1(hC(n)) if n ∈ dom(hC)

π2(h(n)) =



π2(hAB(n)) \XC,n ∪X ′C,n

= (π2(hA(n)) \XB,n ∪X ′B,n) \XC,n ∪X ′C,n if n ∈ dom(hA)

π2(hAB(n)) \XC,n ∪X ′C,n

= (π2(hB(n)) \XA,n ∪X ′A,n) \XC,n ∪X ′C,n if n ∈ dom(hB)

π2(hC(n)) \XAB,n ∪X ′AB,n

= π2(hC(n)) \ (XA,n ∪XB,n) ∪ (X ′A,n ∪X ′B,n) if n ∈ dom(hC)

(the additional subindices remind us that X ′A,n ⊆ dom(hA), X ′B,n ⊆ dom(hB), X ′C,n ⊆
dom(hC); the subindices for XA,n, XB,n, XC,n help matching them with their correspond-
ing X ′−,n so that |XS,n| = |X ′S,n| for S = A,B,C.)

Because XC,n ∩ X ′B,n = ∅ and XC,n ∩ X ′A,n = ∅ (since XC,n ⊆ {�,�,�,�}, X ′B,n ⊆
dom(hB) and X ′A,n ⊆ dom(hA)) we have

π2(h(n)) =


π2(hA(n)) \ (XB,n ∪XC,n) ∪ (X ′B,n ∪X ′C,n) if n ∈ dom(hA)

π2(hB(n)) \ (XA,n ∪XC,n) ∪ (X ′A,n ∪X ′C,n) if n ∈ dom(hB)

π2(hC(n)) \ (XA,n ∪XB,n) ∪ (X ′A,n ∪X ′B,n) if n ∈ dom(hC)

We are going to construct h′ ∈ A ◦ (B ◦ C) in such a way that h′ = h.

Let hBC ∈ hB ◦ hC such that

π2(hBC(n)) =

{
π2(hB(n)) \XC,n ∪X ′C,n if n ∈ dom(hB)

π2(hC(n)) \XB,n ∪X ′B,n if n ∈ dom(hC)
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Now let h′ ∈ hA ◦ hBC with

π2(h
′(n)) =



π2(hA(n)) \XBC,n ∪X ′BC,n

= π2(hA(n)) \ (XB,n ∪XC,n) ∪ (X ′B,n ∪X ′C,n) if n ∈ dom(hA)

π2(hBC(n)) \XA,n ∪X ′A,n

= (π2(hB(n)) \XC,n ∪X ′C,n) \XA,n ∪X ′A,n if n ∈ dom(hB)

π2(hBC(n)) \XA,n ∪X ′A,n

= (π2(hC(n)) \XB,n ∪X ′B,n) \XA,n ∪X ′A,n if n ∈ dom(hC)

(note that the XS,n, X
′
S,n — S = A,B,C — sets are the same as they for h. The fact that

h was well defined implies that h′ and hBC are well defined too.)

Again, because X ′C,n ∩XA,n = ∅ and X ′B,n ∩XA,n = ∅ (like before, XA,n ⊆ {�,�,�,�},
X ′B,n ⊆ dom(hB) and X ′C,n ⊆ dom(hC)), we have

π2(h
′(n)) =


π2(hA(n)) \ (XB,n ∪XC,n) ∪ (X ′B,n ∪X ′C,n) if n ∈ dom(hA)

π2(hB(n)) \ (XA,n ∪XC,n) ∪ (X ′A,n ∪X ′C,n) if n ∈ dom(hB)

π2(hC(n)) \ (XA,n ∪XB,n) ∪ (X ′A,n ∪X ′B,n) if n ∈ dom(hC)

So h = h′ ∈ hA ◦ hBC ⊆ A ◦ (B ◦ C).

− A ◦ (B ◦ C) ⊆ (A ◦B) ◦ C
It follows from (A ◦B) ◦ C ⊆ A ◦ (B ◦ C) and ◦ being commutative:

A ◦ (B ◦ C) = (C ◦B) ◦A ⊆ C ◦ (B ◦A) = (A ◦B) ◦ C

3.3.1 Commands and operational semantics

We consider the following language of commands:

C ::= break(N,M) | bond(N,M) | C;C | C + C (N,M ∈ {H, C})

with the operational semantics in Figure 8. We do not consider bond(H, C) or break(H, C),
only bond(C, H) or break(C, H), because they would be redundant.

The substitution notation is the same as the one used in section 2.

The command break(N,M) breaks a single bond between a node of kind N and a node of
kind M (that are currently bonded), and adds a reserved edge to each one instead. bond(N,M)
creates a bond between a node of kind N and a node of kind M , provided each of them has a
reserved edge. C;C is sequential composition and C + C is nondeterministic choice.

As in the memory model, we consider configurations of the form 〈C, h〉 and 〈h〉, and the
special configuration fault. As we mentioned in the introduction to this subsection, we are
interested in the existence of ways to build certain molecules from some other molecules, rather
fault avoidance (safety). Therefore, the fact that our operational semantics allows every com-
mand to fault is not a problem.

As can be observed, when a bond between two nodes is broken, it is substituted by two
corresponding reserved edges. Note that these two edges will be reserved rather than free
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n,m ∈ dom(h) h(n) = (N,En) h(m) = (M,Em) � ∈ En ∩ Em

〈bond(N,M), h〉 〈h[n 7→ (N, (En \ {�}) ∪ {m}),m 7→ (M, (Em \ {�}) ∪ {n})]〉

n,m ∈ dom(h) h(n) = (N,En) h(m) = (M,Em) m ∈ En, n ∈ Em

〈break(N,M), h〉 〈h[n 7→ (N, (En \ {m}) ∪ {�}),m 7→ (M, (Em \ {n}) ∪ {�})]〉

〈C1, h〉 〈h′′〉 〈C2, h
′′〉 〈h′〉

〈C1;C2, h〉 〈h′〉

〈C1, h〉 〈h′〉
〈C1 + C2, h〉 〈h′〉

〈C2, h〉 〈h′〉
〈C1 + C2, h〉 〈h′〉

〈C, h〉 fault

Figure 8: Operational Semantics of Hydrocarbon Bonding Commands

edges. When we break a bond we want to maintain control over the dangling edges, just like
when we deallocate memory in the bounded memory model we retain ownership of the cell.

It was also proved in [17] that this operational semantics is sensible, in the sense that it
verifies the following Lemma.

Lemma 3.10. If h ∈ H and 〈C, h〉 〈h′〉, then h′ ∈ H.

Proof. Structural induction on C:

C = bond(N,M)

In this case

h′ = h[n 7→ (N, (En \ {�}) ∪ {m}),m 7→ (M, (Em \ {�}) ∪ {n})]

so we have h′ ∈ N⇀fin {H,C} ×MP(dom(h′) ∪ {�,�}), since

− dom(h) = dom(h′). Let us abbreviate A = dom(h) = dom(h′).

− h′(n) = (N, (En \ {�}) ∪ {m}) ∈ {H,C} ×MP(A ∪ {�,�}), because h ∈ H implies
N ∈ {H,C} and En ∈MP(A∪{�,�}), and so (En\{�})∪{m} ∈ MP(A∪{�,�})
(because m ∈ A).

− h′(m) = (M, (Em \ {�}) ∪ {n}) ∈ {H,C} × MP(A ∪ {�,�}) — analogue to the
previous case.

− if k ∈ A \ {n,m} then h′(k) = h(k) ∈ {H,C} ×MP(A ∪ {�,�}), since h ∈ H.

and, for all k, k′ ∈ dom(h) (k 6= k′) we have

− π1(h
′(k)) = π1(h(k)) = H ⇒ |π2(h′(k))| = |π2(h(k))| = 1

− π1(h
′(k)) = π1(h(k)) = C ⇒ |π2(h′(k))| = |π2(h(k))| = 4

− |{k, k, k, k} ∩ π2(h
′(k′))}| = |{k′, k′, k′, k′} ∩ π2(h

′(k))|
• {k, k′} 6= {n,m}
|{k, k, k, k} ∩ π2(h

′(k′))}| = |{k, k, k, k} ∩ π2(h(k′))}|
= |{k′, k′, k′, k′} ∩ π2(h(k))| = |{k′, k′, k′, k′} ∩ π2(h

′(k))|
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• {k, k′} = {n,m}
|{n, n, n, n} ∩ π2(h

′(m))}| = |{n, n, n, n} ∩ π2(h(m))}|+ 1
= |{m,m,m,m} ∩ π2(h(n))|+ 1 = |{m,m,m,m} ∩ π2(h

′(n))|
• k = n, k′ 6= m
|{n, n, n, n} ∩ π2(h

′(k′))}| = |{k, k, k, k} ∩ π2(h(k′))}|
= |{k′, k′, k′, k′} ∩ π2(h(n))| = |{k′, k′, k′, k′} ∩ π2(h

′(n))|
• k = m, k′ 6= n analogue to the previous case.

C = break(N,M)

In this case

h′ = h[n 7→ (N, (En \ {m}) ∪ {�}),m 7→ (M, (Em \ {n}) ∪ {�})]

so we have h′ ∈ N⇀fin {H,C} ×MP(dom(h′) ∪ {�,�}), since

− dom(h) = dom(h′). Let us abbreviate A = dom(h) = dom(h′).

− h′(n) = (N, (En \ {�}) ∪ {m}) ∈ {H,C} ×MP(A ∪ {�,�}), because h ∈ H implies
N ∈ {H,C} and En ∈MP(A∪{�,�}), and so (En\{m})∪{�} ∈ MP(A∪{�,�}).

− h′(m) = (M, (Em \ {n}) ∪ {�}) ∈ {H,C} × MP(A ∪ {�,�}) — analogue to the
previous case.

− if k ∈ A \ {n,m} then h′(k) = h(k) ∈ {H,C} ×MP(A ∪ {�,�}), since h ∈ H.

and, for all k, k′ ∈ dom(h) (k 6= k′) we have

− π1(h
′(k)) = π1(h(k)) = H ⇒ |π2(h′(k))| = |π2(h(k))| = 1

− π1(h
′(k)) = π1(h(k)) = C ⇒ |π2(h′(k))| = |π2(h(k))| = 4

− |{k, k, k, k} ∩ π2(h
′(k′))}| = |{k′, k′, k′, k′} ∩ π2(h

′(k))|
• {k, k′} 6= {n,m}
|{k, k, k, k} ∩ π2(h

′(k′))}| = |{k, k, k, k} ∩ π2(h(k′))}|
= |{k′, k′, k′, k′} ∩ π2(h(k))| = |{k′, k′, k′, k′} ∩ π2(h

′(k))|
• {k, k′} = {n,m}
|{n, n, n, n} ∩ π2(h

′(m))}| = |{n, n, n, n} ∩ π2(h(m))}| − 1
= |{m,m,m,m} ∩ π2(h(n))| − 1 = |{m,m,m,m} ∩ π2(h

′(n))|
• k = n, k′ 6= m
|{n, n, n, n} ∩ π2(h

′(k′))}| = |{k, k, k, k} ∩ π2(h(k′))}|
= |{k′, k′, k′, k′} ∩ π2(h(n))| = |{k′, k′, k′, k′} ∩ π2(h

′(n))|
• k = m, k′ 6= n analogue to the previous case.

C = C1;C2

If we have 〈C1;C2, h〉  〈h′〉 this means that there is some h′′ with 〈C1, h〉  〈h′′〉 and
〈C2, h

′′〉 〈h′〉. Since ∈ H and 〈C1, h〉 〈h′′〉, by induction hypothesis we have h′′ ∈ H.
But then, since 〈C2, h

′′〉 〈h′〉, again by induction hypothesis we have h′ ∈ H.

C = C1 + C2

If we have 〈C1 +C2, h〉 〈h′〉 this means that either 〈C1, h〉 〈h′〉 or 〈C2, h〉 〈h′〉. In
either case, by induction hypothesis we have h′ ∈ H.
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3.3.2 Assertion Language

Like with the memory model, we want to perform reasoning on “programs” that manipulate
partial hydrocarbons. For this, we need a language that describes the objects in our model
accurately enough, yet as simply as possible.

Definition 3.8 (Hydrocarbon formulas). We consider the following syntax for the assertions
or formulas that we will use to describe partial hydrocarbons. A different syntax was suggested
in [17], but it was not expressive enough.

A ::= > | ⊥ | Hi{x} | Ci{x1, x2, x3, x4} | ¬A | A ∧A′ | A ∨A′ | A→ A′

| A ∗A′ | A —∗ A′

where i ∈ N, x, x1, x2, x3, x4 ∈ N ∪ {�,�}.

We will write h |= A to denote satisfaction of the assertion A by the partial hydrocarbon
set h. Let the semantics of A be

JAK def
= {h | h |= A}

with h |= A defined in Figure 9. Hi{x} and Ci{x1, x2, x3, x4} are used to denote individual
hydrogen and carbon atoms, in a way similar to how E 7→ E′ is used within the memory model
to denote individual memory cells.

h |= > always
h |= ⊥ never

h |= Hi{x} ⇔ dom(h) = {i}, h(i) = (H, {x})
h |= Ci{x1, x2, x3, x4} ⇔ dom(h) = {i}, h(i) = (C, {x1, x2, x3, x4})

h |= ¬A ⇔ h 6|= A
h |= A ∧A′ ⇔ h |= A and h |= A′

h |= A ∨A′ ⇔ h |= A or h |= A′

h |= A→ A′ ⇔ h |= A implies h |= A′

h |= A ∗A′ ⇔ ∃h′, h′′. h ∈ h′ ◦ h′′, h′ |= A and h′′ |= A′

h |= A —∗ A′ ⇔ ∀h′, h′′. if h′ |= A and h′′ ∈ h ◦ h′ then h′′ |= A′

Figure 9: Semantics of assertions for the Partial Hydrocarbon model

3.3.3 Locality Conditions. Soundness of the Frame Rule.

We need to adapt the locality conditions to make them appropriate for our model. First, we
will specify the notion of correctness that we are going to consider.

Definition 3.9 (Correctness). {A} C {A′} holds iff for all h ∈ H with h |= A there is some h′

such that 〈C, h〉 〈h′〉 and h′ |= A′.

It talks about total correctness, since in our model we do not have non-terminating programs.
Note that we do not require every possible result to satisfy the postcondition, but just one. This
notion of correctness is in accordance with our interest in liveness properties.

In section 2 we talked about a certain notion of locality of the commands that manipulate
the memory: a command would only affect a specific part of the resource, no matter how much
bigger we make it. Even though we do not have locality in such a strict sense — the command
bond(H, H), for example, can nondeterministically bond any two hydrogen atoms in a partial
hydrocarbon, as long as they both have a reserved edge —, we still have some kind of locality
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with our commands. They act only on a certain part of the resource which can be chosen,
in general, in many ways, so the precise part of the resource that is modified is not always
determined. However, the magnitude of the effect the command produces is always the same.

We now formally define the notion of liveness we have been referring to since the beginning
of the subsection.

Definition 3.10 (Liveness). 〈C, h〉 is live iff there is some h′ such that 〈C, h〉 〈h′〉.

As we said, our commands act locally in the sense that they only affect a small portion of the
resource. This portion, however, is not predetermined, and can be chosen nondeterministically.
We will not be interested in all the computations from a particular configuration, but just in
some of them (the operational semantics even allows any random configuration to fault). Thus,
we consider that the nondeterminism in our commands is, as we announced in the introduction
to this section, angelic.

Since we look at liveness of configurations instead of safety, it makes sense that we consider
a Liveness Monotonicity property instead of Safety Monotonicity.

Nondeterministic Liveness Monotonicity. If 〈C, h2〉 is live and h ∈ h1 ◦ h2, then 〈C, h〉 is
live too.

Nondeterministic Frame Property. If 〈C, h2〉 is live and h ∈ h1 ◦ h2 then

〈C, h2〉 〈h′2〉 ⇒ ∃h′ ∈ h1 ◦ h′2. 〈C, h〉 〈h′〉

Before explaining this new formulation of the Frame Property, let us remember its original
formulation in [2] for the concrete heap model: If 〈C, (s, h2)〉 does not fault and 〈C, (s, h1 ·
h2)〉 ∗ 〈(s′, h′)〉, then there exists h′2 ∈ Heaps such that 〈C, (s, h2)〉 〈(s′, h′2)〉 and h′ = h1·h′2.
It says that, given a state ((s, h2)) with the necessary resource to execute the program, every
execution of the program in a larger state ((s, h1 · h2)) can be traced back to an execution in
the original small state.

In this model, we cannot track a computation on a big state back to a smaller state because,
due to the behaviour of our commands, it might affect a bond between atoms that are not in
the small state. What we can do is mimic a computation on a small state on a bigger state.
The difference is that, while memory allocation (the only nondeterministic command in the
memory model) can nondeterministically allocate a cell that will not available for allocation in
the bigger state (because it might be already allocated, as we saw in an example in section 2),
in this model the commands can nondeterministically affect only bonds between atoms that are
part of the partial hydrocarbon, and any bond in a small state will be available in the big state,
but not the other way around.

Therefore, what our new version says is that, given a state h2 with the necessary resource
to execute a program C, and one of the possible outcomes h′2 of running C on h2, if we choose
one specific way, h, of combining h2 with another (compatible) state h1, then at least one of
the outcomes of running C on h will be in the set h′2 ◦ h1.

It turns out that, with this new formulation of the properties, Nondeterministic Liveness
Monotonicity is a direct consequence of the Nondeterministic Frame Property.

Lemma 3.11. If the Nondeterministic Frame Property (as given above) holds, then so does
Nondeterministic Liveness Monotonicity.

Proof. Suppose 〈C, h2〉 is live and h ∈ h1 ◦ h2. Since 〈C, h2〉 is live, there is some h′2 such
that 〈C, h2〉  〈h′2〉. But then, by the Nondeterministic Frame Property, ∃h′ ∈ h1 ◦ h′2 with
〈C, h〉 〈h′〉, so 〈C, h〉 is live too.
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So in this case, instead of using both properties, we need to prove that soundness of the
Frame Rule

{P} C {Q}
{F ∗ P} C {F ∗Q}

follows from the Frame Property alone. We also need to prove that our model does indeed
verify our new Frame Property.

Lemma 3.12 (Frame Property). If 〈C, h2〉 is live and h ∈ h1 ◦ h2 then

〈C, h2〉 〈h′2〉 ⇒ ∃h′ ∈ h1 ◦ h′2. 〈C, h〉 〈h′〉

Proof. Reasoning by structural induction:

− C = bond(N,M)

In the operational semantics we can observe that, if 〈bond(N,M), h2〉 is live and, in
particular, 〈bond(N,M), h2〉 〈h′2〉, then there must be some n,m ∈ dom(h2) such that

h2(n) = (N,En), h(m) = (M,Em), � ∈ En ∩ Em

and
h′2 = h2[n 7→ (N, (En − {�}) ∪ {m}),m 7→ (N, (Em − {�}) ∪ {n})]

From the definition of ◦ follows that

dom(h) = dom(h1) ∪ dom(h2)

π1(h(n)) = π1(h2(n)), π1(h(m)) = π1(h2(m))

� ∈ π2(h(n))⇔ � ∈ π2(h2(n)), � ∈ π2(h(m))⇔ � ∈ π2(h2(m))

Hence, it follows that n,m ∈ dom(h) and

h(n) = (N,E′n), h(m) = (M,E′m), � ∈ E′n ∩ E′m

so 〈bond(N,M), h〉 〈h′〉 with

h′ = h[n 7→ (N, (E′n − {�}) ∪ {m}),m 7→ (N, (E′m − {�}) ∪ {n})]

Let us observe that, since h ∈ h1 ◦h2, it must be the case that for all k ∈ dom(hi) i = 1, 2

π1(h(k)) = π1(hi(k)) ∀k ∈ dom(hi)

∃Xk, X
′
k. π2(h(k)) = (π2(hi(k))−Xk) ∪X ′k

All we need to show is that h′ ∈ h1 ◦ h′2. For this we need to check that

– h′ ∈ H which follows from the fact that h ∈ H and 〈bond(N,M), h〉  〈h′〉, by
Lemma 3.10.

– dom(h′) = dom(h1) ∪ dom(h′2):

dom(h′) = dom(h) = dom(h1) ∪ dom(h2) = dom(h1) ∪ dom(h′2)

– π1(h
′(k)) = π1(h1(k)) if k ∈ dom(h1) and π1(h

′(k)) = π1(h
′
2(k)) if k ∈ dom(h′2):

π1(h
′(k)) = π1(h(k)) =

{
π1(h1(k)) ∀k ∈ dom(h1)
π1(h2(k)) = π1(h

′
2(k)) ∀k ∈ dom(h2) = dom(h′2)
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– π2(h
′(k)) = π2(h1(k))−Xk ∪X ′k for some Xk, X

′
k with

∗ Xk ⊆MP({�})
∗ X ′k ⊆ dom(h′2)

if k ∈ dom(h1), and π2(h
′(k)) = π2(h

′
2(k))−Xk ∪X ′k for some Xk, X

′
k with

∗ Xk ⊆MP({�})
∗ X ′k ⊆ dom(h1)

if k ∈ dom(h′2).

This is also true, because:

π2(h
′(k)) = π2(h(k)) =


(π2(h1(k))−Xk) ∪X ′k ∀k ∈ dom(h1)
(π2(h2(k))−Xk) ∪X ′k = (π2(h

′
2(k))−Xk) ∪X ′k
∀k ∈ dom(h′2)− {n,m}

π2(h
′(n)) = (π2(h(n))− {�}) ∪ {m}

= (((π2(h2(n))−Xn) ∪X ′n)− {�}) ∪ {m}
∗
= (((π2(h2(n))− {�}) ∪ {m})−Xn) ∪X ′n
= (π2(h

′
2(n))−Xn) ∪X ′n

π2(h
′(m)) = (π2(h(m))− {�}) ∪ {n}

= (((π2(h2(m))−Xm) ∪X ′m)− {�}) ∪ {n}
∗∗
= (((π2(h2(m))− {�}) ∪ {n})−Xm) ∪X ′m
= (π2(h

′
2(m))−Xm) ∪X ′m

(*), (**): these two equations hold since Xn, X
′
n, {m}, {�} are all disjoint with each

other, and so are Xm, X
′
m, {n}, {�}.

And by definition of ◦, we can say that h′ ∈ h1 ◦ h′2.

− C = break(N,M)

In the operational semantics we can observe that if 〈break(N,M), h1〉 is live and, in
particular, 〈break(N,M), h2〉 〈h′2〉, then there must be some n,m ∈ dom(h2) such that

h(n) = (N,En), h(m) = (M,Em), m ∈ En, n ∈ Em

and

h′2 = h2[n 7→ (N, (En − {m}) ∪ {�}),m 7→ (N, (Em − {n}) ∪ {�})]

We have, again by the definition of ◦, that

dom(h) = dom(h1) ∪ dom(h2)

π1(h(n)) = π1(h1(n)), π1(h(m)) = π1(h1(m))

m ∈ π2(h(n))⇔ m ∈ π2(h1(n)), n ∈ π2(h(m))⇔ n ∈ π2(h1(m))

Hence, it follows that n,m ∈ dom(h) and

h(n) = (N,E′n), h(m) = (M,E′m), m ∈ E′n, n ∈ E′m
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so 〈break(N,M), h〉 〈h′〉 with

〈h′〉 = 〈h[n 7→ (N, (E′n − {m}) ∪ {�}),m 7→ (N, (E′m − {n}) ∪ {�})]〉.

Again, it is enough that we show h′ ∈ h1 ◦ h′2.
Remember that, since h ∈ h1 ◦ h2, for all k ∈ dom(hi) i = 1, 2

π1(h(k)) = π1(hi(k)) ∀k ∈ dom(hi)

∃Xk, X
′
k. π2(h(k)) = (π2(hi(k))−Xk) ∪X ′k

We have:

– h′ ∈ H because h ∈ H and 〈break(N,M), h〉 〈h′〉, by Lemma 3.10.

– dom(h′) = dom(h1) ∪ dom(h′2):

dom(h′) = dom(h) = dom(h1) ∪ dom(h2) = dom(h1) ∪ dom(h′2)

– π1(h
′(k)) = π1(h1(k)) if k ∈ dom(h1) and π1(h

′(k)) = π1(h
′
2(k)) if k ∈ dom(h′2):

π1(h
′(k)) = π1(h(k)) =

{
π1(h1(k)) ∀k ∈ dom(h1)
π1(h2(k)) = π1(h

′
2(k)) ∀k ∈ dom(h2) = dom(h′2)

– π2(h
′(k)) = π2(h1(k))−Xk ∪X ′k for some Xk, X

′
k with

∗ Xk ⊆MP({�})
∗ X ′k ⊆ dom(h′2)

if k ∈ dom(h1), and π2(h
′(k)) = π2(h

′
2(k))−Xk ∪X ′k for some Xk, X

′
k with

∗ Xk ⊆MP({�})
∗ X ′k ⊆ dom(h1)

if k ∈ dom(h′2).

This is true again, because:

π2(h
′(k)) = π2(h(k)) =


(π2(h1(k))−Xk) ∪X ′k ∀k ∈ dom(h1)
(π2(h2(k))−Xk) ∪X ′k = (π2(h

′
2(k))−Xk) ∪X ′k
∀k ∈ dom(h′2)− {n,m}

π2(h
′(n)) = (π2(h(n))− {m}) ∪ {�}

= (((π2(h2(n))−Xn) ∪X ′n)− {m}) ∪ {�}
∗
= (((π2(h2(n))− {m}) ∪ {�})−Xn) ∪X ′n
= (π2(h

′
2(n))−Xn) ∪X ′n

π2(h
′(m)) = (π2(h(m))− {n}) ∪ {�}

= (((π2(h2(m))−Xm) ∪X ′m)− {n}) ∪ {�}
∗∗
= (((π2(h2(m))− {n}) ∪ {�})−Xm) ∪X ′m
= (π2(h

′
2(m))−Xm) ∪X ′m

(*), (**): like in the previous case, Xn, X
′
n, {m}, {�} are all disjoint with each other,

and so are Xm, X
′
m, {n}, {�}.

So we can say that h′ ∈ h1 ◦ h′2.
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− C = C1;C2

Because 〈C1;C2, h2〉 is live, there is h′2 with 〈C1;C2, h2〉 〈h′2〉, which means that there
is some h′′2 with 〈C1, h2〉  〈h′′2〉 and 〈C2, h

′′
2〉  〈h′2〉. This implies, in particular, that

〈C1, h2〉 is live, and so is 〈C2, h
′′
2〉.

By induction hypothesis, since 〈C1, h2〉 is live, h ∈ h1 ◦ h2 and we have h′′2 such that
〈C1, h2〉 〈h′′2〉, we know that there is h′′ ∈ h1 ◦ h′′2 such that 〈C1, h〉 〈h′′〉.
On the other hand, since 〈C2, h

′′
2〉 is live, h′′ ∈ h1 ◦ h′′2 and 〈C2, h

′′
2〉  〈h′2〉, by induction

hypothesis, again, we know that there is h′ ∈ h1 ◦ h′2 such that 〈C2, h
′′〉 〈h′〉.

Having 〈C1, h〉  〈h′′〉 and 〈C2, h
′′〉  〈h′〉 gives us 〈C1;C2, h〉  〈h′〉 and, as we have

seen, h′ ∈ h1 ◦ h′2.

− C = C1 + C2

If 〈C1 +C2, h2〉 is live then there is some h′2 such that 〈C1 +C2, h2〉 h′2, and this means
that either 〈C1, h2〉 h′2 or 〈C2, h2〉 h′2. Without loss of generality, let us suppose that
〈C1, h2〉 h′2. Then 〈C1, h2〉 is live and by induction hypothesis we have h′ ∈ h1 ◦h′2 with
〈C1, h〉 〈h′〉. And this means that we also have 〈C1 + C2, h〉 〈h′〉 (h′ ∈ h1 ◦ h′2).

Lemma 3.13 (Soundness of the Frame Rule). The Frame Rule

{A} C {A′}
{A ∗D} C {A′ ∗D}

is sound, i.e., if the premise holds then so does the conclusion.

Proof. To see that the conclusion holds, we assume that h |= A ∗D for some h ∈ H, i.e. that
h ∈ h1 ◦ h2 with h1 |= D and h2 |= A. We note that since h2 |= A and {A} C {A′} holds by
assumption, then there exists some h′2 with 〈h2, C〉 〈h′2〉 and h′2 |= A′.

We must prove that there is some h′ with 〈h,C〉  〈h′〉 and h′ |= A′ ∗D. Since we have
〈h2, C〉 〈h′2〉, and h ∈ h1 ◦ h2, we can apply the Nondeterministic Frame Property to obtain
h′ ∈ h1 ◦ h′2 such that 〈C, h〉  〈h′〉, and thus we have found h′ with 〈C, h〉  〈h′〉 and
h′ |= A′ ∗D, as required.

3.3.4 Tight Specifications.

With an appropriate syntax for assertions describing our resource, we can now give (tight)
specifications for our basic commands, which will be the axioms in our set of rules. These axioms
are given in Figure 10 together with the rules for sequential composition and nondeterministic
choice.

Example 3.2. Let us give a proof for a “program” that turns two methane molecules into one
ethane molecule and one hydrogen molecule. The program would be the following:

break(C, H); break(C, H); bond(C, C); bond(H, H)

We start with two methane molecules, h1 and h2:

dom(h1) = {1, 2, 3, 4, 5}
h1(1) = (C, {2, 3, 4, 5}) h1(2) = h1(3) = h1(4) = h1(5) = (H, {1})
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{Hi{j} ∗ Hj{i}} break(H, H) {Hi{�} ∗ Hj{�}}

{Hi{j} ∗ Cj{i, x2, x3, x4}} break(C, H) {Hi{�} ∗ Cj{�, x2, x3, x4}}

{Ci{j, x2, x3, x4} ∗ Cj{i, x′2, x′3, x′4}} break(C, C) {Ci{�, x2, x3, x4} ∗ Cj{�, x′2, x′3, x′4}}

{Hi{�} ∗ Hj{�}} bond(H, H) {Hi{j} ∗ Hj{i}}

{Hi{�} ∗ Cj{�, x2, x3, x4}} bond(C, H) {Hi{j} ∗ Cj{i, x2, x3, x4}}

{Ci{�, x2, x3, x4} ∗ Cj{�, x′2, x′3, x′4}} bond(C, C) {Ci{j, x2, x3, x4} ∗ Cj{i, x′2, x′3, x′4}}

{A} C {A′′} {A′′} C {A′}
{A} C;C ′ {A′}

{A} C {A′} {A} C ′ {A′}
{A} C + C ′ {A′}

Figure 10: Axioms and rules for the Partial Hydrocarbon model

dom(h2) = {6, 7, 8, 9, 10}
h2(6) = (C, {7, 8, 9, 10}) h2(7) = h2(8) = h2(9) = h2(10) = (H, {6})

CH

H

H

H

CH

H

H

H

The picture represent as well the (unique) partial hydrocarbon in h1 ◦ h2, which satisfies

C1{2, 3, 4, 5} ∗ H2{1} ∗ H3{1} ∗ H4{1} ∗ H5{1}
∗C6{7, 8, 9, 10} ∗ H7{6} ∗ H8{6} ∗ H9{6} ∗ H10{6}

It is, in fact, the only partial hydrocarbon that satisfies this assertion.

Figure 11 will help see how this transformation takes place.

The proof that our program transforms (due to the nondeterminism in the commands it
might be more accurate to say “is able to transform”) two methane molecules into one ethane
and one hydrogen molecule is in Figure 12.

We can observe that, indeed, only one partial hydrocarbon satisfies the last assertion

{C1{6, 3, 4, 5} ∗ H2{7} ∗ H3{1} ∗ H4{1} ∗ H5{1} ∗ C6{1, 8, 9, 10} ∗ H7{2} ∗ H8{6} ∗ H9{6} ∗ H10{6}}
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Figure 11: Two methane molecules turning into an ethane and a hydrogen molecule
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{C1{2, 3, 4, 5} ∗ H2{1} ∗ H3{1} ∗ H4{1} ∗ H5{1}
∗C6{7, 8, 9, 10} ∗ H7{6} ∗ H8{6} ∗ H9{6} ∗ H10{6}}

break(C, H)

{C1{�, 3, 4, 5} ∗ H2{�} ∗ H3{1} ∗ H4{1} ∗ H5{1}
∗C6{7, 8, 9, 10} ∗ H7{6} ∗ H8{6} ∗ H9{6} ∗ H10{6}}

break(C, H)

{C1{�, 3, 4, 5} ∗ H2{�} ∗ H3{1} ∗ H4{1} ∗ H5{1}
∗C6{�, 8, 9, 10} ∗ H7{�} ∗ H8{6} ∗ H9{6} ∗ H10{6}}

bond(C, C)

{C1{6, 3, 4, 5} ∗ H2{�} ∗ H3{1} ∗ H4{1} ∗ H5{1}
∗C6{1, 8, 9, 10} ∗ H7{�} ∗ H8{6} ∗ H9{6} ∗ H10{6}}

bond(H, H)

{C1{6, 3, 4, 5} ∗ H2{7} ∗ H3{1} ∗ H4{1} ∗ H5{1}
∗C6{1, 8, 9, 10} ∗ H7{2} ∗ H8{6} ∗ H9{6} ∗ H10{6}}

Figure 12: Proof of correctness of a simple program manipulating partial hydrocarbon

in Figure 12. It is the partial hydrocarbon that consists of one ethane and one hydrogen molecule:
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H

H

Of course, to justify the use of the rules that have been given, it remains to prove their
soundness.

Lemma 3.14. The proof rules in Figure 10 are sound.

Proof.

−
{Hi{j} ∗ Hj{i}} break(H, H) {Hi{�} ∗ Hj{�}}
Given h so that h |= Hi{j} ∗ Hj{i}, we must have dom(h) = {i, j} with h(i) = (H, {j}) and
h(j) = (H, {i}). The operational semantics gives 〈break(H, H), h〉 〈h′〉 where

h′ = h[i 7→ (H, {�}), j 7→ (H, {�})] = [i 7→ (H, {�}), j 7→ (H, {�})]
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hence h′ |= Hi{�} ∗ Hj{�}.

−
{Hi{j} ∗ Cj{i, x2, x3, x4}} break(C, H) {Hi{�} ∗ Cj{�, x2, x3, x4}}
Given h so that h |= Hi{j} ∗ Cj{i, x2, x3, x4}, we must have dom(h) = {i, j} with h(i) =
(H, {j}) and h(j) = (C, {i, x2, x3, x4}). The operational semantics gives 〈break(C, H), h〉 
〈h′〉 where

h′ = h[i 7→ (H, {�}), j 7→ (C, {�, x2, x3, x4})] = [i 7→ (H, {�}), j 7→ (C, {�, x2, x3, x4})]

hence h′ |= Hi{�} ∗ Cj{�, x2, x3, x4}.

−
{Ci{j, x2, x3, x4} ∗ Cj{i, x′2, x′3, x′4}} break(C, C) {Ci{�, x2, x3, x4} ∗ Cj{�, x′2, x′3, x′4}}
Given h so that h |= Ci{j, x2, x3, x4} ∗ Cj{i, x′2, x′3, x′4}, we must have dom(h) = {i, j} with
h(i) = (C, {j, x2, x3, x4}) and h(j) = (C, {i, x′2, x′3, x′4}). The operational semantics gives
〈break(C, C), h〉 〈h′〉 where

h′ = h[i 7→ (C, {�, x2, x3, x4}), j 7→ (C, {�, x′2, x′3, x′4})] =

= [i 7→ (H, {�, x2, x3, x4}), j 7→ (C, {�, x′2, x′3, x′4})]

hence h′ |= Ci{�, x2, x3, x4} ∗ Cj{�, x′2, x′3, x′4}.

−
{Hi{�} ∗ Hj{�}} bond(H, H) {Hi{j} ∗ Hj{i}}
Given h so that h |= Hi{�} ∗ Hj{�}, we must have dom(h) = {i, j} with h(i) = (H, {�})
and h(j) = (H, {�}). The operational semantics gives 〈bond(H, H), h〉 〈h′〉 where

h′ = h[i 7→ (H, {j}), i 7→ (H, {i})] = [i 7→ (H, {j}), j 7→ (H, {i})]

hence h′ |= Hi{j} ∗ Hj{i}.

−
{Hi{�} ∗ Cj{�, x2, x3, x4}} bond(C, H) {Hi{j} ∗ Cj{i, x2, x3, x4}}
Given h so that h |= Hi{�} ∗ Cj{�, x2, x3, x4}, we must have dom(h) = {i, j} with h(i) =
(H, {�}) and h(j) = (C, {�, x2, x3, x4}). The operational semantics gives 〈bond(C, H), h〉 
〈h′〉 where

h′ = h[i 7→ (H, {j}), j 7→ (C, {i, x2, x3, x4})] = [i 7→ (H, {j}), j 7→ (C, {i, x2, x3, x4})]

hence h′ |= Hi{j} ∗ Cj{i, x2, x3, x4}.

−
{Ci{�, x2, x3, x4} ∗ Cj{�, x′2, x′3, x′4}} bond(C, C) {Ci{j, x2, x3, x4} ∗ Cj{i, x′2, x′3, x′4}}
Given h so that h |= Ci{�, x2, x3, x4} ∗ Cj{�, x′2, x′3, x′4}, we must have dom(h) = {i, j}
with h(i) = (C, {�, x2, x3, x4}) and h(j) = (C, {�, x′2, x′3, x′4}). The operational semantics
gives 〈bond(C, C), h〉 〈h′〉 where

h′ = h[i 7→ (C, {j, x2, x3, x4}), j 7→ (C, {i, x′2, x′3, x′4})] =

= [i 7→ (C, {j, x2, x3, x4}), j 7→ (C, {i, x′2, x′3, x′4})]

hence h′ |= Ci{j, x2, x3, x4} ∗ Cj{i, x′2, x′3, x′4}.
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−
{A} C {A′′} {A′′} C {A′}

{A} C;C ′ {A′}
Let h |= A and suppose 〈C;C ′, h〉  ∗ 〈h′〉. Then according to the operational semantics
there must be some h′′ such that 〈C, h〉  ∗ 〈h′′〉 and 〈C ′, h′′〉  ∗ 〈h′〉. Because we have
{A} C {A′′} it must be h′′ |= A′′, and because we have {A′′} C {A′} we must also have
h′ |= A′.

−
{A} C {A′} {A} C ′ {A′}

{A} C + C ′ {A′}
Let h |= A and suppose 〈C;C ′, h〉  ∗ 〈h′〉. Then according to the operational semantics
either 〈C, h〉  ∗ 〈h′〉 or 〈C ′, h〉  ∗ 〈h′〉. Because we have {A} C {A′} and {A} C {A′},
in either case we must also have h′ |= A′.
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4 Conclusions and Future Work

The main contribution of this project has been to introduce the novel notion of arity of a resource
instance, both with the bounded memory model and with the partial hydrocarbon model. We
have made suitable modifications in the standard memory model (by introducing an additional
component that refers to reserved inactive cells) and the corresponding set of axioms to get a
model for finite memory allocation. We have proved that the rules — the modified axioms and
the original rules — are sound in this setting, including the Frame Rule. This enables us to
reason about programs that manipulate a finite shared memory heap, with memory allocation
restricted to single cells. We have also suggested a way to improve the modifications in the model
(turning the new third component into a set of natural numbers that describe reserved disjoint
gaps in the memory) in such a way that we can handle allocation of several contiguous memory
cells, and we have given a sensible operational semantics for memory allocation and deallocation
in this setting. We have been quite cautious when giving this operational semantics in order to
make it reasonable. To achieve this, we have sacrified a considerable amount of reserved gaps.
This operational semantics could probably be improved, at least in the cases where the number
of gaps reserved was less that 3, so that fewer reserved memory cells were sacrificed. It remains
to prove soundness of the rest of the rules in this setting, in particular of the Frame Rule. Also,
it would be interesting to see how the two successful aproaches can be extended to concurrent
programs [10, 11].

In addition to extending the notion of arity to a resource different from a memory heap.
with the partial hydrocarbon model we have looked into separation logic reasoning about a
model where the commands have an angelic (vs. demonic) nondeterministic behaviour and the
resource has a nondeterministic combination operation.

Our approach to the finite memory model is different to the one taken by Raza in [6]. Arguing
that allocation and deallocation commands use, not only the information given explicitly in the
states, but also some implicit information about the global allocation state of the whole memory,
he chooses to make this information explicit by introducing a new basic construct for description
of states. This new construct represents the whole set of unallocated addresses as a “unique,
atomic piece of resource”. In his approach, allocation/deallocation commands require ownership
of the set of unallocated addresses — which must be non-empty in order not to lead to failure.
He suggests a very useful analogy with the permissions model ([8]): in the permissions model,
the right permission on a cell is needed to read or mutate its contents; in Raza’s approach,
permission over the whole set of inactive cells is needed to either allocate or dealllocate a cell.
Our general approach to the finite memory model differs from this one in that we do not treat
the set of non-allocated addresses as an atomic piece of resource, but split it into pieces at will,
just like we do with the allocated parts of the memory. The permissions analogy, however, works
in our approach too: we reserve (i.e. we have permission over) a certain number of cells (or
some disjoint gaps in the memory, in another approach) for manipulation with our commands.

While exploring the models presented in previous sections, we have come accross three
particular features that resource models can have: arity, deterministic vs. nondeterministic
combination operation and deterministic/demonic nondeterministic vs. angelic nondeterminis-
tic commands. We find that it might be very interesting to look at various resources that present
different combinations of these features, and even maybe present them in different degrees — if
we found that there was a way of somehow measuring them. We can see this as exploring the
following cube:
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Arity of
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3

2

The standard memory model could be located in corner 1 of the cube, since it presents
demonic nondeterminism in its commands, a (partial) deterministic combination operation and
no notion of arity. The bounded heap model could be in corner 2, since it presents demonic
nondeterminism in its commands and a deterministic combination operation, and we can talk
about arity of its states. Finally, the partial hydrocarbon model could be located in corner 3, for
it presents angelic nondeterminism in its commands, a nondeteministic combination operation,
and we can talk about arity of its states as well.
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